Science.gov

Sample records for molecular conformational generation

  1. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-07

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  2. Protein conformation and molecular order probed by second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Vanzi, Francesco; Sacconi, Leonardo; Cicchi, Riccardo; Pavone, Francesco S.

    2012-06-01

    Second-harmonic-generation (SHG) microscopy has emerged as a powerful tool to image unstained living tissues and probe their molecular and supramolecular organization. In this article, we review the physical basis of SHG, highlighting how coherent summation of second-harmonic response leads to the sensitivity of polarized SHG to the three-dimensional distribution of emitters within the focal volume. Based on the physical description of the process, we examine experimental applications for probing the molecular organization within a tissue and its alterations in response to different biomedically relevant conditions. We also describe the approach for obtaining information on molecular conformation based on SHG polarization anisotropy measurements and its application to the study of myosin conformation in different physiological states of muscle. The capability of coupling the advantages of nonlinear microscopy (micrometer-scale resolution in deep tissue) with tools for probing molecular structure in vivo renders SHG microscopy an extremely powerful tool for the advancement of biomedical optics, with particular regard to novel technologies for molecular diagnostic in vivo.

  3. Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

    2009-02-01

    Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

  4. Generative models of conformational dynamics.

    PubMed

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  5. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    SciTech Connect

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70{degree} with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs.

  6. Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles.

    PubMed

    Weeraman, Champika; Yatawara, Achani K; Bordenyuk, Andrey N; Benderskii, Alexander V

    2006-11-08

    Vibrational sum frequency generation (VSFG) spectroscopy was used to study the nanoscale geometric effects on molecular conformation of dodecanethiol ligand on gold nanoparticles of varying size between 1.8 and 23 nm. By analyzing the CH3 and CH2 stretch transitions of dodecanethiol using the spectroscopic propensity rules for the SFG process, we observe the increase of the gauche defects in the alkyl chain of the ligand on the nanoparticle surface when the curvature approaches the size of the molecule ( approximately 1.6 nm). In contrast, linear infrared absorption and Raman spectra, governed by different selection rules, do not allow observation of the size-dependent conformational changes. The results are understood in terms of the geometric packing effect, where the curvature of the nanoparticle surface results in the increased conical volume available for the alkyl chain.

  7. Generative Models of Conformational Dynamics

    PubMed Central

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358

  8. Conformational Transitions in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Janke, W.

    2008-11-01

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  9. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  10. Molecular mechanics conformational analysis of tylosin

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  11. Mesh generation by conformal and quasiconformal mappings

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Thompson, J. F.

    1981-01-01

    It is pointed out that many recent advances in the finite-difference solution of elliptic equations have been limited to regions whose boundary contours coincide with coordinate lines of the Cartesian coordinate system. The reason for this is related to the fact that in the case of an arbitrary curvilinear coordinate system the original equation becomes much more complex. However, there is no added complexity if an orthogonal coordinate system is generated from a conformal mapping. In the present investigation, a finite difference method developed for the construction of conformal mappings has been generalized to construct quasi-conformal mappings. It is expected that the use of more sophisticated numerical algorithms could lead to improvements in both speed and accuracy. Quasi-conformal mappings have applications not only in the solution of elliptic equations but also in other areas such as orthogonal mesh generation on surfaces and the solution of certain fluid flow problems.

  12. Conformation effects on the molecular orbitals of serine

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Dong; Ma, Peng-Fei; Shan, Xu

    2011-03-01

    This paper calculates the five most stable conformers of serine with Hartree—Fock theory, density functional theory (B3LYP), Møller—Plesset perturbation theory (MP4(SDQ)) and electron propagation theory with the 6-311++G(2d,2p) basis set. The calculated vertical ionization energies for the valence molecular orbitals of each conformer are in agreement with the experimental data, indicating that a range of molecular conformations would coexist in an equilibrium sample. Information of the five outer valence molecular orbitals for each conformer is explored in coordinate and momentum spaces using dual space analysis to investigate the conformational processes, which are generated from the global minimum conformer Ser1 by rotation of C2-C3 (Ser4), C1-C2 (Ser5) and C1-O2 (Ser2 and Ser3). Orbitals 28a, 27a and 26a are identified as the fingerprint orbitals for all the conformational processes. Project supported by the Doctoral Research Fund of Henan Normal University, China (Grant No. 525449).

  13. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  14. Conformational Analysis in 18-Membered Macrolactones Based on Molecular Modeling

    PubMed Central

    Belaidi, Salah; Harkati, Dalal

    2011-01-01

    Conformational analysis of 18-ring membered macrolactones has been carried out using molecular mechanics calculations and molecular dynamics. A high conformational flexibility of macrolactones was obtained, and an important stereoselectivity was observed for the complexed macrolides. For 18d macrolactone, which was presented by a most favored conformer with 20.1% without complex, it was populated with 50.1% in presence of Fe(CO)3. PMID:24052826

  15. Freely available conformer generation methods: how good are they?

    PubMed

    Ebejer, Jean-Paul; Morris, Garrett M; Deane, Charlotte M

    2012-05-25

    Conformer generation has important implications in cheminformatics, particularly in computational drug discovery where the quality of conformer generation software may affect the outcome of a virtual screening exercise. We examine the performance of four freely available small molecule conformer generation tools (Balloon, Confab, Frog2, and RDKit) alongside a commercial tool (MOE). The aim of this study is 3-fold: (i) to identify which tools most accurately reproduce experimentally determined structures; (ii) to examine the diversity of the generated conformational set; and (iii) to benchmark the computational time expended. These aspects were tested using a set of 708 drug-like molecules assembled from the OMEGA validation set and the Astex Diverse Set. These molecules have varying physicochemical properties and at least one known X-ray crystal structure. We found that RDKit and Confab are statistically better than other methods at generating low rmsd conformers to the known structure. RDKit is particularly suited for less flexible molecules while Confab, with its systematic approach, is able to generate conformers which are geometrically closer to the experimentally determined structure for molecules with a large number of rotatable bonds (≥10). In our tests RDKit also resulted as the second fastest method after Frog2. In order to enhance the performance of RDKit, we developed a postprocessing algorithm to build a diverse and representative set of conformers which also contains a close conformer to the known structure. Our analysis indicates that, with postprocessing, RDKit is a valid free alternative to commercial, proprietary software.

  16. Network Visualization of Conformational Sampling during Molecular Dynamics Simulation

    PubMed Central

    Ahlstrom, Logan S.; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T.; Patel, Sunita; Vorontsov, Ivan I.; Tama, Florence; Miyashita, Osamu

    2013-01-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. PMID:24211466

  17. Molecular dynamics studies of the conformation of sorbitol

    PubMed Central

    Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.

    2009-01-01

    Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646

  18. Conformational dynamics of the molecular chaperone Hsp90

    PubMed Central

    Krukenberg, Kristin A.; Street, Timothy O.; Lavery, Laura A.; Agard, David A.

    2016-01-01

    The molecular chaperone Hsp90 is an essential eukaryotic protein that makes up 1–2% of all cytosolic proteins. Hsp90 is vital for the maturation and maintenance of a wide variety of substrate proteins largely involved in signaling and regulatory processes. Many of these substrates have also been implicated in cancer and other diseases making Hsp90 an attractive target for therapeutics. Hsp90 is a highly dynamic and flexible molecule that can adapt its conformation to the wide variety of substrate proteins with which it acts. Large conformational rearrangements are also required for the activation of these client proteins. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis shifts the equilibrium between a pre-existing set of conformational states in an organism-dependent manner. In vivo Hsp90 functions as part of larger heterocomplexes. The binding partners of Hsp90, co-chaperones, assist in the recruitment and activation of substrates, and many co-chaperones further regulate the conformational dynamics of Hsp90 by shifting the conformational equilibrium towards a particular state. Studies have also suggested alternative mechanisms for the regulation of Hsp90’s conformation. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90 and the role that nucleotide, co-chaperones, post-translational modification and clients play in regulating Hsp90’s conformation. We also discuss the effects of current Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics. PMID:21414251

  19. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation

    NASA Astrophysics Data System (ADS)

    Lupyan, Dmitry; Abramov, Yuriy A.; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  20. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation.

    PubMed

    Lupyan, Dmitry; Abramov, Yuriy A; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  1. Xanthan hydrogel films: molecular conformation, charge density and protein carriers.

    PubMed

    Bueno, Vânia Blasques; Petri, Denise Freitas Siqueira

    2014-01-30

    In this article the molecular conformation of xanthan chains in hydrogel films was investigated by means of circular dichroism, showing substantial differences between xanthan hydrogel prepared in the absence (XNT) and in the presence of citric acid (XCA). The xanthan chains in XNT hydrogels films presented ordered conformation (helixes), while in XCA they were in the disordered conformation (coils), exposing a larger number of carboxylate groups than XNT. The large charge density in XCA hydrogels was evidenced by their behavior under variable ionic strength. Studies about the application of XNT and XCA for loading and delivering of bovine serum albumin (BSA) and lysozyme (LYZ) showed that both events are controlled by hydrogels and proteins net charge, which can be triggered by pH. The preservation of LYZ native conformation after hydrogel loading explained the substantial bactericidal activity of LYZ loaded hydrogels and enables their use as active wound dressings.

  2. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    PubMed

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (Ea), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. Ea, k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  3. Molecular insight into conformational transmission of human P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-12-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  4. Molecular insight into conformational transmission of human P-glycoprotein

    SciTech Connect

    Chang, Shan-Yan; Liu, Fu-Feng E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan E-mail: ysun@tju.edu.cn

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  5. Conformations of low-molecular-weight lignin polymers in water

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  6. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-08

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  7. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  8. Learning generative models of molecular dynamics

    PubMed Central

    2012-01-01

    We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 reg-ularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories. PMID:22369071

  9. Conformational analysis of molecular chains using nano-kinematics.

    PubMed

    Manocha, D; Zhu, Y; Wright, W

    1995-02-01

    We present algorithms for 3-D manipulation and conformational analysis of molecular chains, when bond lengths, bond angles and related dihedral angles remain fixed. These algorithms are useful for local deformations of linear molecules, exact ring closure in cyclic molecules and molecular embedding for short chains. Other possible applications include structure prediction, protein folding, conformation energy analysis and 3D molecular matching and docking. The algorithms are applicable to all serial molecular chains and make no assumptions about their geometry. We make use of results on direct and inverse kinematics from robotics and mechanics literature and show the correspondence between kinematics and conformational analysis of molecules. In particular, we pose these problems algebraically and compute all the solutions making use of the structure of these equations and matrix computations. The algorithms have been implemented and perform well in practice. In particular, they take tens of milliseconds on current workstations for local deformations and chain closures on molecular chains consisting of six or fewer rotatable dihedral angles.

  10. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from

  11. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin.

    PubMed Central

    Caves, L. S.; Evanseck, J. D.; Karplus, M.

    1998-01-01

    Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory. PMID:9541397

  12. Fast Generation of body conforming grids for 3-D

    NASA Technical Reports Server (NTRS)

    Dulikravich, O.

    1980-01-01

    A fast algorithm was developed for accurately generating boundary conforming, three dimensional, consecutively refined, computational grids applicable to arbitrary axial turbomachinery geometry. The method is based on using a single analytic function to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the hub and the shroud. These grids are of the "O" type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flowfield. Due to the built in additional nonorthogonal coordinate stretching and shearing, the grid lines leaving the trailing of the blade end at downstream infinity, thus simplifying the numerical treatment of the three dimensional trailing vortex sheet.

  13. Origin of molecular conformational stability: perspectives from molecular orbital interactions and density functional reactivity theory.

    PubMed

    Liu, Shubin; Schauer, Cynthia K

    2015-02-07

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  14. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.

    PubMed

    Cunha, Keila C; Rusu, Victor H; Viana, Isabelle F T; Marques, Ernesto T A; Dhalia, Rafael; Lins, Roberto D

    2015-06-01

    Molecular dynamics and de novo techniques, associated to quality parameter sets, have excelled at determining the structure of small proteins with high accuracy. To achieve a detailed description of protein conformations, these methods must critically assess the thermodynamic features of the molecular ensembles. Here, a comparison of the conformational ensemble generated by molecular dynamics and de novo techniques were carried out for six Top7-based proteins carrying gp41 HIV-1 epitopes. The native Top7, a highly stable computationally designed protein, was used as benchmark. Structural stability, flexibility, and secondary structure content were assessed. The consistency of the latter was compared to experimental circular dichroism spectra for all proteins. While both methods are capable to identify the stable from unstable chimeric proteins, the sampled conformational space and flexibility differ significantly in both methods. Molecular dynamics simulations seem to better describe secondary structure content and identify regions responsible for conformational instability. The de novo method, as implemented in Rosetta-a prime tool for protein design, overestimates secondary structure content. On the other hand, its empirical energy function is capable to predict the threshold for protein stability.

  15. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  16. Complete maps of molecular-loop conformational spaces.

    PubMed

    Porta, Josep M; Ros, Lluís; Thomas, Federico; Corcho, Francesc; Cantó, Josep; Pérez, Juan Jesús

    2007-10-01

    This paper presents a numerical method to compute all possible conformations of distance-constrained molecular loops, i.e., loops where some interatomic distances are held fixed, while others can vary. The method is general (it can be applied to single or multiple intermingled loops of arbitrary topology) and complete (it isolates all solutions, even if they form positive-dimensional sets). Generality is achieved by reducing the problem to finding all embeddings of a set of points constrained by pairwise distances, which can be formulated as computing the roots of a system of Cayley-Menger determinants. Completeness is achieved by expressing these determinants in Bernstein form and using a numerical algorithm that exploits such form to bound all root locations at any desired precision. The method is readily parallelizable, and the current implementation can be run on single- or multiprocessor machines. Experiments are included that show the method's performance on rigid loops, mobile loops, and multiloop molecules. In all cases, complete maps including all possible conformations are obtained, thus allowing an exhaustive analysis and visualization of all pseudo-rotation paths between different conformations satisfying loop closure.

  17. Enthalpy-Entropy Compensation upon Molecular Conformational Changes.

    PubMed

    Ahmad, Mazen; Helms, Volkhard; Lengauer, Thomas; Kalinina, Olga V

    2015-04-14

    The change in free energy is the dominant factor in all chemical processes; it usually encompasses enthalpy-entropy compensation (EEC). Here, we use the free energy perturbation formalism to show that EEC is influenced by the molecular conformational changes (CCs) of the entire system comprising the solute and by the already known solvent reorganization. The internal changes of enthalpy and the entropy due to CCs upon modifying the interactions (perturbation) cancel each other exactly. The CCs influence the dissipation of the modified interactions and their contributions to the free energy. Using molecular simulations, we show that, for solvation of six different HIV-1 protease inhibitors, CCs in the solute cause EEC as large as 10-30 kcal/mol. Moreover, the EEC due to CCs in HIV-1 protease is shown to vary significantly upon modifying its bound ligand. These findings have important implications for understanding of EEC phenomena and for interpretation of thermodynamic measurements.

  18. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database.

    PubMed

    Hawkins, Paul C D; Skillman, A Geoffrey; Warren, Gregory L; Ellingson, Benjamin A; Stahl, Matthew T

    2010-04-26

    Here, we present the algorithm and validation for OMEGA, a systematic, knowledge-based conformer generator. The algorithm consists of three phases: assembly of an initial 3D structure from a library of fragments; exhaustive enumeration of all rotatable torsions using values drawn from a knowledge-based list of angles, thereby generating a large set of conformations; and sampling of this set by geometric and energy criteria. Validation of conformer generators like OMEGA has often been undertaken by comparing computed conformer sets to experimental molecular conformations from crystallography, usually from the Protein Databank (PDB). Such an approach is fraught with difficulty due to the systematic problems with small molecule structures in the PDB. Methods are presented to identify a diverse set of small molecule structures from cocomplexes in the PDB that has maximal reliability. A challenging set of 197 high quality, carefully selected ligand structures from well-solved models was obtained using these methods. This set will provide a sound basis for comparison and validation of conformer generators in the future. Validation results from this set are compared to the results using structures of a set of druglike molecules extracted from the Cambridge Structural Database (CSD). OMEGA is found to perform very well in reproducing the crystallographic conformations from both these data sets using two complementary metrics of success.

  19. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  20. A script for automated 3-dimentional structure generation and conformer search from 2- dimentional chemical drawing.

    PubMed

    Ishikawa, Yoshinobu

    2013-01-01

    Building 3-dimensional (3D) molecules is the starting point in molecular modeling. Conformer search and identification of a global energy minimum structure are often performed computationally during spectral analysis of data from NMR, IR, and VCD or during rational drug design through ligand-based, structure-based, and QSAR approaches. I herein report a convenient script that allows for automated building of 3D structures and conformer searching from 2-dimensional (2D) drawing of chemical structures. With this Bash shell script, which runs on Mac OS X and the Linux platform, the tasks are consecutively and iteratively executed without a 3D molecule builder via the command line interface of the free (academic) software OpenBabel, Balloon, and MOPAC2012. A large number of 2D chemical drawing files can be processed simultaneously, and the script functions with stereoisomers. Semi-empirical quantum chemical calculation ensures reliable ranking of the generated conformers on the basis of energy. In addition to an energy-sorted list of file names of the conformers, their Gaussian input files are provided for ab initio and density functional theory calculations to predict rigorous electronic energies, structures, and properties. This script is freely available to all scientists.

  1. Temperature dependent conformation studies of Calmodulin Protein using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Aneja, Sahil; Bhartiya, Vivek Kumar; Negi, Sunita

    2016-10-01

    Calmodulin (CaM) protein plays a very crucial role in the calcium signaling inside the eukaryotic cell structure [1, 2]. It can also bind to other proteins/targets and facilitate various activities inside the cell [3, 4]. Temperature dependent conformation changes in the CaM protein are studied with extensive molecular dynamics simulations. The quantitative comparison of simulation data with various forms of experimental results probing different aspects of the folding process can facilitate robust assessment of the accuracy of the calculations. It can also provide a detailed structural interpretation for the experimental observations as well as physical interpretation for theory behind different aspects of the experiment. Earlier these kinds of studies have been performed experimentally using fluorescence measurements as in [5]. The calcium bound form of CaM is observed to undergo a reversible conformation change in the range 295-301 K at calcium ion concentration 150 mM. The transition temperature was observed to depend on the calcium ion concentration of the protein. Leap-dynamics approach was used earlier to study the temperature dependent conformation change of CaM [6]. At 290 K, both the N- and C-lobes were stable, at 325 K, the C-lobe unfolds whereas at 360 both the lobes unfold [6]. In this work, we perform molecular dynamics simulations of 100 ns each for the temperatures 325 K and 375 K on the apo form of CaM, 3CLN and 1CFD. A remarkable dependence of the temperature is observed on the overall dynamics of both the forms of the protein as reported in our earlier study [7, 8]. 1CFD shows a much flexible linker as compared to 3CLN whereas the overall dynamics of the lobes mainly N-lobe is observed to be more in later case. Salt bridge formation between the residues 2 (ASP) and 148 (LYS) leads to a more compact form of 1CFD at 325 K. The unfolding of the protein is observed to increase with the increase in the temperature similar to the earlier reported

  2. Probing molecular conformations in momentum space: The case of n-pentane

    NASA Astrophysics Data System (ADS)

    Knippenberg, S.; Huang, Y. R.; Hajgató, B.; François, J.-P.; Deng, J. K.; Deleuze, M. S.

    2007-11-01

    A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200eV+electron binding energy) and at azimuthal angles ranging from 0° to 10° in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green's function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys. 116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche (tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.

  3. A numerical study of hybrid optimization methods for the molecular conformation problems

    SciTech Connect

    Meza, J.C.; Martinez, M.L.

    1993-05-01

    An important area of research in computational biochemistry is the design of molecules for specific applications. The design of these molecules depends on the accurate determination of their three-dimensional structure or conformation. Under the assumption that molecules will settle into a configuration for which their energy is at a minimum, this design problem can be formulated as a global optimization problem. The solution of the molecular conformation problem can then be obtained, at least in principle, through any number of optimization algorithms. Unfortunately, it can easily be shown that there exist a large number of local minima for most molecules which makes this an extremely difficult problem for any standard optimization method. In this study, we present results for various optimization algorithms applied to a molecular conformation problem. We include results for genetic algorithms, simulated annealing, direct search methods, and several gradient methods. The major result of this study is that none of these standard methods can be used in isolation to efficiently generate minimum energy configurations. We propose instead several hybrid methods that combine properties of several local optimization algorithms. These hybrid methods have yielded better results on representative test problems than single methods.

  4. Remote conformational control of a molecular switch via methylation and deprotonation.

    PubMed

    Knipe, Peter C; Jones, Ian M; Thompson, Sam; Hamilton, Andrew D

    2014-12-14

    Exacting control over conformation in response to an external stimulus is the central focus of molecular switching. Here we describe the synthesis of a series of diphenylacetylene-based molecular switches, and examine their response to covalent modification and deprotonation at remote phenolic positions. A complex interplay between multiple intramolecular hydrogen bond donors and acceptors determines the global conformation.

  5. Near-infrared laser-induced generation of three rare conformers of glycolic acid.

    PubMed

    Halasa, Anna; Lapinski, Leszek; Reva, Igor; Rostkowska, Hanna; Fausto, Rui; Nowak, Maciej J

    2014-07-31

    Structural transformations were induced in conformers of glycolic acid by selective excitation with monochromatic tunable near-infrared laser light. For the compound isolated in Ar matrixes, near-IR excitation led to generation of two higher-energy conformers (GAC; AAT) differing from the most stable SSC form by 180° rotation around the C-C bond. A detailed investigation of this transformation revealed that one conformer (GAC) is produced directly from the near-IR-excited most stable conformer. The other higher-energy conformer (AAT) was effectively generated only upon excitation of the primary photoproduct (GAC) with another near-IR photon. Once these higher-energy conformers of glycolic acid were generated in an Ar matrix, they could be subsequently transformed into one another upon selective near-IR excitations. Interestingly, no repopulation of the initial most stable SSC conformer occurred upon near-IR excitation of the higher-energy forms of the compound isolated in solid Ar. A dramatically different picture of near-IR-induced conformational transformations was observed for glycolic acid isolated in N2 matrixes. In this case, upon near-IR excitation, the most stable SSC form converted solely into a new conformer (SST), where the acid OH group is rotated by 180°. This conformational transformation was found to be photoreversible. Moreover, SST conformer, photoproduced in the N2 matrix, spontaneously converted to the most stable SSC form of glycolic acid, when the matrix was kept at cryogenic temperature and in the dark.

  6. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl

  7. Numerical Computation of Diffusion Properties in Molecular Systems on a Topology-Conforming Grid

    NASA Astrophysics Data System (ADS)

    Teo, Ivan; Schulten, Klaus

    2012-02-01

    Multiscale problems involving diffusion in molecular systems are a mainstay of computational biophysics. Given a molecular system, the local diffusion coefficient D(r) as well as the equilibrium distribution function P(r) that characterizes the local free energy are computed to describe the kinetics of diffusing particles at each point in space through the Smoluchowski equation (SE). An irregular grid of space-varying fineness conforming to P(r) is generated via the method of topology-representing networks and a subsequent Voronoi tessellation. The discretized SE produces a rate matrix which describes the probabilities of particles hopping from point to point on the grid. We demonstrate the calculation of the rate matrix for ions diffusing through the balloon-like structure of the mechanosensitive channel of small conductance (MscS) and thence the determination of mean first-passage times that characterize conduction of ions through balloon and channel.

  8. Molecular tectonics: generation and structural studies on 1- and 2D coordination networks based on a meta-cyclophane in 1,3-alternate conformation bearing four pyrazolyl units and cobalt, zinc and copper cations.

    PubMed

    Ehrhart, Jérôme; Planeix, Jean-Marc; Kyritsakas-Gruber, Nathalie; Hosseini, Mir Wais

    2009-08-28

    The combination of a [1111] metacyclophane blocked in 1,3-alternate conformation and bearing four pyrazolyl coordinating units with MX(2) (M = Co, Zn and X = Cl or Br) leads to the formation of crystals formed by packing of 2D coordination networks. In the case of CuBr(2), the formation of a 1D network was observed. Structural studies by X-ray diffraction methods on single crystals were performed on all cases reported.

  9. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations.

  10. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    SciTech Connect

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  11. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst.

    PubMed

    Yang, Shaoming; Chen, Xiuqin; Takeuchi, K; Motojima, Seiji

    2006-01-01

    The carbon nanocoils with various kinds of conformations were prepared by the catalytic pyrolysis of acetylene using the Ni metal catalyst supported on molecular Sieves which was prepared using Fe-containing kaolin as the raw material. There are four kinds of carbon nanocoils conformations produced by this catalyst. The influences of reaction temperature and gas conditions on the conformations of the nanocoils were investigated and the reasons of forming nano-size coils were discussed by comparison with pure Ni metal catalyst.

  12. Influence of rotational energy barriers to the conformational search of protein loops in molecular dynamics and ranking the conformations.

    PubMed

    Tappura, K

    2001-08-15

    An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.

  13. First steps towards conformationally selective artificial lectins: the chair-boat discrimination by molecularly imprinted polymers.

    PubMed

    de Talancé, Vincent Lemau; Massinon, Olivier; Baati, Rachid; Wagner, Alain; Vincent, Stéphane P

    2012-11-07

    A series of molecularly imprinted polymers (MIPs) were prepared in the presence of a synthetic galactoside locked in a (1,4)B boat conformation. This study demonstrates that, depending on the polymerisation technique, an organic material can selectively bind a carbohydrate in a biologically relevant boat conformation.

  14. Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane.

    PubMed

    Zhang, Wei; Zhang, Zhennan; Wang, Xinping

    2009-05-01

    A simple method of changing pre-treatment temperature in the course of film formation was used to tune the surface structures of PVA membranes. Surface structure and property of the resulting membranes were characterized by X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and contact angle measurements. The results show that PVA have different molecular conformations at the membrane surface while those membranes were prepared at different pre-treatment temperature. At higher pre-treatment temperatures, polar acetoxyl residues and hydroxyl groups of the PVA chains oriented in a more orderly fashion, as induced by the faster evaporation of water. When the membranes were in air, CH(3) groups adjacent to the acetoxyl groups covered the surface in order to minimize the surface free energy, while backbones of the PVA were rarely observed. These surfaces exhibited a hydrophilic nature upon contact with water due to rapid surface reconstruction. Conversely, at lower pre-treatment temperatures, the backbone CH(2) groups dominated the surface, forming a less hydrophilic surface. When the PVA membranes were employed to separate ethanol/water mixtures, it was found that the PVA membranes with more hydrophilic surface exhibited higher water selectivity. Our investigation indicates that molecular conformations on the membrane surface have considerable influence on pervaporation performance.

  15. Conformational properties of penicillins: quantum chemical calculations and molecular dynamics simulations of benzylpenicillin.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L

    2003-11-30

    Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.

  16. A phenomenological relationship between molecular geometry change and conformational energy change

    NASA Astrophysics Data System (ADS)

    Bodi, Andras; Bjornsson, Ragnar; Arnason, Ingvar

    2010-08-01

    A linear correlation is established between the change in the axial/equatorial conformational energy difference and the change in the molecular geometry transformation during conformational inversion in substituted six-membered ring systems, namely in the 1-substituted cyclohexane/silacyclohexane, cyclohexane/ N-substituted piperidine and 1-substituted silacyclohexane/ P-substituted phosphorinane compound families, and for the analogous gauche/anti conformational isomerism in 1-substituted propanes/1-silapropanes. The nuclear repulsion energy parameterizes the molecular geometry, and changes in the conformational energy between the related compound families are linearly correlated with the changes in the nuclear repulsion energy difference based on DFT (B3LYP, M06-2X), G3B3, and CBS-QB3 calculations. This correlation reproduces the sometimes remarkable contrast between the conformational behavior of analogous compounds, e.g., the lack of a general equatorial preference in silacyclohexanes.

  17. De novo designed coiled-coil proteins with variable conformations as components of molecular electronic devices.

    PubMed

    Shlizerman, Clara; Atanassov, Alexander; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2010-04-14

    Conformational changes of proteins are widely used in nature for controlling cellular functions, including ligand binding, oligomerization, and catalysis. Despite the fact that different proteins and artificial peptides have been utilized as electron-transfer mediators in electronic devices, the unique propensity of proteins to switch between different conformations has not been used as a mechanism to control device properties and performance. Toward this aim, we have designed and prepared new dimeric coiled-coil proteins that adopt different conformations due to parallel or antiparallel relative orientations of their monomers. We show here that controlling the conformation of these proteins attached as monolayers to gold, which dictates the direction and magnitude of the molecular dipole relative to the surface, results in quantitative modulation of the gold work function. Furthermore, charge transport through the proteins as molecular bridges is controlled by the different protein conformations, producing either rectifying or ohmic-like behavior.

  18. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations.

  19. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides.

  20. Structural determination of molecular stereochemistry using VCD spectroscopy and a conformational code: absolute configuration and solution conformation of a chiral liquid pesticide, (R)-(+)-malathion.

    PubMed

    Izumi, Hiroshi; Ogata, Atsushi; Nafie, Laurence A; Dukor, Rina K

    2009-01-01

    The absolute configuration and solution conformation of (R)-(+)-malathion were determined by using vibrational circular dichroism spectroscopy and a fragment-conformational search with a recently published conformational code. The determination of molecular stereochemistry was carried out without a conformational search using molecular mechanics calculations. Density functional theory calculations of the fragments of (R)-malathion, ethyl propionate, (R)-ethyl 2-(methylthio)propanoate, (R)-diethyl 2-(methylthio)succinate, and O,O,S-trimethyl phosphorodithioate were carried out, and the principal conformational features of the fragments were profiled. This fragment-conformational search reduces the time needed for the selection of the predominant conformations for (R)-malathion and significantly improves the accuracy of the determination of absolute configuration.

  1. Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism

    SciTech Connect

    Huang, Jingsong; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a two-electron multicenter (2e/mc) - bonding between two -stacked phenalenyl units. The 2e/mc bonded -dimers are close in energy to the -dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart -functional materials. Here, we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair and boat conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair conformation involves a 2e/4c - bonded structure, whereas the boat conformation involves a 2e/12c - bonded structure on their potential energy surfaces. The global minimum for the chair conformation is the -bonded structure, whereas it is the - bonded structure for the boat conformation. The chair conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat conformation should be observable by SQUID and ESR. According to the energy differences of the respective - and -dimers of the two conformations and the UV-vis calculations, the color of the chair conformation is expected to become darker, whereas that of the boat conformation should become lighter with increasing temperature.

  2. High-Quality Dataset of Protein-Bound Ligand Conformations and Its Application to Benchmarking Conformer Ensemble Generators.

    PubMed

    Friedrich, Nils-Ole; Meyder, Agnes; de Bruyn Kops, Christina; Sommer, Kai; Flachsenberg, Florian; Rarey, Matthias; Kirchmair, Johannes

    2017-02-16

    We developed a cheminformatics pipeline for the fully automated selection and extraction of high-quality protein-bound ligand conformations from X-ray structural data. The pipeline evaluates the validity and accuracy of the 3D structures of small molecules according to multiple criteria, including their fit to the electron density and their physicochemical and structural properties. Using this approach, we compiled two high-quality datasets from the Protein Data Bank (PDB): a comprehensive dataset and a diversified subset of 4626 and 2912 structures, respectively. The datasets were applied to benchmarking seven freely available conformer ensemble generators: Balloon (two different algorithms), the RDKit standard conformer ensemble generator, the Experimental-Torsion basic Knowledge Distance Geometry (ETKDG) algorithm, Confab, Frog2 and Multiconf-DOCK. Substantial differences in the performance of the individual algorithms were observed, with RDKit and ETKDG generally achieving a favorable balance of accuracy, ensemble size and runtime. The Platinum datasets are available for download from http://www.zbh.uni-hamburg.de/platinum_dataset .

  3. Next-generation molecular diagnostics.

    PubMed

    Aldape, Kenneth; Pfister, Stefan M

    2016-01-01

    The classification of brain tumors is based on the time-honored tradition of histologic examination, coupled with clinicopathologic correlation, and is based on the fundamental importance of microscopic morphologic interpretation. Supplementation by immunohistochemical markers is of substantial value to distinguish related entities and to confirm morphologic impressions. The use of techniques such as fluorescent in situ hybridization (FISH) is also critical in specific situations. However, with these practices, it is clear that the use of state-of-the-art molecular techniques has great promise to add to classification to (1) reduce the subjectivity inherent in interobserver discordance, particularly with specific entities; and (2) elucidate the biologic diversity of entities that are not resolvable by routine methods. In this chapter, we discuss these possibilities, focusing on several tumor types affecting the central nervous system, including diffuse glioma and ependymoma.

  4. Vibrational modes and changing molecular conformation of perfluororubrene in thin films and solution.

    PubMed

    Anger, F; Scholz, R; Gerlach, A; Schreiber, F

    2015-06-14

    We investigate the vibrational properties of perfluororubrene (PF-RUB) in thin films on silicon wafers with a native oxide layer as well as on silicon wafers covered with a self-assembled monolayer and in dichloromethane solution. In comparison with computed Raman and IR spectra, we can assign the molecular modes and identify two molecular conformations with twisted and planar tetracene backbones of the molecule. Moreover, we employ Raman imaging techniques to study the morphology and distribution of the molecular conformation in PF-RUB thin films.

  5. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    SciTech Connect

    Deng, Mingsen; Ye, Gui; Jiang, Jun; Cai, Shaohong; Sun, Guangyu

    2015-01-15

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  6. Molecular structure and conformations of caramboxin, a natural neurotoxin from the star fruit: A computational study

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2015-01-01

    Using density functional theory calculations we investigate the molecular structure and conformations of caramboxin, a neurotoxin recently isolated from the star fruit Averroha carambola. Among the seven conformers that exist within an energy window of ∼16.0 kcal/mol, two of them are the most favored ones with an energy difference of less than 2.0 kcal/mol. The computed chemical shifts of these two low-energy conformers are in good agreement with the experimental values determined in deuterated dimethylsulfoxide thus confirming the 2D chemical structure assigned to the neurotoxin. A topological analysis of the theoretical electronic charge density of four caramboxin conformers reveals the existence of intramolecular CH⋯O/N interactions which, in addition to the classical OH⋯O/N H-bonding interactions, contribute to decrease the conformational freedom of the neurotoxin.

  7. Influence of Molecular Solvation on the Conformation of Star Polymers

    SciTech Connect

    Li, Xin; Porcar, L.; Sanchez-Diaz, Luis E; Do, Changwoo; Liu, Yun; Smith, Gregory Scott; Hong, Kunlun; Chen, Wei-Ren

    2014-01-01

    We have used neutron scattering to investigate the influence of concentration on the conformation of a star polymer. By varying the contrast between the solvent and isotopically labeled stars, we obtain the distributions of polymer and solvent within a star polymer from analysis of scattering data. A correlation between the local desolvation and the inward folding of star branches is discovered. From the perspective of thermodynamics, we find an analogy between the mechanism of polymer localization driven by solvent depletion and that of the hydrophobic collapse of polymers in solutions.

  8. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, rearrangement, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.

  9. Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation.

    PubMed

    Riniker, Sereina; Landrum, Gregory A

    2015-12-28

    Small organic molecules are often flexible, i.e., they can adopt a variety of low-energy conformations in solution that exist in equilibrium with each other. Two main search strategies are used to generate representative conformational ensembles for molecules: systematic and stochastic. In the first approach, each rotatable bond is sampled systematically in discrete intervals, limiting its use to molecules with a small number of rotatable bonds. Stochastic methods, on the other hand, sample the conformational space of a molecule randomly and can thus be applied to more flexible molecules. Different methods employ different degrees of experimental data for conformer generation. So-called knowledge-based methods use predefined libraries of torsional angles and ring conformations. In the distance geometry approach, on the other hand, a smaller amount of empirical information is used, i.e., ideal bond lengths, ideal bond angles, and a few ideal torsional angles. Distance geometry is a computationally fast method to generate conformers, but it has the downside that purely distance-based constraints tend to lead to distorted aromatic rings and sp(2) centers. To correct this, the resulting conformations are often minimized with a force field, adding computational complexity and run time. Here we present an alternative strategy that combines the distance geometry approach with experimental torsion-angle preferences obtained from small-molecule crystallographic data. The torsional angles are described by a previously developed set of hierarchically structured SMARTS patterns. The new approach is implemented in the open-source cheminformatics library RDKit, and its performance is assessed by comparing the diversity of the generated ensemble and the ability to reproduce crystal conformations taken from the crystal structures of small molecules and protein-ligand complexes.

  10. A method for correlations analysis of coordinates: applications for molecular conformations.

    PubMed

    Chema, Doron; Becker, Oren M

    2002-01-01

    We describe a new method to analyze multiple correlations between subsets of coordinates that represent a sample. The correlation is established only between specific regions of interest at the coordinates. First, the region(s) of interest are selected at each molecular coordinate. Next, a correlation matrix is constructed for the selected regions. The matrix is subject to further analysis, illuminating the multidimensional structural characteristics that exist in the conformational space. The method's abilities are demonstrated in several examples: it is used to analyze the conformational space of complex molecules, it is successfully applied to compare related conformational spaces, and it is used to analyze a diverse set of protein folding trajectories.

  11. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  12. Molecular Clustering Interrelationships and Carbohydrate Conformation in Hull and Seeds Among Barley Cultivars

    SciTech Connect

    N Liu; P Yu

    2011-12-31

    The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1} (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy

  13. Role of Molecular Conformations in Rubrene Thin Film Growth

    SciTech Connect

    Kaefer, D.; Ruppel, L.; Witte, G.; Woell, Ch.

    2005-10-14

    A systematic analysis of the growth of rubrene (C{sub 42}H{sub 28}), an organic molecule that currently attracts considerable attention with regard to its application in molecular electronics, is carried out by using x-ray absorption spectroscopy and thermal desorption spectroscopy. The results allow us to unravel a fundamental mechanism that effectively limits organic epitaxy for a large class of organic molecules. If the structure of the free molecule differs substantially from that of the corresponding molecular structure in the bulk, the crystallization is severely hampered.

  14. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins.

    PubMed

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N; Patil, Navinkumar J; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-28

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  15. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  16. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  17. Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation.

    PubMed

    Fradera, Xavier; Márquez, Manuel; Smith, Bradley D; Orozco, Modesto; Luque, F Javier

    2003-06-13

    The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co-conformational

  18. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, tautomerization, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2011-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a 2-electron multicenter (2e/mc) covalent pi-pi bonding between two pi-stacked phenalenyl units. The 2e/mc bonded pi-dimers are close in energy to the sigma-dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart pi-functional materials. Here we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair-conformation involves a 2e/4c pi-pi bonded structure while the boat-conformation involves a 2e/12c pi-pi bonded structure on their potential energy surfaces. The global minimum for the chair-conformation is the sigma-bonded structure while it is the pi-pi bonded structure for the boat-conformation. The chair-conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat-conformation should be observable by SQUID and/or ESR. According to the difference of the global minima of the two conformations and the parameterized UV-Vis calculations, the color of the chair-conformation is expected to become darker while that of the boat-conformation become lighter with increasing temperature.

  19. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.

    PubMed

    Cleves, Ann E; Jain, Ajay N

    2017-03-13

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  20. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2017-03-01

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  1. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions

    PubMed Central

    Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran

    2017-01-01

    Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors. PMID:28374773

  2. Molecular Environment Modulates Conformational Differences between Crystal and Solution States of Human β-Defensin 2.

    PubMed

    Li, Jianguo; Hu, Zhongqiao; Beuerman, Roger; Verma, Chandra

    2017-04-06

    Human β-defensin 2 is a cysteine-rich antimicrobial peptide. In the crystal state, the N-terminal segment (residues 1-11) exhibits a helical conformation. However, a truncated form, with four amino acids removed from the N-terminus, adopts nonhelical conformations in solution, as shown by NMR. To explore the molecular origins of these different conformations, we performed Hamiltonian replica exchange molecular dynamics simulations of the peptide in solution and in the crystal state. It is found that backbone hydration and specific protein-protein interactions are key parameters that determine the peptide conformation. The helical conformation in the crystal state mainly arises from reduced hydration as well as a salt bridge between the peptide and a symmetry-related neighboring monomer in the crystal. When the extent of hydration is reduced and the salt bridge is reintroduced artificially, the peptide is successfully folded back to the helical conformation in solution. The findings not only shed light on the development of accurate force field parameters for protein molecules but also provide practical guidance in the design of functional proteins and peptides.

