Science.gov

Sample records for molecular cloning tissue

  1. Human pyridoxal phosphatase. Molecular cloning, functional expression, and tissue distribution.

    PubMed

    Jang, Young Min; Kim, Dae Won; Kang, Tae-Cheon; Won, Moo Ho; Baek, Nam-In; Moon, Byung Jo; Choi, Soo Young; Kwon, Oh-Shin

    2003-12-12

    Pyridoxal phosphatase catalyzes the dephosphorylation of pyridoxal 5'-phosphate (PLP) and pyridoxine 5'-phosphate. A human brain cDNA clone was identified to the PLP phosphatase on the basis of peptide sequences obtained previously. The cDNA predicts a 296-amino acid protein with a calculated Mr of 31698. The open reading frame is encoded by two exons located on human chromosome 22q12.3, and the exon-intron junction contains the GT/AG consensus splice site. In addition, a full-length mouse PLP phosphatase cDNA of 1978 bp was also isolated. Mouse enzyme encodes a protein of 292 amino acids with Mr of 31512, and it is localized on chromosome 15.E1. Human and mouse PLP phosphatase share 93% identity in protein sequence. A BLAST search revealed the existence of putative proteins in organism ranging from bacteria to mammals. Catalytically active human PLP phosphatase was expressed in Escherichia coli, and characteristics of the recombinant enzyme were similar to those of erythrocyte enzyme. The recombinant enzyme displayed Km and kcat values for pyridoxal of 2.5 microM and 1.52 s(-1), respectively. Human PLP phosphatase mRNA is differentially expressed in a tissue-specific manner. A single mRNA transcript of 2.1 kb was detected in all human tissues examined and was highly abundant in the brain. Obtaining the molecular properties for the human PLP phosphatase may provide new direction for investigating metabolic pathway involving vitamin B6.

  2. Molecular cloning.

    PubMed

    Lessard, Juliane C

    2013-01-01

    This protocol describes the basic steps involved in conventional plasmid-based cloning. The goals are to insert a DNA fragment of interest into a receiving vector plasmid, transform the plasmid into E. coli, recover the plasmid DNA, and check for correct insertion events.

  3. Molecular cloning of canine Wilms' tumor 1 for immunohistochemical analysis in canine tissues.

    PubMed

    Sakai, Osamu; Sakurai, Masashi; Sakai, Hiroki; Kubo, Masahito; Hiraoka, Hiroko; Baba, Kenji; Okuda, Masaru; Mizuno, Takuya

    2017-07-28

    Wilms' tumor 1 (WT1) expression has been investigated in various human cancers as a target molecule for cancer immunotherapy. However, few studies have focused on WT1 expression in dogs. Firstly, cDNA of canine WT1 (cWT1) was molecularly cloned from normal canine kidney. The cross-reactivity of the anti-human WT1 monoclonal antibody (6F-H2) with cWT1 was confirmed via Western blotting using cells overexpressing cWT1. Immunohistochemical staining revealed that cWT1 expression was detected in all canine lymphoma tissues and in some normal canine tissues, including the kidney and lymph node. cWT1 is a potential immunotherapy target against canine cancers.

  4. Matrix Gla protein in Xenopus laevis: molecular cloning, tissue distribution, and evolutionary considerations.

    PubMed

    Cancela, M L; Ohresser, M C; Reia, J P; Viegas, C S; Williamson, M K; Price, P A

    2001-09-01

    Matrix Gla protein (MGP) belongs to the family of vitamin K-dependent, Gla-containing proteins and in higher vertebrates, is found in the extracellular matrix of mineralized tissues and soft tissues. MGP synthesis is highly regulated at the transcription and posttranscription levels and is now known to be involved in the regulation of extracellular matrix calcification and maintenance of cartilage and soft tissue integrity during growth and development. However, its mode of action at the molecular level remains unknown. Because there is a large degree of conservation between amino acid sequences of shark and human MGP, the function of MGP probably has been conserved throughout evolution. Given the complexity of the mammalian system, the study of MGP in a lower vertebrate might be advantageous to relate the onset of MGP expression with specific events during development. Toward this goal, MGP was purified from Xenopus long bones and its N-terminal amino acid sequence was determined and used to clone the Xenopus MGP complementary DNA (cDNA) by a mixture of reverse-transcription (RT)- and 5'- rapid amplification of cDNA ends (RACE)-polymerase chain reaction (PCR). MGP messenger RNA (mRNA) was present in all tissues analyzed although predominantly expressed in Xenopus bone and heart and its presence was detected early in development at the onset of chondrocranium development and long before the appearance of the first calcified structures and metamorphosis. These results show that in this system, as in mammals, MGP may be required to delay or prevent mineralization of cartilage and soft tissues during the early stages of development and indicate that Xenopus is an adequate model organism to further study MGP function during growth and development.

  5. Molecular cloning, tissue distribution, and immune function of goose TLR7.

    PubMed

    Qi, Yulin; Chen, Shun; Zhao, Qiurong; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-02-01

    TLR7 is a transmembrane endosomal protein that plays an essential role in innate antiviral responses via the recognition of conserved viral molecular patterns. Here, we cloned the full-length cDNA of goose TLR7 and carried out a molecular characterization of goose TLR7. The goose TLR7 gene is 3900 bp and encodes a 1045 amino acid protein with high homology to poultry (93% to duck and 83% to chicken). Similar conclusions were made by phylogenetic analysis. The predicted protein secondary structure of goose TLR7 contained a conserved Toll/interleukin-1 receptor domain and characteristic leucine-rich repeat regions, which has also been reported for duck TLR7. Additionally, the tissue distribution of goose TLR7 suggests that immune-associated tissues, especially the cecal tonsil and bursa of Fabricius, have high goose TLR7 expression levels. Goose TLR7 is abundantly expressed in lung tissues, which is distinct from its expression in chickens. Similar to duck TLR7, goose spleen mononuclear cells (MNCs) exposed to the mammalian TLR7 agonists R848 and Imiquimod showed significant induction of the production of proinflammatory cytokines and IFN-α. New type gosling viral enteritis virus (NGVEV) infection resulted in high mRNA expression levels of goose TLR7 in the spleen. By contrast, no direct interaction between NGVEV and goose TLR7 was detected after infecting goose spleen MNCs with NGVEV in vitro. However, triggering of goose TLR7 resulted in the rapid up-regulation of proinflammatory cytokines and anti-viral molecules, suggesting that goose TLR7 plays an important role in anti-viral defense. Copyright © 2014 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella).

    PubMed

    Li, L; Yang, Z; Zhang, Y-P; He, S; Liang, X-F; Tao, Y-X

    2017-04-01

    Melanocortin-4 receptor (MC4R) plays a pivotal role in the mediation of leptin action on food intake and energy expenditure in mammals. The MC4R has also been identified in several teleosts, and its importance in the regulation of fish energy homeostasis is emerging. We herein reported on the molecular cloning, tissue distribution, and pharmacological characterization of MC4R in grass carp (Ctenopharyngodon idella), an economically and ecologically important fish. We showed that grass carp MC4R (ciMC4R) consisted of a 981 bp open reading frame encoding a protein of 326 amino acids, highly homologous (>95%) to several teleost MC4Rs. Phylogenetic and synteny analysis further indicated ciMC4R was closely related to piscine MC4Rs. Using reverse transcription PCR, we found that mc4r messenger RNA was expressed in the brain as well as various peripheral tissues in grass carp. The pharmacological properties of ciMC4R were investigated using 4 agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle(4), D-Phe(7)]-MSH (NDP-MSH), and adrenocorticotropic hormone (ACTH). We showed that all 4 ligands could bind to ciMC4R and initiate dose-dependent intracellular cyclic adenosine monophosphate (cAMP) accumulation. Grass carp MC4R had the highest affinity for NDP-MSH. Both NDP-MSH and ACTH (1-24) exhibited higher potencies compared to the other 2 endogenous agonists. The ciMC4R was constitutively active, with significantly increased basal cAMP level compared with that of human MC4R (P < 0.01). The availability of ciMC4R and its pharmacologic characteristics provide a basis for future investigation of its functional roles in regulating diverse physiological processes and novel insights into understanding the mechanism of food habit transition in grass carp.

  7. Characterization of feline TRIM genes: molecular cloning, expression in tissues, and response to type I interferon.

    PubMed

    Koba, Ryota; Kokaji, Chika; Fujisaki, Gentoku; Oguma, Keisuke; Sentsui, Hiroshi

    2013-05-15

    Members of the tripartite motif (TRIM) protein family in mammals are responsible for various cellular processes. Previous studies have revealed that several TRIM proteins were induced by interferons (IFN) and that these proteins were involved in innate immune response against retroviral infection. Although retroviral infection is prevalent in domestic cats, the expression profiles and roles of feline TRIM genes against these viral infections are not well understood. In the present study, we examined tissue expression and IFN inducibility of nine feline TRIM genes. In addition, the complete coding sequences of six cloned TRIM genes were determined, and their structures were analyzed. Nine TRIM genes were expressed in feline tissues and five were up-regulated by type I IFN. The predicted amino acid sequence of six feline TRIM proteins showed high sequence similarities to other mammalian TRIM proteins, and suggest that feline TRIM genes are potentially involved in antiviral reactivity in IFN-mediated immune response.

  8. Three isozymes of peptidylarginine deiminase in the chicken: molecular cloning, characterization, and tissue distribution.

    PubMed

    Shimizu, Akira; Handa, Kenji; Honda, Tomonori; Abe, Naoki; Kojima, Toshio; Takahara, Hidenari

    2014-01-01

    Peptidylarginine deiminase (PAD; EC 3.5.3.15) is a post-translational modification enzyme that catalyzes the conversion of protein-bound arginine to citrulline (deimination) in a calcium ion dependent manner. Although PADI genes are widely conserved among vertebrates, their function in the chicken is poorly understood. Here, we cloned and sequenced three chicken PADI cDNAs and analyzed the expression of their proteins in various tissues. Immunoblotting analysis showed that chicken PAD1 and PAD3 were present in cells of several central neuron system tissues including the retina; the chicken PAD2 protein was not detected in any tissue. We expressed recombinant chicken PADs in insect cells and characterized their enzymatic properties. The chicken PAD1 and PAD3 recombinant proteins required calcium ions as an essential cofactor for their catalytic activity. The two recombinant proteins showed similar substrate specificities toward synthetic arginine derivatives. By contrast to them, chicken PAD2 did not show any activity. We found that one of the conserved active centers in mammalian PADs had been altered in chicken PAD2; we prepared a reverse mutant but we did not detect an activity. We conclude that chicken PAD1 and PAD3 might play specific roles in the nervous system, but that chicken PAD2 might not be functional under normal physiological conditions.

  9. Molecular cloning of canine interleukin-31 and its expression in various tissues.

    PubMed

    Mizuno, Takuya; Kanbayashi, Satoshi; Okawa, Takumi; Maeda, Sadatoshi; Okuda, Masaru

    2009-09-15

    The newly discovered cytokine, interleukin-31 (IL-31), belongs to the short-chain cytokine group. It was reported that transgenic expression of IL-31-induced pruritus, similar to atopic dermatitis, in mice, further, excessive amounts of IL-31 was also expressed in the skin from human patients with atopic dermatitis as compared to that from normal people. In this study, canine IL-31 was molecularly cloned from concanavalin A-stimulated canine peripheral blood mononuclear cells (PBMCs), and its nucleotide sequence was determined. Canine IL-31 contains 4 alpha-helix structures characteristic of the IL-31 family, and the amino acid identity of canine IL-31 with those of human or mouse is 54% and 28%, respectively. Furthermore, we detected low levels of canine IL-31 in the thymus, testis, spleen, and kidneys, but not in the skin of atopic dogs.

  10. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax).

    PubMed

    Sánchez, Jose Antonio; Madrid, Juan Antonio; Sánchez-Vázquez, Francisco Javier

    2010-01-01

    Circadian rhythms are controlled by interlocked autoregulatory feedback loops consisting of interactions of a group of circadian clock genes and their proteins. The Period family is a group of genes that are essential components of the molecular clock. In the present study, we cloned a period gene (per1) of the European sea bass, a marine teleost of chronobiological interest. The cloned sequence encoded a protein consisting of 1436 amino acids that homology and phylogenic analyses showed to be related with fish PER1 proteins possessing very high identity with Oryzias latipes (Medaka) per1. Polymerase chain reaction screening of per1 expression showed that this gene is expressed in all the tissues analyzed (brain, heart, liver, gill, muscle, digestive tract, adipose tissue, spleen, and retina). In addition, a daily expression rhythm, with an acrophase (peak time) approximately ZT0 (lights-on), was found in the two tissue types investigated: neural (brain) and peripheral (liver and heart). In conclusion, identification and characterization of the gene encoding sea bass per1 provide valuable information for understanding the circadian mechanism at the molecular level in this species, although further research is needed to clarify the exact role that per1 plays in the circadian oscillator and the dual behavior of European sea bass.

  11. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei).

    PubMed

    Hsieh, Shu-Ling; Chiu, Yi-Chun; Kuo, Ching-Ming

    2006-09-01

    Ferritin, a cytosolic iron storage protein composed of 24 subunits of heavy chain and light chain, is an intracellular protein primarily involved in iron metabolism. It can sequester up to 4500 ferric ions in its inner core to protect cells against toxicity of iron. Ferritin is known to play important roles in detoxification and is also involved in immunity processes. In this study, a full-length ferritin cDNA was cloned from the haemocyte of the Pacific white shrimp, Litopenaeus vannamei: it comprises 1249 bp, including 132 bp in the 5'-untranslated region, 510 bp in the open reading frame which encodes 170 amino acid residues, and 607 bp in the 3'-untranslated region. Alignments of the deduced amino acid sequence showed that the Pacific white shrimp ferritin shares 74%, 69%, 62%, 67%, 50% and 48% identity with crayfish, tick, brine shrimp, oyster, human and rat, respectively. The tissue-specific expression pattern was examined by reverse transcription polymerase chain reaction and real-time quantitative PCR. The ferritin mRNA is expressed in various tissues of the shrimp in the order of haemocyte, midgut gland, brain ganglion, gill, hepatopancreas, abdominal ganglion, eyestalk, muscle, thoracic ganglion, and heart.

  12. Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases

    PubMed Central

    Edgar, Alasdair J

    2002-01-01

    Background In mammals, L-threonine is an indispensable amino acid. The conversion of L-threonine to glycine occurs through a two-step biochemical pathway involving the enzymes L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. The L-threonine 3-dehydrogenase enzyme has been purified and characterised, but the L-threonine 3-dehydrogenase gene has not previously been identified in mammals. Results Transcripts for L-threonine 3-dehydrogenase from both the mouse and pig are reported. The ORFs of both L-threonine dehydrogenase cDNAs encode proteins of 373 residues (41.5 kDa) and they share 80% identity. The mouse gene is located on chromosome 14, band C. The amino-terminal regions of these proteins have characteristics of a mitochondrial targeting sequence and are related to the UDP-galactose 4-epimerases, with both enzyme families having an amino-terminal NAD+ binding domain. That these cDNAs encode threonine dehydrogenases was shown, previously, by tiling 13 tryptic peptide sequences, obtained from purified L-threonine dehydrogenase isolated from porcine liver mitochondria, on to the pig ORF. These eukaryotic L-threonine dehydrogenases also have significant similarity with the prokaryote L-threonine dehydrogenase amino-terminus peptide sequence of the bacterium, Clostridium sticklandii. In murine tissues, the expression of both L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase mRNAs were highest in the liver and were also present in brain, heart, kidney, liver, lung, skeletal muscle, spleen and testis. Conclusions The first cloning of transcripts for L-threonine dehydrogenase from eukaryotic organisms are reported. However, they do not have any significant sequence homology to the well-characterised Escherichia coli L-threonine dehydrogenase. PMID:12097150

  13. Agouti signalling protein (ASIP) gene: molecular cloning, sequence characterisation and tissue distribution in domestic goose.

    PubMed

    Zhang, J; Wang, C; Liu, Y; Liu, J; Wang, H Y; Liu, A F; He, D Q

    2016-06-01

    Agouti signalling protein (ASIP) is an endogenous antagonist of melanocortin-1 receptor (MC1R) and is involved in the regulation of pigmentation in mammals. The objective of this study was to identify and characterise the ASIP gene in domestic goose. The goose ASIP cDNA consisted of a 44-nucleotide 5'-terminal untranslated region (UTR), a 390-nucleotide open-reading frame (ORF) and a 45-nucleotide 3'-UTR. The length of goose ASIP genomic DNA was 6176 bp, including three coding exons and two introns. Bioinformatic analysis indicated that the ORF encodes a protein of 130 amino-acid residues with a molecular weight of 14.88 kDa and an isoelectric point of 9.73. Multiple sequence alignments and phylogenetic analysis showed that the amino-acid sequence of ASIP was conserved in vertebrates, especially in the avian species. RT-qPCR showed that the goose ASIP mRNA was differentially expressed in the pigment deposition tissues, including eye, foot, feather follicle, skin of the back, as well as in skin of the abdomen. The expression level of the ASIP gene in skin of the abdomen was higher than that in skin of the back. Those findings will contribute to further understanding the functions of the ASIP gene in geese plumage colouring.

  14. Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Zhou, Qin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-04-25

    The cDNAs encoding two distinct type I interferon receptors were firstly cloned from the spleen of white goose (the Chinese goose, Anser cygnoides). The cDNA of goose IFNAR1 consisted of 1616 bp and encoded 406 amino acids with a predicted molecular weight of 46.4 kDa, while the cDNA of goose IFNAR2 consisted of 1525 bp and encoded 294 amino acids with a predicted molecular weight of 32.6 kDa. The IFNAR1 shared 85.4% identity in deduced amino acid sequence with duck IFNAR1, while IFNAR2 amino acid sequence showed 86% identity with that of duck IFNAR2. The age-related analysis of gene expression revealed that goose IFNα and IFNARs were all highly transcribed in pancreas, which may due to a reasonable amount of dendritic cells aggregated in pancreas. And goose IFNα and its cognate receptors had different structural features and tissue expression patterns during the period from embryonic goose to adult goose, suggesting that IFNα and IFNARs may maintain a developmental dynamic immune competence in unstimulated states. The data provided in this study may contribute to future understanding of the interaction between interferon and interferon receptors in immune mechanism. And it also helps us to understand the age-related susceptibility to pathogens in birds better. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Molecular cloning, tissue expression, and subcellular localization of porcine peptidoglycan recognition proteins 3 and 4.

    PubMed

    Ueda, Wataru; Tohno, Masanori; Shimazu, Tomoyuki; Fujie, Hitomi; Aso, Hisashi; Kawai, Yasushi; Numasaki, Muneo; Saito, Tadao; Kitazawa, Haruki

    2011-09-15

    Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are present in most invertebrates and vertebrates. Mammals have four PGRPs, PGLYRP1-4. In the present study, we cloned the cDNAs encoding porcine PGLYRP3 and 4 from the esophagus of adult swine. The length of the complete open reading frames of porcine PGLYRP3 and 4 are identical and contain 1125bp encoding 374 amino acid residues. The amino acid sequences of these two proteins were more similar to their human orthologs (78.9% [PGLYRP3] and 73.9% [PGLYRP4]) than to their mouse orthologs (71.3% [PGLYRP3] and 67.9% [PGLYRP4]). Expression analysis revealed that both PGLYRP3 and 4 were more strongly expressed in digestive tract, especially the esophagus, than in immune organs such as spleen or mesenteric lymph nodes in both newborn and adult swine. To analyze the subcellular distribution of porcine PGLYRP1-4, we constructed transfectant cell lines. Western blot and flow cytometric analyses revealed that porcine PGLYRP3 and 4 are not only secreted, but also expressed on the cell surface, unlike PGLYRP1 and 2. These results should help contribute to the understanding of PGLYRP3- and 4-mediated immune responses via their recognition of intestinal microorganisms in newborn and adult swine.

  16. Molecular cloning, tissue expression and SNP analysis in the goat nerve growth factor gene.

    PubMed

    An, Xiaopeng; Bai, Long; Hou, Jinxing; Zhao, Haibo; Peng, Jiayin; Song, Yunxuan; Wang, Jiangang; Cao, Binyun

    2013-02-01

    In this study, we cloned the full coding region of NGF gene from the caprine ovary. Result showed the caprine NGF cDNA (GenBank Accession No. JQ308184) contained a 726 bp open reading frame encoding a protein with 241 amino acid residues. Bioinformatic analysis indicated that caprine NGF amino acid sequence was 83-99 % identical to that of mouse, pig, dog, human and bovine. It was predicted that caprine NGF contained nine serine phosphorylation loci, four threonine phosphorylation loci and nine specific PKC phosphorylation loci. The NGF mRNA expression pattern showed that NGF gene was expressed highly in ovary. This work provided an important experimental basis for further research on the function of NGF in goat. A single nucleotide polymorphism (A705G) in the coding region of NGF gene was detected by PCR-RFLP and DNA sequencing in 630 goats of three breeds. The frequencies of G allele were 0.52-0.61, and frequencies of A allele were 0.48-0.39 for SN, GZ and BG breeds, respectively. The does with GG genotype had higher litter size than those with GA and AA genotypes (P < 0.05). Hence, the biochemical and physiological functions, together with the results obtained in our investigation, suggest that the NGF gene could serve as a genetic marker for litter size in goat breeding.

  17. Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys.

    PubMed

    Gopinath, V P; Biswas, Moanaro; Raj, Gopal Dhinakar; Raja, A; Kumanan, A K; Elankumaran, Subbiah

    2011-09-01

    Toll-like receptors (TLRs), a family of transmembrane and cytosolic proteins, detect microbial patterns, initiating innate immune responses in various organisms. Although they are abundant, genetic characterization and functional differences of TLRs in economically important avian species such as chickens and turkeys have not been investigated in detail. In this study, the putative TLR5 coding region from turkey genome was sequenced, and its homology to other vertebrate species was analyzed. Secondary structure analysis revealed protein motifs typical of the chicken TLR5 protein structure, with 97% amino acid identity between them. mRNA expression profiling in adult turkeys revealed abundant TLR5 expression in a broad range of tissues. Stimulation with the TLR5 ligand flagellin resulted in the production of the inflammatory mediators interleukin (IL)-1beta, IL-6, and nitric oxide in peripheral blood mononuclear cells. To our knowledge, this is the first complete turkey TLR5 coding DNA sequence reported in sequence databases.

  18. Molecular cloning and tissue distribution of a short form chicken leptin receptor mRNA.

    PubMed

    Liu, Xiaojun; Dunn, I C; Sharp, P J; Boswell, T

    2007-04-01

    In mammals, alternative splicing of the leptin receptor (LEPR) produces several C-terminal truncated isoforms that are believed to play a role in the transport, cellular internalisation and degradation of the hormone leptin. The chicken leptin receptor (chLEPR) is similar to its mammalian counterparts in terms of its intron/exon structure and conserved motifs. However, it is unknown whether the chLEPR also undergoes alternative splicing. To test this, structural analysis of intron 19 of the chLEPR, equivalent to the intron in which alternative splicing occurs in mammals, was combined with 3'-rapid amplification of cDNA ends (3'-RACE) to search for chLEPR splice variants. A 44-amino acid alternative exon 20 was identified that is spliced to generate a short isoform of the chLEPR (chLEPR-SF). Comparative sequence analysis of intron 19 identified two regions that are highly conserved between the chicken and mammals, indicating their possible importance as intronic elements in the regulation of alternative splicing of the LEPR in vertebrates. Tissue expression of the chLEPR-SF was lower and more restricted than that of the chLEPR long isoform. Collectively these data demonstrate that the chLEPR is alternatively spliced to produce at least one short isoform, as is the case in mammals.

  19. Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1

    PubMed Central

    Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude

    1999-01-01

    A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715

  20. Guide to molecular cloning techniques

    SciTech Connect

    Berger, S.L.; Kimmel, A.R.

    1987-01-01

    This book includes the following selections: requirements for a molecular biology laboratory; general methods for isolating and characterizing nucleic acids; enzymatic techniques and recombinant DNA technology; restriction enzymes; growth and maintenance of bacteria; genetic cloning, preparation and characterization of RNA; preparation of cDNA and the generation of cDNA libraries; selections of clones from libraries; and identification and characterization of specific clones.

  1. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    AD-RIB5 458 NOLECULNA CLONING OF AOENOSINEDXPNOSPHORIBOSyL 1/1 TRNSFERASEMU CAILIFORNIA UNIV SRN FRANCISCO E KUN US SEP 8? WFOSR-TR-87-0982 SWFOSR-B5...ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of

  2. Molecular cloning of canine protease-activated receptor-2 and its expression in normal dog tissues and atopic skin lesions.

    PubMed

    Maeda, Shingo; Maeda, Sadatoshi; Shibata, Sanae; Chimura, Naoki; Fukata, Tsuneo

    2009-05-01

    Protease-activated receptor-2 (PAR-2) belongs to a new G protein-coupled receptor subfamily and is activated by serine proteases. PAR-2 has been demonstrated to play an important role in inflammation and immune response in allergic diseases. In this study, we cloned canine PAR-2 cDNA from the canine kidney by RT-PCR. The canine PAR-2 clone contained a full-length open reading frame encoding 397 amino acids that had 84% and 80% homology with human and mouse homologues, respectively. Canine PAR-2 mRNA was detected in the heart, lung, liver, pancreas, stomach, small intestine, colon, kidney, adrenal gland, spleen, thyroid gland, thymus, skeletal muscle, lymph node, fat and skin of three healthy dogs. The expression pattern of PAR-2 mRNA in canine tissues was similar to that in humans. The expression level of PAR-2 mRNA in skin was not different between the atopic dermatitis (AD) and healthy dogs, suggesting that the level of PAR-2 mRNA transcription may not be associated with development of canine AD. The canine PAR-2 cDNA clone obtained in this study will be useful for further investigation of the immunopathogenesis of canine allergic diseases.

  3. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  4. Molecular cloning, tissue expression of gene Muc2 in blunt snout bream Megalobrama amblycephala and regulation after re-feeding

    NASA Astrophysics Data System (ADS)

    Xue, Chunyu; Xi, Bingwen; Ren, Mingchun; Dong, Jingjing; Xie, Jun; Xu, Pao

    2015-03-01

    Mucins are important components of mucus, which form a natural, physical, biochemical and semipermeable mucosal layer on the epidermis of fish gills, skin, and the gastrointestinal tract. As the first step towards characterizing the function of Muc2, we cloned a partial Megalobrama amblycephala Muc2 cDNA of 2 175 bp, and analyzed its tissue-specific expression pattern by quantitative real-time PCR (qPCR). The obtained sequence comprised 41 bp 5'-untranslated region (5'-UTR), 2 134 bp open reading frame encoding a protein of 711 amino acids. BLAST searching and phylogenetic analysis showed that the predicted protein contained several common secreted mucin-module domains (VWD-C8-TIL-VWD-C8) and had high homology with mucins from other vertebrates. Among four candidate reference genes ( β- Actin, RPI13α, RPII, 18S) for the qPCR, RPII was chosen as an appropriate reference gene because of its lowest variation in different tissues. M. amblycephala Muc2 was mainly expressed in the intestine, in the order (highest to lowest) middle-intestine > fore-intestine > hind-intestine. Muc2 was expressed relatively poorly in other organs (brain, liver, kidney, spleen, skin and gill). Furthermore, after 20-days of starvation, M. amblycephala Muc2 expressions after refeeding for 0 h, 3 h, 16 h, 3 d, and 10 d were significantly decreased in the three intestinal segments ( P<0.05) at 16 h, and were then upregulated to near the initial level at 10 d.

  5. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 (PID1) gene in Tianfu goat.

    PubMed

    Xu, Honggang; Xu, Gangyi; Wang, Daihua; Zheng, Chengli; Wan, Lu

    2013-02-15

    Phosphotyrosine interaction domain containing 1 (PID1) is an important mediator in the development of obesity-related insulin resistance in humans and animals. For a better understanding of the structure and function of the PID1 gene and to study its effect in caprine, the cDNA of the PID1 gene from the abdominal muscle of Tianfu goat was cloned and sequenced. The structure of PID1 was analyzed using bioinformatics tools. The results showed that the full sequence of the caprine PID1 cDNA was 896 bp long and contained a 654 bp long coding region that encoded a 217 amino acid sequence. Fifteen phosphorylation sites were predicted in the translated PID1 protein. The protein had a phosphotyrosine-binding domain between Arg(53) and Ile(199). A phylogenic tree based on the PID1 proteins from other species revealed that the caprine protein was closely related to cattle PID1. Fluorescence quantitative PCR analyses revealed that PID1 was expressed in the heart, liver, spleen, lung, kidney, leg muscle, abdominal muscle and longissimus dorsi muscle of goats. In particular, high expression levels of PID1 were detected in liver and abdominal muscle, and low expression levels were seen in lung. Furthermore, the PID1 mRNA expression levels in the longissimus dorsi muscles increased gradually with the age of the goats (P<0.05). Western blotting results detected the PID1 protein in six of the tissues in which PID1 was shown to be expressed; the two exceptions were liver and spleen. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Sheep (Ovis aries) Macrophage Migration Inhibitory Factor: molecular cloning, characterization, tissue distribution and expression in the ewe reproductive tract and in the placenta.

    PubMed

    Lopes, Federica; Vannoni, Alessandro; Sestini, Silvia; Casciaro, Alessandra; Carducci, Antonietta; Bartolommei, Sabrina; Toschi, Paola; Ptak, Grazyna; Cintorino, Marcella; Arcuri, Felice

    2011-06-01

    Macrophage Migration Inhibitory Factor (MIF) is a pivotal regulator of innate and acquired immunity affecting the response and behavior of macrophages and lymphocytes. However, a number of studies indicated wider physiological functions for this cytokine to include key-roles in reproductive biology. The present study was designed to clone the coding sequence of sheep MIF, to examine the characteristics of the protein in vitro, and to evaluate its expression in sheep tissues and in the ewe reproductive tract in vivo. Ovine MIF cDNA consisted of 348 nucleotides encoding a 115 amino acids protein with an estimated molecular mass of 12,343 Da and an isoelectric point of 7.68. Sheep MIF shared high amino acid identity with the other mammalian MIF family members and showed parallel functions to human MIF, displaying enzymatic oxoreductase activity and inducing monocyte transmigration. Expression studies detected a MIF transcript in all the sheep tissues examined. Among reproductive tissues, MIF mRNA and protein were detected in the ovary, oviduct, uterus and placenta. These results indicate that sheep MIF shares crucial features with other MIF family members and delineate its potential involvement in several aspects of ovine physiology.

  7. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues.

    PubMed Central

    Ross, C A; Danoff, S K; Schell, M J; Snyder, S H; Ullrich, A

    1992-01-01

    Three inositol 1,4,5-trisphosphate receptor (IP3R) cDNAs, designated IP3R-II, -III, and -IV, were cloned from a mouse placenta cDNA library. All three display strong homology in membrane-spanning domains M7 and M8 to the originally cloned cerebellar IP3R-I, with divergences predominantly in cytoplasmic domains. Levels of mRNA for the three additional IP3Rs in general are substantially lower than for IP3R-I, though in the gastrointestinal tract the levels of IP3R-III may be comparable to IP3R-I. Cerebellar Purkinje cells express at least two and possibly three distinct IP3Rs, suggesting heterogeneity of IP3 action within a single cell. Images PMID:1374893

  8. Molecular cloning and tissue distribution of reduced folate carrier and effect of dietary folate supplementation on the expression of reduced folate carrier in laying hens.

    PubMed

    Jing, M; Tactacan, G B; Rodriguez-Lecompte, J C; Kroeker, A; House, J D

    2009-09-01

    The reduced folate carrier (RFC) has been postulated to be a major entity for folate transport activity in humans and other mammals. However, there are limited reports of the importance of RFC in an avian system. In the current study, therefore, the molecular cloning and tissue distribution of RFC, as well as the effect of dietary folate supplementation on the expression of this transporter, were investigated in the chicken. Shaver White laying hens (n=8 per diet) received 3 wheat-based diets containing the following: 1) no supplemental folate, 2) folic acid (10.00 mg/kg), or 3) 5-methyltetrahydrofolate (11.30 mg/kg) for 21 d. The mRNA expression levels were analyzed by quantitative real-time PCR. The results showed that the cloned partial RFC cDNA containing the full coding region from duodenum was 99% homologous to the reference gene available in GenBank. A broad expression profile of RFC transcripts was observed, with RFC mRNA detected in the brain, liver, kidney, spleen, lung, intestine, ovary, and testis, as well as other tissues. Real-time PCR analysis revealed that no significant differences (P>0.05) due to diet were found in the mRNA levels of RFC in the duodenum and cecum. However, compared with the basal diet, jejunal mRNA levels of RFC were decreased (P<0.05) in hens fed with the 5-methyltetrahydrofolate diet, but the reduction did not reach significance (P=0.077) in the hens fed the folic acid diet. Overall, the current study demonstrated that the RFC cDNA containing the full coding region was successfully cloned from the duodenum of laying hens. The wide tissue distribution of RFC transcripts is suggestive of an important role of RFC in the process of folate transport in the chicken. Moreover, dietary folate supplementation could downregulate the jejunal mRNA expression of RFC. Such findings will lay the foundation of future work involving the RFC in avian systems, including laying hens.

  9. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    SciTech Connect

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  10. Molecular cloning and characterization of genes for antibodies generated by orbital tissue-infiltrating B-cells in Graves` ophthalmopathy

    SciTech Connect

    Jaume, J.C.; Portolano, S.; Prummel, M.F.; McLachlan, S.M.; Rapoport, B.

    1994-02-01

    Graves` ophthalmopathy is a distressing autoimmune disease of unknown etiology. Analysis of the genes for antibodies secreted by orbital tissue-infiltrating plasma cells might provide insight into the pathogenesis of this disease. The authors, therefore, constructed an immunoglobulin heavy (H) chain and an immunoglobulin k light (L) chain cDNA library from the orbital tissue of a patient with active Graves` ophthalmopathy. Analysis of 15 H (IgG1) and 15 L (k) chains revealed a restricted spectrum of variable region genes. Fourteen of 15 variable k genes were about 94% homologous to the closest known germline gene, KL012. Thirteen of 15 H chain genes were 91% and 90% homologous to the closest germline genes, DP10 and hv1263, respectively. Remarkably, these germline genes also code for other autoantibodies to striated muscle (KL012) and thyroid peridase (KL012 and hv1263). These studies raise the possibility that particular germline genes may be associated with autoimmunity in humans. Further, the present study opens the way to identifying ocular autoantigens that may be the target of an humoral immune response. 29 refs., 4 figs., 1 tab.

  11. Type-A allatostatins from the fall armyworm, Spodoptera frugiperda: molecular cloning, expression and tissue-specific localization.

    PubMed

    Abdel-Latief, Mohatmed; Meyering-Vos, Martina; Hoffmann, Klaus H

    2004-07-01

    The gene encoding the Spodoptera frugiperda allatostatin type-A peptide family (Y/FXFGL-amides) was isolated from S. frugiperda brain cDNA. The gene encodes a precursor of 231 amino acids containing nine (or ten) Y/FXFGL-a peptides that are tandemly arranged in three blocks. The comparison of the Spofr-AST A precursor with the respective precursor genes from two other lepidopteran species, Helicoverpa armigera and Bombyx mori, shows high homology in size, sequence (84 and 57%, respectively), and organisation of the allatostatins. One-step RT-PCR analysis using a Spofr-AST A-6 to A-9 probe shows that the gene is not only expressed as one transcript in the brain and midgut of larvae and adults in a time- and tissue-specific manner, but also in the reproductive tissues of adult S. frugiperda. Data confirm the nature of the allatostatin type-A peptides as brain/gut myoregulatory hormones, whereas their function(s) in ovaries, oviduct, and testes still have to be resolved. The cell-specific localization of the preprohormone expression, as demonstrated by whole mount in situ hybridization, confirms the overall distribution of the Spofr-AST A preprohormone as shown by RT-PCR and supports the pleiotropic functions of the peptides. Copyright 2004 Wiley-Liss, Inc.

  12. Orange-spotted grouper (Epinephelus coioides) orexin: molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression.

    PubMed

    Yan, Aifen; Zhang, Lingjuang; Tang, Zhiguo; Zhang, Yanhong; Qin, Chaobin; Li, Bo; Li, Wensheng; Lin, Haoran

    2011-07-01

    Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria).

    PubMed

    Fairgrieve, Marian R; Shibata, Yasushi; Smith, Elizabeth K; Hayman, Edward S; Luckenbach, J Adam

    2016-01-01

    The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish.

  14. Molecular cloning, sequence identification and tissue expression profile of three novel sheep (Ovis aries) genes - BCKDHA, NAGA and HEXA.

    PubMed

    Liu, G Y; Gao, S Z

    2009-01-01

    The complete coding sequences of three sheep genes- BCKDHA, NAGA and HEXA were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR), based on the conserved sequence information of the mouse or other mammals. The nucleotide sequences of these three genes revealed that the sheep BCKDHA gene encodes a protein of 313 amino acids which has high homology with the BCKDHA gene that encodes a protein of 447 amino acids that has high homology with the Branched chain keto acid dehydrogenase El, alpha polypeptide (BCKDHA) of five species chimpanzee (93%), human (96%), crab-eating macaque (93%), bovine (98%) and mouse (91%). The sheep NAGA gene encodes a protein of 411 amino acids that has high homology with the alpha-N-acetylgalactosaminidase (NAGA) of five species human (85%), bovine (94%), mouse (91%), rat (83%) and chicken (74%). The sheep HEXA gene encodes a protein of 529 amino acids that has high homology with the hexosaminidase A(HEXA) of five species bovine (98%), human (84%), Bornean orangután (84%), rat (80%) and mouse (81%). Finally these three novel sheep genes were assigned to GenelDs: 100145857, 100145858 and 100145856. The phylogenetic tree analysis revealed that the sheep BCKDHA, NAGA, and HEXA all have closer genetic relationships to the BCKDHA, NAGA, and HEXA of bovine. Tissue expression profile analysis was also carried out and results revealed that sheep BCKDHA, NAGA and HEXA genes were differentially expressed in tissues including muscle, heart, liver, fat, kidney, lung, small and large intestine. Our experiment is the first to establish the primary foundation for further research on these three sheep genes.

  15. Molecular cloning of an anuran V(2) type [Arg(8)] vasotocin receptor and mesotocin receptor: functional characterization and tissue expression in the Japanese tree frog (Hyla japonica).

    PubMed

    Kohno, Satomi; Kamishima, Yoshihisa; Iguchi, Taisen

    2003-07-01

    In most amphibians, [Arg(8)] vasotocin (VT) has an antidiuretic effect that is coupled to the activation of adenylate cyclase. In contrast, mesotocin (MT) has a diuretic effect and acts via the inositol phosphate/calcium signaling pathway in amphibians. To further clarify the mechanisms of VT and MT activation, we report the molecular cloning of a VT receptor (VTR) and a MT receptor (MTR) from the Japanese tree frog, Hyla japonica. Tree frog VTR or MTR cDNA encoded 363 or 389 amino acids, and their amino acid sequences revealed close similarity to the mammalian vasopressin V(2) (51-52% identity) or toad MT (94% identity) receptors, respectively. Using CHO-K1 cells transfected with tree frog VTR, we observed elevated concentrations of intracellular cAMP following exposure of the cells to VT or other neurohypophysial hormones, whereas the cells transfected with MTR did not exhibit altered cAMP concentrations. The cells transfected with VTR exhibited the following efficiency for cAMP accumulation: VT = hydrin 1 > or = vasopressin > or = hydrin 2 > MT = oxytocin > isotocin. VTR or MTR mRNA exhibits a single 2.2- or 5.5-kb transcription band, respectively, and both are expressed in various tissues. VTR mRNA is clearly expressed in brain, heart, kidney, pelvic patch of skin, and urinary bladder, whereas brain, fat body, heart, kidney, and urinary bladder express MTR mRNA. Specifically, VTR mRNA in the pelvic patch or MTR mRNA in the dorsal skin is present at elevated levels in the skin. Characteristic distribution of VTR and MTR on osmoregulating organs indicates the ligands for these receptors would mediate a variety of functions. Further, the distribution of VTR in the skin would make the regional difference on cutaneous water absorption in response to VT in the Japanese tree frog.

  16. Molecular cloning of feline resistin and the expression of resistin, leptin and adiponectin in the adipose tissue of normal and obese cats.

    PubMed

    Takashima, Satoshi; Nishii, Naohito; Kato, Akiko; Matsubara, Tatsuya; Shibata, Sanae; Kitagawa, Hitoshi

    2016-01-01

    Resistin, one of the adipokines that has a cycteine-rich C-terminus, is considered to relate to the development of insulin resistance in rats. However, in cats, there is little knowledge regarding resistin. In this study, we cloned the feline resistin cDNA from adipose tissue by RT-PCR. The feline resistin clone contained an entire open reading frame encoding 107 amino acids that had 72.8%, 75.4%, 50.9% and 51.8% homology with bovine, human, mouse and rat homologues, respectively. In both subcutaneous and visceral adipose tissues, the transcription levels of feline resistin mRNA were significantly higher in obese cats than normal cats, and those of feline adiponectin mRNA were significantly lower in obese cats than normal cats. However, there was no difference in the expression of feline leptin between normal and obese cats. On the other hand, in both normal and obese cats, there were no significant differences in resistin, leptin and adiponectin mRNA levels between subcutaneous and visceral adipose tissues. In cats, the altered expression of resistin and adiponectin mRNA with obesity may contribute to the pathogenesis of insulin resistance and subsequent diabetes mellitus. In addition to feline adiponectin, the feline resistin cDNA clone obtained in this study will be useful for further investigation of the pathogenesis of obesity in cats.

  17. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  18. Molecular cloning and tissue distribution of peroxisome proliferator-activated receptor-alpha (PPARα) and gamma (PPARγ) in the pigeon (Columba livia domestica).

    PubMed

    Xie, P; Yuan, C; Wang, C; Zou, X-T; Po, Z; Tong, H-B; Zou, J-M

    2014-01-01

    1. Peroxisome proliferator-activated receptors (PPAR) are involved in lipid metabolism through transcriptional regulation of target gene expression. The objective of the current study was to clone and characterise the PPARα and PPARγ genes in pigeon. 2. The full-length of 1941-bp PPARα and 1653-bp PPARγ were cloned from pigeons. The two genes were predicted to encode 468 and 475 amino acids, respectively. Both proteins contained two C4-type zinc fingers, a nuclear hormone receptor DNA-binding region signature and a HOLI domain (ligand binding domain of hormone receptors), and had high identities with other corresponding avian genes. 3. Using quantitative real-time PCR, pigeon PPARα gene expression was shown to be high in kidney, liver, gizzard and duodenum whereas PPARγ was predominantly expressed in adipose tissue.

  19. Molecular cloning and tissue distribution of cholecystokinin-1 receptor (CCK-1R) in yellowtail Seriola quinqueradiata and its response to feeding and in vitro CCK treatment.

    PubMed

    Furutani, Takahiro; Masumoto, Toshiro; Fukada, Haruhisa

    2013-06-01

    In vertebrates, the peptide cholecystokinin (CCK) is one of the most important neuroregulatory digestive hormones. CCK acts via CCK receptors that are classified into two subtypes, CCK-1 receptor (CCK-1R; formally CCK-A) and CCK-2 receptor (formally CCK-B). In particular, the CCK-1R is involved in digestion and is regulated by CCK. However, very little information is known about CCK-1R in fish. Therefore, we performed molecular cloning of CCK-1R cDNA from the digestive tract of yellowtail Seriola quinqueradiata. Phylogenetic tree analysis showed a high sequence identity between the cloned yellowtail CCK receptor cDNA and CCK-1R, which belongs to the CCK-1R cluster. Furthermore, the expression of yellowtail CCK receptor mRNA was observed in gallbladder, pyloric caeca, and intestines, similarly to CCK-1R mRNA expression in mammals, suggesting that the cloned cDNA is of CCK-1R from yellowtail. In in vivo experiments, the CCK-1R mRNA levels increased in the gallbladder and pyloric caeca after feeding, whereas in vitro, mRNA levels of CCK-1R and digestive enzymes in cultured pyloric caeca increased by the addition of CCK. These results suggest that CCK-1R plays an important role in digestion stimulated by CCK in yellowtail.

  20. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.

    PubMed

    Zhang, Ruidong; Hu, Yuehong; Wang, Huan; Yan, Peng; Zhou, Yongkang; Wu, Rong; Wu, Xiaobing

    2016-10-01

    Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles.

  1. Molecular cloning and measurement of telomerase reverse transcriptase (TERT) transcription patterns in tissues of European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua) during aging.

    PubMed

    López de Abechuco, E; Bilbao, E; Soto, M; Díez, G

    2014-05-10

    Telomerase is a reverse transcriptase ribonucleoprotein that maintains the ends of linear chromosomes. This enzyme plays a major role in cell processes like proliferation, differentiation and tumorigenesis, being associated with aging and survival of species. In this study, the gene coding for TERT (Telomerase Reverse Transcriptase) of two commercial fish species, European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua), has been partially cloned. A fragment of 1581bp (hake) and 633bp (cod) showed high homology (identity 74%, query cover 99%, E-value=0) with known Perciformes TERT sequences. TERT transcription patterns were assessed by qRT-PCR in different tissues of hake (brain, ovary, testis, muscle, skin, gills, liver and kidney) and cod (brain, muscle and skin) of different sizes/ages in order to understand its role in the physiological aging of teleosts. TERT was found to be ubiquitously transcribed in all tissues and size/age groups studied in both species. Significantly higher relative transcription levels (p<0.05) were found with increasing size/age of M. merluccius in the kidney, muscle, skin and gonad, the latter exhibiting particularly high relative transcription levels. Male hakes showed higher TERT relative transcription levels in the brain, gonad and liver than females, although these differences were not statistically significant (p<0.05). In G. morhua, higher TERT relative transcription levels were recorded in the muscle and brain of fry and juvenile individuals. Therefore, TERT relative transcription pattern exhibited a higher telomerase demand in early developmental stages and also in mature stages, suggesting tissue renewal or regeneration processes as a conserved mechanism for maintaining long-term cell proliferation capacity and preventing senescence. Thus, it can be concluded that TERT relative transcription level was species and tissue specific and changed with the age of fishes.

  2. Molecular cloning, structural analysis and tissue expression of protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene in Tianfu goat muscle.

    PubMed

    Wan, Lu; Ma, Jisi; Xu, Gangyi; Wang, Daihua; Wang, Nianlu

    2014-02-07

    Calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01), and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05). In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  3. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  4. Leptin and cholecystokinin in Schizothorax prenanti: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and fasting.

    PubMed

    Yuan, Dengyue; Wang, Tao; Zhou, Chaowei; Lin, Fangjun; Chen, Hu; Wu, Hongwei; Wei, Rongbin; Xin, Zhiming; Li, Zhiqiong

    2014-08-01

    In the present study, full-length cDNA sequences of leptin and cholecystokinin (CCK) were cloned from Schizothorax prenanti (S. prenanti), and applied real-time quantitative PCR to characterize the tissue distribution, and appetite regulatory effects of leptin and CCK in S. prenanti. The S. prenanti leptin and CCK full-length cDNA sequences were 1121 bp and 776 bp in length, encoding the peptide of 171 and 123 amino acid residues, respectively. Tissue distribution analysis showed that leptin mRNA was mainly expressed in the liver of S. prenanti. CCK was widely expressed, with the highest levels of expression in the hypothalamus, myelencephalon, telencephalon and foregut of S. prenanti. The CCK mRNA expression was highly elevated after feeding, whereas the leptin mRNA expression was not affected by single meal. These results suggested that CCK is a postprandial satiety signal in S. prenanti, but leptin might not be. In present study, leptin and CCK gene expression were both decreased after fasting and increased after refeeding, which suggested leptin and CCK might be involved in regulation of appetite in S. prenanti. This study provides an essential groundwork to further elucidate the appetite regulatory systems of leptin and CCK in S. prenanti as well as in other teleosts.

  5. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta.

    PubMed

    Chen, Qi-Liang; Luo, Zhi; Tan, Xiao-Ying; Pan, Ya-Xiong; Zheng, Jia-Lang; Zou, Ming

    2014-02-25

    Thyroid hormones (THs) play a pivotal role in many physiological functions in vertebrates, including fish. Their effects are mediated by thyroid hormone receptors (TRs), which are members of the nuclear hormone receptor superfamily. In this study, full-length cDNA sequences of TRs from yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta were cloned and their mRNA tissue expression profiles were determined. In P. fulvidraco, the validated cDNAs encoding for TRα and TRβ were 1789 and 1848 bp in length, encoding peptides of 401 and 378 amino acid residues, respectively. In addition, a TRβ spliced variant (named P. fulvidraco-TRβv), containing a 60-bp insertion, was detected. In S. hasta, cDNAs encoding for TRαA, TRαB and TRβ were 1827, 2295 and 2258 bp in length, encoding peptides of 401, 409 and 393 amino acid residues, respectively. The phylogenetic analysis revealed that TRα and TRβ cDNAs grouped into two separate clusters with other vertebrate counterparts and two TRα sequences grouped separately, suggesting that the two TRαs derived from paralogous genes that might arise during a teleost-specific genome duplication event. All TR mRNAs were detected in various tissues sampled. The mRNA levels of both TRα and TRβ from P. fulvidraco were the highest in brain, followed by liver, and lowest in heart, intestine, muscle, gill and spleen. However, in S. hasta, TRαA, TRαB and TRβ showed the highest mRNA levels in brain and lowest in muscle. Identification and mRNA tissue expression of TR genes from P. fulvidraco and S. hasta provide an initial step towards understanding their biological roles in the two fish species.

  6. Molecular cloning, characterization and tissue specificity of the expression of the ovine CSRP2 and CSRP3 genes from Small-tail Han sheep (Ovis aries).

    PubMed

    Liu, Guanqing; Zhang, Chunlan; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Zhang, Saisai; Wang, Jianmin

    2016-04-10

    Two genes, cysteine- and glycine-rich protein 2 (CSRP2) and cysteine- and glycine-rich protein 3 (CSRP3), play important roles in tissue-specific cell growth and development. However, few CSRP2 and CSRP3 genes have been functionally characterized in sheep. In this study, the full-length cDNAs of the CSRP2 and CSRP3 genes were cloned from Small-tail Han sheep by rapid amplification of cDNA ends-PCR. The GenBank accession numbers of the full-length CSRP2 and CSRP3 cDNA sequences are KJ743957 and KJ743958, respectively. The full-length cDNA of ovine CSRP2 was 917bp, with a 582-bp open reading frame encoding 193 amino acids. The complete ovine CSRP3 cDNA was 917bp, with a 585-bp open reading frame encoding 194 amino acids. Alignment and phylogenetic analyses revealed that their amino acid sequences are highly similar to those of other vertebrates, all of which contain two conserved LIM-only domains and a relatively conserved nuclear targeting sequence. To further validate the functions of the two genes, their mRNA expression patterns were evaluated in various Small-tail Han and Dorper sheep tissues using qRT-PCR analyses. CSRP2 was mainly detected in the aorta, whereas CSRP3 was highly concentrated in the heart and the muscle. CSRP3 was expressed to a higher level in the hearts of Small-tail Han sheep than in Dorper sheep (P<0.05). However, the opposite was found in the muscle (the longissimus dorsi and biceps femoris); CSRP3 was expressed to a higher level in Dorper sheep than in Small-tail Han sheep (P<0.05). We quantified the CRP3 protein (coded by the CSRP3 gene) levels in different tissues in Small-tail Han and Dorper sheep. We also detected a putative isoform of the CRP3 protein in sheep, which was significantly different in the heart tissue of the two breeds (P<0.05). The expression patterns of the two genes' mRNAs and CRP3 protein showed clear tissue specificity in both sheep breeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Molecular cloning, genomic structure, and tissue distribution of EW135, a novel chicken egg white protein with group B scavenger receptor cysteine-rich domains.

    PubMed

    Yoo, Whayoung; Nakamura, Tomohiro; Asanuma, Hideki; Matsushita, Misao

    2013-11-01

    Approximately 80 proteins are reported to be present in chicken egg white. The major function of egg white proteins isolated so far is to defend the egg yolk against infections. We recently isolated a novel protein termed EW135 from chicken egg white. In this paper, we have determined the complete amino acid sequence of EW135 based on cDNA cloning. EW135 consists of 970 amino acids with a putative signal peptide of 17 amino acids. It is composed exclusively of tandem repeats of nine group B scavenger receptor cysteine-rich (SRCR) domains separated by eight seven-amino acid peptides. The features of consensus sequences found in the group B SRCR domain were well conserved in EW135. The EW135 gene consists of putative 11 exons, with each SRCR domain being encoded by a single exon. Reverse transcription PCR showed that EW135 is expressed in only the oviduct among the 11 types of tissues tested. EW135 is a second soluble protein belonging to the group B SRCR domain superfamily identified in chickens. One of the important functions of proteins belonging to the group B SRCR domain superfamily is to recognize pathogens in innate immunity. It is, therefore, conceivable that EW135 could be involved in host defense in egg white.

  8. Molecular cloning, mRNA expression and tissue distribution analysis of Slc7a11 gene in alpaca (Lama paco) skins associated with different coat colors.

    PubMed

    Tian, Xue; Meng, Xiaolin; Wang, Liangyan; Song, Yunfei; Zhang, Danli; Ji, Yuankai; Li, Xuejun; Dong, Changsheng

    2015-01-25

    Slc7a11 encoding solute carrier family 7 member 11 (amionic amino acid transporter light chain, xCT), has been identified to be a critical genetic regulator of pheomelanin synthesis in hair and melanocytes. To better understand the molecular characterization of Slc7a11 and the expression patterns in skin of white versus brown alpaca (lama paco), we cloned the full length coding sequence (CDS) of alpaca Slc7a11 gene and analyzed the expression patterns using Real Time PCR, Western blotting and immunohistochemistry. The full length CDS of 1512bp encodes a 503 amino acid polypeptide. Sequence analysis showed that alpaca xCT contains 12 transmembrane regions consistent with the highly conserved amino acid permease (AA_permease_2) domain similar to other vertebrates. Sequence alignment and phylogenetic analysis revealed that alpaca xCT had the highest identity and shared the same branch with Camelus ferus. Real Time PCR and Western blotting suggested that xCT was expressed at significantly high levels in brown alpaca skin, and transcripts and protein possessed the same expression pattern in white and brown alpaca skins. Additionally, immunohistochemical analysis further demonstrated that xCT staining was robustly increased in the matrix and root sheath of brown alpaca skin compared with that of white. These results suggest that Slc7a11 functions in alpaca coat color regulation and offer essential information for further exploration on the role of Slc7a11 in melanogenesis.

  9. Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cruz-Garcia, L; Minghetti, M; Navarro, I; Tocher, D R

    2009-05-01

    Fish are important sources of high quality protein, essential minerals such as iodine and selenium, vitamins including A, D and E, and omega-3 fatty acids in the human diet. With declining fisheries worldwide, farmed fish constitute an ever-increasing proportion of fish in the food basket. Sustainable development of aquaculture dictates that diets will have to contain increasing levels of plant products that are devoid of cholesterol, but contain phytosterols that are known to have physiological effects in mammals. Liver X receptors (LXR) are transcription factors whose activity is modulated by sterols, with activation inducing cholesterol catabolism and de novo fatty acid biosynthesis in liver. Transcriptomic analysis has shown that substitution of fish meal and oil with plant products induces genes of cholesterol and fatty acid metabolism in salmonids. Here we report the cloning of LXR cDNAs from two species of salmonid fish that are important in aquaculture. The full-length cDNA (mRNA) of LXR obtained from salmon was shown to be 3766 bp, which included a 5'-untranslated region (UTR) of 412 bp and a 3'-UTR of 1960 bp and an open reading frame (ORF) of 1394 bp, which specified a protein of 462 amino acids. The trout LXR full-length cDNA was 2056 bp, including 5'- and 3'-UTRs of 219 and 547 bp, respectively, and an ORF of 1290 bp, which specified a protein of 427 amino acids. The protein sequences included characteristic features of mammalian LXRs, including the DNA binding (DBD), containing P-box, ligand binding (LBD) and activation function-2 (AF-2) domains, D-box, D (hinge) region, and eight cysteines that belong to the two zinc fingers. Phylogenetic analysis clustered the salmonid LXRs together, more closely with zebrafish and more distantly from medaka and stickleback. A pair-wise comparison among vertebrate LXR sequences showed the amino acid sequence predicted by the salmon LXR ORF showed greatest identity to that of trout 97%, and 97%, 87% and 81% identity

  10. Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils.