  3. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    NASA Astrophysics Data System (ADS)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2014-10-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N-H...O=C, type II by a strong O-H...N hydrogen bond, type III by weak N-H...O-H hydrogen bonds, and type IV by a C=O...H-C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O-H...N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm-1, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG undergoes facile photofragmentation

  4. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    SciTech Connect

    Borba, Ana Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-10-21

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N–H···O=C, type II by a strong O–H···N hydrogen bond, type III by weak N–H···O–H hydrogen bonds, and type IV by a C=O···H–C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O–H···N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N{sub 2} matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm{sup −1}, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that

  5. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  6. Molecular mechanics work station for protein conformational studies

    SciTech Connect

    Fine, R.; Levinthal, C.; Schoenborn, B.; Dimmier, G.; Rankowitz, C.

    1984-01-01

    Interest in computational problems in Biology has intensified over the last few years, partly due to the development of techniques for the rapid cloning, sequencing, and mutagenesis of genes from organisims ranging from E. coli to Man. The central dogma of molecular biology; that DNA codes for mRNA which codes for protein, has been understood in a linear programming sense since the genetic code was cracked. But what is not understood at present is how a protein, once assembled as a long sequence of amino acids, folds back on itself to produce a three-dimensional structure which is unique to that protein and which dictates its chemical and biological activity. This folding process is purely physics, and involves the time evolution of a system of several thousand atoms which interact with each other and with atoms from the surrounding solvent. Molecular dynamics simulations on smaller molecules suggest that approaches which treat the protein as a classical ensemble of atoms interacting with each other via an empirical Hamiltonian can yield the kind of predictive results one would like when applied to proteins.

  7. Electron Momentum Spectroscopy Investigation of Molecular Conformations of Ethanol Considering Vibrational Effects.

    PubMed

    Tang, Yaguo; Shan, Xu; Niu, Shanshan; Liu, Zhaohui; Wang, Enliang; Watanabe, Noboru; Yamazaki, Masakazu; Takahashi, Masahiko; Chen, Xiangjun

    2017-01-12

    The interpretation of experimental electron momentum distributions (EMDs) of ethanol, one of the simplest molecules having conformers, has confused researchers for years. High-level calculations of Dyson orbital EMDs by thermally averaging the gauche and trans conformers as well as molecular dynamical simulations failed to quantitatively reproduce the experiments for some of the outer valence orbitals. In this work, the valence shell electron binding energy spectrum and EMDs of ethanol are revisited by the high-sensitivity electron momentum spectrometer employing symmetric noncoplanar geometry at an incident energy of 1200 eV plus binding energy, together with a detailed analysis of the influence of vibrational motions on the EMDs for the two conformers employing a harmonic analytical quantum mechanical (HAQM) approach by taking into account all of the vibrational modes. The significant discrepancies between theories and experiments in previous works have now been interpreted quantitatively, indicating that the vibrational effect plays a significant role in reproducing the experimental results, not only through the low-frequency OH and CH3 torsion modes but also through other high-frequency ones. Rational explanation of experimental momentum profiles provides solid evidence that the trans conformer is slightly more stable than the gauche conformer, in accordance with thermodynamic predictions and other experiments. The case of ethanol demonstrates the significance of considering vibrational effects when performing a conformational study on flexible molecules using electron momentum spectroscopy.

  8. Single-strand conformation polymorphism (SSCP) analysis of the molecular pathology of hemophilia B.

    PubMed

    David, D; Rosa, H A; Pemberton, S; Diniz, M J; Campos, M; Lavinha, J

    1993-01-01

    In the present study, we report the application of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis to the screening of seven functionally important factor IX gene (FIX) regions (total length 2.66 kb) in 9 unrelated haemophilia B patients of Portuguese or African origin. In eight of the patients an altered migration pattern of single-stranded DNA was observed. Direct sequencing of the relevant DNA fragments unveiled the following sequence alterations: two novel mutations, namely FIXBarcelos Thr-380-Pro and FIXLousada 9bp insertion at position 31,309 or 31,318; five mutations previously reported in other ethnic groups (FIXPorto Arg-145-His, FIXLuanda Gly-207-Arg, FIXPenafiel Arg-248-Gln, FIXSesimbra Arg-333-Gln, FIXCascais Arg-333-Stop); and a normal variant, G-->T transvertion at position 6,596 in intron 2. We propose hypothetical models for the generation of the 9 bp duplication (FIXLousada). We have performed molecular modeling studies in order to predict the structure of the variant FIX molecules.

  9. Conformational behaviour and molecular similarity of some β1-adrenergic ligands

    NASA Astrophysics Data System (ADS)

    Fantucci, Piercarlo; Mattioli, Elena; Villa, Anna Maria; Villa, Luigi

    1992-08-01

    The conformational behaviour of a series of aryloxypropanolamines was investigated by means of a new procedure which allows the sampling of the molecular torsional surface in a very efficient way. The combination of such a procedure with the standard molecular mechanics algorithms for the geometry optimization gives, as a result, the definition of a powerful computational scheme for the detailed analysis of the potential energy surface of complex molecules. The compounds studied show a remarkable tendency to form intramolecular hydrogen bonds, which seem to play a key role in determining the lowest energy structures. The indices of molecular similarity proposed by Carbó, computed for the most stable conformers, do not account for differences between diastereoisomers, and, as a consequence, can hardly be used to attempt a structure-activity correlation.

  10. Conformational diversity of bacterial FabH: Implications for molecular recognition specificity

    PubMed Central

    Mittal, Anuradha; Johnson, Michael E.

    2015-01-01

    The molecular basis of variable substrate and inhibitor specificity of the highly conserved bacterial fatty acid synthase enzyme, FabH, across different bacterial species remains poorly understood. In the current work, we explored the conformational diversity of FabH enzymes to understand the determinants of diverse interaction specificity across Gram-positive and Gram-negative bacteria. Atomistic molecular dynamics simulations reveal that FabH from E. coli and E. faecalis exhibit distinct native state conformational ensembles and dynamic behaviors. Despite strikingly similar substrate binding pockets, hot spot assessment using computational solvent mapping identified quite different favorable binding interactions between the two homologs. Our data suggest that FabH utilizes protein dynamics and seemingly minor sequence and structural differences to modulate its molecular recognition and substrate specificity across bacterial species. These insights will potentially facilitate the rational design and development of antibacterial inhibitors against FabH enzymes. PMID:25437098

  11. Theoretical studies on the molecular structure, conformational preferences, topological and vibrational analysis of allicin

    NASA Astrophysics Data System (ADS)

    Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław

    2016-01-01

    The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.

  12. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  13. Central pattern generators deciphered by molecular genetics.

    PubMed

    Kiehn, Ole; Kullander, Klas

    2004-02-05

    Central pattern generators (CPGs) are localized neuronal networks that have the ability to produce rhythmic movements even in the absence of movement-related sensory feedback. They are found in all animals, including man, and serve as informative model systems for understanding how neuronal networks produce behavior. Traditionally, CPGs have been investigated with electrophysiological techniques. Here we review recent molecular and genetic approaches for dissecting the organization and development of CPGs.

  14. Finding Stable Graphene Conformations from Pull and Release Experiments with Molecular Dynamics

    PubMed Central

    Yamaletdinov, Ruslan D.; Pershin, Yuriy V.

    2017-01-01

    Here, we demonstrate that stable conformations of graphene nanoribbons can be identified using pull and release experiments, when the stretching force applied to a single-layer graphene nanoribbon is suddenly removed. As it is follows from our numerical experiments performed by means of molecular dynamics simulations, in such experiments, favorable conditions for the creation of folded structures exist. Importantly, at finite temperatures, the process of folding is probabilistic. We have calculated the transition probabilities to folded conformations for a graphene nanoribbon of a selected size. Moreover, the ground state conformation has been identified and it is shown that its type is dependent on the nanoribbon length. We anticipate that the suggested pull and release approach to graphene folding may find applications in the theoretical studies and fabrication of emergent materials and their structures. PMID:28195156

  15. Finding Stable Graphene Conformations from Pull and Release Experiments with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Yamaletdinov, Ruslan D.; Pershin, Yuriy V.

    2017-02-01

    Here, we demonstrate that stable conformations of graphene nanoribbons can be identified using pull and release experiments, when the stretching force applied to a single-layer graphene nanoribbon is suddenly removed. As it is follows from our numerical experiments performed by means of molecular dynamics simulations, in such experiments, favorable conditions for the creation of folded structures exist. Importantly, at finite temperatures, the process of folding is probabilistic. We have calculated the transition probabilities to folded conformations for a graphene nanoribbon of a selected size. Moreover, the ground state conformation has been identified and it is shown that its type is dependent on the nanoribbon length. We anticipate that the suggested pull and release approach to graphene folding may find applications in the theoretical studies and fabrication of emergent materials and their structures.

  16. Molecular modeling of the conformational dynamics of the cellular prion protein

    NASA Astrophysics Data System (ADS)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  17. A uniform molecular model of δ opioid agonist and antagonist pharmacophore conformations

    NASA Astrophysics Data System (ADS)

    Brandt, Wolfgang

    1998-11-01

    On the basis of a model of the pharmacophore conformations of agonist of the δ-opioid receptor the corresponding δ-antagonist conformations were determined by means of force field calculations. The results explain the unusual behavior of several cyclic β-casomorphin analogues on the molecular level. Thus, for instance, the model helps to understand why Tyr-c[D-Orn-2-Nal-D-Pro-Gly] is a mixed μ-agonist and δ-antagonist. Furthermore, the model is consistent with low energy conformations of other δ-antagonists such as Tyr-Tic-Phe, Tyr-Tic-Phe-Phe, naltrindole and BNTX. The occupation of a special spatial area by bulky groups close to the protonated N-terminus of opioid peptides is assumed to be highly critical for the switch from agonist to antagonist behavior.

  18. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    SciTech Connect

    Rohini,; Akbar, Rifat; Kanungo, B. K.

    2015-08-28

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic and random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.

  19. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Rohini, Akbar, Rifat; Kanungo, B. K.

    2015-08-01

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic and random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.

  20. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling

    NASA Astrophysics Data System (ADS)

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N.; Matsoukas, Minos-Timotheos; Deraos, Spyros N.; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V.

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP1-11) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP1-11[4A]) or a tyrosine residue (Ac-MBP1-11[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-Au was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln3 residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-Au complex, has a different orientation in the mutated analogues especially in the Ac-MBP1-11[4A] peptide. In particular the side chain of Gln3 is not solvent exposed as for the native Ac-MBP1-11 and it is not available for interaction with the TCR.

  1. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling.

    PubMed

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N; Matsoukas, Minos-Timotheos; Deraos, Spyros N; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP(1-11)) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP(1-11)[4A]) or a tyrosine residue (Ac-MBP(1-11)[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-A(u) was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln(3) residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-A(u) complex, has a different orientation in the mutated analogues especially in the Ac-MBP(1-11)[4A] peptide. In particular the side chain of Gln(3) is not solvent exposed as for the native Ac-MBP(1-11) and it is not available for interaction with the TCR.

  2. Conformation of the umifenovir cation in the molecular and crystal structures of four carboxylic acid salts

    NASA Astrophysics Data System (ADS)

    Orola, Liana; Sarcevica, Inese; Kons, Artis; Actins, Andris; Veidis, Mikelis V.

    2014-01-01

    The umifenovir salts of maleic, salicylic, glutaric, and gentisic acid as well as the chloroform solvate of the salicylate were prepared. Single crystals of the five compounds were obtained and their molecular and crystal structures determined by X-ray diffraction. In each structure the conformation of phenyl ring with respect to the indole group of the umifenovir moiety is different. The water solubility and melting points of the studied umifenovir salts have been determined.

  3. Conformational properties, chiroptical spectra, and molecular self-assembly of 2,3-piperazinodiones and their dithiono analogues.

    PubMed

    Piotrkowska, Barbara; Myślińska, Małgorzata; Gdaniec, Maria; Herman, Aleksander; Połoński, Tadeusz

    2008-04-04

    A family of chiral cyclic oxamides was prepared by the condensation of optically active 1,2-diamines with diethyl oxalate. Thionation of the products with Lawesson's reagent afforded a series of chiral 2,3-piperazinedithiones. Molecular geometries of the title compounds were studied with the use of quantum mechanical DFT calculations and were compared to the X-ray crystallographic results. The heterocyclic six-membered ring adopted a half-chair conformation with the C-5 substituent preferably at the equatorial position, whereas a substitution at the nitrogen atoms resulted in domination of the axial form in the conformational equilibrium. The opposite helicity of the twisted oxamide chromophore in the axial and equatorial conformers led to the opposite signs of the Cotton effects corresponding to two pi-pi* electronic transitions. The CD signs can be predicted by a simple helicity rule. The same rule is valid for 2,3-piperazinodithiones, where a substitution of sulfur for oxygen in the carbonyl groups results in bathochromic shifts of the absorption and CD bands. The crystal packing analysis of several 2,3-piperazinodiones revealed that strong NH...O=C intermolecular hydrogen-bonding interactions generating the chain motif resulted in the formation of 3-D networks as well as with the use of the cyclic hydrogen-bond motif tape structures.

  4. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation.

    PubMed

    Moree, Ben; Connell, Katelyn; Mortensen, Richard B; Liu, C Tony; Benkovic, Stephen J; Salafsky, Joshua

    2015-08-18

    We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein's structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.

  5. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation

    PubMed Central

    Moree, Ben; Connell, Katelyn; Mortensen, Richard B.; Liu, C. Tony; Benkovic, Stephen J.; Salafsky, Joshua

    2015-01-01

    We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein’s structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications. PMID:26287632

  6. Molecular dynamics simulation and conformational analysis of some catalytically active peptides.

    PubMed

    Honarparvar, Bahareh; Skelton, Adam A

    2015-04-01

    The design of stable and inexpensive artificial enzymes with potent catalytic activity is a growing field in peptide science. The first step in this design process is to understand the key factors that can affect the conformational preference of an enzyme and correlate them with its catalytic activity. In this work, molecular dynamics simulations in explicit water of two catalytically active peptides (peptide 1: Fmoc-Phe1-Phe2-His-CONH2; peptide 2: Fmoc-Phe1-Phe2-Arg-CONH2) were performed at temperatures of 300, 400, and 500 K. Conformational analysis of these peptides using Ramachandran plots identified the secondary structures of the amino acid residues involved (Phe1, Phe2, His, Arg) and confirmed their conformational flexibility in solution. Furthermore, Ramachandran maps revealed the intrinsic preference of the constituent residues of these compounds for a helical conformation. Long-range interaction distances and radius of gyration (R g) values obtained during 20 ns MD simulations confirmed their tendency to form folded conformations. Results showed a decrease in side-chain (Phe1, Phe2, His ring, and Arg) contacts as the temperature was raised from 300 to 400 K and then to 500 K. Finally, the radial distribution functions (RDF) of the water molecules around the nitrogen atoms in the catalytically active His and Arg residues of peptide 1 and peptide 2 revealed that the strongest water-peptide interaction occurred with the arginine nitrogen atoms in peptide 2. Our results highlight differences in the secondary structures of the two peptides that can be explained by the different arrangement of water molecules around the nitrogen atoms of Arg in peptide 2 as compared to the arrangement of water molecules around the nitrogen atoms of His in peptide 1. The results of this work thus provide detailed insight into peptide conformations which can be exploited in the future design of peptide analogs.

  7. [Protein conformational dynamics of crambin in crystal, solution and in the trajectories of molecular dynamics simulations].

    PubMed

    Abaturov, L V; Nosova, N G

    2013-01-01

    Atomic displacement parameters--B factors of the eight crambin crystal structures obtained at 0.54-1.5 angstroms resolution and temperatures of 100-293K have been analyzed. The comparable contributions to the B factor values are the intramolecular motions which are modeled by the harmonic vibration calculations and derived from the molecular dynamics simulation (MD) as well as rigid body changes in the position of a protein molecule as a whole. In solution for the average NMR structure of crambin the amplitudes of the backbone atomic fluctuations of the most residues of the segments with the regular backbone conformations are close to the amplitudes of the small scale harmonic vibrations. For the same residues the probability of the medium scale fluctuations fixed by the hydrogen exchange method is very low. The restricted conformational mobility of those segments is coupled with the depressed amplitudes of the fluctuation changes of the tertiary structure registered by the residue accessibility changes in an ensemble of NMR structures that forms the average NMR structure of crambin. The amplitudes of temperature fluctuations of backbone atoms and the tertiary structure raise in the segment with the irregular conformations, turn and loops. In the same segments the amplitudes of the calculated harmonic vibrations also increase, but to a lesser extent and especially in the interhelical loop with the most strong and complicated fluctuation changes of the backbone conformation. In solution for the NMR structure in this loop the conformational transitions occur between the conformational substates separated by the energy barriers, but they are not observed even in the long 100 ns trajectories from the MD simulation of crambin. These strong local fluctuation changes of the structure may play a key role in the protein functioning and modern performance improvements in the MD simulation techniques are oriented to increase the probability of protein appearance in the

  8. Generation of prion transmission barriers by mutational control of amyloid conformations.

    PubMed

    Chien, Peter; DePace, Angela H; Collins, Sean R; Weissman, Jonathan S

    2003-08-21

    Self-propagating beta-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms--a process that is thought to underlie prion strain variation. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins. In prions, this specificity leads to barriers that limit transmission between species. Using the yeast prion [PSI+], we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of 'infectious' conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.

  9. Molecular Neuroanatomy: A Generation of Progress

    PubMed Central

    Pollock, Jonathan D.; Wu, Da-Yu; Satterlee, John

    2014-01-01

    The neuroscience research landscape has changed dramatically over the past decade. An impressive array of neuroscience tools and technologies have been generated, including brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity and function, cost effective genome sequencing, new technologies enabling genome manipulation, new imaging methods and new tools for mapping neuronal circuits. However, despite these technological advances, several significant scientific challenges must be overcome in the coming decade to enable a better understanding of brain function and to develop next generation cell type-targeted therapeutics to treat brain disorders. For example, we do not have an inventory of the different types of cells that exist in the brain, nor do we know how to molecularly phenotype them. We also lack robust technologies to map connections between cells. This review will provide an overview of some of the tools and technologies neuroscientists are currently using to move the field of molecular neuroanatomy forward and also discuss emerging technologies that may enable neuroscientists to address these critical scientific challenges over the coming decade. PMID:24388609

  10. Molecular Dynamics Simulations of Insulin: Elucidating the Conformational Changes that Enable Its Binding

    PubMed Central

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2015-01-01

    A sequence of complex conformational changes is required for insulin to bind to the insulin receptor. Recent experimental evidence points to the B chain C-terminal (BC-CT) as the location of these changes in insulin. Here, we present molecular dynamics simulations of insulin that reveal new insights into the structural changes occurring in the BC-CT. We find three key results: 1) The opening of the BC-CT is inherently stochastic and progresses through an open and then a “wide-open” conformation—the wide-open conformation is essential for receptor binding, but occurs only rarely. 2) The BC-CT opens with a zipper-like mechanism, with a hinge at the Phe24 residue, and is maintained in the dominant closed/inactive state by hydrophobic interactions of the neighboring Tyr26, the critical residue where opening of the BC-CT (activation of insulin) is initiated. 3) The mutation Y26N is a potential candidate as a therapeutic insulin analogue. Overall, our results suggest that the binding of insulin to its receptor is a highly dynamic and stochastic process, where initial docking occurs in an open conformation and full binding is facilitated through interactions of insulin receptor residues with insulin in its wide-open conformation. PMID:26629689

  11. Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology.

    PubMed

    Vaikath, Nishant N; Majbour, Nour K; Paleologou, Katerina E; Ardah, Mustafa T; van Dam, Esther; van de Berg, Wilma D J; Forrest, Shelley L; Parkkinen, Laura; Gai, Wei-Ping; Hattori, Nobutaka; Takanashi, Masashi; Lee, Seung-Jae; Mann, David M A; Imai, Yuzuru; Halliday, Glenda M; Li, Jia-Yi; El-Agnaf, Omar M A

    2015-07-01

    α-Synuclein (α-syn), a small protein that has the intrinsic propensity to aggregate, is implicated in several neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are collectively known as synucleinopathies. Genetic, pathological, biochemical, and animal modeling studies provided compelling evidence that α-syn aggregation plays a key role in the pathogenesis of PD and related synucleinopathies. It is therefore of utmost importance to develop reliable tools that can detect the aggregated forms of α-syn. We describe here the generation and characterization of six novel conformation-specific monoclonal antibodies that recognize specifically α-syn aggregates but not the soluble, monomeric form of the protein. The antibodies described herein did not recognize monomers or fibrils generated from other amyloidogenic proteins including β-syn, γ-syn, β-amyloid, tau protein, islet amyloid polypeptide and ABri. Interestingly, the antibodies did not react to overlapping linear peptides spanning the entire sequence of α-syn, confirming further that they only detect α-syn aggregates. In immunohistochemical studies, the new conformation-specific monoclonal antibodies showed underappreciated small micro-aggregates and very thin neurites in PD and DLB cases that were not observed with generic pan antibodies that recognize linear epitope. Furthermore, employing one of our conformation-specific antibodies in a sandwich based ELISA, we observed an increase in levels of α-syn oligomers in brain lysates from DLB compared to Alzheimer's disease and control samples. Therefore, the conformation-specific antibodies portrayed herein represent useful tools for research, biomarkers development, diagnosis and even immunotherapy for PD and related pathologies.

  12. Conformation of receptor-associated PGI2: An investigation by molecular modeling

    NASA Astrophysics Data System (ADS)

    Tsai, Ah-lim; Strobel-Jager, Eva; Wu, Kenneth K.

    1991-04-01

    To elucidate the conformation of receptor-associated prostacyclin (PGI2), we first performed structure-activity correlation analysis of over 200 PGI2 analogues and derived from this analysis several crucial features pertaining to structural requirements for PGI2 activity [Ah-lim Tsai and Kenneth K. Wu, Eicosanoids, 2 (1989) 131-143]. These structural features proved to be useful guidelines for selecting `model molecules' for further investigations by molecular mechanics. By properly selecting four analogues with either rigid or uniquely oriented α-side chain structure for geometric fitting, we succeeded in maximally minimizing the degree of freedom of the carboxylate terminus of PGI2. We were able to define the spatial relationship among the four critical functional groups, i.e., C1-COOH, C6a-O, C11-OH and C15-OH. More information is needed, however, to define the geometry of the ω-side chain, particularly for the moiety beyond C15. Nevertheless, results from structure-activity correlation analysis and molecular modeling provide useful information regarding the conformation of receptor-associated PGI2, which assumes an `elongated' conformation instead of the traditional `hairpin' structure.

  13. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures

    PubMed Central

    Dionne, Justine; Lefèvre, Thierry; Auger, Michèle

    2016-01-01

    To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc.) are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively) as compared to NC (37% and 51°, respectively). β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro) that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads. PMID:27548146

  14. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  15. MED-3DMC: a new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space.

    PubMed

    Sperandio, Olivier; Souaille, Marc; Delfaud, François; Miteva, Maria A; Villoutreix, Bruno O

    2009-04-01

    Obtaining an efficient sampling of the low to medium energy regions of a ligand conformational space is of primary importance for getting insight into relevant binding modes of drug candidates, or for the screening of rigid molecular entities on the basis of a predefined pharmacophore or for rigid body docking. Here, we report the development of a new computer tool that samples the conformational space by using the Metropolis Monte Carlo algorithm combined with the MMFF94 van der Waals energy term. The performances of the program have been assessed on 86 drug-like molecules that resulted from an ADME/tox profiling applied on cocrystalized small molecules and were compared with the program Omega on the same dataset. Our program has also been assessed on the 85 molecules of the Astex diverse set. Both test sets show convincing performance of our program at sampling the conformational space.

  16. Effect of pressure on the conformation of proteins. A molecular dynamics simulation of lysozyme.

    PubMed

    McCarthy, Andrés N; Grigera, J Raúl

    2006-01-01

    The effect of pressure on the structure and mobility of lysozyme was studied by molecular dynamics computer simulation at 1 and 3 kbar (1 atm = 1.01325 bar = 101.325 kPa). The results have good agreement with the available experimental data, allowing the analysis of other features of the effect of pressure on the protein solution. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. From the analysis of secondary structure along the trajectories it is observed that the conformation under pressure is more stable, suggesting that pressure acts as a 'conformer selector' on the protein. The difference in solvent-accessed surface (SAS) with pressure shows a clear inversion of the hydrophilic/hydrophobic SAS ratio, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.

  17. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme

    PubMed Central

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named “myPresto/omegagene” that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g., the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/. PMID:27924276

  18. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme.

    PubMed

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named "myPresto/omegagene" that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g., the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/.

  19. Molecular neuroanatomy: a generation of progress.

    PubMed

    Pollock, Jonathan D; Wu, Da-Yu; Satterlee, John S

    2014-02-01

    The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade.

  20. Adsorption mechanisms of microcystin variant conformations at water-mineral interfaces: A molecular modeling investigation.

    PubMed

    Pochodylo, Amy L; Aoki, Thalia G; Aristilde, Ludmilla

    2016-10-15

    Microcystins (MCs) are potent toxins released during cyanobacterial blooms. Clay minerals are implicated in trapping MCs within soil particles in surface waters and sediments. In the absence of molecular characterization, the relevance of previously proposed adsorption mechanisms is lacking. Towards obtaining this characterization, we conducted Monte Carlo simulations combined with molecular dynamics relaxation of two MC variants, MC-leucine-arginine (MC-LR) and MC-leucine-alanine (MC-LA), adsorbed on hydrated montmorillonite with different electrolytes. The resulting adsorbate structures revealed how MC conformations and aqueous conditions dictate binding interactions at the mineral surface. Electrostatic coupling between the arginine residue and a carboxylate in MC-LR excluded the participation of arginine in mediating adsorption on montmorillonite in a NaCl solution. However, in a CaCl2 solution, the complexation of Ca by two carboxylate moieties in MC-LR changed the MC conformation, which allowed arginine to mediate electrostatic interaction with the mineral. By contrast, due to the lack of arginine in MC-LA, complexation of Ca by only one carboxylate in MC-LA was required to favor Ca-bridging interaction with the mineral. Multiple water-bridged H-bonding interactions were also important in anchoring MCs at the mineral surface. Our modeling results offer molecular insights into the structural and chemical factors that can control the fate of MCs at water-mineral interfaces.

  1. Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

    PubMed Central

    Kastowsky, M; Gutberlet, T; Bradaczek, H

    1992-01-01

    Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule. PMID:1624466

  2. Divalent Ion Dependent Conformational Changes in an RNA Stem-Loop Observed by Molecular Dynamics

    PubMed Central

    2016-01-01

    We compare the performance of five magnesium (Mg2+) ion models in simulations of an RNA stem loop which has an experimentally determined divalent ion dependent conformational shift. We show that despite their differences in parametrization and resulting van der Waals terms, including differences in the functional form of the nonbonded potential, when the RNA adopts its folded conformation, all models behave similarly across ten independent microsecond length simulations with each ion model. However, when the entire structure ensemble is accounted for, chelation of Mg2+ to RNA is seen in three of the five models, most egregiously and likely artifactual in simulations using a 12-6-4 model for the Lennard-Jones potential. Despite the simple nature of the fixed point-charge and van der Waals sphere models employed, and with the exception of the likely oversampled directed chelation of the 12-6-4 potential models, RNA–Mg2+ interactions via first shell water molecules are surprisingly well described by modern parameters, allowing us to observe the spontaneous conformational shift from Mg2+ free RNA to Mg2+ associated RNA structure in unrestrained molecular dynamics simulations. PMID:27294370

  3. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    PubMed

    de Almeida, Hugo; Bastos, Izabela M D; Ribeiro, Bergmann M; Maigret, Bernard; Santana, Jaime M

    2013-01-01

    Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4), and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO), which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD) simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation), a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  4. Conformational and Cs+ complexation properties of norbadione-A: a molecular modeling study.

    PubMed

    Schurhammer, R; Diss, R; Spiess, B; Wipff, G

    2008-01-28

    We report a quantum mechanical (QM) and classical molecular dynamics (MD) study of the conformational and complexation properties of norbadione-A (NBA), a key pigment involved in the Cs+ complexation by mushrooms. The Z versus E isomers of its pulvinic moieties are compared in their neutral (Pulv0), mono- (Pulv(-1)) and di-deprotonated (Pulv(-2)) states, and the 1H chemical shifts are calculated ab initio. Pulv(-1) is found to be stabilized in the E form by an internal COOH(-)O(enolate) hydrogen-bond. No energy minimum is found for the corresponding COO(-)HO(enol) state, indicating that the conjugated enol function of Pulv0 is more acidic than the COOH function. Further deprotonation leads to the Z and E forms of Pulv(-2) that are close in energy and both account for a marked downfield shift delta of ortho-H8 protons. A similar shift is found upon deprotonation of the enol function of an ester analogue of Pulv0. Therefore, contrary to previous assumptions (ref. 7: P. Kuad, et al., J. Am. Chem. Soc., 2005, 127, 1323), the large shift of delta(H8) around pH 9.5 upon deprotonation of NBA or of pulvinic acid cannot be taken as an indicator of an E-to-Z conformational switch, but merely reflects the pH-induced conformational change of the carboxylate group adjacent to the (H8)-ring. The QM and MD studies on NBA(2-) and NBA(4-) support the view that both species prefer the E/E form with two intramolecular COOH(-)O(enolate) hydrogen-bonds in the gas phase and in solution. Finally, we simulated mono- and di-nuclear complexes of Cs+ with NBA(2-) and NBA(4-) by MD, showing that only the NBA(4-) state populated at high pH values can bind two Cs+ cations, with both E and Z conformations of the pulvinic arms.

  5. Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: Insights from molecular dynamics simulations

    PubMed Central

    Rodrigues, J Rui; Simões, Carlos J V; Silva, Cândida G; Brito, Rui M M

    2010-01-01

    Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt-Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT-TTR and L55P-TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P-TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α-helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation-prone conformations characterized by full displacement of strands C and D from the main β-sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H-bond network and consequent destabilization of the CBEF β-sheet of the β-sandwich; (v) WT forms aggregation-compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P-TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation. PMID:19937650

  6. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  7. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    SciTech Connect

    Wang, Xu; Le, Anh -Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, a simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  8. Single-strand conformation polymorphism for molecular variability studies of six viroid species.

    PubMed

    Elleuch, Amine; Hamdi, Imen; Bessaies, Nabiha; Fakhfakh, Hatem

    2013-01-01

    Molecular diversity within six viroid species and different molecular variants, in each species infecting fruit trees was first estimated by the single-strand conformation polymorphism (SSCP) technique and then by direct sequencing analysis. The different variants studied are to three Australian grapevine viroids(AGVd), four citrus dwarfing viroids (CDVd), eleven grapevine yellow speckle viroids type-1 (GYSVd-1), four hop stunt viroids (HSVd), seven peach latent mosaic viroids (PLMVd), and eight pear blister canker viroids (PBCVd). Polyacrylamide gel electrophoresis (PAGE) conditions were compared and optimized to improve the sensitivity of the existing SSCP parameters. The relationships among the various SSCP profiles observed and the variation in nucleotide sequences was studied. The results indicate that the variations of some parameters of electrophoresis for each species allowed higher resolution and hence detection of single nucleotide variations among clones initially clustered into the same group.

  9. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  10. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.

    PubMed

    Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L

    2017-01-01

    The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.

  11. Conformational Dynamics of RNA-Peptide Binding: A Molecular Dynamics Simulation Study

    PubMed Central

    Mu, Yuguang; Stock, Gerhard

    2006-01-01

    Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state. PMID:16239331

  12. Sampling small-scale and large-scale conformational changes in proteins and molecular complexes

    NASA Astrophysics Data System (ADS)

    Yun, Mi-Ran; Mousseau, N.; Derreumaux, P.

    2007-03-01

    Sampling of small-scale and large-scale motions is important in various computational tasks, such as protein-protein docking and ligand binding. Here, we report further development and applications of the activation-relaxation technique for internal coordinate space trajectories (ARTIST). This method generates conformational moves of any complexity and size by identifying and crossing well-defined saddle points connecting energy minima. Simulations on two all-atom proteins and three protein complexes containing between 70 and 300 amino acids indicate that ARTIST opens the door to the full treatment of all degrees of freedom in dense systems such as protein-protein complexes.

  13. Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-07-01

    This is the first report of a computational study of the color tuning mechanism of firefly bioluminescence, using the oxidative conformation of luciferase. The results of these calculations demonstrated that the electrostatic field generated by luciferase is fundamental both for the emission shift and efficiency. Further calculations indicated that a shift in emission is achieved by modulating the energy, at different degrees, of the emissive and ground states. These differences in energy modulation will then lead to changes in the energy gap between the states.

  14. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    SciTech Connect

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  15. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  16. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.

    PubMed

    Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L

    2012-09-01

    The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery.

  17. NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives.

    PubMed

    Brisson, J R; Uhrinova, S; Woods, R J; van der Zwan, M; Jarrell, H C; Paoletti, L C; Kasper, D L; Jennings, H J

    1997-03-18

    The conformational epitope of the type III group B Streptococcus capsular polysaccharide (GBSP III) exhibits unique properties which can be ascribed to the presence of sialic acid in its structure and the requirement for an extended binding site. By means of NMR and molecular dynamics studies on GBSP III and its fragments, the extended epitope of GBSP III was further defined. The influence of sialic acid on the conformational properties of GBSP III was examined by performing conformational analysis on desialylated GBSP III, which is identical to the polysaccharide of Streptococcus pneumoniae type 14, and also on oxidized and reduced GBSP III. Conformational changes were gauged by 1H and 13C chemical shift analysis, NOE, 1D selective TOCSY-NOESY experiments, J(HH) and J(CH) variations, and NOE of OH resonances. Changes in mobility were examined by 13C T1 and T2 measurements. Unrestrained molecular dynamics simulations with explicit water using the AMBER force field and the GLYCAM parameter set were used to assess static and dynamic conformational models, simulate the observable NMR parameters and calculate helical parameters. GBSP III was found to be capable of forming extended helices. Hence, the length dependence of the conformational epitope could be explained by its location on extended helices within the random coil structure of GBSP III. The interaction of sialic acid with the backbone of the PS was also found to be important in defining the conformational epitope of GBSP III.

  18. Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections.

    PubMed

    Stow, Sarah M; Goodwin, Cody R; Kliman, Michal; Bachmann, Brian O; McLean, John A; Lybrand, Terry P

    2014-12-04

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data.

  19. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

    PubMed Central

    Dubey, Ritesh; Desiraju, Gautam R.

    2015-01-01

    The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900

  20. A molecular modeling approach to understand the structure and conformation relationship of (GlcpA)Xylan.

    PubMed

    Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y

    2015-12-10

    The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules.

  1. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.

    PubMed

    Gund, Tamara M; Floyd, Jie; Jung, Dawoon

    2004-01-01

    We have performed molecular modeling studies on several sigma 1 specific ligands, including PD144418, spipethiane, haloperidol, pentazocine, and others to develop a pharmacophore for sigma 1 receptor-ligand binding, under the assumption that all the compounds interact at the same receptor binding site. The modeling studies have investigated the conformational and electrostatic properties of the ligands. Superposition of active molecules gave the coordinates of the hypothetical 5-point sigma 1 pharmacophore, as follows: R1 (0.85, 7.26, 0.30); R2 (5.47, 2.40, -1.51); R3 (-2.57, 4.82, -7.10); N (-0.71, 3.29, -6.40); carbon centroid (3.16, 4.83, -0.60), where R1, R2 were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor; and R3 represents a hydrogen bond between the nitrogen atom and the receptor. Additional analyses were used to describe secondary binding sites to electronegative groups such as oxygen or sulfur atom. Those coordinates are (2.34, 5.08, -4.18). The model was verified by fitting other sigma 1 receptor ligands. This model may be used to search conformational databases for other possibly active ligands. In conjunction with rational drug design techniques the model may be useful in design and synthesis of novel sigma 1 ligands of high selectivity and potency. Calculations were performed using Sybyl 6.5.

  2. The molecular structure and conformational composition of epichlorohydrin as determined by gas phase electron diffraction

    NASA Astrophysics Data System (ADS)

    Shen, Quang

    1985-09-01

    The molecular structure of gaseous epichlorohydrin has been investigated using electron diffraction data obtained at 67°C. The conformational composition at this temperature is such that the molecules exist predominantly in a gauche-2 conformer (where the CCl bond is 160° away from the CO) bond). Refinements showed that 33% (σ = 4) of the molecule exist in the gauche-1 form. The important distances ( rg) and angle (∠α) with the associated uncertainties are r(CH) = 1.095(5) Å, r(CO) = 1.442(3) Å, r(CC) = 1.475(8) Å, r(CC M) = 1.523(7) Å, r(CCl) = 1.788(2) Å, ∠CCO = 114° (1), ∠CCC M = 119°(1), ∠ClCC = 108.9° (7), and Tau(ClCCO) = -150°(10) ( gauche-2) and Tau(ClCCO) = 78° (10) ( gauche-1).

  3. Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations.

    PubMed

    Miettinen, Markus S; Knecht, Volker; Monticelli, Luca; Ignatova, Zoya

    2012-08-30

    Polyglutamine (polyQ) diseases comprise a group of dominantly inherited pathology caused by an expansion of an unstable polyQ stretch which is presumed to form β-sheets. Similar to other amyloid pathologies, polyQ amyloidogenesis occurs via a nucleated polymerization mechanism, and proceeds through energetically unfavorable nucleus whose existence and structure are difficult to detect. Here, we use atomistic molecular dynamics simulations in explicit solvent to assess the conformation of the polyQ stretch in the nucleus that initiates polyQ fibrillization. Comparison of the kinetic stability of various structures of polyQ peptide with a Q-length in the pathological range (Q40) revealed that steric zipper or nanotube-like structures (β-nanotube or β-pseudohelix) are not kinetically stable enough to serve as a template to initiate polyQ fibrillization as opposed to β-hairpin-based (β-sheet and β-sheetstack) or α-helical conformations. The selection of different structures of the polyQ stretch in the aggregation-initiating event may provide an alternative explanation for polyQ aggregate polymorphism.

  4. Molecularly Imprinted Materials: Towards the Next Generation

    DTIC Science & Technology

    2002-04-05

    SCINTILLATION POLYMERS : A NEW SENSOR CONCEPT Although molecularly imprinted polymers ( MIPs ) often display high binding affinity and specificity mimicking... sensors have been demonstrated over the past years. In general, molecular imprinting can be defined as a process of target directed synthesis of...efficiency. For these reasons imprinted polymer beads are preferable. Although the well-established suspension and dispersion polymerization methods

  5. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Souza, M T; Carvalho-Zilse, G A

    2014-07-25

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.

  6. Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.

    PubMed

    Sankararamakrishnan, R; Sansom, M S

    1995-12-27

    The ion channel of the nicotinic acetylcholine receptor is a water-filled pore formed by five M2 helix segments, one from each subunit. Molecular dynamics simulations on bundles of five M2 alpha 7 helices surrounding a central column of water and with caps of water molecules at either end of the pore have been used to explore the effects of intrapore water on helix packing. Interactions of water molecules with the N-terminal polar sidechains lead to a conformational transition from right- to left-handed supercoils during these stimulations. These studies reveal that the pore formed by the bundle of M2 helices is flexible. A structural role is proposed for water molecules in determining the geometry of bundles of isolated pore-forming helices.

  7. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations.

    PubMed

    Sixto-López, Yudibeth; Bello, Martiniano; Rodríguez-Fonseca, Rolando Alberto; Rosales-Hernández, Martha Cecilia; Martínez-Archundia, Marlet; Gómez-Vidal, José Antonio; Correa-Basurto, José

    2016-09-23

    Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.

  8. Conformational Melding Permits a Conserved Binding Geometry in TCR Recognition of Foreign and Self Molecular Mimics

    SciTech Connect

    Borbulevych, Oleg Y.; Piepenbrink, Kurt H.; Baker, Brian M.

    2012-03-16

    Molecular mimicry between foreign and self Ags is a mechanism of TCR cross-reactivity and is thought to contribute to the development of autoimmunity. The {alpha}{beta} TCR A6 recognizes the foreign Ag Tax from the human T cell leukemia virus-1 when presented by the class I MHC HLA-A2. In a possible link with the autoimmune disease human T cell leukemia virus-1-associated myelopathy/tropical spastic paraparesis, A6 also recognizes a self peptide from the neuronal protein HuD in the context of HLA-A2. We found in our study that the complexes of the HuD and Tax epitopes with HLA-A2 are close but imperfect structural mimics and that in contrast with other recent structures of TCRs with self Ags, A6 engages the HuD Ag with the same traditional binding mode used to engage Tax. Although peptide and MHC conformational changes are needed for recognition of HuD but not Tax and the difference of a single hydroxyl triggers an altered TCR loop conformation, TCR affinity toward HuD is still within the range believed to result in negative selection. Probing further, we found that the HuD-HLA-A2 complex is only weakly stable. Overall, these findings help clarify how molecular mimicry can drive self/nonself cross-reactivity and illustrate how low peptide-MHC stability can permit the survival of T cells expressing self-reactive TCRs that nonetheless bind with a traditional binding mode.