    PubMed Central

    Gibson, M A; Hatzinikolas, G; Davis, E C; Baker, E; Sutherland, G R; Mecham, R P

    1995-01-01

    Monoclonal antibodies to fibrillin 1 (MP340), a component of elastin-associated microfibrils, were used to screen cDNA libraries made from bovine nuchal ligament mRNA. One of the selected clones (cL9; 1.2 kb) hybridized on Northern (RNA) blotting with nuchal ligament mRNA to two abundant mRNAs of 9.0 and 7.5 kb, which were clearly distinct from fibrillin mRNA (10 kb). Further library screening and later reverse transcription PCR by the rapid amplification of cDNA ends (RACE) technique resulted in the isolation of additional overlapping cDNAs corresponding to about 6.7 kb of the mRNA. The encoded protein exhibited sequence similarity of around 80% with a recently identified human protein named latent transforming growth factor beta 1 (TGF-beta 1)-binding protein 2 (LTBP-2), indicating that the new protein was bovine LTBP-2. This was confirmed by the specific localization of bovine LTBP-2 cDNA probes to human chromosome 14q24.3, which is the locus of the human LTBP-2 gene. The domain structure of bovine LTBP-2 is very similar to that of the human LTBP-2, containing 20 examples of 6-cysteine epidermal growth factor-like repeats, 16 of which have the consensus sequence for calcium binding, together with 4 examples of 8-cysteine motifs characteristic of fibrillins and LTBP-1. A 4-cysteine sequence which is unique to bovine LTBP-2 and which has similarity to the 8-cysteine motifs was also present. Antibodies raised to two unique bovine LTBP-2 peptides specifically localized in tissue sections to the elastin-associated microfibrils, indicating that LTBP-2 is closely associated with these structures. Immunoblotting experiments identified putative LTBP-2 isoforms as a 260-kDa species released into the medium by cultured elastic tissue cells and as larger 290- and 310-kDa species in tissue extracts. A major proportion of tissue-derived LTBP-2 required treatment with 6 M guanidine for solubilization, indicating that the protein was strongly bound to the microfibrils. Most of

  11. Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils.

    PubMed

    Gibson, M A; Hatzinikolas, G; Davis, E C; Baker, E; Sutherland, G R; Mecham, R P

    1995-12-01

    Monoclonal antibodies to fibrillin 1 (MP340), a component of elastin-associated microfibrils, were used to screen cDNA libraries made from bovine nuchal ligament mRNA. One of the selected clones (cL9; 1.2 kb) hybridized on Northern (RNA) blotting with nuchal ligament mRNA to two abundant mRNAs of 9.0 and 7.5 kb, which were clearly distinct from fibrillin mRNA (10 kb). Further library screening and later reverse transcription PCR by the rapid amplification of cDNA ends (RACE) technique resulted in the isolation of additional overlapping cDNAs corresponding to about 6.7 kb of the mRNA. The encoded protein exhibited sequence similarity of around 80% with a recently identified human protein named latent transforming growth factor beta 1 (TGF-beta 1)-binding protein 2 (LTBP-2), indicating that the new protein was bovine LTBP-2. This was confirmed by the specific localization of bovine LTBP-2 cDNA probes to human chromosome 14q24.3, which is the locus of the human LTBP-2 gene. The domain structure of bovine LTBP-2 is very similar to that of the human LTBP-2, containing 20 examples of 6-cysteine epidermal growth factor-like repeats, 16 of which have the consensus sequence for calcium binding, together with 4 examples of 8-cysteine motifs characteristic of fibrillins and LTBP-1. A 4-cysteine sequence which is unique to bovine LTBP-2 and which has similarity to the 8-cysteine motifs was also present. Antibodies raised to two unique bovine LTBP-2 peptides specifically localized in tissue sections to the elastin-associated microfibrils, indicating that LTBP-2 is closely associated with these structures. Immunoblotting experiments identified putative LTBP-2 isoforms as a 260-kDa species released into the medium by cultured elastic tissue cells and as larger 290- and 310-kDa species in tissue extracts. A major proportion of tissue-derived LTBP-2 required treatment with 6 M guanidine for solubilization, indicating that the protein was strongly bound to the microfibrils. Most of

  12. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas.

    PubMed

    Martín-Robles, Agueda J; Isorna, Esther; Whitmore, David; Muñoz-Cueto, José A; Pendón, Carlos

    2011-05-01

    Clock genes are responsible for generating and sustaining most rhythmic daily functions in vertebrates. Their expression is endogenously driven, although they are entrained by external cues such as light, temperature and nutrient availability. In the present study, a full-length coding region of Solea senegalensis clock gene Period3 (Per3) has been isolated from sole brain as a first step in understanding the molecular basis underlying circadian rhythms in this nocturnal species. The complete cDNA is 4141 base pairs (bp) in length, including an ORF of 3804bp, a 5'UTR of 247bp and a 3'UTR of 90bp. It encodes a putative PERIOD3 protein (PER3) of 1267 amino acids which shares the main functional domains conserved between transcription factors regulating the circadian clock pathway. Sole PER3 displays high identity with PER3 proteins from teleost species (61-77%) and lower identity (39-46%) with other vertebrate PER3 sequences. This gene is expressed in all examined tissues, being mRNA expression particularly evident in retina, cerebellum, diencephalon, optic tectum, liver and ovary. Per3 exhibits a significant daily oscillation in retina and optic tectum but not in diencephalon and cerebellum. Our results suggest an important role of Per3 in the circadian clockwork machinery of visually-related areas of sole.

  13. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.

    PubMed

    Pääbo, S

    1989-03-01

    Several chemical and enzymatic properties were examined in the DNA extracted from dry remains of soft tissues that vary in age from 4 to 13,000 years and represent four species, including two extinct animals (the marsupial wolf and giant ground sloth). The DNA obtained was invariably of a low average molecular size and damaged by oxidative processes, which primarily manifest themselves as modifications of pyrimidines and sugar residues as well as baseless sites and intermolecular cross-links. This renders molecular cloning difficult. However, the polymerase chain reaction can be used to amplify and study short mitochondrial DNA sequences that are of anthropological and evolutionary significance. This opens up the prospect of performing diachronical studies of molecular evolutionary genetics.

  14. Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): Developmental and tissue expression in the rat, and mapping of its human homologue to chromosomes 1 and 22

    SciTech Connect

    Lieberburg, I.; Spinner, N.; Snyder, S.; Anderson, J.; Goldgaber, D.; Smulowitz, M.; Carroll, Z.; Emanuel, B.; Breitner, J.; Rubin, L. )

    1989-04-01

    Neurofilaments (NFs) are the intermediate filaments specific to nervous tissue. Three peptides with apparent molecular masses of approximately 68 (NF-L), 145 (NF-M), and 200 (NF-H) kDa appear to be the major components of NF. The expression of these peptides is specific to nervous tissue and is developmentally regulated. Recently, complete cDNAs encoding NF-L and NF-M, and partial cDNAs encoding NF-H, have been described. To better understand the normal pathophysiology of NFs the authors chose to clone the cDNA encoding the rat NF-H peptide. Using monoclonal antibodies that recognized NF-H, they screened a rat brain {lambda}gt11 library and identified a clone that contained a 2,100-nucleotide cDNA insert representing the carboxyl-terminal portion of the NF-H protein. Levels of NF-H mRNA varied 20-fold among brain regions, with highest levels in pons/medulla, spinal cord, and cerebellum, and lowest levels in olfactory bulb and hypothalamus. Based on these results, the authors infer that half of the developmental increase and most of the interregional variation in the levels of the NF-H mRNA are mediated through message stabilization. Sequence information revealed that the carboxyl-terminal region of the NF-H peptide contained a unique serine-, proline-, alanine-, glutamic acid-, and lysine-rich repeat. Genomic blots revealed a single copy of the gene in the rat genome and two copies in the human genome. In situ hybridizations performed on human chromosomes mapped the NF-H gene to chromosomes 1 and 22.

  15. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108.

    PubMed

    Yamada, A; Kubo, K; Takeshita, T; Harashima, N; Kawano, K; Mine, T; Sagawa, K; Sugamura, K; Itoh, K

    1999-04-01

    CDw108, also known as the John-Milton-Hagen human blood group Ag, is an 80-kDa glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that is preferentially expressed on activated lymphocytes and E. The molecular characteristics and biological function of the CDw108 were not clarified previously. In this manuscript, we identify the cDNA clone containing the entire coding sequence of the CDw108 gene and report its molecular characteristics. The 1998-base pairs of the open reading frame of the cloned cDNA encoded a protein of 666 amino acids (aa), including the 46 aa of the signal peptide and the 19 aa of the GPI-anchor motif. Thus, the membrane-anchoring form of CDw108 was the 602 aa, and the estimated molecular mass of the unglycosylated form was 68 kDa. The RGD (Arg-Gly-Asp) cell attachment sequence and the five potential N-linked glycosylation sites were located on the membrane-anchoring form. Flow cytometric and immunoprecipitation analyses of the CDw108 cDNA transfectants confirmed that the cloned cDNA encoded the native form of CDw108. The CDw108 mRNA was expressed in activated PBMCs as well as in the spleen, thymus, testis, placenta, and brain, but was not expressed in any other tissues tested. Radiation hybrid mapping indicated that the CDw108 gene was located in the middle of the long arm of chromosome 15 (15q23-24). This molecular information will be critical for understanding the biological function of the CDw108 Ag.

  16. A modified version of the digestion-ligation cloning method for more efficient molecular cloning.

    PubMed

    Gao, Song; Li, Yanling; Zhang, Jiannan; Chen, Hongman; Ren, Daming; Zhang, Lijun; An, Yingfeng

    2014-05-15

    Here we describe a modified version of the digestion-ligation approach for efficient molecular cloning. In comparison with the original method, the modified method has the additional steps of gel purification and a second ligation after the first ligation of the linearized vector and DNA insert. During this process, the efficiency and reproducibility could be significantly improved for both stick-end cloning and blunt-end cloning. As an improvement of the very important molecular cloning technique, this method may find a wide range of applications in bioscience and biotechnology.

  17. Molecular cloning, sequencing and tissue expression of vasotocin and isotocin precursor genes from Ostariophysian catfishes: phylogeny and evolutionary considerations in teleosts

    PubMed Central

    Banerjee, Putul; Chaube, Radha; Joy, Keerikkattil P.

    2015-01-01

    Basic and neutral neurohypophyseal (NH) nonapeptides have evolved from vasotocin (VT) by a gene duplication at the base of the gnathostome lineage. In teleosts, VT and IT are the basic and neutral peptides, respectively. In the present study, VT and IT precursor genes of Heteropneustes fossilis and Clarias batrachus (Siluriformes, Ostariophysi) were cloned and sequenced. The channel catfish Icatalurus punctatus NH precursor sequences were obtained from EST database. The catfish NH sequences were used along with the available Acanthopterygii and other vertebrate NH precursor sequences to draw phylogenetic inference on the evolutionary history of the teleost NH peptides. Synteny analysis of the NH gene loci in various teleost species was done to complement the phylogenetic analysis. In H. fossilis, the NH transcripts were also sequenced from the ovary. The cloned genes and the deduced precursor proteins showed conserved characteristics of the NH nonapeptide precursors. The genes are expressed in brain and ovary (follicular envelope) of H. fossilis with higher transcript abundance in the brain. The addition of the catfish sequences in the phylogenetic analysis revealed that the VT and IT precursors of the species-rich superorders of teleosts have a distinct phylogenetic history with the Acanthopterygii VT and IT precursors sharing a less evolutionary distance and the Ostariophysi VT and IT having a greater evolutionary distance. The genomic location of VT and IT precursors, and synteny analysis of the NH loci lend support to the phylogenetic inference and suggest a footprint of fish- specific whole genome duplication (3R) and subsequent diploidization in the NH loci. The VT and IT precursor genes are most likely lineage-specific paralogs resulting from differential losses of the 3R NH paralogs in the two superorders. The independent yet consistent retention of VT and IT in the two superorders might be directed by a stringent ligand-receptor selectivity. PMID:26029040

  18. Should we clone human beings? Cloning as a source of tissue for transplantation.

    PubMed Central

    Savulescu, J

    1999-01-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus. PMID:10226910

  19. Should we clone human beings? Cloning as a source of tissue for transplantation.

    PubMed

    Savulescu, J

    1999-04-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus.

  20. Molecular cloning, sequence characterization and tissue transcription profile analyses of two novel genes: LCK and CDK2 from the Black-boned sheep (Ovis aries).

    PubMed

    Yu, Hongman; Chen, Shanna; Xi, Dongmei; He, Yiduo; Liu, Qin; Mao, Huaming; Deng, Weidong

    2010-01-01

    The complete coding sequences of two sheep genes--LCK and CDK2--were amplified using the rapid amplification of cDNA ends method based on three sheep EST sequences whose translated amino acids contain the domain PTKc_Lck_BIk and S_TKc domain, respectively. The sequence analyses of these two genes revealed that the sheep LCK gene encodes a protein of 509 amino acids which has high homology with the lymphocyte-specific protein tyrosine kinase (LCK) of eight species: bovine (99%), human (96%), dog (96%), Aotus nancymaae (95%), mouse (94%), rat (91%), horse (91%) and chicken (81%). The sheep CDK2 gene encodes a protein of 298 amino acids which has high homology with the cyclin-dependent kinase 2 (CDK2) of ten species: bovine (100%), goat (100%), rat (99%), mouse (99%), Chinese hamster (99%), dog (98%), golden hamster (98%), human (98%), horse (98%) and rhesus monkey (98%). The tissue transcription profile analyses indicated that that the Black-boned sheep LCK and CDK2 genes are generally but differentially expressed in the detected tissues including in tissues including spleen, muscle, skin, kidney, lung, liver and heart. These data serve as a foundation for further insight into these two genes.

  1. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue.

    PubMed

    Kang, Jin-Ho; Campos, Marcelo L; Zemelis-Durfee, Starla; Al-Haddad, Jameel M; Jones, A Daniel; Telewski, Frank W; Brandizzi, Federica; Howe, Gregg A

    2016-10-01

    Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290 The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.

  2. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes

    SciTech Connect

    Coy, J.F.; Duebel, S.; Kioschis, P.; Delius, H.; Poustka, A.

    1996-03-05

    As part of a systematic search for differentially expressed genes, we have isolated a novel transketolase-related gene (TKR) (HGMW-approved symbol TKT), located between the green color vision pigment gene (GCP) and the ABP-280 filamin gene (FLN1) in Xq28. Transcripts encoding tissue-specific protein isoforms could be isolated. Comparison with known transketolases (TK) demonstrated a TKR-specific deletion mutating one thiamine binding site. Genomic sequencing of the TKR gene revealed the presence of a pseudoexon as well as the acquisition of a tissue-specific spliced exon compared to TK. Since it has been postulated that the vertebrate genome arose by two cycles of tetraploidization from a cephalochordate genome, this could represent an example of the modulation of the function of a preexisting transketolase gene by gene duplication. Thiamine defiency is closely involved with two neurological disorders, Beriberi and Wernicke-Korsakoff syndromes, and in both of these conditions TK with altered activity are found. We discuss the possible involvement of TKR in explaining the observed variant transketolase forms. 34 refs., 4 figs., 1 tab.

  3. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue

    PubMed Central

    Kang, Jin-Ho; Campos, Marcelo L.; Zemelis-Durfee, Starla; Al-Haddad, Jameel M.; Jones, A. Daniel; Telewski, Frank W.; Brandizzi, Federica; Howe, Gregg A.

    2016-01-01

    Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta. Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290. The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1. PMID:27481446

  4. Molecular cloning, sequence identification and tissue expression profile of three novel genes Sfxn1, Snai2 and Cno from Black-boned sheep (Ovis aries).

    PubMed

    Xi, Dongmei; He, Yiduo; Sun, Yongke; Gou, Xiao; Yang, Shuli; Mao, Huaming; Deng, Weidong

    2011-03-01

    The complete coding sequences of three of Black-boned sheep (Ovis aries) genes Sfxn1, Snai2 and Cno were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) according to the conserved sequence information of the cattle or other mammals and known highly homologous sheep ESTs. Black-boned sheep Sfxn1 gene encodes a protein of 322 amino acids which has high homology with the Sfxn1 proteins of five species--cattle 98%, pig 95%, human 95%, rat 93%, and mouse 93%. Black-boned sheep Snai2 gene encodes a protein of 268 amino acids that has high identity with the Snai2 proteins of six species--cattle 99%, pig 94%, human 93%, dog 93%, rat 91%, and mouse 90%. Black-boned sheep Cno gene encodes a protein of 214 amino acids that has high homology with the Cno proteins of four species--cattle 97%, human 75%, mouse 67%, and rat 65%. The phylogenetic tree analysis demonstrated that Black-boned sheep Sfxn1, Snai2 and Cno proteins have close relationship with cattle Sfxn1, Snai2 and Cno proteins. The tissue expression analysis indicated that Black-boned sheep Sfxn1, Snai2 and Cno genes were expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for further insight into these three sheep genes.

  5. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  6. Two leptin genes and a leptin receptor gene of female chub mackerel (Scomber japonicus): Molecular cloning, tissue distribution and expression in different obesity indices and pubertal stages.

    PubMed

    Ohga, Hirofumi; Matsumori, Kojiro; Kodama, Ryoko; Kitano, Hajime; Nagano, Naoki; Yamaguchi, Akihiko; Matsuyama, Michiya

    2015-10-01

    Leptin is a hormone produced by fat cells that regulates the amount of fat stored in the body and conveys nutritional status to the reproductive axis in mammals. In the present study we identified two subtypes of leptin genes (lepa and lepb) and a leptin receptor gene (lepr) from chub mackerel (Scomber japonicus) and there gene expression under different feeding conditions (control and high-feed) and pubertal development stages was analyzed using quantitative real-time PCR. The protein lengths of LepA, LepB and LepR were 161 amino acids (aa), 163 aa and 1149 aa, respectively and both leptin subtypes shared only 15% similarity in aa sequences. In pubertal females, lepa was expressed in the brain, pituitary gland, liver, adipose tissue and ovary; however, in adult (gonadal maturation after the second in the life) females, lepa was expressed only in the liver. lepb was expressed primarily in the brain of all fish tested and was expressed strongly in the adipose tissue of adults. lepr was characterized by expression in the pituitary. The high-feed group showed a high conditioning factor level; unexpectedly, hepatic lepa and brain lepr were significantly more weakly expressed compared with the control-feed group. Furthermore, the expression levels of lepa, lepb and lepr genes showed no significant differences between pre-pubertal and post-pubertal fish. On the other hand, pituitary fshβ and lhβ showed no significant differences between different feeding groups of pre-pubertal fish. In contrast, fshβ and lhβ expressed abundantly in the post-pubertal fish of control feed group. Based on these results, whether leptin plays an important role in the nutritional status and pubertal onset of chub mackerel remains unknown.

  7. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    The common marmoset (Callithrix jacchus), a New World monkey, has potential to be an animal model for drug metabolism studies. In this study, we identified and characterized cytochrome P450 (P450) 1A1 and 1B1 in addition to the known P450 1A2 in marmosets. Marmoset P450 1A1 and 1B1 cDNA contained open reading frames encoding 512 and 543 amino acids, respectively, with high sequence identities (90%-93%) to other primate P450 1A1s and 1B1s. A phylogenetic tree based on amino acid sequences showed close evolutionary relationships among marmoset, macaque, and human P450 1A and 1B enzymes. By mRNA quantification and immunoblot analyses in five marmoset tissues, P450 1A1 was mainly expressed in lungs and small intestines, and P450 1A2 was expressed predominantly in livers. In contrast, P450 1B1 was expressed in all tissues tested. Marmoset P450 1A1, 1A2, and 1B1 heterologously expressed in Escherichia coli catalyzed 7-ethoxyresorufin O-deethylation, 7-ethoxycoumarin O-deethylation, and phenacetin O-deethylation, similar to those of humans and cynomolgus monkeys. Notably, marmoset P450 1A1 and 1A2 more efficiently catalyzed 7-ethoxyresorufin O-deethylation than those of the human homologs, but were comparable to those of the cynomolgus monkey homologs. Additionally, marmoset P450 1B1 preferentially catalyzed estradiol 4-hydroxylation; however, rat P450 1B1 more favorably catalyzed estradiol 2-hydroxylation, indicating that the estradiol hydroxylation specificity of marmoset P450 1B1 was similar to those of human and cynomolgus monkey P450 1B1. These results indicated that marmoset P450 1A and 1B enzymes had functional characteristics similar to those of humans and cynomolgus monkeys, suggesting that P450 1A and 1B-dependent metabolism was similar among marmosets, cynomolgus monkeys, and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Molecular cloning and differential expressions of two cDNA encoding Type III polyketide synthase in different tissues of Curcuma longa L.

    PubMed

    Resmi, M S; Soniya, E V

    2012-01-10

    Type III polyketide synthase family of enzymes play an important role in the biosynthesis of flavonoids and a variety of plant polyphenols by condensing multiple acetyl units derived from malonyl Co-A to thioester linked starter molecules covalently bound in the PKS active site. Turmeric (Curucma longa L.) through diverse metabolic pathways produces a large number of metabolites, of which curcuminoids had gained much attention due to its immense pharmaceutical value. Recent identification of multiple curcuminoid synthases from turmeric lead us to look for additional Type III PKS from this plant. The current study describes the occurrence of a multigene family of Type III PKS enzymes in C. longa by RT-PCR based genomic screening. We have also isolated two new Type III PKS, ClPKS9 and ClPKS10 using homology based RT-PCR and data mining. The comparative sequence and phylogenetic analysis revealed that the two PKSs belong to different groups with only 56% sequence similarity at their amino acid level. ClPKS9 shows all possible sequence requirements for a typical chalcone synthase whereas ClPKS10 shows promising variation at amino acid level and high similarity to reported curcuminoid synthases. ClPKS9 and ClPKS10 exhibited distinct tissue specific expression pattern in C. longa with the ClPKS9 transcript abundant in shoot and rhizome than leaves whereas ClPKS10 transcript was found to be high in leaf and very low in rhizome and root. Therefore it was concluded that ClPKS9 and ClPKS10 may have divergent function in planta, with possible role in typical chalcone forming reaction and curcuminoid scaffold biosynthetic pathway respectively.

  9. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  10. Pathogenicity of molecularly cloned bovine leukemia virus.

    PubMed Central

    Rovnak, J; Boyd, A L; Casey, J W; Gonda, M A; Jensen, W A; Cockerell, G L

    1993-01-01

    To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis. Images PMID:8230433

  11. Molecular cloning and amino acid sequence of leukotriene A4 hydrolase.

    PubMed Central

    Funk, C D; Rådmark, O; Fu, J Y; Matsumoto, T; Jörnvall, H; Shimizu, T; Samuelsson, B

    1987-01-01

    A cDNA clone corresponding to leukotriene A4 hydrolase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antiserum. Several additional clones from human lung and placenta cDNA lambda g11 libraries were obtained by plaque hybridization with the 32P-labeled lung cDNA clone. One of these clones has an insert of 1910 base pairs that contains the complete protein-coding region. From the deduced primary structure, leukotriene A4 hydrolase is a 610 amino and protein with a calculated molecular weight of 69,140. No apparent homologies with microsomal epoxide hydrolases were found. RNA blot analysis indicated substantial amounts of a discrete mRNA of approximately equal to 2250 nucleotides in lung tissue and leukocytes. Images PMID:2821541

  12. Molecular cloning of human terminal deoxynucleotidyltransferase.

    PubMed Central

    Peterson, R C; Cheung, L C; Mattaliano, R J; Chang, L M; Bollum, F J

    1984-01-01

    A cDNA of the human terminal deoxynucleotidyltransferase (TdT; "terminal transferase," EC 2.7.7.31) was isolated from a human lymphoblastoid cell cDNA library in lambda gt 11 by using immunological procedures. Four inserts containing 723 to 939 base pairs were recloned in pBR322 for hybridization and preliminary sequence studies. mRNA selected by hybridization to recombinant DNA was translated to a 58-kDa peptide that specifically immunoprecipitated with rabbit antibodies to calf terminal transferase and mouse monoclonal antibody to human terminal transferase. Blot hybridization of total poly(A)+ RNA from KM3 (TdT+) cells with nick-translated pBR322 recombinant DNA detected a message of about 2000 nucleotides, sufficient to code for the 580 amino acids in the protein. mRNA from terminal transferase- cells gave no signal in hybrid selection or RNA blot hybridization. The complete sequence of the 939-base-pair insert sequence was obtained from deletions cloned in pUC8. The DNA sequence contains an open reading frame coding for 238 amino acids, about 40% of the protein. Three peptides isolated by HPLC from tryptic digests of succinylated 58-kDa calf thymus terminal transferase were sequenced, providing 20, 18, and 22 residues of peptide sequence. A search of the translated sequence of the 939-base-pair insert shows three regions beginning after arginine that have greater than 90% homology with the sequence determined from the calf thymus terminal transferase peptides. These results provide unambiguous evidence that the human terminal transferase sequence has been cloned. Images PMID:6087320

  13. Molecular cloning and characterization of hagfish estrogen receptors.

    PubMed

    Nishimiya, Osamu; Katsu, Yoshinao; Inagawa, Hiroyuki; Hiramatsu, Naoshi; Todo, Takashi; Hara, Akihiko

    2017-01-01

    One or more distinct forms of the nuclear estrogen receptor (ER) have been isolated from many vertebrates to date. To better understand the molecular evolution of ERs, we cloned and characterized er cDNAs from the inshore hagfish, Eptatretus burgeri, a modern representative of the most primitive vertebrates, the agnathans. Two er cDNAs, er1 and er2, were isolated from the liver of a reproductive female hagfish. A phylogenetic analysis placed hagfish ER1 into a position prior to the divergence of vertebrate ERs. Conversely, hagfish ER2 was placed at the base of the vertebrate ERβ clade. The tissue distribution patterns of both ER subtype mRNAs appeared to be different, suggesting that each subtype has different physiological roles associated with estrogen actions. An estrogen responsive-luciferase reporter assay using mammalian HEK293 cells was used to functionally characterize these hagfish ERs. Both ER proteins displayed estrogen-dependent activation of transcription. These results clearly demonstrate that the hagfish has two functional ER subtypes.

  14. Molecular cloning and characterization of multidomain xylanase from manure library

    USDA-ARS?s Scientific Manuscript database

    The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The encoded enzyme was predicted to be 467 amino acids with a molecular mass of 50.3 kD. The recombinant ManF-X10 was purified by HisTrap affinity column and showed activit...

  15. Molecular cloning of a putative crustacean hyperglycemic hormone (CHH) isoform from extra-eyestalk tissue of the blue crab (Callinectes sapidus), and determination of temporal and spatial patterns of CHH gene expression.

    PubMed

    Zheng, Junying; Chen, Hsiang-Yin; Choi, Cheol Young; Roer, Robert D; Watson, R Douglas

    2010-11-01

    Crustacean hyperglycemic hormone (CHH) is a polypeptide neurohormone involved in regulation of multiple physiological processes. We report here the cloning from thoracic ganglia of the blue crab (Callinectes sapidus) a cDNA (CsCHH-2) encoding a putative CHH isoform (CsCHH-2). CsCHH-2 is structurally similar to a putative preproCHH (CsCHH-1) previously cloned from eyestalk ganglia of C. sapidus. The two preprohormones possess an identical signal peptide and CHH precursor related peptide, but differ in the mature CHH polypeptide. An analysis by RT-PCR of the tissue distribution of CsCHH-1 and CsCHH-2 revealed the former is restricted to eyestalk neural ganglia, while the latter is widely distributed among tissues. The type of CHH transcript present in eyestalk and thoracic ganglia did not vary as a function of the molt cycle. An assessment of transcript abundance in tissues of intermolt crabs showed the abundance of the CsCHH-1 transcript in eyestalk ganglia far exceeds the abundance of the CsCHH-2 transcript in extra-eyestalk tissue. An assessment of transcript abundance during a molt cycle showed CsCHH-1 transcript abundance in eyestalk ganglia was low during intermolt, rose during premolt, reaching a peak in D(3), then fell prior to molting, and remained low during postmolt. By contrast, CsCHH-2 transcript abundance in thoracic ganglia was low during intermolt, rose sharply during D(2), then dropped in D(3) and remained low during postmolt. The results are consistent with the hypothesis that CsCHH-1 and CsCHH-2 differ with respect to physiological function. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Advances and applications of molecular cloning in clinical microbiology.

    PubMed

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents.

  17. Molecular cloning of prolactin receptor of the Peking duck.

    PubMed

    Wang, J; Hou, S S; Huang, W; Yang, X G; Zhu, X Y; Liu, X L

    2009-05-01

    Prolactin receptor (PRLR) cDNA of Peking duck was cloned using reverse transcription-PCR methodology (GenBank accession no. EF502054). The duck PRLR (dPRLR) cDNA contains 2,439 bp including the ATG start codon and TAA stop that encodes 832 amino acid residues. The putative receptor protein had 2 strong hydrophobic stretches: one was the signal sequence in N-terminal region and the other was the single transmembrane region of 24 amino acid residues in the central portion. Excluding the signal sequence, the mature dPRLR contained 808 amino acid residues with a theoretical molecular mass of 91.5 kDa. The mature protein could be divided into 3 domains, extracellular domain (ECD), transmembrane domain, and intracellular domain. The ECD contained 2 homologous repeat units with approximately 67% amino acid sequence identity to each other. The membrane distal unit and proximal unit consisted of 204 and 212 amino acids, respectively. Each unit was similar to the singular ECD of the mammalian PRLR. The characteristic extracellular cysteines and the WSXWS motif of the cytokine receptor were conserved in both repeat units. The intracellular domain of dPRLR consisted of 368 amino acids at the C-terminus and contained 2 conserved regions-box 1 and box 2. The aforementioned characters of duck were all similar to chicken and mammalians, which implied that the dPRLR had same mechanism with other species. Sequence similarity analysis shows that the dPRLR shares approximately 45 to 97% amino identity and approximately 30 to 96% nucleic acid identity as compared with other species. Overall, the greatest sequence identity was found with goose PRLR. In a phylogenetic analysis, the duck PRLR was found to cluster with the PRLR of goose, turkey, chicken, and pigeon. Semiquantitative reverse transcription-PCR indicated that dPRLR mRNA was expressed in all 8 tissues. Expression in the kidney was greatest in varietals tissues.

  18. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    PubMed

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-08-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene.

  19. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    PubMed Central

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-01-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene. Images PMID:3039499

  20. Molecular cloning of mannose-binding lectins from Clivia miniata.

    PubMed

    Van Damme, E J; Smeets, K; Van Leuven, F; Peumans, W J

    1994-03-01

    Screening of a cDNA library constructed from total RNA isolated from young developing ovaries of Clivia miniata Regel with the amaryllis lectin cDNA clone resulted in the isolation of four different isolectin clones which clearly differ from each other in their nucleotide sequences and hence also in their deduced amino acid sequences. Apparently the lectin is translated from an mRNA of ca. 800 nucleotides encoding a precursor polypeptide of 163 amino acids. Northern blot analysis of total RNA isolated from different tissues of Clivia miniata has shown that the lectin is expressed in most plant tissues with very high lectin mRNA concentrations in the ovary and the seed endosperm.

  1. Molecular cloning and characterization of a cDNA encoding endonuclease from potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2005-11-01

    A cDNA, StEN1, encoding a potato (Solanum tuberosum) endonuclease was cloned and sequenced. The nucleotide sequence of this clone contains an open reading frame of 906 nucleotides encoding a protein of 302 amino acids, and with a calculated molecular mass of 34.4kDa and a Pi of 5.6. The deduced StEN1 protein contains a putative signal sequence of 25 amino acid residues. The StEN1 encoded protein shows substantial homology to both plant and fungal endonucleases isolated and cloned from other sources. The highest identity (73%) was observed with AgCEL I from celery, Apium graveolens, ZEN1 from Zinnia elegans (69%) and DSA6 from daylily, Hemerocallis (68%). RT-PCR expression analysis demonstrated that the potato StEN1 gene is constitutively expressed in potato, although minor differences in expression level in different tissues were observed.

  2. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  3. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  4. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  5. Entamoeba invadens: cloning and molecular characterization of chitinases.

    PubMed

    Dey, Tuli; Basu, Raunak; Ghosh, Sudip K

    2009-11-01

    Entamoeba histolytica, the causative agent of amebiasis infects through its cyst form and this transmission may be blocked using encystation specific protein as drug target. In this study, we have characterized the enzyme chitinase which express specifically during encystation. The reptilian parasite Entamoeba invadens, used as a model for encystation study contain three chitinases. We report the molecular cloning, over-expression and biochemical characterization of all three E. invadens chitinase. Cloned chitinases were over-expressed in bacterial system and purified by affinity chromatography. Their enzymatic profiles and substrate cleaving patterns were characterized. All of them showed binding affinity towards insoluble chitin though two of them lack the chitin binding domain. All the chitinases cleaved and released dimmers from the insoluble substrate and act as an exochitinase. Homology modeling was also done to understand the substrate binding and cleavage pattern.

  6. Teaching molecular genetics: chapter 4-positional cloning of genetic disorders.

    PubMed

    Puliti, Aldamaria; Caridi, Gianluca; Ravazzolo, Roberto; Ghiggeri, Gian Marco

    2007-12-01

    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molecular studies, to define a critical DNA region of interest. This analysis culminates in a statistical estimate of the probability that disease features may segregate in the families independently or in association with specific molecular markers located in known regions. In this latter case, a marker can be defined as being linked to the disease manifestations. The genetic markers define an interval that is a function of their recombination frequencies with the disease, in which the disease gene is localised. The identification and characterisation of chromosome abnormalities as translocations, deletions and duplications by classical cytogenetic methods or by the newly developed microarray-based comparative genomic hybridisation (array CGH) technique may define extensions and borders of the genomic regions involved. The step following the definition of a critical genomic region is the identification of candidate genes that is based on the analysis of available databases from genome browsers. Positional cloning culminates in the identification of the causative gene mutation, and the definition of its functional role in the pathogenesis of the disorder, by the use of cell-based or animal-based experiments. More often, positional cloning ends with the generation of mice with homologous mutations reproducing the human clinical phenotype. Altogether, positional cloning has represented a fundamental step in the research on genetic renal disorders, leading to the definition of several

  7. Cloning of medicinal plants through tissue culture--a review.

    PubMed

    Chaturvedi, H C; Jain, Madhu; Kidwai, N R

    2007-11-01

    In order to have standardized formulations, the chemical constituents from plants and their parts are required to be uniform both qualitatively and quantitatively. Furthermore, an ever increasing demand of uniform medicinal plants based medicines warrants their mass cloning through plant tissue culture strategy. A good number of medicinal plants have been reported to regenerate in vitro from their various parts, but a critical evaluation of such reports reveals that only a few complete medicinal plants have been regenerated and still fewer have actually been grown in soil, while their micropropagation on a mass scale has rarely been achieved, particularly in those medicinal plants where conventional propagation is inadequate, like, the mass clonal propagation of Dioscorea floribunda leading to its successful field trials. Such facts make it imperative to document the factual position of micropropagation of medicinal plants bringing out the advancements made along with the short falls, in this important area. The present review deals with the futuristic view on the said subject restricted to higher plants.

  8. Cloning and tissue expression characterization of the chicken APOB gene.

    PubMed

    Zhang, Sen; Shi, Hui; Li, Hui

    2007-01-01

    Apolipoprotein B (APOB) serves an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. This study was designed to clone the full-length cDNA of the chicken APOB gene, to characterize the expression profile, and investigate the differential expression between layer and broiler of the chicken APOB gene. The full-length cDNA sequence (14,150-bp) that contained a 13,896-bp ORF encoding 4,631 amino acids was obtained by RT-PCR, RACE, and bioinformatics analysis. qReal-Time PCR analysis showed that the chicken APOB gene was highly expressed in kidney, liver, and intestine. The results of differential expression showed that the APOB gene was more highly expressed in intestine and kidney in Bai'er layer than in broiler, but there was no significant difference in liver between the two breeds. The results of this study provided basic molecular information for studying the role of APOB in the energy transportation in avian species.

  9. Molecular cloning and characterisation of banana fruit polyphenol oxidase.

    PubMed

    Gooding, P S; Bird, C; Robinson, S P

    2001-09-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.

  10. Rapid extraction and purification of environmental DNA for molecular cloning applications and molecular diversity studies.

    PubMed

    Santosa, D A

    2001-01-01

    A rapid method for the extraction and purification of DNA from environmental samples for molecular cloning applications was developed. The indigenous cells from plant debris, organic materials, sediments, and soils were lysed directly by using DAS-IZ solution and the nucleic acids were precipitated with isopropanol. A simple purification step using DAS-IIZ solution without binding matrix produced highly pure, colorless and undegraded DNA with molecular weight of more than 20 kb. The superiority of this method was tested for wide applications in molecular cloning, i.e., construction of genomic library by using Lambda DASHII Vector and GigapackIII XL, plasmid library, cloning of gene encoding protease, and molecular microbial diversity analysis. An additional advantage of this method is that only 0.1 g of sample is required, if analysis of many samples in short time should be done. To extract large amounts of environmental DNA for molecular cloning lasts only 30 min and to purify it less than 1 h.

  11. A highly efficient molecular cloning platform that utilises a small bacterial toxin gene.

    PubMed

    Mok, Wendy W K; Li, Yingfu

    2013-04-15

    Molecular cloning technologies that have emerged in recent years are more efficient and simpler to use than traditional strategies, but many have the disadvantages of requiring multiple steps and expensive proprietary enzymes. We have engineered cloning vectors containing variants of IbsC, a 19-residue toxin from Escherichia coli K-12. These toxic peptides offer selectivity to minimise the background, labour, and cost associated with conventional molecular cloning. As demonstrated with the cloning of reporter genes, this "detox cloning" system consistently produced over 95 % positive clones. Purification steps between digestion and ligation are not necessary, and the total time between digestion and plating of transformants can be as little as three hours. Thus, these IbsC-based cloning vectors are as reliable and amenable to high-throughput cloning as commercially available systems, and have the advantage of being more time-efficient and cost-effective.

  12. Molecular cloning and characterization of mouse aquaporin 6.

    PubMed

    Nagase, Hiroaki; Agren, Johan; Saito, Akiko; Liu, Kun; Agre, Peter; Hazama, Akihiro; Yasui, Masato

    2007-01-05

    In the rat kidney, aquaporin (AQP) 6 is localized in the intracellular vesicle membranes of type-A intercalated cells of the collecting duct; mouse AQP6 (mAQP6) has not been characterized. Although mAQP6 was originally cloned from cDNA in a mouse cerebellum library (GenBank NM 175087), we have independently cloned a cDNA encoding mAQP6 from an adult kidney cDNA library (C57BL/6J strain). We identified two different spliced variants of mAQP6: mAQP6a and mAQP6b. The mAQP6a isoform is almost identical to that of rat AQP6, whereas mAQP6b is identical to that reported in the mouse cerebellum library mentioned above. We found that the mRNA expression of these two spliced variants is regulated in a tissue-specific and age-dependent manner. Functional analyses of water and ion permeation revealed that mAQP6a functions like rat AQP6 and that mAQP6b does not function as either a water channel or an ion channel under our experimental conditions.

  13. Molecular cloning and characterization of mouse aquaporin 6

    PubMed Central

    Nagase, Hiroaki; Agren, Johan; Saito, Akiko; Liu, Kun; Agre, Peter; Hazama, Akihiro; Yasui, Masato

    2007-01-01

    In the rat kidney, aquaporin (AQP) 6 is localized in the intracellular vesicle membranes of type-A intercalated cells of the collecting duct; mouse AQP6 (mAQP6) has not been characterized. Although mAQP6 was originally cloned from cDNA in a mouse cerebellum library (GenBank NM 175087), we have independently cloned a cDNA encoding mAQP6 from an adult kidney cDNA library (C57BL/6J strain). We identified two different spliced variants of mAQP6: mAQP6a and mAQP6b. The mAQP6a isoform is almost identical to rat AQP6, whereas mAQP6b is identical to that reported in the mouse cerebellum library mentioned above. We found that the mRNA expression of these two spliced variants is regulated in a tissue-specific and age-dependent manner. Functional analyses of water and ion permeation revealed that mAQP6a functions like rat AQP6 and that mAQP6b does not function as either a water channel or an ion channel under our experimental conditions. PMID:17112474

  14. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  15. Molecular cloning and characterization of mouse Gipc3.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-03-01

    GIPC1/GIPC interacts with GTPase-activating protein RGS-GAIP, transmembrane protein M-SemF, receptor tyrosine kinase TrkA, integrin alpha 6A subunit, and TGF beta type III receptor. Kermit, a Xenopus orthologue of human GIPC1, interacts with Frizzled-3 (FZD3) class of WNT receptor. We have recently cloned and characterized human GIPC2 and GIPC3. Here, we identified mouse Gipc3 gene fragments by using bioinformatics, and isolated mouse Gipc3 cDNAs by using cDNA-PCR. Mouse Gipc3 gene encoded a 297-amino-acid protein, showing 86.2% total-amino-acid identity with human GIPC3. In addition to the central PDZ domain, GIPC homologous domain 1 (GH1 domain) and GH2 domain were found to be conserved among mouse Gipc3, Gipc1, Gipc2, and Xenopus Kermit. Mouse Gipc3 gene was found to consist of 6 exons, and exon-intron structure was well conserved between mouse Gipc3 gene and human GIPC3 gene. Mouse Gipc3 mRNA was relatively highly expressed in adult lung, and was also expressed in brain and testis, but was almost undetectable in 7-, 11-, 15, and 17-day whole embryos. This is the first report on molecular cloning and initial characterization of mouse Gipc3.

  16. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  17. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  18. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  19. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  20. Cloning

    MedlinePlus

    ... 2001, researchers produced the first clone of an endangered species: a type of Asian ox known as a ... few days after its birth. In 2003, another endangered type of ox, called the ... many species that would otherwise disappear, others argue that cloning ...

  1. Molecular cloning, characterization, and expression of wheat cystatins.

    PubMed

    Kuroda, M; Kiyosaki, T; Matsumoto, I; Misaka, T; Arai, S; Abe, K

    2001-01-01

    We cloned four kinds of cDNAs of wheat cystatins (WCs), WC1, WC2, WC3, and WC4, from the seed. They had 47-68% amino acid sequence similarities to other plant cystatins. WC1, WC2, and WC4 had 63-67% similalities to one another while 93% of amino acids were identical between WC1 and WC3. This suggested that WCI, WC2, and WC4 should be regarded as the isoforms of wheat cystatins. The mRNAs for WC1, WC2, and WC4 were all expressed in seed at an early stage of maturation and, after that, their quantities decreased gradually. However, each of the mRNAs was again expressed one day after the start of germination and the expression continued for the following five days. WC1 seemed to be expressed at a higher level than WC2 and WC4. Immunostaining for looking at site-specific expression of each WC demonstrated that both WC1 and WC4 existed in the aleuron layer and embryo, but in the endosperm the only existing species was WC1. Differences in mRNA level and tissue localization found for the WCs may suggest their differential physiological roles.

  2. Molecular cloning and expression of the mouse ornithine decarboxylase gene.

    PubMed Central

    McConlogue, L; Gupta, M; Wu, L; Coffino, P

    1984-01-01

    We used mRNA from a mutant S49 mouse lymphoma cell line that produces ornithine decarboxylase (OrnDCase) as its major protein product to synthesize and clone cDNA. Plasmids containing OrnDCase cDNA were identified by hybrid selection of OrnDCase mRNA and in vitro translation. The two of these with the largest inserts together span 2.05 kilobases of cDNA. Southern blot analysis of DNA from wild-type or mutant S49 cells, cleaved with EcoRI or with BamHI, revealed multiple bands homologous to OrnD-Case cDNA, only one of which was amplified in the mutant cells. RNA transfer blot analysis showed that the major OrnD-Case mRNA in the mouse lymphoma cells is 2.0 kilobases long. A similar size mRNA was found in mouse kidney and was more abundant in the kidneys of mice treated with testosterone, an inducer of OrnDCase activity in that tissue. Images PMID:6582509

  3. Molecular cloning and functional analysis of the goose FSHβ gene.

    PubMed

    Huang, Z; Li, X; Li, Y; Liu, R; Chen, Y; Wu, N; Wang, M; Song, Y; Yuan, X; Lan, L; Xu, Q; Chen, G; Zhao, W

    2015-01-01

    The objective of this investigation was to clone goose FSHβ-subunit cDNA and to construct a FSH fusion gene to identify the function of FSHβ mRNA during stages of the breeding cycle. The FSHβ gene was obtained by reverse transcription-PCR, and the full-length FSHβ mRNA sequence was amplified by rapid-amplification of cDNA ends. FSHβ mRNA expression was detected in reproductive tissues at different stages (pre-laying, laying period, and broody period). Additionally, the expression of 4 genes known to be involved in reproduction (FSHβ, GnRH, GH, and BMP) were evaluated in COS-7 cells expressing the fusion gene (pVITRO2-FSHαβ-CTP). The results show that the FSHβ gene consists of a 16 base pair (bp) 5'-untranslated region (UTR), 396 bp open reading frame, and alternative 3'-UTRs at 518 bp and 780 bp, respectively. qPCR analyses revealed that FSHβ mRNA is highly transcribed in reproductive tissues, including the pituitary, hypothalamus, ovaries, and oviduct. FSHβ mRNA expression increased and subsequently decreased in the pituitary, ovaries, and oviduct during the reproductive stages. Stable FSH expression was confirmed using enzyme-linked immunosorbent assays after transfection with the pVITRO2-FSHαβ-CTP plasmid. FSHβ, GnRH, and BMP expression increased significantly 36 h and 48 h after transfection with the fusion gene in COS-7 cells. The results demonstrate that the FSHβ subunit functions in the goose reproductive cycle and provides a theoretical basis for future breeding work.

  4. Molecular cloning and expression of rat liver aminopeptidase B.

    PubMed

    Fukasawa, K M; Fukasawa, K; Kanai, M; Fujii, S; Harada, M

    1996-11-29

    We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNAs, a cDNA clone with 2212 base pairs encoding aminopeptidase B (EC 3.4.11.6). The open reading frame encodes a 649-amino acid protein with a theoretical molecular mass of 72,545 Da and bears the consensus sequence of the zinc metalloexopeptidases, indicating that the enzyme belongs to this family, which includes aminopeptidase A, aminopeptidase N, and leukotriene-A4 hydrolase. Escherichia coli SOLR cells infected with the pBluescript phagemid excised from the Uni-ZAP XR vector containing the aminopeptidase B cDNA had a high L-arginyl-beta-naphthylamidase activity. The recombinant protein was purified to homogeneity from the recombinant E. coli extracts. The enzyme had Cl--dependent aminopeptidase activity specifically restricted to the Arg and Lys derivatives and contained 1 mol of zinc per mol of the enzyme.

  5. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  6. Molecular cloning, purification and characterization of Brugia malayi phosphoglycerate kinase.

    PubMed

    Kumar, Ranjeet; Doharey, Pawan Kumar; Saxena, Jitendra Kumar; Rathaur, Sushma

    2017-04-01

    Phosphoglycerate kinase (PGK) is a glycolytic enzyme present in many parasites. It has been reported as a candidate molecule for drug and vaccine developments. In the present study, a full-length cDNA encoding the Brugia malayi 3-phosphoglycerate kinase (BmPGK) with an open reading frame of 1.3 kb was isolated and PCR amplified and cloned. The exact size of the BmPGK's ORF is 1377 bps. The BmPGK gene was subcloned into pET-28a (+) expression vector, the expressed enzyme was purified by affinity column and characterized. The SDS-PAGE analysis revealed native molecular weight of recombinant Brugia malayi 3-phosphoglycerate kinase (rBmPGK) to be ∼45 kDa. The enzyme was found sensitive to temperature and pH, it showed maximum activity at 25 °C and pH 8.5. The Km values for PGA and ATP were 1.77 and 0.967 mM, respectively. The PGK inhibitor, clorsulon and antifilarial drugs albendazole and ivermectin inhibited the enzyme. The specific inhibitor of PGK, clorsulon, competitively inhibited enzyme with Ki value 1.88 μM. Albendazole also inhibited PGK competitively with Ki value 35.39 μM. Further these inhibitory studies were confirmed by docking and molecular simulation of drugs with enzyme. Clorsulon interacted with substrate binding site with glutamine 37 as well as in hinge regions with aspartic acid 385 and valine 387 at ADP binding site. On the other hand albendazole interacted with asparagine 335 residues. These effects were in good association with binding interactions. Thus current study might help in designing and synthesis of effective inhibitors for this novel drug target and understanding their mode of interaction with the potent anthelmintic drugs.

  7. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  8. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay

    PubMed Central

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-01-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF-7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot-based molecular targeted imaging techniques (which stained pan-cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF-7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot-based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology. PMID:27572664

  9. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  10. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  11. Molecular cloning and characterization of chemokine-like factor super family member 1 (CKLFSF1), a novel human gene with at least 23 alternative splicing isoforms in testis tissue.

    PubMed

    Wang, Lu; Wu, Chunxiao; Zheng, Ying; Qiu, Xiaoyan; Wang, Li; Fan, Hui; Han, Wenling; Lv, Bingfeng; Wang, Ying; Zhu, Xiaohui; Xu, Mingxu; Ding, Peiguo; Cheng, Shanhong; Zhang, Yingmei; Song, Quansheng; Ma, Dalong

    2004-08-01

    Chemokine-like factor (CKLF) was isolated from PHA-stimulated U937 cells. It is composed of 152 amino acids and located on chromosome 16q22. Utilizing bioinformatics, based on CKLF cDNA and protein sequences, in combination with experimental validation, we identified a novel gene designated chemokine-like factor super family member 1 (CKLFSF1). CKLFSF1 maps on chromosome 16q22, and the full-length gene comprises of seven exons and six introns. Using RACE-PCR, we identified two potential alternative transcription start sites, 1A and 1B. Northern blot and RT-PCR analysis demonstrated that CKLFSF1 is predominantly expressed in human testis tissue, with only lower levels of expression in many other human tissues. RT-PCR and cDNA sequencing identified 23 alternatively spliced isoforms of CKLFSF1 in the testis tissue, which encode protein variants ranging from 36 to 169 amino acids in length. Immunohistochemistry analysis demonstrated that CKLFSF1 proteins are highly expressed in spermatocyte and in tissue fluid of human testes tissue. In light of these findings, we propose that CKLFSF1 may play an important role in spermatogenesis or testicular development.

  12. Molecular Cloning of Actinomyces Bacteriophage DNA in E. Coli.

    DTIC Science & Technology

    2007-11-02

    recombinant clones revealed the presence of the expected phi63 DNA fragments that were used in the subcloning and they were stably maintained in E . coli . Further...feasibility of cloning of Actinomyces phage DNA fragments onto an E . coli expression vector.

  13. Databasing Molecular Identities of Louisiana, Florida, and Texas Sugarcane Clones

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp. hybrids) clones (cultivars and superior breeding lines) are routinely exchanged across geographic locations for field-testing or crossing. It is crucial to maintain the genetic identity of these clones during field collection, shipping, and quarantine. Traditionally, suga...

  14. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    PubMed Central

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  15. Molecular genetics: DNA analysis of a putative dog clone.

    PubMed

    Parker, Heidi G; Kruglyak, Leonid; Ostrander, Elaine A

    2006-03-09

    In August 2005, Lee et al. reported the first cloning of a domestic dog from adult somatic cells. This putative dog clone was the result of somatic-cell nuclear transfer from a fibroblast cell of a three-year-old male Afghan hound into a donor oocyte provided by a dog of mixed breed. In light of recent concerns regarding the creation of cloned human cell lines from the same institution, we have undertaken an independent test to determine the validity of the claims made by Lee et al..

  16. Molecular cloning and characterization of a novel mannose-binding lectin gene from Amorphophallus konjac.

    PubMed

    Fei, Jiong; Liao, Zhihua; Chai, Yourong; Pang, Yongzhen; Yao, Jianhong; Sun, Xiaofen; Tang, Kexuan

    2003-09-01

    A new lectin gene was cloned from Amorphophallus konjac. The full-length cDNA of Amorphophallus konjac agglutinin (aka) was 736 bp and contained a 474 bp open reading frame encoding a 158 amino acid protein. Homology analysis revealed that the lectin from this Araceae species belonged to the superfamily of monocot mannose-binding proteins. Molecular modeling of AKA indicated that the three-dimensional structure of AKA strongly resembles that of the snowdrop lectin. Southern blot analysis of the genomic DNA revealed that aka belonged to a low-copy gene family. Northern blot analysis demonstrated that aka expression was tissue-specific with the strongest expression being found in root.

  17. Construction of a molecular clone of ovine enzootic nasal tumor virus.

    PubMed

    Walsh, Scott R; Gerpe, María Carla Rosales; Wootton, Sarah K

    2016-12-30

    Enzootic nasal tumor virus (ENTV-1) is an ovine betaretrovirus that has been linked to enzootic nasal adenocarcinoma (ENA), a contagious tumor of the ethmoid turbinates of sheep. Transmission experiments performed using virus isolated from cell free nasal tumor homogenates suggest that ENTV-1 is the causative agent of ENA; however, this etiological relationship has not been conclusively proven due to the fact that the virus cannot be propagated in vitro nor is there an infectious molecular clone of the virus. Here we report construction of a molecular clone of ENTV-1 and demonstrate that transfection of this molecular clone into HEK 293T cells produces mature virus particles. Analysis of recombinant virus particles derived from the initial molecular clone revealed a defect in the proteolytic processing of Gag; however, this defect could be corrected by co-expression of the Gag-Pro-Pol polyprotein from the highly related Jaagsiekte sheep retrovirus (JSRV) suggesting that the polyprotein cleavage sites in the ENTV-1 molecular clone were functional. Mutagenesis of the molecular clone to correct amino acid variants identified within the pro gene did not restore proteolytic processing; whereas deletion of one proline residue from a polyproline tract located in variable region 1 (VR1) of the matrix resulted in production of CA protein of the mature (cleaved) size strongly suggesting that normal virion morphogenesis and polyprotein cleavage took place. Finally, electron microscopy revealed the presence of spherical virus particles with an eccentric capsid and an average diameter of about 100 nm. In summary, we have constructed the first molecular clone of ENTV-1 from which mature virus particles can be produced. Future experiments using virus produced from this molecular clone can now be conducted to fulfill Koch's postulates and demonstrate that ENTV-1 is necessary and sufficient to induce ENA in sheep.

  18. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule

    SciTech Connect

    Dunne, P. Owen, M.J.; Hanby, A.M.; Poulsom, R.

    1995-11-20

    FAT, a new member of the human cadherin super-family, has been isolated from the T-leukemia cell line J6. The predicted protein closely resembles the Drosophila tumor suppressor fat, which is essential for controlling cell proliferation during Drosophila development. The gene has the potential to encode a large transmembrane protein of nearly 4600 residues with 34 tandem cadherin repeats, five EGF-like repeats, and a laminin A-G domain. The cytoplasmic sequence contains two domains with distant homology to the cadherin catenin-binding region. Northern blotting analysis of J6 mRNA demonstrated full-length, approximately 15-kb, FAT message in addition to several 5{prime}-truncated transcripts. In addition to its presence in J6 cells, in situ hybridization revealed FAT mRNA expression in epithelia and in some mesenchymal compartments. Furthermore, higher levels of expression were observed in fetal, as opposed to adult, tissue, suggesting that its expression may be developmentally regulated in these tissues. FAT shows homologies with a number of proteins important in developmental decisions and cell:cell communication and is the first fat-like protein reported in vertebrates. The gene encoding FAT was located by in situ hybridization on chromosome 4q34-q35. We propose that this family of molecules is likely to be important in mammalian developmental processes and cell communication. 80 refs., 10 figs., 1 tab.

  19. Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping

    SciTech Connect

    Imamura, Yutaka; Kubota, Ryo; Wang, Yimin

    1997-03-01

    In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissues revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.

  20. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering.

  1. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    PubMed

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.

  2. Molecular cloning and characterization of brain and ovarian cytochrome P450 aromatase genes in the catfish Heteropneustes fossilis: Sex, tissue and seasonal variation in, and effects of gonadotropin on gene expression.