  9. Generation and enumeration of compact conformations on the two-dimensional triangular and three-dimensional fcc lattices

    NASA Astrophysics Data System (ADS)

    Peto, Myron; Sen, Taner Z.; Jernigan, Robert L.; Kloczkowski, Andrzej

    2007-07-01

    We enumerated all compact conformations within simple geometries on the two-dimensional (2D) triangular and three-dimensional (3D) face centered cubic (fcc) lattice. These compact conformations correspond mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as simple models of proteins. The shapes that were studied for the 2D triangular lattice included m ×n parallelograms, regular equilateral triangles, and various hexagons. On the 3D fcc lattice we generated conformations for a limited class of skewed parallelepipeds. Symmetries of the shape were exploited to reduce the number of conformations. We compared surface to volume ratios against protein length for compact conformations on the 3D cubic lattice and for a selected set of real proteins. We also show preliminary work in extending the transfer matrix method, previously developed by us for the 2D square and the 3D cubic lattices, to the 2D triangular lattice. The transfer matrix method offers a superior way of generating all conformations within a given geometry on a lattice by completely avoiding attrition and reducing this highly complicated geometrical problem to a simple algebraic problem of matrix multiplication.

  10. Molecular Dynamics Simulations Show That Conformational Selection Governs the Binding Preferences of Imatinib for Several Tyrosine Kinases*

    PubMed Central

    Aleksandrov, Alexey; Simonson, Thomas

    2010-01-01

    Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called “DFG-out” conformation of Abl, which differs from the preferred, “DFG-in” conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 ± 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 ± 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling. PMID:20200154

  11. Conformational Equilibrium of N-Myristoylated cAMP-Dependent Protein Kinase A by Molecular Dynamics Simulations

    PubMed Central

    Cembran, Alessandro; Masterson, Larry R.; McClendon, Christopher L.; Taylor, Susan S.; Gao, Jiali; Veglia, Gianluigi

    2013-01-01

    The catalytic subunit of protein kinase A (PKA-C) is subject to several post- or co-translational modifications that regulate its activity both spatially and temporally. Among those, N-myristoylation increases the kinase affinity for membranes and might also be implicated in substrate recognition and allosteric regulation. Here, we investigated the effects of N-myristoylation on the structure, dynamics, and conformational equilibrium of PKA-C using atomistic molecular dynamics simulations. We found that the myristoyl group inserts into the hydrophobic pocket and leads to a tighter packing of the A-helix against the core of the enzyme. As a result, the A-helix conformational dynamics are reduced and its motions are more coupled with the active site. Our simulations suggest that cation-π interactions between W30, R190, and R93 are responsible for coupling these motions. Two major conformations of the myristoylated N-terminus are the most populated: a long loop (LL conformation), similar to PDB:1CMK, and a helix-turn-helix (HTH conformation), similar to PDB:4DFX, which shows stronger coupling between the conformational dynamics observed at the A-helix and active site. The HTH conformation is stabilized by S10 phosphorylation of the kinase via ionic interactions between the protonated amine of K7 and the phosphate group on S10, further enhancing the dynamic coupling to the active site. These results support a role of N-myristoylation in the allosteric regulation of PKA-C. PMID:23205665

  12. Molecular conformation of the full-length tumor suppressor NF2/Merlin—a small angle neutron scattering study

    PubMed Central

    Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei

    2014-01-01

    Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693

  13. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    NASA Astrophysics Data System (ADS)

    Varma, Vikram

    A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen

  14. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics

    PubMed Central

    Lovera, Silvia; Morando, Maria; Pucheta-Martinez, Encarna; Martinez-Torrecuadrada, Jorge L.; Saladino, Giorgio; Gervasio, Francesco L.

    2015-01-01

    Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics. PMID:26606374

  15. Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization.

    PubMed

    Caballero-Herrera, Ana; Nordstrand, Kerstin; Berndt, Kurt D; Nilsson, Lennart

    2005-08-01

    Molecular dynamics simulations of a ribonuclease A C-peptide analog and a sequence variant were performed in water at 277 and 300 K and in 8 M urea to clarify the molecular denaturation mechanism induced by urea and the early events in protein unfolding. Spectroscopic characterization of the peptides showed that the C-peptide analog had a high alpha-helical content, which was not the case for the variant. In the simulations, interdependent side-chain interactions were responsible for the high stability of the alpha-helical C-peptide analog in the different solvents. The other peptide displayed alpha-helical unwinding that propagated cooperatively toward the N-terminal. The conformations sampled by the peptides depended on their sequence and on the solvent. The ability of water molecules to form hydrogen bonds to the peptide as well as the hydrogen bond lifetimes increased in the presence of urea, whereas water mobility was reduced near the peptide. Urea accumulated in excess around the peptide, to which it formed long-lived hydrogen bonds. The unfolding mechanisms induced by thermal denaturation and by urea are of a different nature, with urea-aqueous solutions providing a better peptide solvation than pure water. Our results suggest that the effect of urea on the chemical denaturation process involves both the direct and indirect mechanisms.

  16. Mechanical response and conformational changes of alpha-actinin domains during unfolding: a molecular dynamics study.

    PubMed

    Soncini, Monica; Vesentini, Simone; Ruffoni, Davide; Orsi, Mario; Deriu, Marco A; Redaelli, Alberto

    2007-11-01

    Alpha-actinin is a cytoskeleton-binding protein involved in the assembly and regulation of the actin filaments. In this work molecular dynamics method was applied to investigate the mechanical behaviour of the human skeletal muscle alpha-actinin. Five configurations were unfolded at an elongation speed of 0.1 nm/ps in order to investigate the conformational changes occurring during the extension process. Moreover, a sensitivity analysis at different velocities was performed for one of the R2-R3 spectrin-like repeat configuration extracted in order to evaluate the effect of the pulling speed on the mechanical behaviour of the molecule. Two different behaviours were recognized with respect to the pulling speed. In particular, at speed higher than 0.025 nm/ps a continuous rearrangement without evident force peaks was obtained, on the contrary at lower speed evident peaks in the range 500-750 pN were detected. R3 repeat resulted more stable than R2 during mechanical unfolding, due to the lower hydrophobic surface available to the solvent. The characterization of the R2-R3 units can be useful for the development of cytoskeleton network models based on stiffness values obtained by analyses performed at the molecular level.

  17. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  18. Existence and blowup results for asymptotically Euclidean initial data sets generated by the conformal method

    NASA Astrophysics Data System (ADS)

    Dilts, James; Isenberg, James

    2016-11-01

    For each set of (freely chosen) seed data, the conformal method reduces the Einstein constraint equations to a system of elliptic equations, the conformal constraint equations. We prove an admissibility criterion, based on a (conformal) prescribed scalar curvature problem, which provides a necessary condition on the seed data for the conformal constraint equations to (possibly) admit a solution. We then consider sets of asymptotically Euclidean (AE) seed data for which solutions of the conformal constraint equations exist, and examine the blowup properties of these solutions as the seed data sets approach sets for which no solutions exist. We also prove that there are AE seed data sets which include a Yamabe nonpositive metric and lead to solutions of the conformal constraints. These data sets allow the mean curvature function to have 0's.

  19. Exploring the structure and conformational landscape of human leptin. A molecular dynamics approach.

    PubMed

    Chimal-Vega, Brenda; Paniagua-Castro, Norma; Carrillo Vazquez, Jonathan; Rosas-Trigueros, Jorge L; Zamorano-Carrillo, Absalom; Benítez-Cardoza, Claudia G

    2015-11-21

    Leptin is a hormone that regulates energy homeostasis, inflammation, hematopoiesis and immune response, among other functions (Houseknecht et al., 1998; Zhang et al., 1995; Paz-Filho et al., 2010). To obtain its crystallographic structure, it was necessary to substitute a tryptophan for a glutamic acid at position 100, thus creating a mutant leptin that has been reported to have biological activity comparable to the activity of the wild type but that crystallizes more readily. Here, we report a comparative study of the conformational space of WT and W100E leptin using molecular dynamics simulations performed at 300, 400, and 500 K. We detected differences between the interactions of the two proteins with local and distal effects, resulting in changes in the conformation, accessible surface area, compactness, electrostatic potential and dynamic behavior. Additionally, the series of unfolding events that occur when leptin is subjected to high temperature differs for the two constructs. We observed that both proteins are mostly unstructured after 20 ns of MD simulation at 500 K. However, WT leptin maintains a significant amount of secondary structure in helix α2, while the most stable region of W100E leptin is helix α3. Furthermore, we found that the region between residues 25 and 42 might adopt interconverting secondary structures ranging from α-helices and random coils to β-strand structures. Thus, this region can be considered an intrinsically disordered region. This atomistic description supports our understanding of leptin signaling and consequently might facilitate the use of leptin in treatments for the pathophysiologies in which it is implicated.

  20. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors

    SciTech Connect

    McTigue, Michele; Murray, Brion William; Chen, Jeffrey H.; Deng, Ya-Li; Solowiej, James; Kania, Robert S.

    2012-09-17

    We performed analyses of compounds in clinical development which have shown that ligand efficient-molecules with privileged physical properties and low dose are less likely to fail in the various stages of clinical testing, have fewer postapproval withdrawals, and are less likely to receive black box safety warnings. However, detailed side-by-side examination of molecular interactions and properties within single drug classes are lacking. As a class, VEGF receptor tyrosine kinase inhibitors (VEGFR TKIs) have changed the landscape of how cancer is treated, particularly in clear cell renal cell carcinoma, which is molecularly linked to the VEGF signaling axis. Despite the clear role of the molecular target, member molecules of this validated drug class exhibit distinct clinical efficacy and safety profiles in comparable renal cell carcinoma clinical studies. The first head-to-head randomized phase III comparative study between active VEGFR TKIs has confirmed significant differences in clinical performance [Rini BI, et al. (2011) Lancet 378:193–1939]. To elucidate how fundamental drug potency–efficiency is achieved and impacts differentiation within the VEGFR TKI class, we determined potencies, time dependence, selectivities, and X-ray structures of the drug–kinase complexes using a VEGFR2 TK construct inclusive of the important juxtamembrane domain. Collectively, the studies elucidate unique drug–kinase interactions that are dependent on distinct juxtamembrane domain conformations, resulting in significant potency and ligand efficiency differences. Finally, the identified structural trends are consistent with in vitro measurements, which translate well to clinical performance, underscoring a principle that may be broadly applicable to prospective drug design for optimal in vivo performance.

  1. Conformational Change in Molecular Assembly of Nickel(II) Tetra(n-propyl)porphycene Triggered by Potential Manipulation.

    PubMed

    Yoshimoto, Soichiro; Kawamoto, Teppei; Okawara, Toru; Hisaeda, Yoshio; Abe, Masaaki

    2016-12-27

    Metal-coordinated porphyrin and related compounds are important for developing molecular architectures that mimic enzymes. Porphycene, a structural isomer of porphyrin, has shown unique properties in semiartificial myoglobin. To explore its potential as a molecular building block, we studied the molecular assembly of nickel(II) tetra(n-propyl)porphycene (NiTPrPc), a metalloporphycene with introduced tetra n-propyl moieties, on the Au(111) electrode surface using in situ scanning tunneling microscopy. Because of the low molecular symmetry of NiTPrPc, the molecular assembly undergoes unique phase transitions due to conformational change of the n-propyl moieties. The phase transitions can be precisely controlled by the electrode potential, demonstrating that the latter can play an important role in the porphycene molecular assembly on Au surface. This new discovery indicates possible uses of this porphycene framework in molecular engineering.

  2. Electroporation-aided DNA immunization generates polyclonal antibodies against the native conformation of human endothelin B receptor.

    PubMed

    Allard, Bertrand; Priam, Fabienne; Deshayes, Frédérique; Ducancel, Frédéric; Boquet, Didier; Wijkhuisen, Anne; Couraud, Jean-Yves

    2011-09-01

    Endothelin B receptor (ET(B)R) is a G protein-coupled receptor (GPCR) specific for endothelin peptides (including endothelin-1, ET1), which mediates a variety of key physiological functions in normal tissues, such as modulation of vasomotor tone, tissue differentiation, or cell proliferation. Moreover, ET(B)R, overexpressed in various cancer cells including melanoma, has been implicated in the growth and progression of tumors, as well as in controlling T cell homing to tumors. To gather information on receptor structure and function, antibodies are generally considered choice molecular probes, but generation of such reagents against the native conformation of GPCRs is a real technical challenge. Here, we show that electroporation-aided genetic immunization, coupled to cardiotoxin pretreatment, is a simple and very efficient method to raise large amounts of polyclonal antibodies highly specific for native human ET(B)R (hET(B)R), as assessed by both flow cytometry analysis of different stably transfected cell lines and a new and rapid cell-based enzyme-linked immunosorbent assay that we also describe. The antibodies recognized two major epitopes on hET(B)R, mapped within the N-terminal extracellular domain. They were used to reveal hET(B)R on membranes of three different human melanoma cell lines, by flow cytometry and confocal microscopy, a method that we show is more relevant than mRNA polymerase chain reaction in assessing receptor expression. In addition, ET-1 partially competed with antibodies for receptor binding. The strategy described here, thus, efficiently generated new immunological tools to further analyze the role of ET(B)R under both normal and pathological conditions, including cancers. Above all, it can now be used to raise monoclonal antibodies against hET(B)R and, more generally, against GPCRs that constitute, by far, the largest reservoir of potential pharmacological targets.

  3. Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations.

    PubMed

    Amaral, Cristiano; Carnevale, Vincenzo; Klein, Michael L; Treptow, Werner

    2012-12-26

    The X-ray structure of the bacterial voltage-gated sodium channel NavAb has been reported in a conformation with a closed conduction pore. Comparison between this structure and the activated-open and resting-closed structures of the voltage-gated Kv1.2 potassium channel suggests that the voltage-sensor domains (VSDs) of the reported structure are not fully activated. Using the aforementioned structures of Kv1.2 as templates, molecular dynamics simulations are used to identify analogous functional conformations of NavAb. Specifically, starting from the NavAb crystal structure, conformations of the membrane-bound channel are sampled along likely pathways for activation of the VSD and opening of the pore domain. Gating charge computations suggest that a structural rearrangement comparable to that occurring between activated-open and resting-closed states is required to explain experimental values of the gating charge, thereby confirming that the reported VSD structure is likely an intermediate along the channel activation pathway. Our observation that the X-ray structure exhibits a low pore domain-opening propensity further supports this notion. The present molecular dynamics study also identifies conformations of NavAb that are seemingly related to the resting-closed and activated-open states. Our findings are consistent with recent structural and functional studies of the orthologous channels NavRh, NaChBac, and NavMs and offer possible structures for the functionally relevant conformations of NavAb.

  4. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations.

    PubMed Central

    Feig, M; Zacharias, M; Pettitt, B M

    2001-01-01

    Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein. PMID:11423420

  5. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations.

    PubMed

    Daidone, Isabella; Simona, Fabio; Roccatano, Danilo; Broglia, Ricardo A; Tiana, Guido; Colombo, Giorgio; Di Nola, Alfredo

    2004-10-01

    Understanding the conformational transitions that trigger the aggregation and amyloidogenesis of otherwise soluble peptides at atomic resolution is of fundamental relevance for the design of effective therapeutic agents against amyloid-related disorders. In the present study the transition from ideal alpha-helical to beta-hairpin conformations is revealed by long timescale molecular dynamics simulations in explicit water solvent, for two well-known amyloidogenic peptides: the H1 peptide from prion protein and the Abeta(12-28) fragment from the Abeta(1-42) peptide responsible for Alzheimer's disease. The simulations highlight the unfolding of alpha-helices, followed by the formation of bent conformations and a final convergence to ordered in register beta-hairpin conformations. The beta-hairpins observed, despite different sequences, exhibit a common dynamic behavior and the presence of a peculiar pattern of the hydrophobic side-chains, in particular in the region of the turns. These observations hint at a possible common aggregation mechanism for the onset of different amyloid diseases and a common mechanism in the transition to the beta-hairpin structures. Furthermore the simulations presented herein evidence the stabilization of the alpha-helical conformations induced by the presence of an organic fluorinated cosolvent. The results of MD simulation in 2,2,2-trifluoroethanol (TFE)/water mixture provide further evidence that the peptide coating effect of TFE molecules is responsible for the stabilization of the soluble helical conformation.

  6. Molecular mechanisms for generating transmembrane proton gradients.

    PubMed

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

  7. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  8. Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution

    NASA Astrophysics Data System (ADS)

    Cairo, Raúl Ramos; Stevens, Ana María Plutín; de Oliveira, Tamires Donizeth; Batista, Alzir A.; Castellano, Eduardo E.; Duque, Julio; Soria, Delia B.; Fantoni, Adolfo C.; Corrêa, Rodrigo S.; Erben, Mauricio F.

    2017-04-01

    1-Acyl thioureas [R1C(O)NHC(S)NR2R3] are shown to display conformational flexibility depending on the degree of substitution at the nitrogen atom. The conformational landscape and structural features for two closely related thioureas having R1 = 2-furoyl have been studied. The un-substituted 2-furoyl thiourea (I) and its dimethyl analogue, i.e. 1-(2-furoyl)-3,3-dimethyl thiourea (II), have been synthesized and fully characterized by spectroscopic (FT-IR, 1H and 13C NMR) and elemental analysis. According to single crystal X-ray diffraction analysis, compounds I and II crystallize in the monoclinic space group P21/c. In the compound I, the trans-cis geometry of the almost planar thiourea unit is stabilized by intramolecular Nsbnd H ⋯ Odbnd C hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In compound II, however, the acyl thiourea group is non-planar, in good agreement with the potential energy curve computed at the B3LYP/6-31 + G(d,p) level of approximation. Centrosymmetric dimers generated by intermolecular Nsbnd H ⋯ Sdbnd C hydrogen bond forming R22(8) motif are present in the crystals. Intermolecular interactions have been rationalized in terms of topological partitions of the electron distributions and Hirshfeld surface analysis, which showed the occurrence of S ⋯ H, O ⋯ H and H ⋯ H contacts that display an important role to crystal packing stabilization of both thiourea derivatives.

  9. Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution.

    PubMed

    Cairo, Raúl Ramos; Stevens, Ana María Plutín; de Oliveira, Tamires Donizeth; Batista, Alzir A; Castellano, Eduardo E; Duque, Julio; Soria, Delia B; Fantoni, Adolfo C; Corrêa, Rodrigo S; Erben, Mauricio F

    2017-04-05

    1-Acyl thioureas [R(1)C(O)NHC(S)NR(2)R(3)] are shown to display conformational flexibility depending on the degree of substitution at the nitrogen atom. The conformational landscape and structural features for two closely related thioureas having R(1)=2-furoyl have been studied. The un-substituted 2-furoyl thiourea (I) and its dimethyl analogue, i.e. 1-(2-furoyl)-3,3-dimethyl thiourea (II), have been synthesized and fully characterized by spectroscopic (FT-IR, (1)H and (13)C NMR) and elemental analysis. According to single crystal X-ray diffraction analysis, compounds I and II crystallize in the monoclinic space group P21/c. In the compound I, the trans-cis geometry of the almost planar thiourea unit is stabilized by intramolecular NH⋯OC hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In compound II, however, the acyl thiourea group is non-planar, in good agreement with the potential energy curve computed at the B3LYP/6-31+G(d,p) level of approximation. Centrosymmetric dimers generated by intermolecular NH⋯SC hydrogen bond forming R2(2)(8) motif are present in the crystals. Intermolecular interactions have been rationalized in terms of topological partitions of the electron distributions and Hirshfeld surface analysis, which showed the occurrence of S⋯H, O⋯H and H⋯H contacts that display an important role to crystal packing stabilization of both thiourea derivatives.

  10. Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity

    PubMed Central

    Apostolovic, Danijela; Stanic-Vucinic, Dragana; de Jongh, Harmen H. J.; de Jong, Govardus A. H.; Mihailovic, Jelena; Radosavljevic, Jelena; Radibratovic, Milica; Nordlee, Julie A.; Baumert, Joseph L.; Milcic, Milos; Taylor, Steve L.; Garrido Clua, Nuria; Cirkovic Velickovic, Tanja; Koppelman, Stef J.

    2016-01-01

    Conglutins represent the major peanut allergens and are renowned for their resistance to gastro-intestinal digestion. Our aim was to characterize the digestion-resistant peptides (DRPs) of conglutins by biochemical and biophysical methods followed by a molecular dynamics simulation in order to better understand the molecular basis of food protein allergenicity. We have mapped proteolysis sites at the N- and C-termini and at a limited internal segment, while other potential proteolysis sites remained unaffected. Molecular dynamics simulation showed that proteolysis only occurred in the vibrant regions of the proteins. DRPs appeared to be conformationally stable as intact conglutins. Also, the overall secondary structure and IgE-binding potency of DRPs was comparable to that of intact conglutins. The stability of conglutins toward gastro-intestinal digestion, combined with the conformational stability of the resulting DRPs provide conditions for optimal exposure to the intestinal immune system, providing an explanation for the extraordinary allergenicity of peanut conglutins. PMID:27377129

  11. Two-dimensional NMR and All-atom Molecular Dynamics of Cytochrome P450 CYP119 Reveal Hidden Conformational Substates*

    PubMed Central

    Lampe, Jed N.; Brandman, Relly; Sivaramakrishnan, Santhosh; de Montellano, Paul R. Ortiz

    2010-01-01

    Cytochrome P450 enzymes are versatile catalysts involved in a wide variety of biological processes from hormonal regulation and antibiotic synthesis to drug metabolism. A hallmark of their versatility is their promiscuous nature, allowing them to recognize a wide variety of chemically diverse substrates. However, the molecular details of this promiscuity have remained elusive. Here, we have utilized two-dimensional heteronuclear single quantum coherence NMR spectroscopy to examine a series of mutants site-specific labeled with the unnatural amino acid, [13C]p-methoxyphenylalanine, in conjunction with all-atom molecular dynamics simulations to examine substrate and inhibitor binding to CYP119, a P450 from Sulfolobus acidocaldarius. The results suggest that tight binding hydrophobic ligands tend to lock the enzyme into a single conformational substate, whereas weak binding low affinity ligands bind loosely in the active site, resulting in a distribution of localized conformers. Furthermore, the molecular dynamics simulations suggest that the ligand-free enzyme samples ligand-bound conformations of the enzyme and, therefore, that ligand binding may proceed largely through a process of conformational selection rather than induced fit. PMID:20097757

  12. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    SciTech Connect

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.; Simpson, Jeffrey; Fry, John C.; Biermann, Kari L.; Yurttas, Nese

    2015-12-28

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  13. On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A

    NASA Astrophysics Data System (ADS)

    Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Simpson, Jeffrey; Fry, John C.; Yurttas, Nese; Biermann, Kari L.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.

    2015-12-01

    The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.

  14. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2017-01-01

    We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K.

  15. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures.

    PubMed

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2017-01-16

    We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K.

  16. Conformational analysis of tripeptides: a molecular dynamics study of rigid and non-rigid tripeptides

    NASA Astrophysics Data System (ADS)

    Shibata, John; Mochel, Mark

    2006-03-01

    Molecular dynamics simulations have been performed on different tripeptides classified as structurally rigid and non-rigid (1). The simulations were run using the OPLS-AA force field (2) with and without explicit solvent. Two modeling programs, Tinker (3) and Macromodel (4), were used to simulate the dynamics. The accessible conformations were analyzed using Ramachandran plots of the dihedral angles. The results of this study are compared to the rigidity classification scheme (1), and differences in the results using explicit solvent and a continuum solvent model are noted. (1) Anishetty, S., Pennathur, G., Anishetty, R. BMC Structural Biology 2:9 (2002). Available from http://www.biomedcentral.com/1472-6807/2/9. (2) Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. J. Am. Chem. Soc. 118, 11225 (1996). (3) Dudek, M. J., Ramnarayan, K., Ponder, J. W. J. Comput. Chem. 19, 548 (1996). Available from http://dasher.wustl.edu/tinker. (4) Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W. C. J. Comput. Chem. 11, 440 (1990).

  17. Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures

    PubMed Central

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Ho, Ching-Yuan; Yang, Chun-Chuen; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2017-01-01

    We report on the optical and structural characterization of rubrene polycrystalline films fabricated from vacuum deposition with various substrate temperatures (Tsub). Depending on Tsub, the role of twisted and planar rubrene conformational isomers on the properties of rubrene films is focused. The temperature (T)-dependent inverse optical transmission (IOT) and photoluminescence (PL) spectra were performed on these rubrene films. The origins of these IOT and PL peaks are explained in terms of the features from twisted and planar rubrene molecules and of the band characteristics from rubrene molecular solid films. Here, two rarely reported weak-peaks at 2.431 and 2.605 eV were observed from IOT spectra, which are associated with planar rubrene. Besides, the T-dependence of optical bandgap deduced from IOT spectra is discussed with respect to Tsub. Together with IOT and PL spectra, for Tsub > 170 °C, the changes in surface morphology and unit cell volume were observed for the first time, and are attributed to the isomeric transformation from twisted to planar rubrenes during the deposition processes. Furthermore, a unified schematic diagram in terms of Frenkel exciton recombination is suggested to explain the origins of the dominant PL peaks performed on these rubrene films at 15 K. PMID:28091620

  18. Morphology, functionality and molecular conformation study of CVD diamond surfaces functionalised with organic linkers and DNA

    NASA Astrophysics Data System (ADS)

    Wenmackers, Sylvia

    This PhD thesis fits within a joint-venture of physicists and biomedical researchers, aimed at the development of diamond-based DNA sensors. CVD diamond was chosen as the substrate material, because a strong covalent carbon-carbon bond can be created in this case, creating a highly stable platform for reusable biosensors or even for continuous monitoring. Moreover, diamond has favourable properties for sensing based on optical (transparency for a large spectral range) as well as electrical signals (semiconductor, stable in aqueous solutions with a wide potential window). The first specific goal for this thesis within the project was to establish the initial functionalisation of CVD diamond surfaces that would allow for the covalent linking of biomolecules, in casu DNA. This was obtained by UV attachement of omega-unsaturated fatty acid molecules (10-undecenoic acid) followed by the use of the zero-length crosslinker EDC to attach amino-modified DNA. The second goal was to characterise the diamond surfaces extensively with physical and (bio-)chemical methods to check the effectiveness of various surface treatments, and to elucidate the molecular organisation of the obtained linker layers and DNA brushes. Point mutation-sensitivity was achieved with end-point fluorescence as well as a real-time label-free electrical sensor prototype. The conformation of the end-tethered DNA molecules was investigated with spectroscopic ellipsometry.

  19. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Srinivasa, Chandrashekar; Sharanaiah, Umesha; Shivamallu, Chandan

    2012-03-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  20. Crystal and molecular structure, conformational, vibrational properties and DFT calculations of melaminium bis (hydrogen oxalate)

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.

    2014-06-01

    Single crystals of melaminium bis (hydrogen oxalate) (MOX) were grown by slow evaporation method. X-ray powder diffraction analysis indicates that MOX crystallizes in monoclinic system (space group C2/c) and the calculated lattice constants are a = 20.075 ± 0.123 Ǻ, b = 8.477 ± 0.045 Ǻ, c = 6.983 ± 0.015, α = γ 90° and β = 102.6 ± 0.33°. Thermal analysis confirms that MOX is thermally stable up to 250 °C. A detailed interpretation of the FT-IR, FT-Raman and NMR spectra were reported. The equilibrium geometry, bonding features, and harmonic vibrational frequencies have been investigated with the help of PM6, HF and DFT/B3LYP methods. The potential energy curve shows that MOX molecule has two stable structures and the computational results diagnose that Rot I is the most stable conformer. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge-Invariant Atomic Orbital (GIAO) method. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The electronic properties, such as HOMO and LUMO energies, were calculated by Time-Dependent DFT (TD-DFT) approach. To estimate chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map is calculated for the optimized geometry of the molecule.

  1. Detection of Ligand-Induced Conformational Changes in Oligonucleotides by Second-Harmonic Generation at a Supported Lipid Bilayer Interface.

    PubMed

    Butko, Margaret T; Moree, Ben; Mortensen, Richard B; Salafsky, Joshua

    2016-11-01

    There is a high demand for characterizing oligonucleotide structural changes associated with binding interactions as well as identifying novel binders that modulate their structure and function. In this study, second-harmonic generation (SHG) was used to study RNA and DNA oligonucleotide conformational changes associated with ligand binding. For this purpose, we developed an avidin-based biotin capture surface based on a supported lipid bilayer membrane. The technique was applied to two well-characterized aptamers, both of which undergo conformational changes upon binding either a protein or a small molecule ligand. In both cases, SHG was able to resolve conformational changes in these oligonucleotides sensitively and specifically, in solution and in real time, using nanogram amounts of material. In addition, we developed a competition assay for the oligonucleotides between the specific ligands and known, nonspecific binders, and we demonstrated that intercalators and minor groove binders affect the conformation of the DNA and RNA oligonucleotides in different ways upon binding and subsequently block specific ligand binding in all cases. Our work demonstrates the broad potential of SHG for studying oligonucleotides and their conformational changes upon interaction with ligands. As SHG offers a powerful, high-throughput screening approach, our results here also open an important new avenue for identifying novel chemical probes or sequence-targeted drugs that disrupt or modulate DNA or RNA structure and function.

  2. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-01-04

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  3. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  4. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016.

  5. Speed of Conformational Change: Comparing Explicit and Implicit Solvent Molecular Dynamics Simulations

    PubMed Central

    Anandakrishnan, Ramu; Drozdetski, Aleksander; Walker, Ross C.; Onufriev, Alexey V.

    2015-01-01

    Adequate sampling of conformation space remains challenging in atomistic simulations, especially if the solvent is treated explicitly. Implicit-solvent simulations can speed up conformational sampling significantly. We compare the speed of conformational sampling between two commonly used methods of each class: the explicit-solvent particle mesh Ewald (PME) with TIP3P water model and a popular generalized Born (GB) implicit-solvent model, as implemented in the AMBER package. We systematically investigate small (dihedral angle flips in a protein), large (nucleosome tail collapse and DNA unwrapping), and mixed (folding of a miniprotein) conformational changes, with nominal simulation times ranging from nanoseconds to microseconds depending on system size. The speedups in conformational sampling for GB relative to PME simulations, are highly system- and problem-dependent. Where the simulation temperatures for PME and GB are the same, the corresponding speedups are approximately onefold (small conformational changes), between ∼1- and ∼100-fold (large changes), and approximately sevenfold (mixed case). The effects of temperature on speedup and free-energy landscapes, which may differ substantially between the solvent models, are discussed in detail for the case of miniprotein folding. In addition to speeding up conformational sampling, due to algorithmic differences, the implicit solvent model can be computationally faster for small systems or slower for large systems, depending on the number of solute and solvent atoms. For the conformational changes considered here, the combined speedups are approximately twofold, ∼1- to 60-fold, and ∼50-fold, respectively, in the low solvent viscosity regime afforded by the implicit solvent. For all the systems studied, 1) conformational sampling speedup increases as Langevin collision frequency (effective viscosity) decreases; and 2) conformational sampling speedup is mainly due to reduction in solvent viscosity rather than

  6. Conformational analysis of flavonoids: crystal and molecular structures of morin hydrate and myricetin (1:2) triphenylphosphine oxide complex

    NASA Astrophysics Data System (ADS)

    Cody, Vivian; Luft, Joseph R.

    1994-01-01

    The crystal and molecular structures of morin (2',3,4',5,7-pentahydroxyflavone) hydrate ( I), and myricetin (3',4',5',3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex ( II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conformation of the two flavones described by the torsion angle θ[C(3)-C(2)-C(1t')-C(2')] between the benzopyrone and phenyl ring is -43.3° and 51.0° for molecules A and B of morin, respectively, and -37.0° for myricetin. Minimum energy conformations from AM1 molecular orbital calculations have θ values of -38.2° for morin and -27.0° for myricetin. The energy profile for rotation about θ for morin has a 28 kcal mol -1 barrier at 0° due to steric interactions between the 2'-hydroxy and the 3-hydroxy group. There are two local minima near 30 and 140°, in good agreement with structural results. The profile for myricetin has two equivalent minima near 30 and 150° with a barrier of less than 2 kcal mol -1. In the crystal both flavones form extensive networks of intra- and intermolecular hydrogen bonds. In ( I), each morin conformer packs in alternating layers linked by water molecules, while in ( II), TPPO stabilizes the crystal by formation of short hydrogen bonds (2.58-2.65 Å) of the phosphoryl oxygen to the flavone. Myricetin also forms a two dimensional sheet-like packing in which myricetin molecules hydrogen bond to each other, as well as to TPPO. These conformational and hydrogen bonding patterns provide insight into specific types of ligand-receptor interactions and support structure activity data which suggest the importance of electronic and hydrogen bonding properties in the bioactivity of flavones.

  7. Applications of single-strand conformation polymorphism (SSCP) to taxonomy, diagnosis, population genetics and molecular evolution of parasitic nematodes.

    PubMed

    Gasser, R B; Chilton, N B

    2001-11-22

    The analysis of genetic variation in parasitic nematodes has important implications for studying aspects of taxonomy, diagnosis, population genetics, drug resistance and molecular evolution. This article highlights some applications of PCR-based single-strand conformation polymorphism (SSCP) for the analysis of sequence variation in individual parasites (and their populations) to address some of these areas. It also describes the principles and advantages of SSCP, and provides some examples for future applications in parasitology.

  8. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods].

    PubMed

    Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A

    2016-01-01

    It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the

  9. Steinberg conformal algebras

    NASA Astrophysics Data System (ADS)

    Mikhalev, A. V.; Pinchuk, I. A.

    2005-06-01

    The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.

  10. Applying Molecular Dynamics Simulations to Identify Rarely Sampled Ligand-bound Conformational States of Undecaprenyl Pyrophosphate Synthase, an Antibacterial Target

    SciTech Connect

    Sinko, William; de Oliveira, César; Williams, Sarah; Van Wynsberghe, Adam; Durrant, Jacob D.; Cao, Rong; Oldfield, Eric; McCammon, J. Andrew

    2012-04-30

    Undecaprenyl pyrophosphate synthase is a cis-prenyltransferase enzyme, which is required for cell wall biosynthesis in bacteria. Undecaprenyl pyrophosphate synthase is an attractive target for antimicrobial therapy. We performed long molecular dynamics simulations and docking studies on undecaprenyl pyrophosphate synthase to investigate its dynamic behavior and the influence of protein flexibility on the design of undecaprenyl pyrophosphate synthase inhibitors. We also describe the first X-ray crystallographic structure of Escherichia coli apo-undecaprenyl pyrophosphate synthase. The molecular dynamics simulations indicate that undecaprenyl pyrophosphate synthase is a highly flexible protein, with mobile binding pockets in the active site. By carrying out docking studies with experimentally validated undecaprenyl pyrophosphate synthase inhibitors using high- and low-populated conformational states extracted from the molecular dynamics simulations, we show that structurally dissimilar compounds can bind preferentially to different and rarely sampled conformational states. By performing structural analyses on the newly obtained apo-undecaprenyl pyrophosphate synthase and other crystal structures previously published, we show that the changes observed during the molecular dynamics simulation are very similar to those seen in the crystal structures obtained in the presence or absence of ligands. We believe that this is the first time that a rare 'expanded pocket' state, key to drug design and verified by crystallography, has been extracted from a molecular dynamics simulation.

  11. The molecular structure and conformational characteristics of some specific benzodiazepine receptor ligands: A molecular orbital study of C3-substituted betacarboline derivatives

    SciTech Connect

    Konschin, H.; Tylli, H. ); Gynther, J. ); Rouvinen, J. )

    1989-01-01

    The molecular structures of the benzodiazepine receptor ligands {beta}-carboline-3-carboxylic acid (BCCA), its methyl, ethyl, and propyl esters (BCCM, BCCE, and BCCP, respectively), and 3-CN-{beta}-carboline (BC-3-CN) have been investigated on a minimal basis STO-3G level of accuracy. For BCCM, BCCE, and BCCP semiempirical AM 1 calculations have also been performed. Fully optimized molecular geometries are reported. Comparisons with available experimental structures indicate that minimal basis results may have a useful predictive value. For the mobile ester side chains, a study of chosen points on the conformational surface was made. Both the STO-3G and the AM 1 results give the planar conformers is the most stable structures with small barriers to internal rotation, provided the ester side chain remains extended. The calculated STO-3G rotational barriers are higher than are the corresponding AM 1 barriers. Partial optimization, i.e., of side-chain structure parameters only, seems sufficient to map the conformational characteristics of these compounds. The orientation of the dipole moment vector and its magnitude may have consequences for possible interaction with a receptor. On the basis of the sidechain internal dynamics, the intramolecular flexibility tends to be confined to certain regions of conformational space.

  12. Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: The role of molecular conformation and chirality

    SciTech Connect

    Brito Silva, C. A. Jr.; Granhen, E. R.; Silva, S. J. S. da; Leal, J. F. P.; Del Nero, J.; Pinheiro, F. A.

    2010-08-15

    We investigate, by means of ab initio calculations, electronic transport in molecular junctions composed of a biphenyl molecule attached to metallic carbon nanotubes. We find that the conductance is proportional to cos{sup 2} {theta}, with {theta} the angle between phenyl rings, when the Fermi level of the contacts lies within the frontier molecular orbitals energy gap. This result, which agrees with experiments in biphenyl junctions with nonorganic contacts, suggests that the cos{sup 2} {theta} law has a more general applicability, irrespective of the nature of the electrodes. We calculate the geometrical degree of chirality of the junction, which only depends on the atomic positions, and demonstrate that it is not only proportional to cos{sup 2} {theta} but also is strongly correlated with the current through the system. These results indicate that molecular conformation plays the preponderant role in determining transport properties of biphenyl-carbon nanotubes molecular junctions.

  13. The calculations of small molecular conformation energy differences by density functional method

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Burt, S. K.

    1993-03-01

    The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.

  14. A molecular dynamics description of the conformational flexibility of the L-iduronate ring in glycosaminoglycans.

    PubMed

    Angulo, Jesús; Nieto, Pedro M; Martín-Lomas, Manuel

    2003-07-07

    For a synthetic hexasaccharide model it is shown that the conformational flexibility of the L-iduronate ring in glycosaminoglycans can be adequately described by using the PME methodology together with simulation protocols suitable for highly charged systems.

  15. Characterization of molecular determinants of the conformational stability of macrophage migration inhibitory factor: leucine 46 hydrophobic pocket.

    PubMed

    El-Turk, Farah; Fauvet, Bruno; Ashrafi, Amer; Ouertatani-Sakouhi, Hajer; Cho, Min-Kyu; Neri, Marilisa; Cascella, Michele; Rothlisberger, Ursula; Pojer, Florence; Zweckstetter, Markus; Lashuel, Hilal

    2012-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

  16. Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh-E, Masahito; Yokoyama, Hiroshi; Kim, Doseok

    2004-05-01

    Surface-specific sum-frequency vibrational spectroscopy and second-harmonic generation were used to study the structures of polyimide (PI) surfaces for homeotropic liquid crystal (LC) alignment and the molecular orientation of LC adsobates on these surfaces. The imide ring was perpendicular to the surface with one of CO bonds protruding out of the surface and the other pointing into the bulk rather than flat on the surface. The ester CO bond in the side chain was sticking out of the surface with a tilt angle of about 45° 55° from the surface normal, indicating that the rigid side chain core was, more or less, along the surface normal. The part of alkyl chain on the top of the side chain followed the orientation of the side chain core and protruded out of the surface with some gauche defects. The cyano biphenyl LC molecules were adsorbed on the PI preferentially with the terminal cyano group facing the PI surface.

  17. (13)CHD2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins.

    PubMed

    Rennella, Enrico; Huang, Rui; Velyvis, Algirdas; Kay, Lewis E

    2015-10-01

    An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of (13)CHD2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this (13)CHD2 (13)C-CEST technique can be upwards of a factor of 5 times higher than for a previously published (13)CH3 (13)C-CEST approach (Bouvignies and Kay in J Biomol NMR 53:303-310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins.

  18. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.

    PubMed

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H

    2016-04-20

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies.

  19. Conformations, dynamics and interactions of di-, tri- and pentamannoside with mannose binding lectin: a molecular dynamics study.

    PubMed

    Mazumder, Parichita; Mukhopadhyay, Chaitali

    2012-02-15

    The binding of serum mannose-binding protein A (MBP-A) to high mannose N-linked glycoproteins, present on the surface of microorganism, activates the complement system. It is very important to explore the overall conformations of these ligands in the binding site of the MBP-A, which is very much dependent on the conformation of the manno-di-, tri- and the penta-saccharides that represent the component structures of these high-mannose type oligosaccharides. Herein, we report the possible conformations of α-(1→6)-linked dimannoside, benzyl-substituted trimannoside and core pentamannoside of the N-linked glycan in the binding site of MBP-A, with the help of molecular dynamics simulations. The results indicate that for all three ligands in addition to the non-reducing terminal mannose moiety the reducing moieties also interact with protein. Binding free energy calculations also indicate that the benzyl-substituted trisaccharide has higher affinity in comparison to the methyl substituted one. We have also found some conformers of the pentasaccharide, which have higher binding affinity than the monosaccharide.

  20. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy

    PubMed Central

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.

    2016-01-01

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  1. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two‐component signaling systems

    PubMed Central

    Foster, Clay A.

    2016-01-01

    ABSTRACT Two‐component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus‐dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well‐characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation‐induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155–176. © 2016 Wiley Periodicals, Inc. PMID:27802580

  2. Direct Identification and Determination of Conformational Response in Adsorbed Individual Nonplanar Molecular Species Using Noncontact Atomic Force Microscopy.

    PubMed

    Albrecht, Florian; Bischoff, Felix; Auwärter, Willi; Barth, Johannes V; Repp, Jascha

    2016-12-14

    In recent years atomic force microscopy (AFM) at highest resolution was widely applied to mostly planar molecules, while its application toward exploring species with structural flexibility and a distinct 3D character remains a challenge. Herein, the scope of noncontact AFM is widened by investigating subtle conformational differences occurring in the well-studied reference systems 2H-TPP and Cu-TPP on Cu(111). Different saddle-shape conformations of both species can be recognized in conventional constant-height AFM images. To unambiguously identify the behavior of specific molecular moieties, we extend data acquisition to distances that are inaccessible with constant-height measurements by introducing vertical imaging, that is, AFM mapping in a plane perpendicular to the sample surface. Making use of this novel technique the vertical displacement of the central Cu atom upon tip-induced conformational switching of Cu-TPP is quantified. Further, for 2H-TPP two drastically different geometries are observed, which are systematically characterized. Our results underscore the importance of structural flexibility in adsorbed molecules with large conformational variability and, consequently, the objective to characterize their geometry at the single-molecule level in real space.

  3. Molecular conformation of clusters by genetic algorithm using spatial operators and unlabeled distance data

    NASA Astrophysics Data System (ADS)

    Cherba, David M.

    A set of Genetic Algorithm (GA) operators based on spatial location concepts will provide improved performance for a class of NP hard search problems in N dimensional spaces. A set of spatial operators for use with genetic algorithms is proposed for a class of problems with real-valued genes that consist of N-dimensional homogeneous vectors. Evolutionary computation is capable of providing solutions to problems that would be intractable using more conventional methods. A subset of these problems is represented in real-valued three dimensional spaces or other more complex vector spaces. This thesis addresses a number of issues related to the natural influences that adjacent locations in these spaces have on the fitness functions used in genetic algorithms. A subset of building blocks (schema) will be utilized based on these natural influences. It will be shown that these operators can be described by a building block style of theory that supports the experiment results. Further, the spatial base operators naturally preserve the interactions between genes for this class of problems. Genes have a natural influence on each other based on proximity. To be an effective genetic algorithm, operators need to take these proximity effects into consideration in order to preserve good contributions to fitness. Failure to utilize these spatial relationships will lead to very poor performance of the genetic algorithm or require statistical methods to try to capture the relationships. As a demonstration of these spatial operators, this dissertation will focus on the conformation of molecular clusters, where each atom's location represents a gene with real-valued coordinates. Further, the algorithm presented will work from unlabeled distance information available from experiments with limited preparation. A set of theories will be presented that form the basis for prediction of operator effectiveness, population size and convergence for this class of problems. The theory will be

  4. Self-assembled monolayers from biphenyldithiol derivatives: optimization of the deprotection procedure and effect of the molecular conformation.

    PubMed

    Shaporenko, Andrey; Elbing, Mark; Błaszczyk, Alfred; von Hänisch, Carsten; Mayor, Marcel; Zharnikov, Michael

    2006-03-09

    A series of biphenyl-derived dithiol (BDDT) compounds with terminal acetyl-protected sulfur groups and different structural arrangements of both phenyl rings have been synthesized and fully characterized. The different arrangements were achieved by introducing hydrocarbon substituents in the 2 and 2' positions of the biphenyl backbone. The presented model compounds enable the investigation of the correlation between the intramolecular conformation and other physical properties of interest, like, e.g., molecular assembly or electronic transport properties. Here, the ability of these model compounds to form self-assembled monolayers (SAMs) on Au(111) and Ag(111) is investigated in details. The deprotection of the target molecules was performed in situ using either NH4OH or triethylamine (TEA) deprotection agent. The fabricated films were characterized by synchrotron-based high-resolution photoelectron spectroscopy and near-edge absorption fine structure spectroscopy. Whereas the deprotection by NH4OH was found to result in the formation of multilayer films, the deprotection by TEA allowed the preparation of densely packed BDDT SAMs with a noticeably higher orientational order and smaller molecular inclination on Ag than on Au. Introduction of the alkyl bridge between the individual rings of the biphenyl backbone did not lead to a noticeable change in the structure and packing density of the BDDT SAMs as long as the molecule had a planar conformation in the respective SAM. The deviation from this conformation resulted in the deterioration of the film quality and a decrease of the orientational order.

  5. Solid-state 19F MAS NMR study on the conformation and molecular mobility of poly(chlorotrifluoroethylene).

    PubMed

    Tatsuno, Hiroto; Aimi, Keitaro; Ando, Shinji

    2007-05-01

    The temperature dependence of molecular mobility and conformational changes of poly(chlorotrifluoro- ethylene) (PCTFE) have been investigated by solid-state (19)F magic angle spinning (MAS) NMR spectroscopy. The pulse techniques of dipolar-filter and T(1rho)-filter allow selective observation of the amorphous and crystalline domains, respectively. The temperature dependence of T(1rho) (F) revealed that the segmental motion in the amorphous domain becomes vigorous above ca 80 degrees C, which is well above the glass transition (T(g)) temperature (52 degrees C) and more close to the beta-relaxation temperature (95 degrees C). On the other hand, vigorous molecular motions in the crystalline domain occur above 120 degrees C, which is much below the melting temperature (212 degrees C). This indicates that the polymer chains in the PCTFE crystallites are more mobile than those of typical semicrystalline fluoropolymers like poly(vinylidene fluoride) (PVDF), which can be associated with structural imperfections in the crystallites. In addition, the density functional theory (DFT) calculations of (19)F magnetic shielding suggest that the high-frequency shifts observed for the crystalline signals above 80 degrees C can be ascribed to the conformational change around meso diads toward more twisted and/or helical conformations in the main chain.

  6. New generation of breast cancer clinical trials implementing molecular profiling

    PubMed Central

    Zardavas, Dimitrios; Piccart-Gebhart, Martine

    2016-01-01

    The implementation of molecular profiling technologies in oncology deepens our knowledge for the molecular landscapes of cancer diagnoses, identifying aberrations that could be linked with specific therapeutic vulnerabilities. In particular, there is an increasing list of molecularly targeted anticancer agents undergoing clinical development that aim to block specific molecular aberrations. This leads to a paradigm shift, with an increasing list of specific aberrations dictating the treatment of patients with cancer. This paradigm shift impacts the field of clinical trials, since the classical approach of having clinico-pathological disease characteristics dictating the patients' enrolment in oncology trials shifts towards the implementation of molecular profiling as pre-screening step. In order to facilitate the successful clinical development of these new anticancer drugs within specific molecular niches of cancer diagnoses, there have been developed new, innovative trial designs that could be classified as follows: i) longitudinal cohort studies that implement (or not) "nested" downstream trials, 2) studies that assess the clinical utility of molecular profiling, 3) "master" protocol trials, iv) "basket" trials, v) trials following an adaptive design. In the present article, we review these innovative study designs, providing representative examples from each category and we discuss the challenges that still need to be addressed in this era of new generation oncology trials implementing molecular profiling. Emphasis is put on the field of breast cancer clinical trials. PMID:27458530

  7. Manipulations that disrupt generative processes decrease conformity to examples: evidence from two paradigms.

    PubMed

    Landau, Joshua D; Leynes, P Andrew

    2004-01-01

    Participants in six experiments viewed experimenter-provided examples of space creatures (Experiments 1-3) or nonwords (Experiments 4-5b) and then created their own novel space creatures or nonwords. Consistent with previous research, people borrowed many of the features found in the examples despite instructions to avoid using any aspects of the experimenter's examples. However, requiring people to include a designated shape in their space creatures or a designated letter in their nonwords attenuated this effect. Additionally, the type of shape or letter (conventional versus unconventional) also affected conformity. These results suggest that the strategies that people use to create novel products can affect the level of conformity and also highlight the importance of adopting unconventional, or at the very least, new strategies when creating new products.

  8. Molecular modeling, mutational analysis and conformational switching in IL27: An in silico structural insight towards AIDS research.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-01-15

    The advancement in proteomics and bioinformatics provokes to discern the molecular-level probe for HIV inhibitor; human interleukin-27 (IL27). Documentation documents that tyrosine residues in IL27 play a pivotal role for interacting with HIV, causing apoptosis of the HIV+ cells. Primarily, 3D structure of human wild-type (WT) IL27 was built through manifold molecular modeling techniques after the satisfaction of stereo-chemical properties. Its essential tyrosine residues were identified. Two mutant models for IL27 were prepared following the similar protocol by first substituting the tyrosine residues with glycine (MT_G) and then with alanine (MT_A) in the WT protein. Molecular dynamics (MD) simulation was performed to obtain a stable conformation. Conformational alterations in WT, MT_G and MT_A (before and after MD simulation) disclosed that MT_A was the steadiest one with the best secondary structure conformation supported by statistical significances. Though huge RMSD variations were observed on superimposing the MT structures on WT individually, the MTs were examined to share similar SCOP/CATH fold with TM-score=0.8, indicating that they retained their functionality even after mutation. Electrostatic surface potential again unveiled MT_A to be the most stable one. MT_A was thereby revealed to be the potent peptide inhibitor for HIV. This probe presents a pathway to investigate and compare the bio-molecular interaction of WT IL27 and MT_A IL27 (strongest model) with HIV in the future. This is the first report regarding the structural biology of IL27 accompanied by alteration at its genetic level and delving into the unknown residue-level and functional biochemistry for bringing about an annihilation towards AIDS.

  9. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  10. Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling.

    PubMed

    Klostermeier, Dagmar

    2011-04-01

    Many complex cellular processes in the cell are catalysed at the expense of ATP hydrolysis. The enzymes involved bind and hydrolyse ATP and couple ATP hydrolysis to the catalysed process via cycles of nucleotide-driven conformational changes. In this review, I illustrate how smFRET (single-molecule fluorescence resonance energy transfer) can define the underlying conformational changes that drive ATP-dependent molecular machines. The first example is a DEAD-box helicase that alternates between two different conformations in its catalytic cycle during RNA unwinding, and the second is DNA gyrase, a topoisomerase that undergoes a set of concerted conformational changes during negative supercoiling of DNA.

  11. Molecular dynamics simulations on the conformational transitions from the GA 98 (GA 88) to GB 98 (GB 88) proteins.

    PubMed

    Song, Chunnian; Wang, Qing; Xue, Tuo; Wang, Yan; Chen, Guangju

    2016-12-01

    We performed conventional and targeted molecular dynamics simulations to address the dynamic transition mechanisms of the conformational transitions from the GA 98 protein with only 1 mutation of Leu45Tyr to GB 98 and from the GA 88 protein with 7 mutations of Gly24Ala, Ile25Thr, Ile30Phe, Ile33Tyr, Leu45Tyr, Ile49Thr, and Leu50Lys to GB 88. The results show that the conformational transition mechanism from the mutated 3α GA 98 (GA 88) state to the α+4β GB 98 (GB 88) state via several intermediate conformations involves the bending of loops at the N and C termini firstly, the unfolding of αA and αC, then the traversing of αB, and the formation of the 4β layer with the conversion of the hydrophobic core. The bending of loops at the N and C termini and the formation of the crucial transition conformation with the full unfolded structure are key factors in their transition processes. The communication of the interaction network, the bending directions of loops, and the traversing site of αB in the transition of GA 98 to GB 98 are markedly different from those in GA 88 to GB 88 because of the different mutated residues. The analysis of the correlations and the calculated mass center distances between some segments further supported their conformational transition mechanisms. These results could help people to better understand the Paracelsus challenge. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE.

    PubMed

    Kondyurin, Alexey; Nosworthy, Neil J; Bilek, Marcela M M

    2011-05-17

    Horseradish peroxidase (HRP) was immobilized onto both plasticized and unplasticized polyvinylchloride (PVC) and ultrahigh molecular weight polyethylene (UHMWPE). Plasma immersion ion implantation (PIII) in a nitrogen plasma with 20 kV bias was used to facilitate covalent immobilization and to improve the wettability of the surfaces. The surfaces and immobilized protein were studied using attenuated total reflection infrared (ATR-IR) spectroscopy and water contact angle measurements. Protein elution on exposure to repeated sodium dodecyl sulfate (SDS) washing was used to assess the strength of HRP immobilization. The presence of low molecular weight components (plasticizer, additives in solvent, unreacted monomers, adsorbed molecules on surface) was found to have a major influence on the strength of immobilization and the conformation of the protein on the samples not exposed to the PIII treatment. A phenomenological model considering interactions between the low molecular weight components, the protein molecule, and the surface is developed to explain these observations.

  13. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  14. Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang

    2016-11-01

    More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.

  15. Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis

    PubMed Central

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang

    2016-01-01

    More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens. PMID:27830740

  16. GRID3C: Computer program for generation of C type multilevel, three dimensional and boundary conforming periodic grids

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1982-01-01

    A fast computer program, GRID3C, was developed for accurately generating periodic, boundary conforming, three dimensional, consecutively refined computational grids applicable to realistic axial turbomachinery geometries. The method is based on using two functions to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These boundary fitted grids are of the C type and are characterized by quasi-orthogonality and geometric periodicity. The built in nonorthogonal coordinate stretchings and shearings cause the grid clustering in the regions of interest. The stretching parameters are part of the input to GRID3C. In its present version GRID3C can generate and store a maximum of four consecutively refined three dimensional grids. The output grid coordinates can be calculated either in the Cartesian or in the cylindrical coordinate system.

  17. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  18. Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy.

    PubMed

    Baldwin, Andrew J; Walsh, Patrick; Hansen, D Flemming; Hilton, Gillian R; Benesch, Justin L P; Sharpe, Simon; Kay, Lewis E

    2012-09-19

    Solution- and solid-state nuclear magnetic resonance (NMR) spectroscopy are highly complementary techniques for studying supra-molecular structure. Here they are employed for investigating the molecular chaperone αB-crystallin, a polydisperse ensemble of between 10 and 40 identical subunits with an average molecular mass of approximately 600 kDa. An IxI motif in the C-terminal region of each of the subunits is thought to play a critical role in regulating the size distribution of oligomers and in controlling the kinetics of subunit exchange between them. Previously published solid-state NMR and X-ray results are consistent with a bound IxI conformation, while solution NMR studies provide strong support for a highly dynamic state. Here we demonstrate through FROSTY (freezing rotational diffusion of protein solutions at low temperature and high viscosity) MAS (magic angle spinning) NMR that both populations are present at low temperatures (<0 °C), while at higher temperatures only the mobile state is observed. Solution NMR relaxation dispersion experiments performed under physiologically relevant conditions establish that the motif interchanges between flexible (highly populated) and bound (sparsely populated) states. This work emphasizes the importance of using multiple methods in studies of supra-molecules, especially for highly dynamic ensembles where sample conditions can potentially affect the conformational properties observed.

  19. Impact of molecular conformation on barriers to internal methyl rotation: the rotational spectrum of m-methylbenzaldehyde.

    PubMed

    Shirar, Amanda J; Wilcox, David S; Hotopp, Kelly M; Storck, Giana L; Kleiner, Isabelle; Dian, Brian C

    2010-11-25

    The ground state spectrum of m-methylbenzaldehyde (m-MBA) was measured with a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer. The methyl rotor on m-MBA introduces an internal rotation barrier, which leads to splitting of the torsional energy level degeneracy into A and E states. Ab initio calculations predict a low torsional barrier for both the O-cis and O-trans conformers, resulting in a large doublet splitting up to several gigahertz in the frequency spectrum. The rotational constants, distortion terms, and V(3) values for both species have been determined from the ground state rotational spectrum using the BELGI-C(s) fitting program. There are significant differences in the torsional potential for the O-cis and O-trans m-MBA conformers. Molecular orbitals and resonance structures for each conformer are analyzed to understand the difference in torsional barrier height as well as the irregular shape of the O-trans torsional potential.

  20. Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations.

    PubMed

    Wang, Beibei; Weng, Jingwei; Wang, Wenning

    2014-09-01

    Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt-bridge R367-D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate.

  1. Molecular simulations of conformation change and aggregation of HIV-1 Vpr13-33 on graphene oxide

    NASA Astrophysics Data System (ADS)

    Zeng, Songwei; Zhou, Guoquan; Guo, Jianzhong; Zhou, Feng; Chen, Junlang

    2016-04-01

    Recent experiments have reported that the fragment of viral protein R (Vpr), Vpr13-33, can assemble and change its conformation after adsorbed on graphene oxide (GO) and then reduce its cytotoxicity. This discovery is of great importance, since the mutation of Vpr13-33 can decrease the viral replication, viral load and delay the disease progression. However, the interactions between Vpr13-33 and GO at atomic level are still unclear. In this study, we performed molecular dynamics simulation to investigate the dynamic process of the adsorption of Vpr13-33 onto GO and the conformation change after aggregating on GO surface. We found that Vpr13-33 was adsorbed on GO surface very quickly and lost its secondary structure. The conformation of peptides-GO complex was highly stable because of π-π stacking and electrostatic interactions. When two peptides aggregated on GO, they did not dimerize, since the interactions between the two peptides were much weaker than those between each peptide and GO.

  2. Crystal structure analysis, covalent docking and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-04-03

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favourable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. This article is protected by copyright. All rights reserved.

  3. Molecular cobalt pentapyridine catalysts for generating hydrogen from water.

    PubMed

    Sun, Yujie; Bigi, Julian P; Piro, Nicholas A; Tang, Ming Lee; Long, Jeffrey R; Chang, Christopher J

    2011-06-22

    A set of robust molecular cobalt catalysts for the generation of hydrogen from water is reported. The cobalt complex supported by the parent pentadentate polypyridyl ligand PY5Me(2) features high stability and activity and 100% Faradaic efficiency for the electrocatalytic production of hydrogen from neutral water, with a turnover number reaching 5.5 × 10(4) mol of H(2) per mole of catalyst with no loss in activity over 60 h. Control experiments establish that simple Co(II) salts, the free PY5Me(2) ligand, and an isostructural PY5Me(2) complex containing redox-inactive Zn(II) are all ineffective for this reaction. Further experiments demonstrate that the overpotential for H(2) evolution can be tuned by systematic substitutions on the ancillary PY5Me(2) scaffold, presaging opportunities to further optimize this first-generation platform by molecular design.

  4. Molecular Docking Study of Conformational Polymorph: Building Block of Crystal Chemistry

    PubMed Central

    Dubey, Rashmi; Tewari, Ashish Kumar; Singh, Ved Prakash; Singh, Praveen; Dangi, Jawahar Singh; Puerta, Carmen; Valerga, Pedro; Kant, Rajni

    2013-01-01

    Two conformational polymorphs of novel 2-[2-(3-cyano-4,6-dimethyl-2-oxo-2H-pyridin-1-yl)-ethoxy]-4,6-dimethyl nicotinonitrile have been developed. The crystal structure of both polymorphs (1a and 1b) seems to be stabilized by weak interactions. A difference was observed in the packing of both polymorphs. Polymorph 1b has a better binding affinity with the cyclooxygenase (COX-2) receptor than the standard (Nimesulide). PMID:24250264

  5. Electrospinning of gelatin for tissue engineering--molecular conformation as one of the overlooked problems.

    PubMed

    Sajkiewicz, P; Kołbuk, D

    2014-01-01

    Gelatin is one of the most promising materials in tissue engineering as a scaffold component. This biopolymer indicates biocompatibility and bioactivity caused by the existence of specific amino acid sequences, being preferred sites for interactions with cells, with high similarity to natural extracellular matrix. The present paper does not aspire to be a full review of electrospinning of gelatin and gelatin containing nanofibers as scaffolds in tissue engineering. It is focused on the still open question of the role of the higher order structures of gelatin in scaffold's bioactivity/functionality. Gelatin molecules can adopt various conformations depending on temperature, solvent, pH, etc. Our review indicates the potential ways for formation of α-helix conformation during electrospinning and the methods of further structure stabilization. It is intuitively expected that the native α-helix conformation appearing as a result of partial renaturation of gelatin can be beneficial from the viewpoint of bioactivity of scaffolds, providing thus a much cheaper alternative approach as opposed to expensive electrospinning of native collagen.

  6. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design.

    PubMed

    LeMaster, David M; Hernandez, Griselda

    2015-01-01

    Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.

  7. Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) for Conformational Space Search of Peptide and Miniprotein.

    PubMed

    Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu

    2015-10-23

    Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation.

  8. Conformation, structure and molecular solvation: a spectroscopic and computational study of 2-phenoxy ethanol and its singly and multiply hydrated clusters

    NASA Astrophysics Data System (ADS)

    Macleod, Neil A.; Simons, John P.

    2002-10-01

    The conformational landscapes of 2-phenoxy ethanol (POX) and its hydrated clusters have been studied in the gas-phase, providing a model for pharmaceutical β-blockers. A combination of experimental techniques, including resonant two-photon ionisation (R2PI), laser-induced-fluorescence (LIF) and resonant ion-dip infra-red spectroscopy (RIDIRS), coupled with high-level ab initio calculations has allowed the assignment of the individually resolved spectral features to discrete conformational and supra-molecular structures. Assignments were made by comparison of experimental vibrational spectra and partially resolved ultra-violet rotational band contours with those predicted from quantum chemical calculations. The isolated molecule displays a solitary structure with an extended geometry of the side-chain which is stabilised by an intramolecular hydrogen-bond between the alcohol (proton donor) and the ether (proton acceptor) groups of the side-chain. In singly hydrated clusters the water molecule is accommodated by insertion into the intramolecular hydrogen-bond. In the doubly hydrated and higher clusters cyclic structures are generated which incorporate both the water molecules and the terminal OH group of the side-chain; additional (weak) hydrogen bonded interactions with the phenoxy group provide a degree of selectivity but essentially, the water 'droplet' forms on the end of the alcohol side-chain.

  9. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas

    2016-04-01

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

  10. Modular hyperthermostable bacterial endo-β-1,4-mannanase: molecular shape, flexibility and temperature-dependent conformational changes.

    PubMed

    da Silva, Viviam M; Colussi, Francieli; de Oliveira Neto, Mario; Braz, Antonio S K; Squina, Fabio M; Oliveira, Cristiano L P; Garcia, Wanius

    2014-01-01

    Endo-β-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of β-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan. Little is known about the conformation of the TpMan as well as the role of the length and flexibility of the linker on the spatial arrangement of the constitutive domains. In this study, we report the first structural characterization of the entire TpMan by small-angle X-ray scattering combined with the three-dimensional structures of the individual domains in order to shed light on the low-resolution model, overall dimensions, and flexibility of this modular enzyme at different temperatures. The results are consistent with a linker with a compact structure and that occupies a small volume with respect to its large number of amino acids. Furthermore, at 20°C the results are consistent with a model where TpMan is a molecule composed of three distinct domains and that presents some level of molecular flexibility in solution. Even though the full enzyme has some degree of molecular flexibility, there might be a preferable conformation, which could be described by the rigid-body modeling procedure. Finally, the results indicate that TpMan undergoes a temperature-driven transition between conformational states without a significant disruption of its secondary structure. Our results suggest that the linker can optimize the geometry between the other two domains with respect to the substrate at high temperatures. These studies should provide a useful basis for future biophysical studies of entire TpMan.

  11. Modular Hyperthermostable Bacterial Endo-β-1,4-Mannanase: Molecular Shape, Flexibility and Temperature-Dependent Conformational Changes

    PubMed Central

    de Oliveira Neto, Mario; Braz, Antonio S. K.; Squina, Fabio M.; Oliveira, Cristiano L. P.; Garcia, Wanius

    2014-01-01

    Endo-β-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of β-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan. Little is known about the conformation of the TpMan as well as the role of the length and flexibility of the linker on the spatial arrangement of the constitutive domains. In this study, we report the first structural characterization of the entire TpMan by small-angle X-ray scattering combined with the three-dimensional structures of the individual domains in order to shed light on the low-resolution model, overall dimensions, and flexibility of this modular enzyme at different temperatures. The results are consistent with a linker with a compact structure and that occupies a small volume with respect to its large number of amino acids. Furthermore, at 20°C the results are consistent with a model where TpMan is a molecule composed of three distinct domains and that presents some level of molecular flexibility in solution. Even though the full enzyme has some degree of molecular flexibility, there might be a preferable conformation, which could be described by the rigid-body modeling procedure. Finally, the results indicate that TpMan undergoes a temperature-driven transition between conformational states without a significant disruption of its secondary structure. Our results suggest that the linker can optimize the geometry between the other two domains with respect to the substrate at high temperatures. These studies should provide a useful basis for future biophysical studies of entire TpMan. PMID:24671161

  12. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    SciTech Connect

    Chen, Guo; Mcmahon, Benjamin H; Tung, Chang - Shung

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  13. A molecular dynamics study of Fe2S2 putidaredoxin: multiple conformations of the C-terminal region.

    PubMed Central

    Roitberg, A E

    1997-01-01

    Putidaredoxin (Pdx) plays an essential role as an electron donor and effector in the biochemical cycle involving cytochrome P450cam. Only recently has an NMR-derived structure for this protein been published, but because of the presence of a paramagnetic Fe2S2 center, the NMR assignment could not be completed for residues within a region of 8 A around the active site. That region was modeled by homology with a related protein. The structural refinement for those experiments was done in vacuum, without the use of electrostatic terms in the force field. The present manuscript will describe and discuss a series of long-time, unrestrained, solution molecular dynamic runs for this system. Results will be presented that construct a molecular-level picture that rationalizes experimental results concerning the conformation and mobility of the C-terminal residue Trp106. At least two different conformers are found for this residue during the simulations. The time scale for interconversion between them is found to be in the subnanosecond regime. The results presented here open the possibility for studying binding and electron transfer between Pdx and P450cam, in a framework that allows for dynamical information to be used during the computational process, instead of the single structures deposited on the protein data base. PMID:9336209

  14. Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung; Li, Yen-Ching

    2016-07-01

    We report a theory capable of describing conformational transitions for single polymer adsorption in a poor solvent. We show that an additional molecular confinement effect near the contact line can act exactly like line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete, occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob. The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive critical exponents near this transition are also determined, indicating that it is an additional universality class of phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line tension might simply be a manifestation of the local molecular confinement near the contact line.

  15. Effect of molecular conformation on spectroscopic properties of symmetrical Schiff bases derived from 1,4-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Cao, Chenzhong

    2013-03-01

    The relationship between the molecular conformation and spectroscopic properties of symmetrical bis-Schiff bases was explored experimentally. Seven samples of compounds p-X-C6H4CHdbnd NC6H4Ndbnd CHC6H4-p-X (X = OMe, Me, Et, Cl, F, CF3, or CN) were prepared for this study, and their crystal structures were measured by X-ray diffraction. Their λmax values in ethanol, acetonitrile, chloroform and cyclohexane solvents were measured, and their δC(Cdbnd N) values in chloroform-d were determined. The results show that the νmax is dependent on the substituents at the benzylidene ring and the dihedral angle τ of the titled molecules, and the term sin(τ) is suitable to modify the substituent effects on the νmax. However, experimental investigations indicate that the dihedral angle τ has a limited effect on the values of δC(Cdbnd N). This study provides a new understanding for the molecular conformation on spectroscopic properties of symmetrical Schiff bases.

  16. Markov models of molecular kinetics: generation and validation.

    PubMed

    Prinz, Jan-Hendrik; Wu, Hao; Sarich, Marco; Keller, Bettina; Senne, Martin; Held, Martin; Chodera, John D; Schütte, Christof; Noé, Frank

    2011-05-07

    Markov state models of molecular kinetics (MSMs), in which the long-time statistical dynamics of a molecule is approximated by a Markov chain on a discrete partition of configuration space, have seen widespread use in recent years. This approach has many appealing characteristics compared to straightforward molecular dynamics simulation and analysis, including the potential to mitigate the sampling problem by extracting long-time kinetic information from short trajectories and the ability to straightforwardly calculate expectation values and statistical uncertainties of various stationary and dynamical molecular observables. In this paper, we summarize the current state of the art in generation and validation of MSMs and give some important new results. We describe an upper bound for the approximation error made by modeling molecular dynamics with a MSM and we show that this error can be made arbitrarily small with surprisingly little effort. In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states. Moreover, we show that it is not necessary to resolve all slow processes by the state space partitioning, but individual dynamical processes of interest can be resolved separately. We also present an efficient estimator for reversible transition matrices and a robust test to validate that a MSM reproduces the kinetics of the molecular dynamics data.

  17. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  18. Small Molecules Detected by Second-Harmonic Generation Modulate the Conformation of Monomeric α-Synuclein and Reduce Its Aggregation in Cells*

    PubMed Central

    Moree, Ben; Yin, Guowei; Lázaro, Diana F.; Munari, Francesca; Strohäker, Timo; Giller, Karin; Becker, Stefan; Outeiro, Tiago F.; Zweckstetter, Markus; Salafsky, Joshua

    2015-01-01

    Proteins are structurally dynamic molecules that perform specialized functions through unique conformational changes accessible in physiological environments. An ability to specifically and selectively control protein function via conformational modulation is an important goal for development of novel therapeutics and studies of protein mechanism in biological networks and disease. Here we applied a second-harmonic generation-based technique for studying protein conformation in solution and in real time to the intrinsically disordered, Parkinson disease related protein α-synuclein. From a fragment library, we identified small molecule modulators that bind to monomeric α-synuclein in vitro and significantly reduce α-synuclein aggregation in a neuronal cell culture model. Our results indicate that the conformation of α-synuclein is linked to the aggregation of protein in cells. They also provide support for a therapeutic strategy of targeting specific conformations of the protein to suppress or control its aggregation. PMID:26396193

  19. Identification of a Novel Parallel β‐Strand Conformation within Molecular Monolayer of Amyloid Peptide

    PubMed Central

    Liu, Lei; Li, Qiang; Zhang, Shuai; Wang, Xiaofeng; Hoffmann, Søren Vrønning; Li, Jingyuan; Liu, Zheng

    2016-01-01

    The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity. In this work, the early Aβ33‐42 aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide Aβ33‐42 consisting of novel parallel β‐strand‐like structure is further revealed by means of a quantitative nanomechanical spectroscopy technique with force controlled in pico‐Newton range, combining with molecular dynamic simulation. The identified parallel β‐strand‐like structure of molecular monolayer is distinct from the antiparallel β‐strand structure of Aβ33‐42 amyloid fibril. This finding enriches the molecular structures of amyloid peptide aggregation, which could be closely related to the pathogenesis of amyloid disease. PMID:27818898

  20. MoFlow: visualizing conformational changes in molecules as molecular flow improves understanding

    PubMed Central

    2015-01-01

    Background Current visualizations of molecular motion use a Timeline-analogous representation that conveys "first the molecule was shaped like this, then like this...". This scheme is orthogonal to the Pathline-like human understanding of motion "this part of the molecule moved from here to here along this path". We present MoFlow, a system for visualizing molecular motion using a Pathline-analogous representation. Results The MoFlow system produces high-quality renderings of molecular motion as atom pathlines, as well as interactive WebGL visualizations, and 3D printable models. In a preliminary user study, MoFlow representations are shown to be superior to canonical representations for conveying molecular motion. Conclusions Pathline-based representations of molecular motion are more easily understood than timeline representations. Pathline representations provide other advantages because they represent motion directly, rather than representing structure with inferred motion. PMID:26361501

  1. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    PubMed

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  2. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.

    PubMed

    Wang, Jinan; Shao, Qiang; Xu, Zhijian; Liu, Yingtao; Yang, Zhuo; Cossins, Benjamin P; Jiang, Hualiang; Chen, Kaixian; Shi, Jiye; Zhu, Weiliang

    2014-01-09

    Large-scale conformational changes of proteins are usually associated with the binding of ligands. Because the conformational changes are often related to the biological functions of proteins, understanding the molecular mechanisms of these motions and the effects of ligand binding becomes very necessary. In the present study, we use the combination of normal-mode analysis and umbrella sampling molecular dynamics simulation to delineate the atomically detailed conformational transition pathways and the associated free-energy landscapes for three well-known protein systems, viz., adenylate kinase (AdK), calmodulin (CaM), and p38α kinase in the absence and presence of respective ligands. For each protein under study, the transient conformations along the conformational transition pathway and thermodynamic observables are in agreement with experimentally and computationally determined ones. The calculated free-energy profiles reveal that AdK and CaM are intrinsically flexible in structures without obvious energy barrier, and their ligand binding shifts the equilibrium from the ligand-free to ligand-bound conformation (population shift mechanism). In contrast, the ligand binding to p38α leads to a large change in free-energy barrier (ΔΔG ≈ 7 kcal/mol), promoting the transition from DFG-in to DFG-out conformation (induced fit mechanism). Moreover, the effect of the protonation of D168 on the conformational change of p38α is also studied, which reduces the free-energy difference between the two functional states of p38α and thus further facilitates the conformational interconversion. Therefore, the present study suggests that the detailed mechanism of ligand binding and the associated conformational transition is not uniform for all kinds of proteins but correlated to their respective biological functions.

  3. Mean-field calculations of chain packing and conformational statistics in lipid bilayers: comparison with experiments and molecular dynamics studies.

    PubMed Central

    Fattal, D R; Ben-Shaul, A

    1994-01-01

    A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the

  4. Structural and spectroscopic properties of the second generation phosphorus-viologen “molecular asterisk”

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandukov, A. E.; Katir, N.; Majoral, J. P.; El Kadib, A.; Caminade, A. M.; Bousmina, M.; Kovalenko, V. I.

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium (BFBP) molecule without counter ions PF6- does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  5. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    PubMed

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  6. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  7. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  8. Extended blood group molecular typing and next-generation sequencing.

    PubMed

    Liu, Zhugong; Liu, Meihong; Mercado, Teresita; Illoh, Orieji; Davey, Richard

    2014-10-01

    Several high-throughput multiplex blood group molecular typing platforms have been developed to predict blood group antigen phenotypes. These molecular systems support extended donor/patient matching by detecting commonly encountered blood group polymorphisms as well as rare alleles that determine the expression of blood group antigens. Extended molecular typing of a large number of blood donors by high-throughput platforms can increase the likelihood of identifying donor red blood cells that match those of recipients. This is especially important in the management of multiply-transfused patients who may have developed several alloantibodies. Nevertheless, current molecular techniques have limitations. For example, they detect only predefined genetic variants. In contrast, target enrichment next-generation sequencing (NGS) is an emerging technology that provides comprehensive sequence information, focusing on specified genomic regions. Target enrichment NGS is able to assess genetic variations that cannot be achieved by traditional Sanger sequencing or other genotyping platforms. Target enrichment NGS has been used to detect both known and de novo genetic polymorphisms, including single-nucleotide polymorphisms, indels (insertions/deletions), and structural variations. This review discusses the methodology, advantages, and limitations of the current blood group genotyping techniques and describes various target enrichment NGS approaches that can be used to develop an extended blood group genotyping assay system.

  9. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2.

    PubMed

    Zhuo, Ren-Gong; Peng, Peng; Liu, Xiao-Yan; Zhang, Shu-Zhuo; Xu, Jiang-Ping; Zheng, Jian-Quan; Wei, Xiao-Li; Ma, Xiao-Yun

    2015-12-01

    TREK-2 (TWIK-related K(+) channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K(+). Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba(2+) inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K(+) or mutation of S4 K(+) binding site, which suggests that the inhibitory mechanism of Ba(2+) is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba(2+) and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels.

  10. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release.

    PubMed

    Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H

    2017-02-27

    Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.

  11. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution.

    PubMed

    Miyata, Tatsuhiko; Hirata, Fumio

    2008-04-30

    We have developed an algorithm for sampling the conformational space of large flexible molecules in solution, which combines the molecular dynamics (MD) method and the three-dimensional reference interaction site model (3D-RISM) theory. The solvent-induced force acting on solute atoms was evaluated as the gradient of the solvation free energy with respect to the solute-atom coordinates. To enhance the computation speed, we have applied a multiple timestep algorithm based on the RESPA (Reversible System Propagator Algorithm) to the combined MD/3D-RISM method. By virtue of the algorithm, one can choose a longer timestep for renewing the solvent-induced force compared with that of the conformational update. To illustrate the present MD/3D-RISM simulation, we applied the method to a model of acetylacetone in aqueous solution. The multiple timestep algorithm succeeded in enhancing the computation speed by 3.4 times for this model case. Acetylacetone possesses an intramolecular hydrogen-bonding capability between the hydroxyl group and the carbonyl oxygen atom, and the molecule is significantly stabilized due to this hydrogen bond, especially in gas phase. The intramolecular hydrogen bond was kept intact during almost entire course of the MD simulation in gas phase, while in the aqueous solutions the bond is disrupted in a significant number of conformations. This result qualitatively agrees with the behavior on a free energy barrier lying upon the process for rotating a torsional degree of freedom of the hydroxyl group, where it is significantly reduced in aqueous solution by a cancellation between the electrostatic interaction and the solvation free energy.

  12. Temperature-dependent conformational changes of PNIPAM grafted chains in water : effects of molecular weight and grafting density.

    SciTech Connect

    Satija, Sushil K.; Mendez, Sergio; Kent, Michael Stuart; Yim, Hyun; Lopez, Gabriel P.

    2005-03-01

    Poly(N-isopropyl acrylamide) (PNIPAM) is perhaps the most well known member of the class of responsive polymers. Free PNIPAM chains have a lower critical solution temperature in water at {approx}31 C. This very sharp transition ({approx}5 C) is attributed to alterations in the hydrogen bonding interactions of the amide group. Grafted chains of PNIPAM have shown promise for creating responsive surfaces. Examples include controlling the adsorption of proteins or bacteria, regulating the flow of liquids in narrow filaments or mesoporous materials, control of enzymatic activity, and releasing the contents of liposomes. Conformational changes of the polymer are likely to play a role in some of these applications, in addition to changes in local interactions. In this work we investigated the T-dependent conformational changes of grafted PNIPAM chains in D2O using neutron reflection and AFM. The molecular weight (M) and surface density of the PNIPAM brushes were controlled using atom-transfer radical polymerization. We discovered a strong effect of surface density. At lower surface densities, in the range typically achieved with grafting-to methods, we observed very little conformational change. At higher surface densities, significant changes with T were observed. The results will be compared with numerical SCF calculations employing an effective (conc.-dependent) Flory-Huggins chi parameter extracted from the solution phase diagram. For the case of high M and high surface density, a non-monotonic change in profile shape with T was observed. This will be discussed in the context of vertical phase separation predicted for brushes of water-soluble polymers within two-state models.

  13. Materials for next-generation molecularly selective synthetic membranes

    NASA Astrophysics Data System (ADS)

    Koros, William J.; Zhang, Chen

    2017-01-01

    Materials research is key to enable synthetic membranes for large-scale, energy-efficient molecular separations. Materials with rigid, engineered pore structures add an additional degree of freedom to create advanced membranes by providing entropically moderated selectivities. Scalability -- the capability to efficiently and economically pack membranes into practical modules -- is a critical yet often neglected factor to take into account for membrane materials screening. In this Progress Article, we highlight continuing developments and identify future opportunities in scalable membrane materials based on these rigid features, for both gas and liquid phase applications. These advanced materials open the door to a new generation of membrane processes beyond existing materials and approaches.

  14. Materials for next-generation molecularly selective synthetic membranes.

    PubMed

    Koros, William J; Zhang, Chen

    2017-03-01

    Materials research is key to enable synthetic membranes for large-scale, energy-efficient molecular separations. Materials with rigid, engineered pore structures add an additional degree of freedom to create advanced membranes by providing entropically moderated selectivities. Scalability - the capability to efficiently and economically pack membranes into practical modules - is a critical yet often neglected factor to take into account for membrane materials screening. In this Progress Article, we highlight continuing developments and identify future opportunities in scalable membrane materials based on these rigid features, for both gas and liquid phase applications. These advanced materials open the door to a new generation of membrane processes beyond existing materials and approaches.

  15. Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches.

    PubMed

    Tran, Linh; Ha-Duong, Tâp

    2015-07-01

    Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease.

  16. From molecular to supramolecular: an exploration into the modes of self- assembly in conformationally locked polycyclitols.