    PubMed

    Chaube, Radha; Rawat, Arpana; Joy, Keerrikkattil P

    2015-09-15

    Cytochrome P450 aromatase (Cyp19arom) is the rate-limiting enzyme controlling estrogen biosynthesis, coded by Cyp19a1 in most gnathostomes. Most teleosts have two forms expressed differentially in ovary (cyp19a1a) and neural tissue (cyp19a1b). In this study, full length cDNAs of 2006 bp and 1913 bp with ORFs of 1575 bp and 1488 bp were isolated from the brain and ovary, respectively, of the catfish Heteropneustes fossilis, an air-breathing species with high aquaculture potential. The ORFs encode predicted proteins of 495 and 524 amino acid residues, respectively. The proteins show 62% identity with each other and cluster in two distinct clades (the brain type and ovary type) in the teleost taxon, separated from the tetrapod type. In the in situ localization study, both cyp19a1a and cyp19a1b transcripts were localized in the brain but the signal intensity was higher for the brain type paralog. The transcript signals were observed in the radial glial cells and in neuronal populations of the dorso-lateral region of the telencephalon, pre-tectum, hypothalamus and medulla oblongata. In the ovary, both paralogs were expressed in the follicular layer with a high signal intensity of the ovarian type (cyp19a1a). The differential expression of the gene paralogs was evident from qPCR analysis. Cyp19a1b has relatively a high abundance in the female brain, followed by other peripheral tissues (gonads, liver, gill, kidney and muscle). On the other hand, cyp19a1a has relatively a high transcript abundance in the ovary and female brain, followed by the testis and male brain, and female liver and muscle. The expression was low in male liver and muscle, and the lowest in the gill and kidney. The expression of the two paralogs exhibit brain regional differences; both types have relatively a high transcript abundance in telencephalon-preoptic area with the cyp19a1b expression higher in females than males. In hypothalamus, the expression of both types is higher in males than females

  3. Molecular cloning of Taenia taeniaeformis oncosphere antigen genes.

    PubMed

    Cougle, W G; Lightowlers, M W; Bogh, H O; Rickard, M D; Johnson, K S

    1991-03-01

    Infection of mice with the cestode Taenia taeniaeformis exhibits several important features common to other cestode infections, including the ability to vaccinate with crude antigen mixtures. Partial purification of the protective oncosphere antigens has been reported with a cutout from deoxycholate (DOC) acrylamide gels; this cutout was called fraction II (FII), and comprises approximately 10% of total DOC-soluble oncosphere antigen. Western blots of DOC gels probed with anti-FII antisera revealed a series of 3-5 discrete bands within the FII region. Further fractionation of the FII antigens on DOC gels was impractical due to limitations in supply of oncospheres, so a cDNA library was constructed from 150 ng of oncosphere mRNA and screened with alpha-FII antisera. Two distinct clone families were identified, oncA and oncB. Antibodies affinity-purified on either of two representative members, oncA1 and oncB1, recognised all the FII bands. Individual FII bands excised from a DOC gel resolved into an overlapping series of molecules when re-run on SDS-PAGE, indicating that each FII band consisted of several polypeptides of differing molecular weight. Immunoprecipitates resolved on SDS-PAGE revealed that alpha-FII recognised 3 major oncosphere antigens, of 62, 34 and 25 kDa; antisera against oncB precipitated both the 34- and 25-kDa antigens, whereas alpha-oncA antisera precipitated the 62-kDa antigen. We conclude that oncA and oncB encode the major antigens in the FII complex. The 62-kDa antigen encoded by oncA1 was the only common antigen precipitated by anti-FII and two other antisera raised against different protective extracts, suggesting that it may be a protective component in all three. Southern blot results indicate that oncA and oncB are distinct genes present at low copy number in the genome. Evidence is also presented suggesting that some cestode mRNAs, including oncA, may use variant polyadenylation signals.

  4. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue.

    PubMed

    Osathanon, Thanaphum; Subbalekha, Keskanya; Sastravaha, Panunn; Pavasant, Prasit

    2012-01-01

    ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.

  5. Purification, characterization and molecular cloning of glycosylphosphatidylinositol-anchored arginine-specific ADP-ribosyltransferases from chicken.

    PubMed

    Terashima, Masaharu; Osago, Harumi; Hara, Nobumasa; Tanigawa, Yoshinori; Shimoyama, Makoto; Tsuchiya, Mikako

    2005-08-01

    Mono-ADP-ribosylation is a post-translational modification that regulates the functions of target proteins or peptides by attaching an ADP-ribose moiety. Here we report the purification, molecular cloning, characterization and tissue-specific distribution of novel arginine-specific Arts (ADP-ribosyltransferases) from chicken. Arts were detected in various chicken tissues as GPI (glycosylphosphatidylinositol)-anchored forms, and purified from the lung membrane fraction. By molecular cloning based on the partial amino acid sequence using 5'- and 3'-RACE (rapid amplification of cDNA ends), two full-length cDNAs of chicken GPI-anchored Arts, cgArt1 (chicken GPI-anchored Art1) and cgArt2, were obtained. The cDNA of cgArt1 encoded a novel polypeptide of 298 amino acids which shows a high degree of identity with cgArt2 (82.9%), Art6.1 (50.2%) and rabbit Art1 (42.1%). In contrast, the nucleotide sequence of cgArt2 was identical with that of Art7 cloned previously from chicken erythroblasts. cgArt1 and cgArt2 proteins expressed in DT40 cells were shown to be GPI-anchored Arts with a molecular mass of 45 kDa, and these Arts showed different enzymatic properties from the soluble chicken Art, Art6.1. RNase protection assays and real-time quantitative PCR revealed distinct expression patterns of the two Arts; cgArt1 was expressed predominantly in the lung, spleen and bone marrow, followed by the heart, kidney and muscle, while cgArt2 was expressed only in the heart and skeletal muscle. Thus GPI-anchored Arts encoded by the genes cgArt1 and cgArt2 are expressed extensively in chicken tissues. It may be worthwhile determining the functional roles of ADP-ribosylation in each tissue.

  6. Molecular cloning of the 8000-base thyroglobulin structural gene.

    PubMed

    Christophe, D; Mercken, L; Brocas, H; Pohl, V; Vassart, G

    1982-03-01

    Bovine thyroglobulin mRNA was reverse-transcribed into full-length double-stranded cDNA. The existence of three HindIII restriction endonuclease sites in the 8000-base thyroglobulin structural gene had allowed the easy cloning of the two internal HindIII fragments [Christophe et al. (1980) Eur. J. Biochem. 111, 419-423]. In the present study, the central portion of the structural gene was cloned in Escherichia coli as two individual recombinant plasmids containing 2000-base-pair and 4700-base-pair segments located respectively 5' and 3' relative to the unique BamHI site of the cDNA. BamHI linkers were added to the double-stranded cDNA and, following restriction with HindIII, selective cloning of the 5' (2600-base-pair) and 3' (1000-base-pair) terminal HindIII fragments was achieved by inserting them between the HindIII and BamHI sites of the plasmid pBR322. Partial sequencing of the 1000-base-pair 3'-terminal fragment demonstrated the presence of an A-A-U-A-A-A sequence in the mRNA 14 bases upstream from a poly(A) tract corresponding to the 3' end of the mRNA. Together, the four clones represent about 99% of the thyroglobulin structural gene and provide the starting material for the determination of thyroglobulin primary structure.

  7. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene.

    PubMed

    Sadeghi, H Mir Mohammad; Ahmadi, R; Aghaabdollahian, S; Mofid, M R; Ghaemi, Y; Abedi, D

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities.

  8. Molecular cloning and characterization of duck interleukin-17

    USDA-ARS?s Scientific Manuscript database

    Interleukin-17 (IL-17) belonging to the Th17 family is a proinflammatory cytokine produced by activated T cells. A 1034-bp cDNA encoding duck IL-17 (duIL-17) was cloned from ConA-activated splenic lymphocytes of ducks. The encoded protein, predicted to consisted of 169 amino acids, displayed a molec...

  9. Molecular cloning and functional characterization of avian interleukin-19

    USDA-ARS?s Scientific Manuscript database

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  10. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein.

    PubMed

    Arden, S D; Zahn, T; Steegers, S; Webb, S; Bergman, B; O'Brien, R M; Hutton, J C

    1999-03-01

    A pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP) was cloned using a subtractive cDNA expression cloning procedure from mouse insulinoma tissue. Two alternatively spliced variants that differed by the presence or absence of a 118-bp exon (exon IV) were detected in normal balb/c mice, diabetic ob/ob mice, and insulinoma tissue. The longer, 1901-bp full-length cDNA encoded a 355-amino acid protein (molecular weight 40,684) structurally related (50% overall identity) to the liver glucose-6-phosphatase and exhibited similar predicted transmembrane topology, conservation of catalytically important residues, and the presence of an endoplasmic reticulum retention signal. The shorter transcript encoded two possible open reading frames (ORFs), neither of which possessed His174, a residue thought to be the phosphoryl acceptor (Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144-6148, 1998). Northern blot and reverse transcription-polymerase chain reaction analysis showed that the mRNA was highly expressed in pancreatic islets and expressed more in beta-cell lines than in an alpha-cell line. It was notably absent in tissues and cell lines of non-islet neuroendocrine origin, and no other major tissue source of the mRNA was found. During development, it was expressed in parallel with insulin mRNA. The mRNA was efficiently translated and glycosylated in an in vitro translation/membrane translocation system and readily transcribed into COS 1, HIT, and CHO cells using cytomegalovirus or Rous sarcoma virus promoters. Whereas the liver glucose-6-phosphatase showed activity in these transfection systems, the IGRP failed to show glucose phosphotransferase or phosphatase activity with p-nitrophenol phosphate, inorganic pyrophosphate, or a range of sugar phosphates hydrolyzed by the liver enzyme. While the metabolic function of the enzyme is not resolved, its remarkable tissue-specific expression

  11. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  12. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  13. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis.

  14. Molecular cloning and characterization of a novel esophageal cancer related gene.

    PubMed

    Cui, Yongping; Bi, Meixia; Su, Tao; Liu, Hailing; Lu, Shih-Hsin

    2010-12-01

    We previously identified four novel cDNA fragments related to human esophageal cancer. One of the fragments was named esophageal cancer related gene 2 (ECRG2). We report here the molecular cloning, sequencing, and expression of the ECRG2 gene. The ECRG2 cDNA comprises a 258 bp nucleotide sequence which encodes for 85 amino acids with a predicted molecular weight of 9.2 kDa. Analysis of the protein sequence reveals the presence at the N terminus of a signal peptide followed by 56 amino acids with a significant degree of sequence similarity with the conserved Kazal domain which characterizes the serine protease inhibitor family. Pulse-chase experiments showed that ECRG2 protein was detected in both cell lysates and culture medium, indicating that the ECRG2 protein was extracellularly secreted after the post-translational cleavage. In vitro uPA/plasmin activity analysis showed the secreted ECRG2 protein inhibited the uPA/plasmin activity, indicating that ECRG2 may be a novel serine protease inhibitor. Northern blot analysis revealed the presence of the major band corresponding to a size of 569 kb throughout the fetal skin, thymus, esophagus, brain, lung, heart, stomach, liver, spleen, colon, kidney, testis, muscle, cholecyst tissues and adult esophageal mucosa, brain, thyroid tissue and mouth epithelia. However, ECRG2 gene was significantly down-regulated in primary esophageal cancer tissues. Taken together, these results indicate that ECRG2 is a novel member of the Kazal-type serine protease inhibitor family and may function as a tumor suppressor gene regulating the protease cascades during carcinogenesis and migration/invasion of esophageal cancer.

  15. Molecular trafficking in tissue engineered cartilage constructs

    NASA Astrophysics Data System (ADS)

    de Rosa, Enrica

    2005-03-01

    Tissue processing in vitro requires an effective trafficking of biologically active agents within three-dimensional constructs for induction of appropriate and enhanced cellular growth, biosynthesis and tissue remodeling. Moreover, nutrients and waste products need to move freely through the cellular constructs to minimize the presence of regions with necrotic and/or apoptotic cells. In tissue-engineered cartilage, for example, during the time of culture, cells seeded within the three-dimensional constructs lay-down their own extracellular matrix and this may lead to a heterogeneous distribution of transport properties both in time and space. In this work the diffusion coefficient of BSA and 500kDa dextran has been measured with FRAP thecnique in agarose gel chondrocytes constructs at different position and time during the culture. The diffusion coefficient of both molecular probes within the developing tissue well correlated with the ECM production and assembly. Moreover the comparision between BSA and dextran transport parameters revealed a selective hindrance effect of the neo tissue on high interacting molecules.

  16. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  17. Molecular cloning of seal myoglobin mRNA.

    PubMed Central

    Wood, D; Blanchetot, A; Jeffreys, A J

    1982-01-01

    Grey seal skeletal muscle containing high levels of myoglobin was used to prepare poly(A)+ RNA. In vitro translation of this RNA produced a range of polypeptides including myoglobin. cDNA was prepared by reverse transcription of muscle poly(A)+ RNA and cloned into the plasmid pAT 153. 4% of cDNA recombinants were shown to contain myoglobin cDNA inserts. DNA sequence analysis of one clone (pSM 178) which contained a relatively large myoglobin cDNA insert showed an incomplete cDNA comprising the terminal 293 nucleotides of 3' non-translated mRNA sequences. Hybridization experiments using this myoglobin cDNA indicated that seal myoglobin is coded by a single gene which is transcribed to give a 1400 nucleotide mRNA considerably longer than related haemoglobin mRNAs. Images PMID:6185919

  18. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    SciTech Connect

    Korochkin, L.I.

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  19. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    SciTech Connect

    Holst, L.S.; Laurell, H.; Holm, C.

    1996-08-01

    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  20. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing.

    PubMed

    Buyanovskaya, O A; Kuleshov, N P; Nikitina, V A; Voronina, E S; Katosova, L D; Bochkov, N P

    2009-07-01

    Cytogenetic analysis of 13 mesenchymal stem cell cultures isolated from normal human adipose tissue was carried out at different stages of culturing. The incidence of chromosomes 6, 8, 11, and X aneuploidy and polyploidy was studied by fluorescent in situ hybridization. During the early passages, monosomal cells were more often detected than trisomal ones. A clone with chromosome 6 monosomy was detected in three cultures during late passages.

  1. Identification of a cDNA clone for bovine tissue factor

    SciTech Connect

    Kittler, J.M.; Horton, R.D.; Bach, R.; Spicer, E.K.; Fitzgerald, M.J.; Nemerson, Y.; Konigsberg, W.H.

    1986-05-01

    Tissue factor is a membrane-bound glycoprotein of approx.43 Kd that is necessary for activation of the extrinsic pathway of blood coagulation. The amino terminal amino acid sequence of purified bovine tissues factor was used to design a synthetic 17-mer oligodeoxyribonucleotide probe. A lambda gtll bovine brain cortex cDNA expression library was screened using both the /sup 32/P-labeled oligodeoxynucleotide probe and polyclonal antibodies to bovine tissue factor. A recombinant phage was isolated which gave a positive reaction with both probes. Cells containing the lambda gtll phage clone produce the tissue factor fragment as a fusion protein with ..beta..-galactosidase. The isolated DNA fragment coding for part of the bovine tissue factor gene is estimated to be approximately 500 bases in length by agarose gel electrophoresis. The ..beta..-glactosidase - tissue factor fusion protein, subjected to Western immunoblotting, shows a protein product of approximately 130 Kd which is reactive to anti-tissue factor antibodies. This corresponds well to the 114 Kd ..beta..-galactosidase plus the predicted approx. 16 Kd fragment of tissue factor. Experiments are in progress to transfer the presumed tissue factor gene fragment into phage M13 for nucleotide sequence analysis.

  2. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    PubMed Central

    Hipp, Jason; Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15588286

  3. Molecular cloning and characterization of an extracellular protease gene from Aeromonas hydrophila.

    PubMed Central

    Rivero, O; Anguita, J; Paniagua, C; Naharro, G

    1990-01-01

    A structural gene which codes for an extracellular protease in Aeromonas hydrophilia SO2/2 and D13 was cloned in Escherichia coli C600-1 by using pBR322 as a vector. The gene codes for a temperature-stable protease with a molecular mass of approximately 38,000 daltons. The protein was secreted to the periplasm of E. coli C600-1 and purified by osmotic shock. Cloned protease (P3) was identical in molecular mass and properties to the one purified from A. hydrophila SO2/2 culture supernatant as an extracellular product. Images PMID:2193924

  4. Mega primer-mediated molecular cloning strategy for chimaeragenesis and long DNA fragment insertion.

    PubMed

    Zhang, Hui; Liu, Chang-Jun; Jiang, Hui; Zhou, Lu; Li, Wen-Ying; Zhu, Ling-Yun; Wu, Lei; Meng, Er; Zhang, Dong-Yi

    2017-04-30

    Molecular cloning methods based on primer and overlap-extension PCR are widely used due to their simplicity, reliability, low cost and high efficiency. In this article, an efficient mega primer-mediated (MP) cloning strategy for chimaeragenesis and long DNA fragment insertion is presented. MP cloning is a seamless, restriction/ligation-independent method that requires only three steps: (i) the first PCR for mega primer generation; (ii) the second PCR for exponential amplification mediated by the mega primers and (iii) DpnI digestion and transformation. Most importantly, for chimaeragenesis, genes can be assembled and constructed into the plasmid vector in a single PCR step. By employing this strategy, we successfully inserted four DNA fragments (approximately 500 bp each) into the same vector simultaneously. In conclusion, the strategy proved to be a simple and efficient tool for seamless cloning.

  5. Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning.

    PubMed

    Arias, A; Lázaro, E; Escarmís, C; Domingo, E

    2001-05-01

    The mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT--PCR products cloned in E. coli). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.

  6. Purification, molecular cloning, and expression of the mammalian sigma1-binding site.

    PubMed

    Hanner, M; Moebius, F F; Flandorfer, A; Knaus, H G; Striessnig, J; Kempner, E; Glossmann, H

    1996-07-23

    Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.

  7. Molecular cloning and evolutionary analysis of GJB6 in mammals.

    PubMed

    Ru, Binghua; Han, Naijian; He, Guimei; Brayer, Kathryn; Zhang, Shuyi; Wang, Zhe

    2012-04-01

    GJB6 plays a crucial role in hearing. In mammals, bats use ultrasonic echolocation for orientation and locating prey. To investigate the evolution of GJB6 in mammals, we cloned the full-length coding region of GJB6 from 16 species of bats and 4 other mammal species and compared them with orthologous sequences in 11 other mammals. The results show purifying selection on GJB6 in mammals, as well as in the bat lineage, which indicates an important role for GJB6 in mammal hearing. We also found one unique amino acid substitution shared by 16 species of bats and 10 shared by two species of artiodactyls. This positioned the artiodactyls at an abnormal location in the gene tree. In addition, the cytoplasmic loop and carboxy terminus were more variable than other domains in all the mammals. These results demonstrate that GJB6 is basically conserved in mammals but has undergone relatively rapid evolution in particular lineages and domains.

  8. Molecular cloning of genes that specify virulence in Pseudomonas solanacearum.

    PubMed

    Xu, P L; Leong, S; Sequeira, L

    1988-02-01

    The suicide plasmid pSUP2021 was used to introduce Tn5 into the Pseudomonas solanacearum wild-type strain K60. We isolated eight avirulent mutants after screening 6,000 kanamycin-resistant transconjugants by inoculating eggplant (Solanum melongena L. cv. Black Beauty) and tobacco (Nicotiana tabacum L. cv. Bottom Special) seedlings. The Tn5-containing EcoRI fragments from the eight mutants were unique, suggesting that numerous genes specify virulence in this species. These EcoRI fragments were cloned into pBR322 or pUC12, and one of the clones, pKD810, was transformed into K60. All of the kanamycin-resistant, ampicillin-sensitive transformants were avirulent. Three randomly selected avirulent transformants were shown to carry the Tn5-containing fragment in place of the wild-type fragment and to exhibit the same hybridization pattern as the original KD810 mutant did. With pKD810 as a probe, we identified cosmids carrying the wild-type virulence genes by using a genomic library of K60 prepared in pLAFR3. Two of the homologous cosmids, pL810A and pL810C, when introduced into KD810 by transformation, restored virulence and normal growth of this mutant in tobacco. Altogether, these data indicate that the gene(s) interrupted by Tn5 insertion in KD810 is essential for the virulence of P. solanacearum. Further characterization of this gene is now being completed by subcloning, transposon mutagenesis, and complementation analysis.

  9. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  10. Infectious virus replication in papillomas induced by molecularly cloned cottontail rabbit papillomavirus DNA.

    PubMed Central

    Brandsma, J L; Xiao, W

    1993-01-01

    The ability to obtain infectious papillomavirus virions from molecularly cloned DNA has not been previously reported. We demonstrate here that viral genomes isolated from a recombinant++ DNA clone of cottontail rabbit papillomavirus (CRPV) gave rise to infectious virus when inoculated into cottontail rabbit skin. Replication occurred in papillomas that formed at inoculation sites. Extract of a DNA-induced papilloma was serially passaged to naive rabbits with high efficiency. Complete virus was fractionated on cesium chloride density gradients, and papillomavirus particles were visualized by electron microscopy. CRPV DNA isolated from virions contained DNA sequence polymorphisms that are characteristic of the input CRPV-WA strain of virus, thereby proving that the newly generated virus originated from the molecularly cloned viral genome. These findings indicate that this will be a useful system in which to perform genetic analysis of viral gene functions involved in replication. Images PMID:8380092

  11. Amphioxus allantoicase: molecular cloning, expression and enzymatic activity.

    PubMed

    Wang, Yongjun; Zhang, Shicui; Liu, Zhenhui; Li, Hongyan; Wang, Lei

    2005-06-01

    Allantoicase, one of the purine metabolism enzymes, is progressively truncated during the chordate evolution, yet it is unknown when its activity became phylogenetically extinct. In this study, a cDNA encoding allantoicase was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 2441 bp long, and contains an open reading frame encoding a protein of 392 amino acid residues. RT-PCR analysis showed that amphioxus allantoicase was strongly expressed in the hepatic caecum, and weakly expressed in other tissues including hind-gut, gill, muscle, notochord, testis and ovary. The parallel experiment was performed measuring the allantoicase activity in the same tissues revealed that its activity was high in the hepatic caecum, but low or undetectable in other tissues examined. These suggest that allantoicase remains in action in the primitive chordate amphioxus.

  12. Molecular cloning and structural characterization of Ecdysis Triggering Hormone from Choristoneura fumiferana.

    PubMed

    P, Bhagath Kumar; K, Kasi Viswanath; S, Tuleshwori Devi; R, Sampath Kumar; Doucet, Daniel; Retnakaran, Arthur; Krell, Peter J; Feng, Qili; Ampasala, Dinakara Rao

    2016-07-01

    At the end of each stadium, insects undergo a precisely orchestrated process known as ecdysis which results in the replacement of the old cuticle with a new one. This physiological event is necessary to accommodate growth in arthropods since they have a rigid chitinous exoskeleton. Ecdysis is initiated by the direct action of Ecdysis Triggering Hormones on the central nervous system. Choristoneura fumiferana is a major defoliator of coniferous forests in Eastern North America. It is assumed that, studies on the ecdysis behavior of this pest might lead to the development of novel pest management strategies. Hence in this study, the cDNA of CfETH was cloned. The open reading frame of the cDNA sequence was found to encode three putative peptides viz., Pre-Ecdysis Triggering Hormone (PETH), Ecdysis Triggering Hormone (ETH), and Ecdysis Triggering Hormone Associated Peptide (ETH-AP). The CfETH transcript was detected in the epidermal tissue of larval and pupal stages, but not in eggs and adults. In order to explore the structural conformation of ETH, ab initio modelling and Molecular Dynamics (MD) Simulations were performed. Further, a library of insecticides was generated and virtual screening was performed to identify the compounds displaying high binding capacity to ETH.

  13. Characterization, molecular cloning, and expression analysis of Ecsit in the spinyhead croaker, Collichthys lucidus.

    PubMed

    Song, W; Jiang, K J; Zhang, F Y; Wang, J; Ma, L B

    2016-01-08

    Evolutionarily conserved signaling intermediate in Toll pathways (Ecsit) is reported to play an essential role in innate immunity, embryogenesis, and assembly or stability of the mitochondrial complex I. In this study, the full-length cDNA of Ecsit was cloned from the spinyhead croaker Collichthys lucidus based on the expressed sequence tags from our cDNA library constructed using the SMART technique. The cDNA was 1669 bp long, including a 5'-terminal untranslated region (UTR) of 121 bp, a 3'-terminal UTR of 183 bp, and an open reading frame of 1365 bp encoding a 454-amino acid polypeptide. The estimated molecular weight of C. lucidus Ecsit (ClEcsit) was 52.50 kDa with an isoelectric point of 6.14, and contained a typical Ecsit domain that is conserved in other Ecsits. Multiple alignment of ClEcsit with other selected Ecsits suggested that some amino acid residues were highly conserved. Phylogenetic analysis indicated that ClEcsit was more similar to its identities in Sciaenidae and grouped with Ecsits from other Perciformes. Quantitative real-time reverse transcription PCR analysis revealed broad expression of ClEcsit and the transcript was strongly expressed in the gill and weakly expressed in other tissues.

  14. Molecular cloning of cDNA encoding the Xenopus homolog of mammalian RelB.

    PubMed Central

    Suzuki, K; Yamamoto, T; Inoue, J

    1995-01-01

    We have molecularly cloned cDNA encoding a new Rel-related protein in Xenopus laevis. Nucleotide sequencing revealed that the product is most homologous to mammalian RelB in its N-terminal region. Furthermore, the putative protein kinase A phosphorylation site (RRPS), found in most of the Rel family proteins, but replaced by QRLT in mammalian RelB, is replaced by QRIT, indicating that our cDNA most likely encodes the Xenopus homolog of mammalian RelB (XrelB). As in the case of mouse RelB, XrelB alone does not bind to DNA efficiently, while XrelB/human p50 heterodimers bind to kappa B sites and activate transcription. XrelB transcripts are present at all stages of oocyte maturation and in adult tissues examined. However, in staged embryos XrelB is undetectable from neurula to stage 28 and resumes expression at stage 47, while Xrel1/XrelA, the Xenopus homolog of p65, has been demonstrated to be expressed throughout embryogenesis. These results raise the possibility that XrelB and Xrel1/XrelA play different roles in the development of X.laevis. Images PMID:8524658

  15. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    PubMed

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular cloning and analysis of a C-type lectin from silkworm Bombyx mori.

    PubMed

    Shahzad, Toufeeq; Zhan, Ming-Yue; Yang, Pei-Jin; Yu, Xiao-Qiang; Rao, Xiang-Jun

    2017-07-01

    C-type lectins (CTLs) play a variety of roles in plants and animals. They are involved in animal development, pathogen recognition, and the activation of immune responses. CTLs carry one or more non-catalytic carbohydrate-recognition domains (CRDs) to bind specific carbohydrates reversibly. Here, we report the molecular cloning and functional analysis of a single-CRD CTL, named C-type lectin-S2 (BmCTL-S2) from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL-S2 is 666 bp, which encodes a putative protein of 221 amino acids. BmCTL-S2 is expressed in a variety of immune-related tissues, including hemocytes and fat body among others. BmCTL-S2 mRNA level in the midgut and the fat body was significantly increased by bacterial challenges. The recombinant protein (rBmCTL-S2) bound different bacterial cell wall components and bacterial cells. rBmCTL-S2 also inhibited the growth of Bacillus subtilis and Staphylococcus aureus. Taken together, we infer that BmCTL-S2 is a pattern-recognition receptor with antibacterial activities. © 2017 Wiley Periodicals, Inc.

  17. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein.

    PubMed Central

    Reed, K E; Westphale, E M; Larson, D M; Wang, H Z; Veenstra, R D; Beyer, E C

    1993-01-01

    Gap junctions allow direct intercellular coupling between many cells including those in the blood vessel wall. They are formed by a group of related proteins called connexins, containing conserved transmembrane and extracellular domains, but unique cytoplasmic regions that may confer connexin-specific physiological properties. We used polymerase chain reaction amplification and cDNA library screening to clone DNA encoding a human gap junction protein, connexin37 (Cx37). The derived human Cx37 polypeptide contains 333 amino acids, with a predicted molecular mass of 37,238 D. RNA blots demonstrate that Cx37 is expressed in multiple organs and tissues (including heart, uterus, ovary, and blood vessel endothelium) and in primary cultures of vascular endothelial cells. Cx37 mRNA is coexpressed with connexin43 at similar levels in some endothelial cells, but at much lower levels in others. To demonstrate that Cx37 could form functional channels, we stably transfected communication-deficient Neuro2A cells with the Cx37 cDNA. The induced intercellular channels were studied by the double whole cell patch clamp technique. These channels were reversibly inhibited by the uncoupling agent, heptanol (2 mM). The expressed Cx37 channels exhibited multiple conductance levels and showed a pronounced voltage dependence. These electrophysiological characteristics are similar to, but distinct from, those of previously characterized connexins. Images PMID:7680674

  18. Molecular cloning, characterization and expression analysis of Tim-3 and Galectin-9 in the woodchuck model.

    PubMed

    Liu, Yanan; Wang, Junzhong; Wang, Lu; Wang, Baoju; Yang, Shangqing; Wang, Qin; Luo, Jinzhuo; Feng, Xuemei; Yang, Xuecheng; Lu, Yinping; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2017-03-01

    In recent years, a critical role for T cell immunoglobulin mucin domain 3 (Tim-3) and its ligand Galectin-9 (Gal-9) has emerged in infectious disease, autoimmunity and cancer. Manipulating this immune checkpoint may have immunotherapeutic potential and could represent an alternative approach for improving immune responses to viral infections and cancer. The woodchuck (Marmot monax) infected by woodchuck hepatitis virus (WHV) represents an informative animal model to study HBV infection and HCC. In the current study, the cDNA sequences of woodchuck Tim-3 and Gal-9 were cloned, sequenced and characterized. The extracellular domain of Tim-3 cDNA sequence consisted of 576bp coding sequence (CDS) that encoded 192 amino acids. The 1076bp full-length Gal-9 cDNA sequence consisted of 1059bp coding sequence (CDS) that encoded 352 amino acids with a molecular weight of 39.7kDa. The phylogenetic tree analysis revealed that the woodchuck Tim-3 and Gal-9 had the closest genetic relationship with Ictidomys tridecemlineatus. The result of quantification PCR analysis showed that ubiquitous expression of Gal-9 but not Tim-3 in different tissues of naive woodchucks. Elevated liver Gal-9 expression was observed in woodchucks with chronic WHV infection. Moreover, a polyclonal antibody against the extracellular domain of woodchuck Tim-3 were generated and identified by flow cytometry. Our results serve as a foundation for further insight into the role of Tim-3/Galectin-9 signaling pathway in viral hepatitis and HCC in the woodchuck model.

  19. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Chen, Xiuli; Wei, Jingguang; Xu, Meng; Yang, Min; Li, Pingfei; Wei, Shina; Huang, Youhua; Qin, Qiwei

    2016-07-01

    As a member of animal lectin family, galectin has the functions of pathogen recognition, anti-bacteria and anti-virus. In the present study, a galectin-1 homolog (EcGel-1) from grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcGel-1 is 504 bp, including a 408 bp open reading frame (ORF) which encodes 135 amino acids with a molecular mass of 15.19 kDa. Quantitative real-time PCR analysis indicated that EcGel-1 was constitutively expressed in all analyzed tissues of healthy grouper. The expression of EcGel-1 in the spleen of grouper was differentially up-regulated challenged with Singapore grouper iridovirus (SGIV), poly (I:C), and LPS. EcGel-1 was abundantly distributed in the cytoplasm in GS cells. Recombinant EcGel-1(rEcGel-1) protein can make chicken erythrocyte aggregation, and combine with gram negative bacteria and gram positive bacteria in the presence of 2-Mercaptoethanol (β-ME). Taken together, the results showed that EcGel-1 may be an important molecule involved in pathogen recognition and pathogen elimination in the innate immunity of grouper.

  20. Molecular cloning of a hyaluronidase from Bothrops pauloensis venom gland

    PubMed Central

    2014-01-01

    Background Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victim’s body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silico analysis of the first hyaluronidase-like proteins from a Brazilian snake venom. Methods The cDNA sequence of hyaluronidase was cloned from the transcriptome of Bothrops pauloensis venom glands. This sequence was submitted to multiple alignment with other related sequences by ClustalW. A phylogenetic analysis was performed using MEGA 4 software by the neighbor joining (NJ) method. Results The cDNA from Bothrops pauloensis venom gland that corresponds to hyaluronidase comprises 1175 bp and codifies a protein containing 194 amino acid residues. The sequence, denominated BpHyase, was identified as hyaluronidase-like since it shows high sequence identities (above 83%) with other described snake venom hyaluronidase-like sequences. Hyaluronidases-like proteins are thought to be products of alternative splicing implicated in deletions of central amino acids, including the catalytic residues. Structure-based sequence alignment of BpHyase to human hyaluronidase hHyal-1 demonstrates a loss of some key secondary structures. The phylogenetic analysis indicates an independent evolution of BpHyal when compared to other hyaluronidases. However, these toxins might share a common ancestor, thus suggesting a broad hyaluronidase-like distribution among

  1. [Molecular cloning and structural characteristics of the R complex of maize]. Annual progress report

    SciTech Connect

    Not Available

    1992-07-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  2. (Molecular cloning and structural characteristics of the R complex of maize)

    SciTech Connect

    Not Available

    1992-01-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  3. Molecular cloning and characterization of the Candida albicans enolase gene.

    PubMed Central

    Mason, A B; Buckley, H R; Gorman, J A

    1993-01-01

    A DNA clone containing the putative Candida albicans enolase gene (ENO1) was isolated from a genomic DNA library. The sequenced insert contained a continuous open reading frame of 1,320 bp. The predicted 440-amino-acid protein is 78 and 76% identical, respectively, to Saccharomyces cerevisiae enolase proteins 1 and 2. Only one enolase gene could be detected in C. albicans genomic DNA by Southern analysis with a homologous probe. Northern (RNA) analysis detected a single, abundant C. albicans ENO1 transcript of approximately 1,600 nucleotides. When cells were grown on glucose, levels of ENO1 mRNA were markedly increased by comparison with ENO1 mRNA levels in cells grown on ethanol, a gluconeogenic carbon source. In contrast to this glucose-mediated transcriptional induction, the carbon source had no dramatic effect on the levels of enolase protein or enzyme activity in the C. albicans strains tested. These results suggest that posttranscriptional mechanisms are responsible for modulating expression of the C. albicans enolase gene. Images PMID:8478328

  4. Molecular cloning and functional expression of soybean allene oxide synthases.

    PubMed

    Kongrit, Darika; Jisaka, Mitsuo; Iwanaga, Chitose; Yokomichi, Hiroshi; Katsube, Takuya; Nishimura, Kohji; Nagaya, Tsutomu; Yokota, Kazushige

    2007-02-01

    A plant allene oxide synthase (AOS) reacting with 13S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid (13-HPOT), a lipoxygenase product of alpha-linolenic acid, provides an allene oxide which functions as an intermediate for jasmonic acid (JA) synthesis, making AOS a key enzyme regulating the JA level in plants. Although AOSs in various plants have been investigated, there is only limited information about AOSs in soybean (Glycine max). In this study, we cloned and characterized two soybean AOSs, GmAOS1 and GmAOS2, sharing 95% homology in the predicted amino acid sequences. GmAOS1 and GmAOS2 were composed of 564 and 559 amino acids respectively, with predicted N-terminal chloroplast-targeting signal peptides. Both AOSs expressed in Escherichia coli were selective for 13S-hydroperoxides of alpha-linolenic and linoleic acids, suggesting the potential of GmAOS1 and GmAOS2 to contribute to JA synthesis. GmAOS1 and GmAOS2 were expressed in leaves, stems, and roots, suggesting broad distribution in a soybean plant.

  5. Molecular cloning of a human macrophage lectin specific for galactose

    SciTech Connect

    Cherayil, B.J.; Chairovitz, S.; Wong, C.; Pillai, S. Harvard Medical School, Boston )

    1990-09-01

    The murine Mac-2 protein is a galactose- and IgE-binding lectin secreted by inflammatory macrophages. The authors describe here the cloning an dcharacterization of cDNA representing the human homolog of Mac-2 (hMac-2). The amino acid sequence derived from the hMac-2 cDNA indicates that the protein is evolutionarily highly conserved, with 85% of its amino acid residues being similar to those in the murine homolog. This conservation is especially marked in the carboxyl-terminal lectin domain. The amino-terminal half of the protein is less conserved but still contains the repetitive proline-glycine-rich motif seen in the mouse protein. hMac-2 synthesized in vitro is recognized by the M3/38 monoclonal antibody to Mac-2 and binds to the desialylated glycoprotein asialofetuin and to laminin, a major component of basement membranes. These findings are discussed in the context of the potential functions of hMac-2.

  6. Molecular cloning of cecropin B responsive endonucleases in Yersinia ruckeri

    USDA-ARS?s Scientific Manuscript database

    We have previously demonstrated that Yersinia ruckeri resists cecropin B in an inducible manner. In this study, we sought to identify the molecular changes responsible for the inducible cecropin B resistance of Y. ruckeri. Differences in gene expression associated with the inducible resistance were ...

  7. Molecular cloning and biological characterization of full-length HIV-1 subtype C from Botswana.

    PubMed

    Ndung'u, T; Renjifo, B; Novitsky, V A; McLane, M F; Gaolekwe, S; Essex, M

    2000-12-20

    Human immunodeficiency virus type 1 (HIV-1) subtype C is now responsible for more than half of all HIV-1 infections in the global epidemic and for the high levels of HIV-1 prevalence in southern Africa. To facilitate studies of the biological nature and the underlying molecular determinants of this virus, we constructed eight full-length proviral clones from two asymptomatic and three AIDS patients infected with HIV-1 subtype C from Botswana. Analysis of viral lysates showed that Gag, Pol, and Env structural proteins were present in the virions. In four clones, the analysis suggested inefficient envelope glycoprotein processing. Nucleotide sequence analysis of the eight clones did not reveal frameshifts, deletions, premature truncations, or translational stop codons in any structural, regulatory, or accessory genes. None of the subtype C clones were replication competent in donor peripheral blood mononuclear cells (PBMCs), macrophages, Jurkat(tat) cells, or U87. CD4.CCR5 cells. However, infection by two clones could be rescued by complementation with a functional subtype C envelope clone, resulting in a productive infection of PBMCs, macrophages, and U87. CD4.CCR5 cells.

  8. Molecular cloning and developmental expression of plakophilin 2 in zebrafish

    SciTech Connect

    Moriarty, Miriam A.; Martin, Eva D.; Byrnes, Lucy; Grealy, Maura

    2008-02-29

    Armadillo proteins are involved in providing strength and support to cells and tissues, nuclear transport, and transcriptional activation. In this report, we describe the identification and characterisation of the cDNA of the desmosomal armadillo protein plakophilin 2 in zebrafish. The 2448 bp coding sequence encodes a predicted 815 amino acid protein, with nine armadillo repeats characteristic of the p120-catenin subfamily. It shares conserved N-glycosylation, myristoylation, and glycogen synthase kinase 3, casein kinase 2, and protein kinase C phosphorylation sites with mammalian armadillo proteins including plakoglobin and {beta}-catenin. Semi-quantitative reverse transcription polymerase chain reaction and whole mount in situ hybridisation show that it is expressed both maternally and zygotically. It is ubiquitously expressed during blastula stages but becomes restricted to epidermal and cardiac tissue during gastrulation. These results provide evidence that zebrafish plakophilin 2 is developmentally regulated with potential roles in cell adhesion, signalling, and cardiac and skin development.

  9. Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1

    PubMed Central

    Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard

    1999-01-01

    A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401

  10. Human peptidylarginine deiminase type II: molecular cloning, gene organization, and expression in human skin.

    PubMed

    Ishigami, Akihito; Ohsawa, Takako; Asaga, Hiroaki; Akiyama, Kyoichi; Kuramoto, Masashi; Maruyama, Naoki

    2002-11-01

    Peptidylarginine deiminases (PADs) are posttranslational modification enzymes that convert protein arginine to citrulline residues in a calcium ion-dependent manner. Rodents have four isoforms of PAD (types I, II, III, and IV), each of which is distinct in substrate and tissue specificity. In fact, the only tissue in which all four PAD mRNAs have been detected is the epidermis. In this study, we found PAD activity in HSC-1 human cutaneous squamous carcinoma cells in vitro, and this activity increased during cultivation. Using a homology-based strategy, we cloned a full-length cDNA encoding human PAD type II. The cDNA was 2348 bp long and encoded a 665-amino-acid sequence with a predicted molecular mass of 75 kDa. The predicted protein shared 93% identity with the rat and mouse PAD type II sequence. Alignment of the amino acid sequences from both species revealed notable conservation in the C-terminal region, suggesting the presence of a functional region such as an enzyme catalytic site and/or a calcium-binding domain. Gene organization analysis established that human PAD type II on chromosome 1p35.2-p35.21 spanned more than 50 kb and contained 16 exons and 15 introns. A recombinant PAD protein subsequently produced in Escherichia coli proved to be enzymatically active, with substrate specificities similar to those of the rat PAD type II. In an immunohistochemical study of human skin, the type II enzyme was expressed by all the living epidermal layers, suggesting that PAD type II is functionally important during terminal differentiation of epidermal keratinocytes.

  11. Molecular cloning, characterization and functional analysis of a heat shock protein 70 gene in Cyclina sinensis.

    PubMed

    Ren, Yipeng; Pan, Heting; Yang, Ying; Pan, Baoping; Bu, Wenjun

    2016-11-01

    Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily and is involved in protecting organisms against various stressors. In the present study, we used RACE to clone a full-length Cyclina sinensis HSP70 cDNA termed CsHSP70. The full length of the CsHSP70 cDNA was 2308 bp, with a 5' untranslated region (UTR) of 42 bp, a 3' UTR of 268 bp, and an open reading frame (ORF) of 1998 bp encoding a polypeptide of 655 amino acids with an estimated molecular mass of 72.75 kDa and an estimated isoelectric point of 5.48. Quantitative real-time PCR was employed to analyze the tissue distribution and temporal expression of the CsHSP70 gene after bacterial challenge and cadmium (Cd) exposure. The CsHSP70 mRNA transcript was expressed ubiquitously in five examined tissues, with the highest expression in hemocytes (P < 0.05) and with the lowest expression in the hepatopancreas. Furthermore, the expression level of CsHSP70 in hemocytes at 3 h after Vibrio anguillarum challenge was extremely significantly up-regulated (P < 0.01). Moreover, the CsHSP70 transcript was up-regulated significantly following exposure to a safe Cd concentration (0.1 mg/L). Finally, after the CsHSP70 gene was silenced by RNA interference, the expression of the CsTLR13 and CsMyD88 genes were extremely significantly decreased (P < 0.01). The results indicated that CsHSP70 could play an important role in mediating the environmental stress and immune responses, and regulating TLR signaling pathway in C. sinensis.

  12. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  13. Molecular cloning and analysis of the Catsper1 gene promoter.

    PubMed

    Mata-Rocha, Minerva; Alvarado-Cuevas, Edith; Hernández-Sánchez, Javier; Cerecedo, Doris; Felix, Ricardo; Hernández-Reyes, Adriana; Tesoro-Cruz, Emiliano; Oviedo, Norma

    2013-05-01

    CatSper channels are essential for hyperactivity of sperm flagellum, progesterone-mediated chemotaxis and oocyte fertilization. Catsper genes are exclusively expressed in the testis during spermatogenesis, but the function and regulation of the corresponding promoter regions are unknown. Here, we report the cloning and characterization of the promoter regions in the human and murine Catsper1 genes. These promoter regions were identified and isolated from genomic DNA, and transcriptional activities were tested in vitro after transfection into human embryonic kidney 293, mouse Sertoli cells 1 and GC-1spg cell lines as well as by injecting plasmids directly into mouse testes. Although the human and murine Catsper1 promoters lacked a TATA box, a well-conserved CRE site was identified. Both sequences may be considered as TATAless promoters because their transcriptional activity was not affected after deletion of TATA box-like sites. Several transcription initiation sites were revealed by RNA ligase-mediated rapid amplification of the cDNA 5'-ends. We also found that the immediate upstream region and the first exon in the human CATSPER1 gene negatively regulate transcriptional activity. In the murine Catsper1 promoter, binding sites for transcription factors SRY, SOX9 and CREB were protected by the presence of nuclear testis proteins in DNAse degradation assays. Likewise, the mouse Catsper1 promoter exhibited transcriptional activity in both orientations and displayed significant expression levels in mouse testis in vivo, whereas the suppression of transcription signals in the promoter resulted in low expression levels. This study, thus, represents the first identification of the transcriptional control regions in the genes encoding the human and murine CatSper channels.

  14. Molecular cloning and characterization of novel ficolins from Xenopus laevis.

    PubMed

    Kakinuma, Yuji; Endo, Yuichi; Takahashi, Minoru; Nakata, Munehiro; Matsushita, Misao; Takenoshita, Seiichi; Fujita, Teizo

    2003-04-01

    Ficolins are proteins characterized by the presence of collagen- and fibrinogen-like domains. Two of three human ficolins, L-ficolin and H-ficolin, are serum lectins and are thought to play crucial roles in host defense through opsonization and complement activation. To elucidate the evolution of ficolins and the primordial complement lectin pathway, we cloned four ficolin cDNAs from Xenopus laevis, termed Xenopus ficolin (XeFCN) 1, 2, 3 and 4. The deduced amino acid sequences of the four ficolins revealed the conserved collagen- and fibrinogen-like domains. The full sequences of the four ficolins showed a 42-56% identity to human ficolins, and 60-83% between one another. Northern blots showed that XeFCN1 was expressed mainly in liver, spleen and heart, and XeFCN2 and XeFCN4 mainly in peripheral blood leukocytes, lung and spleen. We isolated ficolin proteins from Xenopus serum by affinity chromatography on N-acetylglucosamine-agarose, followed by ion-exchange chromatography. The final eluate showed polymeric bands composed of two components of 37 and 40 kDa. The N-terminal amino acid sequences and treatment with endoglycosidase F showed that the two bands are the same XeFCN1 protein with different masses of N-linked sugar. The polymeric form of the two types of XeFCN1 specifically recognized GlcNAc and GalNAc residues. These results suggest that like human L-ficolin, XeFCN1 functions in the circulation through its lectin activity.

  15. Molecular cloning and characterization of leucine aminopeptidase from Fasciola gigantica.

    PubMed

    Changklungmoa, Narin; Chaithirayanon, Kulathida; Kueakhai, Pornanan; Meemon, Krai; Riengrojpitak, Suda; Sobhon, Prasert

    2012-07-01

    M17 leucine aminopeptidase (LAP) is one of a family of metalloexopeptidases, of which short peptide fragments are cleaved from the N-terminals. In this study, the full length of cDNA encoding Fasciola gigantica LAP (FgLAP) was cloned from adult parasites. The amino acid sequences of FgLAP showed a high degree of identity (98%) with that from Fasciola hepatica and a low degree of identities (11% and 9%) with those from cattle and human. Phylogenetic analysis revealed that the FgLAP was closely related and grouped with F. hepatica LAP (FhLAP). Northern analysis showed that FgLAP transcriptional products have 1800 base pairs. Analysis by RNA in situ hybridization indicated that LAP gene was expressed in the cecal epithelial cells of adult parasites. A polyclonal antibody to a recombinant FgLAP (rFgLAP) detected the native LAP protein in various developmental stages of the parasite. In a functional test, this rFgLAP displayed aminolytic activity using a fluorogenic Leu-MCA substrate, and was significantly inhibited by bestatin. Its maximum activity was at pH 8.0 and enhanced by Mn(2+) ions. Localization of LAP proteins by immunohistochemistry and immunofluorescence techniques indicated that the enzyme was distributed in the apical cytoplasm of cecal epithelial cells. Because of its important metabolic role and fairly exposed position, FgLAP is a potential drug target and a possible vaccine candidate against fasciolosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Molecular cloning, expression, and enzymatic analysis of cathepsin X from starfish (Asterina pectinifera).

    PubMed

    Bak, Hye Jin; Kim, Moo-Sang; Kim, Na Young; Go, Hye-Jin; Han, Jin Woo; In Jo, Hyae; Ahn, Sang Jung; Park, Nam Gyu; Chung, Joon Ki; Lee, Hyung Ho

    2013-02-01

    Cathepsin X, also known as cathepsin Z, is referred to as a "lysosomal proteolytic enzyme" and a member of the peptidase C1 family, which is involved in various biological processes such as immune response, cell adhesion, and proliferation. In the present study, the cDNA of starfish (Asterina pectinifera), which is known to cause serious damage to commercial shellfish mariculture, cathepsin X (ApCtX) was isolated through the combination of homology molecular cloning and rapid amplification of cDNA ends (RACE) methods for the application to find a way to reduce/control starfish densities. The full-length of ApCtX gene was determined to consist of the 2,240 bp nucleotide sequence, which encoded for a preproprotein of 296 amino acids with a molecular mass of about 32.7 kDa. The tissue type expression of ApCtX was determined in various tissues of A. pectinifera and was shown most abundantly in the liver. The cDNA encoding pro-mature enzyme of ApCtX was expressed in Escherichia coli BL21 (DE3) using the pGEX-4T-1 expression vector. Its activity was quantified by cleaving the synthetic peptide Z-Phe-Arg-AMC. The optimal pH for the protease activity was 6.5. The enzymatic activity of proApCtX was reduced by antipain, NEM, EDTA, EGTA, and 1,10-phenanthroline, and the proApCtX enzyme was significantly inhibited by CuSO₄, HgCl₂, CoCl₂, and SDS whereas Triton X-100 and Brij 35 might have potentially acted as an activator. Here, we demonstrated for the first time that the structural features and enzymatic characteristics of Echinoderms cathepsin X are similar to those of the other mammalian and piscine cathepsin X except its pH optimum, and the results of tissue-specific expression might explain their importance in food digestion by hepatic cecain starfish.

  17. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing.

    PubMed Central

    Kim, U; Wang, Y; Sanford, T; Zeng, Y; Nishikura, K

    1994-01-01

    We have cloned human cDNA encoding double-stranded RNA adenosine deaminase (DRADA). DRADA is a ubiquitous nuclear enzyme that converts multiple adenosines to inosines in double-helical RNA substrates without apparent sequence specificity. The A --> I conversion activity of the protein encoded by the cloned cDNA was confirmed by recombinant expression in insect cells. Use of the cloned DNA as a molecular probe documented sequence conservation across mammals and detected a single transcript of 7 kb in RNA of all human tissues analyzed. The deduced primary structure of human DRADA revealed a bipartite nuclear localization signal, three repeats of a double-stranded RNA binding motif, and the presence of sequences conserved in the catalytic center of other deaminases, including a cytidine deaminase involved in the RNA editing of apolipoprotein B. These structural properties are consistent with the enzymatic signature of DRADA, and strengthen the hypothesis that DRADA carries out the RNA editing of transcripts encoding glutamate-gated ion channels in brain. Images PMID:7972084

  18. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.

  19. Construction and characterization of an infectious molecular clone of Koala retrovirus.

    PubMed

    Shojima, Takayuki; Hoshino, Shigeki; Abe, Masumi; Yasuda, Jiro; Shogen, Hiroko; Kobayashi, Takeshi; Miyazawa, Takayuki

    2013-05-01

    Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 10(6) focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas.

  20. Molecular Cloning and Characterization of Apricot Fruit Polyphenol Oxidase

    PubMed Central

    Chevalier, Tony; de Rigal, David; Mbéguié-A-Mbéguié, Didier; Gauillard, Frédéric; Richard-Forget, Florence; Fils-Lycaon, Bernard R.

    1999-01-01

    A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur. PMID:10198084

  1. Protein Modeling and Molecular Dynamics Simulation of Cloned Regucalcin (RGN) Gene from Bubalus bubalis.

    PubMed

    Pillai, Harikrishna; Yadav, Brijesh Singh; Chaturvedi, Navaneet; Jan, Arif Tasleem; Gupta, Girish Kumar; Baig, Mohammad Hassan; Bhure, Sanjeev Kumar

    2017-01-01

    Regucalcin (RGN), a calcium regulating protein having anti-prolific, antiapoptotic functions, plays important part in the biosynthesis of ascorbic acid. It is a highly conserved protein that has been reported from many tissue types of various vertebrate species. Employing its effect of regulating enzyme activities through reaction with sulfhydryl group (-SH) and calcium, structural level study believed to offer a better understanding of binding properties and regulatory mechanisms of RGN, was performed. Using sample from testis of Bubalus bubalis, amplification of regucalcin (RGN) gene was subjected to characterization by performing digestion using different restriction endonucleases (RE). Alongside, cDNA was cloned into pPICZαC vector and transformed in DH5α host for custom sequencing. To get a better insight of its structural characteristics, three dimensional (3D) structure of protein sequence was generated using in silico molecular modelling approach. The full trajectory analysis of structure was achieved by the Molecular Dynamics (MD) that explains the stability, flexibility and robustness of protein during simulation in a time of 50ns. Molecular docking against 1,5-anhydrosorbitol was performed for functional characterization of RGN. Preliminary screening of amplified products on Agarose gel showed expected size of ~893 bp of PCR product corresponding to RGN. Following sequencing, BLASTp search of the target sequence revealed that it shares 91% similarity score with human senescence marker protein-30 (pdb id: 3G4E). Molecular docking of 1,5-anhydrosorbitol reveals information regarding important binding site residues of RGN. 1,5-anhydrosorbitol was found to interact with binding free energy of - 6.01 Kcal/mol. RMSD calculation of subunits A, B and D-F might be responsible for functional and conserved regions of modeled protein. Three dimensional structure of RGN was generated and its interactions with 1,5- anhydrosorbitol, demonstrates the role of key

  2. A novel murine homeobox gene isolated by a tissue specific PCR cloning strategy.

    PubMed Central

    Kern, M J; Witte, D P; Valerius, M T; Aronow, B J; Potter, S S

    1992-01-01

    We have identified a novel homeobox gene, designated K-2, using a reverse transcription PCR cloning strategy. Sequence analysis reveals that the homeobox of K-2 is 77.6% homologous at the nucleotide level and 97% identical at the amino acid sequence level to another murine gene, S8. Homeodomain sequence comparisons indicate that K-2 and S8 represent a distinct subclass of paired type homeobox genes. Northern blot analysis of RNA from murine embryos and adult tissues identified multiple transcripts that are expressed in a developmentally specific and tissue restricted manner. Alternate splicing of K-2 at the 3-coding region leads to the inclusion of a chain terminating sequence. In addition, the developmental expression pattern of this gene at day 12 of gestation was determined by in situ hybridization. Expression was observed in diverse mesenchymal cells in craniofacial, pericardial, primitive dermal, prevertebral, and genital structures. Images PMID:1383943

  3. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  4. Development and Characterization of an In Vivo Pathogenic Molecular Clone of Equine Infectious Anemia Virus

    PubMed Central

    Cook, R. Frank; Leroux, Caroline; Cook, Sheila J.; Berger, Sandra L.; Lichtenstein, Drew L.; Ghabrial, Nadia N.; Montelaro, Ronald C.; Issel, Charles J.

    1998-01-01

    An infectious nonpathogenic molecular clone (19-2-6A) of equine infectious anemia virus (EIAV) was modified by substitution of a 3.3-kbp fragment amplified by PCR techniques from a pathogenic variant (EIAVPV) of the cell culture-adapted strain of EIAV (EIAVPR). This substitution consisted of coding sequences for 77 amino acids at the carboxyl terminus of the integrase, the S1 (encoding the second exon of tat), S2, and S3 (encoding the second exon of rev) open reading frames, the complete env gene (including the first exon of rev), and the 3′ long terminal repeat (LTR). Modified 19-2-6A molecular clones were designated EIAVPV3.3, and infection of a single pony (678) with viruses derived from a mixture of five of these molecular clones induced clinical signs of acute equine infectious anemia (EIA) at 23 days postinfection (dpi). As a consequence of this initial study, a single molecular clone, EIAVPV3.3#3 (redesignated EIAVUK), was selected for further study and inoculated into two ponies (613 and 614) and two horses (700 and 764). Pony 614 and the two horses developed febrile responses by 12 dpi, which was accompanied by a 48 to 64% reduction in platelet number, whereas pony 613 did not develop fever (40.6°C) until 76 dpi. EIAV could be isolated from the plasma of these animals by 5 to 7 dpi, and all became seropositive for antibodies to this virus by 21 dpi. Analysis of the complete nucleotide sequence demonstrated that the 3.3-kbp 3′ fragment of EIAVUK differed from the consensus sequence of EIAVPV by just a single amino acid residue in the second exon of the rev gene. Complete homology with the EIAVPV consensus sequence was observed in the hypervariable region of the LTR. However, EIAVUK was found to contain an unusual 68-bp nucleotide insertion/duplication in a normally conserved region of the LTR sequence. These results demonstrate that substitution of a 3.3-kbp fragment from the EIAVPV strain into the infectious nonpathogenic molecular clone 19-2-6A leads

  5. Molecular cloning of an olfactory gene from Drosophila melanogaster.

    PubMed Central

    Hasan, G

    1990-01-01

    An olfactory gene olfE, which affects response to benzaldehyde in larvae and adults of Drosophila melanogaster, has been mapped between two breakpoints on the X chromosome. The breakpoints have been shown to lie at a distance no greater than 25 kilobases (kb). A 14-kb genomic fragment from this region has been used for germ-line transformation of olfE mutant flies, and in one of three transformant lines obtained, rescue of the olfE phenotype is observed by two separate behavioral assays. Transcript analysis of the region that rescues the olfE phenotype has shown one major transcript at 5.4 kb and a minor one at 1.7 kb. Both of these transcripts are probably alternatively spliced products of the olfE gene. A developmental and tissue-specific profile of the 5.4-kb olfE message has shown that it is present at all developmental stages, suggesting that the gene may be multifunctional. Images PMID:2123349

  6. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix.