    PubMed

    Mehta, Goverdhan; Sen, Saikat

    2012-01-01

    This brief account highlights the notable findings of our investigation into the supramolecular chemistry of conformationally locked polycyclitols in the solid state. The study was aimed at analyzing the crystal packing and unraveling the modalities of non-covalent interactions (particularly, intramolecular vis-à-vis intermolecular O-H˙˙˙O hydrogen bonds) in polyols. The know-how obtained thereof, was successfully utilized to engineer self-assemblies of designer polycyclitols, having hydrogen bond donors and acceptors fettered onto a trans-decalin scaffold. The results seek to draw particular attention to the intrinsic attribute of this rigid carbocyclic framework to lock functional groups into spatially invariant positions and bring potential intramolecular hydrogen bonding partners into favorable interaction geometry to engender predictability in the self-assembly patterns.

  17. Molecular dynamics study displays near in-line attack conformations in the hammerhead ribozyme self-cleavage reaction

    PubMed Central

    Torres, Rhonda A.; Bruice, Thomas C.

    1998-01-01

    We have performed molecular dynamics (MD) calculations by using one of the recently solved crystal structures of a hammerhead ribozyme. By rotating the α, β, γ, δ, ɛ, and ζ torsion angles of the phosphate linkage of residue 17, the nucleobase at the cleavage site was slightly rotated out of the active site toward the solution. Unconstrained MD simulations exceeding 1 ns were performed on this starting structure solvated in water with explicit counter ions and two Mg2+ ions at the active site. Our results reveal that near attack conformations consistently were formed in the simulation. These near attack conformations are characterized by assumption of the 2′-hydroxyl to a near in-line position for attack on the -O-(PO2−)-O- phosphorous. Also during the time course of the MD study, one Mg2+ moved immediately to associate with a pro-R phosphate oxygen in the conserved core region, and the second Mg2+ remained associated with the pro-R oxygen on the phosphate linkage undergoing hydrolysis. These results are in accord with a one-metal ion mechanism of catalysis and give insight into the possible roles of many of the conserved residues in the ribozyme. PMID:9736692

  18. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    PubMed

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  19. Mapping the molecular determinant of pathogenicity in a hammerhead viroid: a tetraloop within the in vivo branched RNA conformation.

    PubMed

    de la Peña, M; Navarro, B; Flores, R

    1999-08-17

    Chrysanthemum chlorotic mottle viroid (CChMVd) is an RNA of 398-399 nt that can adopt hammerhead structures in both polarity strands. We have identified by Northern-blot hybridization a nonsymptomatic strain (CChMVd-NS) that protects against challenge inoculation with the symptomatic strain (CChMVd-S). Analysis of CChMVd-NS cDNA clones has revealed a size and sequence very similar to those of the CChMVd-S strain. Some of the mutations observed in CChMVd-NS molecular variants were previously identified in CChMVd-S RNA, but others were never found in this RNA. When bioassayed in chrysanthemum, cDNA clones containing the CChMVd-NS specific mutations were infectious but nonsymptomatic. Site-directed mutagenesis showed that one of the CChMVd-NS-specific mutations, a UUUC --> GAAA substitution, was sufficient to change the symptomatic phenotype into the nonsymptomatic one without altering the final accumulation level of the viroid RNA. The pathogenicity determinant-to our knowledge, a determinant of this class has not been described previously in hammerhead viroids-is located in a tetraloop of the computer-predicted branched conformation for CChMVd RNA. Analysis of the sequence heterogeneity found in CChMVd-S and -NS variants strongly supports the existence of such a conformation in vivo, showing that the rod-like or quasi-rod-like secondary structure is not a universal paradigm for viroids.

  20. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  1. Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent.

    PubMed

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-28

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 micros show that low molecular weight oligomers in explicit solvent consist of beta-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient beta-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  2. A theoretical approach to the influence of the macrocycle conformation on the molecular electronic structure in Mg-porphyrins.

    PubMed

    Poveda, L A; Ferro, V R; García de la Vega, J M; González-Jonte, R H

    2001-02-01

    Nonplanar saddled (sad) ruffled (ruf) and domed (dom) conformations of the Mg-porphyrin (MgP) macrocycle in several degrees of deformation have been computed. These symmetrical distortion modes were induced in unsubstituted macrocycle using molecular definitions for calculations which permits us to achieve a systematical variation of the nonplanarity varying only a convenient geometrical parameter of the molecule. Series of nonplanar macrocycles like those synthesized in previous works employing peripheral substitutions are obtained. The procedure here used to induce deformations gives the possibility of investigating the modulator role of the out-of-plane distortions on the geometry and electronic properties of the porphyrin avoiding additional influences due to the substituents or the surrounding protein scaffolding.

  3. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  4. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins

    PubMed Central

    Kurkcuoglu, Zeynep; Doruker, Pemra

    2016-01-01

    Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions. PMID:27348230

  5. Structural Analysis of Prolyl Oligopeptidases Using Molecular Docking and Dynamics: Insights into Conformational Changes and Ligand Binding

    PubMed Central

    Kaushik, Swati; Sowdhamini, Ramanathan

    2011-01-01

    Prolyl oligopeptidase (POP) is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana). Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD) simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases. PMID:22132071

  6. Interfacial molecular interactions based on the conformation recognition between the insoluble antitumor drug AD-1 and DSPC.

    PubMed

    Yin, Tian; Cao, Xiuxiu; Liu, Xiaolin; Wang, Jian; Shi, Caihong; Su, Jia; Zhang, Yu; Gou, Jingxin; He, Haibing; Guo, Haiyan; Tang, Xing; Zhao, Yuqing

    2016-10-01

    In this study, molecular interactions between the anti-cancer agent 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol (AD-1) and phospholipid 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated using the Langmuir film balance technique. The characteristics of binary Langmuir monolayers consisting of DSPC and AD-1 were conducted on the basis of the surface pressure-area per molecule (π-A) isotherms. It was found that the drug was able to become efficiently inserted into preformed DSPC monolayers, indicating a preferential interaction between AD-1 and DSPC. For the examined lateral pressure at 20mN/m, the largest negative values of ΔGex were found for the AD-1/DSPC monolayer, which should be the most stable. Based on the calculated values of ΔGex, we found that the AD-1/DSPC systems exhibited the best mixed characteristics when the molar fraction of the AD-1 was 0.8; at that relative concentration, the AD-1 molecules can mix better and interact with the phospholipid molecules. In addition, the drug-DSPC binary supramolecular structure was also deposited on the mica plates as shown by atomic force microscopy (AFM). Finally, molecular docking calculations explained satisfactorily that, based on the conformations interactions (conformation recognition), even at an AD-1/DSPC molar ratio as high as 8:2, the interfacial stabilization of the AD-1/DSPC system was fairly strong due to hydrophobic interactions. A higher loading capacity of DSPC might be possible, as it is associated with a more flexible geometrical environment, which allows these supramolecular structures to accept larger increases in drug loading upon steric binding.

  7. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach

    PubMed Central

    Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P.

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions. PMID:26908260

  8. Investigation on the low energy conformational surface of tabun to probe the role of its different conformers on biological activity

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Michalkova, Andrea; Majumdar, D.; Leszczynski, Jerzy

    2006-05-01

    Conformational studies have been carried out on the two different enantiomers of tabun at the density functional and second order Møller-Plesset perturbation levels of theory to generate low energy potential energy surfaces in the gas phase as well as in aqueous environment. The structures of the low energy conformers together with their molecular electrostatic potential surfaces have been compared with those of the non-aged acetylcholinesterase-tabun complex to locate the active conformer of this molecule.

  9. Determination of individual side-chain conformations, tertiary conformations, and molecular topography of tyrocidine A from scalar coupling constants and chemical shifts.

    PubMed

    Kuo, M C; Gibbons, W A

    1979-12-25

    We report for the decapeptide tyrocidine A: (a) H alpha and H beta chemical shifts and scalar coupling constants for most residues of tyrocidine A in methanol-d4 and dimethyl-d6 sulfoxide (Me2so-d6) and the H alpha and H beta chemical shifts for other residues; (b) scalar coupling constants 3J alpha beta for nine side chains in methanol-d4 but only seven side chains in Me2SO-d6, due to chemical shift degeneracy; the Gln9 and Tyr10 side chains in methanol-d4 were only approximately analyzed; (c) a total spin-spin analysis of Pro5 in Me2SO-d6 and, partly by comparison, also in methanol-d4; (d) conversion of 3J alpha beta values to side-chain conformations for all residues in methanol-d4; comparisons, where possible, led to the conclusion that side-chain conformations are similar in methanol-d4 and Me2SO-d6; (e) an absolute conformational analysis of Pro5 from 3J values and a method of assigning all pro-R,S protons; Pro5 has a Ramachandran B, C2-Cexo-Cendo conformation; (f) chi 1, chi 2 conformations of several aromatic residues based upon proton-chromophore distance measurement from anomalous chemical shifts and Johnson-Bovey diagrams; (g) pro-R and pro-S assignments of H beta's from anomalous chemical shifts, high-temperature dependence of anomalous chemical shifts, and backbone side-chain nuclear Overhauser effects; (h) most tertiary conformations of the whole tyrocidine A molecule possessing residues 4--8 and 10 in highly preferred (ca. 90%) chi 1 conformations, but residues 1--3 and 9 having at least two chi 1 rotamers; (2) description of three topographical regions of the molecule--a hydrophobic region, a flat hydrophilic surface on the other side of the molecule, and a hydrophilic region consisting of two peptide backbone units and the side chains of Asn8, Gln9, and Tyr10; (j) proposed side chain, beta-turn, and beta-pleated sheet conformations that readily account for all "normal" and anomalous chemical shifts.

  10. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    SciTech Connect

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  11. Optimization of capillary array electrophoresis single-strand conformation polymorphism analysis for routine molecular diagnostics.

    PubMed

    Jespersgaard, Cathrine; Larsen, Lars Allan; Baba, Shingo; Kukita, Yoji; Tahira, Tomoko; Christiansen, Michael; Vuust, Jens; Hayashi, Kenshi; Andersen, Paal Skytt

    2006-10-01

    Mutation screening is widely used for molecular diagnostics of inherited disorders. Furthermore, it is anticipated that the present and future identification of genetic risk factors for complex disorders will increase the need for high-throughput mutation screening technologies. Capillary array electrophoresis (CAE) SSCP analysis is a low-cost, automated method with a high throughput and high reproducibility. Thus, the method fulfills many of the demands to be met for application in routine molecular diagnostics. However, the need for performing the electrophoresis at three temperatures between 18 degrees C and 35 degrees C for achievement of high sensitivity is a disadvantage of the method. Using a panel of 185 mutant samples, we have analyzed the effect of sample purification, sample medium and separation matrix on the sensitivity of CAE-SSCP analysis to optimize the method for molecular diagnostic use. We observed different effects from sample purification and sample medium at different electrophoresis temperatures, probably reflecting the complex interplay between sequence composition, electrophoresis conditions and sensitivity in SSCP analysis. The effect on assay sensitivity from three different polymers was tested using a single electrophoresis temperature of 27 degrees C. The data suggest that a sensitivity of 98-99% can be obtained using a 10% long chain poly-N,N-dimethylacrylamide polymer.

  12. All-atom molecular dynamics study of EAK16 peptide: the effect of pH on single-chain conformation, dimerization and self-assembly behavior.

    PubMed

    Emamyari, Soheila; Fazli, Hossein

    2014-05-01

    Single-chain equilibrium conformation and dimerization of the three types of ionic EAK16 peptide are studied under three pH conditions using all-atom molecular dynamics simulations. It is found that both the single-chain conformation and the dimerization process of EAK16-IV are considerably different from those of the two other types, EAK16-I and EAK16-II. The value of pH is found to have a stronger effect on the single-chain conformation and dimerization of EAK16-IV. It is shown that in addition to the charge pattern on the peptide chains, the size of the side chains of the charged amino acids plays role in the conformation of the peptide chains and their dimerization. The results shed light on the pH-dependent self-assembly behavior of EAK16 peptide in the bulk solution, which has been reported in the literature.

  13. Co-conformational Exchange Triggered by Molecular Recognition in a Di(acylamino)pyridine-Based Molecular Shuttle Containing Two Pyridine Rings at the Macrocycle.

    PubMed

    Martinez-Cuezva, Alberto; Carro-Guillen, Fernando; Pastor, Aurelia; Marin-Luna, Marta; Orenes, Raul-Angel; Alajarin, Mateo; Berna, Jose

    2016-06-17

    We describe the incorporation of endo-pyridine units into the tetralactam ring of di(acylamino)pyridine-based rotaxanes. This macrocycle strongly associates with the linear interlocked component as confirmed by X-ray diffraction studies of rotaxane 2 b. Dynamic NMR studies of 2 b in solution revealed a rotational energy barrier that was higher than that of the related rotaxane 2 a, which lacks of pyridine rings in the macrocycle. The macrocycle distribution of the molecular shuttle 4 b, containing two endo-pyridine rings, shows that the major co-conformer is that with the cyclic component sitting over the di(acylamino)pyridine station. DFT calculations also support the marked preference of the ring for occupying the heterocyclic binding site. The association of N-hexylthymine with the di(acylamino)pyridine binding site of 4 b led to the formation of a rare 'S'-shaped co-conformer in which the tetralactam ring interacts simultaneously with both stations of the thread.

  14. Theoretical study on fulvic acid structure, conformation and aggregation. A molecular modelling approach.

    PubMed

    Alvarez-Puebla, R A; Valenzuela-Calahorro, C; Garrido, J J

    2006-04-01

    The ubiquitous presence of humic substances (HS), combined with their ability to provide multiple sites for chemical reaction, makes them relevant to numerous biogeochemical processes such as mineral weathering, nutrient bioavailability, and contaminant transport. The reactivity of HS depends on their functional group chemistry and microstructure, which are in turn influenced by the composition of the surrounding media. In order to help towards an understanding of structure conformations and aggregation process of HS in soils and waters and to get a better knowledge of these kinds of materials, a fulvic acid (FA) has been modelled as a function of its ionic state under different conditions. Our proposed theoretical model based on the Temple-Northeastern-Birmingham (TNB) monomer fits well with experimental observations on the solubility (dipolar moment) and electronic and vibrational spectra of FAs. The presence of water molecules has a great stabilization effect on the electrostatic energy; this effect is greater as ionized rate increases. In vacuum, the non-ionized aggregated species are more stable than monomers because of the increase in their interaction due to H-bonding and non-bonding forces. When the molecules are ionized, no aggregation process takes place. In solution, the FA concentration is a critical factor for the aggregation. The system containing two FA molecules probably did not form aggregates because its equivalent concentration was too low. When the concentration was increased, the system gave rise to the formation of aggregates. The ionic state is another critical factor in the aggregation process. The ionized FA has a higher electric negative charge, which increases the energetic barriers and inhibits the approximation of FA caused by the Brownian movement.

  15. Molecular Dynamics Investigations of the alpha-helix to Beta-barrel Conformational Transformation in RfaH

    NASA Astrophysics Data System (ADS)

    Gc, Jeevan; Bhandari, Yuba; Gerstman, Bernard; Chapagain, Prem

    2015-03-01

    We used combination of replica exchange molecular dynamics simulations with implicit solvent and detailed all-atom simulations with explicit solvent to investigate the α-helix to β-structure transformation of RfaH-CTD. While interacting with the N-terminal domain (NTD), the C-terminal domain (CTD) of RfaH folds to a α-helix bundle but it undergoes an all- α to all- β conformational transformation when it does not interact with the NTD. The RfaH-CTD in the all- α topology is involved in regulating transcription whereas in the all- β topology it is involved in stimulating translation by recruiting a ribosome to an mRNA. Calculations of free-energy landscape and transfer entropy elucidate the details of the RfaH-CTD transformation process. The importance of interfacial interactions between the two domains of RfaH is highlighted by the compromised structural integrity of the helical form of the CTD in the absence NTD. We also studied interdomain and intradomain interactions in RfaH using Steered Molecular Dynamics Simulations. We investigated the role of the interdomain salt-bridge interaction in the domain stability Potential mean force was calculated to obtain free energy profile using Jarzynski Equality.

  16. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    radius of gyration (Rg) distributions.17,22 Zhou and Berne showed significant dif- ferences in the free energy landscape of the C-terminal β-hairpin...exchange molecular dynamics simulation method employing the Poisson Boltzmann model. J. Chem. Phys. 2007, 127, 084119–17. (23) Zhou, R.; Berne , B. J...31) Gallicchio, E.; Andrec, M.; Felts, A. K.; Levy , R. M. Tempera- ture weighted histogram analysis method, replica exchange, and transi- tion paths. J. Phys. Chem. B 2005, 109, 6722–6731.

  17. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters.

    PubMed

    Lee, Po-Hsien; Kuo, Kuei-Ling; Chu, Pei-Ying; Liu, Eric M; Lin, Jung-Hsin

    2009-07-01

    Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

  18. Conformational evolution of ubiquitin ions in electrospray mass spectrometry: molecular dynamics simulations at gradually increasing temperatures.

    PubMed

    Segev, Elad; Wyttenbach, Thomas; Bowers, Michael T; Gerber, R Benny

    2008-06-07

    Evidence from cross section data indicates that ubiquitin +13 ions lose their secondary and tertiary structure in mass spectrometric experiments. These transitions from the folded state into the near linear final structure occur at the experimental temperatures on time scales that are far too long for conventional molecular dynamics simulations. In this study, an approach to mass spectrometric unfolding processes is developed and a detailed application to an ubiquitin +13 ion system is presented. The approach involves a sequence of molecular dynamics simulations at gradually increasing temperatures leading to identification of major intermediate states, and the unfolding pathway. The unfolding rate at any temperature can then be calculated by a Rice-Ramsperger-Kassel (RRK) approach. For ubiquitin +13, three interesting intermediate states were found and the final near linear geometry was computed. The several relevant energy barriers calculated for the process are in the range of 7 to 15 kcal mol(-1). The unfolding time scale at 300 K was computed to be 2 ms. Cross section calculations using a hard sphere scattering model were carried out for the final structure and found to be in good accord with the results of electrospray experiments supporting the theoretical model used. The approach employed here should be applicable to any other solvent-free protein system.

  19. High-order-harmonic generation in atomic and molecular systems

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Pérez-Hernández, Jose A.; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.

    2017-03-01

    High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation (SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range model, but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016), 10.1103/PhysRevA.94.043423], the multicenter matrix elements in our theory are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic systems, modeled under the single active electron approximation, and for simple diatomic molecular systems. Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are also captured by our model.

  20. Resistively Heated SiC Nozzle for Generating Molecular Beams

    NASA Technical Reports Server (NTRS)

    Cagiano, Steven; Abell, Robert; Patrick, Edward; Bendt, Miri; Gundersen, Cynthia

    2007-01-01

    An improved nozzle has been developed to replace nozzles used previously in an apparatus that generates a substantially unidirectional beam of molecules passing through a vacuum at speeds of several kilometers per second. The basic principle of operation of the apparatus is the same for both the previous and the present nozzle designs. The main working part of the nozzle is essentially a cylinder that is closed except that there is an inlet for a pressurized gas and, at one end, the cylinder is closed by a disk that contains a narrow central hole that serves as an outlet. The cylinder is heated to increase the thermal speeds of the gas molecules into the desired high-speed range. Heated, pressurized gas escapes through the outlet into a portion of the vacuum chamber that is separated, by a wall, from the rest of the vacuum chamber. In this portion of the vacuum chamber, the gas undergoes a free jet expansion. Most of the expanded gas is evacuated and thus does not become part of the molecular beam. A small fraction of the expanded beam passes through a narrow central orifice in the wall and thereby becomes a needle- thin molecular beam in the portion of the vacuum on the downstream side of the wall.

  1. The generation of meaningful information in molecular systems.

    PubMed

    Wills, Peter R

    2016-03-13

    The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it.

  2. Detection of conformational changes in immunoglobulin G using isothermal titration calorimetry with low-molecular-weight probes.

    PubMed

    Rispens, Theo; Lakemond, Catriona M M; Derksen, Ninotska I L; Aalberse, Rob C

    2008-09-15

    Proteins for therapeutic use may contain small amounts of partially misfolded monomeric precursors to postproduction aggregation. To detect these misfolded proteins in the presence of an excess of properly folded protein, fluorescent probes such as 8-anilino-1-naphthalene sulfonate (ANS) are commonly used. We investigated the possibility of using isothermal titration calorimetry (ITC) to improve the detection of this type of conformational change using hydrophobic probes. As a case study, conformational changes in human polyclonal immunoglobulin G (IgG) were monitored by measuring the enthalpies of binding of ANS using ITC. Results were compared with those using fluorescence spectroscopy. IgG heated at 63 degrees C was used as a model system for "damaged" IgG. Heat-treated IgG can be detected already at levels below 5% with both ITC and fluorescence. However, ITC allows a much wider molar probe-to-protein ratio to be sampled. In particular, using reverse titration experiments (allowing high probe-to-protein ratios not available to fluorescence spectroscopy), an increase in the number of binding sites with a K(d)>10 mM was observed for heat-treated IgG, reflecting subtle changes in structure. Both ITC and fluorescence spectroscopy showed low background signals for native IgG. The nature of the background signals was not clear from the fluorescence measurements. However, further analysis of the ITC background signals shows that a fraction (8%) binds ANS with a dissociation constant of approximately 0.2 mM. Measurements were also carried out at pH 4.5. Precipitation of IgG was induced by ANS at concentrations above 0.5 mM, interfering with the ITC measurements. Instead, with the nonfluorescent probes 4-amino-1-naphthalene sulfonate and 1-naphthalene sulfonate, no precipitation is observed. These probes yield differences in the enthalpies of binding to heated and nonheated IgG similar to ANS. The data illustrate that ITC with low-molecular-weight probes is a versatile

  3. [Which molecular biology techniques must conform to the armamentarium for basic research in uro-oncology?].

    PubMed

    Oriola, Josep

    2013-06-01

    Molecular biology has been one of the scientific disciplines in which there has been more advances in the last years. The first impulse in the study of genetic alterations came from the discovery of DNA structure, followed by elucidation of the genetic code, the discovery of restriction enzymes and subsequently the invention of PCR, not forgetting the exponential development of computer science. All of them have allowed us to know much more about our genome and its regulation than we could imagine. The impulse in proteomics has been especially in tune up of soft methods of ionization coupled with mass spectrometry. Nevertheless, this seems to be only the beginning since today there are continuous methodological advances that will increase more, without doubt, the knowledge and applications in this discipline.

  4. Effects of osmolytes on the helical conformation of model peptide: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mehrnejad, Faramarz; Ghahremanpour, Mohammad Mehdi; Khadem-Maaref, Mahmoud; Doustdar, Farahnoosh

    2011-01-01

    Co-solvents such as glycerol and sorbitol are small organic molecules solvated in the cellular solutions that can have profound effects on the protein structures. Here, the molecular dynamics simulations and comparative structural analysis of magainin, as a peptide model, in pure water, 2,2,2-trifluoroethanol/water, glycerol/water, and sorbitol/water are reported. Our results show that the peptide NMR structure is largely maintained its native structure in osmolytes-water mixtures. The simulation data indicates that the stabilizing effect of glycerol and sorbitol is induced by preferential accumulation of glycerol and sorbitol molecules around the nonpolar and aromatic residues. Thus, the presence of glycerol and sorbitol molecules decreases the interactions of water molecules with the hydrophobic residues of the peptide, and the alpha helical structure is stabilized.

  5. Conformational and Molecular Structures of α,β-Unsaturated Acrylonitrile Derivatives: Photophysical Properties and Their Frontier Orbitals.

    PubMed

    Percino, María Judith; Cerón, Margarita; Rodríguez, Oscar; Soriano-Moro, Guillermo; Castro, María Eugenia; Chapela, Víctor M; Siegler, Maxime A; Pérez-Gutiérrez, Enrique

    2016-03-28

    We report single crystal X-ray diffraction (hereafter, SCXRD) analyses of derivatives featuring the electron-donor N-ethylcarbazole or the (4-diphenylamino)phenyl moieties associated with a -CN group attached to a double bond. The compounds are (2Z)-3-(4-(diphenylamino)-phenyl)-2-(pyridin-3-yl)prop-2-enenitrile (I), (2Z)-3-(4-(diphenylamino)phenyl)-2-(pyridin-4-yl)-prop-2-enenitrile (II) and (2Z)-3-(9-ethyl-9H-carbazol-3-yl)-2-(pyridin-2-yl)enenitrile (III). SCXRD analyses reveal that I and III crystallize in the monoclinic space groups P2/c with Z' = 2 and C2/c with Z' = 1, respectively. Compound II crystallized in the orthorhombic space group Pbcn with Z' = 1. The molecular packing analysis was conducted to examine the pyridine core effect, depending on the ortho, meta- and para-positions of the nitrogen atom, with respect to the optical properties and number of independent molecules (Z'). It is found that the double bond bearing a diphenylamino moiety introduced properties to exhibit a strong π-π-interaction in the solid state. The compounds were examined to evaluate the effects of solvent polarity, the role of the molecular structure, and the molecular interactions on their self-assembly behaviors. Compound I crystallized with a cell with two conformers, anti and syn, due to interaction with solvent. DFT calculations indicated the anti and syn structures of I are energetically stable (less than 1 eV). Also electrochemical and photophysical properties of the compounds were investigated, as well as the determination of optimization calculations in gas and different solvent (chloroform, cyclohexane, methanol, ethanol, tetrahydrofuran, dichloromethane and dimethyl sulfoxide) in the Gaussian09 program. The effect of solvent by PCM method was also investigated. The frontier HOMO and LUMO energies and gap energies are reported.

  6. Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation

    PubMed Central

    Mo, Yuxiang; Lei, Jiangtao; Sun, Yunxiang; Zhang, Qingwen; Wei, Guanghong

    2016-01-01

    Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation. PMID:27620620

  7. Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Lei, Jiangtao; Sun, Yunxiang; Zhang, Qingwen; Wei, Guanghong

    2016-09-01

    Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.

  8. Computational diagnosis of protein conformational diseases: short molecular dynamics simulations reveal a fast unfolding of r-LDL mutants that cause familial hypercholesterolemia.

    PubMed

    Cuesta-López, S; Falo, F; Sancho, J

    2007-01-01

    The molecular basis of conformational diseases frequently resides in mutant proteins constituting a subset of the vast mutational space. While the subtleties of protein structure point to molecular dynamics (MD) techniques as promising tools for an efficient exploration of such a space, the average size of proteins and the time scale of unfolding events make this goal difficult with present computational capabilities. We show here, nevertheless, that an efficient approach is already feasible for modular proteins. Familial hypercholesterolemia (FH) is a conformational disease linked to mutations in the gene encoding the low density lipoprotein receptor. A high percentage of these mutations has been found in the seven small modular binding repeats of the receptor. Taking advantage of its small size, we have performed an in depth MD study of the fifth binding repeat. Fast unfolding dynamics have been observed in the absence of a structural bound calcium ion, which agrees with its reported essential role in the stability of the module. In addition, several mutations detected in FH patients have been analyzed, starting from the native conformation. Our results indicate that in contrast with the wild type protein and an innocuous control mutant, disease-related mutants experience, in short simulation times (2-8 ns), gross departures from the native state that lead to unfolded conformations and, in some cases, to binding site desorganization deriving in calcium release. Computational diagnosis of mutations leading to conformational diseases seems thus feasible, at least for small or modular pathogenic proteins.

  9. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  10. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    SciTech Connect

    Kamberaj, Hiqmet

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  11. Novel Phospho-Tau Monoclonal Antibody Generated Using a Liposomal Vaccine, with Enhanced Recognition of a Conformational Tauopathy Epitope

    PubMed Central

    Theunis, Clara; Adolfsson, Oskar; Crespo-Biel, Natalia; Piorkowska, Kasia; Pihlgren, Maria; Hickman, David T.; Gafner, Valérie; Borghgraef, Peter; Devijver, Herman; Pfeifer, Andrea; Van Leuven, Fred; Muhs, Andreas

    2016-01-01

    The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer’s disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy. Here we report the use of a liposomal vaccine for the generation of a monoclonal antibody with particular characteristics that makes it a valuable tool for fundamental studies as well as a candidate antibody for diagnostic and therapeutic applications. The specificity and affinity of antibody ACI-5400 were characterized by a panel of methods: (i) measuring the selectivity for a specific phospho-Tau epitope known to be associated with tauopathy, (ii) performing a combination of peptide and protein binding assays, (iii) staining of brain sections from mouse preclinical tauopathy models and from human subjects representing six different tauopathies, and (iv) evaluating the selective binding to pathological epitopes on extracts from tauopathy brains in non-denaturing sandwich assays. We conclude that the ACI-5400 antibody binds to protein Tau phosphorylated at S396 and favors a conformation that is typically present in the brain of tauopathy patients, including Alzheimer’s disease. PMID:28035925

  12. Denaturing gradient electrophoresis (DGE) and single-strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity.

    PubMed

    Loisel, Patrice; Harmand, Jérôme; Zemb, Olivier; Latrille, Eric; Lobry, Claude; Delgenès, Jean-Philippe; Godon, Jean-Jacques

    2006-04-01

    The exact extent of microbial diversity remains unknowable. Nevertheless, fingerprinting patterns [denaturing gradient electrophoresis (DGE), single-strand conformation polymorphism (SSCP)] provide an image of a microbial ecosystem and contain diversity data. We generated numerical simulation fingerprinting patterns based on three types of distribution (uniform, geometric and lognormal) with a range of units from 10 to 500,000. First, simulated patterns containing a diversity of around 1000 units or more gave patterns similar to those obtained in experiments. Second, the number of bands or peaks saturated quickly to about 35 and were unrelated to the degree of diversity. Finally, assuming lognormal distribution, we used an estimator of diversity on in silico and experimental fingerprinting patterns. Results on in silico patterns corresponded to the simulation inputs. Diversity results in experimental patterns were in the same range as those obtained from the same DNA sample in molecular inventories. Thus, fingerprinting patterns contain extractable data about diversity although not on the basis of a number of bands or peaks, as is generally assumed to be the case.

  13. Molecular structure of unsubstituted oxadiazolic analog of ortho-POPOP and peculiarities of conformational structure of this class of sterically hindered organic compounds

    NASA Astrophysics Data System (ADS)

    Doroshenko, A. O.; Baumer, V. N.; Verezubova, A. A.; Ptyagina, L. M.

    2002-05-01

    X-ray molecular structure of unsubstituted oxadiazolic ortho-analog of 1,4-bis-(5-phenyl-oxazolyl-2)-benzene (POPOP), synthesized via the 2,5-diphenyl-1,3,4-oxadiazole ortho-carbonic acid was revealed. Its conformation was found to be the same as for the compound obtained earlier from the 2,5-diphenyl-oxazole ortho-carbonic acid. Quantum-chemical modeling was conducted to understand the peculiarities of conformational structure of the investigated class of sterically hindered compounds.

  14. The molecular structure and conformation of trans-1,2,3-trichloropropene as determined by gas-phase electron diffraction

    NASA Astrophysics Data System (ADS)

    Shen, Quang

    1989-09-01

    The gas-phase molecular structure of trans-1,2,3-trichloropropene has been studied by electron diffraction at a nozzle-tip temperature of 110°C. The data are consistent with the presence of only a conformation with a torsional angle of 110° (8), where 0° corresponds to the eclipsing of the CCl and CC bonds. The principal geometrical parameter values ( rg and ∠ α) obtained from least squares refinement are: r(CH) = 1.06(3) Å, r(CC) = 1.365(12) Å, r(CC) = 1.467(15) Å, r(C 1Cl) = 1.733(25) Å, r(C 2Cl) = 1.727(25) Å, r(C 3Cl) = 1.800(9) Å, ∠ CCC = 124(2)°, ∠ ClC 1C 2 = 124(2)°, ∠ ClC 2C 1 = 115.2(14)°, ∠ClC 3C 2 = 110.9(13)°, and τ (ClC 3C 2C 1) = 110(8)°.

  15. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction

    NASA Astrophysics Data System (ADS)

    Ciemny, Maciej Pawel; Debinski, Aleksander; Paczkowska, Marta; Kolinski, Andrzej; Kurcinski, Mateusz; Kmiecik, Sebastian

    2016-12-01

    Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.

  16. Structural insights for designed alanine-rich helices: Comparing NMR helicity measures and conformational ensembles from molecular dynamics simulation

    PubMed Central

    Song, Kun; Stewart, James M.; Fesinmeyer, R. Matthew

    2013-01-01

    The temperature dependence of helical propensities for the peptides Ac-ZGG-(KAAAA)3X-NH2 (Z = Y or G, X = A, K, and d-Arg) were studied both experimentally and by molecular dynamics simulations. Good agreement is observed in both the absolute helical propensities as well as relative helical content along the sequence; the global minimum on the calculated free energy landscape corresponds to a single α-helical conformation running from K4 – A18 with some terminal fraying, particularly at the C-terminus. Energy component analysis shows that the single helix state has favorable intramolecular electrostatic energy due to hydrogen bonds, and that less-favorable two-helix globular states have favorable solvation energy. The central lysine residues do not appear to increase helicity; however, both experimental and simulation studies show increasing helicity in the series X = Ala → Lys → d-Arg. This C-capping preference was also experimentally confirmed in Ac-(KAAAA)3X-GY-NH2 and (KAAAA)3X-GY-NH2 sequences. The roles of the C-capping groups, and of lysines throughout the sequence, in the MD-derived ensembles are analyzed in detail. PMID:18428207

  17. Correlation of moth sex pheromone activities with molecular characteristics involved in conformers of bombykol and its derivatives.

    PubMed

    Kikuchi, T

    1975-09-01

    Molecular characteristics of bombykol and its 11 derivatives, which reveal significant correlations with biological activities for single sex pheromone receptor cells of four moth species, Bombyx mori, Aglia tau, Endromis versicolora, and Deilephila euphorbiae, were examined on the assumption of the "bifunctional unit model." Probabilities of bifunctional unit formations of those 12 compounds were assessed with frequency distribution patterns of distances between the proton acceptor, the proton donor, and the methyl group involved in a total of 1,200 conformers. A highly significant correlation exists between biological activity for each species and the probability of a particular bifunctional unit formation: a proton acceptor (A)--a methyl group (Me) unit (A--Me distances: about 6 A) for Deilephila (r = 0.94); a proton acceptor (A)--a proton donor (D)(A--D: about 11 A) for Aglia (r = 0.83); two antagonistic proton donor--methyl units (D--Me: about 14 and 5 A for favorable and adverse unit, respectively) for Bombyx (r = 0.94) and Endromis (r = 0.92).

  18. R-dependent molecular harmonic generation from H2+

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang

    2017-03-01

    R-dependent high-order harmonic spectra (R is the nuclear distance) from H2+ have been investigated through solving the Non-Bohn-Oppenheimer time-dependent Schrödinger equation. We found that (i) for the case of the few-cycle pulse, the harmonic emission mainly occurs from R = 3.7 to R = 6, caused by the charge-resonance-enhanced-ionization (CREI) process. (ii) For the case of the multi-cycle pulse, the harmonic emission can be separated into two parts, that is the charge-resonance-enhanced-ionization region from R = 3.7 to R = 8; and the dissociative ionization region when R > 10. (iii) Isotopic investigation showed that the R-dependent harmonic emission process can be moved towards the smaller-R region as the masses of the nuclei are increased (D2+ and T2+). (iv) Multi-minima on the harmonic spectra can be obtained, which is attributed to the two-center interference and the electron-nuclear coupling during the generation of the harmonics. The R-dependent ionization probabilities, the time-dependent nuclear motions and the time-frequency analyses of the harmonic spectra have been shown to explain the R-dependent molecular harmonic emission process.

  19. Molecular farming on rescue of pharma industry for next generations.

    PubMed

    Moustafa, Khaled; Makhzoum, Abdullah; Trémouillaux-Guiller, Jocelyne

    2016-10-01

    Recombinant proteins expressed in plants have been emerged as a novel branch of the biopharmaceutical industry, offering practical and safety advantages over traditional approaches. Cultivable in various platforms (i.e. open field, greenhouses or bioreactors), plants hold great potential to produce different types of therapeutic proteins with reduced risks of contamination with human and animal pathogens. To maximize the yield and quality of plant-made pharmaceuticals, crucial factors should be taken into account, including host plants, expression cassettes, subcellular localization, post-translational modifications, and protein extraction and purification methods. DNA technology and genetic transformation methods have also contributed to great parts with substantial improvements. To play their proper function and stability, proteins require multiple post-translational modifications such as glycosylation. Intensive glycoengineering research has been performed to reduce the immunogenicity of recombinant proteins produced in plants. Important strategies have also been developed to minimize the proteolysis effects and enhance protein accumulation. With growing human population and new epidemic threats, the need for new medications will be paramount so that the traditional pharmaceutical industry will not be alone to answer medication demands for upcoming generations. Here, we review several aspects of plant molecular pharming and outline some important challenges that hamper these ambitious biotechnological developments.

  20. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    PubMed Central

    Zuo, Zhicheng; Liu, Jin

    2016-01-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends. PMID:27874072

  1. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  2. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: A molecular dynamics simulation study

    SciTech Connect

    Sieker, Florian; Straatsma, TP; Springer, Sebastian; Zacharias, Martin W

    2008-08-01

    Efficiency of peptide loading to MHC class I molecules in the endoplasmatic reticulum depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Molecular dynamics (MD) simulations on induced peptide termini dissociation from the α1/α2 peptide binding domains have been performed to characterize free energy changes and associated structural changes in the two alleles. A smooth free energy change along the distance dissociation coordinate was obtained for N terminus dissociation. A different shape and magnitude of the calculated free energy change and was obtained for induced peptide C terminus dissociation in case of the tapasin independent allele B*4405 compared to B*4402. Structural changes during C terminus dissociation occurred mainly in the first segment of the α2-1 helix that flanks the peptide C-terminus binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a stable shift towards an altered open F-pocket structure deviating significantly from the bound form was observed. In contrast, B*4405 showed only a transient opening of the F-pocket followed by relaxation towards a structure close to the bound form upon C terminus dissociation. The greater tendency for peptide-receptive conformation in the absence of peptide combined with a more long-range character of the interactions with the peptide C terminus facilitates peptide binding to B*4405 and could be responsible for the tapasin independence of this allele. A possible role of tapasin in case of HLA-B*4402 and other tapasin-dependent alleles could be the stabilization of a peptide receptive class I

  3. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.

    PubMed

    Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2016-01-01

    The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by

  4. Regulation of sporulation initiation by NprR and its signaling peptide NprRB: molecular recognition and conformational changes.

    PubMed

    Cabrera, Rosina; Rocha, Jorge; Flores, Víctor; Vázquez-Moreno, Luz; Guarneros, Gabriel; Olmedo, Gabriela; Rodríguez-Romero, Adela; de la Torre, Mayra

    2014-11-01

    NprR belongs to the RNPP family of quorum-sensing receptors, a group of intracellular regulators activated directly by signaling oligopeptides in Gram-positive bacteria. In Bacillus thuringiensis (Bt), nprR is located in a transcriptional cassette with nprRB that codes for the precursor of the signaling peptide NprRB. NprR is a transcriptional regulator activated by binding of reimported NprRB; however, several reports suggest that NprR also participates in sporulation but the mechanism is unknown. Our in silico results, based on the structural similarity between NprR from Bt and Spo0F-binding Rap proteins from Bacillus subtilis, suggested that NprR could bind Spo0F to modulate the sporulation phosphorelay in Bt. Deletion of nprR-nprRB cassette from Bt caused a delay in sporulation and defective trigger of the Spo0A∼P-activated genes spoIIA and spoIIIG. The DNA-binding domain of NprR was not necessary for this second function, since truncated NprRΔHTH together with nprRB gene was able to restore the sporulation wild type phenotype in the ΔnprR-nprRB mutant. Fluorescence assays showed direct binding between NprR and Spo0F, supporting that NprR is a bifunctional protein. To understand how the NprR activation by NprRB could result in two different functions, we studied the molecular recognition mechanism between the signaling peptide and the receptor. Using synthetic variants of NprRB, we found that SSKPDIVG displayed the highest affinity (Kd = 7.19 nM) toward the recombinant NprR and demonstrated that recognition involves conformational selection. We propose that the peptide concentration in the cell controls the oligomerization state of the NprR-NprRB complex for switching between its two functions.