    PubMed

    Yoshimura, Yukihiro; Araki, Aya; Maruta, Hitomi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-12-21

    Among the three acyl-CoA synthetase short-chain family members (ACSS), ACSS3 is poorly characterized. To characterize ACSS3, we performed molecular cloning and protein expression of rat acss3 and determined its intracellular localization, tissue distribution, and substrate specificity. Transient expression of rat ACSS3 in HeLa cells resulted in a 10-fold increase of acetyl-CoA synthetase activity compared with that in control cells. The acss3 transcripts are expressed in a wide range of tissues, with the highest levels observed in liver tissue followed by kidney tissue. Subcellular fractionation using liver tissue showed that ACSS3 is localized into the mitochondrial matrix. Among the short-chain fatty acids examined, recombinant ACSS3, purified from Escherichia coli cells transformed with the plasmid containing rat acss3, preferentially utilized propionate with a KM value of 0.19 mM. Knockdown of acss3 in HepG2 cells resulted in a significant decrease of ACSS3 expression level and propionyl-CoA synthetase activity in cell lysates. Levels of ACSS3 in the liver and the activity of propionyl-CoA synthetase in the mitochondria were significantly increased by fasting. These results suggested that ACSS3 is a liver mitochondrial matrix enzyme with high affinity to propionic acid, and its expression level is upregulated under ketogenic conditions.

  7. Molecular cloning, characterization, and chromosome mapping of reptilian estrogen receptors.

    PubMed

    Katsu, Yoshinao; Matsubara, Kazumi; Kohno, Satomi; Matsuda, Yoichi; Toriba, Michihisa; Oka, Kaori; Guillette, Louis J; Ohta, Yasuhiko; Iguchi, Taisen

    2010-12-01

    In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution.

  8. Molecular Cloning, Characterization, and Chromosome Mapping of Reptilian Estrogen Receptors

    PubMed Central

    Katsu, Yoshinao; Matsubara, Kazumi; Kohno, Satomi; Matsuda, Yoichi; Toriba, Michihisa; Oka, Kaori; Guillette, Louis J.; Ohta, Yasuhiko; Iguchi, Taisen

    2010-01-01

    In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution. PMID:20926589

  9. Molecular cloning and functional characterization of the pig homologue of integrin-associated protein (IAP/CD47)

    PubMed Central

    Shahein, Yasser E A; De Andrés, Damián F; De la Lastra, José M Pérez

    2002-01-01

    We report the cloning of cDNA encoding the pig homologue of human integrin-associated protein (IAP or CD47). A pig CD47-specific probe was generated by polymerase chain reaction (PCR) amplification of pig leucocyte cDNA, using primers based on consensus regions among the known sequences of CD47 from different species. Screening of a pig aorta smooth muscle cDNA library identified seven clones, all containing identical sequences. The clones contained an open reading frame (ORF) that encoded an 18 amino acid putative signal peptide, a 122 amino acid sequence consisting of a single extracellular immunoglobulin variable (IgV)-like domain followed by a 147 amino acid region containing five membrane-spanning domains and a 16 amino acid cytoplasmic tail. The amino acid sequence of the clones was 73% homologous to human IAP and therefore it was termed pig IAP or CD47. Reverse transcription–polymerase chain reaction (RT–PCR) showed that pig CD47 was expressed in a wide range of tissues and detected different alternatively spliced forms. The monoclonal antibody (mAb) BRIC 126, anti-human CD47, was shown, by flow cytometry, to stain pig platelets as well as Chinese hamster ovary (CHO) cells transfected with the cDNA encoding pig CD47. Western blot analysis of pig erythocytes and platelets showed a molecular weight (MW) of 43 000–50 000 and of 55 000–65 000, respectively, under non-reducing conditions. Pig CD47 was stably expressed on CHO cells and shown to bind human thrombospondin (TSP). BRIC126 antibody inhibited the binding of platelets and of CD47-transfected cells to human TSP and to pig fibrinogen, whereas no effect was observed on control CHO cells. PMID:12153520

  10. Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2012-01-01

    Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970

  11. Expression of innate immune response genes in liver and three types of adipose tissue in cloned pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2012-10-01

    The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity.

  12. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  13. Cloning of canine Toll-like receptor 7 gene and its expression in dog tissues.

    PubMed

    Okui, Yasuhumi; Kano, Rui; Maruyama, Haruhiko; Hasegawa, Atsuhiko

    2008-01-15

    Toll-like receptor 7 (TLR7) is activated by single strand RNA and imidazoquinoline compounds, and induces interferon production. In this study, canine TLR7 cDNA was cloned and sequenced. The full-length cDNA of canine TLR7 gene was 3419bp, encoding 1032 amino acids. The similarities of canine TLR7 with human and mouse TLR7 were 84 and 80% at the nucleotide sequence level, and 86 and 79% at amino acid sequence level, respectively. Further, the expression of TLR7 mRNA was investigated in canine normal tissues by semiquantitative RT-PCR analysis. The common expression level of TLR7 mRNA in tissues from three dogs examined was in large intestine, lung, pancreas, small intestine and skin, though the expression level in each tissue was varied among these healthy dogs. In other tissues (kidney, liver, lymph node, spleen, adrenal gland, and PBMCs), the level of TLR7 mRNA expression was different in individuals.

  14. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    SciTech Connect

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Hunter, Eric

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  15. [Construction of standard allelic ladder of miniSTR loci by molecular cloning].

    PubMed

    Bai, Xue; Cong, Bin; Li, Shu-Jin; Hou, Zhi-Ping; Gu, Jian-Li; Liu, Ning; Li, Xia; Guo, Xia

    2009-04-01

    To investigate the genetic polymorphism of five miniSTR loci (D9S2157, D9S1122, D10S1435, D12ATA63, D2S1776) in Hebei Han population and to construct standard allelic ladders. Polymorphism of the five miniSTR loci in 120 unrelated individuals was analyzed by fluorescence PCR and ABI 310 Genetic Analyzer. Molecular cloning technique was employed to construct standard allelic ladder of the 5 loci. Of the five miniSTR loci, 8, 8, 7, 5 and 8 alleles were found, respectively. The polymorphism information component were 0.790, 0.720, 0.750, 0.630 and 0.850, respectively. The five loci have relatively abundant polymorphic information and their standard allelic ladders constructed by molecular cloning technique are useful in forensic science.

  16. Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ning, Xuanxuan; Pei, Dong; Zhao, Jianmin; You, Liping; Wang, Chunyan; Wu, Huifeng

    2013-05-01

    Thioredoxin (Trx) proteins are involved in many biological processes especially the regulation of cellular redox homeostasis. In this study, two Trx cDNAs were cloned from the mussel Mytilus galloprovincialis using rapid amplifi cation of cDNA ends-polymerase chain reaction (RACE-PCR). The two cDNAs were named MgTrx1 and MgTrx2, respectively. The open reading frames of MgTrx1 and MgTrx2 were 318 and 507 base pairs (bp) and they encoded proteins of 105 and 168 amino acids with estimated molecular masses of 11.45 and 18.93 kDa, respectively. Sequence analysis revealed that both proteins possessed the conserved active site dithiol motif Cys-Gly-Pro-Cys. In addition, MgTrx2 also possessed a putative mitochondrial targeting signal suggesting that it is located in the mitochondria. Quantitative real-time polymerase chain reaction (qPCR) revealed that both MgTrx1 and MgTrx2 were constitutively expressed in all tissues examined. The MgTrx1 transcript was most abundant in hemocytes and gills, whereas the MgTrx2 transcript was most abundant in gonad, hepatopancreas, gill and hemocytes. Following Vibrio anguillarum challenge, the expression of MgTrx1 was up-regulated and reached its peak, at a value 10-fold the initial value, at 24 h. Subsequently, expression returned back to the original level. In contrast, the expression level of MgTrx2 was down-regulated following bacterial stimulation, with one fi fth of the control level evident at 12 h post challenge. These results suggest that MgTrx1 and MgTrx2 may play important roles in the response of M. galloprovincialis to bacterial challenge.

  17. Molecular cloning and functional characterization of cyclophilin A in yellow catfish (Pelteobagrus fulvidraco).

    PubMed

    Dong, Xingxing; Qin, Zhendong; Hu, Xianqin; Lan, Jiangfeng; Yuan, Gailing; Asim, Muhammad; Zhou, Yang; Ai, Taoshan; Mei, Jie; Lin, Li

    2015-08-01

    Cyclophilin A (CypA) is a ubiquitously expressed protein which involves in diverse pathological conditions including infection and inflammation. In this report, a CypA gene (designated as YC-CypA) was cloned from yellow catfish (Pelteobagrus fulvidraco) which is an important cultured fish species in Asian countries. The open reading frame (ORF) of YC-CypA encoded a polypeptide of 164 amino acids with calculated molecular weight of 17.70 kDa. The deduced amino acid sequences of the YC-CypA shared highly conserved structures with CypAs from the other species, indicating that YC-CypA should be a new member of the CypA family. Full-length YC-CypA protein was expressed in Escherichia coli and specific polyclonal antibody against YC-CypA was generated. The YC-CypA protein showed chemotactic activity by transwell migration assay. The mRNA and protein of YC-CypA could be detected in all examined tissues with relatively higher mRNA level in spleen and higher protein level in head kidney, respectively. The temporal expression patterns of YC-CypA, IL-1β and TNF-α mRNAs were analyzed in the liver, spleen and head kidney post of Edwardsiella ictaluri infection. By immunohistochemistry assay, slight enhancement of YC-CypA protein was observed in the liver, spleen, body kidney and head kidney of yellow catfish infected with E. ictaluri. In conclusion, YC-CypA of yellow catfish showed chemotactic activity in vitro and might have been involved in cytokines secretion in yellow catfish during the infection of E. ictaluri.

  18. Molecular Cloning of the Human Genes(s) Directing the Synthesis of Nervous System Cholinesterases.

    DTIC Science & Technology

    1985-12-01

    AD-8163 229 MOLECULAR CLONING OF THE HUMAN GENES (S) DIRECTING THE 1/1 SYNTHESIS OF NERYOU.. (U) NEIZMANN INST OF SCIENCE REHOVOT (ISRAEL) DEPT OF...whether these forms are produced from discrete genes or by post-transcrip- tional and post-translational processing. In addition, the amino acid...brain cholinseee (aRE.) is =*rxm yet, Which leaves open several questions Of cosdeal 1. Are the various Ch foru produiced from discrete genes , or is

  19. A molecularly cloned, pathogenic, neutralization-resistant simian immunodeficiency virus, SIVsmE543-3.

    PubMed Central

    Hirsch, V; Adger-Johnson, D; Campbell, B; Goldstein, S; Brown, C; Elkins, W R; Montefiori, D C

    1997-01-01

    An infectious molecular clone of simian immunodeficiency virus SIVsm was derived from a biological isolate obtained late in disease from an immunodeficient rhesus macaque (E543) with SIV-induced encephalitis. The molecularly cloned virus, SIVsmE543-3, replicated well in macaque peripheral blood mononuclear cells and monocyte-derived macrophages and resisted neutralization by heterologous sera which broadly neutralized genetically diverse SIV variants in vitro. SIVsmE543-3 was infectious and induced AIDS when inoculated intravenously into pig-tailed macaques (Macaca nemestrina). Two of four infected macaques developed no measurable SIV-specific antibody and succumbed to a wasting syndrome and SIV-induced meningoencephalitis by 14 and 33 weeks postinfection. The other two macaques developed antibodies reactive in Western blot and virus neutralization assays. One macaque was sacrificed at 1 year postinoculation, and the survivor has evidence of immunodeficiency, characterized by persistently low CD4 lymphocyte subsets in the peripheral blood. Plasma samples from these latter animals neutralized SIVsmE543-3 but with much lower efficiency than neutralization of other related SIV strains, confirming the difficulty by which this molecularly cloned virus is neutralized in vitro. SIVsmE543-3 will provide a valuable reagent for studying SIV-induced encephalitis, mapping determinants of neutralization, and determining the in vivo significance of resistance to neutralization in vitro. PMID:8995688

  20. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    ERIC Educational Resources Information Center

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  1. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    ERIC Educational Resources Information Center

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  2. Molecular cloning and expression of a larval immunogenic protein from the cattle tick Boophilus annulatus.

    PubMed

    Shahein, Yasser Ezzat

    2008-02-15

    A full-length cDNA of an immunogenic protein was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. Antibodies raised against B. annulatus larval proteins were used to screen a cDNA expression library. A 936bp cloned fragment was sequenced and showed an open reading frame of 516bp encoding a protein of 171 amino acids. Comparison of the deduced amino acid sequence with protein data bank revealed that the sequence is related to a sequence isolated from the hard tick Haemaphysalis qinghaiensis (Hq05). Southern blot analysis of B. annulatus genomic DNA showed that the cloned cDNA hybridized to double bands per restriction digest, suggesting that the cloned cDNA is a double copy gene. Amino acid analysis of the cloned gene revealed the presence of two casein kinase II phosphorylation sites in the N-terminal domain suggesting that this molecule may be involved in the signal transduction or gene expression pathways. RT-PCR and northern blotting revealed the presence of two isoforms of the Ba05 gene in salivary glands and in the 3-day-old eggs. The cloned gene without the signal peptide, was expressed in Escherichia coli under T7 promotor of pET-30b vector, and purified under denaturation conditions. The purified protein appeared as a single band on 12% SDS-PAGE with a molecular weight around 22.8kDa including the histidine tag of the vector. Antibodies raised against the purified molecule were used to detect the B. annulatus homologue to the Hq05 gene in whole tick, larvae and gut protein extracts. Immunoblotting revealed the presence of this molecule Ba05 only in whole tick and larval protein extracts and not in the gut protein extract. Using the same antibodies, homologues to the Ba05 gene were detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. but not in Ornithodoros moubata.

  3. Cloning and characterization of tissue inhibitor of metalloproteinase-3 (TIMP-3) from shark, Scyliorhinus torazame.

    PubMed

    Kim, J T; Kim, M S; Bae, M K; Song, H S; Ahn, M Y; Kim, Y J; Lee, S J; Kim, K W

    2001-01-26

    We cloned the full-length cDNA encoding TIMP-3 from the cartilage of cloudy dogfish, Scyliorhinus torazame. The entire open reading frame was composed of 645 nucleotides and 214 residues including 12 conserved cysteines and asparagine-184, a putative site for N-linked sugars. It showed about 72% identity to those of other species based on the deduced amino acid sequence. The mRNA of shark TIMP-3 were expressed abundantly in brain and cartilage tissues. To investigate the roles of shark TIMP-3, an expression vector was constructed and transfected into HT1080 human fibrosarcoma cells. Overexpression of shark TIMP-3 reduced the activity of MMP-2 in gelatin zymography. Through human Alu PCR based CAM assay, we also confirmed that shark TIMP-3 transfected HT1080 cells had less intravasation effects.

  4. Distinct forms of the. beta. subunit of GTP-binding regulatory proteins identified by molecular cloning

    SciTech Connect

    Fong, H.K.W.; Amatruda, T.T. III; Birren, B.W.; Simon, M.I.

    1987-06-01

    Two distinct ..beta.. subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as ..beta../sub 1/ and ..beta../sub 1/ subunits. The bovine transducin ..beta.. subunit (..beta../sub 1/) has been cloned previously. The author now isolated and analyzed cDNA clones that encode the ..beta../sub 2/ subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue M/sub r/ 37,329 BETA/sub 2/ protein is 90% identical with ..beta../sub 1/ in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine ..beta../sub 2/ subunit is 1.7 kilobases in length. It is expressed at lower levels than ..beta../sub 1/ subunit mRNA in all tissues examined. The ..beta../sub 1/ and ..beta../sub 2/ messages are expressed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that ..beta../sub 1/ and ..beta../sub 2/ are encoded by separate genes. The amino acid sequences for the bovine and human ..beta../sub 2/ subunit are identical, as are the amino acid sequences for the bovine and human ..beta../sub 1/ subunit. This evolutionary conservation suggests that the two ..beta.. subunits have different roles in the signal transduction process.

  5. Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones

    PubMed Central

    Baalwa, Joshua; Wang, Shuyi; Parrish, Nicholas; Decker, Julie M.; Keele, Brandon F.; Learn, Gerald H.; Yue, Ling; Ruzagira, Eugene; Ssemwanga, Deogratius; Kamali, Anatoli; Amornkul, Pauli N.; Price, Matt A.; Kappes, John C.; Karita, Etienne; Kaleebu, Pontiano; Sanders, Eduard; Gilmour, Jill; Allen, Susan; Hunter, Eric; Montefiori, David C.; Haynes, Barton F.; Cormier, Emmanuel; Hahn, Beatrice H.; Shaw, George M.

    2012-01-01

    We report the molecular identification, cloning and initial biological characterization of 12 full-length HIV-1 subtype A, D and A/D recombinant transmitted/founder (T/F) genomes. T/F genomes contained intact canonical open reading frames and all T/F viruses were replication competent in primary human T-cells, although subtype D virus replication was more efficient (p<0.05). All 12 viruses utilized CCR5 but not CXCR4 as a co-receptor for entry and exhibited a neutralization profile typical of tier 2 primary virus strains, with significant differences observed between subtype A and D viruses with respect to sensitivity to monoclonal antibodies VRC01, PG9 and PG16 and polyclonal subtype C anti-HIV IgG (p<0.05 for each). The present report doubles the number of T/F HIV-1 clones available for pathogenesis and vaccine research and extends their representation to include subtypes A, B, C and D. PMID:23123038

  6. Antioxidant adaptive responses of extraembryonic tissues from cloned and non-cloned bovine conceptuses to oxidative stress during early pregnancy.

    PubMed

    Al-Gubory, Kaïs H; Garrel, Catherine; Delatouche, Laurent; Heyman, Yvan; Chavatte-Palmer, Pascale

    2010-07-01

    Placental oxidative stress has been suggested as a key factor in early pregnancy failure. Abnormal placental development limits success in pregnancies obtained by somatic cell nuclear transfer (SCNT). Malondialdehyde (MDA) content, an index of oxidative stress, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in bovine extraembryonic tissues of SCNT or artificial insemination (AI) conceptuses. Chorionic tissues of SCNT and AI conceptuses show no difference in MDA content at day 32 of pregnancy. MDA content in chorionic tissues of SCNT and AI conceptuses decreased from day 32 to 62 of pregnancy. MDA content was lower in chorionic tissues of SCNT conceptuses than that in chorionic tissues of AI conceptuses at day 62 of pregnancy. SOD1, SOD2 and GPX activities in chorionic tissues of SCNT conceptuses were not different from those in chorionic tissues of AI conceptuses at both gestational ages. CAT activity in chorionic tissues of SCNT conceptuses was lower at day 32, and it was higher at day 62 of pregnancy than that in chorionic tissues of AI conceptuses. CAT and GPX activities increased in chorionic tissues of SCNT conceptuses with gestational age. SOD1 activity decreased while that of SOD2 and GPX increased in chorionic tissues of AI conceptuses with gestational age. At day 62 of pregnancy, MDA content and enzyme activities in cotyledonary tissues were not different between AI and SCNT conceptuses. Different antioxidant mechanisms may operate within the chorion of AI and SCNT conceptuses. Further experiments are required to elucidate this point.

  7. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    SciTech Connect

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  8. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress.

    PubMed

    Jang, H J; Pih, K T; Kang, S G; Lim, J H; Jin, J B; Piao, H L; Hwang, I

    1998-07-01

    Plant responses to high salt stress have been studied for several decades. However, the molecular mechanisms underlying these responses still elude us. In order to understand better the molecular mechanism related to NaCl stress in plants, we initiated the cloning of a large number of NaCl-induced genes in Arabidopsis. Here, we report the cloning of a cDNA encoding a novel Ca2+-binding protein, named AtCP1, which shares sequence similarities with calmodulins. AtCP1 exhibits, in particular, a high degree of amino acid sequence homology to the Ca2+-binding loops of the EF hands of calmodulin. However, unlike calmodulin, AtCP1 appears to have only three Ca2+-binding loops. We examined Ca2+ binding of the protein by a Ca2+-dependent electrophoretic mobility shift assay. A recombinant AtCP1 protein that was expressed in Escherichia coli did show a Ca2+-dependent electrophoretic mobility shift. To gain insight into the expression of the AtCP1 gene, northern blot analysis was carried out. The AtCP1 gene had a tissue-specific expression pattern: high levels of expression in flower and root tissues and nearly undetectable levels in leaves and siliques. Also, the expression of the AtCP1 gene was induced by NaCl treatment but not by ABA treatment. Finally, subcellular localization experiments using an AtCP1:smGFP fusion gene in soybean suspension culture cells and tobacco leaf protoplasts indicate that AtCP1 is most likely a cytosolic protein.

  9. Nile Tilapia Neu3 sialidases: molecular cloning, functional characterization and expression in Oreochromis niloticus.

    PubMed

    Chigwechokha, Petros Kingstone; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2014-11-15

    Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227bp, 1194bp and 1155bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9kDa, 44.4kDa and 43.6kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.

  10. Molecular cloning, characterization and recombinant expression of crustacean hyperglycemic hormone in white shrimp Litopenaeus vannamei.

    PubMed

    Liu, Maoqi; Pan, Luqing; Li, Li; Zheng, Debin

    2014-03-01

    Crustacean hyperglycemic hormone (CHH) plays an important role in crustacean. In the present study, a full-length cDNA of CHH was cloned from the eyestalk of Litopenaeus vannamei by RACE approach for the first time. The full-length cDNA of LvCHH was 846 bp, containing a 5' untranslated region (UTR) of 65 bp, a 3' UTR of 436 bp with a canonical polyadenylation signal-sequence AATAA and a poly (A) tail, and an open reading frame (ORF) of 345 bp. The ORF encoded a polypeptide of 114 amino acids including a 24 amino acid signal peptide. The calculated molecular mass of the mature protein (74 amino acids) was 8.76 kDa with an estimated pI of 6.78. The sequence of LvCHH was submitted in NCBI GenBank under the accession number HM748790.2. Phylogenetic analysis revealed that LvCHH was clustered with CHH of other crustaceans. Tissue distribution analysis revealed that the expression of LvCHH mRNA was observed in all tissues but gill, and was highest in heart. Specific primers containing Xho I and BamH I restriction sites respectively, were designed based on the obtained ORF sequence of LvCHH gene and the cloning sites of expression vector pET-32a (+). The recombinant plasmid LvCHH-pET32a, was used to transform Escherichia coli BL21 (DE3). LvCHH was successfully expressed by means of SDS-PAGE and western blot analysis. We detected gill Na(+)/K(+)-ATPase activity after rLvCHH protein injection and found that All the experimental group Na(+)/K(+)-ATPase activity presented peak change among 0-6h, and the peaks of all treated groups occurred in 1 h. 20 and 30 μg/shrimp(-1) groups showed significant increase (P<0.05) in 1h post-injection. L. vannamei were exposed for 96h to hypo- and hyper-salinity challenge. Hypo-salinity caused a significant rise (P<0.05) in the mRNA expression of CHH and gill Na(+)/K(+)-ATPase activity at 12h and 24h respectively, then the CHH mRNA expression declining by 24h, and returned to control group level by 48 h, and the Na(+)/K(+)-ATPase activity

  11. Human GluR6 kainate receptor (GRIK2): Molecular cloning, expression, polymorphism, and chromosomal assignment

    SciTech Connect

    Paschen, W.; Blackstone, C.D.; Huganir, R.L. ); Ross, C.A. Max-Planck-Institute for Neurological Research, Koeln )

    1994-04-01

    Glutamate receptors mediate the majority of excitatory neurotransmission in the brain, and molecular cloning studies have revealed several distinct families. Because neuropathological states and possibly human disorders may involve kainate-preferring glutamate receptors, the authors have isolated a cDNA clone for the human GluR6 kainate-preferring receptor. This clone shows a very high sequence similarity with that of the rat, except for a part of the 3[prime] untranslated region in which there is a TAA triplet repeat. When the protein was overexpressed in human embryonic kidney 293 cells, it had a molecular weight, an antibody recognition, and a glutamate ligand-binding profile similar to those of the rate GluR6 receptor. Northern analysis showed expression in both human cerebral and cerebellar cortices. By PCR analysis of rodent-human monochromosomal cell lines, the human GluR6 could be assigned to chromosome 6. The length of the TAA triplet repeat was polymorphic in the normal population, with at least four alleles and an observed heterozygosity of about 45%. These studies should provide the basis for expression or linkage studies of the GluR6 kainate receptor in human disease or neuropathologic states. 53 refs., 7 figs.

  12. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning.

    PubMed

    Deymier, Martin J; Claiborne, Daniel T; Ende, Zachary; Ratner, Hannah K; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-11-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual׳s diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens.

  13. Variation of LTR size in molecular clones of the BALB/c endogenous ecotropic molecular leukemia virus

    SciTech Connect

    Boone, L.R.; Myer, F.E.; Yang, D.M.; Kiggans, J.O.; Koh, C.; Tennant, R.W.; Yang, W.K.

    1982-01-01

    Retrovirus replication involves the synthesis of a DNA intermediate which integrates into the host cell genome. Structure analysis has revealed that the viral DNA contains a nucleotide sequence on both ends, termed long terminal repeat (LTR) which is derived from terminal sequences of the genomic RNA and consists of three portions: U3, R, and U5, representing respectively the 3' end, a short terminal repeated sequence, and the 5' end of the RNA. Each species of retrovirus has a characteristic length LTR; however, within a species different strains and isolates have variations in LTR size. The evolution of viral genomes during replication as an exogenous agent may involve changes which occur in the LTR. A population of molecular clones of an endogenous ecotropic virus was analyzed to identify possible changes which occur in the LTR region. Thirteen of fifteen plaque purified isolates examined have an insert which appears to be a typical viral genome with no major rearrangement or deletion. Six of these have an insert which contains a single LTR, and seven have an insert which contains two LTRs. Approximately half of the isolates, including single and double LTR clones, are infectious. More detailed analysis of plasmid subclones all containing double LTRs, revealed that the variation resided in the U3 region rather than the left LTR/right LTR junction region. Thus, the size variation of LTR in the WN1802N MuLV recombinant DNA clones appears to be different from the situation which is responsible for LTR size variability in some molecular clones of avian retrovirus. The mechanism which generates this diversity in the U3 region is not known. Perhaps there is a selective advantage for duplication/insertions in this region of the LTR. The SV40 repeat has an important activator role and it was postulated that repeats in retrovirus LTR have a similar role. (ERB)

  14. Molecular cloning and expression of rat prostaglandin E receptor EP2 subtype.

    PubMed

    Sando, T; Usui, T; Tanaka, I; Mori, K; Sasaki, Y; Fukuda, Y; Namba, T; Sugimoto, Y; Ichikawa, A; Narumiya, S

    1994-05-16

    A cDNA clone encoding the rat prostaglandin (PG) E receptor EP2 subtype was cloned from a rat lung cDNA library. It encodes 488 amino acid residues with putative seven-transmembrane domains. Specific binding of [3H]PGE2 was found in COS-7 cells transfected with the cDNA and was displaced with unlabeled prostaglandins in the order of PGE2 = PGE1 > iloprost > or = PGF2 alpha > or = PGD2. The binding was also inhibited by misoprostol, an EP2 and EP3 agonist, but not by sulprostone, an EP1 and EP3 agonist. Northern blot analysis demonstrated that the EP2 mRNA is widely expressed in various tissues, the significant expression being observed in the thymus, lung, spleen, heart stomach, and pancreas.

  15. Molecular cloning, genomic organization and cell‐binding characteristics of mouse Spα

    PubMed Central

    Gebe, J A; Llewellyn, M‐B C; Hoggatt, H; Aruffo, A

    2000-01-01

    Several group B scavenger receptor cysteine‐rich (SRCR) proteins have been shown to function as modulators in the immune response. Recently, we reported the cloning of a new member of this family, human Spα (hSpα). Herein we report the cloning and characterization of the mouse homologue of hSpα. Like its human counterpart, mouse Spα (mSpα), is a secreted protein containing three SRCR domains. Most lymphoid tissues express RNA transcripts encoding mSpα. Characterization of a genomic clone encoding the mature mSpα protein showed that each of the SRCR domains of mSpα is encoded by a single exon. Comparison of the sequence of mSPα with those of other published proteins indicates that it is the same as the recently reported protein named AIM (apoptosis inhibitor expressed by macrophages). Cell‐binding studies with a mSpα immunoglobulin (mSpα‐Rγ) fusion protein indicated that mSpα is capable of binding to spleen‐derived CD19+ B cells and minimally to peritoneal cavity‐derived CD19+ B cells but not to peripheral blood‐derived B cells. Spleen‐derived CD3+ T cells also bound mSpα‐Rγ; however, no binding was observed to either peripheral blood mononuclear cells or peritoneal cavity‐derived CD3+ T cells. The mSpα‐Rγ fusion protein was also shown to bind to the mouse cell lines WEHI3 (monocytic) and EL‐4 (thymoma, T cell). The cloning of cDNA and genomic clones encoding mSpα and the identification of cells expressing a putative mSpα receptor(s) should facilitate in vivo studies designed to investigate the function of Spα in the immune compartment. PMID:10651944

  16. Molecular cloning, genomic organization and cell-binding characteristics of mouse Spalpha.

    PubMed

    Gebe, J A; Llewellyn, M; Hoggatt, H; Aruffo, A

    2000-01-01

    Several group B scavenger receptor cysteine-rich (SRCR) proteins have been shown to function as modulators in the immune response. Recently, we reported the cloning of a new member of this family, human Spalpha (hSpalpha). Herein we report the cloning and characterization of the mouse homologue of hSpalpha. Like its human counterpart, mouse Spalpha (mSpalpha), is a secreted protein containing three SRCR domains. Most lymphoid tissues express RNA transcripts encoding mSpalpha. Characterization of a genomic clone encoding the mature mSpalpha protein showed that each of the SRCR domains of mSpalpha is encoded by a single exon. Comparison of the sequence of mSPalpha with those of other published proteins indicates that it is the same as the recently reported protein named AIM (apoptosis inhibitor expressed by macrophages). Cell-binding studies with a mSpalpha immunoglobulin (mSpalpha-Rgamma) fusion protein indicated that mSpalpha is capable of binding to spleen-derived CD19+ B cells and minimally to peritoneal cavity-derived CD19+ B cells but not to peripheral blood-derived B cells. Spleen-derived CD3+ T cells also bound mSpalpha-Rgamma; however, no binding was observed to either peripheral blood mononuclear cells or peritoneal cavity-derived CD3+ T cells. The mSpalpha-Rgamma fusion protein was also shown to bind to the mouse cell lines WEHI3 (monocytic) and EL-4 (thymoma, T cell). The cloning of cDNA and genomic clones encoding mSpalpha and the identification of cells expressing a putative mSpalpha receptor(s) should facilitate in vivo studies designed to investigate the function of Spalpha in the immune compartment.

  17. Molecular genetics of X-linked retinitis pigmentosa: Progress towards cloning the RP3 gene

    SciTech Connect

    Fujita, R.; Yan, D.; McHenry, C.

    1994-09-01

    Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans about 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.

  18. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza.

    PubMed

    Song, Jie; Wang, Zhezhi

    2009-05-01

    Phenylalanine ammonia-lyase (PAL) is one of the branch point enzymes between primary and secondary metabolism. It plays an important role during plant development and defense. A PAL gene designated as SmPAL1 was cloned from Salvia miltiorrhiza using genome walking technology. The full-length SmPAL1 was 2,827 bp in size and consisted of an intron and two extrons encoding a 711-amino-acid polypeptide. Sequence alignment revealed that SmPAL1 shared more than 80% identity with the PAL sequences reported in Arabidopsis thaliana and other plants. The 5' flanking sequence of SmPAL1 was also cloned, and a group of putative cis-acting elements such as TATA box, CAAT box, G box and TC-rich repeats were identified. Transcription pattern analysis indicated that SmPAL1 expressed in all tissues examined, but more highly in leaf. Besides, expression of SmPAL1 was found to be induced by various treatments including ABA, wounding, and dehydration. To further confirm its function, SmPAL1 was expressed in Escherichia coli strain M15 with pQE-30 vector. The recombinant protein exhibited high PAL activity and could catalyze the conversion of L: -Phe to trans-cinnamic acid. This study will enable us to further understand the role SmPAL1 plays in the synthesis of active pharmaceutical compounds in S. miltiorrhiza at molecular level.

  19. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    PubMed

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  20. Taenia hydatigena: isolation of mitochondrial DNA, molecular cloning, and physical mitochondrial genome mapping.

    PubMed

    Yap, K W; Thompson, R C; Rood, J I; Pawlowski, I D

    1987-06-01

    Mitochondrial DNA was isolated from Taenia hydatigena, T. crassiceps, and Echinococcus granulosus using a cetyltrimethylammonium bromide precipitation technique. The technique is simple, rapid, reproducible, and does not require extensive high speed ultracentrifugation. The advantage of using mitochondrial DNA from taeniid cestodes for comparative restriction analysis was demonstrated. Mitochondrial DNA of T. hydatigena was isolated as covalently closed circular molecules. These were linearized by single digestion with BamHI and the molecular weight was estimated from the linear form of 17.6 kb. The mitochondrial DNA of T. hydatigena is therefore similar in size and structure to that of many other animal species. The entire mitochondrial genome was cloned into pBR322 in Escherichia coli and a restriction map of the recombinant molecule was constructed. The potential of using the cloned mitochondrial genome as a probe in speciation studies as well as for providing functional information on the role of the cestode mitochondrion is discussed.

  1. Molecular cloning and nucleotide sequence of rat lingual lipase cDNA.

    PubMed Central

    Docherty, A J; Bodmer, M W; Angal, S; Verger, R; Riviere, C; Lowe, P A; Lyons, A; Emtage, J S; Harris, T J

    1985-01-01

    Purified rat lingual lipase (EC3113), a glycoprotein of approximate molecular weight 52,000, was used to generate polyclonal antibodies which were able to recognise the denatured and deglycosylated enzyme. These immunoglobulins were used to screen a cDNA library prepared from mRNA isolated from the serous glands of rat tongue cloned in E. coli expression vectors. An almost full length cDNA clone was isolated and the nucleotide and predicted amino acid sequence obtained. Comparison with the N-terminal amino acid sequence of the purified enzyme confirmed the identity of the cDNA and indicated that there was a hydrophobic signal sequence of 18 residues. The amino acid sequence of mature rat lingual lipase consists of 377 residues and shares little homology with porcine pancreatic lipase apart from a short region containing a serine residue at an analogous position to the ser 152 of the porcine enzyme. Images PMID:3839077

  2. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

    PubMed Central

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Nica, Cristian; Raica, Marius

    2016-01-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  3. Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones.

    PubMed

    Maciejewski, Jaroslaw P; O'Keefe, Christine; Gondek, Lukasz; Tiu, Ramon

    2007-01-01

    The unique structure of the T cell receptor (TCR) enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL), mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD) and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA), myelodysplastic syndrome (MDS) or paroxysmal nocturnal hemoglobinuria (PNH), cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific antigens. The

  4. Teaching molecular genetics: chapter 4—positional cloning of genetic disorders

    PubMed Central

    Puliti, Aldamaria; Caridi, Gianluca; Ravazzolo, Roberto

    2007-01-01

    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molecular studies, to define a critical DNA region of interest. This analysis culminates in a statistical estimate of the probability that disease features may segregate in the families independently or in association with specific molecular markers located in known regions. In this latter case, a marker can be defined as being linked to the disease manifestations. The genetic markers define an interval that is a function of their recombination frequencies with the disease, in which the disease gene is localised. The identification and characterisation of chromosome abnormalities as translocations, deletions and duplications by classical cytogenetic methods or by the newly developed microarray-based comparative genomic hybridisation (array CGH) technique may define extensions and borders of the genomic regions involved. The step following the definition of a critical genomic region is the identification of candidate genes that is based on the analysis of available databases from genome browsers. Positional cloning culminates in the identification of the causative gene mutation, and the definition of its functional role in the pathogenesis of the disorder, by the use of cell-based or animal-based experiments. More often, positional cloning ends with the generation of mice with homologous mutations reproducing the human clinical phenotype. Altogether, positional cloning has represented a fundamental step in the research on genetic renal disorders, leading to the definition of several

  5. Influence of molecular size on tissue distribution of antibody fragments

    PubMed Central

    Li, Zhe; Krippendorff, Ben-Fillippo; Sharma, Sharad; Walz, Antje C.; Lavé, Thierry; Shah, Dhaval K.

    2016-01-01

    Biodistribution coefficients (BC) allow estimation of the tissue concentrations of proteins based on the plasma pharmacokinetics. We have previously established the BC values for monoclonal antibodies. Here, this concept is extended by development of a relationship between protein size and BC values. The relationship was built by deriving the BC values for various antibody fragments of known molecular weight from published biodistribution studies. We found that there exists a simple exponential relationship between molecular weight and BC values that allows the prediction of tissue distribution of proteins based on molecular weight alone. The relationship was validated by a priori predicting BC values of 4 antibody fragments that were not used in building the relationship. The relationship was also used to derive BC50 values for all the tissues, which is the molecular weight increase that would result in 50% reduction in tissue uptake of a protein. The BC50 values for most tissues were found to be ~35 kDa. An ability to estimate tissue distribution of antibody fragments based on the BC vs. molecular size relationship established here may allow better understanding of the biologics concentrations in tissues responsible for efficacy or toxicity. This relationship can also be applied for rational development of new biotherapeutic modalities with optimal biodistribution properties to target (or avoid) specific tissues. PMID:26496429

  6. Influence of molecular size on tissue distribution of antibody fragments.

    PubMed

    Li, Zhe; Krippendorff, Ben-Fillippo; Sharma, Sharad; Walz, Antje C; Lavé, Thierry; Shah, Dhaval K

    2016-01-01

    Biodistribution coefficients (BC) allow estimation of the tissue concentrations of proteins based on the plasma pharmacokinetics. We have previously established the BC values for monoclonal antibodies. Here, this concept is extended by development of a relationship between protein size and BC values. The relationship was built by deriving the BC values for various antibody fragments of known molecular weight from published biodistribution studies. We found that there exists a simple exponential relationship between molecular weight and BC values that allows the prediction of tissue distribution of proteins based on molecular weight alone. The relationship was validated by a priori predicting BC values of 4 antibody fragments that were not used in building the relationship. The relationship was also used to derive BC50 values for all the tissues, which is the molecular weight increase that would result in 50% reduction in tissue uptake of a protein. The BC50 values for most tissues were found to be ~35 kDa. An ability to estimate tissue distribution of antibody fragments based on the BC vs. molecular size relationship established here may allow better understanding of the biologics concentrations in tissues responsible for efficacy or toxicity. This relationship can also be applied for rational development of new biotherapeutic modalities with optimal biodistribution properties to target (or avoid) specific tissues.

  7. Molecular cloning and gene expression of canine apoptosis inhibitor of macrophage.

    PubMed

    Tomura, Shintaro; Uchida, Mona; Yonezawa, Tomohiro; Kobayashi, Masato; Bonkobara, Makoto; Arai, Satoko; Miyazaki, Toru; Tamahara, Satoshi; Matsuki, Naoaki

    2014-12-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM.

  8. Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon

    PubMed Central

    Barmeyer, Christian; Rahner, Christoph; Yang, Youshan; Sigworth, Frederick J.; Binder, Henry J.

    2010-01-01

    KCNN4 channels that provide the driving force for cAMP- and Ca2+-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3′-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K+ channel β-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated 86Rb (K+ surrogate) efflux with an apparent inhibitory constant of 0.6 ± 0.1 and 7.8 ± 0.4 μM, respectively. We conclude that apical and basolateral KCNN4 K+ channels that regulate K+ and anion secretion are encoded by distinct isoforms in colonic epithelial cells. PMID:20445171

  9. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  10. Cloning of the rat ecotropic retroviral receptor and studies of its expression in intestinal tissues.

    PubMed

    Puppi, M; Henning, S J

    1995-05-01

    A long-term goal of our laboratory is to establish a rat model to study the feasibility of using the intestinal tract as a site for somatic gene therapy. As a step toward that goal, the current study reports the cloning of the rat ecotropic retroviral receptor (EcoR) cDNA and the study of various aspects of its expression in the intestinal tissues. The cDNA for rat EcoR was cloned by screening a size-selected rat intestinal cDNA library with mouse EcoR cDNA. A clone of approximately 7 kb, designated MP10, was obtained. Partial sequencing of MP10 from the 5' end revealed a level of similarity of 92% compared with mouse EcoR. The presence of a 5' untranslated region and a 3' poly(A) tract, together with the overall size of the cDNA, suggest that is very close to being a full-length cDNA for this large transcript. Northern blots with MP10 showed an RNA of approximately 7.9 kb present along the entire length of the small intestine and somewhat less abundant in the colon. Developmental studies showed high levels of EcoR in fetal rat intestine, a decline in the early postnatal period, then a gradual rise to adulthood. Caco-2 cells were used to assess the expression of EcoR in proliferating compared with differentiated intestinal epithelial cells. EcoR mRNA was found to be very much more abundant in nondifferentiated cells and declined to low levels as the cells underwent spontaneous differentiation. These patterns of EcoR expression indicate that ecotropic retroviruses should be suitable vectors with which to attempt gene transfer into the intestinal epithelium. In addition, since the endogenous role of EcoR is as the y+ cationic amino acid transporter, these data have significance for understanding patterns of amino acid transport in the intestinal epithelium.

  11. Molecular cloning and characterization of a novel glucocerebrosidase of Paenibacillus sp. TS12.

    PubMed

    Sumida, Tomomi; Sueyoshi, Noriyuki; Ito, Makoto

    2002-08-01

    We report here the molecular cloning and characterization of a glucocerebrosidase [EC 3.2.1.45] from Paenibacillus sp. TS12. The open reading frame of the glucocerebrosidase gene consisted of 2,493 bp nucleotides and encoded 831 amino acid residues. The enzyme exhibited no sequence similarity with a classical glucocerebrosidase belonging to glycoside hydrolase (GH) family 30, but rather showed significant similarity with GH family 3 beta-glucosidases from Clostridium thermocellum, Ruminococcus albus, and Aspergillus aculeateus. The recombinant enzyme, expressed in Escherichia coli BL21(DE3)pLysS, had a molecular weight of 90.7 kDa and hydrolyzed NBD-labeled glucosylceramide, but not galactosylceramide, GM1a or sphingomyelin. The enzyme was most active at pH 6.5, and its apparent Km and Vmax values for NBD-labeled glucosylceramide and p-nitrophenyl-beta-glucopyranoside were 223 microM and 1.60 micromol/min/mg of protein, and 593 microM and 112 micromol/min/mg of protein, respectively. Site-directed mutagenesis indicated that Asp-223 is an essential amino acid for the catalytic reaction and possibly functions a catalytic nucleophile, as in GH family 3 beta-glucosidases. This is the first report of the molecular cloning and characterization of a glucocerebrosidase from a procaryote.

  12. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  13. Cloning yeast actin cDNA leads to an investigative approach for the molecular biology laboratory.

    PubMed

    Black, Michael W; Tuan, Alice; Jonasson, Erin

    2008-05-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the classroom because of the preparation, expense, and logistics involved in independent student projects. The authors have designed a 10-week lab series that mimics the research environment by tying separate fundamental lab techniques to a common goal: to build a plasmid with yeast actin cDNA cloned in a particular orientation. In the process of completing this goal, a problem arises in that students are unable to obtain the target plasmid and instead only recover the gene cloned in the opposite orientation. To address this problem, students identify four plausible hypotheses and work in teams to address them by designing and executing experiments. This project reinforces the utility and flexibility of techniques covered earlier in the class and serves to develop their skills in experimental design and analysis. As the project is focused on one problem, the diversity of experimental approaches is limited and may be prepared in advance with little additional expense in reagents or technical support. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  14. Isolation, characterization and molecular cloning of a leaf-specific lectin from ramsons (Allium ursinum L.).

    PubMed

    Smeets, K; Van Damme, E J; Van Leuven, F; Peumans, W J

    1997-11-01

    Lectins were isolated from roots and leaves of ramsons and compared to the previously described bulb lectins. Biochemical analyses indicated that the root lectins AUAIr and AUAIIr are identical to the bulb lectins AUAI and AUAII, whereas the leaf lectin AUAL has no counterpart in the bulbs. cDNA cloning confirmed that the leaf lectin differs from the bulb lectins. Northern blot analysis further indicated that the leaf lectin is tissue-specifically expressed. Sequence comparisons revealed that the ramsons leaf lectin differs considerably from the leaf lectins of garlic, leek, onion and shallot.

  15. Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae).

    PubMed

    Li, D M; Wang, J H; Peng, S L; Zhu, G F; Lü, F B

    2012-12-17

    NAC proteins, which are plant-specific transcription factors, have been identified to play important roles in plant response to stresses and in plant development. The full-length cDNAs that encode 2 putative NAC proteins, designated as MmATAF1 and MmNAP, respectively, were cloned from Mikania micrantha by rapid amplification of cDNA ends. The full-length cDNAs of MmATAF1 and MmNAP were 1329 and 1072 bp, respectively, and they encoded deduced proteins of 260- and 278-amino acid residues, respectively. The proteins MmATAF1 and MmNAP had a calculated molecular mass of 29.81 and 32.55 kDa and a theoretical isoelectric point of 7.08 and 9.00, respectively. Nucleotide sequence data indicated that both MmATAF1 and MmNAP contained 2 introns and 3 exons and that they shared a conserved genomic organization. Multiple sequence alignments showed that MmATAF1 showed high sequence identity with ATAF1 of Arabidopsis thaliana (61%) and that MmNAP showed high sequence identity with NAP of A. thaliana (67%) and CitNAC of Citrus sinensis Osbeck (62%). Phylogenetic analysis showed that the predicted MmATAF1 and MmNAP proteins were classified into the ATAF and NAP subgroups, respectively. Transient expression analysis of onion epidermal cells indicated nuclear localization of both MmATAF1-GFP and MmNAP-GFP fusion proteins. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis indicated that MmATAF1 was expressed in all the tissues tested, but in varying abundance, while MmNAP was specifically expressed in stems, petioles, shoots, and leaves, but not in roots. The transcript levels of MmATAF1 and MmNAP in shoots and in infected stems were induced and strengthened by wounding, exogenous ZnSO(4), abscisic acid, salicylic acid, and Cuscuta campestris infection on the basis of semi-quantitative RT-PCR and real-time PCR analyses, respectively. Collectively, these results indicated that MmATAF1 and MmNAP, besides having roles in M. micrantha adaptation to C

  16. Molecular cloning, characterization and expression of goose Toll-like receptor 5.

    PubMed

    Fang, Qiang; Pan, Zhiming; Geng, Shizhong; Kang, Xilong; Huang, Jinlin; Sun, Xiaolin; Li, Qiuchun; Cai, Yinqiang; Jiao, Xinan

    2012-10-01

    Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that are vital to activation of the innate immune system in response to invading pathogens through their recognition of pathogen-associated molecular patterns (PAMPs). TLR5 is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the goose TLR5 gene using rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of goose TLR5 cDNA is 2583 bp in length and encodes an 860 amino acid protein. The entire coding region of the TLR5 gene was successfully amplified from genomic DNA and contained a single exon. The putative amino acid sequence of goose TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat (LRR) domains, a leucine-rich repeat C-terminal (LRR-CT) domain, a transmembrane domain and an intracellular Toll-interleukin-1 receptor (TIR) domain. The amino acid sequence of goose TLR5 shared 50.5% identity with human (Homo sapiens), 49.8% with mouse (Mus musculus) and 82.7% with chicken (Gallus gallus). The goose TLR5 gene was highly expressed in the spleen, liver and brain; moderately expressed in PBMCs, kidney, lung, heart, bone marrow, small intestine and large intestine; and minimally expressed in the cecum. HEK293 cells transfected with goose TLR5 and NF-κB-luciferase containing plasmids significantly responded to flagellin from Salmonella typhimurium indicating that it is a functional TLR5 homologue. In response to infection with S. enterica serovar Enteritidis (SE), the level of TLR5 mRNA significantly increased over the control in PBMCs at 1 d post infection (p.i.) and was slightly elevated in the spleen at 1 d or 3 d p.i. IL-6 was expressed below control levels in PBMCs but was upregulated in the spleen. In contrast to IL-6, an evident decrease in the expression level of IL-8 was observed in both PBMCs and spleens at 1 d or 3 d p.i. SE challenge also resulted in an increase in the mRNA expression of IL-18 and IFN-γ in PBMCs

  17. Molecular cloning, genomic organization, and chromosomal localization of an additional human aldehyde dehydrogenase gene, ALDH6

    SciTech Connect

    Hsu, L.C.; Wen-Chung, Chang; Hiraoka, L.

    1994-11-15

    Aldehyde dehydrogenase isozymes have been suggested to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. The authors previously cloned and characterized four human nonallelic ALDH genes encoding different isozymes. The existence of a unique ALDH isozyme in human saliva and its polymorphism has been demonstrated previously. In this paper, they describe the cloning, characterization, and chromosomal mapping of an aldehyde dehydrogenase gene (ALDH6) expressed in the human salivary gland. The cloned ALDH6 cDNA is 3457 bp in length and contains an open reading frame encoding 512 amino acid residues. The deduced amino acid sequence showed that ALDH6 is larger than the human liver ALDH1 by 11 amino acid residues at the N-terminal, and the degree of identity between the two isozymes is 70% with an alignment of 500 amino acid residues. The human ALDH6 gene spans about 37 kb and consists of 13 exons. The putative TATA and CCAAT boxes and Sp1 binding sites are found in the 5{prime} upstream region of the gene. Northern blot analysis demonstrated that the ALDH6 gene is expressed at low levels in many tissues and at higher levels in salivary gland, stomach, and kidney. The ALDH6 gene was assigned to chromosome 15q26 using fluorescence in situ hybridization. 52 refs., 6 figs., 1 tab.

  18. Physical mapping and molecular cloning of mung bean yellow mosaic virus DNA.

    PubMed

    Morinaga, T; Ikegami, M; Miura, K

    1990-01-01

    Viral single-stranded DNA of mung bean yellow mosaic virus (MYMV) was converted to the double-stranded state in vitro, and physical mapping was carried out. The genome of MYMV was found to consist of two major components (designated as DNA 1 and DNA 2). In addition, some minor components were detected. Molecular cloning of the major components was carried out, using in vitro double-stranded DNA and replicative intermediate DNAs. DNA 1 is about 2.72 and DNA 2 about 2.67 kilobase pairs. No similarities were observed when the two restriction maps of DNA 1 and 2 were compared.

  19. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis.

    PubMed

    Gou, Jun-Bo; Li, Zhen-Qiu; Li, Chang-Fu; Chen, Fang-Fang; Lv, Shi-You; Zhang, Yan-Sheng

    2016-09-01

    Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo.

  20. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers.

    PubMed

    Song, Yuzhen; Feng, Jiaying; Zhou, Lihua; Shu, Gang; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan

    2008-06-01

    Fatty acid transport protein-1 (FATP-1) is one of the important transporter proteins involved in fatty acid transmembrane transport and fat deposition. To study the relationship between FATP-1 mRNA expression and fat deposition, chicken (Gallus gallus) FATP-1 sequence was first cloned by rapid amplification of cDNA ends (RACE). Tissue samples of chest muscle, leg muscle, subcutaneous fat, and abdominal fat were collected from six male and six female broilers each, at 22 days, 29 days, and 42 days, respectively. The tissue specificity and ontogenesis expression pattern of the FATP-1 mRNA of yellow-feathered broilers was studied by real-time reverse transcription polymerase chain reaction (RT-PCR), and the fat deposition laws in different tissues were also compared. A 2,488 bp cDNA sequence of chicken FATP-1 was cloned by RACE (GenBank accession no. DQ352834), including 547 bp 3' end untranslated region (URT) and 1,941 bp open reading frame (ORF). Chicken FATP-1 encoded 646 amino acid residues, which shared 83.9% and 83.0% identity with those of human and rat, respectively. The results of quantitative PCR demonstrated a constant FATP-1 mRNA expression level in the chest muscle and subcutaneous fat of both male and female broilers at three stages, whereas the expression level of the FATP-1 mRNA in the leg muscle at 42 days was significantly higher than that at 22 days or 29 days. In the abdominal fat of male broilers, the gene expression significantly increased with age, whereas the female broilers showed a dramatic downregulation of FATP-1 expression in abdominal fat at 42 days. This suggested a typical tissue- and gender-specific expression pattern of chicken FATP-1, mediating the specific process of fatty acid transport or utilization in muscle and adipose tissues.

  1. Molecular cloning of a gene involved in methotrexate uptake by DNA-mediated gene transfer.

    PubMed

    Underhill, T M; Williams, F M; Murray, R C; Flintoff, W F

    1992-07-01

    A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from a wild-type Chinese hamster ovary genomic cosmid library. Primary and secondary transfectants, which contain a limited number of cosmid sequences, have been shown to regain methotrexate sensitivity and to take up methotrexate. Furthermore, the DNA from three cosmid clones, isolated from a primary methotrexate-sensitive transfectant, after transfection rescued the methotrexate-resistant phenotype at a high frequency. Restriction endonuclease analysis of the DNA of these cosmid clones indicated that they overlapped extensively and shared two regions of Chinese hamster ovary DNA of 6.6 kb and 20.6 kb. These observations indicate that a gene involved in methotrexate uptake is contained in its entirety within one of these regions. This is the first report of the functional molecular cloning of a gene involved in methotrexate uptake. A general strategy is also described for screening large cosmid libraries from primary transfectants.

  2. Molecular cloning of a lectin cDNA from Alocasia macrorrhiza and prediction of its characteristics.

    PubMed

    Zhu, Ya-Ran; Wang, Jie; Huang, Bing-Qiu; Hou, Xue-Wen

    2006-12-01

    The cDNA of Alocasia macrorrhiza lectin (aml, GenBank accession number: DQ340864) was cloned by RACE-PCR and its characteristics were predicted by various bioinformatics tools. GSPs (Gene Specific Primers) were designed according to the conserved regions of the genes encoded for lectins and similar proteins from the same family Araceae. Total RNAs were extracted from the tubers of A macrorrhiza by Qiagen RNeasy mini kit. The 3'- and 5'-RACE-PCRs were performed with the isolated total RNAs by SMART(TM)RACE cDNA amplification kit from BD Biosciences Clontech Company, respectively. The purified PCR products were ligated with pMD 18-T vector, and the confirmed clones were sequenced. The full-length cDNA of aml was obtained by combination of 3'- and 5'-end sequences, and was then confirmed by full-length 3'-RACE-PCR. The aml cDNA is 1 124 bp long. The deduced amino acid length of AML lectin is 270 aa. Its relative molecular weight is 29.7 kD. The results of homologous analysis showed a high similarity between AML and other mannose-binding lectins and similar proteins from Araceae family. Two typical B-lectin domains and three mannose- binding motifs were found in the sequence of AML. With all these taken together, it can be concluded that this newly cloned aml cDNA encodes for a mannose-binding lectin.

  3. Molecular cloning, expression, and sequence of the pilin gene from nontypeable Haemophilus influenzae M37.

    PubMed Central

    Coleman, T; Grass, S; Munson, R

    1991-01-01

    Nontypeable Haemophilus influenzae M37 adheres to human buccal epithelial cells and exhibits mannose-resistant hemagglutination of human erythrocytes. An isogenic variant of this strain which was deficient in hemagglutination was isolated. A protein with an apparent molecular weight of 22,000 was present in the sodium dodecyl sulfate-polyacrylamide gel profile of sarcosyl-insoluble proteins from the hemagglutination-proficient strain but was absent from the profile of the isogenic hemagglutination-deficient variant. A monoclonal antibody which reacts with the hemagglutination-proficient isolate but not with the hemagglutination-deficient isolate has been characterized. This monoclonal antibody was employed in an affinity column for purification of the protein as well as to screen a genomic library for recombinant clones expressing the gene. Several clones which contained overlapping genomic fragments were identified by reaction with the monoclonal antibody. The gene for the 22-kDa protein was subcloned and sequenced. The gene for the type b pilin from H. influenzae type b strain MinnA was also cloned and sequenced. The DNA sequence of the strain MinnA gene was identical to that reported previously for two other type b strains. The DNA sequence of the strain M37 gene is 77% identical to that of the type b pilin gene, and the derived amino acid sequence is 68% identical to that of the type b pilin. Images PMID:1673447

  4. Molecular cloning and expression of rat brain endopeptidase 3.4.24.16.

    PubMed

    Dauch, P; Vincent, J P; Checler, F

    1995-11-10

    We have isolated by immunological screening of a lambda ZAPII cDNA library constructed from rat brain mRNAs a cDNA clone encoding endopeptidase 3.4.24.16. The longest open reading frame encodes a 704-amino acid protein with a theoretical molecular mass of 80,202 daltons and bears the consensus sequence of the zinc metalloprotease family. The sequence exhibits a 60.2% homology with those of another zinc metallopeptidase, endopeptidase 3.4.24.15. Northern blot analysis reveals two mRNA species of about 3 and 5 kilobases in rat brain, ileum, kidney, and testis. We have transiently transfected COS-7 cells with pcDNA3 containing the cloned cDNA and established the overexpression of a 70-75-kDa immunoreactive protein. This protein hydrolyzes QFS, a quenched fluorimetric substrate of endopeptidase 3.4.24.16, and cleaves neurotensin at a single peptide bond, leading to the formation of neurotensin (1-10) and neurotensin (11-13). QFS and neurotensin hydrolysis are potently inhibited by the selective endopeptidase 3.4.24.16 dipeptide blocker Pro-Ile and by dithiothreitol, while the enzymatic activity remains unaffected by phosphoramidon and captopril, the specific inhibitors of endopeptidase 3.4.24.11 and angiotensin-converting enzyme, respectively. Altogether, these physicochemical, biochemical, and immunological properties unambiguously identify endopeptidase 3.4.24.16 as the protein encoded by the isolated cDNA clone.