  5. A molecular mechanics study of the effect of substitution in position 1 on the conformational space of the oxytocin/vasopressin ring

    NASA Astrophysics Data System (ADS)

    Tarnowska, Monika; Liwo, Adam; Shenderovich, Mark D.; Liepiņa, Inta; Golbraikh, Alexander A.; Grzonka, Zbigniew; Tempczyk, Anna

    1993-12-01

    The effect of the substitution in position 1 on the low-energy conformations of the oxytocin/vasopressin 20-membered ring was investigated by means of molecular mechanics. Three representative substitutions were considered: β'-mercapto-β,β-dimethyl)propionic acid (Dmp), (β'-mercapto-β,β-cyclopentamethylene)propionic acid (Cpp), both forming strong antagonists, and (α,α-dimethyl-β-mercapto)propionic acid (α-Dmp), forming analogs of strongly reduced biological activity, with the β-mercaptopropionic (Mpa) residue taken as reference. Both ECEPP/2 (rigid valence geometry) and AMBER (flexible valence geometry) force fields were employed in the calculations. Three basic types of backbone conformations were taken into account which are distinguished by the type of β-turn at residues 3 and 4: β1/βIII, βII, and βI'/βIII', all types containing one or two intra-annular hydrogen bonds. The allowed (ring-closed) disulfide-bridge conformations were searched by an algorithm formulated in terms of scanning the disulfide-bridge torsional angle Cβ-S-S-Cβ. The ECEPP/2 and AMBER energies of the obtained conformations were found to be in reasonable agreement. Two of the low-energy conformers of the [Mpa1]-compound agreed very well with the cyclic part of the two conformers found in the crystal structure of [Mpa1]-oxytocin. An analysis of the effect of β-substitution on relative energies showed that the conformations with the N-C'-CH2-CH2 (ψ'1) and C'-CH2-CH2-S (ϰ'1) angles of the first residue around (-100°, 60°) and (100°, -60°) are not affected; this in most cases implies a left-handed disulfide bridge. In the case of α-substitution the allowed values of ψ'1 are close to ± 60°. This requirement, being in contradiction to the one concerning β-substitution, could explain the very low biological activity of the α-substituted analogs. The conformational preferences of substituted compounds can largely be explained by the analysis of local interactions

  6. Generation and release of molecular markers for Poa Arachnifera Torr

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA based molecular markers can be utilized in a wide array of plant genetic studies, marker-trait associations, seed purity evaluations and cultivar protection. However, for the genus Poa, the use of molecular markers is limited by the current lack of informative DNA based markers. This report r...

  7. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.

    PubMed

    Gamage, I H; Jonker, A; Zhang, X; Yu, P

    2014-01-24

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock

  8. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources

  9. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    PubMed

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.

  10. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-07

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  11. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  12. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2

    PubMed Central

    Pisani, Pasquale; Rastelli, Giulio

    2016-01-01

    Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human

  13. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane.

    PubMed

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S; Khalid, Syma

    2016-06-14

    Lipid II is critical for peptidoglycan synthesis, which is the main component of the bacterial cell wall. Lipid II is a relatively conserved and important part of the cell wall biosynthesis pathway and is targeted by antibiotics such as the lantibiotics, which achieve their function by disrupting the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes.

  14. Synthetic strategies for the generation of molecularly imprinted organic polymers.

    PubMed

    Mayes, A G; Whitcombe, M J

    2005-12-06

    Molecular imprinting is a method of inducing molecular recognition properties in synthetic polymers in response to the presence of a template species during formation of the three-dimensional structure of the polymer. The molecularly imprinted polymers (MIPs) prepared in this way have been termed "plastic antibodies" and combine the robustness of the polymer scaffold with binding properties more readily associated with biological receptors. Smart polymers of this type may find applications in drug delivery, controlled release and monitoring of drug and metabolite concentrations. In this review the main synthetic strategies used in the preparation of imprinted organic polymers are described in terms of the chemical principles used in the templating step. These are illustrated with examples taken from the literature and are classified as covalent, semi-covalent, non-covalent, metal-mediated and non-polar. Finally strategies for the selection of monomers, optimisation and modification of the properties of imprinted polymers are reviewed.

  15. Theoretical study of piezoelectrochemical reactions in molecular compression chambers: In-situ generation of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2016-09-01

    Nitrogen-containing molecular compression chambers (MCCs) undergo stepwise protonation followed by a 2-electron reduction step which affords molecular hydrogen in situ. This piezoelectrochemical reaction is favored by the high compression that characterizes the molecular skeleton of MCC and its fluorinated analogue. Besides H2, the MCCs are also capable of trapping molecular fluorine and the small monoatomic gases helium and neon. A topological analysis of the electronic charge density reveals the presence of closed-shell interactions between hosts and guests.

  16. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  17. ARP/wARP and molecular replacement: the next generation.

    PubMed

    Cohen, Serge X; Ben Jelloul, Marouane; Long, Fei; Vagin, Alexei; Knipscheer, Puck; Lebbink, Joyce; Sixma, Titia K; Lamzin, Victor S; Murshudov, Garib N; Perrakis, Anastassis

    2008-01-01

    Automatic iterative model (re-)building, as implemented in ARP/wARP and its new control system flex-wARP, is particularly well suited to follow structure solution by molecular replacement. More than 100 molecular-replacement solutions automatically solved by the BALBES software were submitted to three standard protocols in flex-wARP and the results were compared with final models from the PDB. Standard metrics were gathered in a systematic way and enabled the drawing of statistical conclusions on the advantages of each protocol. Based on this analysis, an empirical estimator was proposed that predicts how good the final model produced by flex-wARP is likely to be based on the experimental data and the quality of the molecular-replacement solution. To introduce the differences between the three flex-wARP protocols (keeping the complete search model, converting it to atomic coordinates but ignoring atom identities or using the electron-density map calculated from the molecular-replacement solution), two examples are also discussed in detail, focusing on the evolution of the models during iterative rebuilding. This highlights the diversity of paths that the flex-wARP control system can employ to reach a nearly complete and accurate model while actually starting from the same initial information.

  18. Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis.

    PubMed

    Kamachi, Takashi; Yoshizawa, Kazunari

    2016-02-22

    A conformational search program for finding low-energy conformations of large noncovalent complexes has been developed. A quantitatively reliable semiempirical quantum mechanical PM6-DH+ method, which is able to accurately describe noncovalent interactions at a low computational cost, was employed in contrast to conventional conformational search programs in which molecular mechanical methods are usually adopted. Our approach is based on the low-mode method whereby an initial structure is perturbed along one of its low-mode eigenvectors to generate new conformations. This method was applied to determine the most stable conformation of transition state for enantioselective alkylation by the Maruoka and cinchona alkaloid catalysts and Hantzsch ester hydrogenation of imines by chiral phosphoric acid. Besides successfully reproducing the previously reported most stable DFT conformations, the conformational search with the semiempirical quantum mechanical calculations newly discovered a more stable conformation at a low computational cost.

  19. ARP/wARP and molecular replacement: the next generation

    SciTech Connect

    Cohen, Serge X. Ben Jelloul, Marouane; Long, Fei; Vagin, Alexei; Knipscheer, Puck; Lebbink, Joyce; Sixma, Titia K.; Lamzin, Victor S.; Murshudov, Garib N.; Perrakis, Anastassis

    2008-01-01

    A systematic test shows how ARP/wARP deals with automated model building for structures that have been solved by molecular replacement. A description of protocols in the flex-wARP control system and studies of two specific cases are also presented. Automatic iterative model (re-)building, as implemented in ARP/wARP and its new control system flex-wARP, is particularly well suited to follow structure solution by molecular replacement. More than 100 molecular-replacement solutions automatically solved by the BALBES software were submitted to three standard protocols in flex-wARP and the results were compared with final models from the PDB. Standard metrics were gathered in a systematic way and enabled the drawing of statistical conclusions on the advantages of each protocol. Based on this analysis, an empirical estimator was proposed that predicts how good the final model produced by flex-wARP is likely to be based on the experimental data and the quality of the molecular-replacement solution. To introduce the differences between the three flex-wARP protocols (keeping the complete search model, converting it to atomic coordinates but ignoring atom identities or using the electron-density map calculated from the molecular-replacement solution), two examples are also discussed in detail, focusing on the evolution of the models during iterative rebuilding. This highlights the diversity of paths that the flex-wARP control system can employ to reach a nearly complete and accurate model while actually starting from the same initial information.

  20. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  1. Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1.

    PubMed Central

    Li, H.; Tejero, R.; Monleon, D.; Bassolino-Klimas, D.; Abate-Shen, C.; Bruccoleri, R. E.; Montelione, G. T.

    1997-01-01

    We have developed an automatic approach for homology modeling using restrained molecular dynamics and simulated annealing procedures, together with conformational search algorithms available in the molecular mechanics program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168). The accuracy of the method is validated by "predicting" structures of two homeodomain proteins with known three-dimensional structures, and then applied to predict the three-dimensional structure of the homeodomain of the murine Msx-1 transcription factor. Regions of the unknown protein structure that are highly homologous to the known template structure are constrained by "homology distance constraints," whereas the conformations of nonhomologous regions of the unknown protein are defined only by the potential energy function. A full energy function (excluding explicit solvent) is employed to ensure that the calculated structures have good conformational energies and are physically reasonable. As in NMR structure determinations, information on the consistency of the structure prediction is obtained by superposition of the resulting family of protein structures. In this paper, our homology modeling algorithm is described and compared with related homology modeling methods using spatial constraints derived from the structures of homologous proteins. The software is then used to predict the DNA-bound structures of three homeodomain proteins from the X-ray crystal structure of the engrailed homeodomain protein (Kissinger CR et al., 1990, Cell 63:579-590). The resulting backbone and side-chain conformations of the modeled yeast Mat alpha 2 and D. melanogaster Antennapedia homeodomains are excellent matches to the corresponding published X-ray crystal (Wolberger C et al., 1991, Cell 67:517-528) and NMR (Billeter M et al., 1993, J Mol Biol 234:1084-1097) structures, respectively. Examination of these structures of Msx-1 reveals a network of highly conserved surface salt bridges that

  2. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-05

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  3. Conformational kinetics reveals affinities of protein conformational states.

    PubMed

    Daniels, Kyle G; Suo, Yang; Oas, Terrence G

    2015-07-28

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

  4. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.

    PubMed

    Dierks, Thomas; Dickmanns, Achim; Preusser-Kunze, Andrea; Schmidt, Bernhard; Mariappan, Malaiyalam; von Figura, Kurt; Ficner, Ralf; Rudolph, Markus Georg

    2005-05-20

    Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.

  5. "Too small, too big, and just right"--optical sensing of molecular conformations in self-assembled capsules.

    PubMed

    Ams, Mark R; Ajami, Dariush; Craig, Stephen L; Yang, Jye-Shane; Rebek, Julius

    2009-09-23

    Irradiation of dimethylbenzil within a cylindrical capsule gives bright green phosphorescence, while irradiation of benzil and dimethoxybenzil in the same capsule results in high energy blue fluorescence. This difference is likely due to the geometric restrictions imposed by the capsule's space on its excited guests, forcing a trans-planar conformation in some cases and cis-skewed in others.

  6. Ball-and-Stick Local Elevation Umbrella Sampling: Molecular Simulations Involving Enhanced Sampling within Conformational or Alchemical Subspaces of Low Internal Dimensionalities, Minimal Irrelevant Volumes, and Problem-Adapted Geometries.

    PubMed

    Hansen, Halvor S; Hünenberger, Philippe H

    2010-09-14

    A new method, ball-and-stick local elevation umbrella sampling (B&S-LEUS), is proposed to enhance the sampling in computer simulations of (bio)molecular systems. It enables the calculation of conformational free-energy differences between states (or alchemical free-energy differences between molecules), even in situations where the definition of these states relies on a conformational subspace involving more than a few degrees of freedom. The B&S-LEUS method consists of the following steps: (A) choice of a reduced conformational subspace; (B) representation of the relevant states by means of spheres ("balls"), each associated with a biasing potential involving a one-dimensional radial memory-based term and a radial confinement term; (C) definition of a set of lines ("sticks") connecting these spheres, each associated with a biasing potential involving a one-dimensional longitudinal memory-based term and a transverse confinement term; (D) unification of the biasing potentials corresponding to the union of all of the spheres and lines (active subspace) into a single biasing potential according to the enveloping distribution sampling (EDS) scheme; (E) build-up of the memory using the local elevation (LE) procedure, leading to a biasing potential enabling a nearly uniform sampling (radially within the spheres, longitudinally within the lines) of the active subspace; (F) generation of a biased ensemble of configurations using this preoptimized biasing potential, following an umbrella sampling (US) approach; and (G) calculation of the relative free energies of the states via reweighting and state assignment. The main characteristics of this approach are: (i) a low internal dimensionality, that is, the memory only involves one-dimensional grids (acceptable memory requirements); (ii) a minimal irrelevant volume, that is, the conformational volume opened to sampling includes a minimal fraction of irrelevant regions in terms of the free energy of the physical system or of

  7. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  8. Effect of interaction with coesite silica on the conformation of Cecropin P1 using explicit solvent molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Chang, Hector; Mello, Charlene; Nagarajan, Ramanathan; Narsimhan, Ganesan

    2013-01-01

    Explicit solvent molecular dynamics (MD) simulation was carried out for the antimicrobial peptides (i) Cecropin P1 and C-terminus cysteine modified Cecropin P1 (Cecropin P1 C) in solution, (ii) Cecropin P1 and Cecropin P1 C adsorbed onto coesite -Si - O - and Si - O - H surfaces, and (iii) Cecropin P1 C tethered to coesite -Si - O - surface with either (PEO)3 or (PEO)6 linker. Low energy structures for Cecropin P1 and Cecropin P1 C in solution consists of two regions of high α helix probability with a sharp bend, consistent with the available structures of other antimicrobial peptides. The structure of Cecropin P1 C at low ionic strength of 0.02 M exhibits two regions of high α helix probability (residues AKKLEN and EGI) whereas at higher ionic strength of 0.12 M, the molecule was more compact and had three regions of higher α helix probability (residues TAKKLENSA, ISE, and AIQG) with an increase in α helical content from 15.6% to 18.7% as a result of shielding of electrostatic interactions. In the presence of Cecropin P1 C in the vicinity of -Si - O - surface, there is a shift in the location of two peaks in H - O - H density profile to larger distances (2.95 Å and 7.38 Å compared to 2.82 Å and 4.88 Å in the absence of peptide) with attenuated peak intensity. This attenuation is found to be more pronounced for the first peak. H-bond density profile in the vicinity of -Si - O - surface exhibited a single peak in the presence of Cecropin P1 C (at 2.9 Å) which was only slightly different from the profile in the absence of polypeptide (2.82 Å) thus indicating that Cecropin P1 C is not able to break the H-bond formed by the silica surface. The α helix probability for different residues of adsorbed Cecropin P1 C on -Si - O - surface is not significantly different from that of Cecropin P1 C in solution at low ionic strength of 0.02 M whereas there is a decrease in the probability in the second (residues ISE) and third (residues AIQG) α helical regions at

  9. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  10. Fast generation of three-dimensional computational boundary-conforming periodic grids of C-type. [for turbine blades and propellers

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1982-01-01

    A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.

  11. Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method

    NASA Astrophysics Data System (ADS)

    Iga, Shin-ichi

    2015-09-01

    A generation method for smooth, seamless, and structured triangular grids on a sphere with flexibility in resolution distribution is proposed. This method is applicable to many fields that deal with a sphere on which the required resolution is not uniform. The grids were generated using the spring dynamics method, and adjustments were made using analytical functions. The mesh topology determined its resolution distribution, derived from a combination of conformal mapping factors: polar stereographic projection (PSP), Lambert conformal conic projection (LCCP), and Mercator projection (MP). Their combination generated, for example, a tropically fine grid that had a nearly constant high-resolution belt around the equator, with a gradual decrease in resolution distribution outside of the belt. This grid can be applied to boundary-less simulations of tropical meteorology. The other example involves a regionally fine grid with a nearly constant high-resolution circular region and a gradually decreasing resolution distribution outside of the region. This is applicable to regional atmospheric simulations without grid nesting. The proposed grids are compatible with computer architecture because they possess a structured form. Each triangle of the proposed grids was highly regular, implying a high local isotropy in resolution. Finally, the proposed grids were examined by advection and shallow water simulations.

  12. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    SciTech Connect

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  13. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  14. State-selective generation of molecular ions via Rydberg states

    NASA Astrophysics Data System (ADS)

    Grimes, David; Zhou, Yan; Barnum, Timothy; Coy, Stephen; Kay, Jeffrey; Field, Robert

    2014-05-01

    Autoionizing Rydberg states of molecules in the range n = 30-50 have the potential to enable the production of single quantum state selected ensembles of molecular ions, which have uses from spectroscopy to high precision measurements of fundamental constants. Multichannel Quantum Defect Theory (MQDT) fully describes the Rydberg states of molecules and the dynamics of autoionization. We have used our full MQDT description of CaF to determine optimal autoionizing resonances for producing a variety of selected rotation-vibration states of the ion. Progress towards experimental demonstrations in BaF will also be discussed. This work was supported by the NSF and an NDSEG Fellowship

  15. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.

    PubMed

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2015-11-11

    Understanding phonon transport at a molecular scale is fundamental to the development of high-performance thermoelectric materials for the conversion of waste heat into electricity. We have studied phonon and electron transport in alkane and oligoyne chains of various lengths and find that, due to the more rigid nature of the latter, the phonon thermal conductances of oligoynes are counterintuitively lower than that of the corresponding alkanes. The thermal conductance of oligoynes decreases monotonically with increasing length, whereas the thermal conductance of alkanes initially increases with length and then decreases. This difference in behavior arises from phonon filtering by the gold electrodes and disappears when higher-Debye-frequency electrodes are used. Consequently a molecule that better transmits higher-frequency phonon modes, combined with a low-Debye-frequency electrode that filters high-energy phonons is a viable strategy for suppressing phonon transmission through the molecular junctions. The low thermal conductance of oligoynes, combined with their higher thermopower and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.4, which is several orders of magnitude higher than that of alkanes.

  16. Conformational and entropy analyses of extended molecular dynamics simulations of α-, β- and γ-cyclodextrins and of the β-cyclodextrin/nabumetone complex.

    PubMed

    Suárez, Dimas; Díaz, Natalia

    2017-01-04

    Herein, we report the results of 5.0 μs molecular dynamics simulations of native α-, β- and γ-cyclodextrins (CDs) in explicit water solvent that are useful to describe, in a comparative manner, the distorted geometry of the CD molecules in aqueous solution, the width and fluctuations of their cavities, and the number of cavity waters. By discretizing the time evolution of the dihedral angles, the rate of conformational change of the torsional motions and the conformational entropy are calculated for the three CDs, thus allowing the analysis of the extent of the MD sampling and the entropic significance of the CD flexibility. To obtain a first estimation of the conformational and entropy changes in the host molecule upon ligand binding, the inclusion complex formed between β-CD and nabumetone is also studied. Overall, the simulations complement previous experimental results on the structure and dynamics of native CDs, and together with the results obtained for the inclusion complex, provide insight into the entropic effects at work on the binding equilibria between CDs and guest ligands.

  17. The Periplasmic Bacterial Molecular Chaperone SurA Adapts Its Structure to Bind Peptides in Different Conformations to Assert a Sequence Preference for Aromatic Residues

    SciTech Connect

    Xu, X.; Wang, S.; Hu, Y.-X.; McKay, D.B.

    2009-06-04

    The periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations.

  18. Application of time series analysis on molecular dynamics simulations of proteins: A study of different conformational spaces by principal component analysis

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.

    2004-09-01

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.

  19. One gene, two diseases and three conformations: molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures.

    PubMed

    Shamsir, Mohd S; Dalby, Andrew R

    2005-05-01

    Fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) are associated to the same mutation at codon 178 but differentiate into clinicopathologically distinct diseases determined by this mutation and a naturally occurring methionine-valine polymorphism at codon 129 of the prion protein gene. It has been suggested that the clinical and pathological difference between FFI and CJD is caused by different conformations of the prion protein. Using molecular dynamics (MD), we investigated the effect of the mutation at codon 178 and the polymorphism at codon 129 on prion protein dynamics and conformation at normal and elevated temperatures. Four model structures were examined with a focus on their dynamics and conformational changes. The results showed differences in stability and dynamics between polymorphic variants. Methionine variants demonstrated a higher stability than valine variants. Elongation of existing beta-sheets and formation of new beta-sheets was found to occur more readily in valine polymorphic variants. We also discovered the inhibitory effect of proline residue on existing beta-sheet elongation.

  20. Comparison Between Self-Guided Langevin Dynamics and Molecular Dynamics Simulations for Structure Refinement of Protein Loop Conformations

    DTIC Science & Technology

    2011-01-01

    the shorter loops placed initially from a coarse- grained lattice model and the longer loops from an enumeration assembly method (the Loopy program...Å, a0 ¼ 1.2045, and a1 ¼ 0.1866. The hydrophobic cavitation energy term was approximated by a linear product of the sol- vent-exposed surface area... boundary should allow greater excursions on rugged conformational energy landscapes by increasing transmission probabilities across high potential-energy

  1. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.

    PubMed

    Verkhivker, Gennady M

    2012-01-01

    Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require

  2. 35Cl NQR spectra of phosphorus chlorides and their molecular conformations in crystals. Part 1. Phosphorus (III) chlorides RPCl 2

    NASA Astrophysics Data System (ADS)

    Kozlov, E. S.; Kapustin, E. G.; Soifer, G. B.

    2000-09-01

    For the phosphorus chlorides RPCl 2 (R=Cl, Me, ClCH 2, CF 3, Et, i-Pr, Me 2C=CH, PhCH=CH, Me 2N, Et 2N, Pr 2N, MeO, PhO) and R'PCl 2 (R'=Ar, 2-thienyl) two linear correlations between the 35Cl NQR frequencies and charges on the chlorine atoms of the PCl 2 groups calculated by the MNDO procedure have been found. It was shown that the 35Cl NQR spectra and the relative magnitudes of the charges on the chlorine atoms of the PCl 2 groups can be used to determine conformation of the RPCl 2 molecules in crystal. Ab initio (RHF/6-31 G ∗ and MP2/6-31 G ∗) calculations showed that the gauche conformation of Me 2NPCl 2 molecule is more stable than trans conformation. In light of ab initio calculations electron diffraction results (Vilkov L.V., Khaikin L.S., Dokl. Akad. Nauk SSSR, 168 (1966) 810) are erroneous. The NBO analysis confirmed the presence of donor-acceptor interactions between the lone pair orbital of the nitrogen atom and the antibonding orbitals of the P-Cl bonds.

  3. Molecular dynamics characterization of the conformational landscape of small peptides: A series of hands-on collaborative practical sessions for undergraduate students.

    PubMed

    Rodrigues, João P G L M; Melquiond, Adrien S J; Bonvin, Alexandre M J J

    2016-01-01

    Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These improvements are also benefitting scientific education. Molecular simulations, their underlying theory, and their applications are particularly difficult to grasp for undergraduate students. Having hands-on experience with the methods contributes to a better understanding and solidification of the concepts taught during the lectures. To this end, we have created a computer practical class, which has been running for the past five years, composed of several sessions where students characterize the conformational landscape of small peptides using molecular dynamics simulations in order to gain insights on their binding to protein receptors. In this report, we detail the ingredients and recipe necessary to establish and carry out this practical, as well as some of the questions posed to the students and their expected results. Further, we cite some examples of the students' written reports, provide statistics, and share their feedbacks on the structure and execution of the sessions. These sessions were implemented alongside a theoretical molecular modelling course but have also been used successfully as a standalone tutorial during specialized workshops. The availability of the material on our web page also facilitates this integration and dissemination and lends strength to the thesis of open-source science and education.

  4. Conformational polymorphism in a heteromolecular single crystal leads to concerted movement akin to collective rack-and-pinion gears at the molecular level.

    PubMed

    Sokolov, Anatoliy N; Swenson, Dale C; MacGillivray, Leonard R

    2008-02-12

    We describe a heteromolecular single crystal that exhibits three reversible and concerted reorganizations upon heating and cooling. The products of the reorganizations are conformational polymorphs. The reorganizations are postulated to proceed through three motions: (i) alkyl translations, (ii) olefin rotations, and (iii) rotational tilts. The motions are akin to rack-and-pinion gears at the molecular level. The rack-like movement is based on expansions and compressions of alkyl chains that are coupled with pinion-like 180 degree rotations of olefins. To accommodate the movements, phenol and thiophene components undergo rotational tilts about intermolecular hydrogen bonds. The movements are collective, being propagated in close-packed repeating units. This discovery marks a step to understanding how organic solids can support the development of crystalline molecular machines and devices through correlated and collective movements.

  5. Sum-frequency generation from molecular monolayers using 14 {mu}m radiation from the FELIX free-electron laser

    SciTech Connect

    Van der Ham, E.W.M.; Vrehen, Q.H.F.; Eliel, E.R.

    1995-12-31

    Sum-frequency generation (SFG) has developed into a widely applied tool for study of surfaces and interfaces where molecules are present. It combines the surface specificity of a second-order nonlinear optical technique with the power of a spectroscopic method, and it can be used under widely varying experimental conditions ranging from UHV to electrochemical cells. The important characteristic of SFG is that it allows one to study the average spatial orientation of a molecular bond in a monolayer of molecules at an interface. Until recently SFG measurements were confined to the frequency interval Y {mu} > 1700 cm{sup -1} because of a lack of suitable laser sources at wave-lengths {lambda} > 6 {mu}m. So for most molecules only a few vibrational modes and thus intramolecular bonds can be studied. We have developed a universal sum-frequency spectrometer around the FELIX free-electron law that covers the complete molecular fingerprint since we can generate any IR wavelength between 2.75 and 110 f{mu} at the FELIX facility. We have used this setup for a series of exploratory SFG experiments in a frequency range that was hitherto unexplored in the study of molecular monolayers. We have studied thiol monolayers chemisorbed on a variety of noble metals (Au, Ag, Pt) where we focussed on the C-S stretch vibration at {nu} = 702 cm{sup -1} ({lambda} = 14.3 {mu}m). We have found spectroscopic features revealing the presence of both the trane and gauche conformers of the adsorbed molecules. The present measurements open a whole new wavelength range for nonlinear optical studies of interfaces.

  6. Water induced dismutation of superoxide anion generates singlet molecular oxygen.

    PubMed

    Corey, E J; Mehrotra, M M; Khan, A U

    1987-06-15

    Direct spectroscopic measurement of 1268 nm singlet oxygen emission from KO2 suspensions at room temperature in three non-protonic solvents--CCl4, Cl2FCCClF2, and C6F14 by the action of water is reported. The results clearly show that the singlet oxygen generation is due to a water induced reaction, and suggest that one role of the enzyme superoxide dismutase may be the protection of biological structures, for example, lipid membranes, from degradation by singlet oxygen.

  7. Molecular metal-Oxo catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  8. A new generation of protein display scaffolds for molecular recognition

    PubMed Central

    Hosse, Ralf J.; Rothe, Achim; Power, Barbara E.

    2006-01-01

    Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications. PMID:16373474

  9. Conformational stability, molecular orbital studies (chemical hardness and potential), vibrational investigation and theoretical NBO analysis of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene.

    PubMed

    Saravanan, S; Balachandran, V; Vishwanathan, K

    2014-04-24

    The FT-IR and FT-Raman spectra of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene (musk ambrette) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The total energy calculations of musk ambrette were tried for the possible conformers. The molecular structure, geometry optimization, vibrational frequencies were obtained by the density functional theory (DFT) using B3LYP and LSDA method with 6-311G(d,p) basis set for the most stable conformer "C1". The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated and the scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The stability of the molecule arising from hyper conjugate interactions and the charge delocalization has been analyzed using bond orbital (NBO) analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The dipole moment (μ), polarizability (α), anisotropy polarizability (Δα) and first hyperpolarizability (βtot) of the molecule have been reported. The thermodynamic functions (heat capacity, entropy and enthalpy) were obtained for the range of temperature 100-1000 K. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  10. GRID3O: Computer program for fast generation of multilevel, three-dimensional boundary-conforming O-type computational grids

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1981-01-01

    A fast algorithm was developed for accurately generating boundary-conforming, three-dimensional, consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. The method is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing edge to end at downstream infinity, the numerical treatment of the three-dimensional trailing vortex sheets is simplified.

  11. PMG: online generation of high-quality molecular pictures and storyboarded animations.

    PubMed

    Autin, Ludovic; Tufféry, Pierre

    2007-07-01

    The Protein Movie Generator (PMG) is an online service able to generate high-quality pictures and animations for which one can then define simple storyboards. The PMG can therefore efficiently illustrate concepts such as molecular motion or formation/dissociation of complexes. Emphasis is put on the simplicity of animation generation. Rendering is achieved using Dino coupled to POV-Ray. In order to produce highly informative images, the PMG includes capabilities of using different molecular representations at the same time to highlight particular molecular features. Moreover, sophisticated rendering concepts including scene definition, as well as modeling light and materials are available. The PMG accepts Protein Data Bank (PDB) files as input, which may include series of models or molecular dynamics trajectories and produces images or movies under various formats. PMG can be accessed at http://bioserv.rpbs.jussieu.fr/PMG.html.

  12. Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface.

    PubMed

    Majumder, Rinku; Weinreb, Gabriel; Lentz, Barry R

    2005-12-27

    Activation of prothrombin to thrombin is catalyzed by a "prothrombinase" complex, traditionally viewed as factor X(a) (FX(a)) in complex with factor V(a) (FV(a)) on a phosphatidylserine (PS)-containing membrane surface, which is widely regarded as required for efficient activation. Activation involves cleavage of two peptide bonds and proceeds via one of two released intermediates or through "channeling" (activation without the release of an intermediate). We ask here whether the PS molecule itself and not the membrane surface is sufficient to produce the fully active human "prothrombinase" complex in solution. Both FX(a) and FV(a) bind soluble dicaproyl-phosphatidylserine (C6PS). In the presence of sufficient C6PS to saturate both FX(a) and FV(a2) (light isoform of FV(a)), these proteins form a tight (Kd = 0.6 +/- 0.09 nM at 37 degrees C) soluble complex. Complex assembly occurs well below the critical micelle concentration of C6PS, as established in the presence of the proteins by quasi-elastic light scattering and pyrene fluorescence. Ferguson analysis of native gels shows that the complex migrates with an apparent molecular mass only slightly larger than that expected for one FX(a) and one FV(a2), further ruling out complex assembly on C6PS micelles. Human prothrombin activation by this complex occurs at nearly the same overall rate (2.2 x 10(8) M(-1) s(-1)) and via the same reaction pathway (50-60% channeling, with the rest via the meizothrombin intermediate) as the activation catalyzed by a complex assembled on PS-containing membranes (4.4 x 10(8) M(-1) s(-1)). These results question the accepted role of PS membranes as providing "dimensionality reduction" and favor a regulatory role for platelet-membrane-exposed PS.

  13. Molecular typing of isolates of the fish pathogen, Flavobacterium columnare, by single-strand conformation polymorphism analysis.

    PubMed

    Olivares-Fuster, Oscar; Shoemaker, Craig A; Klesius, Phillip H; Arias, Covadonga R

    2007-04-01

    Flavobacterium columnare intraspecies diversity was revealed by analyzing the 16S rRNA gene and the 16S-23S internal spacer region (ISR). Standard restriction fragment length polymorphism (RFLP) of these sequences was compared with single-strand conformation polymorphism (SSCP). Diversity indexes showed that both 16S-SSCP and ISR-SSCP improved resolution (D>or=0.9) when compared with standard RFLP. ISR-SSCP offered a simpler banding pattern than 16S-SSCP while providing high discrimination between isolates. SSCP analysis of rRNA genes proved to be a simple, rapid, and cost-effective method for routine fingerprinting of F. columnare.

  14. Three tetracyclic dibenzoazepine derivatives exhibiting different molecular conformations, different patterns of intermolecular hydrogen bonding and different modes of supramolecular aggregation.

    PubMed

    Mateus-Ruíz, Jeferson B; Acosta Quintero, Lina M; Palma, Alirio; Macías, Mario A; Cobo, Justo; Glidewell, Christopher

    2017-01-01

    The biological potential of compounds of the tricyclic dibenzo[b,e]azepine system has resulted in considerable synthetic efforts to develop efficient methods for the synthesis of new derivatives of this kind. (9RS,15RS)-9-Ethyl-11-methyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one, C19H19NOS, (I), crystallizes as a kryptoracemate with Z' = 2 in the space group P21, with one molecule each of the (9R,15R) and (9S,15S) configurations in the asymmetric unit, while (9RS,15RS)-9-ethyl-7,12-dimethyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one, C20H21NOS, (II), crystallizes with Z' = 1 in the space group C2/c. Ethyl (13RS)-2-chloro-13-ethyl-4-oxo-8,13-dihydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxylate, C22H20ClNO3, (III), exhibits enantiomeric disorder in the space group P-1 such that the reference site is occupied by the 13R and 13S enantiomers, with occupancies of 0.900 (6) and 0.100 (6). In each of the two independent molecules in (I), the five-membered ring adopts an envelope conformation, but the corresponding ring in (II) adopts a half-chair conformation, while the six-membered ring in the major form of (III) adopts a twist-boat conformation. The conformation of the seven-membered ring in each of (I), (II) and the major form of (III) approximates to the twist-boat form. The molecules of compound (I) are linked by two C-H...O hydrogen bonds to form two independent antiparallel C(5) chains, with each type containing only one enantiomer. These chains are linked into sheets by two C-H...π(arene) hydrogen bonds, in which the two donors are both provided by the (9R,15R) enantiomer and the two acceptor arene rings form part of a molecule of (9S,15S) configuration, precluding any additional crystallographic symmetry. The molecules of compound (II) are linked by inversion-related C-H...π(arene) hydrogen bonds to form isolated cyclic centrosymmetric dimers. The molecules of compound (III) are linked into cyclic centrosymmetric dimers

  15. Electronic and molecular properties of an adsorbed protein monolayer probed by two-color sum-frequency generation spectroscopy.

    PubMed

    Dreesen, L; Humbert, C; Sartenaer, Y; Caudano, Y; Volcke, C; Mani, A A; Peremans, A; Thiry, P A; Hanique, S; Frère, J-M

    2004-08-17

    Two-color sum-frequency generation spectroscopy (2C-SFG) is used to probe the molecular and electronic properties of an adsorbed layer of the green fluorescent protein mutant 2 (GFPmut2) on a platinum (111) substrate. First, the spectroscopic measurements, performed under different polarization combinations, and atomic force microscopy (AFM) show that the GFPmut2 proteins form a fairly ordered monolayer on the platinum surface. Next, the nonlinear spectroscopic data provide evidence of particular coupling phenomena between the GFPmut2 vibrational and electronic properties. This is revealed by the occurrence of two doubly resonant sum-frequency generation processes for molecules having both their Raman and infrared transition moments in a direction perpendicular to the sample plane. Finally, our 2C-SFG analysis reveals two electronic transitions corresponding to the absorption and fluorescence energy levels which are related to two different GFPmut2 conformations: the B (anionic) and I forms, respectively. Their observation and wavelength positions attest the keeping of the GFPmut2 electronic properties upon adsorption on the metallic surface.

  16. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    PubMed

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an

  17. Methylglyoxal mediated conformational changes in histone H2A-generation of carboxyethylated advanced glycation end products.

    PubMed

    Mir, Abdul Rouf; uddin, Moin; Alam, Khursheed; Ali, Asif

    2014-08-01

    Methylglyoxal, an oxo-aldehyde has been implicated as a potential precursor in non enzymatic glycation reactions. Its role in the modification of extra cellular proteins has been extensively reported, but little is known about its modification of nuclear proteins, like histones. Here, we report the methylglyoxal induced modification of histone H2A which forms an essential part of intact core nucleosome. In this study commercially available histone H2A was subjected to in vitro non-enzymatic glycation by methylglyoxal. The structural alterations in the histone were characterised by various biophysical and biochemical techniques. The modified histone showed hyperchromicity at 276nm, loss in intrinsic tyrosine fluorescence intensity at 305nm along with a red shift, cross linking and dimer formation in SDS PAGE, induction of α-helix in CD spectroscopy, reduced hydrophobicity in ANS binding studies, accumulation of AGE products, increased carbonyl content, and appearance of a novel peak showing carboxyethylation complemented by a shift in amide I and amide II bands in ATR-FTIR spectroscopy. The modified histone exhibited increased melting temperatures (Tm) and enhanced heat capacities (Cp) in differential scanning calorimetric analysis. The results suggest that methylglyoxal significantly altered the structure of the nuclear histone H2A by non enzymatic glycation reaction. The conformational changes in histone H2A may influence the chromatin integrity which may have implications in various pathological conditions.

  18. Spatially Resolving Ordered and Disordered Conformers and Photocurrent Generation in Intercalated Conjugated Polymer/Fullerene Blend Solar Cells

    PubMed Central

    2015-01-01

    Resonance Raman spectroscopy was used to identify ordered and disordered conformers of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) blended with the electron acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in bulk heterojunction (BHJ) solar cells where PCBM intercalates into PBTTT side groups. We show that the PBTTT thiophene ring symmetric C=C stretching mode consists of contributions from ordered (ℏωC=C = 1489 cm–1, fwhm ∼ 15 cm–1) and disordered (ℏωC=C = 1500 cm–1, fwhm ∼ 25 cm–1) components and their relative amounts are sensitive to PCBM loading, annealing and excitation energy. The 1500 cm–1 PBTTT component originates from twisted thiophene rings and disordered side groups due to PCBM intercalation in a mixed kinetic phase and thermal annealing promotes ordering of PBTTT chains from the formation of bimolecular PBTTT/PCBM crystals. Density functional theory (DFT) Raman simulations of PBTTT monomers support these assignments. Resonance Raman images of annealed PBTTT/PCBM model solar cells confirm that ordered PBTTT chains are most concentrated in PCBM-rich bimolecular crystals and corresponding intensity modulated photocurrent spectroscopy (IMPS) and imaging measurements show increased nongeminate charge recombination at the boundaries of ordered/disordered regions. PMID:25678742

  19. Transportation Conformity

    EPA Pesticide Factsheets

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  20. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  1. Structure and conformation of 1,4-difluorobutane as determined by gas-phase electron diffraction, and by molecular mechanics and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krosley, Kevin; Hagen, Kolbjørn; Hedberg, Kenneth

    1995-06-01

    Gas-phase electron diffraction data at 23°C together with molecular mechanics (MM3) and ab initio (HF/6-31G∗, gaussian 86) calculations have been used to determine the structure and conformations of 1,4-difluorobutane. The object was to ascertain whether effects similar to the gauche effect in 1,2-difluoroethane, which serves to stabilize the gauche form with the fluorine atoms in close proximity, could also operate in 1,4-difluorobutane. It was found both theoretically and experimentally that the proportion of those conformers having close fluorine atoms was small, implying the absence of effects similar to the gauche effect. The conformational composition estimated from the theoretical calculations is in good agreement with the experimental data. The experimental electron diffraction results constrained by assumptions drawn from the theoretical calculations, ED/MM3 [ED/ab initio], for the principal distances ( {r g}/{Å}) and angles ( {∠ α}/{deg}) with estimated 2σ uncertainties are as follows: r(CH) = 1.105(3) [1.106(3)], r(CF) = 1.398(2) [1.398(2)], r(C 1C 2) = 1.513(2) [1.516(2)], r(C 2C 3) = 1.537(2) [1.532(2)], ∠FCC = 110.9(3) [111.1(3)], ∠CCC = 112.9(4) [112.9(4)], and ∠HCH = 100(3) [100(3)].

  2. Molecular Dynamics Simulations of the Fluctuating Conformational Dynamics of the Intrinsically Disordered Proteins α-Synuclein and τ

    NASA Astrophysics Data System (ADS)

    Smith, W.; Schreck, Carl; Nath, Abhinav; Rhoades, Elizabeth; O'Hern, Corey

    2013-03-01

    Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop united-atom and coarse-grained Langevin dynamics simulations for the IDPs α-synuclein and τ that include geometric,attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that these IDPs have conformational statistics that are intermediate between random walk and collapsed globule behavior and demonstrate close resemblance to the known experimental data, with both electrostatics and hydrophobicity strongly influencing the dynamics. We investigate the propensity of α-synuclein to aggregate and form oligomers, and present preliminary results for the aggregation of τ and interactions between these IDPs and small molecules such as heparin and spermine which are known to induce aggregation.

  3. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    PubMed

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations.

  4. Micromolding in Capillaries for the Generation of Molecularly Imprinted Polymer Filaments and Microstructures

    DTIC Science & Technology

    2002-04-05

    to define the shape and size of the imprinted polymers . This article describes the processes leading to the fabrication of free-standing MIP ...recognition and interactions play central roles in these applications. Molecular imprinting , a technique for the synthesis of polymeric materials with analyte...generate molecularly imprinted polymer ( MIP ) microstructures on devices should open new possibilities towards the development of miniaturized systems for

  5. Single-strand conformation polymorphism (SSCP) of oligodeoxyribonucleotides: an insight into solution structural dynamics of DNAs provided by gel electrophoresis and molecular dynamics simulations.

    PubMed

    Biyani, Manish; Nishigaki, Koichi

    2005-10-01

    Studies on the solution structure dynamics of RNA/DNA are becoming crucially important. The phenomena of SSCP (single-strand conformation polymorphism), small RNA dynamics in a cell, and others can be related to the conformational changes of single-stranded (ss) RNAs/DNAs in solution. However, little is known about those dynamics. Only the intra-structural transition of ssDNAs in solution has been reported based on Watson-Crick (W-C) base-pairing. Here, we found a general feature of the SSCP phenomenon by studying the simpler molecules of ss-oligodeoxyribonucleotides. A single base substitution or a positional exchange of nucleotide in a highly homologous series of ss-dodecanucleotides led to a change in the mobility-in-gel. This was unexpected, since most of these nucleotides [such as d(A(11)G) or d(A(11)C)] have no possibility of forming W-C base-pairing. MD (molecular dynamics) experiments revealed differences in shape and size between the dynamic structures of these molecules which could affect their mobility-in-gel. In addition, a high correlation was observed between the electrophoretic mobility and the size-related parameters such as end-to-end distance obtained from MD simulations. Because the simulation was considerably shorter (nanosecond) than the experimental time-scale (second), the result must be considered conservatively; but it is nevertheless encouraging for utilizing MD simulation for structural analysis of oligonucleotides.

  6. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton.

  7. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation I. Effects on chain conformation and interfacial properties.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2008-09-12

    Particle-based Monte Carlo simulations were employed to examine the effects of bonding density on molecular structure in reversed-phase liquid chromatography. Octadecylsilane stationary phases with five different bonding densities (1.6, 2.3, 2.9, 3.5, and 4.2 micromol/m(2)) in contact with a water/methanol (50/50 mol%) mobile phase were simulated at a temperature of 323 K. The simulations indicate that the alkyl chains become more aligned and form a more uniform alkyl layer as coverage is increased. However, this does not imply that the chains are highly ordered (e.g., all-trans conformation or uniform tilt angle), but rather exhibit a broad distribution of conformations and tilt angles at all bonding densities. At lower densities, significant amounts of the silica surface are exposed leading to an enhanced wetting of the stationary phase. At high densities, the solvent is nearly excluded from the bonded phase and persists only near the residual silanols. An enrichment in the methanol concentration and a disruption in the mobile phase's hydrogen bond network are observed at the interface as bonding density is increased.

  8. A molecular dynamics study of the conformation of the alanine dipeptide in aqueous solution using a quantum mechanical potential

    NASA Astrophysics Data System (ADS)

    Buesnel, Robert; Hillier, Ian H.; Masters, Andrew J.

    Molecular dynamics simulations of the aqueous solution of alanine dipeptide have been carried out for seven configurations characteristic of important regions of the Ramachandran plot. A hybrid quantum mechanical-molecular mechanical potential was used that describes the solute using the AM1 Hamiltonian and the solvent using the TIP3P model. The importance of differential solute polarization and the preferential stabilization of the extended structures alphaL, alphaR and beta have been identified. The results are compared with experiment and with the predictions of the ab initio polarizable continuum model of solvation.

  9. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, D. C.; Vannucci, R. D.

    1992-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  10. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  11. Steered molecular dynamics simulations of a bacterial type IV pilus reveal characteristics of an experimentally-observed, force-induced conformational transition

    NASA Astrophysics Data System (ADS)

    Baker, Joseph; Biais, Nicolas; Tama, Florence

    2011-10-01

    Type IV pili (T4P) are long, filamentous structures that emanate from the cellular surface of many infectious bacteria. They are built from a 158 amino acid long subunit called pilin. T4P can grow to many micrometers in length, and can withstand large tension forces. During the infection process, pili attach themselves to host cells, and therefore naturally find themselves under tension. We investigated the response of a T4 pilus to a pulling force using the method of steered molecular dynamics (SMD) simulation. Our simulations expose to the external environment an amino acid sequence initially hidden in the native filament, in agreement with experimental data. Therefore, our simulations might be probing the initial stage of the transition to a force-induced conformation of the T4 pilus. Additional exposed amino acid sequences that might be useful targets for drugs designed to mitigate bacterial infection were also predicted.

  12. The influence of the substitution pattern on the molecular conformation of ureido-1,2,5-oxadiazoles, related to STAT3 inhibitors: chemical behavior and structural investigation.

    PubMed

    Villa, Stefania; Masciocchi, Daniela; Gelain, Arianna; Meneghetti, Fiorella

    2012-07-01

    Signal transducer and activator of transcription 3 (STAT3) is a protein constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of human solid and blood tumors. Therefore, the availability of drugs affecting STAT3 may have important therapeutic potential for the treatment of cancer. Pursuing our efforts in exploring the influence of the substitution pattern of the ureido 1,2,5-oxadiazole moiety on the molecular conformation, new compounds substituted at positions 3 and 4 on the furazane ring were synthesized. The inhibition properties vs. STAT3 of the novel compounds were evaluated in a dual-luciferase assay, using HCT-116 cells, and the results evidenced a moderate activity only for the compounds endowed with a planar arrangement. Crystallographic studies of the new derivatives were performed in order to evidence the peculiar chemical behavior and to evaluate how structural modulations affected the biological properties.

  13. Molecular dynamics simulation to investigate the impact of disulfide bond formation on conformational stability of chicken cystatin I66Q mutant.

    PubMed

    He, Jianwei; Xu, Linan; Zou, Zhiyuan; Ueyama, Nobuhiro; Li, Hui; Kato, Akio; Jones, Gary W; Song, Youtao

    2013-10-01

    Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71-Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71-Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71-Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95-Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α-β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23.

  14. Molecular modeling and conformational analysis of native and refolded viral genome-linked protein of cardamom mosaic virus.

    PubMed

    Jebasingh, T; Jose, M; Yadunandam, A Kasin; Backiyarani, S; Srividhya, K V; Krishnaswamy, S; Usha, R

    2011-10-01

    The viral genome-linked protein (VPg) of Potyviruses is covalently attached to the 5' end of the genomic RNA. Towards biophysical characterization, the VPg coding region of Cardamom mosaic virus (CdMV) was amplified from the cDNA and expressed in E. coli. Most of the expressed VPg aggregated as inclusion bodies that were solubilized with urea and refolded with L-arginine hydrochloride. The various forms of CdMV VPg (native, denatured and refolded) were purified and the conformational variations between these forms were observed with fluorescence spectroscopy. Native and refolded CdMV VPg showed unordered secondary structure in the circular dichroism (CD) spectrum. The model of CdMV VPg was built based on the crystal structure of phosphotriesterase (from Pseudomonas diminuta), which had the maximum sequence homology with VPg to identify the arrangement of conserved amino acids in the protein to study the functional diversity of VPg. This is the first report on the VPg of CdMV, which is classified as a new member of the Macluravirus genus of the Potyviridae family.

  15. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  16. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems.

  17. General Conformity

    EPA Pesticide Factsheets

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  18. Conformal Infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  19. Potential charge transfer probe induced conformational changes of model plasma protein human serum albumin: Spectroscopic, molecular docking, and molecular dynamics simulation study.

    PubMed

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Guchhait, Nikhil

    2012-10-01

    The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.

  20. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis.

    PubMed

    Sahoo, Bikash R; Maharana, Jitendra; Bhoi, Gopal K; Lenka, Santosh K; Patra, Mahesh C; Dikhit, Manas R; Dubey, Praveen K; Pradhan, Sukanta K; Behera, Bijay K

    2014-05-01

    Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular innate immune receptor and is associated with several immune system related disorders. Despite Nalp3's protective role during a pathogenic invasion, the molecular features and structural organization of this crucial protein is poorly understood. Using comparative modeling and molecular dynamics simulations, we have studied the structural architecture of Nalp3 domains, and characterized the dynamic and energetic parameters of adenosine triphosphate (ATP) binding in NACHT, and pathogen-derived ligands muramyl dipeptide (MDP) and imidazoquinoline with LRR domains. The results suggested that walker A, B and extended walker B motifs were the key ATP binding regions in NACHT that mediate self-oligomerization. The analysis of the binding sites of MDP and imidazoquinoline revealed LRR 7-9 to be the most energetically favored site for imidazoquinoline interaction. However, the binding free energy calculations using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method indicated that MDP is incompatible for activating the Nalp3 molecule in its monomeric form, and suggest its complex interaction with NOD2 or other NLRs accounts for MDP recognition. The high binding affinity of ATP with NACHT was correlated to the experimental data for human NLRs. Our binding site prediction for imidazoquinoline in LRR warrants further investigation via in vivo models. This is the first study that provides ligand recognition in mouse Nalp3 and its spatial structural arrangements.

  1. The Interplay Between Conformation and Absolute Configuration in Chiral Electron Dynamics of Small Diols.

    PubMed

    Daly, Steven; Tia, Maurice; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2016-09-05

    A competition between chiral characteristics alternatively attributable to either conformation or to absolute configuration is identified. Circular dichroism associated with photoexcitation of the outer orbital of configurational enantiomers of 1,3- and 2,3-butanediols has been examined with a focus on the large changes in electron chiral asymmetry produced by different molecular conformations. Experimental gas-phase measurements offer support for the theoretical modeling of this chiroptical effect. A surprising prediction is that a conformationally produced pseudo-enantiomerism in 1,3-butanediol generates a chiral response in the frontier electron dynamics that outweighs the influence of the permanent configurational handedness established at the asymmetrically substituted carbon. Induced conformation, and specifically induced conformational chirality, may thus be a dominating factor in chiral molecular recognition in such systems.

  2. Functional conformations of the L11–ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations

    PubMed Central

    Li, Wen; Sengupta, Jayati; Rath, Bimal K.; Frank, Joachim

    2006-01-01

    The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA·EF-Tu·GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43–44 of 23S rRNA (referred to as L11–rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11–rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA·EF-Tu·GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states. PMID:16682558

  3. Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules

    PubMed Central

    2009-01-01

    The rugged energy landscape of biomolecules together with shortcomings of traditional molecular dynamics (MD) simulations require specialized methods for capturing large-scale, long-time configurational changes along with chemical dynamics behavior. In this report, MD-based methods for biomolecules are surveyed, involving modification of the potential, simulation protocol, or algorithm as well as global reformulations. While many of these methods are successful at probing the thermally accessible configuration space at the expense of altered kinetics, more sophisticated approaches like transition path sampling or Markov chain models are required to obtain mechanistic information, reaction pathways, and/or reaction rates. Divide-and-conquer methods for sampling and for piecing together reaction rate information are especially suitable for readily available computer cluster networks. Successful applications to biomolecules remain a challenge. PMID:20948633

  4. Intramolecular fixation of t-butyl groups in thiolactim ethers influencing molecular conformation and the packing behavior

    NASA Astrophysics Data System (ADS)

    Hübscher, Jörg; Gruber, Thomas; Seichter, Wilhelm; Kortus, Jens; Weber, Edwin

    2015-07-01

    Derived from the result of a previous crystallographic study regarding an ethynylene bridged bispyrimidine, the presence of two intramolecular C-H⋯N hydrogen bonding contacts being responsible for a fixation of the terminal t-butylthio units to the azine nitrogens was noticed. Acting as stimulus, a series of different pyridine and pyridazine derivatives also featuring this unusual functionality has been synthesized and structurally studied. In order to support the investigations concerning this particular bonding pattern performed via X-ray structure analysis, calculations based on the density functional theory were carried out. It was found that the formation of the intramolecular hydrogen bonding motif has not only impact on the molecular stability but in some cases also predictably influences the reactivity and the packing behavior of the different heterocycles.

  5. A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations

    PubMed Central

    Fattebert, Jean-Luc; Emigh, Aiyana

    2015-01-01

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures. PMID:25874456

  6. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE PAGES

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; ...

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  7. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    SciTech Connect

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; Fattebert, Jean -Luc; Emigh, Aiyana; Lightstone, Felice C.; Salsbury , Jr, Freddie

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.

  8. Understanding the Differences in Molecular Conformation of Carbohydrate and Protein in Endosperm Tissues of Grains with Different Biodegradation Kinetics Using Advanced Synchrotron Technology

    SciTech Connect

    Yu, P.; Block, H; Doiron, K

    2009-01-01

    Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus

  9. Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations.

    PubMed

    Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2017-02-01

    The zinc-dependent Matrix Metalloproteinases (MMPs) found within the extracellular matrix (ECM) of vertebrates are linked to pathological processes such as arthritis, skin ulceration and cancer. Although a general backbone proteolytic mechanism is understood, crystallographic data continue to suggest an active site that is too narrow to encompass the respective substrate. We present a fully parameterised Molecular Dynamics (MD) study of the structural properties of an MMP-1-collagen crystallographic structure (Protein Data Bank - 4AUO), followed by an exploration of the free energy surface of a collagen polypeptide chain entering the active site, using a combined meta-dynamics and umbrella sampling (MDUS) approach. We conclude that the interactions between MMP-1 and the collagen substrate are in good agreement with a number of experimental studies. As such, our unrestrained MD simulations and our MDUS results, which indicate an energetic barrier for a local uncoiling and insertion event, can inform future investigations of the collagen-peptide non-bonded association steps with the active site prior to proteolytic mechanisms. The elucidation of such free energy barriers provides a better understanding of the role of the enzyme in the ECM and is important in the design of future MMP inhibitors.

  10. Molecular structures and conformations of 1-benzenesulphonyl-2-oxo-5-alkoxypyrrolidines with anti-amnesic activity. X-ray, 1H-NMR and quantum mechanical (PM3) studies

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Dolmella, Alessandro; Grassi, Antonio; Pappalardo, Giuseppe C.; Toja, Emilio

    1991-04-01

    The crystal and molecular structures of the nootropic agents RU-47001 ((±) 1-(4-nitrobenzenesulphonyl)-2-oxo-5-ethoxypyrrolidine) and RU-47064 ((±) 1-(4-nitrobenzenesulphonyl)-2-oxo-5-isopropyloxypyrrolidine) have been determined by X-ray analysis and their solution conformation has been investigated using 1H NMR spectroscopy. The conformations of these molecules together with those of their analogues RU-35929 ((±) 1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine), RU-47010 ((±) 1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine) and RU-35965 ((±) 1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine) have been deduced from semi-quantitative PM3 type theoretical calculations. The main feature of all compounds consists of a common envelope conformation with C (4) at the flap of the pyrrolidinone ring in the solid, that in solution changes into the analogous, but opposite, possible puckered conformational isomer. The 5-alkoxy groups were found rather flexible in solution. Theoretical preferred conformations about NS and SC bonds were in acceptable agreement with those of the solid state. The calculated torsional energetics suggested that 1- 5 do not undergo conformational interconversion.

  11. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

    PubMed

    Fang, Xiaohong; Tan, Weihong

    2010-01-19

    Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the

  12. Construction of single-chain Fv with two possible CDR3H conformations but similar inter-molecular forces that neutralize bovine herpesvirus 1.

    PubMed

    Koti, Madhuri; Farrugia, William; Nagy, Eva; Ramsland, Paul A; Kaushik, Azad K

    2010-02-01

    Bovine herpesvirus 1 (BoHV-1) causes respiratory and genital diseases in cattle for which available vaccines do not confer adequate protection. Since passive immunization with antibodies permits disease prevention, single-chain fragment variable (scFv), originating from a monoclonal bovine IgG1 antibody against BoHV-1, were constructed and expressed in Pichia pastoris in V(lambda)-V(H) orientation via a flexible seven-amino acid linker. Similar to the intact IgG, the purified recombinant scFv neutralized BoHV-1 in vitro and recognized viral antigens in BoHV-1 infected MDBK cells by immunofluorescence. Homology modeling of the Fv predicts two distinct conformations for CDR3H. Firstly, a long protruding CDR3H conformation where no disulfide linkage occurred between two "non-canonical" Cys residues resulted in a large binding cavity between V(lambda) and V(H). Secondly, a smaller potential antigen-binding cavity is predicted with a disulfide linkage between the two Cys residues of CDR3H creating a six-membered loop in the ascending polypeptide, which fitted into the space between V(lambda) and V(H). Despite such potential configurational diversity of the antigen-binding site, the electrostatic surface potentials that would interact with the BoHV-1 epitope are largely similar for both the topographies where salt-bridge type electrostatic interactions likely occur at the edges of the binding site. Given that IgG1 antibody against BoHV-1 is clonally selected, it is likely that disulfide-stabilized broader and flatter surface topography is specifically generated to accommodate the predicted carbohydrate neutralizing B-epitope on BoHV-1. The specificity and neutralizing capacity for BoHV-1 of the scFv should make this bovine antibody fragment a useful diagnostic and potential therapeutic candidate for an important viral pathogen in cattle.

  13. A Molecular Dynamics Investigation of Mycobacterium tuberculosis Prenyl Synthases: Conformational Flexibility and Implications for Computer-aided Drug Discovery.

    PubMed

    Kim, Meekyum Olivia; Feng, Xinxin; Feixas, Ferran; Zhu, Wei; Lindert, Steffen; Bogue, Shannon; Sinko, William; de Oliveira, César; Rao, Guodong; Oldfield, Eric; McCammon, James Andrew

    2015-06-01

    With the rise in antibiotic resistance, there is interest in discovering new drugs active against new targets. Here, we investigate the dynamic structures of three isoprenoid synthases from Mycobacterium tuberculosis using molecular dynamics (MD) methods with a view to discovering new drug leads. Two of the enzymes, cis-farnesyl diphosphate synthase (cis-FPPS) and cis-decaprenyl diphosphate synthase (cis-DPPS), are involved in bacterial cell wall biosynthesis, while the third, tuberculosinyl adenosine synthase (Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then compared with previous results on undecaprenyl diphosphate synthase (UPPS) by means of active site volume fluctuation and principal component analyses. In addition, an analysis of the binding of prenyl diphosphates to cis-FPPS, cis-DPPS, and UPPS utilizing the new MD results is reported. We also screened libraries of inhibitors against cis-DPPS, finding ~1 μm inhibitors, and used the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive power of X-ray and MD-derived cis-DPPS receptors. We found that one compound with potent M. tuberculosis cell growth inhibition activity was an IC(50) ~0.5- to 20-μm inhibitor (depending on substrate) of cis-DPPS, a ~660-nm inhibitor of Rv3378c as well as a 4.8-μm inhibitor of cis-FPPS, opening up the possibility of multitarget inhibition involving both cell wall biosynthesis and virulence factor formation.

  14. Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study.

    PubMed

    Muthukumaran, Rajagopalan; Sangeetha, Balasubramanian; Amutha, Ramaswamy

    2015-07-01

    The protein ORF1p, encoded by the LINE-1 retrotransposon, is responsible for the packaging and transposition of its RNA transcript and is reported to be involved in various genetic disorders. The three domains of ORF1p co-ordinate together to facilitate the transposition, and the mechanism of nucleic acid binding is not yet clear. The C-terminal domain of ORF1p adopts a lifted, twisted or rested state, which is regulated by several inter- and intra-domain interactions that are explored in this study. The residues, Glu147, Asp151, Lys154, Arg261 and Tyr282, are majorly involved in mediating the functional dynamics of ORF1p by forming H-bonds and π-interactions. The importance of these residues was elucidated by performing molecular dynamics simulations on both native as well as mutated ORF1p. The Q147A-D151A-K154A mutant expressed unique dynamics featuring the lifting motion of the CTD core alone, while the R261A mutant resulted in the oscillatory motion of CTD. In both cases, the CTDs were held in place by Tyr282 and in its absence, the structural stability of CTDs in the trimeric unit was significantly affected. Additional interactions responsible for stabilizing the trimeric ORF1p to express its native dynamics were extracted in this study. The central role of Tyr282 in maintaining the functional state of ORF1p to facilitate nucleic acid binding and formation of ribonucleoprotein complex is well highlighted. The knowledge gained from this study forms the basis for understanding the nucleic acid binding mechanism of ORF1p, which could further provide additional support in exploring various genetic disorders.

  15. Conformational determinants of tandem GU mismatches in RNA: insights from molecular dynamics simulations and quantum mechanical calculations.

    PubMed

    Pan, Yongping; Priyakumar, U Deva; MacKerell, Alexander D

    2005-02-08

    Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.

  16. Probing molecular frame photoelectron angular distributions via high-order harmonic generation from aligned molecules

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Jin, Cheng; Le, Anh-Thu; Lucchese, R. R.

    2012-10-01

    We analyse the theory of single photoionization (PI) and high-order harmonic generation (HHG) by intense lasers from aligned molecules. We show that molecular-frame photoelectron angular distributions can be extracted from these measurements. We also show that, under favourable conditions, the phase of PI transition dipole matrix elements can be extracted from the HHG spectra. Furthermore, by varying the polarization axis of the HHG generating laser with respect to the polarization axis of the aligning laser, it is possible to extract angle-dependent tunnelling ionization rates for different subshells of the molecules.

  17. Intense-field molecular spectroscopy: Vibrational and rotational effects in harmonic generation by H+2

    NASA Astrophysics Data System (ADS)

    Aubanel, E. E.; Zuo, T.; Bandrauk, A. D.

    1994-05-01

    We present results of a complete treatment of electronic, vibrational, and rotational motion in numerical calculation of harmonic generation (HG) of 1064-nm laser radiation by the H+2 molecular ion for intensities 1013<=I<=1014 W/cm2. We show that efficient HG can be enhanced by suppression of photodissociation, a phenomenon which results from vibrational trapping in laser-field-induced potential wells. The HG spectra exhibit peaks clustered around even and odd harmonic orders. All peaks can be assigned to Raman-like transitions between dressed eigenstates of the field-molecule system. Rotational excitation is shown to compete with HG. Thus harmonic generation and photon scattering in molecules holds the promise of a potential diagnostic for molecular stabilization by intense laser fields.

  18. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-08-15

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe{sup 2+} molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0x10{sup 14} W/cm{sup 2}, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schroedinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe{sup 2+}, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  19. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution

    PubMed Central

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H. A.; Vogel, Martin

    2016-01-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  20. Molecular Order of Arterial Collagen Using Circular Polarization Second-Harmonic Generation Imaging

    PubMed Central

    Turcotte, Raphaël; Mattson, Jeffrey M.; Wu, Juwell W.; Zhang, Yanhang; Lin, Charles P.

    2016-01-01

    Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone. PMID:26806883

  1. Alignment dependent ultrafast electron-nuclear dynamics in molecular high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Li, Mu-Zi; Jia, Guang-Rui; Bian, Xue-Bin

    2017-02-01

    We investigated the high-order harmonic generation (HHG) process of diatomic molecular ion H2+ in non-Born-Oppenheimer approximations (NBOA). The corresponding three-dimensional time-dependent Schrödinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG in both the tunneling and multiphoton ionization regimes. The universal redshifts of the whole spectrum are unique in molecular HHG. The spectral width of HHG increases in NBOA. We calculated possible influences on redshifts of HHG in real experimental conditions and found that redshifts decrease with the increase of alignment angles of the molecules and are sensitive to the initial vibrational states. It can be used to extract the ultrafast electron-nuclear dynamics and image molecular structure. It will be instructive to related experiments.

  2. Variation of the Molecular Conformation, Shape, and Cavity Size in Dinuclear Metalla-Macrocycles Containing Hetero-Ditopic Dithiocarbamate-Carboxylate Ligands from a Homologous Series of N-Substituted Amino Acids.

    PubMed

    Torres-Huerta, Aaron; Cruz-Huerta, Jorge; Höpfl, Herbert; Hernández-Vázquez, Luis G; Escalante-García, Jaime; Jiménez-Sánchez, Arturo; Santillan, Rosa; Hernández-Ahuactzi, Irán F; Sánchez, Mario

    2016-12-05

    A homologous series of dithiocarbamate ligands derived from N-substituted amino acids was reacted with different diorganotin dichlorides to give 18 diorganotin complexes. Spectroscopic and mass spectrometric analysis evidenced the formation of assemblies with six-coordinate tin atoms embedded in skewed-trapezoidal bipyramidal coordination environments of composition C2SnS2O2. Single-crystal X-ray diffraction analysis for three of the compounds revealed a one-dimensional polymeric structure for the complex with the ligand derived from 5-aminopentanoic acid, which through further intermolecular Sn···O interactions generated an overall two-dimensional coordination polymer containing 40-membered hexanuclear tin macrocycles. On the contrary, the ligands derived from 6-aminohexanoic and 8-aminooctanoic acid provided the expected 22- and 26-membered dinuclear macrocyclic structures. Density functional theory calculations for a representative series of macrocyclic complexes of composition [Me2SnLx]2 with Lx = ¯S2CN(Me)-(CH2)x-COO¯ (x = 3-12) enabled a detailed analysis of the variations in the molecular conformation, shape, and cavity size of the macrocycles in dependence of the aliphatic spacer. Because of odd-even effects, the difunctional ligands can adopt either a curved or a twisted-pincer shape, while the SnSxO4-x (x = 0-4) moieties can act either as linear or angular tectons with varying connectivity angles.

  3. Conformation and chirality in liquid crystals

    NASA Astrophysics Data System (ADS)

    West, John L.; Zhao, Lei

    2013-09-01

    High helical twisting powerchiral additives are required for an expanding variety of liquid crystal displays and devices. Molecular conformation plays a critical role in determining the helical twisting power, HTP, of chiral additives. We studied additives based on an isosorbide benzoate ester core. Molecular modeling revealed two low energy states with very different conformations for this core The ultra-violet absorption and NMR spectra show two stable isosorbide conformers These spectra reveal how the relative populations of these two conformations change with temperature and how this is related to the helical twisting power. Conformation changes can explain many of the observed anomalous responses of HPT to temperature.

  4. Context matters: The importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies

    PubMed Central

    Badarau, Adriana; Rouha, Harald; Malafa, Stefan; Battles, Michael B.; Walker, Laura; Nielson, Nels; Dolezilkova, Ivana; Teubenbacher, Astrid; Banerjee, Srijib; Maierhofer, Barbara; Weber, Susanne; Stulik, Lukas; Logan, Derek T.; Welin, Martin; Mirkina, Irina; Pleban, Clara; Zauner, Gerhild; Gross, Karin; Jägerhofer, Michaela; Magyarics, Zoltán; Nagy, Eszter

    2016-01-01

    ABSTRACT LukGH (LukAB) is a potent leukocidin of Staphylococcus aureus that lyses human phagocytic cells and is thought to contribute to immune evasion. Unlike the other bi-component leukocidins of S. aureus, LukGH forms a heterodimer before binding to its receptor, CD11b expressed on professional phagocytic cells, and displays significant sequence variation. We employed a high diversity human IgG1 library presented on yeast cells to discover monoclonal antibodies (mAbs) neutralizing the cytolytic activity of LukGH. Recombinant LukG and LukH monomers or a LukGH dimer were used as capture antigens in the library selections. We found that mAbs identified with LukG or LukH as bait had no or very low toxin neutralization potency. In contrast, LukGH dimer-selected antibodies proved to be highly potent, and several mAbs were able to neutralize even the most divergent LukGH variants. Based on biolayer interferometry and mesoscale discovery, the high affinity antibody binding site on the LukGH complex was absent on the individual monomers, suggesting that it was generated upon formation of the LukG-LukH dimer. X-ray crystallography analysis of the complex between the LukGH dimer and the antigen-binding fragment of a very potent mAb (PDB code 5K59) indicated that the epitope is located in the predicted cell binding region (rim domain) of LukGH. The corresponding IgG inhibited the binding of LukGH dimer to target cells. Our data suggest that knowledge of the native conformation of target molecules is essential to generate high affinity and functional mAbs. PMID:27467113

  5. Theoretical determination of molecular structure and conformation. 18. On the formation of epoxides during the ozonolysis of alkenes

    SciTech Connect

    Cremer, D.; Bock, C.W.

    1986-06-11

    The reaction of carbonyl oxide (CH/sub 2/OO) and ethylene has been investigated by ab initio techniques. According to theoretical results, carbonyl oxide can act as an oxygen-transfer agent, thus leading to epoxide and aldehyde: C/sub 2/H/sub 4/ + CH/sub 2/OO ..-->.. CH/sub 2/OCH/sub 2/ + CH/sub 2/O. The calculated transition-state energies of the various epoxidation modes are 4-8 kcal/mol, which are comparable to activation energies of cycloaddition (cycloreversion) reactions encountered in the ozonolysis of alkenes. Epoxidation of alkene by carbonyl oxide is best described as a S/sub N/2 reaction on the terminal oxygen atom of carbonyl oxide. The preferred collision mode of the O-transfer reaction can be rationalized on the basis of frontier orbital interactions. Apart from epoxidation, carbonyl oxide can add to ethylene, yielding 1,2-dioxolane. The energy requirements of the cycloaddition are equivalent to those of the epoxidation. However, 1,2-dioxolanes will only be observed under normal ozonolysis conditions if the excess energy generated in the cycloaddition reaction is readily dissipated. Otherwise, 1,2-dioxolanes will immediately decompose, again yielding, among other products, epoxides.

  6. An enantioselective synthetic route toward second-generation light-driven rotary molecular motors.

    PubMed

    Pijper, Thomas C; Pijper, Dirk; Pollard, Michael M; Dumur, Frédéric; Davey, Stephen G; Meetsma, Auke; Feringa, Ben L

    2010-02-05

    Controlling the unidirectional rotary process of second-generation molecular motors demands access to these motors in their enantiomerically pure form. In this paper, we describe an enantioselective route to three new second-generation light-driven molecular motors. Their synthesis starts with the preparation of an optically active alpha-methoxy-substituted upper-half ketone involving an enzymatic resolution. The subsequent conversion of this ketone to the corresponding hydrazone by treatment with hydrazine led to full racemization. However, conversion to a TBDMS-protected hydrazone by treatment with bis-TBDMS hydrazine, prepared according to a new procedure, proceeds with nearly full retention of the stereochemical integrity. Oxidation of the TBDMS-protected hydrazone and subsequent coupling to a lower-half thioketone followed by recrystallization provided the molecular motors with >99% ee. As these are the first molecular motors that have a methoxy substituent at the stereogenic center, the photochemical and thermal isomerization steps involved in the rotary cycle of one of these new molecules were studied in detail with various spectroscopic techniques.

  7. The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange.

    PubMed Central

    Brock, C J; Tanner, M J; Kempf, C

    1983-01-01

    The N-terminal 72 residues of an integral membrane fragment, P5, of the human erythrocyte anion-transport protein, which is known to be directly involved in the anion-exchange process, was shown to have the following amino acid sequence: Met-Val-Pro-Lys-Pro-Gln-Gly-Pro-Leu-Pro-Asn-Thr-Ala-Leu-Leu-Ser-Leu-Val-Leu-Met -Ala-Gly-Thr-Phe-Phe-Phe-Ala-Met-Met-Leu-Arg-Lys-Phe-Lys-Asn-Ser-Ser-Tyr-Phe-Pro-Gly-Lys-Leu-Arg-Arg-Val-Ile-Gly-Asp-Phe-Gly-Val-Pro-Ile-Ser-Ile-Leu-Ile-Met-Val-Leu-Val-Asp-Phe-Phe-Ile-Gln-Asp-Thr-Tyr-Thr-Gln- The structure of this fragment was analysed, with account being taken of the constraints that apply to the folding of integral membrane proteins and the topographical locations of various sites in the sequence. It was concluded that this sequence forms two transmembrane alpha-helices. These are probably part of a cluster of amphipathic transmembrane alpha-helices, which could comprise that part of the protein responsible for transport activity. The presently available evidence relating to the anion-exchange process was considered with the structural features noted in this study and a possible molecular mechanism is proposed. In this model the rearrangement of a network of intramembranous charged pairs mediates the translocation of an anion between anion-binding regions at each surface of the membrane, which are composed of clusters of positively charged amino acids. This model imposes a sequential exchange mechanism on the system. Supplementary material, including Tables and Figures describing the compositions of peptides determined by amino acid analysis and sequence studies, quantitative and qualitative data that provide a residue-by-residue justification for the sequence assignment and a description of modifications to and use of the solid-phase sequencer has been deposited as Supplementary Publication SUP 50123 (12 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be

  8. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  9. Conformational alterations induced by novel green 16-E2-16 gemini surfactant in xanthine oxidase: Biophysical insights from tensiometry, spectroscopy, microscopy and molecular modeling.

    PubMed

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Bhat, Waseem Feeroze; Kabir-ud-Din

    2015-01-01

    Herein we report the interaction of a biodegradable gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) dichloride (16-E2-16) with bovine milk xanthine oxidase (XO), employing tensiometry, fluorescence spectroscopy, UV spectroscopy, far-UV circular dichroism spectroscopy (CD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and computational molecular modeling. Surface tension results depict substantial changes in the micellar as well as interfacial parameters (CMC, ΠCMC, γCMC, Γmax, Amin, ΔGmic° and ΔGads°) of 16-E2-16 gemini surfactant upon XO combination, deciphering the interaction of XO with the gemini surfactant. Fluorescence measurements reveal that 16-E2-16 gemini surfactant causes quenching in the xanthine oxidase (XO) fluorescence spectra via static procedure and the values of various evaluated binding parameters (KSV, Kb, kq, ΔGb° and n) describe that 16-E2-16 effectively binds to XO. Three dimensional fluorescence, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, F1F3 ratio, UV, CD, FTIR, SEM and TEM results delineate changes in the secondary structure of xanthine oxidase. Molecular docking results provide complement to the steady-state fluorescence findings and support the view that quenching occurs due to non-polar environment experienced by aromatic residues of the enzyme. The results of this study can help scientists to tune the conformation of an enzyme (XO) with biocompatible amphiphilic microstructures, which will help to unfold further understanding in the treatment modes of various diseases like gout, hyperuricemia, liver and brain necrosis.

  10. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  11. Thrombin generation and low-molecular-weight heparin prophylaxis in pregnant women with thrombophilia.

    PubMed

    Selmeczi, Anna; Roach, Rachel E J; Móré, Csaba; Batta, Zoltán; Hársfalvi, Jolán; van der Bom, Johanna G; Boda, Zoltán; Oláh, Zsolt

    2015-02-01

    Pregnancy is associated with increased risk of venous thromboembolism, especially in the presence of thrombophilia. However, there is no consensus on the optimal approach for thromboprophylaxis in this population. Recent evidence suggests that thrombin generation correlates with the overall procoagulant state of the plasma. Our aim was to evaluate thrombin generation in a prospective cohort of thrombophilic pregnant women, and investigate the effectiveness of low-molecular-weight heparin (LMWH) prophylaxis in pregnancy. Women with severe (n=8), mild (n=47) and no (n=15) thrombophilia were followed throughout their pregnancies. Thrombin generation was evaluated in each trimester as well as five days and eight weeks postpartum (as a reference category). In women undergoing LMWH prophylaxis, thrombin generation and anti-Factor-Xa activity were measured just before and 4 hours after administration (peak effect). Thrombin generation was determined using Technothrombin TGA assay system. For the analysis, median peak thrombin and endogenous thrombin potential were used. Peak thrombin and endogenous thrombin potential were increased during pregnancy compared to the non-pregnant state with the highest results in the severe thrombophilia group. In women receiving LMWH prophylaxis a decrease was observed in thrombin generation at peak effect but over the progression of pregnancy the extent of this decrease reduced in a stepwise fashion. Our results show that thrombin generation demonstrates the hypercoagulable state in thrombophilic pregnancies. In addition, we found the effect of LMWH prophylaxis to progressively decrease with advancing stages of pregnancy.

  12. Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Hegde, Govind A.; Chang, Jen-fang; Chen, Yeng-long; Khare, Rajesh

    2011-11-01

    We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.

  13. Molecular subtyping of human T-cell lymphotropic virus type 2 by single-strand conformation polymorphism analysis. Retrovirus Epidemiology Donor Study Group.

    PubMed Central

    Heneine, W; Switzer, W M; Busch, M; Khabbaz, R F; Kaplan, J E

    1995-01-01

    Molecular subtyping of human T-cell lymphotropic virus type 2 (HTLV-2) by the currently used method of restriction fragment length polymorphism analysis may not be sufficiently discriminatory for transmission studies because of the predominance of single restriction types in various HTLV-2-infected populations. The utility of single-strand conformations polymorphism (SSCP) analysis was evaluated as a tool to improve the sensitivity of the subtyping of HTLV-2. The assay was designed to target a highly variable region in the long terminal repeat and was shown to be able to detect single nucleotide changes in cloned HTLV-2 sequences. Analysis of 52 HTLV-2 samples, of which 32 were from 16 sex partner pairs (16 males, 16 females), showed nine different SSCP patterns. Identical SSCP results were obtained for each of the 16 couples, suggesting the presence of similar viral genotypes and, therefore, supporting the likelihood of sexual transmission of HTLV-2 in each of these couples. Furthermore, SSCP analysis of seven HTLV-2 samples of the same restriction type (b5) showed five different SSCP patterns. Nucleotide sequencing of two samples with distinct SSCP patterns confirmed the sequence differences. SSCP provides a facile and discriminatory tool for the differentiation of HTLV-2 strains, including those previously indistinguishable by restriction fragment length polymorphism. PMID:8586713

  14. Conformational Effects of Lys191 in the Human Gonadotrophin-Releasing Hormone Receptor (hGnRHR). Mutagenesis and Molecular Dynamics Simulations Studies

    PubMed Central

    Jardón-Valadez, Eduardo; Aguilar-Rojas, Arturo; Maya-Núñez, Guadalupe; Leaños-Miranda, Alfredo; Piñeiro, Ángel; Conn, P. Michael; Ulloa-Aguirre, Alfredo

    2009-01-01

    In the present study, we analyzed the role of Lys191 on function, structure, and dynamic behavior of the hGnRHR and the formation of the Cys14-Cys200 bridge, which is essential for receptor trafficking to the plasma membrane. Several mutants were studied; mutants lacked either the Cys14-Cys200 bridge, Lys191, or both. The markedly reduced expression and function of a Cys14Ser mutant lacking the 14-200 bridge, was nearly restored to wild-type/ΔLys191 levels upon deletion of Lys191. Lys191 removal resulted in changes in the dynamic behavior of the mutants as disclosed by molecular dynamics simulations: the distance between the sulfur- (or oxygen-) sulfur groups of Cys (or Ser)14 and Cys200 was shorter and more constant, and the conformation of the NH2-terminus and the exoloop 2 exhibited less fluctuations than when Lys191 was present. These data provide novel information on the role of Lys191 in defining an optimal configuration for the hGnRHR intracellular trafficking and function. PMID:19246515

  15. Conformation-controlled binding kinetics of antibodies

    PubMed Central

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  16. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  17. Nucleotide substitution type dependence of generation time effect of molecular evolution.

    PubMed

    Kisakibaru, Y; Matsuda, H

    1995-06-01

    Using DNA sequence data of 18 genes from 14 mammals, we analyzed how the average molecular evolution rate per year per site (Vy) depends on the generation time (g). (I) Assuming the relation Vy varies; is directly proportional to g(-alpha), the index of generation time effect, (alpha) was estimated to be about 0.14 for amino acid replacement substitutions (A), and about 0.32 for synonymous substitutions (S). (II) Assuming the relation Vy = V(m)g g-1 + V(e)y, where V(m)g and V(e)y are constant independent of g, the fraction, r(e) = V(e)y/Vy, of the mutation rate independent part (V(e)y) in the total evolution rate (Vy) was estimated under the assumptions of the star phylogeny and the constancy of the mutation rate per generation. r(e) was smallest for mouse with the shortest generation time among our analyzed species, and it was estimated to be about 0.57 for A and 0.31 for S. Both results do not support the view that Vy is equal to the neutral mutation rate per site both for A and for S. They are in line with the thesis that, at least for A and probably even for S, the molecular evolution rate is influenced by some causes other than the mutation rate, such as changing environment.

  18. Molecular conformational analysis, reactivity, vibrational spectral analysis and molecular dynamics and docking studies of 6-chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione, a potential precursor to bioactive agent

    NASA Astrophysics Data System (ADS)

    Al-Omary, Fatmah A. M.; Mary, Y. Sheena; Beegum, Shargina; Panicker, C. Yohannan; Al-Shehri, Mona M.; El-Emam, Ali A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.

    2017-01-01

    FT-IR and FT-Raman spectra of 6-chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations and the data obtained from wavenumber calculations are used to assign the experimentally obtained bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, frontier molecular orbital and first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title compound is identified using MEP surface plot study. Molecule sites prone to electrophilic attacks were identified using average local ionization energy surfaces, while further insight into the local reactivity properties of the title molecule has been gained by calculation of Fukui functions. Intra-molecular non-covalent interactions have been detected and visualized. Degradation properties based on autoxidation and hydrolysis have been investigated by calculation of bond dissociation energies and radial distribution functions, respectively. From the molecular docking study, the ligand binds at the active site of the substrate by weak non-covalent interactions and amino acids Leu89 forms alkyl interaction with the CH3 groups and Glu90 amino acid forms π-anion interaction with the pyrimidine ring and Thr369 and Ser366 amino acids form H-bond interaction with the Cdbnd O and NH group, respectively. From the conformational analysis, the calculated structures show that the C6C9C10 angle in the most stable form is about 8° smaller compared to the C8C9C10 angle, indicating a higher repulsive force between the (CH3)2HC- moiety and the chlorine atom due to the size of chlorine compared to oxygen atoms.

  19. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    PubMed

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1

  20. Conformational analysis of thiophene analogs of propranolol

    NASA Astrophysics Data System (ADS)

    Corral, Carlos; Donoso, Rosa; Elguero, Jose; Goya, Pilar; Lissavetzky, Jaime; Rozas, Isabel

    1990-10-01

    Conformation of 3-tert-butylamino-1-thienyloxy-2-propanol, a thiophene analogue of propanolol, have been theoretically investigated by molecular mechanics and semiempirical calculations. The conformational minima obtained have been compared with those reported for propranolol using molecular graphics. The good "fit" obtained can account for the similar biological activity of these compounds.

  1. Genetic-molecular characterization of backcross generations for sexual conversion in papaya (Carica papaya L.).

    PubMed

    Ramos, H C C; Pereira, M G; Pereira, T N S; Barros, G B A; Ferreguetti, G A

    2014-12-04

    The low number of improved cultivars limits the expansion of the papaya crop, particularly because of the time required for the development of new varieties using classical procedures. Molecular techniques associated with conventional procedures accelerate this process and allow targeted improvements. Thus, we used microsatellite markers to perform genetic-molecular characterization of papaya genotypes obtained from 3 backcross generations to monitor the inbreeding level and parental genome proportion in the evaluated genotypes. Based on the analysis of 20 microsatellite loci, 77 genotypes were evaluated, 25 of each generation of the backcross program as well as the parental genotypes. The markers analyzed were identified in 11 of the 12 linkage groups established for papaya, ranging from 1 to 4 per linkage group. The average values for the inbreeding coefficient were 0.88 (BC1S4), 0.47 (BC2S3), and 0.63 (BC3S2). Genomic analysis revealed average values of the recurrent parent genome of 82.7% in BC3S2, 64.4% in BC1S4, and 63.9% in BC2S3. Neither the inbreeding level nor the genomic proportions completely followed the expected average values. This demonstrates the significance of molecular analysis when examining different genotype values, given the importance of such information for selection processes in breeding programs.

  2. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  3. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  4. Molecular modeling in the age of clinical genomics, the enterprise of the next generation.

    PubMed

    Prokop, Jeremy W; Lazar, Jozef; Crapitto, Gabrielle; Smith, D Casey; Worthey, Elizabeth A; Jacob, Howard J

    2017-03-01

    Protein modeling and molecular dynamics hold a unique toolset to aide in the characterization of clinical variants that may result in disease. Not only do these techniques offer the ability to study under characterized proteins, but they do this with the speed that is needed for time-sensitive clinical cases. In this paper we retrospectively study a clinical variant in the XIAP protein, C203Y, while addressing additional variants seen in patients with similar gastrointestinal phenotypes as the C203Y mutation. In agreement with the clinical tests performed on the C203Y patient, protein modeling and molecular dynamics suggest that direct interactions with RIPK2 and Caspase3 are altered by the C203Y mutation and subsequent loss of Zn coordination in the second BIR domain of XIAP. Interestingly, the variant does not appear to alter interactions with SMAC, resulting in further damage to the caspase and NOD2 pathways. To expand the computational strategy designed when studying XIAP, we have applied the molecular modeling tools to a list of 140 variants seen in CFTR associated with cystic fibrosis, and a list of undiagnosed variants in 17 different genes. This paper shows the exciting applications of molecular modeling in the classification and characterization of genetic variants identified in next generation sequencing. Graphical abstract XIAP in Caspase 3 and NOD2 signaling pathways.

  5. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  6. Inhomogeneity of photoacid generators in methacrylate-type EUV resist film studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Itani, Toshiro

    2015-06-01

    Extreme ultraviolet (EUV) resist materials are requested simultaneously to improve the resolution, line-edge roughness (LER), and sensitivity. In a resist film, inhomogeneous structures in the nanometer region may have large effects directly on the resolution and LER and indirectly on sensitivity. In this paper, we will focus on evaluating the inhomogeneity of photoacid generators (PAGs) in a methacrylate-type EUV resist film by molecular dynamics simulations. Results show the inhomogeneity of positions and motions of PAGs in the resist film. Moreover, PAG anions show larger diffusion constants than PAG cations. These properties can be elucidated qualitatively by considering the free volumes in the resist matrix and molecular structures such as bulky phenyl groups of PAG cations and chemical properties such as the fluorine atom interaction of PAG anions.

  7. Molecular diagnosis of putative Stargardt disease by capture next generation sequencing.

    PubMed

    Zhang, Xiao; Ge, Xianglian; Shi, Wei; Huang, Ping; Min, Qingjie; Li, Minghan; Yu, Xinping; Wu, Yaming; Zhao, Guangyu; Tong, Yi; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-01-01

    Stargardt Disease (STGD) is the commonest genetic form of juvenile or early adult onset macular degeneration, which is a genetically heterogeneous disease. Molecular diagnosis of STGD remains a challenge in a significant proportion of cases. To address this, seven patients from five putative STGD families were recruited. We performed capture next generation sequencing (CNGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Seven disease-causing mutations in ABCA4 and two in PROM1 were identified by CNGS, which provides a confident genetic diagnosis in these five families. We also provided a genetic basis to explain the differences among putative STGD due to various mutations in different genes. Meanwhile, we show for the first time that compound heterozygous mutations in PROM1 gene could cause cone-rod dystrophy. Our findings support the enormous potential of CNGS in putative STGD molecular diagnosis.

  8. Conformational properties of pyrethroids

    NASA Astrophysics Data System (ADS)

    Mullaley, Anne; Taylor, Robin

    1994-04-01

    X-ray database searches and theoretical potential-energy calculations indicate that the acid moieties of pyrethroid cyclopropanecarboxylate esters adopt a well-defined, relatively inflexible conformation. In contrast, the alcohol moieties can exist in many low-energy geometries. One of the least conformationally flexible pyrethroid alcohols is 4-phenylindan-2-ol. The approximate overall conformation adopted at the biological binding site by insecticidal esters of this alcohol can be deduced with reasonable confidence by molecular modelling. Graphics superposition of a variety of pyrethroid acids suggests the existence of a large but rather narrow pocket at the binding site, in which substituents at the 3-position of the cyclopropane ring can be accommodated. This pocket is asymmetric with respect to the plane of the cyclopropane ring, extending further on the side remote from the ester group. The effects of α-substitution on the insecticidal activity of pyrethroid esters may be due to the influence of substituents on the preferred conformations of the molecules. This hypothesis rationalises the paradoxical dependence on absolute stereochemistry of the activities of various allylbenzyl and cinnamyl alcohol derivatives.

  9. Anti-peptide antibodies for examining the conformation, molecular assembly and localization of an intracellular protein, ribosomal protein S6, in vivo.

    PubMed

    Nakagawa, Masatoshi; Ohmido, Nobuko; Ishikawa, Katsumi; Uchiyama, Susumu; Fukui, Kiichi; Azuma, Takachika

    2008-03-01

    Ribosomal protein S6 (rpS6) is known to relate to cell proliferation. Our recent proteome analysis of human metaphase chromosomes revealed the enrichment of rpS6 during mitosis. Here, structure, localization and molecular assembly in vitro and in vivo of a human rpS6, were examined using antibodies (Abs) prepared by immunizing rabbits with synthetic peptides. Five peptides, Ser6-Asp20 (S6-1), Ile52-Gly66 (S6-2), Asp103-Gly117 (S6-3), Asn146-Lys160 (S6-4) and Arg178-Ile192 (S6-5) were chosen as epitopes of human rpS6. These peptides except for S6-3 induced strong Ab production, and with an enzyme-linked immunosorbent assay, anti-S6-2, anti-S6-4 and anti-S6-5, showed high reactivity to recombinant rpS6 (r-rpS6), while anti-S6-1 did not, suggesting that S6-2, S6-4 and S6-5 were exposed on the r-rpS6 surface, while S6-1 was less exposed or possessed a different conformation. The immunostaining of HeLa cells as well as isolated chromosomes suggested that rpS6 occurs in endoplasmic reticulum (ER) but less possible on chromosomes since no Abs showed localization of rpS6 to chromosomes. In addition, the immunostaining suggested that only S6-4 is exposed on the protein surface, while S6-2 and S6-5 are buried by the interaction with other macromolecules in HeLa cells. Present our result shows new possibility of antibodies as tools for structure-oriented cell biology.

  10. Conformational Change in the Mechanism of Inclusion of Ketoprofen in β-Cyclodextrin: NMR Spectroscopy, Ab Initio Calculations, Molecular Dynamics Simulations, and Photoreactivity.

    PubMed

    Guzzo, T; Mandaliti, W; Nepravishta, R; Aramini, A; Bodo, E; Daidone, I; Allegretti, M; Topai, A; Paci, M

    2016-10-11

    Inclusion of drugs in cyclodextrins (CDs) is a recognized tool for modifying several properties such as solubility, stability, bioavailability, and so on. The photoreactive behavior of the β-CD/ketoprofen (KP) complex upon UV exposure showed a significant increase in photodecarboxylation, whereas the secondary degradation products by hydroxylation of the benzophenone moiety were inhibited. The results may account for an improvement of KP photophysical properties upon inclusion, thus better fostering its topical use. To correlate the structural details of the inclusion with these results, an NMR spectroscopic study of KP upon inclusion in β-CD was performed. Effects of the magnetically anisotropic centers of KP, changing their orientations upon inclusion and giving chemical shift variations, were specifically correlated with the results of the molecular dynamic simulations and ab initio calculations. In the large variety of papers focusing on the structural analysis of β-CD complexes, this work represents one of the few examples in which a detailed analysis of these simultaneous upfield-downfield NMR shifts of the same aromatic molecule upon inclusion is reported. Interestingly, the results demonstrate that the observed upfield and downfield shifts upon inclusion are not related to any direct magnetic role of β-CD. The conformational change of KP upon the inclusion process consists of a slight reduction in the angle between the two phenyl rings and in a remarkable reduction in the mobility of the carboxyl group, the latter being one of the main contributions to the NMR resonance shifts. These structural details help in understanding the features of the inclusion complex and, eventually, the driving force for its formation.

  11. Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method.

    PubMed

    Pan, Li-Li; Zheng, Zheng; Wang, Ting; Merz, Kenneth M

    2015-12-08

    In this article, we extend the movable type (MT) sampling method to molecular conformational searches (MT-CS) on the free energy surface of the molecule in question. Differing from traditional systematic and stochastic searching algorithms, this method uses Boltzmann energy information to facilitate the selection of the best conformations. The generated ensembles provided good coverage of the available conformational space including available crystal structures. Furthermore, our approach directly provides the solvation free energies and the relative gas and aqueous phase free energies for all generated conformers. The method is validated by a thorough analysis of thrombin ligands as well as against structures extracted from both the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD). An in-depth comparison between OMEGA and MT-CS is presented to illustrate the differences between the two conformational searching strategies, i.e., energy-based versus free energy-based searching. These studies demonstrate that our MT-based ligand conformational search algorithm is a powerful approach to delineate the conformational ensembles of molecular species on free energy surfaces.

  12. Structure determination and conformation analysis of symmetrical dimers.

    PubMed

    Buevich, Alexei V; Chan, Tze-Ming; Wang, C H; McPhail, Andrew T; Ganguly, A K

    2005-03-01

    Conformational and stereochemical analysis of six new symmetrical dimers was performed using proton-proton vicinal coupling measured from (1)H NMR and (13)C satellites of (1)H NMR signals, natural abundance (13)C-edited nuclear overhauser effect (NOE) experiments, comprehensive NOE analysis and molecular modeling. The (13)C satellite analysis and (13)C-edited NOE experiments were carried out to extract spectral information between equivalent protons. Molecular modeling was applied for estimations of three-dimensional parameters of the studied dimers, which were subsequently used to generate a set of theoretical NOE for each possible conformation. The J-coupling, (13)C-edited NOE and quantitative NOE analyses showed the predominance of gauche conformation for three dimers, whereas a mixture of gauche and anti conformations (45:55) for three other dimers was established by quantitative NOE analysis. X-ray crystallographic study confirmed the stereochemistry of one of the dimers and revealed a discrepancy in conformation stability between liquid and solid states.

  13. The Molecular Blueprint of a Fungus by Next-Generation Sequencing (NGS).

    PubMed

    Grumaz, Christian; Kirstahler, Philipp; Sohn, Kai

    2017-01-01

    Sequencing the whole genome of an organism is invaluable for its comprehensive molecular characterization and has been drastically facilitated by the advent of high-throughput sequencing techniques. Especially in clinical microbiology the impact of sequenced strains increases as resistance and virulence markers can easily be detected. Here, we describe a combined approach for sequencing a fungal genome and transcriptome from initial nucleic acid isolation through the generation of ready-to-load DNA libraries for the Illumina platform and the final step of genome assembly with subsequent gene annotation.

  14. Community genetics in the time of next-generation molecular technologies.

    PubMed

    Gugerli, Felix; Brandl, Roland; Castagneyrol, Bastien; Franc, Alain; Jactel, Hervé; Koelewijn, Hans-Peter; Martin, Francis; Peter, Martina; Pritsch, Karin; Schröder, Hilke; Smulders, Marinus J M; Kremer, Antoine; Ziegenhagen, Birgit

    2013-06-01

    Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observations and manipulative experiments across spatio-temporal gradients, are key to expanding our understanding of community-level processes. Here, we introduce a variety of '-omics' tools, with recent studies of plant-insect herbivores and of ectomycorrhizal systems providing detailed examples of how next-generation approaches can revolutionize our understanding of interspecific interactions. We suggest ways that novel technologies may convert community genetics from a field that relies on correlative inference to one that reveals causal mechanisms of genetic co-variation and adaptations within communities.

  15. Distinct molecular processes associated with isometric force generation and rapid tension recovery after quick release.

    PubMed Central

    Brenner, B; Chalovich, J M; Yu, L C

    1995-01-01

    It was proposed by Huxley and Simmons (Nature 1971, 233:533-538) that force-generating cross-bridges are attached to actin in several stable positions. In this concept, isometric force is generated by the same mechanism as the quick tension recovery after an abrupt release of length; i.e., when crossbridges proceed from the first postulated stable position to the second and/or subsequent positions, resulting in straining of the elastic elements within the cross-bridges. Therefore, isometric force is generated by cross-bridges in the second or even subsequent stable positions. However, through mechanical measurements of skinned rabbit psoas muscle fibers, we found that during isometric contraction only the first stable state is significantly occupied; i.e., isometric force is generated by cross-bridges in the first of the stable states. Thus, isometric force and the quick tension recovery appear to result from two distinctly different molecular processes. We propose that isometric force results from a structural change in the actomyosin complex associated with the transition from a weakly bound configuration to a strongly bound configuration before the reaction steps in the Huxley-Simmons model, whereas a major component of quick tension recovery originates from transitions among the subsequent strongly bound states. Mechanical, biochemical, and structural evidence for the two distinct processes is summarized and reviewed. PMID:7787051

  16. Distinct molecular processes associated with isometric force generation and rapid tension recovery after quick release.

    PubMed

    Brenner, B; Chalovich, J M; Yu, L C

    1995-04-01

    It was proposed by Huxley and Simmons (Nature 1971, 233:533-538) that force-generating cross-bridges are attached to actin in several stable positions. In this concept, isometric force is generated by the same mechanism as the quick tension recovery after an abrupt release of length; i.e., when crossbridges proceed from the first postulated stable position to the second and/or subsequent positions, resulting in straining of the elastic elements within the cross-bridges. Therefore, isometric force is generated by cross-bridges in the second or even subsequent stable positions. However, through mechanical measurements of skinned rabbit psoas muscle fibers, we found that during isometric contraction only the first stable state is significantly occupied; i.e., isometric force is generated by cross-bridges in the first of the stable states. Thus, isometric force and the quick tension recovery appear to result from two distinctly different molecular processes. We propose that isometric force results from a structural change in the actomyosin complex associated with the transition from a weakly bound configuration to a strongly bound configuration before the reaction steps in the Huxley-Simmons model, whereas a major component of quick tension recovery originates from transitions among the subsequent strongly bound states. Mechanical, biochemical, and structural evidence for the two distinct processes is summarized and reviewed.

  17. Applications of next generation sequencing in molecular ecology of non-model organisms

    PubMed Central

    Ekblom, R; Galindo, J

    2011-01-01

    As most biologists are probably aware, technological advances in molecular biology during the last few years have opened up possibilities to rapidly generate large-scale sequencing data from non-model organisms at a reasonable cost. In an era when virtually any study organism can ‘go genomic', it is worthwhile to review how this may impact molecular ecology. The first studies to put the next generation sequencing (NGS) to the test in ecologically well-characterized species without previous genome information were published in 2007 and the beginning of 2008. Since then several studies have followed in their footsteps, and a large number are undoubtedly under way. This review focuses on how NGS has been, and can be, applied to ecological, population genetic and conservation genetic studies of non-model species, in which there is no (or very limited) genomic resources. Our aim is to draw attention to the various possibilities that are opening up using the new technologies, but we also highlight some of the pitfalls and drawbacks with these methods. We will try to provide a snapshot of the current state of the art for this rapidly advancing and expanding field of research and give some likely directions for future developments. PMID:21139633

  18. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines.

    PubMed

    Marshall, Sergio H

    2002-11-01

    The paradigm for classic vaccines has been to mimic natural infection, and their success relies mostly on the induction of neutralizing antibodies followed by long-lasting immunity. The outcome of aggressive chronic infections such as HIV and HCV, the reappearance of fastidious diseases such as tuberculosis and the progression of cancer growth suggest that natural immune responses are definitely insufficient in many cases. A new paradigm is needed to design and develop a new high-efficiency generation of vaccines ideally able to surpass the capabilities of natural immune responses. In vitro evolution is a new, important laboratory method to evolve molecules with desired properties, which appears as an appealing alternative to achieve this goal. In its battle against disease, the vertebrate immune system triggers a series of well-known molecular events in order to produce protective neutralizing antibodies. This natural in vivo response shares remarkable similarities with the in vitro technique known as molecular breeding or "DNA shuffling." This method exploits the recombination between genes to dramatically accelerate the rate at which genes can be evolved under selection pressure in the laboratory, producing optimized high-efficiency mutant proteins. Since new generation vaccines are aimed to overcome natural selection and environmental pressures to fully inactivate rapidly developing pathogen variants, they could be engineered, developed and selected through the application of directed DNA shuffling procedures. This review highlights the potential of the procedure in the complex context of natural immune responses and the equilibrium and interaction existing in nature between hosts and pathogens.

  19. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?

    PubMed

    Artero, Vincent; Fontecave, Marc

    2013-03-21

    Catalysis is a key enabling technology for solar fuel generation. A number of catalytic systems, either molecular/homogeneous or solid/heterogeneous, have been developed during the last few decades for both the reductive and oxidative multi-electron reactions required for fuel production from water or CO(2) as renewable raw materials. While allowing for a fine tuning of the catalytic properties through ligand design, molecular approaches are frequently criticized because of the inherent fragility of the resulting catalysts, when exposed to extreme redox potentials. In a number of cases, it has been clearly established that the true catalytic species is heterogeneous in nature, arising from the transformation of the initial molecular species, which should rather be considered as a pre-catalyst. Whether such a situation is general or not is a matter of debate in the community. In this review, covering water oxidation and reduction catalysts, involving noble and non-noble metal ions, we limit our discussion to the cases in which this issue has been directly and properly addressed as well as those requiring more confirmation. The methodologies proposed for discriminating homogeneous and heterogeneous catalysis are inspired in part by those previously discussed by Finke in the case of homogeneous hydrogenation reaction in organometallic chemistry [J. A. Widegren and R. G. Finke, J. Mol. Catal. A, 2003, 198, 317-341].

  20. Are three generations of quantitative molecular methods sufficient in medical virology? Brief review.

    PubMed

    Clementi, Massimo; Bagnarelli, Patrizia

    2015-10-01

    In the last two decades, development of quantitative molecular methods has characterized the evolution of clinical virology more than any other methodological advancement. Using these methods, a great deal of studies has addressed efficiently in vivo the role of viral load, viral replication activity, and viral transcriptional profiles as correlates of disease outcome and progression, and has highlighted the physio-pathology of important virus diseases of humans. Furthermore, these studies have contributed to a better understanding of virus-host interactions and have sharply revolutionized the research strategies in basic and medical virology. In addition and importantly from a medical point of view, quantitative methods have provided a rationale for the therapeutic intervention and therapy monitoring in medically important viral diseases. Despite the advances in technology and the development of three generations of molecular methods within the last two decades (competitive PCR, real-time PCR, and digital PCR), great challenges still remain for viral testing related not only to standardization, accuracy, and precision, but also to selection of the best molecular targets for clinical use and to the identification of thresholds for risk stratification and therapeutic decisions. Future research directions, novel methods and technical improvements could be important to address these challenges.

  1. Raman spectra and molecular conformation of 2,4,4-trimethyl-2-pentanethiol as a model compound of a hydrophobic group of triton X-100 surfactant

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Fukuhara, Koichi

    1986-05-01

    Raman spectra of 2,4,4-trimethyl-2-pentanethiol were measured. The spectral analysis with the normal coordinate treatment indicated that this molecule takes the gauche conformation about the CCCS bond in the solid state and the trans and gauche conformations in the liquid state. The Raman bands due to the totally symmetric C&.zdbnd;C streching vibration of the t-butyl part of the 1,1,3,3-tetramethylbutyl group were found to be important to distinguish the two conformations. These key bands were applied to the interpretation of the Raman spectra of Triton X-100 surfactant which contains the p-(1,1,3,3-tetramethylbutyl)phenoxyl group as a hydrophobic moiety. The 1,1,3,3-tetramethylbutyl group of Triton X-100 molecules is shown to be predominantly in the gauche conformation in the liquid state and in aquaeous solution.

  2. Near-IR laser generation of a high-energy conformer of L-alanine and the mechanism of its decay in a low-temperature nitrogen matrix.

    PubMed

    Nunes, Cláudio M; Lapinski, Leszek; Fausto, Rui; Reva, Igor

    2013-03-28

    Monomers of L-alanine (ALA) were isolated in cryogenic nitrogen matrices at 14 K. Two conformers were identified for the compound trapped from the gas-phase into the solid nitrogen environment. The potential energy surface (PES) of ALA was theoretically calculated at the MP2 and QCISD levels. Twelve minima were located on this PES. Seven low-energy conformers fall within the 0-10 kJ mol(-1) range and should be appreciably populated in the equilibrium gas phase prior to deposition. Observation of only two forms in the matrices is explained in terms of calculated barriers to conformational rearrangements. All conformers with the O=C-O-H moiety in the cis orientation are separated by low barriers and collapse to the most stable form I during deposition of the matrix onto the low-temperature substrate. The second observed form II has the O=C-O-H group in the trans orientation. The remaining trans forms have very high relative energies (between 24 and 30 kJ mol(-1)) and are not populated. The high-energy trans form VI, that differs from I only by rotation of the OH group, was found to be separated from other conformers by barriers that are high enough to open a perspective for its stabilization in a matrix. The form VI was photoproduced in situ by narrow-band near-infrared irradiation of the samples at 6935-6910 cm(-1), where the first overtone of the OH stretching vibration in form I appears. The photogenerated form VI decays in N2 matrices back to conformer I with a characteristic decay time of ∼15 min. The mechanism of the VI → I relaxation is rationalized in terms of the proton tunneling.

  3. Protonation states and conformational ensemble in ligand-based QSAR modeling.

    PubMed

    De Benedetti, Pier G

    2013-01-01

    Drug affinity and function depend on the different protonation species (present in the biological context) that generate different conformational ensembles with different structural features and, hence, different physico-chemical properties. In the present review article these strongly interdependent structural features will be considered for their crucial role in ligand-based QSAR modeling and drug design by using quantum chemical electronic/reactivity descriptors and molecular shape description. Some selected and relevant examples illustrate the role of these molecular descriptors, computed on the bioactive protonation states and conformers, as determinant factors in mechanistic/causative QSAR analysis.

  4. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Rettori, Daniel; Augusto, Ohara; Medeiros, Marisa H G; Di Mascio, Paolo

    2006-01-10

    The reaction of hypochlorous acid (HOCl) with hydrogen peroxide is known to generate stoichiometric amounts of singlet molecular oxygen [O2 (1Deltag)]. This study shows that HOCl can also react with linoleic acid hydroperoxide (LAOOH), generating O2 (1Deltag) with a yield of 13 +/- 2% at physiological pH. Characteristic light emission at 1,270 nm, corresponding to O2 (1Deltag) monomolecular decay, was observed when HOCl was reacted with LAOOH or with liposomes containing phosphatidylcholine hydroperoxides, but not with cumene hydroperoxide or tert-butyl hydroperoxide. The generation of O2 (1Deltag) was confirmed by the acquisition of the spectrum of the light emitted in the near-infrared region showing a band with maximum intensity at 1,270 nm and by the observation of the enhancing effect of deuterium oxide and the quenching effect of sodium azide. Mechanistic studies using 18O-labeled linoleic acid hydroperoxide (LA18O18OH) showed that its reaction with HOCl yields 18O-labeled O2 (1Deltag) [18O2 (1Deltag)], demonstrating that the oxygen atoms in O2 (1Deltag) are derived from the hydroperoxide group. Direct analysis of radical intermediates in the reaction of LAOOH with HOCl by continuous-flow electron paramagnetic resonance spectroscopy showed a doublet signal with a g-value of 2.014 and a hyperfine coupling constant from the alpha-hydrogen of a(H) = 4.3 G, indicating the formation of peroxyl radicals. Taken together, our results clearly demonstrate that HOCl reacts with biologically relevant lipid hydroperoxides, generating O2 (1Deltag). In addition, the detection of 18O2 (1Deltag) and peroxyl radicals strongly supports the involvement of a Russell mechanism in the generation of O2 (1Deltag).

  5. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

    PubMed

    Németh, Andrea H; Kwasniewska, Alexandra C; Lise, Stefano; Parolin Schnekenberg, Ricardo; Becker, Esther B E; Bera, Katarzyna D; Shanks, Morag E; Gregory, Lorna; Buck, David; Zameel Cader, M; Talbot, Kevin; de Silva, Rajith; Fletcher, Nicholas; Hastings, Rob; Jayawant, Sandeep; Morrison, Patrick J; Worth, Paul; Taylor, Malcolm; Tolmie, John; O'Regan, Mary; Valentine, Ruth; Packham, Emily; Evans, Julie; Seller, Anneke; Ragoussis, Jiannis

    2013-10-01

    Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost

  6. Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...

  7. Random generation of periodic hard ellipsoids based on molecular dynamics: A computationally-efficient algorithm

    NASA Astrophysics Data System (ADS)

    Ghossein, Elias; Lévesque, Martin

    2013-11-01

    This paper presents a computationally-efficient algorithm for generating random periodic packings of hard ellipsoids. The algorithm is based on molecular dynamics where the ellipsoids are set in translational and rotational motion and their volumes gradually increase. Binary collision times are computed by simply finding the roots of a non-linear function. In addition, an original and efficient method to compute the collision time between an ellipsoid and a cube face is proposed. The algorithm can generate all types of ellipsoids (prolate, oblate and scalene) with very high aspect ratios (i.e., >10). It is the first time that such packings are reported in the literature. Orientations tensors were computed for the generated packings and it has been shown that ellipsoids had a uniform distribution of orientations. Moreover, it seems that for low aspect ratios (i.e., ⩽10), the volume fraction is the most influential parameter on the algorithm CPU time. For higher aspect ratios, the influence of the latter becomes as important as the volume fraction. All necessary pseudo-codes are given so that the reader can easily implement the algorithm.

  8. Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing.

    PubMed

    Devran, Zübeyir; Kahveci, Erdem; Özkaynak, Ercan; Studholme, David J; Tör, Mahmut

    It is imperative to identify highly polymorphic and tightly linked markers of a known trait for molecular marker-assisted selection. Potyvirus resistance 4 (Pvr4) locus in pepper confers resistance to three pathotypes of potato virus Y and to pepper mottle virus. We describe the use of next-generation sequencing technology to generate molecular markers tightly linked to Pvr4. Initially, comparative genomics was carried out, and a syntenic region of tomato on chromosome ten was used to generate PCR-based markers and map Pvr4. Subsequently, the genomic sequence of pepper was used, and more than 5000 single-nucleotide variants (SNVs) were identified within the interval. In addition, we identified nucleotide binding site-leucine-rich repeat-type disease resistance genes within the interval. Several of these SNVs were converted to molecular markers desirable for large-scale molecular breeding programmes.

  9. Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer

    NASA Astrophysics Data System (ADS)

    Carey, John J.; Bailey, Ray T.; Pugh, D.; Sherwood, J. N.; Cruickshank, F. R.; Wynne, Klaas

    2002-12-01

    Organic molecular crystals that are extremely efficient at terahertz-pulse generation are in- vestigated. Terahertz pulses produced by optical rectification at 800 nm in (-)2-(α-methylbenzyl-amino)-5-nitropyridine have an order of magnitude higher power than those generated in the commonly used inorganic crystal ZnTe. The organic molecular crystals were also found to generate terahertz pulses when excited on resonance at 400 nm. This may pave the way for studying ultrafast charge-transport dynamics in three dimensions.

  10. As-Rigid-As-Possible molecular interpolation paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Khoa; Jaillet, Léonard; Redon, Stéphane

    2017-03-01

    This paper proposes a new method to generate interpolation paths between two given molecular conformations. It relies on the As-Rigid-As-Possible (ARAP) paradigm used in Computer Graphics to manipulate complex meshes while preserving their essential structural characteristics. The adaptation of ARAP approaches to the case of molecular systems is presented in this contribution. Experiments conducted on a large set of benchmarks show how such a strategy can efficiently compute relevant interpolation paths with large conformational rearrangements.

  11. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  12. BIO2010 and beyond: What undergraduate physics does the next generation of molecular biology researchers need?

    NASA Astrophysics Data System (ADS)

    Howard, Jonathon

    2004-03-01

    What fundamental skills in mathematics, chemistry, physics, computer science and engineering are required at the undergraduate level to prepare the next generation of biology majors who will become research scientists? To address this question, Bruce Alberts, President of the National Academy of Sciences, established BIO2010, a committee of the National Research Council (USA), chaired by Lubert Stryer. The report of the committee was published in 2003 as BIO2010: Transforming Undergraduate Education for Future Research Biologists (National Academies Press, Washington DC, www.national-academies.com). I will summarize the recommendations of the Physics and Engineering Panel that was chaired by John Hopfield and give my own views of what physics is essential for researchers in cell and molecular biology.

  13. A molecular molybdenum electrocatalyst for generating hydrogen from acetic acid or water

    NASA Astrophysics Data System (ADS)

    Cao, Jie-Ping; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-12-01

    The reaction of 2-pyridylamino-N,N-bis(2-methylene-4,6-difluorophenol) (H2L‧) and MoCl5 affords a molybdenum(VI) complex [MoL‧(O)2] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that a molybdenum(IV) intermediate is responsible for the reductive proton to generate H2, and 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 50.6 (in DMF) and 756 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H2 over a 72 h electrolysis period and no observable decomposition of the catalyst.

  14. An oral vaccine against candidiasis generated by a yeast molecular display system.

    PubMed

    Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Miyoshi, Ayuko; Tafuku, Senji; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2013-12-01

    Enolase 1 (Eno1p) of Candida albicans is an immunodominant antigen. However, conventional technologies for preparing an injectable vaccine require purification of the antigenic protein and preparation of an adjuvant. To develop a novel type of oral vaccine against candidiasis, we generated Saccharomyces cerevisiae cells that display the Eno1p antigen on their surfaces. Oral delivery of the engineered S. cerevisiae cells prolonged survival rate of mice that were subsequently challenged with C. albicans. Given that a vaccine produced using molecular display technology avoids the need for protein purification, this oral vaccine offers a promising alternative to the use of conventional and injectable vaccines for preventing a range of infectious diseases.

  15. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation.

    PubMed

    Bian, Xue-Bin; Bandrauk, André D

    2014-11-07

    Molecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H(2)(+), D(2)(+), is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses. Compared to fixed-nuclei approximations, the intensity of MHOHG is much higher due to the dependence of enhanced ionization on the internuclear distance. The width and symmetry of the spectrum of each harmonic in MHOHG encode rich information on the dissociation process of molecules at the rising and falling parts of the laser pulses, which can be used to retrieve the nuclear dynamics. Isotope effects are studied to confirm the FM mechanism.

  16. Understanding Molecular Landscape of Endometrial Cancer through Next Generation Sequencing: What We Have Learned so Far?

    PubMed Central

    Suhaimi, Siti-Syazani; Ab Mutalib, Nurul-Syakima; Jamal, Rahman

    2016-01-01

    Endometrial cancer (EC) is among the most common gynecological cancers affecting women worldwide. Despite the early detection and rather high overall survival rate, around 20% of the cases recur with poor prognosis. The Next Generation Sequencing (NGS) technology, also known as massively parallel sequencing, symbolizes a high-throughput, fast, sensitive and accurate way to study the molecular landscape of a cancer and this has indeed revolutionized endometrial cancer research. Understanding the potential, advantages, and limitations of NGS will be crucial for the healthcare providers and scientists in providing the genome-driven care in this era of precision medicine and pharmacogenomics. This mini review aimed to compile and critically summarize the recent findings contributed by NGS technology pertaining to EC. Importantly, we also discussed the potential of this technology for fundamental discovery research, individualized therapy, screening of at-risk individual and early diagnosis. PMID:27847479

  17. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.

    PubMed

    Beard, Matthew C; Johnson, Justin C; Luther, Joseph M; Nozik, Arthur J

    2015-06-28

    Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.

  18. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-04-19

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  19. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-11-22

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  20. Next-generation molecular diagnosis: single-cell sequencing from bench to bedside.

    PubMed

    Zhu, Wanjun; Zhang, Xiao-Yan; Marjani, Sadie L; Zhang, Jialing; Zhang, Wengeng; Wu, Shixiu; Pan, Xinghua

    2017-03-01

    Single-cell sequencing (SCS) is a fast-growing, exciting field in genomic medicine. It enables the high-resolution study of cellular heterogeneity, and reveals the molecular basis of complicated systems, which facilitates the identification of new biomarkers for diagnosis and for targeting therapies. It also directly promotes the next generation of genomic medicine because of its ultra-high resolution and sensitivity that allows for the non-invasive and early detection of abnormalities, such as aneuploidy, chromosomal translocation, and single-gene disorders. This review provides an overview of the current progress and prospects for the diagnostic applications of SCS, specifically in pre-implantation genetic diagnosis/screening, non-invasive prenatal diagnosis, and analysis of circulating tumor cells. These analyses will accelerate the early and precise control of germline- or somatic-mutation-based diseases, particularly single-gene disorders, chromosome abnormalities, and cancers.

  1. Involvement of the glucose moiety in the molecular recognition of methyl beta-lactoside by ricin: synthesis, conformational analysis, and binding studies of different derivatives at the C-3 region.

    PubMed

    Fernández, P; Jiménez-Barbero, J; Martín-Lomas, M; Solís, D; Díaz-Mauriño, T

    1994-04-01

    Syntheses of the 3-aminodeoxy (4), 3-deoxy-3-methyl (5), and 3-epi (6) derivatives of methyl beta-lactoside (1) have been achieved from 1 in a straightforward way, and their solution conformations in water and dimethyl sulfoxide analysed through molecular mechanics and dynamics calculations and nuclear magnetic resonance data. The overall shape of all the compounds studied is fairly similar and may be described by conformers included in a low energy region with phi = 15 +/- 45 degrees and psi = -25 +/- 30 degrees, that is ca. 5% of the total potential energy surface for the glycosidic linkages of the disaccharides. The binding of the different compounds to ricin, the galactose-specific toxin from Ricinus communis, has been investigated. The results confirm the involvement of the C-3 region in a nonpolar interaction with the protein at the periphery of the combining site.

  2. 2-tert-Butylamino-4-chloro-6-ethylamino-1,3,5-triazine: a structure with Z' = 4 containing two different molecular conformations and two independent chains of hydrogen-bonded R(2)2(8) rings.

    PubMed

    Quesada, Antonio; Fontecha, Maria A; López, Maria V; Low, John N; Glidewell, Christopher

    2008-08-01

    The title compound (trivial name terbutylazine), C(9)H(16)ClN(5), (I), crystallizes with Z' = 4 in the space group Pca2(1), and equal numbers of molecules adopt two different conformations for the ethylamine groups. The four independent molecules form two approximately enantiomorphic pairs. Eight independent N-H...N hydrogen bonds link the molecules into two independent chains of R(2)(2)(8) rings, in which the arrangement of the alkylamine substituents in the independent molecules precludes any further crystallographic symmetry. The significance of this study lies in its finding of two distinct molecular conformations within the structure and two distinct ways in which the molecules are organized into hydrogen-bonded chains, and in its comparison of the hydrogen-bonded structure of (I) with those of analogous 1,3,5-triazines and pyrimidines.

  3. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    PubMed

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  4. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

    PubMed Central

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury. PMID:26617489

  5. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth.

    PubMed

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury.

  6. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.

    PubMed

    Guo, H; Cui, Q; Lipscomb, W N; Karplus, M

    2001-07-31

    Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in solution. It is shown by QM/MM molecular dynamics simulations, which take into account the motions of the enzyme, that when these inactive conformers are bound to the active site, they are rapidly converted to the reactive chair conformer. This result suggests that one contribution of the enzyme is to bind the more prevalent nonreactive conformers and transform them into the active form in a step before the chemical reaction. The motion of the reactive chair conformer in the active site calculated by using the QM/MM potential generates transient structures that are closer to the transition state than is the stable CHAIR conformer.

  7. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification.

  8. Recent Data Generation Activities at the Atomic and Molecular Data Unit of the IAEA

    SciTech Connect

    Clark, R.E.H.; Humbert, D.

    2005-05-27

    The main data generation mechanism of the Atomic and Molecular (A+M) Data Unit of the IAEA is the Co-ordinated Research Project (CRP). The International Fusion Research Council Subcommittee on Atomic and Molecular Data for Fusion recommends topics for new CRPs to be initiated by the A+M Unit. A typical CRP has a lifetime of three to five years. At the start of the CRP a Research Co-ordination Meeting (RCM) is held with the purpose of formulating a detailed work plan. At later RCMs progress on these work plans is reported and the studies debated and expanded. At the conclusion of the CRP the results are compiled in a volume of the journal Atomic and Plasma-Material Interaction Data for Fusion. Numerical results are also added to the electronic database as appropriate. Normally the Unit has three to four active CRPs, and also holds Technical Meetings and invites individual Consultants to IAEA Headquarters, Vienna for specific tasks. Such activities can result in providing advice on a particular topic, on data for a particular process, or a new capability to be made widely available. Recently, consultants to the Unit have provided extensive additions to the Unit databases, as well as interfaces to run several calculational tools through the Internet. Specific examples will be presented.

  9. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    PubMed Central

    Stefan, Christopher P.; Koehler, Jeffrey W.; Minogue, Timothy D.

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  10. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  11. Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing

    PubMed Central

    Putra, Juan; de Abreu, Francine B.; Peterson, Jason D.; Pipas, J. Marc; Mody, Kabir; Amos, Christopher I.; Tsongalis, Gregory J.; Suriawinata, Arief A.

    2015-01-01

    Cholangiocarcinoma is a heterogeneous malignant process, which is further classified into intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (ECC). The poor prognosis of the disease is partly due to the lack of understanding of the disease mechanism. Multiple gene alterations identified by various molecular techniques have been described recently. As a result, multiple targeted therapies for ICC and ECC are being developed. In this study, we identified and compared somatic mutations in ICC and ECC patients using next generation sequencing (NGS) (Ampliseq Cancer Hotspot Panel v2 and Ion Torrent 318v2 chips). Eleven of 16 samples passed internal quality control established for NGS testing. ICC cases (n = 3) showed IDH1 (33.3%) and NRAS (33.3%) mutations. Meanwhile, TP53 (75%), KRAS (50%), and BRAF (12.5%) mutations were identified in ECC cases (n = 8). Our study confirmed the molecular heterogeneity of ICC and ECC using NGS. This information will be important for individual patients as targeted therapies for ICC and ECC become available in the future. PMID:26189129

  12. Insights into molecular therapy of glioma: current challenges and next generation blueprint.

    PubMed

    Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh

    2017-03-20

    Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.

  13. Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells.

    PubMed

    Liu, Wei-Hui; Ren, Li-Na; Chen, Tao; Liu, Li-Ye; Tang, Li-Jun

    2013-11-07

    Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It's the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.

  14. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  15. Metallosupramolecular zippers generated by self-organization of self-complementary molecular clefts.