  5. Molecular cloning and expression of a new gene, GON-SJTU1 in the rat testis

    PubMed Central

    2010-01-01

    Background Spermatogenesis is a complex process involving cell development, differentiation and apoptosis. This process is governed by a series of genes whose expressions are highly regulated. Male infertility can be attributed to multiple genetic defects or alterations that are related to spermatogenesis. The discovery, cloning and further functional study of genes related to spermatogenesis is of great importance to the elucidation of the molecular mechanism of spermatogenesis. It is also physiologically and pathologically significant to the therapy of male infertility. Methods GON-SJTU1 was identified and cloned from rat testis by cDNA library screening and 3'-and 5'-RACE. The products of GON-SJTU1 were assessed by Northern and Western blotting. The expression of GON-SJTU1 was also examined by In situ hybridization and immunohistochemistry. Results Here we identified and cloned a new gene, GON-SJTU1, with the biological process of spermatogenesis. GON-SJTU1 is highly expressed in the testis from day 1 to 15 and then decreased, suggesting that GON-SJTU1 might be a time-related gene and involved in the early stage of spermatogenesis. And the expression of GON-SJTU1 in the testis occurred in some male germ cells, particularly in gonocytes and spermatogonial stem cells. Conclusion GON-SJTU1 may play a role in the biological process of spermatogenesis. PMID:20462432

  6. Molecular cloning and expression of a new gene, GON-SJTU1 in the rat testis.

    PubMed

    Yang, Zhao-juan; Sun, Ning; Wang, Shu-qin; Tian, Geng G; Wu, Ji

    2010-05-12

    Spermatogenesis is a complex process involving cell development, differentiation and apoptosis. This process is governed by a series of genes whose expressions are highly regulated. Male infertility can be attributed to multiple genetic defects or alterations that are related to spermatogenesis. The discovery, cloning and further functional study of genes related to spermatogenesis is of great importance to the elucidation of the molecular mechanism of spermatogenesis. It is also physiologically and pathologically significant to the therapy of male infertility. GON-SJTU1 was identified and cloned from rat testis by cDNA library screening and 3'-and 5'-RACE. The products of GON-SJTU1 were assessed by Northern and Western blotting. The expression of GON-SJTU1 was also examined by In situ hybridization and immunohistochemistry. Here we identified and cloned a new gene, GON-SJTU1, with the biological process of spermatogenesis. GON-SJTU1 is highly expressed in the testis from day 1 to 15 and then decreased, suggesting that GON-SJTU1 might be a time-related gene and involved in the early stage of spermatogenesis. And the expression of GON-SJTU1 in the testis occurred in some male germ cells, particularly in gonocytes and spermatogonial stem cells. GON-SJTU1 may play a role in the biological process of spermatogenesis.

  7. Molecular cloning of the avian myelocytomatosis virus genome and recovery of infectious virus by transfection of chicken cells.

    PubMed Central

    Vennström, B; Moscovici, C; Goodman, H M; Bishop, J M

    1981-01-01

    The avian retrovirus myelocytomatosis virus 19 (MCV) possesses an interesting diversity of oncogenic potentials, but the virus has proven difficult to study because of its inability to replicate without the assistance of a helper virus. We have therefore isolated and amplified the genome of MCV by molecular cloning in a procaryotic vector. The topography of the cloned DNA was explored by the use of restriction endonucleases and radioactive complementary DNAs representing specific domains in avian retrovirus genomes. The cloned DNA appeared to be an authentic representation of the MCV genome: the size and genetic topography of the DNA were comparable to those of MCV, and transfection of the cloned DNA into chicken cells (in company with the DNA of a suitable helper virus) gave rise to virus with the genome and transforming potentials of MCV. The availability of cloned MCV DNA should facilitate a variety of genetic and biochemical manipulations directed at elucidating the mechanism of oncogenesis by MCV. Images PMID:6268847

  8. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection

    PubMed Central

    Lopker, Michael J.; Del Prete, Gregory Q.; Estes, Jacob D.; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L.; Wang, Shuyi; Decker, Julie M.; Bar, Katharine J.; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E.; Hahn, Beatrice H.; Lifson, Jeffrey D.; Shaw, George M.

    2016-01-01

    ABSTRACT Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4+ T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel “bar-coded” challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE Nonhuman primate research has relied on only a few

  9. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection.

    PubMed

    Lopker, Michael J; Del Prete, Gregory Q; Estes, Jacob D; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L; Wang, Shuyi; Decker, Julie M; Bar, Katharine J; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E; Hahn, Beatrice H; Lifson, Jeffrey D; Shaw, George M; Keele, Brandon F

    2016-10-01

    Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4(+) T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel "bar-coded" challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. Nonhuman primate research has relied on only a few infectious molecular clones

  10. Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor.

    PubMed

    de Groef, Bert; Grommen, Sylvia V H; Mertens, Inge; Schoofs, Liliane; Kühn, Eduard R; Darras, Veerle M

    2004-08-01

    We report the cloning of the complete coding sequence of the putative chicken type 2 corticotropin-releasing hormone receptor (CRH-R2) by rapid amplification of cDNA ends (RACE). The chicken CRH-R2 is a 412-amino acid 7-transmembrane G protein-coupled receptor, showing 87% identity to the Xenopus laevis and Oncorhynchus keta CRH-R2s, and 78-80% to mammalian CRH-R2s. The distribution of CRH-R2 mRNA was studied by RT-PCR analysis and compared to CRH-R1 distribution. Both CRH-R1 and CRH-R2 mRNA are expressed in the main chicken brain parts. In peripheral organs, CRH-R1 mRNA shows a more restricted distribution, whereas CRH-R2 mRNA is expressed in every tissue investigated, indicating that a number of actions of CRH and/or CRH-like peptides remain to be discovered in the chicken as well as in other vertebrates.

  11. Molecular cloning and expression analysis of a pearl oyster (Pinctada martensii) heat shock protein 90 (HSP90).

    PubMed

    Liang, H Y; Wang, Z X; Lei, Q N; Huang, R L; Deng, Y W; Wang, Q H; Jiao, Y; Du, X D

    2015-12-29

    Heat shock protein 90 (HSP90) is an important molecular chaperone required for proper folding of cellular proteins, and thus, it plays an essential role in protecting cells from damage during stress. In this study, an HSP90 cDNA designated PmHSP90 was cloned from the mantle tissue of the pearl oyster Pinctada martensii using reverse transcription polymerase chain reaction (RT-PCR) coupled with the rapid amplification of cDNA ends (RACE) approach. PmHSP90 cDNA was 2584 bp in length, including an open reading frame of 2160 bp, which encodes a polypeptide of 719 amino acid residues, with predicted molecular mass and isoelectric point of 83.0 kDa and 4.87, respectively. Multiple-sequence alignment indicated that HSP90 is highly conserved among species, and PmHSP90 showed 89% sequence identity to Crassostrea gigas HSP90. Five conserved amino acid blocks defined as HSP90 protein family signatures were also observed in PmHSP90, indicating that PmHSP90 may be a cytosolic member of the HSP90 family. Expression levels of PmHSP90 were detected in various tissues of P. martensii and in hemocytes under three different stress conditions using quantitative real-time PCR (qPCR). The results demonstrate that PmHSP90 mRNA is constitutively expressed in all the tested tissues and may be involved in the immune response against thermal stress, lipopolysaccharide stimulation, and nucleus insertion operations. Studies on PmHSP90 are a valuable source to further explore the immune system in pearl oysters during the production of pearls, and may enhance our knowledge of molluscan innate immunity.

  12. Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases.

    PubMed

    Hall, Dawn; Kim, Kyung Hee; De Luca, Vincenzo

    2011-12-01

    Grapes berries produce and accumulate many reactive secondary metabolites, and encounter a wide range of pathogen- and human-derived xenobiotic compounds. The enzymatic glucosylation of these metabolites changes their reactivity, stability and subcellular location. Two ESTs with more than 90% nucleotide sequence identity to three full-length glucosyltransferases are expressed in several grape tissues. The full-length clones have more than 60% amino acid sequence similarity to previously characterized flavonoid 7-O-glucosyltransferases, catechin O-glucosyltransferases and anthocyanin 5-O-glucosyltransferases. In vitro, these enzymes glucosylate flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP). Kinetic analysis indicates that TCP is the preferred substrate for these enzymes, while expression analysis reveals variable transcription of these genes in grape leaves, flowers and berry tissues. The in vivo role of these Vitis labrusca glucosyltransferases is discussed.

  13. Molecular cloning and expression analysis of cDNA ends of chicken neuropathy target esterase.

    PubMed

    Chang, Ping-An; Sun, Quan; Ni, Xiao-Min; Qv, Feng-Qiong; Wu, Yi-Jun; Song, Fang-Zhou

    2008-03-10

    Neuropathy target esterase (NTE) was proposed as the initial target during the process of organophosphate-induced delayed neuropathy (OPIDN) in human and some sensitive animals. Adult hens are usually the animal model for experimental studies of OPIDN. However, little is known about the sequence and characteristics of chicken NTE. We report here the cloning of the 5' and 3' cDNA ends of chicken NTE through rapid amplification of cDNA ends (RACE) and their expression profiles in different tissues with northern blotting. The cloned 3' cDNA end of chicken NTE is 801 base pair (bp) in length with an open reading frame (ORF) of 379 bp. It contains a termination codon (TAG) and a 422-nucleotide noncoding sequence with the polyA sequence (GenBank accession no. DQ126678). The chicken NTE 5' cDNA end is 665 bp in length with an ORF of 552 bp. It contains an initiation codon (ATG) and a 113-bp untranslated region (GenBank accession no. DQ126677). The deduced proteins from 5' and 3' cDNA ends have a high degree of homology to humans and mouse NTE at the amino acid level. Chicken NTE is suggested to be a transmembrane protein by the transmembrane helix prediction of the deduced N-terminal sequence. The chicken NTE gene is expressed as a 4.5k b transcript in different tissues, including brain, kidney, liver and testis. Moreover, the mRNA expression of chicken NTE is highest in brain, and the mRNA levels of chicken NTE in testis, kidney and liver are about 75%, 47% and 24% of that in brain, respectively. These results should be helpful in cloning chicken full-length NTE gene.

  14. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  15. From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus.

    PubMed

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Diomedes Neto, José; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-03-16

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.

  16. From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

    PubMed Central

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Neto, José Diomedes; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-01-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  17. Molecular cloning and expression analysis of Annexin A2 gene in sika deer antler tip.

    PubMed

    Xia, Yanling; Qu, Haomiao; Lu, Binshan; Zhang, Qiang; Li, Heping

    2017-08-16

    Molecular cloning and bioinformatics analysis of Annexin A2 gene in sika deer antler tip were conducted. The role of Annexin A2 gene in the growth and development of the antler were analyzed initially. The reverse transcriptase-polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the Anxa2 gene from antler tip of sika deer (Cervus nippon hortulorum) and the bioinformatics tools provided on the web site were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the Anxa2 gene in different growth stages were examined by real-time RT-PCR. The nucleotide sequence analysis revealed an ORF of 1020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and pI value 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real-time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the Anxa2 gene was the highest at metaphase (rapid growing period). Anxa2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  18. Hepatic nuclear receptor PPARalpha in the koala (Phascolarctos cinereus): cloning and molecular characterisation.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2007-09-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear/steroid receptor gene superfamily that plays an essential role in fatty acid metabolism. PPARalpha modulates the expression of genes encoding peroxisomal fatty acid beta-oxidation enzymes and microsomal fatty acid hydroxylases CYP4As. We have previously reported that the obligate Eucalyptus feeder koala (Phascolarctos cinereus) exhibits a higher hepatic CYP4A activity and an absence of peroxisomal palmitoyl-CoA oxidation as compared to non-Eucalyptus feeders human, rat or wallaby. Here we describe the cloning, expression and molecular characterisation of koala hepatic PPARalpha. A full-length PPARalpha cDNA of size 1515 bp was cloned by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The koala PPARalpha cDNA encodes a protein of 468 amino acids. Transfection of the koala PPARalpha cDNA into Cos-7 cells resulted in the expression of a protein recognised by a rabbit anti-human PPARalpha polyclonal antibody. PPARalpha immunoreactive bands of the same molecular mass were detected in nuclear extracts of koala livers. The results of this study demonstrate the presence of koala hepatic PPARalpha which shares several common features with other published PPARalphas; however, it exhibits important differences in both the DNA and ligand binding domains.

  19. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues

    PubMed Central

    Ozturk, Mehmet S.; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B.; Fisher, John P.; Chen, Yu; Intes, Xavier

    2015-01-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed Laminar Optical Tomography (LOT) or Mesoscopic Fluorescence Molecular Tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells (hMSCs) embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications. PMID:26645079

  20. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  1. Molecular cloning of the avian erythroblastosis virus genome and recovery of oncogenic virus by transfection of chicken cells.

    PubMed Central

    Vennström, B; Fanshier, L; Moscovici, C; Bishop, J M

    1980-01-01

    Avian erythroblastosis virus (AEV) causes erythroblastosis and sarcomas in birds and transforms both erythroblasts and fibroblasts to neoplastic phenotypes in culture. The viral genetic locus required for oncogenesis by AEV is at present poorly defined; moreover, we know very little of the mechanism of tumorigenesis by the virus. To facilitate further analysis of these problems, we used molecular cloning to isolate the genome of AEV as recombinant DNA in a procaryotic vector. The identity of the isolated DNA was verified by mapping with restriction endonucleases and by tests for biological activity. The circular form of unintegrated AEV DNA was purified from synchronously infected quail cells and cloned into the EcoRI site of lambda gtWES x B. A restriction endonuclease cleavage map was established. By hybridization with complementary DNA probes representing specific parts of avian retrovirus genomes, the restriction map of the cloned AEV DNAs was correlated with a genetic map. These data show that nucleotide sequences unique to AEV comprise at least 50% of the genome and are located approximately in the middle of the AEV genome. Our data confirm and extend previous descriptions of the AEV genome obtained by other procedures. We studied in detail two recombinant clones containing AEV DNA: the topography of the viral DNA in the two clones was virtually identical, except that one clone apparently contained two copies of the terminal redundancy that occurs in linear viral DNA isolated from infected cells; the other clone probably contained only one copy of the redundant sequence. To recover infectious virus from the cloned DNA, we developed a procedure for transfection that compensated for the defectiveness of AEV in replication. We accomplished this by ligating cloned AEV DNA to the cloned DNA of a retrovirus (Rous-associated virus type 1) whose genome could complement the deficiencies of AEV. Ligation of the two viral DNAs was facilitated by using a neutral fragment

  2. Molecular Cloning of phd1 and Comparative Analysis of phd1, 2, and 3 Expression in Xenopus laevis

    PubMed Central

    Han, Dandan; Wen, Luan; Chen, Yonglong

    2012-01-01

    Intensive gene targeting studies in mice have revealed that prolyl hydroxylase domain proteins (PHDs) play important roles in murine embryonic development; however, the expression patterns and function of these genes during embryogenesis of other vertebrates remain largely unknown. Here we report the molecular cloning of phd1 and systematic analysis of phd1, phd2, and phd3 expression in embryos as well as adult tissues of Xenopus laevis. All three phds are maternally provided during Xenopus early development. The spatial expression patterns of phds genes in Xenopus embryos appear to define a distinct synexpression group. Frog phd2 and phd3 showed complementary expression in adult tissues with phd2 transcription levels being high in the eye, brain, and intestine, but low in the liver, pancreas, and kidney. On the contrary, expression levels of phd3 are high in the liver, pancreas, and kidney, but low in the eye, brain, and intestine. All three phds are highly expressed in testes, ovary, gall bladder, and spleen. Among three phds, phd3 showed strongest expression in heart. PMID:22645445

  3. Molecular cloning and expression patterns of the molt-regulating transcription factor HHR3 from Helicoverpa armigera.

    PubMed

    Zhao, X-F; Wang, J-X; Xu, X-L; Li, Z-M; Kang, C-J

    2004-08-01

    Molt-regulating transcription factors, hormone receptor 3 (HR3), play important roles in regulating expression of tissue-specific genes involved in insect molting and metamorphosis. A 1668 bp cDNA encoding a molt-regulating transcription factor (HHR3) was cloned from Helicoverpa armigera, which encodes a protein made up of 556 amino acids. This 62 kDa protein was found to have an isoelectric point (pI) of 6.52. There was no signal peptide or N-glycosylation site found in this cDNA. A DNA-binding region signature of nuclear hormone receptor was found from amino acids 107-133. A possible outside to inside transmembrane helice was found from amino acids 72-90. Northern blots of the larvae revealed five bands of HHR3 named as band 0, 1, 2, 3 and 4 with molecular masses determined as 2.1, 2.6, 3.6, 4.5 and 5.5 kb, respectively. The expression patterns of HHR3 in vivo were variable with developmental stages and tissues. Results showed that band 1-4 of HHR3 was only briefly expressed during molting, which suggested these bands are involved in the regulation of molting cascade, whereas band 0 was expressed in both molting and feeding larvae. Band 1 and 2 of HHR3 could be induced from epidermis of newly molted 6th instar larvae by non-steroidal ecdysone agonist, RH-2485.

  4. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock

    NASA Astrophysics Data System (ADS)

    Li, Jiakai; Wu, Xiangwei; Tan, Jing; Zhao, Ruixiang; Deng, Lingwei; Liu, Xiande

    2015-07-01

    P. textile is an important aquaculture species in China and is mainly distributed in Fujian, Guangdong, and Guangxi Provinces. In this study, an HSP20 cDNA designated PtHSP20 was cloned from P. textile. The full-length cDNA of PtHSP20 is 1 090 bp long and contains a 5' untranslated region (UTR) of 93 bp, a 3' UTR of 475 bp, and an open reading frame (ORF) of 522 bp. The PtHSP20 cDNA encodes 173 amino acid residues and has a molecular mass of 20.22 kDa and an isoelectric point of 6.2. Its predicted amino acid sequence shows that PtHSP20 contains a typical α-crystallin domain (residues 77-171) and three polyadenylation signal-sequences at the C-terminus. According to an amino acid sequence alignment, PtHSP20 shows moderate homology to other mollusk sHSPs. PtHSP20 mRNA was present in all of the test tissues including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, with the highest concentration found in the gonad. Under the stress of high temperature, the expression of PtHSP20 mRNA was down-regulated in all of the tissues except the adductor muscle and gonad.

  5. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis.

    PubMed

    Miyoshi, Takeharu; Tsuji, Naotoshi; Islam, M Khyrul; Kamio, Tsugihiko; Fujisaki, Kozo

    2004-08-01

    Serine proteinases are one of the largest proteolytic families of enzymes, and have diverse cellular activities in mammalian tissues. We report here the cloning and molecular characterization of a cDNA encoding the serine proteinase of the hard tick Haemaphysalis longicornis (HlSP). The HlSP cDNA is 1570 bp long and the deduced precursor protein consists of 464 amino acids with a predicted molecular mass of 50.4 kDa and a pI of 8.2. The preprotein, consisting of 443 amino acids, was predicted to include a complement C1r/C1s, Uegf, and bone morphogenic protein-1 domain, a low-density lipoprotein receptor class A domain, and a catalytic domain. HlSP sequence analysis showed high similarity to serine proteinases reported from arthropods and vertebrate animal species. Two-dimensional immunoblot analysis revealed endogenous HlSP in adult tick extracts at 50 kDa. Endogenous HlSP was also expressed in all lifecycle stages of H. longicornis. Immunohistochemical studies detected the endogenous enzyme in the midgut epithelial cells of an adult tick. The Escherichia coli-expressed recombinant HlSP was demonstrated to degrade bovine serum albumin and hydrolyze the substrate Bz-L-Arg-pNA at the rate of 30.2 micromol/min/mg protein. Further, HlSP expression was up-regulated during a blood-feeding process, indicating its involvement in the digestion of host blood components.

  6. Molecularly cloned feline immunodeficiency virus NCSU1 JSY3 induces immunodeficiency in specific-pathogen-free cats.

    PubMed Central

    Yang, J S; English, R V; Ritchey, J W; Davidson, M G; Wasmoen, T; Levy, J K; Gebhard, D H; Tompkins, M B; Tompkins, W A

    1996-01-01

    A full-length feline immunodeficiency virus NCSU1 (FIV-NCSU1) genome (JSY3) was cloned directly from FIV-NCSU1-infected feline CD4+ lymphocyte (FCD4E) genomic DNA and identified by PCR amplification with 5' long terminal repeat, gag, env, and 3' long terminal repeat primer sets. Supernatant from FCD4E cells cocultured with JSY3-transfected Crandell feline kidney (CrFK) cells was used as an inoculum. Cell-free JSY3 virus was cytopathogenic for FCD4E lymphocytes but did not infect CrFK cells in vitro. To determine in vivo infectivity and pathogenesis, six young adult specific-pathogen-free cats were inoculated with cell-free JSY3 virus. Provirus was detected at 2 weeks postinfection (p.i.) and was still detectable at 25 weeks p.i. as determined by gag region PCR-Southern blot analysis of peripheral blood mononuclear cell lysates. Infectious virus was recovered from peripheral blood mononuclear cells at 6 and 25 weeks p.i., and an antibody response to FIV was detected by 4 weeks. In the acute phase of infection, JSY3 provirus was found only in the CD4+ lymphocyte subset; however, by 14 weeks p.i., the greatest provirus burden was detected in B lymphocytes. All six cats were panlymphopenic at 2 weeks p.i., CD4+/CD8+ ratios were inverted by 6 weeks p.i., and five of the six cats developed lymphadenopathy by 10 weeks p.i. To determine if the JSY3 molecular clone caused immunodeficiency similar to that of the parental wild-type FIV-NCSU1, the cats were challenged with the low-virulence ME49 strain of Toxoplasma gondii at 29 weeks p.i. Five of six cats developed clinical signs consistent with generalized toxoplasmosis, and three of six cats developed acute respiratory distress and required euthanasia. Histopathologic examination of the severely affected cats revealed generalized inflammatory reactions and the presence of T. gondii tachyzoites in multiple tissues. None of the six age- and sex-matched specific-pathogen-free cats inoculated with only T. gondii developed

  7. Molecular diagnostics in soft tissue sarcomas and gastrointestinal stromal tumors.

    PubMed

    Smith, Stephen M; Coleman, Joshua; Bridge, Julia A; Iwenofu, O Hans

    2015-04-01

    Soft tissue sarcomas are rare malignant heterogenous tumors of mesenchymal origin with over fifty subtypes. The use of hematoxylin and eosin stained sections (and immunohistochemistry) in the morphologic assessment of these tumors has been the bane of clinical diagnosis until recently. The last decade has witnessed considerable progress in the understanding and application of molecular techniques in refining the current understanding of soft tissue sarcomas and gastrointestinal stromal tumors beyond the limits of traditional approaches. Indeed, the identification of reciprocal chromosomal translocations and fusion genes in some subsets of sarcomas with potential implications in the pathogenesis, diagnosis and treatment has been revolutionary. The era of molecular targeted therapy presents a platform that continues to drive biomarker discovery and personalized medicine in soft tissue sarcomas and gastrointestinal stromal tumors. In this review, we highlight how the different molecular techniques have enhanced the diagnosis of these tumors with prognostic and therapeutic implications.

  8. Tissue tablet method: an efficient tissue banking procedure applicable to both molecular analysis and frozen tissue microarray.

    PubMed

    Torata, Nobuhiro; Ohuchida, Kenoki; Akagawa, Shin; Cui, Lin; Kozono, Shingo; Mizumoto, Kazuhiro; Aishima, Shinichi; Oda, Yoshinao; Tanaka, Masao

    2014-01-01

    Frozen human tissues are necessary for research purposes, but tissue banking methods have not changed for more than a decade. Many institutions use cryovial tubes or plastic molds with an optimal cutting temperature compound. However, these methods are associated with several problems, such as samples sticking to one another and the need for a larger storing space. We established an efficient tissue freezing and storing procedure ("tissue tablet method") applicable to both molecular analysis and frozen tissue microarray. Tissue samples were chopped into tiny fragments and embedded into tablet-shaped frozen optimal cutting temperature compound using our original tissue-freezing plate. These tablets can be sectioned and stored in cryovial tubes. We compared the tissue quality of tablet-shaped samples with that of conventional optimal cutting temperature blocks and found no significant difference between them. Tissue microarray is a key method to utilize tissue-banking specimens. However, most tissue microarrays require the coring out of cylindrically shaped tissues from formalin-fixed, paraffin-embedded tissue blocks. Antigenic changes and mRNA degradation are frequently observed with formalin-fixed, paraffin-embedded samples. Therefore, we have applied tablet-shaped samples to construct frozen tissue microarrays with our original mounting base. Constructed tissue microarray sections showed good morphology without obvious artifact and good immunohistochemistry and in situ hybridization results. These results suggest that the quality of arrayed samples was sufficiently appropriate for research purposes. In conclusion, the tissue tablet method and frozen tissue microarray procedure can save time, provides easy tissue handling and processing, and satisfies the demands of research methodologies and tissue banking. © 2013.

  9. Goldfish neurokinin B: Cloning, tissue distribution, and potential role in regulating reproduction.

    PubMed

    Qi, Xin; Zhou, Wenyi; Li, Shuisheng; Liu, Yun; Ye, Gang; Liu, Xiaochun; Peng, Chun; Zhang, Yong; Lin, Haoran

    2015-09-15

    Neurokinin B (NKB) is a member of the tackykinin (TAC) family known to play a critical role in the neuroendocrine regulation of reproduction in mammals. However, its biological functions in teleosts are less clear. The aim of this study was to determine the role of NKB in fish reproduction using goldfish as a model. Two transcripts, TAC3a and TAC3b, which encode several NKBs, including NKBa-13, NKBa-10, NKBb-13, and NKBb-11, were cloned. Phylogenetic analysis revealed that NKBa-10 and NKBb-11 are closely related to mammalian NKB, while NKB-13s are more conserved in teleosts. Quantitative real-time PCR analyses in various tissues showed that TAC3a and TAC3b mRNAs were mainly expressed in the brain. In situ hybridization further detected TAC3a and TAC3b mRNAs in several regions of the brain known to be involved in the regulation of reproduction and metabolism, as well as in the neurohypophysis of the pituitary. To investigate the potential role of NKBs in reproduction, goldfish were injected intraperitoneally with synthetic NKBa-13, -10, NKBb-13, or -11 peptides and the mRNA levels of hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary gonadotropin subunits were measured. NKBa-13, -10, or NKBb-13, but not -11, significantly increased hypothalamic salmon GnRH and pituitary FSHβ and LHβ mRNA levels in both female and male goldfish. Finally, ovariectomy increased, while estradiol replacement reduced, TAC3a mRNA levels without affecting TAC3b expression in the hypothalamus. These data suggest that NKBa-13, -10, and NKBb-13 play a role in mediating the estrogen negative feedback regulation of gonadotropins.

  10. Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis).

    PubMed

    Pinto, Wilson; Rønnestad, Ivar; Jordal, Ann-Elise Olderbakk; Gomes, Ana S; Dinis, Maria Teresa; Aragão, Cláudia

    2012-04-01

    Flatfish species seem to require dietary taurine for normal growth and development. Although dietary taurine supplementation has been recommended for flatfish, little is known about the mechanisms of taurine absorption in the digestive tract of flatfish throughout ontogeny. This study described the cloning and ontogenetic expression of the taurine transporter (TauT) in the flatfish Senegalese sole (Solea senegalensis). Results showed a high similarity between TauT in Senegalese sole and other vertebrates, but a change in TauT amino acid sequences indicates that taurine transport may differ between mammals and fish, reptiles or birds. Moreover, results showed that Senegalese sole metamorphosis is an important developmental trigger to promote taurine transport in larvae, especially in muscle tissues, which may be important for larval growth. Results also indicated that the capacity to uptake dietary taurine in the digestive tract is already established in larvae at the onset of metamorphosis. In Senegalese sole juveniles, TauT expression was highest in brain, heart and eye. These are organs where taurine is usually found in high concentrations and is believed to play important biological roles. In the digestive tract of juveniles, TauT was more expressed in stomach and hindgut, indicating that dietary taurine is quickly absorbed when digestion begins and taurine endogenously used for bile salt conjugation may be recycled at the posterior end of the digestive tract. Therefore, these results suggest an enterohepatic recycling pathway for taurine in Senegalese sole, a process that may be important for maintenance of the taurine body levels in flatfish species.

  11. Molecular cloning and structural analysis of the porcine homologue to CD97 antigen.

    PubMed

    de la Lastra, José M Pérez; Shahein, Yasser E A; Garrido, Juan J; Llanes, Diego

    2003-06-20

    CD97 is a member of a novel subfamily of leukocyte proteins that are characterized by the presence of tandemly repeated extracellular epidermal growth factor (EGF)-like domains and a seven-span transmembrane region, known as EGF-TM7. We here report the cloning of cDNA encoding the pig homologue of CD97. A pig CD97 specific probe was generated by PCR amplification of pig leukocyte cDNA, using primers based on consensus regions among the known sequences of mouse and human CD97. Screening of a pig aorta smooth muscle cDNA library identified one clone containing an open reading frame (ORF) that encoded an 18 amino acid putative signal peptide, a 141 amino acid sequence consisting of three EGF domains, a mucin-like spacer region of 276 amino acid, containing a G-protein coupling motif of 52 amino acids, followed by a 250 amino acid region containing seven membrane spanning domains and a 47 amino acid cytoplasmic tail. The amino acid sequence of the clone was 75, 67 and 59% homologous to cattle, human and mouse CD97 antigen, respectively. Therefore, it was termed pig CD97. Pig CD97 antigen shares many structural features with human, cattle and mouse CD97. RT-PCR analysis of cDNA from different pig cells and tissues showed that CD97 was highly expressed in leukocytes and lymph node cells. This is the first report describing the identification of a member of the EGF-TM7 family in the pig.

  12. Molecular basis for optical clearing of collagenous tissues

    NASA Astrophysics Data System (ADS)

    Hirshburg, Jason M.; Ravikumar, Krishnakumar M.; Hwang, Wonmuk; Yeh, Alvin T.

    2010-09-01

    Molecular interactions of optical clearing agents were investigated using a combination of molecular dynamics (MD) simulations and optical spectroscopy. For a series of sugar alcohols with low to high optical clearing potential, Raman spectroscopy and integrating sphere measurements were used to quantitatively characterize tissue water loss and reduction in light scattering following agent exposures. The rate of tissue water loss was found to correlate with agent optical clearing potential, but equivalent tissue optical clearing was measured in native and fixed tissue in vitro, given long-enough exposure times to the polyol series. MD simulations showed that the rate of tissue optical clearing correlated with the preferential formation of hydrogen bond bridges between agent and collagen. Hydrogen bond bridge formation disrupts the collagen hydration layer and facilitates replacement by a chemical agent to homogenize tissue refractive index. However, the reduction in tissue light scattering did not correlate with the agent index of refraction. Our results suggest that a necessary property of optical clearing agents is hyperosmolarity to tissue, but that the most effective agents with the highest rates of optical clearing are a subset with the highest collagen solubilities.

  13. Molecular characterization and analysis of TLR-1 in rabbit tissues

    PubMed Central

    Algammal, Abdelazeem M.; Abouelmaatti, Reham R.; Gerdouh, Ahmed; Abdeldaim, Mohamed

    2016-01-01

    The rabbit has great commercial importance as a source of meat and fur, as well as its uses as a laboratory animal for the production of antibodies, used to detect the presence or absence of disease and for research in infectious diseases and immunology. One of the most critical problems in immunology is to understand how the immune system detects the presence of infectious agents and disposes the invader without destroying the self-tissues. Genetic characterization of Toll-like receptors has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Our work aimed to identify, clone and express the Oryctolagus cuniculus (rabbit) TLR-1 mRNA and its encoding protein. We cloned the complete mRNA sequence of Oryctolagus cuniculus TLR-1 and deposit it in the GenBank under accession number (KC349941), which has 2388 base pair and it encodes encode an open reading frame (ORF) translated into 796 amino acids mRNA and consist of 20 types of amino acids. The analysis of amino acid sequence revealed that the rabbit TLR-1 has a typical protein components belonging to the TLR family. Rabbit TLR-1 was expressed in a wide variety of rabbit tissues, which indicate an important role in immune system in different organs. PMID:27833439

  14. Molecular Cloning, Characterization, and Expression of the M Antigen of Histoplasma capsulatum

    PubMed Central

    Zancopé-Oliveira, Rosely M.; Reiss, Errol; Lott, Timothy J.; Mayer, Leonard W.; Deepe, George S.

    1999-01-01

    The major diagnostic antigens of Histoplasma capsulatum are the H and M antigens, pluripotent glycoproteins that elicit both humoral and T-cell-mediated immune responses. These antigens may play a role in the pathogenesis of histoplasmosis. M antigen is considered immunodominant because antibodies against it are the first precipitins to arise in acute histoplasmosis and are commonly present during all phases of infection. The biological activity of monomolecular M antigen and its ability to elicit a protective immune response to H. capsulatum are largely unknown. A molecular approach was used to identify the biological nature of M antigen, including its purification from histoplasmin, partial digestion with proteinases, and reverse-phase high-performance liquid chromatography to separate the released peptides. The amino acid sequences of the purified peptides were obtained by Edman degradation, and using degenerate oligonucleotide primers for PCR, a 321-bp fragment of the gene encoding the M antigen was amplified from genomic H. capsulatum DNA. This fragment was used to screen an H. capsulatum genomic DNA library, leading to the isolation, cloning, and sequencing of the full-length gene. The M gene consists of 2,187-bp DNA encoding a protein of 80,719 Da, which has significant homology to catalases from Aspergillus fumigatus, Aspergillus niger, and Eimericella nidulans. A cDNA was generated by reverse transcription-PCR and cloned into the expression vector pQE40. The identity of the cloned, expressed protein was confirmed by Western blotting. The recombinant fusion protein was immunoreactive with monoclonal antibodies raised against M antigen, with polyclonal mouse anti-M antiserum, and with a serum sample from a patient with histoplasmosis. The gene encoding the major immunodominant M antigen of H. capsulatum is a presumptive catalase, and the recombinant protein retains serodiagnostic activity. PMID:10085041

  15. Molecular cloning, expression and characterization of a functional GSTmu class from the cattle tick Boophilus annulatus.

    PubMed

    Shahein, Yasser Ezzat; El Sayed El-Hakim, Amr; Abouelella, Amira Mohamed Kamal; Hamed, Ragaa Reda; Allam, Shaimaa Abdul-Moez; Farid, Nevin Mahmoud

    2008-03-25

    A full-length cDNA of a glutathione S-transferase (GST) was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. The 672 bp cloned fragment was sequenced and showed an open reading frame encoding a protein of 223 amino acids. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the sequence is closely related to the mammalian mu-class GST. The cloned gene was expressed in E. coli under T7 promotor of pET-30b vector, and purified under native conditions. The purified enzyme appeared as a single band on 12% SDS-PAGE and has a molecular weight of 30.8 kDa including the histidine tag of the vector. The purified enzyme was assayed upon the chromogenic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the recombinant enzyme showed high level of activity even in the presence of the beta-galactosidase region on its 5' end and showed maximum activity at pH 7.5. The Km values for CDNB and GSH were 0.57 and 0.79 mM, respectively. The over expressed rBaGST showed high activity toward CDNB (121 units/mg protein) and less toward DCNB (29.3 units/mg protein). rBaGST exhibited peroxidatic activity on cumene hydroperoxide sharing this property with GSTs belonging to the GST alpha class. I50 values for cibacron blue and bromosulfophthalein were 0.22 and 8.45 microM, respectively, sharing this property with the mammalian GSTmu class. Immunoblotting revealed the presence of the GST molecule in B. annulatus protein extracts; whole tick, larvae, gut, salivary gland and ovary. Homologues to the GSTmu were also detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. while in Ornithodoros moubata, GSTmu homologue could not be detected.

  16. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.

    PubMed

    Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A

    2017-02-01

    The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.

  17. Molecular cloning and expression analysis of five GhRAXs in upland cotton (Gossypium hirsutum L.).

    PubMed

    Dai, T C; Wang, Z M

    2015-10-05

    The formation of axillary meristems in leaf axils is a prerequisite for the development of lateral shoots, which largely contribute to plant architecture. Several transcription factor-encoding genes, including CUC3, RAX, LAS, LOF1, and ROX, have been cloned by screening for axillary meristem mutants in Arabidopsis thaliana. These genes will facilitate our understanding of the mechanisms underlying axillary meristem development. In this study, we report the cloning of five genes from cotton (Gossypium hirsutum L.) that are orthologous to A. thaliana REGULATORS OFAXILLARY MERISTEMS (RAX) and tomato Blind (Bl), and they are designated GhRAX1, 2, 3, 4, and 5. Sequence analyses indicated that all five genes shared conserved protein domains with RAX and Bl. Phylogenetic analyses of protein sequences revealed that GhRAX2/3/4 were close to RAX1, whereas GhRAX1 and GhRAX5 were close to RAX3. Expression patterns of these genes in different tissues were also analyzed using real-time PCR.

  18. Molecular cloning and characterization of plastin, a human leukocyte protein expressed in transformed human fibroblasts.

    PubMed Central

    Lin, C S; Aebersold, R H; Kent, S B; Varma, M; Leavitt, J

    1988-01-01

    The phosphoprotein plastin was originally identified as an abundant transformation-induced polypeptide of chemically transformed neoplastic human fibroblasts. This abundant protein is normally expressed only in leukocytes, suggesting that it may play a role in hemopoietic cell differentiation. Protein microsequencing of plastin purified from leukemic T lymphocytes by high-resolution two-dimensional gel electrophoresis produced eight internal oligopeptide sequences. An oligodeoxynucleotide probe corresponding to one of the oligopeptides was used to clone cDNAs from transformed human fibroblasts that encoded the seven other oligopeptides predicted for human plastin. Sequencing and characterization of two cloned cDNAs revealed the existence of two distinct, but closely related, isoforms of plastin--l-plastin, which is expressed in leukocytes and transformed fibroblasts, and t-plastin, which is expressed in normal cells of solid tissues and transformed fibroblasts. The leukocyte isoform l-plastin is expressed in a diverse variety of human tumor cell lines, suggesting that it may be involved in the neoplastic process of some solid human tumors. Images PMID:3211125

  19. Molecular cloning and immunologic reactivity of a novel low molecular mass antigen of Mycobacterium tuberculosis.

    PubMed

    Coler, R N; Skeiky, Y A; Vedvick, T; Bement, T; Ovendale, P; Campos-Neto, A; Alderson, M R; Reed, S G

    1998-09-01

    Polypeptide Ags present in the culture filtrate of Mycobacterium tuberculosis were purified and evaluated for their ability to stimulate PBMC from purified protein derivative (PPD)-positive healthy donors. One such Ag, which elicited strong proliferation and IFN-gamma production, was further characterized. The N-terminal amino acid sequence of this polypeptide was determined and used to design oligonucleotides for screening a recombinant M. tuberculosis genomic DNA library. The gene (Mtb 8.4) corresponding to the identified polypeptide was cloned, sequenced, and expressed in Escherichia coli. The predicted m.w. of the recombinant protein without its signal peptide was 8.4 kDa. By Southern analysis, the DNA encoding this mycobacterial protein was found in the M. tuberculosis substrains H37Rv, H37Ra, Erdman, and "C" strain, as well as in certain other mycobacterial species, including Mycobacterium avium and Mycobacterium bovis BCG (bacillus Calmette-Guerin, Pasteur). The Mtb 8.4 gene appears to be absent from the environmental mycobacterial species examined thus far, including Mycobacterium smegmatis, Mycobacterium gordonae, Mycobacterium chelonae, Mycobacterium fortuitum, and Mycobacterium scrofulaceum. Recombinant Mtb 8.4 Ag induced significant proliferation as well as production of IFN-gamma, IL-10, and TNF-alpha, but not IL-5, from human PBMC isolated from PPD-positive healthy donors. Mtb 8.4 did not stimulate PBMC from PPD-negative donors. Furthermore, immunogenicity studies in mice indicate that Mtb 8.4 elicits a Th1 cytokine profile, which is considered important for protective immunity to tuberculosis. Collectively, these results demonstrate that Mtb 8.4 is an immunodominant T cell Ag of M. tuberculosis.

  20. Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus.

    PubMed

    Chen, Chien-Cheng; Kumar, H G Ashok; Kumar, Senthil; Tzean, Shean-Shong; Yeh, Kai-Wun

    2007-07-01

    Paecilomyces javanicus is an entomopathogenic fungus of coleopteran and lepidopteran insects. Here we report on cloning, characterization, and expression patterns of a chitinase from P. javanicus. A strong chitinase activity was detected in P. javanicus cultures added to chitin. The full-length cDNA, designated PjChi-1, was cloned from mycelia by using both degenerate primer/reverse transcription polymerase chain reaction (RT-PCR) amplification and 5'-/3'-RACE extension. The 1.18-kb cDNA gene contains a 1035-bp open reading frame and encodes a 345-amino acid polypeptide with a deduced molecular mass of 37 kDa. A conserved motif for chitinase activity -F82DGIDIDWE90- was present in deduced amino acid sequence. Both RT-PCR and Northern analysis revealed that the expression of the PjChi gene was constitutive at low level, but enhanced to high level when chitin was the substrate. Fungal inhibitory assay showed that PjChi-1 inhibited the growth of phytopathogenic fungi such as Sclerotium rolfsii, Colletotrichum gloeosporioides, Aspergillus nidulans, and Rhizoctonia solani.

  1. Molecular cloning and expression of the Leishmania tropica KMP-11 gene.

    PubMed

    Meriee, Mouayad; Soukkarieh, Chadi; Abbady, Abdul Qader A

    2014-08-01

    Kinetoplastid membrane protein-11 (KMP-11) is a small protein of 11 kDa present in all kinetoplastid protozoa studded so far. This protein which is highly expressed in all stages of the Leishmania life cycle is considered a potential candidate for a leishmaniasis vaccine against many leishmania species. KMP-11 has been recently described in Leishmania tropica. In the present study, the KMP-11 gene was extracted from L. tropica by PCR using two oligonucleotide primers designed to amplify the entire coding region of this gene. Then, the purified PCR products were successfully ligated into a high expression vector the pRSET-GFP. This expression vector provides the opportunity to clone the desired insert as a fusion protein with a GFP and a tag, polyhistidine region. The GFP use as a carrier to improve immune response and the polyhistidine tag facilitates detection of the expressed protein with anti-His antibodies and also purification of the protein using affinity purification. After wards KMP-11 coding region was sequenced and the recombinant protein was induced and purified from Escherichia coli cultures. The results of the present study will increase our knowledge about molecular cloning and expression of the L. tropica KMP-11 gene, and this may be used as an effective target for controlling cutenous leishmaniasis.

  2. Molecular cloning and functional characterization of the human endogenous retrovirus K113.

    PubMed

    Beimforde, Nadine; Hanke, Kirsten; Ammar, Ismahen; Kurth, Reinhard; Bannert, Norbert

    2008-02-05

    The human endogenous retrovirus-K113 (HERV-K113) is the most complete HERV known to date. It contains open reading frames for all viral proteins. Depending on ethnicity, up to 30% of the human population carries the provirus on chromosome 19. To facilitate molecular and functional studies, we have cloned the HERV-K113 sequence into a small plasmid vector and characterized its functional properties. Here we show that based on a substantial LTR-promoter activity, full length messenger RNA and spliced env-, rec- and 1.5 kb (hel)-transcripts are produced. The envelope protein of HERV-K113 is synthesized as an 85 kDa precursor that is found partially processed. The accessory Rec protein is highly expressed and accumulates in the nucleus. Expression analysis revealed synthesis of the Gag precursor and the protease. However, the cloned HERV-K113 provirus is not replication competent. It carries inactivating mutations in the reverse transcriptase gene. These mutations can be reversed to reconstitute the active enzyme, but the reversion is not sufficient to reconstitute replication capacity of the virus.

  3. Molecular cloning, overexpression, purification, and sequence analysis of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide.

    PubMed

    Fu, L; Hou, Y L; Ding, X; Du, Y J; Zhu, H Q; Zhang, N; Hou, W R

    2016-08-30

    The complementary DNA (cDNA) of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide (FTL) gene was successfully cloned using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing FTL cDNA and overexpressed it in Escherichia coli using pET28a plasmids. The expressed protein was then purified by nickel chelate affinity chromatography. The cloned cDNA fragment was 580 bp long and contained an open reading frame of 525 bp. The deduced protein sequence was composed of 175 amino acids and had an estimated molecular weight of 19.90 kDa, with an isoelectric point of 5.53. Topology prediction revealed one N-glycosylation site, two casein kinase II phosphorylation sites, one N-myristoylation site, two protein kinase C phosphorylation sites, and one cell attachment sequence. Alignment indicated that the nucleotide and deduced amino acid sequences are highly conserved across several mammals, including Homo sapiens, Cavia porcellus, Equus caballus, and Felis catus, among others. The FTL gene was readily expressed in E. coli, which gave rise to the accumulation of a polypeptide of the expected size (25.50 kDa, including an N-terminal polyhistidine tag).

  4. Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.

    PubMed

    Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro

    2013-08-01

    The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-15

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases.

  6. Molecular cloning and heterologous expression of progesterone 5beta-reductase from Digitalis lanata Ehrh.

    PubMed

    Herl, Vanessa; Fischer, Gabriele; Müller-Uri, Frieder; Kreis, Wolfgang

    2006-02-01

    A full-length cDNA clone that encodes progesterone 5beta-reductase (5beta-POR) was isolated from Digitalis lanata leaves. The reading frame of the 5beta-POR gene is 1170 nucleotides corresponding to 389 amino acids. For expression, a Sph1/Sal1 5beta-POR fragment was cloned into the pQE vector and was transformed into Escherichia coli strain M15[pREP4]. The recombinant gene was functionally expressed and the recombinant enzyme was characterized. The K(m) and v(max) values for the putative natural substrate progesterone were calculated to be 0.120 mM and 45 nkat mg(-1) protein, respectively. Only 5beta-pregnane-3,20-dione but not its alpha-isomer was formed when progesterone was used as the substrate. Kinetic constants for cortisol, cortexone, 4-androstene-3,17-dione and NADPH were also determined. The molecular organization of the 5beta-POR gene in D. lanata was determined by Southern blot analysis. The 5beta-POR is highly conserved within the genus Digitalis and the respective genes and proteins share considerable homology to putative progesterone reductases from other plant species.

  7. Molecular cloning and sequence analysis of a novel chalcone synthase cDNA from Ginkgo biloba.

    PubMed

    Pang, Yongzhen; Shen, Guo-An; Liu, Chenghong; Liu, Xiaojun; Tan, Feng; Sun, Xiaofen; Tang, Kexuan

    2004-08-01

    A chalcone synthase (CHS) gene was cloned from Ginkgo biloba for the first time and it was also the first cloned gene involved in flavonoids metabolic pathway in G. biloba. The full-length cDNA of G. biloba CHS (designated as Gbchs) was 1608bp with poly(A) tailing and it contained a 1173bp open reading frame (ORF) encoding a 391 amino acid protein. Gbchs was found to have extensive homology with those of other plant chs genes via multiple alignments. The active sites of the CoA binding, coumaroyl pocket and cyclization pocket in CHS protein of Medicago sativa were also found in GbCHS. Molecular modeling of GbCHS indicated that the three-dimensional structure of GbCHS strongly resembled that of M. sativa (MsCHS2), implying GbCHS may have similar functions with MsCHS2. Phylogenetic tree analysis revealed that GbCHS had closer relationship with CHSs from gymnosperm plants than from other plants. Gbchs is a useful tool to study the regulation of flavonoids metabolism in G. biloba.

  8. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed Central

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-01

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109

  9. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes.

    PubMed Central

    Swinnen, J V; Joseph, D R; Conti, M

    1989-01-01

    To study the structure and function of cyclic nucleotide phosphodiesterases (PDEs) involved in mammalian gametogenesis, a rat testis cDNA library was screened at low stringency with a cDNA clone coding for the Drosophila melanogaster dunce-encoded PDE as a probe. This screening resulted in the isolation of two groups of cDNA clones, differing in their nucleotide sequences (ratPDE1 and ratPDE2). In the rat testis, RNA transcripts corresponding to both groups of clones were expressed predominantly in germ cells. Additional screenings of a Sertoli cell cDNA library with a ratPDE2 clone as a probe led to the isolation of two more groups of clones (rat-PDE3 and ratPDE4). Unlike ratPDE1 and ratPDE2, these clones hybridized to transcripts present predominantly in the Sertoli cell. In the middle of the coding region, all four groups of clones were homologous to each other. The deduced amino acid sequences of part of this region were also homologous to the D. melanogaster dunce PDE and to PDEs from bovine and yeast. These data indicate that a family of genes homologous to the D. melanogaster dunce-encoded PDE is present in the rat and that these genes are differentially expressed in somatic and germ cells of the seminiferous tubule. These findings provide a molecular basis for the observed heterogeneity of cAMP PDEs. Images PMID:2546153

  10. Molecular cloning, expression, and regulation of the ovalbumin gene in pigeon oviduct epithelial cells.

    PubMed

    Zhang, H; Lu, L Z; Chen, L; Tao, Z R; Chen, F; Zhong, S L; Liu, Y L; Tian, Y; Yan, P S

    2014-01-10

    The full-length pigeon ovalbumin (OVA) gene cDNA was cloned and sequenced by reverse transcription-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends. A 386-amino acid protein was predicted for the obtained sequence, which had 67% identity with the chicken protein. Similar to chicken OVA, the pigeon OVA gene is a non-inhibitory serine protease inhibitor. Quantitative PCR analysis revealed that pigeon OVA mRNA was highly expressed in the oviduct, and trace amounts were detected in other tissues. During the reproductive cycle, pigeon oviduct OVA mRNA expression reached its peak during the egg-laying stage, decreased with brooding, and then increased again during the squab-feeding period. Moreover, the relative OVA expression level in pigeon oviduct epithelial cells could be upregulated by a constant concentration of steroid hormones.

  11. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N

    SciTech Connect

    McAllister, G.; Amara, S.G.; Lerner, M.R. )

    1988-07-01

    Sera from some patients with systemic lupus erythematosus and other autoimmune diseases have antibodies against nuclear antigens. An example is anti-Sm sera, which recognize proteins associated with small nuclear RNA molecules (small nuclear ribonucleoprotein (snRNP) particles). In this paper anti-Sm sera were used to probe immunoblots of various rat tissues. A previously unidentified M{sub r} 28,000 polypeptide was recognized by these anti-Sm sera. This polypeptide, referred to as N, is expressed in a tissue-specific manner, being most abundant in rat brain, less so in heart, and undetectable in the other tissues examined. Immunoprecipitation experiments using antibodies directed against the cap structure of small nuclear RNAs have demonstrated that N is a snRNP-associated polypeptide. Anti-Sm serum was also used to isolate a partial cDNA clone ({lambda}rb91) from a rat brain phage {lambda}gt11 cDNA expression library. A longer cDNA clone was obtained by rescreening the library with {lambda}rb91. In vitro transcription and subsequent translation of this subcloned, longer insert (pGMA2) resulted in a protein product with the same electrophoretic and immunological properties as N, confirming that pGMA2 encodes N. The tissue distribution of N and the involvement of snRNP particles in nuclear pre-mRNA processing may imply a role for N in tissue-specific pre-mRNA splicing.

  12. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase.

    PubMed

    Rahman, N M A; Fu, H T; Sun, S M; Qiao, H; Jin, S; Bai, H K; Zhang, W Y; Liang, G X; Gong, Y S; Xiong, Y W; Wu, Y

    2016-08-29

    Nitric oxide synthase (NOS) produces nitric oxide (NO) by catalyzing the conversion of l-arginine to l-citrulline, with the concomitant oxidation of nicotinamide adenine dinucleotide phosphate. Recently, various studies have verified the importance of NOS invertebrates and invertebrates. However, the NOS gene family in the oriental river prawn Macrobrachium nipponense is poorly understood. In this study, we cloned the full-length NOS complementary DNA from M. nipponense (MnNOS) and characterized its expression pattern in different tissues and at different developmental stages. Real-time quantitative polymerase chain reaction (RT-qPCR) showed the MnNOS gene to be expressed in all investigated tissues, with the highest levels observed in the androgenic gland (P < 0.05). Our results revealed that the MnNOS gene may play a key role in M. nipponense male sexual differentiation. Moreover, RT-qPCR revealed that MnNOS mRNA expression was significantly increased in post-larvae 10 days after metamorphosis (P < 0.05). The expression of this gene in various tissues indicates that it may perform versatile biological functions in M. nipponense.

  13. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench.

    PubMed

    Gupta, Shubhra; Arya, Gulab C; Malviya, Neha; Bisht, Naveen C; Yadav, Dinesh

    2016-08-01

    DNA binding with one finger (Dof) proteins represent a family of plant specific transcription factors associated with diverse biological processes, such as seed maturation and germination, phytohormone and light mediated regulation, and plant responses to biotic and abiotic stresses. In present study, a total of 21 Dof genes from Sorghum bicolor were cloned, sequenced and in silico characterized for homology search, revealing their identity to Dof like proteins. The expression profiling of SbDof genes using quantitative RT-PCR in different tissue types and also under drought and salt stresses was attempted. The SbDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth condition. Two of the SbDof genes namely SbDof8 and SbDof12 showed comparatively high level of transcript abundance in all the tissue types tested; whereas some of the SbDof genes showed a distinct tissue specific expression pattern. Further a total of 13 SbDof genes showed differential expression when subjected to either of the abiotic stress i.e. drought or salinity. Three of the SbDof genes namely SbDof12, SbDof19 and SbDof24 were found to be up-regulated in response to drought and salt stress. Comparative analysis of SbDof genes expression revealed existence of a complex transcriptional and functional diversity across plant growth and developmental stages.

  14. Molecular cloning and expression of the IL-10 gene from guinea pigs.

    PubMed

    Dirisala, Vijaya R; Jeevan, Amminikutty; Bix, Gregory; Yoshimura, Teizo; McMurray, David N

    2012-04-25

    The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project

  15. Molecular Cloning and Characterisation of Farnesyl Pyrophosphate Synthase from Tripterygium wilfordii

    PubMed Central

    Zhao, Yu-Jun; Chen, Xin; Zhang, Meng; Su, Ping; Liu, Yu-Jia; Tong, Yu-Ru; Wang, Xiu-Juan; Huang, Lu-Qi; Gao, Wei

    2015-01-01

    Farnesylpyrophosphate synthase (FPS) catalyzes the biosynthesis of farnesyl pyrophosphate (FPP), which is an important precursor of sesquiterpenoids such as artemisinin and wilfordine. In the present study, we report the molecular cloning and characterization of two full-length cDNAs encoding FPSs from Tripterygium wilfordii (TwFPSs). TwFPSs maintained their capability to synthesise FPP in vitro when purified as recombinant proteins from E. coli. Consistent with the endogenous role of FPS in FPP biosynthesis, TwFPSs were highly expressed in T. wilfordii roots, and were up-regulated upon methyl jasmonate (MeJA) treatment. The global gene expression profiles suggested that the TwFPSs might play an important regulatory role interpenoid biosynthesis in T. wilfordii, laying the groundwork for the future study of the synthetic biology of natural terpene products. PMID:25938487

  16. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)

    PubMed Central

    Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till

    2016-01-01

    European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch’s postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis. PMID:27828961

  17. Molecular cloning of α-2-macroglobulin from hemocytes of common periwinkle Littorina littorea.

    PubMed

    Borisova, Elena A; Gorbushin, Alexander M

    2014-08-01

    We report the sequence of the proteinase inhibitor with a wide inhibition spectrum, α-2-macroglobulin (α2M), belonging to the thioester superfamily of proteins. This is the first α2M sequence from coenogastropod prosobranch snails. The full-length cDNA was cloned by RACE method, spans 7897 bp and contains an open reading frame of 5460 bp. The ORF encodes a protein of 1819 amino acids. The deduced mature protein contains 1795 amino acids with a molecular weight of 200 kDa and isoelectric point of 5.00. Littorina littorea α2M bears 4 conserved α2M domains and one internal thioester. Phylogenetic analysis showed that the sequence forms well supported cluster with Mollusca species and other representatives of Lophotrochozoa.

  18. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV).

    PubMed

    Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till

    2016-01-01

    European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch's postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis.

  19. Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase.

    PubMed Central

    James, E R; McLean, D C; Perler, F

    1994-01-01

    Onchocerca volvulus, a human parasitic nematode, is the third leading cause of preventable blindness worldwide. This study describes the molecular cloning of a novel superoxide dismutase (SOD) from the parasite. This putative O. volvulus extracellular SOD (OvEcSOD) is 628 nucleotides (nt) long, including a 22-nt 5' spliced leader (SL1) and a portion encoding an N-terminal hydrophobic 42-amino-acid signal peptide. The remainder of the cDNA shares 71% identity with an O. volvulus cytosolic SOD sequence and is 3 nt longer. All residues involved in metal ion binding, active site formation, folding, and dimer formation in SODs are conserved. Data indicate the OvEcSOD and O. volvulus cytosolic SOD are separate gene products and that the OvEcSOD appears to possess the characteristics of a membrane-bound or secreted enzyme which may be involved in the parasite defense against phagocyte-generated reactive oxygen species. Images PMID:8300230

  20. Cloning and molecular characterization of hrpX from Xanthomonas axonopodis pv. citri.

    PubMed

    Iwamoto, M; Oku, T

    2000-01-01

    The hrpX gene of plant pathogenic Xanthomonas species is essential for pathogenicity on host plants and to cause hypersensitive reaction on non-host plants. We cloned and analyzed a hrpX homologue, designated hrpXct, of X. axonopodis pv. citri, a pathogen of citrus canker. The open reading frame of hrpXct has 1431 bp in nucleotides which has a coding capacity of 476 amino acid residues with a molecular mass of 52.4 kDa. The predicted amino acid sequence of HrpXct has 90% identity to the AraC family type transcriptional activator protein HrpXc of X. campestris pv. campestris, 95% to HrpXo of X. oryzae pv. oryzae and 97% to X. vesicatoria. These findings clearly indicate and confirm that the structure of the hrpX genes in plant pathogenic Xanthomonas species is highly conserved.

  1. Molecular Cloning and Characterisation of Farnesyl Pyrophosphate Synthase from Tripterygium wilfordii.

    PubMed

    Zhao, Yu-Jun; Chen, Xin; Zhang, Meng; Su, Ping; Liu, Yu-Jia; Tong, Yu-Ru; Wang, Xiu-Juan; Huang, Lu-Qi; Gao, Wei

    2015-01-01

    Farnesylpyrophosphate synthase (FPS) catalyzes the biosynthesis of farnesyl pyrophosphate (FPP), which is an important precursor of sesquiterpenoids such as artemisinin and wilfordine. In the present study, we report the molecular cloning and characterization of two full-length cDNAs encoding FPSs from Tripterygium wilfordii (TwFPSs). TwFPSs maintained their capability to synthesise FPP in vitro when purified as recombinant proteins from E. coli. Consistent with the endogenous role of FPS in FPP biosynthesis, TwFPSs were highly expressed in T. wilfordii roots, and were up-regulated upon methyl jasmonate (MeJA) treatment. The global gene expression profiles suggested that the TwFPSs might play an important regulatory role interpenoid biosynthesis in T. wilfordii, laying the groundwork for the future study of the synthetic biology of natural terpene products.

  2. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis.

  3. Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis.

    PubMed Central

    Verhaert, R M; Riemens, A M; van der Laan, J M; van Duin, J; Quax, W J

    1997-01-01

    Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge. PMID:9292993

  4. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    PubMed Central

    Scheel, Troels K. H.; Kapoor, Amit; Nishiuchi, Eiko; Brock, Kenny V.; Yu, Yingpu; Andrus, Linda; Gu, Meigang; Renshaw, Randall W.; Dubovi, Edward J.; McDonough, Sean P.; Van de Walle, Gerlinde R.; Lipkin, W. Ian; Divers, Thomas J.; Tennant, Bud C.; Rice, Charles M.

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3′-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3′-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3′-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host. PMID:25646476

  5. Molecular cloning and chromosomal localization of human holocarboxylase synthetase, a gene responsible for biotin dependency

    SciTech Connect

    Suzuki, Y.; Aoki, Y.; Ishida, Y.

    1994-09-01

    Holocarboxylase synthetase (HCS) catalyzes biotin incorporation into various carboxylases that require biotin as a prosthetic group. They are acetyl-CoA carboxylase, a rate-limiting enzyme of fatty acid synthesis; pyruvate carboxylase, a key enzyme of gluconeogenesis; propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase, enzymes involved in amino acid catabolism. HCS is therefore involved in various metabolic processes and is a key enzyme for biotin utilization by mammalian cells. Deficiency of HCS in man is known to cause biotin-responsive multiple carboxylase deficiency. Isolation of cDNA clones for the enzyme is essential to understand HCS and its deficiency at the molecular level. We purified bovine liver HCS and sequenced its proteolytic peptides. Degenerative oligonucleotide primers were synthesized from the two peptide sequences and used to amplify a putative HCS cDNA fragment from human liver by PCR. Using the amplified DNA fragment as a probe, we screened {lambda}gt10 human liver cDNA library and isolated 12 positive clones. The isolated cDNAs encoded a protein of 726 amino acids with molecular mass of 80,759. The protein contained several sequences identical or similar to those of peptides derived from the bovine liver HCS. The predicted protein had a homologous region with BirA which acts as both a biotin-[acetyl-CoA-carboxylase] ligase and a biotin repressor in E. coli, suggesting a functional relationship between the two proteins. We expressed the protein using pET3 a vector in E. coli (BL21 strain) and raised antiserum against the expressed protein. The antiserum immunoprecipitated HCS activities of human lymphoblasts and bovine liver. A one-base deletion and a missense mutation were found in cells from siblings with HCS deficiency. The human HCS gene was assigned to chromosome 21, region 21q22.1 by fluorescence in situ hybridization analysis.

  6. Expression and molecular cloning of interferon stimulated genes in buffalo (Bubalus bubalis).

    PubMed

    Thakur, Nipuna; Singh, Girjesh; Paul, A; Bharati, J; Rajesh, G; Gm, Vidyalakshmi; Chouhan, V S; Bhure, S K; Maurya, V P; Singh, G; Sarkar, M

    2017-09-15

    Buffalo, the most important livestock species in tropical India, remains to be a poor breeder mainly due to embryonic mortality (65%) occurring mostly between 16 and 18 days of pregnancy. Early and accurate diagnosis of pregnancy can thus become a boon for successful herd management in buffalo. However, most of the currently available methods allow diagnosis only after 30 days post AI. Interferon tau (IFNT), the first pregnancy recognition signal in ruminants is one such molecule, which stimulates expression of various Interferon stimulated genes (ISGs) in the peripheral blood mononuclear cells (PBMC's) concomitant with IFNT signaling which occurs around maternal recognition of pregnancy (MRP). Hence, the study was planned to demonstrate the expression dynamics of ISGs (OAS1, MX1, MX2 and ISG15) in PBMCs during peri-implantation period in buffalo and also molecular cloning and expression of suitable ISG coded protein (s) in suitable host. Blood was collected from two groups of multiparous buffaloes: Group1: (n = 10) inseminated/pregnant (Experimental) and Group2: (n = 10) anestrous/non pregnant (Control). The expression profile of ISGs was then analyzed using real time qPCR. Expression profile of most ISGs was observed to increase through day 14 to day 20 post AI and declined thereafter. On the basis of differential gene expression at day 18 post AI, OAS1 and MX2 were identified as suitable ISG candidate biomarkers for accurate pregnancy diagnosis within 18 days post AI. Molecular cloning and expression of selected ISGs in a suitable prokaryotic expression vector was done thereafter. Bulk expression of the recombinant proteins was done and purified by affinity chromatography and confirmed by Western blot using Mouse Monoclonal His-probe antibodies. To conclude, as OAS1 and MX2, showed distinct differential expression at day 18 post AI, they may serve as ideal biomarkers for detection of early pregnancy in buffalo. Copyright © 2017 Elsevier Inc. All rights

  7. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  8. DNA Yield From Tissue Samples in Surgical Pathology and Minimum Tissue Requirements for Molecular Testing.

    PubMed

    Austin, Melissa C; Smith, Christina; Pritchard, Colin C; Tait, Jonathan F

    2016-02-01

    Complex molecular assays are increasingly used to direct therapy and provide diagnostic and prognostic information but can require relatively large amounts of DNA. To provide data to pathologists to help them assess tissue adequacy and provide prospective guidance on the amount of tissue that should be procured. We used slide-based measurements to establish a relationship between processed tissue volume and DNA yield by A260 from 366 formalin-fixed, paraffin-embedded tissue samples submitted for the 3 most common molecular assays performed in our laboratory (EGFR, KRAS, and BRAF). We determined the average DNA yield per unit of tissue volume, and we used the distribution of DNA yields to calculate the minimum volume of tissue that should yield sufficient DNA 99% of the time. All samples with a volume greater than 8 mm(3) yielded at least 1 μg of DNA, and more than 80% of samples producing less than 1 μg were extracted from less than 4 mm(3) of tissue. Nine square millimeters of tissue should produce more than 1 μg of DNA 99% of the time. We conclude that 2 tissue cores, each 1 cm long and obtained with an 18-gauge needle, will almost always provide enough DNA for complex multigene assays, and our methodology may be readily extrapolated to individual institutional practice.

  9. Molecular cloning of rat brain Na,K-ATPase alpha-subunit cDNA.

    PubMed Central

    Schneider, J W; Mercer, R W; Caplan, M; Emanuel, J R; Sweadner, K J; Benz, E J; Levenson, R

    1985-01-01

    We have isolated a cDNA clone for the rat brain Na,K-ATPase alpha subunit. A lambda gt11 cDNA expression library constructed from mRNA of 1- and 2-week-old rat brains was screened with an antibody reactive with rat brain Na,K-ATPase. A positive phage clone, lambda rb5, containing a 1200-base-pair cDNA insert expressed a beta-galactosidase-cDNA fusion protein that was reactive by immunoblotting with the Na,K-ATPase antibody. This fusion protein was also reactive in ELISA with a monoclonal antibody directed against the alpha subunit of the Na,K-ATPase. A 27S mRNA species exhibiting sequence hybridization to the cDNA insert of lambda rb5 was identified in rat brain, kidney, and liver, as well as in dog kidney. This 27S mRNA exhibited a tissue-specific pattern of abundance consistent with the relative abundance of Na,K-ATPase polypeptides in vivo: kidney greater than brain greater than liver. In a ouabain-resistant HeLa cell line, C+, which contains minute chromosomes and at least a 10-fold greater number of sodium pumps than parental HeLa cells, DNA sequences complementary to lambda rb5 cDNA were amplified approximately 40-fold. Analysis of the lambda rb5 cDNA sequence demonstrated a perfect nucleotide sequence match between a portion of the cDNA and the amino acid sequence of the Na,K-ATPase alpha-subunit fluorescein isothiocyanate binding site. Taken together, the data presented here demonstrate that the lambda rb5 cDNA clone is a portion of the gene coding for the rat brain Na,K-ATPase alpha subunit. The ATPase gene appears to be present in one or very few copies in the rat and human genomes and to be transcriptionally regulated in different rat tissues. In a ouabain-resistant human cell line, on the other hand, ouabain resistance appears to involve an increase in the number of gene copies coding for the Na,K-ATPase. Images PMID:2994074

  10. The 5' untranslated region of a novel infectious molecular clone of the dicistrovirus cricket paralysis virus modulates infection.

    PubMed

    Kerr, Craig H; Wang, Qing S; Keatings, Kathleen; Khong, Anthony; Allan, Douglas; Yip, Calvin K; Foster, Leonard J; Jan, Eric

    2015-06-01

    Dicistroviridae are a family of RNA viruses that possesses a single-stranded positive-sense RNA genome containing two distinct open reading frames (ORFs), each preceded by an internal ribosome entry site that drives translation of the viral structural and nonstructural proteins, respectively. The type species, Cricket paralysis virus (CrPV), has served as a model for studying host-virus interactions; however, investigations into the molecular mechanisms of CrPV and other dicistroviruses have been limited as an established infectious clone was elusive. Here, we report the construction of an infectious molecular clone of CrPV. Transfection of in vitro-transcribed RNA from the CrPV clone into Drosophila Schneider line 2 (S2) cells resulted in cytopathic effects, viral RNA accumulation, detection of negative-sense viral RNA, and expression of viral proteins. Transmission electron microscopy, viral titers, and immunofluorescence-coupled transwell assays demonstrated that infectious viral particles are released from transfected cells. In contrast, mutant clones containing stop codons in either ORF decreased virus infectivity. Injection of adult Drosophila flies with virus derived from CrPV clones but not UV-inactivated clones resulted in mortality. Molecular analysis of the CrPV clone revealed a 196-nucleotide duplication within its 5' untranslated region (UTR) that stimulated translation of reporter constructs. In cells infected with the CrPV clone, the duplication inhibited viral infectivity yet did not affect viral translation or RNA accumulation, suggesting an effect on viral packaging or entry. The generation of the CrPV infectious clone provides a powerful tool for investigating the viral life cycle and pathogenesis of dicistroviruses and may further understanding of fundamental host-virus interactions in insect cells. Dicistroviridae, which are RNA viruses that infect arthropods, have served as a model to gain insights into fundamental host-virus interactions in

  11. Molecular cloning of osteoma-inducing replication-competent murine leukemia viruses from the RFB osteoma virus stock.

    PubMed Central

    Pedersen, L; Behnisch, W; Schmidt, J; Luz, A; Pedersen, F S; Erfle, V; Strauss, P G

    1992-01-01

    We report the molecular cloning of two replication-competent osteoma-inducing murine leukemia viruses from the RFB osteoma virus stock (M. P. Finkel, C. A. Reilly, Jr., B. O. Biskis, and I. L. Greco, p. 353-366, in C. H. G. Price and F. G. M. Ross, ed., Bone--Certain Aspects of Neoplasia, 1973). Like the original RFB osteoma virus stock, viruses derived from the molecular RFB clones induced multiple osteomas in mice of the CBA/Ca strain. The cloned RFB viruses were indistinguishable by restriction enzyme analysis and by nucleotide sequence analysis of their long-terminal-repeat regions and showed close relatedness to the Akv murine leukemia virus. Images PMID:1326664

  12. Pathologic and molecular aspects of soft tissue sarcomas.

    PubMed

    Czerniak, Bogdan

    2003-04-01

    This article retains the conventional approach to the classification of soft tissue sarcomas, dividing them into several major histogenetic categories based on their overall microscopic appearance, tissue differentiation pattern, and biologic potential. The author advocates a multimodal approach, in which four distinctive data sets--clinical, radiographic, microscopic, and, in some cases, molecular--are considered to establish the diagnosis and treatment plan. Such step-wise analysis is more likely to lead to consistency and accuracy as compared with an intuitive approach based on fragmentary data. The author describes individual lesions of soft tissue as clinicopathologic entities and believes that they can be more accurately diagnosed and appropriately treated with the help of data generated by a multidisciplinary team. In addition, this article emphasizes the need to use emerging molecular techniques that can provide important clues for both diagnosis and prognosis.

  13. Production of Bovine Embryos and Calves Cloned by Nuclear Transfer Using Mesenchymal Stem Cells from Amniotic Fluid and Adipose Tissue.

    PubMed

    da Silva, Carolina Gonzales; Martins, Carlos Frederico; Cardoso, Tereza Cristina; da Cunha, Elisa Ribeiro; Bessler, Heidi Christina; Martins, George Henrique Lima; Pivato, Ivo; Báo, Sônia Nair

    2016-04-01

    The less differentiated the donor cells are used in nuclear transfer (NT), the more easily are they reprogrammed by the recipient cytoplasm. In this context, mesenchymal stem cells (MSCs) appear as an alternative to donor nuclei for NT. The amniotic fluid and adipose tissue are sources of MSCs that have not been tested for the production of cloned embryos in cattle. The objective of this study was to isolate, characterize, and use MSCs derived from amniotic fluid (MSC-AF) and adipose tissue (MSC-AT) to produce cloned calves. Isolation of MSC-AF was performed using in vivo ultrasound-guided transvaginal amniocentesis, and MSC-AT were isolated by explant culture. Cellular phenotypic and genotypic characterization by flow cytometry, immunohistochemistry, and RT-PCR were performed, as well as induction in different cell lineages. The NT was performed using MSC-AF and MSC-AT as nuclear donors. The mesenchymal markers of MSC were expressed in bovine MSC-AF and MSC-AT cultures, as evidenced by flow cytometry, immunohistochemistry, and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes, and adipocytes. Embryo production was similar between the cell types, and two calves were born. The calf from MSC-AT was born healthy, and this fact opens a new possibility of using this type of cell to produce cloned cattle by NT.

  14. Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2.

    PubMed

    Ulyanova, T; Shah, D D; Thomas, M L

    2001-04-27

    We describe the molecular cloning and characterization of a novel myeloid inhibitory siglec, MIS, that belongs to the family of sialic acid-binding immunoglobulin-like lectins. A full-length MIS cDNA was obtained from murine bone marrow cells. MIS is predicted to contain an extracellular region comprising three immunoglobulin-like domains (V-set amino-terminal domain followed by two C-set domains), a transmembrane domain and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. The closest relative of MIS in the siglec family is human siglec 8. Extracellular regions of these two siglecs share 47% identity at the amino acid level. Southern blot analysis suggests the presence of one MIS gene. MIS is expressed in the spleen, liver, heart, kidney, lung and testis tissues. Several isoforms of MIS protein exist due to the alternative splicing. In a human promonocyte cell line, MIS was able to bind Src homology 2-containing protein-tyrosine phosphatases, SHP-1 and SHP-2. This binding was mediated by the membrane-proximal ITIM of MIS. Moreover, MIS exerted an inhibitory effect on FcgammaRI receptor-induced calcium mobilization. These data suggest that MIS can play an inhibitory role through its ITIM sequences.

  15. Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes.

    PubMed

    Picelli, Carina G; Borges, Rafael J; Fernandes, Carlos A H; Matioli, Fabio M; Fernandes, Carla F C; Sobrinho, Juliana C; Holanda, Rudson J; Ozaki, Luiz S; Kayano, Anderson M; Calderon, Leonardo A; Fontes, Marcos R M; Stábeli, Rodrigo G; Soares, Andreimar M

    2017-10-01

    Phospholipases A2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIβ and PLIγ. Phospholipases A2 (PLA2s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    PubMed

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.

  17. Molecular cloning and characterization of two hypersensitive induced reaction genes from wheat infected by stripe rust pathogen

    USDA-ARS?s Scientific Manuscript database

    A novel gene induced during hypersensitive reaction (HIR) in wheat was identified using in silico cloning and designated as TaHIR2. The TaHIR2 gene was deduced to encode a 284-amino acid protein, whose molecular mass and isoelectric point (pI) were 31.05 kD and 5.18, respectively. Amino acid sequenc...

  18. Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections.

    PubMed

    Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus

    2016-11-08

    Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved

  19. Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs.

    PubMed Central

    Wright, L M; Van Damme, E J; Barre, A; Allen, A K; Van Leuven, F; Reynolds, C D; Rouge, P; Peumans, W J

    1999-01-01

    Two lectins have been isolated from bluebell (Scilla campanulata) bulbs. From their isolation by affinity chromatography, they are characterized as a mannose-binding lectin (SCAman) and a fetuin-binding lectin (SCAfet). SCAman preferentially binds oligosaccharides with alpha(1,3)- and alpha(1,6)-linked mannopyranosides. It is a tetramer of four identical protomers of approx. 13 kDa containing 119 amino acid residues; it is not glycosylated. The fetuin-binding lectin (SCAfet), which is not inhibited by any simple sugars, is also unglycosylated. It is a tetramer of four identical subunits of approx. 28 kDa containing 244 residues. Each 28 kDa subunit is composed of two 14 kDa domains. Both lectins have been cloned from a cDNA library and sequenced. X-ray crystallographic analysis and molecular modelling studies have demonstrated close relationships in sequence and structure between these lectins and other monocot mannose-binding lectins. A refined model of the molecular evolution of the monocot mannose-binding lectins is proposed. PMID:10229686

  20. Datura stramonium agglutinin: cloning, molecular characterization and recombinant production in Arabidopsis thaliana.

    PubMed

    Nishimoto, Keisuke; Tanaka, Kaori; Murakami, Takahiro; Nakashita, Hideo; Sakamoto, Hikaru; Oguri, Suguru

    2015-02-01

    Datura stramonium seeds contain at least three chitin-binding isolectins [termed Datura stramonium agglutinin (DSA)] as homo- or heterodimers of A and B subunits. We isolated a cDNA encoding isolectin B (DSA-B) from an immature fruit cDNA library; this contained an open reading frame encoding 279 deduced amino acids, which was confirmed by partial sequencing of the native DSA-B peptide. The sequence consisted of: (i) a cysteine (Cys)-rich carbohydrate-binding domain composed of four conserved chitin-binding domains and (ii) an extensin-like domain of 37 residues containing four SerPro4-6 motifs that was inserted between the second and third chitin-binding domains (CBDs). Although each chitin-binding domain contained eight conserved Cys residues, only the second chitin-binding domain contained an extra Cys residue, which may participate in dimerization through inter-disulfide bridge formation. Using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, the molecular mass of homodimeric lectin composed of two B-subunits was determined as 68,821 Da. The molecular mass of the S-pyridilethylated B-subunit were found to be 37,748 Da and that of the de-glycosylated form was 26,491 Da, which correlated with the molecular weight estimated from the deduced sequence. Transgenic Arabidopsis plants overexpressing the dsa-b demonstrated hemagglutinating activity. Recombinant DSA-B was produced as a homodimeric glycoprotein with a similar molecular mass to that of the native form. Moreover, the N-terminus of the purified recombinant DSA-B protein was identical to that of the native DSA-B, confirming that the cloned cDNA encoded DSA-B.

  1. Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein

    SciTech Connect

    Franke, W.W.; Goldschmidt, M.D.; Zimbelmann, R.; Mueller, H.M.; Schiller, D.L.; Cowin, P. )

    1989-06-01

    Plakoglobin is a major cytoplasmic protein that occurs in a soluble and a membrane-associated form and is the only known constituent common to the submembranous plaques of both kinds of adhering junctions, the desmosomes and the intermediate junctions. Using a partial cDNA clone for bovine plakoglobin, the authors isolated cDNAs encoding human plakoglobin, determined its nucleotide sequence, and deduced the complete amino acid sequence. The polypeptide encoded by the cDNA was synthesized by in vitro transcription and translation and identified by its comigration with authentic plakoglobin in two-dimensional gel electrophoresis. The identity was further confirmed by comparison of the deduced sequence with the directly determined amino acid sequence of two fragments from bovine plakoglobin. Analysis of the plakoglobin sequence showed the protein to be unrelated to any other known proteins, highly conserved between human and bovine tissues, and characterized by numerous changes between hydrophilic and hydrophobic sections. Only one kind of plakoglobin mRNA was found in most tissues, but an additional mRNA was detected in certain human tumor cell lines. This longer mRNA may be represented by a second type of plakoglobin cDNA, which contains an insertion of 297 nucleotides in the 3{prime} noncoding region.

  2. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  3. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet.

    PubMed

    Wang, Sheng-ping; Gao, Yun-ling; Liu, Gang; Deng, Dun; Chen, Rong-jun; Zhang, Yu-zhe; Li, Li-li; Wen, Qing-qi; Hou, Yong-qing; Feng, Ze-meng; Guo, Zhao-hui

    2015-06-01

    The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation.

  4. Cloning and molecular characterization of phospholipase D (PLD) delta gene from longan (Dimocarpus longan Lour.).

    PubMed

    You, Xiangrong; Zhang, Yayuan; Li, Li; Li, Zhichun; Li, Mingjuan; Li, Changbao; Zhu, Jianhua; Peng, Hongxiang; Sun, Jian

    2014-07-01

    Longan (Dimocarpus longan Lour.) is a non-climacteric fruit with a short postharvest life. The regulation of phospholipase D (PLD) activity closely relates to postharvest browning and senescence of longan fruit. In this study, a novel cDNA clone of longan PLDδ (LgPLDδ) was obtained and registered in GenBank (accession No. JF791814). The deduced amino acid sequence possessed all of the three typical domains of plant PLDs, a C2 domain and two catalytic HxKxxxxD motifs. The tertiary structure of LgPLDδ was further predicted. The western blot result showed that the LgPLDδ protein was specifically recognized by PLDδ antibody. The Q-RT-PCR (real-time quantitative PCR) result showed that the level of LgPLDδ mRNA expression was higher in senescent tissues than in developing tissues, which was also high in postharvest fruit. The western-blotting result further certified the different expression of LgPLDδ. These results provided a scientific basis for further investigating the mechanism of postharvest longan fruit adapting to environmental stress.

  5. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet*

    PubMed Central

    Wang, Sheng-ping; Gao, Yun-ling; Liu, Gang; Deng, Dun; Chen, Rong-jun; Zhang, Yu-zhe; Li, Li-li; Wen, Qing-qi; Hou, Yong-qing; Feng, Ze-meng; Guo, Zhao-hui

    2015-01-01

    The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation. PMID:26055914

  6. Molecular cloning and characterization of the anti-obesity gene adipose in pig.

    PubMed

    Wu, Yanling; Long, Qinqiang; Feng, Bin; Zhu, Xiaoyue; Zheng, Zifeng; Gao, Sumin; Gao, Mingju; Gan, Li; Zhou, Lei; Yang, Zaiqing

    2012-11-01

    Obesity has become an epidemic health problem characterized by aberrant energy metabolism. As the major player in energy homeostasis, adipose tissue has a decisive role in the development of obesity. Many genes involved in adipogenesis are also correlated with obesity. Adipose (Adp) has been established as an anti-obesity gene to repress adipogenesis and fat accumulation in mice, which inhibits the transcriptional activity of PPARγ by forming a chromatin remodeling complex with histones and HDAC3. Here, we reported the cloning and characterization of the pig Adp gene. Pig Adp cDNA had an ORF of 2034 nucleotides and was highly conserved among various species. Genomic sequence analysis indicated that pig Adp gene contains 16 exons and 15 introns, spanning more than 60kb on chromosome 6q21-24. The expression of pig Adp was high in testis, lung, kidney and adipose tissues, and relatively low in skeletal muscle. Bioinformatic analysis of 5'-flanking region of Adp has identified several potential binding sites for pivotal transcriptional factors related to both adipocyte differentiation and inflammation, highlighting the significance of Adp in energy metabolism. We have confirmed that KLF6, a positive regulator of adipogenesis, can enhance the promoter activity of Adp and up-regulate its mRNA expression. Taken together, our results would be helpful for further study of Adp regulation in the process of fat accumulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Molecular cloning of MER-2, a human chromosome-11-encoded red blood cell antigen, using linkage of cotransfected markers.

    PubMed

    Bill, J; Palmer, E; Jones, C

    1987-09-01

    We report the molecular cloning of a human gene MER-2 located on chromosome 11 that encodes a cell surface antigen which is polymorphic on red blood cells. An essential element of the cloning strategy was cotransfection-induced linkage of pSV2-neo, which encodes resistance to the antibiotic G418, to the human MER-2 gene. An important feature of the pSV2-neo construct is that the same gene (the transposon, Tn5) that encodes G418 resistance in eukaryotic cells confers neomycin resistance in bacteria. Chinese hamster ovary (CHO) cells were cotransfected with pSV2-neo and genomic DNA from a CHO X human cell hybrid containing a single human chromosome (chromosome 11). Transfectants expressing both the human MER-2 gene and G418 resistance were isolated by selection in the antibiotic G418, followed by indirect immunofluorescence using the monoclonal antibody 1D12, which recognizes the MER-2 antigen, manual enrichment, and single-cell cloning. Genomic DNA from a primary transfectant positive for MER-2 expression and G418 resistance was used to construct a cosmid library and cosmid clones able to grow in neomycin were isolated. Of 150,000 cosmid clones screened, 90 were resistant to neomycin and of these, 11 contained human repetitive sequences. Five neomycin-resistant cosmid clones containing human repetitive DNA were able to transfect CHO cells for G418 resistance and MER-2 expression.

  8. Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat.

    PubMed Central

    Siebelink, K H; Chu, I H; Rimmelzwaan, G F; Weijer, K; Osterhaus, A D; Bosch, M L

    1992-01-01

    Replication-competent molecular clones of feline immunodeficiency virus (FIV) were isolated directly from the DNA of bone marrow cells of a naturally FIV-infected cat. After transfection in a feline kidney cell line (CrFK) and subsequent cocultivation with peripheral blood mononuclear cells (PBMC), the viral progeny of the clones was infectious for PBMC but not for CrFK cells. PBMC infected with these clones showed syncytium formation, a decrease in cell viability, and gradual loss of CD4+ cells. The restriction maps of these clones differed from those obtained for previously described molecular clones of FIV derived from cats in the United States. The predicted amino acid sequence similarity of the envelope genes of the two clones was 99.3%, whereas the similarities of the sequences of the clones to those of two molecular clones from the United States, Petaluma and PPR, were 86 and 88%, respectively. Most of the differences between the amino acid sequences of the two clones and those of the clones from the United States were found in five different hypervariable (HV) regions, HV-1 through HV-5. The viral progeny of one of these clones was inoculated into two specific-pathogen-free cats. The animals seroconverted, and the virus could be reisolated from their PBMC. Images PMID:1309891

  9. Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla.

    PubMed

    Zhang, Mengyan; Wang, Siyao; Yin, Jing; Li, Chunxiao; Zhan, Yaguang; Xiao, Jialei; Liang, Tian; Li, Xin

    2016-09-01

    Betula platyphylla is a rich repository of pharmacologically active secondary metabolites known as birch triterpenoids (TBP). Here, we cloned the squalene synthase (SS) and squalene epoxidase genetic (SE) sequences from B. platyphylla that encode the key enzymes that are involved in triterpenoid biosynthesis and analyzed the conserved domains and phylogenetics of their corresponding proteins. The full-length sequence of BpSS is 1588 bp with a poly-A tail, which contained an open reading frame (ORF) of 1241 bp that encoded a protein of 413 amino acids. Additionally, the BpSE full-length sequence of 2040 bp with a poly-A tail was also obtained, which contained an ORF of 1581 bp encoding a protein of 526 amino acids. Their organ-specific expression patterns in 4-week-old tissue culture seedlings of B. platyphylla were detected by real-time PCR and showed that they were all highly expressed in leaves, as compared to stem and root tissues. Additionaly, both BpSS and BpSE were enhanced following stimulation with ethephon and MeJA. The expression of BpSS was enhanced by ABA, whereas BpSE was not. The SA treatment did not affect the BpSS and BpSE transcripts notably. Using a genome walking approach, promoter sequences of 965 and 1193 bp, respectively, for BpSS and BpSE were isolated, and they revealed several key cis-regulatory elements known to be involved in the response to phytohormone and abiotic plant stress. We also found that the BpSS protein is localized in the cytoplasm. Opening reading frames of BpSS and BpSE were ligated into yeast expression plasmid pYES2 under control of GAL1 promoter and introduced into the yeast INVScl1 strain. The transformants were cultured for 12 h, the squalene content of galactose-induced BpSS expression yeast cells was 13.2 times of control (empty vector control yeast cells) by high-performance liquid chromatography (HPLC) test method. And, the squalene epoxidase activity of induced BpSE expression yeast cell was about 11.8 times

  10. Functional analysis and molecular modeling of a cloned urate transporter/channel.

    PubMed

    Leal-Pinto, E; Cohen, B E; Abramson, R G

    1999-05-01

    Recombinant protein, designated UAT, prepared from a cloned rat renal cDNA library functions as a selective voltage-sensitive urate transporter/channel when fused with lipid bilayers. Since we previously suggested that UAT may represent the mammalian electrogenic urate transporter, UAT has been functionally characterized in the presence and absence of potential channel blockers, several of which are known to block mammalian electrogenic urate transport. Two substrates, oxonate (a competitive uricase inhibitor) and pyrazinoate, that inhibit renal electrogenic urate transport also block UAT activity. Of note, oxonate selectively blocks from the cytoplasmic side of the channel while pyrazinoate only blocks from the channel's extracellular face. Like oxonate, anti-uricase (an electrogenic transport inhibitor) also selectively blocks channel activity from the cytoplasmic side. Adenosine blocks from the extracellular side exclusively while xanthine blocks from both sides. These effects are consistent with newly identified regions of homology to uricase and the adenosine A1/A3 receptor in UAT and localize these homologous regions to the cytoplasmic and extracellular faces of UAT, respectively. Additionally, computer analyses identified four putative alpha-helical transmembrane domains, two beta sheets, and blocks of homology to the E and B loops of aquaporin-1 within UAT. The experimental observations substantiate our proposal that UAT is the molecular representation of the renal electrogenic urate transporter and, in conjunction with computer algorithms, suggest a possible molecular structure for this unique channel.

  11. Molecular cloning and characterization of CD4 in an aquatic mammal, the white whale Delphinapterus leucas.

    PubMed

    Romano, T A; Ridgway, S H; Felten, D L; Quaranta, V

    1999-05-01

    Given the importance of the cell surface recognition protein, CD4, in immune function, the cloning and characterization of CD4 at the molecular level from an odontocete cetacean, the white whale (Delphinapterus leucas), was carried out. Whale CD4 cDNA contains 2662 base pairs and translates into a protein containing 455 amino acids. Whale CD4 shares 64% and 51% identity with the human and mouse CD4 protein, respectively, and is organized in a similar manner. Unlike human and mouse, however, the cytoplasmic domain, which is highly conserved, contains amino acid substitutions unique to whale. Moreover, only one of the seven potential N-linked glycosylation sites present in whale is shared with human and mouse. Evolutionarily, the whale CD4 sequence is most similar to pig and structurally similar to dog and cat, in that all lack the cysteine pair in the V2 domain. These differences suggest that CD4 may have a different secondary structure in these species, which may affect binding of class II and subsequent T-cell activation, as well as binding of viral pathogens. Interestingly, as a group, species with these CD4 characteristics all have high constitutive expression of class II molecules on T lymphocytes, suggesting potential uniqueness in the interaction of CD4, class II molecules, and the immune response. Molecular characterization of CD4 in an aquatic mammal provides information on the CD4 molecule itself and may provide insight into adaptive evolutionary changes of the immune system.

  12. Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon.

    PubMed

    Arts, Joop A J; Cornelissen, Ferry H J; Cijsouw, Tony; Hermsen, Trudi; Savelkoul, Huub F J; Stet, René J M

    2007-09-01

    Invertebrates rely completely for their protection against pathogens on the innate immune system. This non-self-recognition is activated by microbial cell wall components with unique conserved molecular patterns. Pathogen-associated molecular patterns (PAMPs) are recognised by pattern recognition receptors (PRRs). Toll and its mammalian homologs Toll-like receptors are cell-surface receptors acting as PRRs and involved in the signalling pathway implicated in their immune response. Here we describe a novel partial Toll receptor gene cloned from a gill library of the giant tiger shrimp, Penaeus monodon, using primers based on the highly conserved Toll/IL-1R (TIR) domain. The deduced amino acid sequence of the P. monodon Toll (PmToll) shows 59% similarity to a Toll-related protein of Apis mellifera. Analysis of the LRRs of shrimp Toll contained no obvious PAMP-binding insertions. Phylogenetic analysis with the insect Toll family shows clustering with Toll1 and Toll5 gene products, and it is less related to Toll3 and Toll4. Furthermore, RT-qPCR shows that PmToll is constitutively expressed in gut, gill and hepatopancreas. Challenge with white spot syndrome virus (WSSV) shows equal levels of expression in these organs. A role in the defence mechanism is discussed. In conclusion, shrimp possess at least one Toll receptor that might be involved in immune defence.

  13. Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase.

    PubMed

    Linassier, C; MacDougall, L K; Domin, J; Waterfield, M D

    1997-02-01

    Molecular, biochemical and genetic characterization of phosphoinositide 3-kinases (PI3Ks) have identified distinct classes of enzymes involved in processes mediated by activation of cell-surface receptors and in constitutive intracellular protein trafficking events. The latter process appears to involve a PtdIns-specific PI3K first described in yeast as a mutant, vps34, defective in the sorting of newly synthesized proteins from the Golgi to the vacuole. We have identified a representative member of each class of PI3Ks in Drosophila using a PCR-based approach. In the present paper we describe the molecular cloning of a PI3K from Drosophila, P13K_59F, that shows sequence similarity to Vps34. PI3K_59F encodes a protein of 108 kDa co-linear with Vps34 homologues, and with three regions of sequence similarity to other PI3Ks. Biochemical characterization of the enzyme, by expression of the complete coding sequence as a glutathione S-transferase fusion protein in Sf9 cells, demonstrates that PI3K_59F is a PtdIns-specific PI3K that can utilize either Mg2+ or Mn2+. This activity is sensitive to inhibition both by non-ionic detergent (Nonidet P40) and by wortmannin (IC50 10 nM). PI3K_59F, therefore, conserves both the structural and biochemical properties of the Vps34 class of enzymes.

  14. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  15. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus

    PubMed Central

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M.; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C.; Young, Neal S.

    2015-01-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools. PMID:25962353

  16. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus.

    PubMed

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C; Young, Neal S

    2015-08-15

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools.

  17. Molecular cloning, computational analysis and expression pattern of forkhead box l2 (Foxl2) gene in catfish.

    PubMed

    Bhat, Irfan Ahmad; Rather, Mohd Ashraf; Dar, Jaffer Yousuf; Sharma, Rupam

    2016-10-01

    Foxl2 belongs to forkhead/HNF-3-related family of transcription factors which is involved in ovarian differentiation and development. In present study, the Foxl2 mRNA was cloned from ovary of C. batrachus. The full length cDNA sequence of the Foxl2 was 1056bp which consists of 5' (41bp) and 3' (106bp) non-coding regions, as well as a 909bp of open reading frame (ORF) that encodes 302 amino acids. The putative protein was having the theoretical molecular weight (MW) of 34.018kD and a calculated isoelectric point (pI) of 9.38. There were 11 serine (Ser), 5 threonine (Thr), and 5 tyrosine (Tyr) phosphorylation sites and 2 putative N-glycosylation sites on the predicted protein. The ligand binding sites were predicted to be present on amino acids 42, 49, 50, 91, 92 and 95 respectively. The signal peptide analysis predicted that C. batrachus Foxl2 is a non-secretory protein. The hydropathy profile of Foxl2 protein revealed that this protein is hydrophilic in nature. Protein-protein interaction demonstrated that Foxl2 protein chiefly interacts with cytochrome P450 protein family. The mRNA transcript analysis of various tissues indicated that the C. batrachus Foxl2 mRNA was more expressed in the brain, pituitary and ovary in female while, the former two tissues and testis showed low expression in male. This study provides a basis for further structural and functional exploration of the Foxl2 from C. batrachus, including its deduced protein and its signal transduction function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    SciTech Connect

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.

  19. Molecular cloning and characterization of the human beta-like globin gene cluster.

    PubMed

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  20. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.

    PubMed

    Jia, Xiao-Yun; Xu, Chong-Yi; Jing, Rui-Lian; Li, Run-Zhi; Mao, Xin-Guo; Wang, Ji-Ping; Chang, Xiao-Ping

    2008-01-01

    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca(2+)-binding protein in multicellular eukaryotes. CRT plays a crucial role in many cellular processes including Ca(2+) storage and release, protein synthesis, and molecular chaperone activity. To elucidate the function of CRTs in plant responses against drought, a main abiotic stress limiting cereal crop production worldwide, a full-length cDNA encoding calreticulin protein namely TaCRT was isolated from wheat (Triticum aestivum L.). The deduced amino acid sequence of TaCRT shares high homology with other plant CRTs. Phylogenetic analysis indicates that TaCRT cDNA clone encodes a wheat CRT3 isoform. Southern analysis suggests that the wheat genome contains three copies of TaCRT. Subcellular locations of TaCRT were the cytoplasm and nucleus, evidenced by transient expression of GFP fused with TaCRT in onion epidermal cells. Enhanced accumulation of TaCRT transcript was observed in wheat seedlings in response to PEG-induced drought stress. To investigate further whether TaCRT is involved in the drought-stress response, transgenic plants were constructed. Compared to the wild-type and GFP-expressing plants, TaCRT-overexpressing tobacco (Nicotiana benthamiana) plants grew better and exhibited less wilt under the drought stress. Moreover, TaCRT-overexpressing plants exhibited enhanced drought resistance to water deficit, as shown by their capacity to maintain higher WUE (water use efficiency), WRA (water retention ability), RWC (relative water content), and lower MDR (membrane damaging ratio) (P < or = 0.01) under water-stress conditions. In conclusion, a cDNA clone encoding wheat CRT was successfully isolated and the results suggest that TaCRT is involved in the plant response to drought stress, indicating a potential in the transgenic improvements of plant water-stress.

  1. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    PubMed

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis.

  2. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    PubMed Central

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-01-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrains fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologs OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  3. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  4. Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389

  5. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley.

    PubMed

    Kwasniewski, Miroslaw; Szarejko, Iwona

    2006-07-01

    Root hairs are specialized epidermal cells that play a role in the uptake of water and nutrients from the rhizosphere and serve as a site of interaction with soil microorganisms. The process of root hair formation is well characterized in Arabidopsis (Arabidopsis thaliana); however, there is a very little information about the genetic and molecular basis of root hair development in monocots. Here, we report on isolation and cloning of the beta-expansin (EXPB) gene HvEXPB1, tightly related to root hair initiation in barley (Hordeum vulgare). Using root transcriptome differentiation in the wild-type/root-hairless mutant system, a cDNA fragment present in roots of wild-type plants only was identified. After cloning of full-length cDNA and genomic sequences flanking the identified fragment, the subsequent bioinformatics analyses revealed homology of the protein coded by the identified gene to the EXPB family. Reverse transcription-PCR showed that expression of HvEXPB1 cosegregated with the root hair phenotype in F2 progeny of the cross between the hairless mutant rhl1.a and the wild-type Karat parent variety. Expression of the HvEXPB1 gene was root specific; it was expressed in roots of wild-type forms, but not in coleoptiles, leaves, tillers, and spikes. The identified gene was active in roots of two other analyzed root hair mutants: rhp1.a developing root hair primordia only and rhs1.a with very short root hairs. Contrary to this, a complete lack of HvEXPB1 expression was observed in roots of the spontaneous root-hairless mutant bald root barley. All these observations suggest a role of the HvEXPB1 gene in the process of root hair formation in barley.

  6. Molecular cloning and characterization of two genes encoding 2-Cys peroxiredoxins from Fasciola gigantica.

    PubMed

    Chaithirayanon, Kulathida; Sobhon, Prasert

    2010-06-01

    In Fasciola species, peroxiredoxin (Prx) serves as the major antioxidant enzyme to remove hydrogen peroxide that is generated from various metabolic reactions, because the parasites lack catalase, and only express glutathione peroxidases at minimal levels. We have cloned and characterized two genes, FgPrx-1 and FgPrx-2, belonging to the 2-Cys Prx family, by immunoscreening of an expressed adult stage Fasciola gigantica cDNA library using a rabbit anti-serum against its tegumental antigens. Predicted FgPrx-1 and FgPrx-2 consisted of 218 amino acids each with predicted molecular weights at 24.63 kDa and 24.57 kDa, respectively. The two predicted F. gigantica Prx proteins exhibited 98% identity to each other, and 52% identity to Prx from oxen which is the natural host. A phylogenetic analysis revealed that FgPrx-1 and FgPrx-2 appear to be closely related to those of Fasciola hepatica. The nucleotide sequences of FgPrx-2 are 654 bp, which is similar to that cloned from newly excysted juveniles of F. hepatica. The FgPrx genes were found to be constitutively expressed in all developmental stages, and with a similar pattern. In the adult parasite, FgPrx transcripts were located in the gut epithelial cells, tegument cells, and cells of reproductive organs, including prostate gland, vitelline glands, testis and ovary. In 4-week-old juveniles, a similar distribution pattern was observed. Metacercaria and newly excysted juveniles exhibited strongest signals for mRNA transcripts in the gut epithelium, and moderately in the tegumental cells. Because of their key role in protecting the parasite and specificities, these proteins may have immunodiagnostic as well as vaccine potentials. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Molecular cloning, over expression and characterization of thermoalkalophilic esterases isolated from Geobacillus sp.

    PubMed

    Tekedar, Hasan Cihad; Sanlı-Mohamed, Gülşah

    2011-03-01

    Due to potential use for variety of biotechnological applications, genes encoding thermoalkalophilic esterase from three different Geobacillus strains isolated from thermal environmental samples in Balçova (Agamemnon) geothermal site were cloned and respective proteins were expressed in Escherichia coli (E.coli) and characterized in detail. Three esterases (Est1, Est2, Est3) were cloned directly by PCR amplification using consensus degenerate primers from genomic DNA of the strains Est1, Est2 and Est3 which were from mud, reinjection water and uncontrolled thermal leak, respectively. The genes contained an open reading frame (ORF) consisting of 741 bp for Est1 and Est2, which encoded 246 amino acids and ORF of Est3 was 729 bp encoded 242 amino acids. The esterase genes were expressed in E. coli and purified using His-Select HF nickel affinity gel. The molecular mass of the recombinant enzyme for each esterase was approximately 27.5 kDa. The three esterases showed high specific activity toward short chain p-NP esters. Recombinant Est1, Est2, Est3 have exhibited similar activity and the highest esterase activity of 1,100 U/mg with p-nitrophenyl acetate (pNPC(2)) as substrate was observed with Est1. All three esterase were most active around 65°C and pH 9.5-10.0. The effect of organic solvents, several metal ions, inhibitors and detergents on enzyme activity for purified Est1, Est2, Est3 were determined separately and compared.

  8. Molecular cloning and transcriptional analysis of a NPY receptor-like in common Chinese cuttlefish Sepiella japonica

    NASA Astrophysics Data System (ADS)

    Yang, Jingwen; Xu, Yuchao; Xu, Ke; Ping, Hongling; Shi, Huilai; Lü, Zhenming; Wu, Changwen; Wang, Tianming

    2017-08-01

    Neuropeptide Y (NPY) has a pivotal role in the regulation of many physiological processes. In this study, the gene encoding a NPY receptor-like from the common Chinese cuttlefish Sepiella japonica (SjNPYR-like) was identified and characterized. The full-length SjNPYR-like cDNA was cloned containing a 492-bp of 5' untranslated region (UTR), 1 182 bp open reading frame (ORF) encoding a protein of 393 amino acid residues, and 228 bp of 3' UTR. The putative protein was predicted to have a molecular weight of 45.54 kDa and an isoelectric point (pI) of 8.13. By informatic analyses, SjNPYR-like was identified as belonging to the class A G protein coupled receptor (GPCR) family (the rhodopsin-type). The amino acid sequence contained 12 potential phosphorylation sites and five predicted N-linked glycosylation sites. Multiple sequence alignment and 3D structure modeling were conducted to clarify SjNPYR bioinformatics characteristics. Phylogenetic analysis identifies it as an NPYR with identity of 33% to Lymnaea stagnalis NPFR. Transmembrane properties of SjNPYR-like were demonstrated in vitro using HEK293 cells and the pEGFP-N1 plasmid. Relative quantification of SjNPYR-like mRNA level confirmed a high level expression and broad distribution of SjNPYR - like in various tissues of female S. japonica. In addition, the transcriptional profile of SjNPYR - like in the brain, liver, and ovary during gonadal development was analyzed. The results provide basic understanding on the molecular characteristics of SjNPYR-like and its potentially physical functions.

  9. Full-length cDNA cloning, molecular characterization and differential expression analysis of peroxiredoxin 6 from Ovis aries.

    PubMed

    Liu, Nan-Nan; Liu, Zeng-Shan; Lu, Shi-Ying; Hu, Pan; Li, Yan-Song; Feng, Xiao-Li; Zhang, Shou-Yin; Wang, Nan; Meng, Qing-Feng; Yang, Yong-Jie; Tang, Feng; Xu, Yun-Ming; Zhang, Wen-Hui; Guo, Xing; Chen, Xiao-Feng; Zhou, Yu; Ren, Hong-Lin

    2015-04-15

    Peroxiredoxin 6 (Prdx6), an important antioxidant enzyme that can eliminate reactive oxygen species (ROS) to maintain homeostasis, is a bifunctional protein that possesses the activities of both glutathione peroxidase and phospholipase A2. In this study, a novel full-length Prdx6 cDNA (OaPrdx6) was cloned from Sheep (Ovis aries) using rapid amplification of cDNA ends (RACE). The full-length cDNA of OaPrdx6 was 1753bp containing a 5'-untranslated region (UTR) of 93bp, a 3'-UTR of 985bp with a poly(A) tail, and an open reading frame (ORF) of 675bp encoding a protein of 224 amino acid residues with a predicted molecular weight of 25.07kDa. The recombinant protein OaPrdx6 was expressed and purified, and its DNA protection activity was identified. In order to analyze the Prdx6 protein expression in tissues from O. aries, monoclonal antibodies against OaPrdx6 were prepared. Western blotting results indicated that OaPrdx6 protein could be detected in heart, liver, spleen, lung, kidney, stomach, intestine, muscle, lymph node and white blood cells, and the highest expression was found in lung while the lowest expression in muscle. Compared to the normal sheep group, the mRNA transcription level of Prdx6 in buffy coat was up-regulated in the group infected with a virulent field strain of Brucella melitensis, and down-regulated in the group inoculated with a vaccine strain S2 of brucellosis. The results indicated that Prdx6 was likely to be involved in the host immune responses against Brucella infection, and probably regarded as a molecular biomarker for distinguishing between animals infected with virulent Brucella infection and those inoculated with vaccine against brucellosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  11. Molecular cloning and characterization of kiss1 in Brandt's voles (Lasiopodomys brandtii).

    PubMed

    Chen, Yan; Liu, Lan; Li, Zhengguang; Wang, Dawei; Li, Ning; Song, Ying; Guo, Cong; Liu, Xiaohui

    2017-06-01

    Kisspeptin, encoded by kiss1, has been regarded as a major modulator of mammalian puberty and fertility due to its stimulation on GnRH. Brandt's vole is one of the main pest species on the Inner Mongolian steppes for its striking reproductive capacity and kiss1 is a key candidate gene related to reproductive regulatory cascades. In this study, kiss1 cDNA was cloned from the hypothalamus of Brandt's voles and kiss1 mRNA levels were investigated in different tissues, and at different developmental stages, using high-throughput real-time PCR. The full-length kiss1 cDNA was 682bp, containing an ORF of 405bp, encoding 134 amino acids with a conserved kisspeptin-10 region. Kiss1 mRNA was specifically expressed in ovary, testicle, small intestine, kidney, liver and hypothalamus tissues, and was undetectable in other tissues, including pituitary, heart, adrenal gland, bladder and uterus. Sexual organs of both male and female voles enter a period of rapid development in the postnatal 4weeks and reach or approach sexual maturity by 8weeks after birth. Kiss1 mRNA levels in the hypothalamus did not show a significant difference between week 2 and week 4, indicating kiss1 mRNA levels may not be related to the rapid growth of the sexual organs in early developmental stages. Kiss1 transcripts significantly increased in both sexes 8weeks after birth, and then were maintained at high levels in adults, indicating its possible role in the onset of puberty and maintaining of reproductive activity. These results are helpful to further the study of kiss1 function in reproductive regulation of Brandt's voles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  13. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet.

    PubMed

    Chiou, T J; Bush, D R

    1996-02-01

    Several plant genes have been cloned that encode members of the sugar transporter subgroup of the major facilitator superfamily of transporters. Here we report the cloning, expression, and membrane localization of one of these porters found in sugar beet (Beta vulgaris L.). This clone, cDNA-1, codes for a protein with 490 amino acids and an estimated molecular mass of 54 kD. The predicted membrane topology and sequence homology suggest that cDNA-1 is a member of the sugar transporter family. RNA gel blot analysis revealed that this putative sugar transporter is expressed in all vegetative tissues and expression increases with development in leaves. DNA gel blot analysis indicated that multiple gene copies exist for this putative sugar transporter in the sugar beet genome. Antibodies directed against small peptides representing the N- and C-terminal domains of the cDNA1 protein identified a 40-kD polypeptide in microsomes isolated from cDNA-1-transformed yeast (Saccharomyces cerevisiae). Moreover, the same protein was identified in sugar beet and transgenic tobacco (Nicotaina tobacum L.) membrane fractions. Detailed analysis of the transporter's distribution across linear sucrose gradients and flotation centrifugations showed that it co-migrates with tonoplast membrane markers. We conclude that this carrier is located on the tonoplast membrane and that it may mediate sugar partitioning between the vacuole and cytoplasmic compartments.

  14. Molecular Characterization and Tissue Distribution of Feline Retinol-Binding Protein 4

    PubMed Central

    SASAKI, Noriyasu; ISHIBASHI, Miwa; SOETA, Satoshi

    2013-01-01

    ABSTRACT Retinol-binding protein 4 (RBP4) is a specific transporter of retinol and was recently identified as an adipokine potentially involved in type 2 diabetes in humans and rodents. However, the function and structure of feline RBP4 have not been reported. In this study, we describe the molecular cloning and expression analysis of feline RBP4. The complete feline RBP4 cDNA encodes a precursor protein comprising an 18 amino acid signal peptide and a 183 amino acid mature protein. Feline RBP4 was mapped to chromosome D2. Mature feline RBP4 is 83–94% homologous to the RBPs of humans, cows and rodents. RT-PCR analysis revealed feline RBP4 expression in liver and adipose tissues. PMID:23719693

  15. Molecular cloning and analysis of the endogenous retrovirus chemically induced from RFM/Un mouse cell cultures

    SciTech Connect

    Liou, R.S.; Boone, L.R.; Kiggans, J.O.; Yang, D.M.; Wang, T.W.; Tennant, R.W.; Yang, W.K.

    1983-04-01

    An N-tropic ecotropic retrovirus induced with iododeoxyuridine from RFM/Un mouse cell cultures was molecularly cloned and analyzed. Based on the restriction map, the RFM/Un virus appears to be indistinguishable from other induced N-tropic retroviruses. A nucleotide sequence analysis of the long terminal repeat of an infectious clone revealed structural features characteristic of murine type C retrovirus long terminal repeats. The U3 region of the RFM/Un virus long terminal repeat, however, contained no short sequence duplication or insertion found in other murine leukemia virus isolates.

  16. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    SciTech Connect

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-08-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified.

  17. Thermal and molecular investigation of laser tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  18. cDNA cloning of S100 calcium-binding proteins from bovine periodontal ligament and their expression in oral tissues.

    PubMed

    Duarte, W R; Kasugai, S; Iimura, T; Oida, S; Takenaga, K; Ohya, K; Ishikawa, I

    1998-09-01

    The periodontal ligament (PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. To characterize PDL cells at the molecular level, we constructed a cDNA library from bovine PDL tissue. We then focused on the isolation of S100 calcium-binding proteins (CaBPs), because they mediate Ca2+ signaling and control important cellular processes such as differentiation and metabolism. We screened the PDL cDNA library with a mouse S100A4 cDNA, and cloned the bovine cDNAs of two S100 CaBPs (S100A4 and S100A2). In northern blotting analysis, the highest expression of S100A4 was detected in PDL from erupted teeth (PDLE). PDL from teeth under eruption (PDLU) showed a lower expression of S100A4, and its expression in gingiva was faintly detectable. S100A4 expression was also high in the pulp tissue followed by the dental papilla of the tooth germ. S100A2 expression was high in PDLE and gingiva. Interestingly, only PDLE exhibited a high expression of both S100A4 and S100A2. PDLE also expressed the highest level of beta-actin, a target cytoskeletal protein for S100A4. It is conceivable that the high expression of S100A4 in PDLE is a result of the maturation of the PDL and/or a response to mechanical stress generated by mastication. Since there was a marked difference of S100A4 expression between PDL and gingiva, we propose that S100A4 could be a useful marker for distinguishing cells from these two tissues.

  19. Effective serological and molecular screening of deceased tissue donors.

    PubMed

    Kitchen, A D; Newham, J A; Gillan, H L

    2013-12-01

    A comprehensive and effective screening programme is essential to support the banking of tissues from deceased donors. However, the overall quality of the samples obtained from deceased donors, quantity and condition, is often not ideal, and this may lead to problems in achieving accurate and reliable results. Additionally a significant percentage of referrals are still rejected upon receipt as unsuitable for screening. We are actively involved in improving the overall quality of deceased donor screening outcomes, and have specifically evaluated and validated both serological and molecular assays for this purpose, as well as developing a specific screening strategy to minimise the specificity issues associated with serological screening. Here we review the nature and effectiveness of the deceased donor screening programme implemented by National Health Service Blood and Transplant (NHSBT), the organisation with overall responsibility for the supply of tissue products within England. Deceased donor screening data, serological and molecular, from August 2007 until May 2012 have been collated and analysed. Of 10,225 samples referred for serology screening, 5.5 % were reported as reactive; of 2,862 samples referred for molecular screening, 0.1 % were reported as reactive/inhibitory. Overall 20 % of the serological and 100 % of the molecular screen reactivity was confirmed as reflecting true infection. The use of a sequential serology screening algorithm has resulted in a marked reduction of tissues lost unnecessarily due to non-specific screen reactivity. The approach taken by NHSBT has resulted in the development of an effective and specific approach to the screening of deceased tissue donors.

  20. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing

    PubMed Central

    Siala, Mariam; Jaulhac, Benoit; Gdoura, Radhouane; Sibilia, Jean; Fourati, Hela; Younes, Mohamed; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Znazen, Abir; Barthel, Cathy; Collin, Elody; Hammami, Adnane; Sghir, Abdelghani

    2008-01-01

    Introduction Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reactive arthritis and undifferentiated arthritis (UA) using PCR, cloning and sequencing. Methods We examined synovial tissue samples from 28 patients: six patients with ReA and nine with UA, and a control group consisting of seven patients with rheumatoid arthritis and six with osteoarthritis (OA). Using broad-range bacterial PCR producing a 1,400-base-pair fragment from the 16S rRNA gene, at least 24 clones were sequenced for each synovial tissue sample. To identify the corresponding bacteria, DNA sequences were compared with sequences from the EMBL (European Molecular Biology Laboratory) database. Results Bacterial DNA was detected in 75% of the 28 synovial tissue samples. DNA from 68 various bacterial species were found in ReA and UA samples, whereas DNA from 12 bacteria were detected in control group samples. Most of the bacterial DNAs detected were from skin or intestinal bacteria. DNA from bacteria known to trigger ReA, such as Shigella flexneri and Shigella sonnei, were detected in ReA and UA samples of synovial tissue and not in control samples. DNA from various bacterial species detected in this study have not previously been found in synovial samples. Conclusion This study is the first to use broad-range PCR targeting the full 16S rRNA gene for detection of bacterial DNA in synovial tissue. We detected DNA from a wide spectrum of bacterial species, including those known to be involved in ReA and others not previously associated with ReA or related arthritis. The pathogenic

  1. Three concepts of cloning in human beings.

    PubMed

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  2. Two base changes restore infectivity to a noninfectious molecular clone of Moloney murine Leukemia virus (pMLV-1)

    SciTech Connect

    Miller, A.D.; Verma, I.M.

    1984-01-01

    The complete nucleotide sequence of a molecular clone of Moloney murine leukemia virus (pMLV-1) has previously been reported. However, pMLV-1 does not generate infectious virus after transfection into cells. The lesion in pMLV-1 has been localized by determining the biological activity of recombinants containing DNA from kilobase pair region which spans the gag-pol junction of pMLV-1 with the corresponding DNA fragment from the infectious clone (pMLV-48) and pMLV-1 reveals two single base pair changes. The mutation in the pol gene does not affect the production of infectious virus but renders them XC negative, whereas the mutation in the gag gene appears to be lethal. The complete nucleotide sequence of an infectious clone of Moloney murine leukemia virus can now be deduced.

  3. Molecular cloning of the unintegrated squirrel monkey retrovirus genome: organization and distribution of related sequences in primate DNAs.

    PubMed Central

    Chiu, I M; Andersen, P R; Aaronson, S A; Tronick, S R

    1983-01-01

    The closed circular form of the endogenous squirrel monkey type D retrovirus (SMRV) was molecularly cloned in a bacteriophage vector. The restriction map of the biologically active clone was determined and found to be identical to that of the parental SMRV linear DNA except for the deletion of one long terminal repeat. Restriction enzyme analysis and Southern blotting indicated that the SMRV long terminal repeat was approximately 300 base pairs long. The SMRV restriction map was oriented to the viral RNA by using a gene-specific probe from baboon endogenous virus. Restriction enzyme digests of a variety of vertebrate DNAs were analyzed for DNA sequence homology with SMRV by using the cloned SMRV genome as a probe. Consistent with earlier studies, multiple copies of SMRV were detected in squirrel monkey DNA. Related fragments were also detected in the DNAs from other primate species, including humans. Images PMID:6312076

  4. The human SOX11 gene: Cloning, chromosomal assignment and tissue expression

    SciTech Connect

    Jay, P.; Goze, C.; Marsollier, C.; Taviaux, S.

    1995-09-20

    The mammalian testis determining gene SRY contains an HMG box-related DNA binding motif. By analogy a family of genes related to SRY in the HMG domain have been called SOX (SRY box-related genes). We have cloned and characterized the human SOX11 gene using the partial cloning of both human and mouse SOX11 genes and mapped it to chromosome 2p25. The SOX11 sequence is strongly conserved with the chicken homologue and is related to SOX4. It contains several putative transcriptional either activator or repressor domains. SOX11 expression pattern is consistent with the hypothesis that this gene is important in the developing nervous system. 20 refs., 5 figs.

  5. Construction and characterization of HIV type 1 CRF07_BC infectious molecular clone from men who have sex with men.

    PubMed

    Jiang, Yan-Ling; Bai, Wen-Wei; Qu, Fan-Wei; Ma, Hua; Jiang, Run-Sheng; Shen, Bao-Sheng

    2016-03-01

    This study aimed to investigate the biological characterization of HIV type 1 (HIV-1) CRF07_BC infection among men who have sex with men (MSM). From November 2011 to November 2013, a total of 66 blood samples were collected from MSM with acute HIV-1 infection with CRF07_BC subgroup strains. Deletion in the gag p6 region was detected by sequence alignment and comparative analysis. Peripheral blood mononuclear cells (PBMCs) of HNXX1301-1307 samples were separated by density gradient centrifugation. Nested polymerase chain reaction (nPCR) was used to amplify the viral DNA. The near full-length HIV-1 DNA products were ligated to the long terminal repeat (LTR) vector plasmid (07BCLTR) to construct a full-length HIV clone. The molecular clone was transfected into HEK-293T cells, TZM-b1 cells and patients' PBMCs. The pregenome of an infectious molecular clone of HIV-1 (pNL4-3) was amplified, and a subclone with CRF07_BC was developed to construct the full-length chimeric molecular clone pNL4-3/07BCLTR. Detection of p24 antigen and luciferase activity was used to measure the in vitro infectivity of pNL4-3/07BCLTR. Among the 66 MSM patients infected with CRF07_BC strains, deletion mutations of the Gag P6 proteins were found in 7 of 18CRF07_BC strains; deletion mutations of 2-13 amino acids in different regions were discovered in 6 strains; and the remaining 42 strains did not show deletions. Seven strains with amino acids deficiency in the P6 protein accounted for 27% of all strains and 75% of all deletion genotype strains. A total of 186 full-length molecular clones of CRF07_BC were constructed. There were 5, 9, 10 and 11 clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 that resulted in p24-positive supernatant when transfected into HEK-293T cells. Full-length clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 showed slight infection in the transfected TZM-b1 cells, as judged by the fluorescence values of TZM-b1 cells 48h post-transfection. However, we were unable to

  6. The molecular cloning and expression of two CRABP cDNAs from human skin

    SciTech Connect

    Eller, M.S.; Oleksiak, M.F.; McQuaid, T.J.; McAfee, S.G.; Gilchrest, B.A. Boston Univ., MA )

    1992-02-01

    Retinoic acid (RA) is known to have a profound effect on the growth and differentiation of human epidermal cells in vivo and in vitro. One of the proteins thought to be involved in mediating the action of RA is the cellular retinoic acid-binding protein (CRABP). The authors have used PCR technology to generate cDNAs for two distinct CRABPs from human skin and skin-derived cells. One is highly homologous to the CRABPI cDNAs previously cloned from bovine and murine sources. The second shares extensive deduced amino acid homology with CRABP II, a protein recently described in newborn rat and embryonic chick. Although both mRNAs can be detected in neonatal foreskin, CRABP II mRNA is the predominant one in this tissue, as well as in cultured newborn fibroblasts and keratinocytes. They conclude that CRABP II is the predominant CRABP in human skin, at least in the newborn period, and that it is differentially regulated in fibroblasts versus keratinocytes. The data are consistent with a role for CRABP in regulating the amount of RA delivered to the nucleus.

  7. Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1

    SciTech Connect

    Kuo, C.J.; Conley, P.B.; Hsieh, Chihlin; Francke, U.; Crabtree, G.R. )

    1990-12-01

    The homeodomain-containing transcription factor hepatocyte nuclear factor 1 (HNF-1) most likely plays and essential role during liver organogenesis by transactivating a family of {gt}15 predominantly hepatic genes. The authors have isolated cDNA clones encoding mouse HNF-1 and expressed them in monkey COS cells and in the human T-cell line Jurkat, producing HNF-1 DNA-binding activity as well as transactivation of reporter constructs containing multimerized NHF-1 binding sites. In addition, the HNF-1 gene was assigned by somatic cell hybrids and recombinant inbred strain mapping to mouse chromosome 5 near Bcd-1 and to human chromosome 12 region q22-qter, revealing a homologous chromosome region in these two species. The presence of HNF-1 mRNA in multiple endodermal tissues (liver, stomach, intestine) suggests that HNF-1 may constitute an early marker for endodermal, rather than hepatocyte, differentiation. Further, that HNF-1 DNA-binding and transcriptional activity can be conferred by transfecting the HNF-1 cDNA into several cell lines indicates that it is sufficient to activate transcription in the context of ubiquitously expressed factors.

  8. Molecular Cloning and Characterization of Violaxanthin De-Epoxidase (CsVDE) in Cucumber

    PubMed Central

    Huang, Hongyu; Kong, Lingcui; Niu, Dandan; Sui, Xiaolei; Zhang, Zhenxian

    2013-01-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2nd hour and the 9th day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress. PMID:23717606

  9. Molecular cloning and characterization of violaxanthin de-epoxidase (CsVDE) in cucumber.

    PubMed

    Li, Xin; Zhao, Wenchao; Sun, Xiyan; Huang, Hongyu; Kong, Lingcui; Niu, Dandan; Sui, Xiaolei; Zhang, Zhenxian

    2013-01-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2(nd) hour and the 9(th) day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress.

  10. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase.

    PubMed

    Hattori, A; Matsumoto, H; Mizutani, S; Tsujimoto, M

    1999-05-01

    In the current study, we report the cloning and initial characterization of a novel human cytosolic aminopeptidase named adipocyte-derived leucine aminopeptidase (A-LAP). The sequence encodes a 941-amino acid protein with significant homology (43%) to placental leucine aminopeptidase (P-LAP)/oxytocinase. The predicted A-LAP contains the HEXXH(X)18E consensus sequence, which is characteristic of the M1 family of zinc-metallopeptidases. Although the deduced sequence contains a hydrophobic region near the N-terminus, the enzyme localized mainly in cytoplasm when expressed in COS-7 cells. Northern blot analysis revealed that A-LAP was expressed in all the tissues tested, some of which expressed at least three forms of mRNA, suggesting that the regulation of the gene expression is complex. When aminopeptidase activity of A-LAP was measured with various synthetic substrates, the enzyme revealed a preference for leucine, establishing that A-LAP is a novel leucine aminopeptidase with restricted substrate specificity. The identification of A-LAP, which reveals strong homology to P-LAP, might lead to the definition of a new subfamily of zinc-containing aminopeptidases belonging to the M1 family of metallopeptidases.

  11. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  12. Molecular cloning and functional characterization of a QM protein in large yellow croaker (Larimichthys crocea).

    PubMed

    Han, Fang; Xiao, Shijun; Zhang, Yu; Wang, Zhiyong

    2015-05-01

    Since it was proposed to be a tumor suppressor in 1991, QM protein has attracted intensive and wide attention in plants, animals and fungi research fields. Up to date, however, the function of QM protein in fish immunity remains unknown. In this investigation, a QM gene (named as LycQM gene) was cloned from large yellow croaker (Larimichthys crocea), and LycQM protein was expressed in Escherichia coli and purified. The LycQM gene was ubiquitously transcribed in multi-tissues, including spleen, muscle, heart, liver, intestine, blood and head kidney. By quantitative real-time RT-PCR analysis, we found the highest and the lowest expression level of LycQM gene in head kidney and in heart, respectively. Time course analysis showed that LycQM expression was obviously up-regulated in blood and head kidney after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus and bacterial lipopolysaccharides (LPS). Moreover, as demonstrated by RNAi assays, LycQM protein could regulate the activity of phenoloxidase, a key enzyme in the proPO activation system of immunity. These results suggested that LycQM protein might play an important role in the immune response against microorganisms in large yellow croaker. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (Arachis hypogaea L.).

    PubMed

    Liu, Yu; Zhao, Shuzhen; Wang, Jiangshan; Zhao, Chuanzhi; Guan, Hongshan; Hou, Lei; Li, Changsheng; Xia, Han; Wang, Xingjun

    2015-01-01

    Chalcone isomerase (CHI) plays critical roles in plant secondary metabolism, which is important for the interaction between plants and the environment. CHI genes are widely studied in various higher plants. However, little information about CHI genes is available in peanut. Based on conservation of CHI gene family, we cloned the peanut type II CHI gene (AhCHI II) cDNA and genome sequence. The amino acid sequence of peanut CHI II was highly homologous to type II CHI from other plant species. qRT-PCR results showed that peanut CHI II is mainly expressed in roots; however, peanut CHI I is mainly expressed in tissues with high content of anthocyanin. Gene duplication and gene cluster analysis indicated that CHI II was derived from CHI I 65 million years ago approximately. Our gene structure analysis results are not in agreement with the previous hypothesis that CHI II was derived from CHI I by the insertion of an intron into the first exon. Moreover, no positive selection pressure was found in CHIs, while, 32.1 % of sites were under neutral selection, which may lead to mutation accumulation and fixation during great changes of environment.

  14. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene.

    PubMed

    Chartrain, N A; Geller, D A; Koty, P P; Sitrin, N F; Nussler, A K; Hoffman, E P; Billiar, T R; Hutchinson, N I; Mudgett, J S

    1994-03-04

    Nitric oxide, a multifunctional effector molecule synthesized by nitric oxide synthase (NOS) from L-arginine, conveys signals for vasorelaxation, neurotransmission, and cytotoxicity. Three different NOS isoforms have been identified which fall into two distinct types, constitutive and inducible. The inducible NOS (iNOS) isoform is expressed in a variety of cell types and tissues in response to inflammatory agents and cytokines. The human iNOS (NOS2) gene was isolated on overlapping cosmid clones from a human genomic library using both the murine macrophage and the human hepatocyte iNOS cDNAs as probes. All isolated cosmids were part of a single genomic locus and no other genomic loci were identified or isolated. Analysis of this locus indicated that the human iNOS gene is approximately 37 kilobases in length and consists of 26 exons and 25 introns. Primer extension analysis of lipopolysaccharide and cytokine-stimulated human hepatocyte RNA mapped the transcriptional initiation site 30 base pairs downstream of a TATA sequence, and a 400-base pair 5'-flanking region was found to be structurally similar to the recently described murine iNOS promoter. Polymerase chain reaction analysis of a human/rodent genomic DNA somatic cell hybrid panel and fluorescent in situ hybridization indicated that the human iNOS gene is located on chromosome 17 at position 17cen-q11.2.

  15. Molecular cloning and characterization of the canine prostaglandin E receptor EP2 subtype.

    PubMed

    Hibbs, T A; Lu, B; Smock, S L; Vestergaard, P; Pan, L C; Owen, T A

    1999-05-01

    Prostaglandin E2 (PGE2) binds to four G-protein coupled cell surface receptors (EP1-EP4) and has been implicated as a local mediator of bone anabolism via a cyclic AMP mediated pathway following activation of the EP2 and/or EP4 receptor subtype. A canine kidney cDNA library was screened using a human EP2 probe, and a clone with an open reading frame of 1083 bp, potentially encoding a protein of 361 amino acids, was characterized. This open reading frame has 89% identity to the human EP2 cDNA at the nucleotide level and 87% identity at the predicted protein level. Scatchard analysis of a CHO cell line stably transfected with canine EP2 yielded a dissociation constant of 22 nM for PGE2. Competition binding studies, using 3H-PGE2 as ligand, demonstrated specific displacement by PGE2, Prostaglandin E1, Prostaglandin A3, and butaprost (an EP2 selective ligand), but not by ligands with selectivity for the related DP, FP, IP, or TP receptors. Specific ligand binding also resulted in increased levels of cAMP in EP2 transfected cells with no evidence of short-term, ligand-induced desensitization. Northern blot analysis revealed two transcripts of 3300 and 2400 bp in canine lung, and reverse-transcription polymerase chain reaction showed expression in all tissues examined. Southern blot analysis suggests the presence of a single-copy gene for EP2 in the dog.

  16. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus

    PubMed Central

    Hull, J. Joe; Wang, Meixian

    2014-01-01

    The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight). Among the nine sequences identified were single variants of the Gαi, Gαo, Gαs, and Gα12 subfamilies and five alternative splice variants of the Gαq subfamily. Sequence alignment and phylogenetic analyses of the putative L. hesperus Gα subunits support initial classifications and are consistent with established evolutionary relationships. End-point PCR-based profiling of the transcripts indicated head specific expression for LhGαq4, and largely ubiquitous expression, albeit at varying levels, for the other LhGα transcripts. All subfamilies were amplified from L. hesperus chemosensory tissues, suggesting potential roles in olfaction and/or gustation. Immunohistochemical staining of cultured insect cells transiently expressing recombinant His-tagged LhGαi, LhGαs, and LhGαq1 revealed plasma membrane targeting, suggesting the respective sequences encode functional G protein subunits. PMID:26463065

  17. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    PubMed

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular cloning of natriuretic peptide receptor A from bullfrog (Rana catesbeiana) brain and its functional expression.

    PubMed

    Sekiguchi, T; Miyamoto, K; Mizutani, T; Yamada, K; Yazawa, T; Yoshino, M; Minegishi, T; Takei, Y; Kangawa, K; Minamino, N; Saito, Y; Kojima, M

    2001-08-08

    A comparative study of natriuretic peptide receptor (NPR) was performed by cloning the NPR-A receptor subtype from the bullfrog (Rana catesbeiana) brain and analyzing its functional expression. Like other mammalian NPR-A receptors, the bullfrog NPR-A receptor consists of an extracellular ligand binding domain, a hydrophobic transmembrane domain, a kinase-like domain and a guanylate cyclase domain. Sequence comparison among the bullfrog and mammalian receptors revealed a relatively low ( approximately 45%) similarity in the extracellular domain compared to a very high similarity ( approximately 92%) in the cytoplasmic regulatory and catalytic domains. Expression of NPR-A mRNA was detected in various bullfrog tissues including the brain, heart, lung, kidney and liver; highest levels were observed in lung. Functional expression of the receptor in COS-7 cells revealed that frog atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elicited cyclic guanosine 3'5'-monophosphate production by stimulating the receptor in a dose-dependent manner from 10(-10) M concentrations. Rat ANP was also effective in stimulating the frog receptor whereas rat BNP and porcine BNP were less responsive to the receptor. On the other hand, frog C-type natriuretic peptide (CNP) as well as porcine CNP stimulated the receptor only at high concentrations (10(-7) M). This clearly indicates that the bullfrog receptor is a counterpart of mammalian NPR-A, and is specific for ANP or BNP but not for CNP.

  19. Molecular cloning and characterization of IKKε gene from black carp Mylopharyngodon piceus.

    PubMed

    Qu, Yixiao; Zhou, Man; Peng, Linzhi; Li, Jun; Yan, Jun; Yang, Peilin; Feng, Hao

    2015-11-01

    IKKε is an IκB kinase functioning in NF-κB signal pathway in the innate immune system of higher vertebrates. To exploit the function of IKKε of black carp (bcIKKε) in its antiviral innate immunity, the IKKε gene has been cloned from the RNA isolated from the spleen of black carp. The full-length cDNA of bcIKKε is 2537 bp, which encodes the peptide of 723 amino acids. bcIKKε contains a S-Tkc domain, a PKc domain and a UBL-TBK1-like domain and bcIKKε shares the highest amino acid sequence similarity with that of grass carp. bcIKKε was constitutively transcribed in the selected tissues of black carp including gill, kidney, heart, intestine, liver, muscle, skin and spleen; and the mRNA level of bcIKKε in these tissues varied right after SVCV or GCRV infection. bcIKKε had been well expressed in HEK293T cells and western blot assay determined that this fish kinase was around 80 KDa. The immunofluorescence assay of both NH3T3 cells and EPC cells demonstrated that bcIKKε was located in the cytosolic part of the cell. Report assay result showed that overexpression of bcIKKε in EPC cells activated the expression of both zebrafish IFN and EPC IFN. All our data suggest that bcIKKε is a novel fish kinase functioning in the innate antiviral immune response of black carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mammalian DNA ligase III: Molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination

    SciTech Connect

    Chen, Jingwen; Danehower, S.; Besterman, J.M.; Husain, I.

    1995-10-01

    Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have recently purified DNA ligase II and DNA ligase III to near homogeneity from bovine liver and testis tissue, respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on the peptide sequences. The human DNA ligase III cDNA encodes a polypeptide of 862 amino acids, whose sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalytically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiquitously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA ligase I mRNA expression correlated with the contribution of proliferating supermatogonia cells to the testes, in agreement with the previously defined role of this enzyme in DNA replications. In contrast, elevated levels of DNA ligase III mRNA were observed in primary supermatocytes undergoing recombination prior to the first meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells. 62 refs., 7 figs.

  1. Molecular cloning, expression and characterization of programmed cell death 10 from sheep (Ovis aries).

    PubMed

    Yang, Yong-Jie; Liu, Zeng-Shan; Lu, Shi-Ying; Li, Chuang; Hu, Pan; Li, Yan-Song; Liu, Nan-Nan; Tang, Feng; Xu, Yun-Ming; Zhang, Jun-Hui; Li, Zhao-Hui; Feng, Xiao-Li; Zhou, Yu; Ren, Hong-Lin

    2015-03-01

    Programmed cell death 10 (PDCD10) is a highly conserved adaptor protein. Its mutations result in cerebral cavernous malformations (CCMs). In this study, PDCD10 cDNA from the buffy coat of Small Tail Han sheep (Ovis aries) was cloned from a suppression subtractive hybridization cDNA library, named OaPDCD10. The full-length cDNA of OaPDCD10 was 1343bp with a 639bp open reading frame (ORF) encoding 212 amino acid residues. Tissue distribution of OaPDCD10 mRNA determined that it was ubiquitously expressed in all tested tissue samples, and the highest expression was observed in the heart. The differential expression of OaPDCD10 between infected sheep (challenged with Brucella melitensis) and vaccinated sheep (vaccinated with Brucella suis S2) was also investigated. The results revealed that, compared to the control group, the expression of OaPDCD10 from infected and vaccinated sheep was both significantly up-regulated (p<0.05). Moreover, the expression levels of OaPDCD10 from the vaccinated sheep were significantly higher than the infected sheep (p<0.05) after 30days post-inoculation. The recombinant OaPDCD10 (rOaPDCD10) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rOaPDCD10 protein was demonstrated to induce apoptosis and promote cell proliferation. Our studies are intended to discover potential diagnostic biomarkers of brucellosis to discern infected sheep from vaccinated sheep, and OaPDCD10 could be considered as a potential diagnostic biomarker of brucellosis.

  2. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus).

    PubMed

    Weng, Shenda; You, Feng; Fan, Zhaofei; Wang, Lijuan; Wu, Zhihao; Zou, Yuxia

    2016-08-01

    WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation.

  3. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity

    PubMed Central

    1989-01-01

    We have isolated a 725-bp full-length cDNA clone for the human eosinophil cationic protein (ECP). ECP is a small, basic protein found in the matrix of the eosinophil's large specific granule that has cytotoxic, helminthotoxic, and ribonuclease activity, and is a member of the ribonuclease multigene family. The cDNA sequence shows 89% sequence identity with that reported for the related granule protein, eosinophil-derived neurotoxin (EDN). The open reading frame encodes a previously unidentified 27-amino acid leader sequence preceding a 133- residue mature ECP polypeptide with a molecular mass of 15.6 kD. The encoded amino acid sequence of ECP shows 66% identity to that of EDN and 31% identity to that of human pancreatic ribonuclease, including conservation of the essential structural cysteine and cataytic lysine and histidine residues. mRNA for ECP was detected in eosinophil- enriched peripheral granulocytes and in a subclone of the promyelocytic leukemia line, HL-60, induced toward eosinophilic differentiation with IL-5. No ECP mRNA was detected in uninduced HL-60 cells, or in HL-60 cells induced toward monocytic differentiation with vitamin D3 or toward neutrophilic differentiation with DMSO. In contrast, mRNA for EDN was detected in uninduced HL-60 cells and was upregulated in HL-60 cells induced with DMSO. Despite similarities in sequence and cellular localization, these results suggest that ECP and EDN are subject to different regulatory mechanisms. PMID:2473157

  4. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    PubMed

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  5. Identification, purification, and molecular cloning of a putative plastidic glucose translocator.

    PubMed

    Weber, A; Servaites, J C; Geiger, D R; Kofler, H; Hille, D; Gröner, F; Hebbeker, U; Flügge, U I

    2000-05-01

    During photosynthesis, part of the fixed carbon is directed into the synthesis of transitory starch, which serves as an intermediate carbon storage facility in chloroplasts. This transitory starch is mobilized during the night. Increasing evidence indicates that the main route of starch breakdown proceeds by way of hydrolytic enzymes and results in glucose formation. This pathway requires a glucose translocator to mediate the export of glucose from the chloroplasts. We have reexamined the kinetic properties of the plastidic glucose translocator and, using a differential labeling procedure, have identified the glucose translocator as a component of the inner envelope membrane. Peptide sequence information derived from this protein was used to isolate cDNA clones encoding a putative plastidic glucose translocator from spinach, potato, tobacco, Arabidopsis, and maize. We also present the molecular characterization of a candidate for a hexose transporter of the plastid envelope membrane. This transporter, initially characterized more than 20 years ago, is closely related to the mammalian glucose transporter GLUT family and differs from all other plant hexose transporters that have been characterized to date.

  6. Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds.

    PubMed

    Pinto, Luciano S; Nagano, Celso S; Oliveira, Taianá M; Moura, Tales R; Sampaio, Alexandre H; Debray, Henri; Pinto, Vicente P; Dellagostin, Odir A; Cavada, Benildo S

    2008-09-01

    A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B.variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.

  7. Molecular cloning, heterologous expression, and characterization of Ornithine decarboxylase from Oenococcus oeni.

    PubMed

    Bonnin-Jusserand, Maryse; Grandvalet, Cosette; David, Vanessa; Alexandre, Hervé

    2011-08-01

    Ornithine decarboxylase (ODC) is responsible for the production of putrescine, the major biogenic amine found in wine. Oenococcus oeni is the most important lactic acid bacterium in the winemaking process and is involved in malolactic fermentation. We report here the characterization of ODC from an O. oeni strain isolated from wine. Screening of 263 strains isolated from wine and cider from all over the world revealed that the presence of the odc gene appears to be strain specific in O. oeni. After cloning, heterologous expression in Escherichia coli, and characterization, the enzyme was found to have a molecular mass of 85 kDa and a pI of 6.2 and revealed maximal activity at pH 5.5 and an optimum temperature of 35°C. Kinetic studies showed that O. oeni ODC is specific for L-ornithine with a K(m) value of 1 mM and a V(max) of 0.57 U·mg(-1). The hypothesis that cadaverine, which results from lysine decarboxylation, may be linked to putrescine production is not valid since O. oeni ODC cannot decarboxylate L-lysine. As no lysine decarboxylase was detected in any of the O. oeni genomes sequenced, cadaverine synthesis may result from another metabolic pathway. This work is the first characterization of an ODC from a lactic acid bacterium isolated from a fermented product.

  8. Molecular cloning and characterization of a cDNA encoding the Paracoccidioides brasiliensis 135 ribosomal protein.

    PubMed

    Jesuino, Rosália S A; Pereira, Maristela; Felipe, M Sueli S; Azevedo, Maristella O; Soares, Célia M A

    2004-06-01

    A 630 bp cDNA encoding an L35 ribosomal protein of Paracoccidioides brasiliensis, designated as Pbl35, was cloned from a yeast expression library. Pbl35 encodes a polypeptide of 125 amino acids, with a predicted molecular mass of 14.5 kDa and a pI of 11.0. The deduced PbL35 shows significant conservation in respect to other described ribosomal L35 proteins from eukaryotes and prokaryotes. Motifs of ribosomal proteins are present in PbL35, including a bipartite nuclear localization signal (NLS) that could be related to the protein addressing to the nucleolus for the ribosomal assembly. The mRNA for PbL35, about 700 nucleotides in length, is expressed at a high level in P. brasiliensis. The PbL35 and the deduced amino acid sequence constitute the first description of a ribosomal protein in P. brasiliensis. The cDNA was deposited in GenBank under accession number AF416509.

  9. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis.

    PubMed

    Moreira, Sabrina F I; Bailão, Alexandre M; Barbosa, Mônica S; Jesuino, Rosalia S A; Felipe, M Sueli Soares; Pereira, Maristela; de Almeida Soares, Célia Maria

    2004-01-30

    Within the context of studies on genes from Paracoccidioides brasiliensis (Pb) potentially associated with fungus-host interaction, we isolated a 61 kDa protein, pI 6.2, that was reactive with sera of patients with paracoccidioidomycosis. This protein was identified as a peroxisomal catalase. A complete cDNA encoding this catalase was isolated from a Pb cDNA library and was designated PbcatP. The cDNA contained a 1509 bp ORF containing 502 amino acids, whose molecular mass was 57 kDa, with a pI of 6.5. The translated protein PbCATP revealed canonical motifs of monofunctional typical small subunit catalases and the peroxisome-PTS-1-targeting signal. The deduced and the native PbCATP demonstrated amino acid sequence homology to known monofunctional catalases and was most closely related to catalases from other fungi. The protein and mRNA were diminished in the mycelial saprobic phase compared to the yeast phase of infection. Protein synthesis and mRNA levels increased during the transition from mycelium to yeast. In addition, the catalase protein was induced when cells were exposed to hydrogen peroxide. The identification and characterization of the PbCATP and cloning and characterization of the cDNA are essential steps for investigating the role of catalase as a defence of P. brasiliensis against oxygen-dependent killing mechanisms. These results suggest that this protein exerts an influence in the virulence of P. brasiliensis.

  10. Molecular characterization of Staphylococcus aureus from outpatients in the Caribbean reveals the presence of pandemic clones

    PubMed Central

    Dumortier, C.; Hafer, C.; Taylor, B. S.; Sánchez E, J.; Rodriguez-Taveras, C.; Leon, P.; Rojas, R.; Olive, C.; Lowy, F. D.

    2011-01-01

    Staphylococcus aureus infections continue to pose a global public health problem. Frequently, this epidemic is driven by the successful spread of single S. aureus clones within a geographic region, but international travel has been recognized as a potential risk factor for S. aureus infections. To study the molecular epidemiology of S. aureus infections in the Caribbean, a major international tourist destination, we collected methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates from community-onset infections in the Dominican Republic (n=112) and Martinique (n=143). Isolates were characterized by a combination of pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST) typing. In Martinique, MRSA infections (n=56) were mainly caused by t304-ST8 strains (n=44), whereas MSSA isolates were derived from genetically diverse backgrounds. Among MRSA strains (n=22) from the Dominican Republic, ST5, ST30, and ST72 predominated, while ST30 t665-PVL+ (30/90) accounted for a substantial number of MSSA infections. Despite epidemiological differences in sample collections from both countries, a considerable number of MSSA infections (~10%) were caused by ST5 and ST398 isolates at each site. Further phylogenetic analysis suggests the presence of lineages shared by the two countries, followed by recent genetic diversification unique to each site. Our findings also imply the frequent import and exchange of international S. aureus strains in the Caribbean. PMID:21789605

  11. Molecular cloning and biochemical characterization of a lipoxygenase in almond (Prunus dulcis) seed.

    PubMed

    Mita, G; Gallo, A; Greco, V; Zasiura, C; Casey, R; Zacheo, G; Santino, A

    2001-03-01

    We have characterized an almond (Prunus dulcis) lipoxygenase (LOX) that is expressed early in seed development. The presence of an active lipoxygenase was confirmed by western blot analysis and by measuring the enzymatic activity in microsomal and soluble protein samples purified from almond seeds at this stage of development. The almond lipoxygenase, which had a pH optimum around 6, was identified as a 9-LOX on the basis of the isomers of linoleic acid hydroperoxides produced in the enzymatic reaction. A genomic clone containing a complete lipoxygenase gene was isolated from an almond DNA library. The 6776-bp sequence reported includes an open reading frame of 4667 bp encoding a putative polypeptide of 862 amino acids with a calculated molecular mass of 98.0 kDa and a predicted pI of 5.61. Almond seed lipoxygenase shows 71% identity with an Arabidopsis LOX1 gene and is closely related to tomato fruit and potato tuber lipoxygenases. The sequence of the active site was consistent with the isolated gene encoding a 9-LOX.

  12. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua.

    PubMed

    Kumar, N Senthil; Tang, Bin; Chen, Xiaofei; Tian, Honggang; Zhang, Wenqing

    2008-03-01

    The chitin synthase (CHS) gene B (4781 bp) of Spodoptera exigua (SeCHSB) was cloned by reverse-transcription PCR (RT-PCR) and 3'/5' RACE from the midgut. SeCHSB contains an open reading frame of 4572 nucleotides, encoding a protein of 1523 amino acids with a predicted molecular mass of approximately 174.6 kDa. Alignment of SeCHSB with class B CHSs of other insects showed a high degree of conservation in the putative catalytic domain region. The structure of the SeCHSB gene was analyzed and was found to be the same as that of Manduca sexta CHSB (MsCHSB), including 23 exons and 22 introns but without alternative exons. Southern blot analysis revealed that SeCHSB was a single copy gene and the presence of only two chitin synthase genes in S. exigua. Further investigation indicated that SeCHSB was specifically expressed in the midgut, and its transcript existed constitutively in the midgut from the 3rd instar larval stage to prepupae and reached highest expression on the 1st day of the fifth instar larval stage. These data suggest that SeCHSB is very important in midgut formation and development. Chitin synthase gene comparisons between different classes of insects using software tools revealed some interesting aspects of the similarity and divergence of the gene in the Class Insecta.

  13. Molecular cloning and expression of nanos in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Ogaugwu, Christian E; Wimmer, Ernst A

    2013-01-01

    The gene nanos (nos) is a maternal-effect gene that plays an important role in posterior patterning and germ cell development in early stage embryos. nos is known from several diverse insect species, but has so far not been described for any Tephritid fruit fly. Here, we report the molecular cloning and expression pattern of the nos orthologous gene, Ccnos, in the Mediterranean fruit fly Ceratitis capitata, which is a destructive pest of high agricultural importance. CcNOS contains 398 amino acids and has a C-terminal region with two conserved CCHC zinc-binding motifs known to be essential for NOS function. Transcripts of Ccnos were confirmed by in situ hybridization to be maternally-derived and localized to the posterior pole of early stage embryos. Regulatory regions of nos have been employed in genetic engineering in some dipterans such as Drosophila and mosquitoes. Given the similarity in spatial and temporal expression between Ccnos and nos orthologs from other dipterans, its regulatory regions will be valuable to generate additional genetic tools that can be applied for engineering purposes to improve the fight against this devastating pest.

  14. Purification and molecular cloning of a major allergen from Anisakis simplex.

    PubMed

    Shimakura, Kuniyoshi; Miura, Hironori; Ikeda, Kaori; Ishizaki, Shoichiro; Nagashima, Yuji; Shirai, Toshihiro; Kasuya, Shiro; Shiomi, Kazuo

    2004-05-01

    A heat-stable allergen with a molecular weight of 21 k was purified from larvae of the nematode Anisakis simplex by gel filtration, anion-exchange FPLC and reverse-phase HPLC. When analyzed by immunoblotting and ELISA, seven of eight patient sera reacted to the 21 k allergen, demonstrating that this protein is a major allergen of A. simplex. A full-length cDNA encoding the 21 k allergen was cloned by a combination of 3'RACE and screening of an expression library with DIG-labeled DNA probes. The precursor of the 21 k allergen was judged to be composed of a signal peptide (23 residues) and a mature protein (171 residues). As compared to the N-terminal amino acid sequence (up to the 17th residue) of Ani s 1 previously identified as the major allergen, the 21 k allergen has only one replacement, suggesting that the 21 k allergen belongs to the same protein family of Ani s 1. Although the 21 k allergen was found to have 30-40% sequence identity with Kunitz-type trypsin inhibitor domain containing hypothetical proteins of Caenorhabditis elegans, it lacked inhibitory activity against trypsin. The 21 k allergen was successfully expressed in Escherichia coli as a GST-fusion protein showing reactivity with IgE in patient sera.

  15. Molecular cloning and characterization of the gene encoding rat submandibular gland apomucin, Mucsmg.

    PubMed

    Albone, E F; Hagen, F K; Szpirer, C; Tabak, L A

    1996-10-01

    Mucin glycoproteins are a major constituent of salivary secretions and play a primary role in the protection of the oral cavity. Rat submandibular glands (RSMG) synthesize and secrete a low molecular weight (114 kDa) mucin glycoprotein. We have isolated, partially sequenced, and characterized the gene which encodes the RSMG apomucin. The gene is encoded by three exons of 106 nt, 69 nt, and 991 nt, separated by introns of 921 nt and 12.5 kb. CAAT and TATA elements are present, at -68 and -26, respectively, in the 5' flanking sequence of the RSMG apomucin gene. The tandem repeat domain present in exon III consists of ten tandem repeats of 39 nt encoding the consensus sequence PTTDSTTPAPTTK. Sequence comparison and organization of the nucleic acid sequence encoding the tandem repeats of two alleles for this gene suggests that the apomucin gene has undergone recombinational events during its evolution. No significant sequence similarity was found with other mucin genes, or with other known salivary gland-specific genes. The gene was localized to rat chromosome 14 using somatic cell hybrids that segregate rat chromosomes. Since this, to our knowledge, represents the first RSMG mucin gene cloned, we have designated this gene Mucsmg.

  16. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas.

    PubMed

    Sharma, Sarika; Khan, Farrah Gul; Qazi, Ghulam Nabi

    2010-05-01

    The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 degrees C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.

  17. Molecular cloning, sequencing and expression of cDNA encoding human trehalase.

    PubMed

    Ishihara, R; Taketani, S; Sasai-Takedatsu, M; Kino, M; Tokunaga, R; Kobayashi, Y

    1997-11-20

    A complete cDNA clone encoding human trehalase, a glycoprotein of brush-border membranes, has been isolated from a human kidney library. The cDNA encodes a protein of 583 amino acids with a calculated molecular weight of 66,595. Human enzyme contains a typical cleavable signal peptide at amino terminus, five potential glycosylation sites, and a hydrophobic region at carboxyl terminus where the protein is anchored to plasma membranes via glycosylphosphatidylinositol. The deduced amino acid sequence of the human enzyme showed similarity to sequences of the enzyme from rabbit, silk worm, Tenebrio molitor, Escherichia coli and yeast. Northern blots revealed that human trehalase mRNA of approx. 2.0 kb was found mainly in the kidney, liver and small intestine. Expression of the recombinant trehalase in E. coli provided a high level of the enzyme activity. The isolation and expression of cDNA for human trehalase should facilitate studies of the structure of the gene, as well as a basis for a better understanding of the catalytic mechanism.

  18. Molecular cloning and characterization of the mRNA for cyclin from sea urchin eggs.

    PubMed Central

    Pines, J; Hunt, T

    1987-01-01

    We have isolated a cDNA clone encoding sea urchin cyclin and determined its sequence. It contains a single open reading frame of 409 amino acids which shows homology with clam cyclins. RNA transcribed in vitro from this sequence was efficiently translated in reticulocyte lysates, yielding full-length cyclin. Injection of nanogram amounts of this synthetic mRNA into Xenopus oocytes caused them to mature more rapidly than with progesterone treatment. The sea urchin cyclin underwent two posttranslational modifications in the Xenopus oocytes during maturation. The first occurred at about the time that maturation became cycloheximide-resistant, when a small apparent increase in the molecular weight of cyclin was observed. The second modification involved destruction of the cyclin at about the time of white spot appearance, just as would have occurred at the metaphase/anaphase transition in the natural environment of a cleaving sea urchin embryo. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. Fig. 9. PMID:2826125

  19. Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes.

    PubMed

    Zhao, J; Kwan, H S

    1999-11-01

    The effect of different substrates and various developmental stages (mycelium growth, primordium appearance, and fruiting-body formation) on laccase production in the edible mushroom Lentinula edodes was studied. The cap of the mature mushroom showed the highest laccase activity, and laccase activity was not stimulated by some well-known laccase inducers or sawdust. For our molecular studies, two genomic DNA sequences, representing allelic variants of the L. edodes lac1 gene, were isolated, and DNA sequence analysis demonstrated that lac1 encodes a putative polypeptide of 526 amino acids which is interrupted by 13 introns. The two allelic genes differ at 95 nucleotides, which results in seven amino acid differences in the encoded protein. The copper-binding domains found in other laccase enzymes are conserved in the L. edodes Lac1 proteins. A fragment of a second laccase gene (lac2) was also isolated, and competitive PCR showed that expression of lac1 and lac2 genes was different under various conditions. Our results suggest that laccases may play a role in the morphogenesis of the mushroom. To our knowledge, this is the first report on the cloning of genes involved in lignocellulose degradation in this economically important edible fungus.

  20. Molecular cloning and functional characterization of cyclin E and CDK2 from Penaeus monodon.

    PubMed

    Zhao, C; Fu, M J; Qiu, L H

    2016-09-16

    Reduced reproductive performance of the black tiger shrimp (Penaeus monodon) has caused economic losses and hampered the fishing industry. Detailed investigation of the molecular mechanism by which the cell cycle is regulated in this organism is needed to understand the development and maturation of ovaries and oocytes, with a view to improving reproductive capacity. Cell cycle progression is mainly determined by cyclin-dependent kinase (CDK) and cyclin complexes, the cyclin E/CDK2 complex playing a key role in G1/S transition. However, knowledge of the interplay between cyclin E and CDK2 in invertebrates remains limited. In this study, full-length P. monodon cyclin E (Pmcyclin E) and CDK2 (PmCDK2) sequences were cloned. The open reading frame of Pmcyclin E was 1263 bp in length and encoded a 47.9-kDa protein, while that of PmCDK2 was 921 bp, encoding a protein of 34.9 kDa. Recombinant cyclin E and CDK2 proteins were expressed in Escherichia coli and purified by Ni-chelating affinity chromatography. In addition, a pull-down assay was performed to identify any interaction between Pmcyclin E and PmCDK2. This research provides a basis for the study of the functional mechanisms of the cyclin E/CDK2 complex in shrimp, further enriching our knowledge of invertebrate cell cycle regulation.

  1. Molecular cloning and in silico studies of physiologically significant trehalase from Drosophila melanogaster.

    PubMed

    Shukla, Ekta; Thorat, Leena; Bhavnani, Varsha; Bendre, Ameya D; Pal, J K; Nath, B B; Gaikwad, S M

    2016-11-01

    Trehalase, a physiologically important glycosidase is known for its crucial role in insect glycometabolism and stress recovery. The present study describes the molecular cloning of a gene fragment, encoding the catalytically active trehalase from Drosophila melanogaster (DmTre) and its heterologous expression in Escherichia coli. The 1275bp gene was overexpressed in two different vectors viz., pET28a and pCOLD TF and investigated for variable soluble expression, purification and activity of the recombinant enzyme with optimum pH and temperature of enzyme as 6 and 55°C, respectively. The sequence was characterized in silico by subjecting it to homology search, multiple sequence alignment and phylogenetic tree construction revealing its identity to other trehalases which belong to glycoside hydrolase family 37. The deduced amino acid sequence and modeled 3D structure of DmTre possessed all features of trehalase superfamily, including signature motifs and catalytic domain. The active site pocket of recombinant DmTre was compared with the crystal structure of E. coli trehalase identifying Glu424 and Asp226 as the putative catalytic residues. Additionally, enzyme-substrate docking suggests possible involvement of other residues in the catalysis along with Asp226. The present study holds significance in understanding the structural aspects of Drosophila trehalase in spite of unavailabilty of eukaryotic trehalase crystal structure.

  2. Molecular and pharmacological characterization of a functional tachykinin NK3 receptor cloned from the rabbit iris sphincter muscle

    PubMed Central

    Medhurst, Andrew D; Hirst, Warren D; Jerman, Jeffery C; Meakin, Jacqueline; Roberts, Jennifer C; Testa, Tania; Smart, Darren

    1999-01-01

    A functional tachykinin NK3 receptor was cloned from the rabbit iris sphincter muscle and its distribution investigated in ocular tissues.Standard polymerase chain reaction (PCR) techniques were used to clone a full length rabbit NK3 receptor cDNA consisting of 1404 nucleotides. This cDNA encoded a protein of 467 amino acids with 91 and 87% homology to the human and rat NK3 receptors respectively.In CHO-K1 cells transiently expressing the recombinant rabbit NK3 receptor, the relative order of potency of NKB>>NKA⩾SP to displace [125I]-[MePhe7]-NKB binding and to increase intracellular calcium, together with the high affinity of NK3 selective agonists (e.g. senktide, [MePhe7]-NKB) and antagonists (e.g. SR 142801, SB 223412) in both assays was consistent with NK3 receptor pharmacology. In binding and functional experiments, agonist concentration response curves were shallow (0.7–0.8), suggesting the possibility of multiple affinity states of the receptor.Quantitative real time PCR analysis revealed highest expression of rabbit NK3 receptor mRNA in iris sphincter muscle, lower expression in retina and iris dilator muscle, and no expression in lens and cornea. In situ hybridization histochemistry revealed discrete specific localization of NK3 receptor mRNA in the iris muscle and associated ciliary processes. Discrete specific labelling of NK3 receptors with the selective NK3 receptor agonist [125I]-[MePhe7]-NKB was also observed in the ciliary processes using autoradiography.Our study reveals a high molecular similarity between rabbit and human NK3 receptor mRNAs, as predicted from previous pharmacological studies, and provide the first evidence that NK3 receptors are precisely located on ciliary processes in the rabbit eye. In addition, there could be two affinity states of the receptor which may correspond to the typical and ‘atypical' NK3 receptor subtypes previously reported. PMID:10516642

  3. Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.

    PubMed

    Qiu, Chunhui; Hong, Yang; Cao, Yan; Wang, Fei; Fu, Zhiqiang; Shi, Yaojun; Wei, Meimei; Liu, Shengfa; Lin, Jiaojiao

    2012-12-01

    Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.

  4. Molecular Cloning and Expression of Pro J 1: A New Allergen of Prosopis Juliflora Pollen.

    PubMed

    Dousti, Fatemeh; Assarehzadegan, Mohammad-Ali; Morakabati, Payam; Khosravi, Gholam Reza; Akbari, Bahareh

    2016-04-01

    Pollen from mesquite (Prosopis juliflora) is one of the important causes of immediate hypersensitivity reactions in the arid and semi-arid regions of the world. The aim of present study is to produce and purify the recombinant form of allergenic Ole e 1-like protein from the pollen of this allergenic tree. Immunological and cross-inhibition assays were performed for the evaluation of IgE-binding capacity of purified recombinant protein. For molecular cloning, the coding sequence of the mesquite Ole e 1-like protein was inserted into pTZ57R/T vector and expressed in Escherichia coli using the vector pET-21b(+). After purification of the recombinant protein, its immunoreactivity was analysed by in vitro assays using sera from twenty one patients with an allergy to mesquite pollen. The purified recombinant allergen was a member of Ole e 1-like protein family and consisted of 150 amino acid residues, with a predicted molecular mass of 16.5 kDa and a calculated isoelectric point (pI) of 4.75. Twelve patients (57.14%) had significant specific IgE levels for this recombinant allergen. Immunodetection and inhibition assays indicated that the purified recombinant allergen might be the same as that in the crude extract. Herein, we introduce an important new allergen from P. juliflora pollen (Pro j 1), which is a member of the Ole e 1-like protein family and exhibits significant identity and similarity to other allergenic members of this family.

  5. Molecular cloning and prokaryotic expression of vp5 gene of grass carp reovirus strain GCRV096.

    PubMed

    Jian, Ji-chang; Wang, Ya; Yan, Xiu-ying; Ding, Yu; Wu, Zao-he; Lu, Yi-shan

    2013-12-01

    VP5 is an outer capsid protein of grass carp reovirus (GCRV). It is predicted to involve in helping GCRV enter the host cells. In this study, the full-length vp5 gene (accession number in GenBank: JN206664.1) was cloned from GCRV strain GCRV096, which was isolated from diseased grass carp (Ctenopharyngodon idella) in southern China by RT-PCR technique using the primers designed from the known vp5 gene sequences of other strains of GCRV published in GenBank. The ORF sequence of vp5 is composed of 1,947 nucleotides encoding a 648-residues protein with a calculated molecular mass of 68.6 kDa and an estimated isoelectric point of 6.1. Sequence analysis results showed that VP5 might serve as a penetration protein and play an important role in GCRV penetration into the host cells. A full length of vp5 gene was subcloned into the prokaryotic expression vector pET-28a (+) and the recombinant plasmid (pET/GCRV-VP5) was then transduced into Escherichia coli BL21 (DE3) cells to express VP5 in vitro. SDS-PAGE and western blotting analysis indicated that the protein expressed successfully. Results also showed that the fusion protein expressed in the form of inclusion body, and it expressed in the highest level when induced with 0.2-mM IPTG at 28 °C for 4 h. These results are important for the future study on the molecular structure, function, and immunogenicity of GCRV capsid protein.

  6. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais.

    PubMed

    Hou, Chang-Liang; Wang, Jing-Bo; Wu, Hua; Liu, Jia-Yu; Ma, Zhi-Qing; Feng, Jun-Tao; Zhang, Xing

    2016-09-30

    Cytochrome c oxidase subunit II (COX II) containing a dual core CuA active site is one of the core subunits of mitochondrial Cytochrome c oxidase (Cco), which plays a significant role in the physiological process. In this report, the full-length cDNA of COXII gene was cloned from Sitophilus zeamais, which had an open reading frame (ORF) of 684 bp encoding 227 amino acids residues. The predicted COXII protein had a molecular mass of 26.2 kDa with pI value of 6.37. multiple sequence alignment and phylogenetic analysis indicated that Sitophilus zeamais COXII had high sequence identity with the COXII of other insect species. The gene was subcloned into the expression vector pET-32a, and induced by isopropyl β-d-thiogalactopyranoside (IPTG) in E. coli Transetta (DE3) expression system. Finally the recombinant COXII with 6-His tag was purified using affinity chromatography with Ni(2+)-NTA agarose. Western Blotting (WB) showed the recombinant protein was about 44 kD, and the concentration of fusion protein was 50 μg/mL. UV-spectrophotometer and infrared spectrometer analysis showed that recombinant COXII could catalyze the oxidation of substrate Cytochrome C (Cyt c), and influenced by allyl isothiocyanate (AITC). By using molecular docking method, It was found that a sulfur atom of AITC structure could form a length of 2.9 Å hydrogen bond with Leu-31. These results suggested that tag-free COXII was functional and one of the action sites of AITC, which will be helpful to carry out a point mutation in binding sites for the future research.

  7. Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, P N; Kanwar, S S

    2016-11-01

    In the present study, endochitinase of T. harzianum isolate-ThHP3 induced against mycelium of F. oxysporum was cloned, sequenced and characterized. The complete nucleotide sequence contained an ORF of 1293bp corresponding to 430 amino acids with 46kDa molecular weight and theoretical pI 5.59. The precursor protein contained 22 amino acids long signal peptide at N terminus. The domain architecture of endochitinase showed low complexity regions, presence of 1W9P domain specific to cyclopentapeptide and lack of carbohydrate binding modules. The ligand binding site of ech46 endochitinase was constituted by 10 amino acids. The cDNA encoding ech46 endochitinase was ligated into pET28a vector and transformed to E. coli BL21. The predicted molecular weight of recombinant endochitinase without signal peptide was 49.4kDa with a theoretical pI 6.67. SDS-PAGE analysis of purified 6xHis tagged protein showed a single band of 49kDa. The refolded enzyme was active under acidic conditions with a temperature and pH optima of 50°C and 4. Km and Vmax for recombinant endochitinase using 4-pNP-(GlcNAc)3 were 315.2±0.36μM and 0.140±0.08μMmin(-1), respectively and the calculated kcat was 6.44min(-1). The RT-qPCR revealed induction of ech46 by phytopathogenic fungi.

  8. Molecular cloning and functional characterization of chick lens fiber connexin 45.6.

    PubMed Central

    Jiang, J X; White, T W; Goodenough, D A; Paul, D L

    1994-01-01

    The avian lens is an ideal system to study gap junctional intercellular communication in development and homeostasis. The lens is experimentally more accessible in the developing chick embryo than in other organisms, and chick lens cells differentiate well in primary cultures. However, only two members of the connexin gene family have been identified in the avian lens, whereas three are known in the mammalian system. We report here the molecular cloning and characterization of the third lens connexin, chick connexin45.6 (ChCx45.6), a protein with a predicted molecular mass of 45.6 kDa. ChCx45.6 was encoded by a single copy gene and was expressed specifically in the lens. There were two mRNA species of 6.4 kilobase (kb) and 9.4 kb in length. ChCx45.6 was a functional connexin protein, because expression in Xenopus oocyte pairs resulted in the development of high levels of conductance with a characteristic voltage sensitivity. Antisera were raised against ChCx45.6 and chick connexin56 (ChCx56), another avian lens-specific connexin, permitting the examination of the distribution of both proteins. Immunofluorescence localization showed that both ChCx45.6 and ChCx56 were abundant in lens fibers. Treatment of lens membranes with alkaline phosphatase resulted in electrophoretic mobility shifts, demonstrating that both ChCx45.6 and ChCx56 were phosphoproteins in vivo. Images PMID:8049527

  9. Molecular cloning, characterization, and expression of Cuc m 2, a major allergen in Cucumis melo

    PubMed Central

    Sankian, Mojtaba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2013-01-01

    Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine cross-reactivity of the major allergen with closely-related allergens from other plants displaying clinical cross-reactivity with melon. Methods: Identification and molecular characterization of the major melon allergen were performed using IgE immunoblotting, allergen-specific ELISA, affinity-based purifications, cross-inhibition assays, cloning, and expression of the allergen in Escherichia coli. Results: Melon profilin was identified and isolated as a major IgE-binding component and designated as Cuc m 2. Sequencing corresponding cDNA revealed an open reading frame of 363 bp coding for 131 amino acid residues and two fragments of 171 bp and 383 bps for the 5’and 3’ UTRs, respectively. Significant cross-reactivity was found between melon profilin and Cynodon dactylon, tomato, peach, and grape profilins in cross-inhibition assays. Although the highest degree of amino acid identity was revealed with watermelon profilin, there was no significant cross-reactivity between melon and watermelon profilins. Conclusion: Melon profilin is the major IgE-binding component in melon extract, and the recombinant and natural forms exhibited similar IgE-binding capacities. A part of the fruit-fruit and pollen-fruit cross-reactions could be explained by the presence of this conserved protein; however, sequence homology provides insufficient information to predict IgE cross-reactivity of profilins. PMID:26989709

  10. Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa.

    PubMed

    Wang, Chan-Ju; Hagemeier, Christoph; Rahman, Nawreen; Lowe, Edward; Noble, Martin; Coughtrie, Michael; Sim, Edith; Westwood, Isaac

    2007-11-09

    The gene PA0785 from Pseudomonas aeruginosa strain PAO1, which is annotated as a probable acyl carrier protein phosphodiesterase (acpD), has been cloned and heterologously overexpressed in Escherichia coli. The purified recombinant enzyme exhibits activity corresponding to that of azoreductase but not acpD. Each recombinant protein molecule has an estimated molecular mass of 23,050 Da and one non-covalently bound FMN as co-factor. This enzyme, now identified as azoreductase 1 from Pseudomonas aeruginosa (paAzoR1), is a flavodoxin-like protein with an apparent molecular mass of 110 kDa as determined by gel-filtration chromatography, indicating that the protein is likely to be tetrameric in solution. The three-dimensional structure of paAzoR1, in complex with the substrate methyl red, was solved at a resolution of 2.18 A by X-ray crystallography. The protein exists as a dimer of dimers in the crystal lattice, with two spatially separated active sites per dimer, and the active site of paAzoR1 was shown to be a well-conserved hydrophobic pocket formed between two monomers. The paAzoR1 enzyme is able to reduce different classes of azo dyes and activate several azo pro-drugs used in the treatment of inflammatory bowel disease (IBD). During azo reduction, FMN serves as a redox centre in the electron-transferring system by mediating the electron transfer from NAD(P)H to the azo substrate. The spectral properties of paAzoR1 demonstrate the hydrophobic interaction between FMN and the active site in the protein. The structure of the ligand-bound protein also highlights the pi-stacking interactions between FMN and the azo substrate.

  11. Molecular cloning and expression of the cDNA coding for a new member of the S100 protein family from porcine cardiac muscle.

    PubMed

    Ohta, H; Sasaki, T; Naka, M; Hiraoka, O; Miyamoto, C; Furuichi, Y; Tanaka, T

    1991-12-16

    We isolated a new calcium-binding protein from porcine cardiac muscle by calcium-dependent hydrophobic and dye-affinity chromatography. It showed an apparent molecular weight of 11,000 on SDS-PAGE. Amino acid sequence determination revealed that the protein contained two calcium-binding domains of the EF-hand motif. The cDNA gene coding for this protein was cloned from the porcine lung cDNA library. Sequence analysis of the cloned cDNA showed that the protein was composed of 99 amino acid residues and its molecular weight was estimated to be 11,179. Immunological and functional characterization showed that the recombinant S100C protein expressed in Escherichia coli was identical to the natural protein. Homologies to calpactin light chain, S100 alpha and beta protein were 41.1%, 40.9% and 37.5%, respectively. The protein was expressed at high levels in lung and kidney, and low levels in liver and brain. The tissue distribution was apparently different from those of the other S100 protein family. These results indicate that this protein represents a new member of the S100 protein family, and thus we refer to it as S100C protein.

  12. Genetic and molecular analysis of Sn, a light-inducible, tissue specific regulatory gene in maize.

    PubMed

    Tonelli, C; Consonni, G; Dolfini, S F; Dellaporta, S L; Viotti, A; Gavazzi, G

    1991-03-01

    The Sn locus of maize is functionally similar to the R and B loci, in that Sn differentially controls the tissue-specific deposition of anthocyanin pigments in certain seedling and plant cells. We show that Sn shows molecular similarity to the R gene and have used R DNA probes to characterize several Sn alleles. Northern analysis demonstrates that all Sn alleles encode a 2.5 kb transcript, which is expressed in a tissue-specific fashion consistent with the distribution of anthocyanins. Expression of the Sn gene is light-regulated. However, the Sn: bol3 allele allows Sn mRNA transcription to occur in the dark, leading to pigmentation in dark-grown seedlings and cob integuments. We report the isolation of genomic and cDNA clones of the light-independent Sn: bol3 allele. Using Sn cDNA as a probe, the spatial and temporal expression of Sn has been examined. The cell-specific localization of Sn mRNA has been confirmed by in situ hybridization using labelled antisense RNA probes. According to its proposed regulatory role, expression of Sn precedes and, in turn, causes a coordinate and tissue-specific accumulation of mRNA of structural genes for pigment synthesis and deposition, such as A1 and C2. The functional and structural relationship between R, B, Lc and Sn is discussed in terms of an evolutionary derivation from a single ancestral gene which gave rise this diverse gene family by successive duplication events.

  13. Molecular cloning and characterization of a type 3 iodothyronine deiodinase in the pine snake Pituophis deppei.

    PubMed

    Villalobos, Patricia; Orozco, Aurea; Valverde-R, Carlos

    2010-11-01

    The three distinct but related isotypes of the iodothyronine deiodinase family: D1, D2, and D3, have been amply studied in vertebrate homeotherms and to a lesser extent in ectotherms, particularly in reptiles. Here, we report the molecular and kinetic characteristics of both the native and the recombinant hepatic D3 from the pine snake Pituophis deppei (PdD3). The complete PdD3 cDNA (1680 bp) encodes a protein of 287 amino acids (aa), which is the longest type 3 deiodinase so far cloned. PdD3 shares 78% identity with chicken and 71% with its other orthologs. Interestingly, the hinge domain in D3s, including PdD3, is rich in proline. This structural feature is shared with D1s, the other inner-ring deiodinases, and deserves further study. The kinetic characteristics of both native and recombinant PdD3 were similar to those reported for D3 in other vertebrates. True K(m) values for T(3) IRD were 9 and 11 nM for native and recombinant PdD3, respectively. Both exhibited a requirement for a high concentration of cofactor (40 mM DTT), insensitivity to inhibition by PTU (>2 mM), and bisubstrate, sequential-type reaction kinetics. In summary, the present data demonstrate that the liver of the adult pine snake P. deppei expresses D3. Furthermore, this is the first report of the cloning and expression of a reptilian D3 cDNA. The finding of hepatic D3 expression in the adult pine snake P. deppei is consistent with results in adult piscine species in which the dietary T(3) content seems to regulate liver deiodinase expression. Thus, our present results support the proposal that hepatic D3 in adult vertebrates plays a sentinel role in avoiding an inappropriate overload of exogenous T(3) secondary to feeding in those species that devour the whole prey. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Molecular cloning and characterization of a novel phospholipase C, PLC-eta.

    PubMed

    Hwang, Jong-Ik; Oh, Yong-Seok; Shin, Kum-Joo; Kim, Hyun; Ryu, Sung Ho; Suh, Pann-Ghill

    2005-07-01

    PLC (phospholipase C) plays an important role in intracellular signal transduction by hydrolysing phosphatidylinositol 4,5-bisphosphate, a membrane phospholipid. To date, 12 members of the mammalian PLC isoforms have been identified and classified into five isotypes beta, gamma, delta, epsilon and zeta, which are regulated by distinct mechanisms. In the present study, we describe the identification of a novel PLC isoform in the brains of human and mouse, named PLC-eta, which contains the conserved pleckstrin homology domain, X and Y domains for catalytic activity and the C2 domain. The first identified gene encoded 1002 (human) or 1003 (mouse) amino acids with an estimated molecular mass of 115 kDa. The purified recombinant PLC-eta exhibited Ca2+-dependent catalytic activity on phosphatidylinositol 4,5-bisphosphate. Furthermore, molecular biological analysis revealed that the PLC-eta gene was transcribed to several splicing variants. Although some transcripts were detected in most of the tissues we examined, the transcript encoding 115 kDa was restricted to the brain and lung. In addition, the expression of the 115 kDa protein was defined in only nerve tissues such as the brain and spinal cord. In situ hybridization analysis with brain revealed that PLC-eta was abundantly expressed in various regions including cerebral cortex, hippocampus, zona incerta and cerebellar Purkinje cell layer, which are neuronal cell-enriched regions. These results suggest that PLC-eta may perform fundamental roles in the brain.

  15. Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress.

    PubMed

    Xu, Qianghua; Qin, Ye

    2012-09-01

    Heat shock protein 60 (HSP60) is a highly conserved and multi-functional molecular chaperone that plays an essential role in both cellular metabolism and stress response. Portunus trituberculatus is an important marine fishery and aquaculture species, and water salinity condition influenced its artificial propagations significantly. In order to investigate the function of P. trituberculatus HSP60 against osmotic stress, P. trituberculatus HSP60 gene was firstly cloned. The full-length cDNA of PtHSP60 contains 1,743 nucleotides encoding 577 amino acids with a calculated molecular weight of 61.25 kDa. Multiple alignments indicated that the deduced amino acid sequences of PtHSP60 shared a high level of identity with invertebrate and vertebrate HSP60 sequence including shrimp, fruit fly, zebrafish, and human. The expression profiles of PtHSP60 at mRNA and protein levels under salinity treatment were investigated by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. It was found that the mRNA transcripts of PtHSP60 gene varied among different tissues under normal salinity conditions, and the antennal gland showed the highest expression level among the tissues tested. As for low salinity challenge, the mRNA expression of PtHSP60 gene was higher in the gill and appendicular muscle compared with other tissues, and gill and hypodermis represented the higher gene expressions during the hyperosmotic stress, which indicated that those tissues were salinity-sensitive tissues. In addition, salinity challenges significantly altered the expression of PtHSP60 at mRNA and protein level in a salinity- and time-dependent manner in P. trituberculatus gill tissue. The results indicate that PtHSP60 played important roles in mediating the salinity stress in P. trituberculatus.

  16. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit.

    PubMed

    Qin, Ning; Yagel, Susan; Momplaisir, Mary-Lou; Codd, Ellen E; D'Andrea, Michael R

    2002-09-01

    The voltage-gated calcium channel is composed of a pore-forming alpha(1) subunit and several regulatory subunits: alpha(2)delta, beta, and gamma. We report here the identification of a novel alpha(2)delta subunit, alpha(2)delta-4, from the expressed sequence tag database followed by its cloning and characterization. The novel alpha(2)delta-4 subunit gene contains 39 exons spanning about 130 kilobases and is co-localized with the CHCNA1C gene (alpha(1C) subunit) on human chromosome 12p13.3. Alternative splicing of the alpha(2)delta-4 gene gives rise to four potential variants, a through d. The open reading frame of human alpha(2)delta-4a is composed of 3363 base pairs encoding a protein with 1120 residues and a calculated molecular mass of 126 kDa. The alpha(2)delta-4a subunit shares 30, 32, and 61% identity with the human calcium channel alpha(2)delta-1, alpha(2)delta-2, and alpha(2)delta-3 subunits, respectively. Primary sequence comparison suggests that alpha(2)delta-4 lacks the gabapentin binding motifs characterized for alpha(2)delta-1 and alpha(2)delta-2; this was confirmed by a [(3)H]gabapentin-binding assay. In human embryonic kidney 293 cells, the alpha(2)delta-4 subunit associated with Ca(V)1.2 and beta(3) subunits and significantly increased Ca(V)1.2/beta(3)-mediated Ca(2+) influx. Immunohistochemical study revealed that the alpha(2)delta-4 subunit has limited distribution in special cell types of the pituitary, adrenal gland, colon, and fetal liver. Whether the alpha(2)delta-4 subunit plays a distinct physiological role in select endocrine tissues remains to be demonstrated.

  17. Molecular cloning and functional characterization of a novel i-type lysozyme in the freshwater mussel Cristaria plicata.

    PubMed

    Dai, Wenjuan; Wu, Dan; Zhang, Ming; Wen, Chungen; Xie, Yanhai; Hu, Baoqing; Jian, Shaoqing; Zeng, Mingyu; Tao, Zhiying

    2015-12-01

    The freshwater bivalve Cristaria plicata, which is widely distributed in Eastern Asia, is a key species in the pearl culture industry. In this study, a novel invertebrate-type lysozyme, designated as CpLYZ2, was cloned from hemocytes of C. plicata. This lysozyme shares high sequence identity and is homologous to a previously identified lysozyme CpLYZ1 isolated from C. plicata and with HcLyso3 isolated from Hyriopsis cumingii. The full-length cDNA of CpLYZ2 is 913 bp long, which includes an open reading frame (ORF) of 486 bp, a 3' untranslated region (UTR) of 389 bp and a 5' UTR of 38 bp. The ORF encodes a putative polypeptide of 161 amino acids with a predicted molecular mass of 18.2 kDa and a theoretical isoelectric point of 6.56. CpLYZ2 mRNA transcripts can be detected in hemocytes, hepatopancreas, muscle, gills and mantle tissues, the greatest expression being observed in the gills. CpLYZ2 expression in hemocytes, hepatopancreas and gills increased significantly after the mussel was challenged with Aeromonas hydrophila. Furthermore, the optimal pH and temperature for enzyme activity of the recombinant CpLYZ2 were 5.5 and 50°C, respectively. The recombinant lysozyme protein exhibited bacteriolytic activity against Escherichia coli, A. hydrophila, Staphylococcus aureus, Bacillus subtilis, Streptococcus sp. and Staphylococcus epidermidis. The findings of this study help to elucidate immune responses in molluscs and will thus expedite disease management of these key freshwater species, in turn boosting pearl culture in eastern Asia.

  18. Molecular cloning, characterization and expression analysis of TGF-β and receptor genes in the woodchuck model.

    PubMed

    Wang, Lu; Wang, Junzhong; Liu, Yana; Wang, Baoju; Yang, Shangqing; Yu, Qing; Roggendorf, Michael; Lu, Mengji; Liu, Jia; Yang, Dongliang

    2016-12-20

    Transforming growth factor beta (TGF-β) is an important cytokine with pleiotropic regulatory functions in the immune system and in the responses against viral infections. TGF-β acts on a variety of immune cells through the cell surface TGF-β receptor (University of Duisburg-EssenTGFBR). The woodchuck has been used as a biomedical model for studies of obesity and energy balance, endocrine and metabolic function, cardiovascular, cerebrovascular and neoplastic disease. Woodchucks infected with woodchuck hepatitis virus (WHV) represent an informative animal model to study hepatitis B virus (HBV) infection. In this study, the cDNA sequences of woodchuck TGF-β1, TGF-β2, TGFBR1 and TGFBR2 were cloned, sequenced and characterized. The full-length TGFBR1 cDNA sequence consisted of 1305bp coding sequence (CDS) that encoded 434 amino acids with a molecular weight of 48.9kDa. The phylogenetic tree analysis revealed that the woodchuck TGF-β family genes had a closer genetic relationship with Ictidomys tridecemlineatus. One antibody with cross-reactivity to woodchuck TGFBR1 was identified by flow cytometry. Moreover, the expression of these genes were analyzed at the transcriptional level. The quantitative PCR analysis showed that the TGF-β family transcripts were constitutively expressed in many tissues tested. Altered expression levels of the TGF-β family transcripts in the liver of WHV infected woodchucks were observed. These results serve as a foundation for further insight into the role of the TGF-β family in viral hepatitis in woodchuck model. Our work also possesses the potential value for characterizing the TGF-β family in other related diseases, such as obesity-related diseases, metabolic disorder, cardiovascular disease and cancer.

  19. Study of thermal scattering for organic tissues through molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ramos, Ricardo; Cantargi, Florencia; Marquez Damian, Jose Ignacio; Gonçalves-Carralves, Manuel Sztejnberg

    2017-09-01

    Boron Neutron Capture Therapy (BNCT) is an experimental therapy for tumors which is based on the nuclear reaction that occurs when 10B is irradiated with thermal neutrons. Calculations for BNCT with Monte Carlo N-Particle (MCNP) take into account the thermal scattering treatment for hydrogen bound in bulk water for any organic tissue. However, in these tissues, hydrogen is also present in macromolecules (protein, lipids, etc.) and in confined water. Thermal scattering cross section for hydrogen in an organic tissue can be determined by calculating the scattering law S(α,β). This function can be obtained with the nuclear data processing system NJOY from the vibrational frequency spectrum of an atom in a molecular system. We performed calculations of the frequency spectrum from molecular dynamics simulations using the program GROMACS. Systems composed of a peptide in a water box were considered, with different proportions of water molecules. All-atom potentials for modeling this molecules were used in order to represent the internal vibrational normal modes for the atoms of hydrogen. The results showed several internal normal modes that in the case of hydrogen bound in bulk water do not appear.

  20. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  1. Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.).

    PubMed

    Aoki, N; Hirose, T; Takahashi, S; Ono, K; Ishimaru, K; Ohsugi, R

    1999-10-01

    Here we report the cloning of a sucrose transporter cDNA from maize (Zea mays L.) and an analysis of the expression of the gene. A cDNA clone (ZmSUT1) was identified as a sucrose transporter cDNA from its sequence homology at the amino acid level to sucrose transporters that have been cloned from other higher plant species. Based on the results of genomic Southern hybridization, ZmSUT1 appears to be a single copy gene. A Northern blot analysis of seedlings and leaf blades suggests that the sucrose transporter is involved in the export of accumulated carbohydrates from source leaf blades. From the measurements of transcript levels and carbohydrate contents in mature leaf blades, we propose that the expression of the gene for the maize sucrose transporter is positively regulated by the amounts of soluble sugars such as sucrose and glucose in source leaves of maize. In addition, based on the tissue specificity of the expression of the gene in maize plants at the reproductive stage, it is possible that the sucrose transporter acts in sink tissues such as pedicles as well as in source tissues such as leaf blades.

  2. The origin of a morphologically unidentifiable human supernumerary minichromosome traced through sorting, molecular cloning, and in situ hybridisation.

    PubMed Central

    Raimondi, E; Ferretti, L; Young, B D; Sgaramella, V; De Carli, L

    1991-01-01

    A supernumerary minichromosome has been detected in a severely malformed patient. Attempts at identifying the marker by conventional approaches were unsuccessful. The physical isolation of the minichromosome by fluorescence activated sorting, molecular cloning of its DNA, and in situ hybridisation experiments performed with single copy DNA probes allowed us to show that it was derived from a rearrangement involving the centromere and the proximal region of the short arm of chromosome 9. Images PMID:2002493

  3. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Cloning of the human uroplakin 1B cDNA and analysis of its expression in urothelial-tumor cell lines and bladder-carcinoma tissue.

    PubMed

    Finch, J L; Miller, J; Aspinall, J O; Cowled, P A

    1999-02-09

    The human uroplakin 1B (UPK1B) gene codes for a structural protein which is a terminal differentiation component of the asymmetric unit membrane on the apical surface of the mammalian bladder. UPK1B is a member of the tetraspan family of proteins, many of which have de-regulated patterns of expression in cancer. Using polymerase-chain-reaction techniques, we have cloned a partial human UPK1B cDNA which codes for the putative full open reading frame for the UPK1B protein. The deduced human UPK1B protein sequence has 92% and 93% amino-acid homology with bovine UPK1b and mink TI1 proteins respectively. Using Northern analysis, we show that the human UPK1B gene is highly expressed in normal human urothelium. However, expression of UPK1B mRNA was undetectable or markedly reduced in 11 out of 16 samples of transitional-cell-bladder-carcinoma tissue and in all 5 bladder-carcinoma cell lines when compared with normal urothelial tissue. The molecular mechanism of down-regulation of RNA expression does not appear to involve gross gene rearrangements or allelic loss.

  5. Identification and cloning of molecular markers for UV-B tolerant gene in wild sugarcane (Saccharum spontaneum L.).

    PubMed

    Li, Yuan; He, Yongmei; Zu, Yanqun; Zhan, Fangdong

    2011-11-03

    Previously we have selected wild sugarcane (Saccharum spontaneum L.) sterile lines that are tolerant or susceptible to UV-B radiation based on response index (RI) in a field screening test. The RI was established according to plant height, tiller number, leaf index, total biomass and brix under enhanced ultraviolet-B (UV-B, 280-310 nm) radiation. In this experiment, molecular markers linked to the UV-B tolerant and susceptible genes were identified and cloned. RAPD (Randomly amplified polymorphic DNAs) assay using 100 arbitrary primers followed by clustering analysis separated the tolerant and susceptible lines into two groups at the genetic distance of 0.380. The UV-B tolerant and susceptible gene pools were constructed and compared using the Bulked Segregate Analysis (BSA) approach. Of the 100 arbitrary RAPD primers, primer OPR16 produced polymorphic DNA banding patterns from both gene pools. The OPR16-1200 bp DNA fragment was only amplified from the tolerant lines and the OPR16-800 bp from the susceptible ones. These two PCR fragments were cloned onto T-vector. DNA sequence alignment analysis determined that 42% homology existed between the reverse and forward sequences of the OPR16-1200 bp clone, and 36% homology between the forward sequences of the OPR16-800 bp and OPR16-1200 bp clones. The two DNA clones were determined to be linked to the UV-B tolerant and susceptible genes, and they can be used to develop molecular markers for the associated traits. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    SciTech Connect

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. ); McPherson, J.P. ); Evans, G.A. )

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  7. [Soft tissue tumors - the view of the molecular biologist].

    PubMed

    Krsková, Lenka; Mrhalová, Marcela; Kalinová, Markéta; Campr, Vít; Capková, Linda; Grega, Marek; Háček, Jaromír; Hornofová, Ludmila; Chadimová, Mária; Chmelová, Renata; Kodetová, Daniela; Zámečník, Josef; Kodet, Roman

    2014-07-01

    Soft tissue tumors (SSTs) constitute a broad spectrum of neoplasms with diverse biological properties. Rare or unusual types are often difficult to classify. Recent studies show, that a significant subset of SSTs including many types of sarcomas are associated with specific genetic changes such as chromosomal translocations producing chimeric genes, which play a role in the pathogenesis of SSTs. Because SSTs represent a diagnostically challenging group of tumors, molecular-genetic techniques (FISH or PCR) are useful as supplementary and/or confirmatory diagnostic tools. In the present paper we demonstrate the usefulness of a combined diagnostic approach using the tools of classical histopathology and immunohistochemistry together with the molecular diagnostic approach in selected nosologic entites.

  8. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza.

    PubMed

    Li, Caili; Li, Dongqiao; Shao, Fenjuan; Lu, Shanfa

    2015-03-17

    WRKY proteins comprise a large family of transcription factors and play important regulatory roles in plant development and defense response. The WRKY gene family in Salvia miltiorrhiza has not been characterized. A total of 61 SmWRKYs were cloned from S. miltiorrhiza. Multiple sequence alignment showed that SmWRKYs could be classified into 3 groups and 8 subgroups. Sequence features, the WRKY domain and other motifs of SmWRKYs are largely conserved with Arabidopsis AtWRKYs. Each group of WRKY domains contains characteristic conserved sequences, and group-specific motifs might attribute to functional divergence of WRKYs. A total of 17 pairs of orthologous SmWRKY and AtWRKY genes and 21 pairs of paralogous SmWRKY genes were identified. Maximum likelihood analysis showed that SmWRKYs had undergone strong selective pressure for adaptive evolution. Functional divergence analysis suggested that the SmWRKY subgroup genes and many paralogous SmWRKY gene pairs were divergent in functions. Various critical amino acids contributed to functional divergence among subgroups were detected. Of the 61 SmWRKYs, 22, 13, 4 and 1 were predominantly expressed in roots, stems, leaves, and flowers, respectively. The other 21 were mainly expressed in at least two tissues analyzed. In S. miltiorrhiza roots treated with MeJA, significant changes of gene expression were observed for 49 SmWRKYs, of which 26 were up-regulated, 18 were down-regulated, while the other 5 were either up-regulated or down-regulated at different time-points of treatment. Analysis of published RNA-seq data showed that 42 of the 61 identified SmWRKYs were yeast extract and Ag(+)-responsive. Through a systematic analysis, SmWRKYs potentially involved in tanshinone biosynthesis were predicted. These results provide insights into functional conservation and diversification of SmWRKYs and are useful information for further elucidating SmWRKY functions.

  9. Persian sturgeon insulin-like growth factor I: molecular cloning and expression during various nutritional conditions.

    PubMed

    Yarmohammadi, Mahtab; Pourkazemi, Mohammad; Kazemi, Rezvanollah; Hallajian, Ali; Soltanloo, Hassan; Hassanzadeh Saber, Mohammad; Abbasalizadeh, Alireza

    2014-05-01

    The effects of different periods of starvation (1, 2, 3, and 4 weeks) and subsequent re-feeding (over a 4 week) on the compensatory growth performance and insulin-like growth factor I (IGF-I) mRNA expression in liver and white muscle were investigated in juvenile Persian sturgeon (Acipenser persicus). First, a fragment of 617 nucleotides coding for IGF-I was cloned from liver, which included an open reading frame of 486 nucleotides, encoding a 162 amino acid preproIGF-I. This is composed of a 45 aa for signal peptide, a 117 aa for the mature peptide comprising the B, C, A, and D domains, and a 47 aa for E domain. The mature Persian sturgeon IGF-I exhibits high sequence identities with other sturgeon species and teleost, ranging between 68 and 95 %. The pattern of IGF-I mRNA expression in the liver and white muscle was measured in response to different periods of starvation and subsequent re-feeding. Nutritional status influenced IGF-I mRNA expression pattern in both liver and muscle. IGF-I mRNA expression in the liver increased during starvation, before decreasing after re-feeding. Furthermore, white muscle IGF-I mRNA expression showed better responses to nutritional status and decreased following starvation and increased by re-feeding. However, changes in the expression of IGF-I mRNA were not significantly different between any of the treatments in both tissues. These data suggest that muscle and liver IGF-I mRNA expression do not have a regulatory role for somatic growth induced by compensatory growth in Persain sturgeon.

  10. Molecular cloning of the cDNAs encoding three somatostatin variants in the dogfish (Scylorhinus canicula).

    PubMed

    Quan, Feng B; Kenigfest, Natalia B; Mazan, Sylvie; Tostivint, Hervé

    2013-01-01

    It has been recently shown that the somatostatin gene family was likely composed of at least three paralogous genes in the common ancestor of all extant jawed vertebrates. These three genes, namely SS1, SS2 and SS5, are thought to have been generated through the two rounds of whole-genome duplications (2R) that took place early during the vertebrate evolution. In the present study, we report the cloning of three distinct somatostatin cDNAs from the dogfish Scylorhinus canicula, a member of the group of cartilaginous fish. We decided to call these cDNAs, at least provisionally, SSa, SSb and SSc, respectively. Two of them, SSa and SSb, encode proteins that both contain the same tetradecapeptide sequence at their C-terminal extremity (AGCKNFFWKTFTSC). This putative peptide is identical to that generated by the SS1 gene in other vertebrate species. The last cDNA, SSc, encodes a protein that contains at its C-terminal extremity the same peptide sequence as that generated by the SS2 gene in teleosts (APCKNFFWKTFTSC). Phylogenetic analysis showed that the SSa and SSc genes likely correspond to the dogfish counterparts of the SS1 and SS2 genes, respectively. In contrast, the phylogenetic status of the SSb gene is less clear. Several lines of evidence suggest that it could correspond to the SS5 gene, but this view will need to be confirmed, for example by synteny analysis. Finally, RT-PCR analysis revealed that SSa, SSb and SSc genes are differentially expressed in dogfish tissues, suggesting that the corresponding peptides may exert distinct functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidase.

    PubMed

    Roberts, E; Kolattukudy, P E

    1989-06-01

    A highly anionic peroxidase induced in suberizing cells was suggested to be the key enzyme involved in polymerization of phenolic monomers to generate the aromatic matrix of suberin. The enzyme encoded by a potato cDNA was found to be highly homologous to the anionic peroxidase induced in suberizing tomato fruit. A tomato genomic library was screened using the potato anionic peroxidase cDNA and one genomic clone was isolated that contained two tandemly oriented anionic peroxidase genes. These genes were sequenced and were 96% and 87% identical to the mRNA for potato anionic peroxidase. Both genes consist of three exons with the relative positions of their two introns being conserved between the two genes. Primer extension analysis showed that only one of the genes is expressed in the periderm of 3 day wound-healed tomato fruits. Southern blot analyses suggested that there are two copies each of the two highly homologous genes per haploid genome in both potato and tomato. Abscisic acid (ABA) induced the accumulation of the anionic peroxidase transcripts in potato and tomato callus tissues. Northern blots showed that peroxidase mRNA was detectable at 2 days and was maximal at 8 days after transfer of potato callus to solid agar media containing 10(-4) M ABA. The transcripts induced by ABA in both potato and tomato callus were identical in size to those induced in wound-healing potato tuber and tomato fruit. The anionic peroxidase peptide was detected in extracts of potato callus grown on the ABA-containing media by western blot analysis. The results support the suggestion that stimulation of suberization by ABA involves the induction of the highly anionic peroxidase.

  12. Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase

    SciTech Connect

    Funk, C.D.; Furci, L.; FitzGerald, G.A. )

    1990-08-01

    The major pathway of arachidonic acid metabolism in human platelets proceeds via a 12-lipoxygenase enzyme; however, the biological role of the product of this reaction, 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE), is unknown. Using a combination of the polymerase chain reaction and conventional screening procedures, the authors have isolated cDNA clones encoding the human platelet/human erythroleukemia (HEL) cell 12-lipoxygenase. From the deduced primary structure, human platelet/HEL 12-lipoxygenase would encode a M{sub r} 75,000 protein consisting of 663 amino acids. The cDNA encoding the full-length protein (pCDNA-12lx) under the control of the cytomegalovirus promoter was expressed in simian COS-M6 cells. Intact cells and lysed-cell supernatants were able to synthesize 12-H(P)ETE from arachidonic acid, whereas no 12-H(P)ETE synthesis was detected in mock-transfected cells. A single 2.4-kilobase mRNA was detected in erythroleukemia cells but not in several other tissues and cell lines evaluated by Northern blot analysis. Comparison of the human platelet/HEL 12-lipoxygenase sequence with that of porcine leukocyte 12-lipoxygenase and human reticulocyte 15-lipoxygenase revealed 65% amino acid identity to both enzymes. By contrast, the leukocyte 12-lipoxygenase is 86% identical to human reticulocyte 15-lipoxygenase. Sequence data and previously demonstrated immunochemical and biochemical evidence support the existence of distinct 12-lipoxygenase isoforms. The availability of cDNA probes for human platelet/HEL cell 12-lipoxygenase should facilitate elucidation of the biological role of this pathway.

  13. Molecular cloning and characterization of perlucin from the freshwater pearl mussel, Hyriopsis cumingii.

    PubMed

    Lin, Jing-Yun; Ma, Ke-Yi; Bai, Zhi-Yi; Li, Jia-Le

    2013-09-10

    Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a "QPS" and an invariant "WND" motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus.

    PubMed

    Ma, Tai-yang; Wu, Jin-ying; Gao, Xiao-ke; Wang, Jing-yuan; Zhan, Xu-liang; Li, Wen-sheng

    2014-10-01

    FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica).

    PubMed

    Liu, Ji Hong; Ban, Yusuke; Wen, Xiao-Peng; Nakajima, Ikuko; Moriguchi, Takaya

    2009-01-15

    Arginine decarboxylase (ADC), one of the enzymes responsible for putrescine (Put) biosynthesis, has been shown to be implicated in stress response. In the current paper attempts were made to clone and characterize a gene encoding ADC from peach (Prunus persica (L.) Batsch, 'Akatsuki'). Rapid amplification of cDNA ends (RACE) gave rise to a full-length ADC cDNA (PpADC) with a complete open reading frame of 2178 bp, encoding a 725 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced PpADC protein sequence shared a high identity with ADCs from other plants, including several highly conservative motifs and amino acids. Southern blotting indicated that PpADC existed in peach genome as a single gene. Expression levels of PpADC in different tissues of peach (P. persica 'Akatsuki') were spatially and developmentally regulated. Treatment of peach shoots from 'Mochizuki' with exogenous 5 mM Put, an indirect product of ADC, remarkably induced accumulation of PpADC mRNA. Transcripts of PpADC in peach leaves from 'Mochizuki' were quickly induced, either transiently or continuously, in response to dehydration, high salinity (200 mM NaCl), low temperature (4 degrees C) and heavy metal (150 microM CdCl(2)), but repressed by high temperature 37 degrees C) during a 2-day treatment, which changed in an opposite direction when the stresses were otherwise removed with the exception of CdCl(2) treatment. In addition, steady-state of PpADC mRNA could be also transiently up-regulated by abscisic acid (ABA) in 'Mochizuki' leaves. All of these, taken together, suggest that PpADC is a stress-responsive gene and can be considered as a potential target that is genetically manipulated so as to create novel germplasms with enhanced stress tolerance in the future.

  16. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    PubMed

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-04-11

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide.

  17. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.).

    PubMed

    Zhu, Jiantang; Hao, Pengchao; Chen, Guanxing; Han, Caixia; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Hu, Yingkao; Yan, Yueming

    2014-10-01

    The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling

  18. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family.

    PubMed Central

    Rosenberg, H F; Tenen, D G; Ackerman, S J

    1989-01-01

    We have isolated a 725-base-pair cDNA clone for human eosinophil-derived neurotoxin (EDN). EDN is a distinct cationic protein of the eosinophil's large specific granule known primarily for its ability to induce ataxia, paralysis, and central nervous system cellular degeneration in experimental animals (Gordon phenomenon). The open reading frame encodes a 134-amino acid mature polypeptide with a molecular mass of 15.5 kDa and a 27-residue amino-terminal hydrophobic leader sequence. The sequence of the mature polypeptide is identical to that reported for human urinary ribonuclease [Beintema, J. J., Hofsteenge, J., Iwama, M., Morita, T., Ohgi, K., Irie, M., Sugiyama, R. H., Schieven, G. L., Dekker, C. A. & Glitz, D. G. (1988) Biochemistry 27, 4530-4538] and to the amino-terminal sequence of human liver ribonuclease [Sorrentino, S., Tucker, G. K. & Glitz, D. G. (1988) J. Biol. Chem. 263, 16125-16131]; the cDNA encodes a tryptophan in position 7, which was previously unidentified in the amino acid sequences of EDN or the urinary and liver ribonucleases. Both EDN and the related granule protein, eosinophil cationic protein, have ribonucleolytic activity; sequence similarities among EDN, eosinophil cationic protein, ribonucleases from liver, urine, and pancreas, and angiogenin define a ribonuclease multigene family. mRNA encoding EDN was detected in uninduced HL-60 cells and was up-regulated in cells induced toward eosinophilic differentiation with B-cell growth factor 2/interleukin 5 and toward neutrophilic differentiation with dimethyl sulfoxide. EDN mRNA was detected in mature neutrophils even though EDN-like neurotoxic activity is not found in neutrophil extracts. These results suggest that neutrophils contain a protein that is closely related or identical to EDN. Images PMID:2734298

  19. Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia.

    PubMed

    Wang, E L; Wang, K Y; Chen, D F; Geng, Y; Huang, L Y; Wang, J; He, Y

    2015-06-01

    Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the neuA gene, can catalyze the activation of sialic acid with CMP, and plays an important role in Streptococcus agalactiae infection pathogenesis. To study the structure and function of the S. agalactiae neuA gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the neuA nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the neuA nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_tranf_GTA_type superfamily and an SGNH_hydrolase superfamily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against S. agalactiae infection. The codon usage frequency of neuA differed greatly in Escherichia coli and Homo sapiens genes, and neuA may be more efficiently expressed in eukaryotes (yeast). S. agalactiae neuA from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria.

  20. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression.

    PubMed

    Yamazaki, Mami; Yamagishi, Emiko; Gong, Zhizhong; Fukuchi-Mizutani, Masako; Fukui, Yuko; Tanaka, Yoshikazu; Kusumi, Takaaki; Yamaguchi, Masaatsu; Saito, Kazuki

    2002-03-01

    Two flavonoid glucosyltransferases, UDP-glucose:flavonoid 3-0-glucosyltransferase (3-GT) and UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT), are responsible for the glucosylation of anthocyani(di)ns to produce stable molecules in the anthocyanin biosynthetic pathway. The cDNAs encoding 3-GT and 5-GT were isolated from Petunia hybrida by hybridization screening with heterologous probes. The cDNA clones of 3-GT, PGT8, and 5-GT, PH1, encode putative polypeptides of 448 and 468 amino acids, respectively. A phylogenetic tree based on amino acid sequences of the family of glycosyltransferases from various plants shows that PGT8 belongs to the 3-GT subfamily and PH1 belongs to the 5-GT subfamily. The function of isolated cDNAs was identified by the catalytic activities for 3-GT and 5-GT exhibited by the recombinant proteins produced in yeast. The recombinant PGT8 protein could convert not only anthocyanidins but also flavonols into the corresponding 3-O-glucosides. In contrast, the recombinant PH1 protein exhibited a strict substrate specificity towards anthocyanidin 3-acylrutinoside, comparing with other 5-GTs from Perilla frutescens and Verbena hybrida, which showed broad substrate specificities towards several anthocyanidin 3-glucosides. The mRNA expression of both 3-GT and 5-GT increased in the early developmental stages of P. hybrida flower, reaching the maximum at the stage before flower opening. Southern blotting analysis of genomic DNA indicates that both 3-GT and 5-GT genes exist in two copies in P. hybrida, respectively. The results are discussed in relation to the molecular evolution of flavonoid glycosyltransferases.

  1. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined. Images PMID:7961494

  2. Molecular cloning and structural characterization of the human histidase gene (HAL)

    SciTech Connect

    Suchi, Mariko; Sano, Hirofumi; Mizuno, Haruo; Wada, Yoshiro

    1995-09-01

    Histidase (EC 4.3.1.3) is a cytosolic enzyme that catalyzes the nonoxidative determination of histidine to urocanic acid. Histidinemia, resulting from reduced histidase activity as reported in Cambridge stock his/her mice and in humans, is the most frequent inborn metabolic error in Japan. The histidase chromosomal gene (HAL) was isolated from a {lambda}EMBL-3 human genomic library using the human histidase cDNA as a probe. Restriction mapping and Southern blot analysis of the isolated clones reveal a single-copy gene spanning approximately 25 kb and consisting of 21 exons. Exon 1 encodes only 5{prime} untranslated sequence of liver histidase mRNA, with protein coding beginning in exon 2. A rarely observed 5{prime}GC, similar to that reported in the human P-450(SCC) gene, is present in intron 20. All other splicing junctions adhere to the canonical GT/AG rule. A TATA box sequence is located 25 bp upstream of the liver histidase transcription initiation site determined by S1 nuclease protection analysis. Several liver- and epidermis-specific transcription factor binding sites, including C/EBP, NFIL6, HNF5, AP2/ KER1, MNF, and others, are also identified in the 5{prime} flanking region. Consistent with the hepatic and epidermal expression of histidase, this finding suggests that histidase transcription may be regulated by these factors. We further identify a polymorphism (A to G transition) in the histidase coding region of exon 16. The human histidase genomic structure presented here should facilitate the molecular investigation of symptomatic and asymptomatic forms of histidinemia. 69 refs., 4 figs., 1 tab.

  3. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L.

    PubMed

    Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong

    2014-08-10

    In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular Cloning and Differential Expression of the Maize Ferredoxin Gene Family 1

    PubMed Central

    Hase, Toshiharu; Kimata, Yoko; Yonekura, Keiko; Matsumura, Tomohiko; Sakakibara, Hitoshi

    1991-01-01

    In maize (Zea mays L.), four ferredoxin (Fd) isoproteins, Fd I to Fd IV, are differentially distributed in photosynthetic and nonphotosynthetic organs of young seedlings (Y Kimata, T Hase [1989] Plant Physiol 89: 1193-1197). To understand structural characteristics of the Fd isoproteins and molecular mechanism of the differential expression of their genes, we have cloned and characterized three different maize Fd cDNAs. DNA sequence analyses showed that two of the cDNAs encoded the entire precursor polypeptides of Fd I and Fd III, which were composed of 150 and 152 amino acid residues, respectively, and the other encoded a 135 amino acid precursor polypeptide of Fd not yet identified. High degrees of homologies were found in the deduced amino acid sequences of mature regions of these Fd isoproteins, but the transit peptide of Fd III differed considerably from those of other Fd isoproteins. Fd I and the unidentified Fd were encoded mainly with codons ending in C or G, but such strong codon bias was not seen in Fd III. Gene specific probes for each cDNA were used to probe Northern blots of RNA isolated from leaves, mesocotyls, and roots of maize seedlings. The gene transcripts for Fd I and the unidentified Fd were restricted to leaves and their levels increased markedly upon illumination of etiolated seedlings, whereas that for Fd III was detected in all organs and its accumulation was not light dependent. This organ specific accumulation of Fd mRNAs corresponds exactly to the distribution pattern of Fd isoproteins. ImagesFigure 1Figure 5Figure 6Figure 7Figure 8 PMID:16668188

  5. Molecular Cloning and Expression of a Gene Encoding Cryptosporidium parvum Glycoproteins gp40 and gp15

    PubMed Central

    Cevallos, Ana Maria; Zhang, Xiaoping; Waldor, Matthew K.; Jaison, Smitha; Zhou, Xiaoyin; Tzipori, Saul; Neutra, Marian R.; Ward, Honorine D.

    2000-01-01

    Cryptosporidium parvum is a significant cause of diarrheal disease worldwide. The specific molecules that mediate C. parvum-host cell interactions and the molecular mechanisms involved in the pathogenesis of cryptosporidiosis are unknown. In this study we have shown that gp40, a mucin-like glycoprotein, is localized to the surface and apical region of invasive stages of the parasite and is shed from its surface. gp40-specific antibodies neutralize infection in vitro, and native gp40 binds specifically to host cells, implicating this glycoprotein in C. parvum attachment to and invasion of host cells. We have cloned and sequenced a gene designated Cpgp40/15 that encodes gp40 as well as gp15, an antigenically distinct, surface glycoprotein also implicated in C. parvum-host cell interactions. Analysis of the deduced amino acid sequence of the 981-bp Cpgp40/15 revealed the presence of an N-terminal signal peptide, a polyserine domain, multiple predicted O-glycosylation sites, a single potential N-glycosylation site, and a hydrophobic region at the C terminus, a finding consistent with what is required for the addition of a GPI anchor. There is a single copy of Cpgp40/15 in the C. parvum genome, and this gene does not contain introns. Our data indicate that the two Cpgp40/15-encoded proteins, gp40 and gp15, are products of proteolytic cleavage of a 49-kDa precursor protein which is expressed in intracellular stages of the parasite. The surface localization of gp40 and gp15 and their involvement in the host-parasite interaction suggest that either or both of these glycoproteins may serve as effective targets for specific preventive or therapeutic measures for cryptosporidiosis. PMID:10858228

  6. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis.

    PubMed

    Boldbaatar, Damdinsuren; Sikalizyo Sikasunge, Chummy; Battsetseg, Badgar; Xuan, Xuenan; Fujisaki, Kozo

    2006-01-01

    Haemaphysalis longicornis cDNA encoding an aspartic protease (longepsin) was identified from a midgut cDNA library. The longepsin cDNA contains 1176bp that code for 392 amino acid residues with a predictable molecular weight of 39.3kDa. The cDNA has a signal peptide sequence associated with the N-terminal domains and domain structure analysis revealed that the deduced protein has two aspartic acid residues that are characteristic of a single active site for aspartic proteases. This novel longepsin cDNA exhibits 57% identity to the lysosomal aspartic protease of Aedes aegypti, 52% to Bombyx mori cathepsin D, 38% to Ancylostoma caninum, 44% to Schistosoma mansoni and 28% to Boophilus microplus aspartic proteases. The DNA fragment coding for longepsin was cloned into a pGEX-4T-3 vector and expressed in Escherichia coli. The recombinant longepsin, once activated was able to hydrolyze casein substrate as well as hemoglobin (Hb) under acidic conditions (pH 3.5). RT-PCR analysis showed that the longepsin mRNA transcripts were expressed in salivary glands and midgut and not in the ovary. Northern blot analysis revealed that longepsin (1.5kb) was expressed in unfed and partially fed ticks and expression levels increased during feeding. The finding that longepsin is expressed in the midgut and salivary glands, proteolytic activity occurs under acidic conditions and longepsin can be gene silenced of longepsin provides compelling support for the hypothesis that longepsin plays an integral role in the proteolysis of erythrocyte Hb obtained from a host blood meal.

  7. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes

    PubMed Central

    Wang, Yang; Chen, Ying; Shen, Qirong; Yin, Xihou

    2011-01-01

    The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912 bp of S. viridochromogenes genomic sequence revealed the putative las cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins. PMID:21640802

  8. Molecular cloning and characterization of protein phosphatase 2C of vomeronasal sensory epithelium of garter snakes.

    PubMed

    Wang, Dalton; Liu, Weimin; Liu, Jinming; Chen, Ping; Quan, Wei; Halpern, Mimi

    2002-12-15

    The earthworm-derived chemoattractant ES20 interacts with its G-protein-coupled receptors on the plasma membrane of vomeronasal (VN) sensory neurons of garter snakes, resulting in an increase in inositol trisphosphate [J. Biol. Chem. 269 (1994) 16867] and a rapid phosphorylation of the membrane-bound proteins, p42/44 [Biochim. Biophys. Acta 1450 (1999) 320]. The phosphorylation of p42/44 proteins are countervailingly regulated by a protein kinase and an okadaic acid-insensitive but fluoride-sensitive protein phosphatase (PPase) [J. Liu et al. (loc. cit.)]. The phosphorylation of p42/44 induced by ES20 appears to play a role in the regulation of signal transduction pathways by modulating the GTPase activity [J. Liu et al. (loc. cit.)]. A 564-bp fragment of cDNA was obtained from VN RNA of garter snakes by reverse transcription polymerase chain reaction with degenerate primers. The 564-bp fragment was amplified, cloned, and sequenced. Northern blot analysis revealed that both the VN organ (VNO) and brain contained the gene of PPase 2C. A full-length complementary 4119-bp DNA containing an open reading frame of 1146bp that encodes a protein of 382 amino acids with a molecular mass of 49,123Da was obtained from the VN cDNA library of garter snakes. The deduced amino acid sequence showed 88% amino acid identity to bovine protein phosphatase 2C alpha and 87% identity to human and rat PP2C alpha and to Mg(2+)-dependent protein phosphatase 1A of rat and rabbit. In situ hybridization revealed that the mRNA of VN protein phosphatase 2C is expressed in the vomeronasal sensory epithelium. This is the first report of the identification of a type 2C serine/threonine protein phosphatase in the VN system.

  9. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development.

    PubMed

    Wang, Li Ke; Niu, Xiao Wei; Lv, Yan Hui; Zhang, Tian Zhen; Guo, Wang Zhen

    2010-10-01

    Annexins constitute a family of multifunction and structurally related proteins. These proteins are ubiquitous in the plant kingdom, and are important calcium-dependent membrane-binding proteins that participate in the polar development of different plant regions such as rhizoids, root caps, and pollen tube tips. In this study, a novel cotton annexin gene (designated as GhFAnnx) was isolated from a fiber cDNA library of cotton (Gossypium hirsutum). The full-length cDNA of GhFAnnx comprises an open reading frame of 945 bp that encodes a 314-amino acid protein with a calculated molecular mass of 35.7 kDa and an isoelectric point of 6.49. Genomic GhFAnnx sequences from different cotton species, TM-1, Hai7124 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome) showed that at least two copies of the GhFAnnx gene, each with six exons and five introns in the coding region, were identified in the allotetraploid cotton genome. The GhFAnnx gene cloned from the cDNA library in this study was mapped to the chromosome 10 of the A-subgenome of the tetraploid cotton. Sequence alignment revealed that GhFAnnx contained four repeats of 70 amino acids. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that GhFAnnx is preferentially expressed in different developmental fibers but its expression is low in roots, stems, and leaves. Subcellular localization of GhFAnnx in onion epidermal cells and cotton fibers suggests that this protein is ubiquitous in the epidermal cells of onion, but assembles at the edge and the inner side of the apex of the cotton fiber tips with brilliant spots. In summary, GhFAnnx influences fiber development and is associated with the polar expansion of the cotton fiber during elongation stages.

  10. Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning.

    PubMed

    Harayama, S; Bollinger, J; Iino, T; Hazelbauer, G L

    1983-01-01

    We used transposon insertion mutagenesis, molecular cloning, and a novel procedure for in vitro construction of polar and nonpolar insertion mutations to characterize the genetic organization and gene products of the beta-methylgalactoside (Mgl) transport system, which utilizes the galactose-binding protein. The data indicate that the mgl operon contained three genes, which were transcribed in the order mglB, mglA, and mglC. The first gene coded for the 31,000 Mr galactose-binding protein, which was synthesized as a 3,000-dalton-larger precursor form. The mglA product was a 50,000 Mr protein which was tightly associated with the membrane, and the mglC product was a 38,000 Mr protein which was apparently loosely associated with the membrane and was probably located on the internal face of the cytoplasmic membrane. Identification of gene products was facilitated by in vitro insertion of a fragment of Tn5 containing the gene conferring kanamycin resistance into a restriction site in the operon. The fragment proved to have a polar effect on the expression of promoter-distal genes only when inserted in one of the two possible orientations. The three identified gene products were necessary and apparently sufficient for transport activity, but only the binding protein was required for chemotaxis towards galactose. The transport system appeared to contain the minimum number of components for a binding protein-related system: a periplasmic recognition component, a transmembrane protein, and a peripheral membrane protein that may be involved in energy linkage.

  11. Molecular cloning of anti-Müllerian hormone from the American alligator, Alligator mississippiensis.

    PubMed

    Urushitani, Hiroshi; Katsu, Yoshinao; Miyagawa, Shinichi; Kohno, Satomi; Ohta, Yasuhiko; Guillette, Louis J; Iguchi, Taisen

    2011-02-20

    Anti-Müllerian hormone (AMH) plays an important role in male sex differentiation in vertebrates. AMH produced by Sertoli cells of the fetal testis induces regression of the Müllerian duct in mammalian species. In alligators, sexual differentiation is controlled by the temperature during egg incubation, termed temperature-dependent sex determination (TSD). The TSD mechanism inducing sex differentiation is thought to be unique and different from that of genetic sex determination as no gene such as the SRY of mammals has been identified. However, many of the genes associated with gonadal differentiation in mammals also are expressed in the developing gonads of species exhibiting TSD. To clarify the molecular mechanisms associated with gonad formation during the temperature-sensitive period (TSP), we have cloned the full length AMH gene in the alligator, and quantitatively compared mRNA expression patterns in the gonad-adrenal-mesonephros (GAM) complex isolated from alligator embryos incubated at male and female producing temperatures. The deduced amino acid sequence of the alligator AMH cDNA showed high identity (59-53%) to avian AMH genes. AMH mRNA expression was high in the GAM of male alligator embryos at stage 24 (immediately after sex determination) and hatchlings, but suppressed in the GAM of estrogen-exposed hatchlings incubated at the male-producing temperature. In the alligator AMH proximal promoter, a number of transcriptional factors (for SF-1. GATA, WT-1 and SOX9) binding elements were also identified and they exhibit a conserved pattern seen in other species. SOX9 up-regulates transcriptional activity through the amAMH promoter region. These results suggested that AMH and SOX9 play important roles in TSD of the American alligator.

  12. A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning.

    PubMed

    Silva, Márcia B; Schattner, Mirta; Ramos, Celso R R; Junqueira-de-Azevedo, Inácio L M; Guarnieri, Míriam C; Lazzari, María A; Sampaio, Claudio A M; Pozner, Roberto G; Ventura, Janaina S; Ho, Paulo L; Chudzinski-Tavassi, Ana M

    2003-01-01

    A novel prothrombin activator enzyme, which we have named 'berythractivase', was isolated from Bothrops erythromelas (jararaca-da-seca) snake venom. Berythractivase was purified by a single cation-exchange-chromatography step on a Resource S (Amersham Biosciences) column. The overall purification (31-fold) indicates that berythractivase comprises about 5% of the crude venom. It is a single-chain protein with a molecular mass of 78 kDa. SDS/PAGE of prothrombin after activation by berythractivase showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin, independent of the prothrombinase complex. Chelating agents, such as EDTA and o -phenanthroline, rapidly inhibited the enzymic activity of berythractivase, like a typical metalloproteinase. Human fibrinogen A alpha-chain was slowly digested only after longer incubation with berythractivase, and no effect on the beta- or gamma-chains was observed. Berythractivase was also capable of triggering endothelial proinflammatory and procoagulant cell responses. von Willebrand factor was released, and the surface expression of both intracellular adhesion molecule-1 and E-selectin was up-regulated by berythractivase in cultured human umbilical-vein endothelial cells. The complete berythractivase cDNA was cloned from a B. erythromelas venom-gland cDNA library. The cDNA sequence possesses 2330 bp and encodes a preproprotein with significant sequence similarity to many other mature metalloproteinases reported from snake venoms. Berythractivase contains metalloproteinase, desintegrin-like and cysteine-rich domains. However, berythractivase did not elicit any haemorrhagic response. These results show that, although the primary structure of berythractivase is related to that of snake-venom haemorrhagic metalloproteinases and functionally similar to group A prothrombin activators, it is a prothrombin activator devoid of haemorrhagic activity. This is a feature

  13. Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane.

    PubMed

    Strehler, E E; James, P; Fischer, R; Heim, R; Vorherr, T; Filoteo, A G; Penniston, J T; Carafoli, E

    1990-02-15

    The sequence of more than 1,000 amino acid residues, derived from two different isoforms, has been determined from peptides generated from purified human erythrocyte membrane Ca2(+)-ATPase (hPMCA). Several of these peptide sequences correspond to the previously reported, cDNA deduced sequence of the "teratoma" Ca2+ pump isoform hPMCA1 (Verma, A. K., Filoteo, A. G., Stanford, D. R., Wieben, E. D., Penniston, J. T., Strehler, E. E., Fischer, R., Heim, R., Vogel, G., Matthews, S., Strehler-Page, M.-A., James, P., Vorherr, T., Krebs, J., and Carafoli, E. (1988) J. Biol. Chem. 263, 14152-14159). The complete primary structure of a novel isoform (hPMCA3) has been determined by molecular cloning and nucleotide sequencing of its corresponding cDNA. This new member of the plasma membrane Ca2+ pump family consists of 1,205 amino acid residues with a calculated Mr of 133,930, and it shows 88% similarity (75% identity) with the previously sequenced pump isoform. Specific probes detect major mRNA species of 5.6 kilobases for hPMCA1, and of 7.5 kilobases for hPMCA3, on Northern blots of human K562 erythroleukemic cell RNA. A large number of peptide sequences match perfectly with only one or the other of these isoforms and all peptides (with 6 exceptions corresponding to a contaminant protein or to a third minor Ca2+ pump isoform) are found in either only one or in both of the isoforms. The two erythrocyte Ca2+ pumps display high sequence divergence in a few localized regions that may determine isoform-specific functional specializations; for example, the putative extracellular loop separating transmembrane domains 1 and 2, the highly negatively charged region previously suggested to be involved in Ca2+ binding, and the site of cAMP-dependent protein kinase phosphorylation.

  14. Arthropod hemocyanins. Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e.

    PubMed

    Voit, R; Feldmaier-Fuchs, G

    1990-11-15

    cDNA clones comprising the entire coding region of two out of the seven heterogeneous subunits of hemocyanin from the tarantula, Eurypelma californicum, were isolated from four cDNA libraries constructed from total RNA from the heart tissue of single spiders. Hybridization was first carried out using a tarantula hemocyanin subunit e partial cDNA, and several positive clones were isolated, including one containing a 2.2-kilobase full-length cDNA (lambda M1). The cDNA comprises an open reading frame for 623 amino acids, 34 nucleotides of the 5'noncoding region, and 286 nucleotides of the 3'-noncoding region. To select for other hemocyanin subunits, two 17-mer oligonucleotide mixtures, corresponding to the conserved regions in the copper A and copper B oxygen-binding site of chelicerate hemocyanins, were used as probes. Among the positive clones obtained, full-length cDNAs coding for subunit a were identified. The cDNA sequence determined from clone lambda K1 provides an open reading frame coding for 630 amino acids and includes the 5'- and 3'-noncoding regions. Northern blot analysis revealed single transcripts for subunits a and e, each 2.3 kilobases long. The cDNAs for subunits a and e were both found to lack any leader peptide sequence. This supports the idea that the mature protein accumulates in the cytoplasm and is released by cell rupture.

  15. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.

    PubMed

    Zeng, Lin; Sun, Qian-Yun; Jin, Yang; Zhang, Yong; Lee, Wen-Hui; Zhang, Yun

    2012-09-01

    Cobra venom factor (CVF) is an anti-complement factor existing in cobra venom. CVF proteins have been purified from the venoms of Naja haje, Naja siamensis, Naja atra, Naja kaouthia, Naja naja, Naja melanoleuca and Austrelaps superbus, but only three full-length cDNA sequences of CVF are available. In the present work, a cobra venom factor termed OVF was purified from the crude venom of Ophiophagus hannah by successive gel filtration, ion-exchange and heparin affinity chromatography steps. The purified OVF was homogenous on the SDS-PAGE gel with an apparent molecular weight of 140 kDa under non-reducing conditions. Under reducing conditions, OVF was divided into three bands with apparent molecular weight of 72 kDa (α chain), 45 kDa (β chain) and 32 kDa (γ chain), respectively. OVF consumed complement components with anti-complement activity of 154 units per mg. By using Reverse transcription-PCR and 5'-RACE assay, the open reading frame of OVF was obtained. MALDI-TOF and protein sequencing assays confirmed the cloned cDNA coding for OVF protein. The cDNA sequence of OVF is conservative when aligned with that of other CVFs. Phylogenetic analysis revealed OVF is closer to CVF from N. kaouthia than to AVF-1 and AVF-2 from A. superbus. Our results demonstrated that OVF has its unique features as following: 1) The N-terminal amino acid sequence of OVF γ chain is different from that of other known CVFs, suggesting that the OVF γ chain might be further processed; 2) Unlike N. kaouthia CVF and A. superbus AVF-1, which have potential N-linked glycosylation sites located in both α and β chain, OVF only has N-linked glycosylation site in its α chain as revealed by Schiff's reagent staining and protein sequence analysis; 3) In addition to the 27 well conserved cysteine residues in all known CVFs, OVF have an additional cysteine residue in its γ chain. Understanding the importance of above mentioned specific characteristics might provide useful information on structure

  16. Cloning of the rat ecotropic retroviral receptor and studies of its expression in intestinal tissues

    SciTech Connect

    Puppi, M.; Henning, S.J.

    1995-05-01

    A long-term goal of our laboratory is to establish a rat model to study the feasibility of using the intestinal tract as a site for somatic gene therapy. As a step toward that goal, the current study reports the cloning of the rat ecotropic retroviral receptor (EcoR) cDNA and the study of various aspects of its expression in the intestinal cDNA library with mouse EcoR cDNA. A clone of approximately 7 kb, designated MP10, was obtained. Partial sequencing of MP10 from the 5{prime} end revealed a level of similarity of 92% compared with mouse EcoR. The presence of a 5{prime} untranslated region and a 3{prime} poly(A)tract, together with the overall size of the cDNA, suggest that is very close to being a full-length cDNA for this large transcript. Northern blots with MP10 showed an RNA of approximately 7.9 kb present along the entire length of the small intestine and somewhat less abundant in the colon. Developmental studies showed high levels of EcoR in fetal rat intestine, a decline in the early postnatal period, then a gradual rise to adulthood. Caco-2 cells were used to assess the expression of EcoR in proliferating compared with differentiated intestinal epithelial cells. EcoR mRNA was found to be very much more abundant in nondifferentiated cells and declined to low levels as the cells underwent spontaneous differentiation. These patterns of EcoR expression indicate that ecotropic retroviruses should be suitable vectors with which to attempt gene transfer into the intestinal epithelium. In addition, since the endogenous role of EcoR is as the y{sup +} cationic amino acid transporter, these data have significance for understanding patterns of amino acid transport in the intestinal epithelium. 37 refs., 4 figs.

  17. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    PubMed Central

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  18. The physiology and molecular biology of sponge tissues.

    PubMed

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  19. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA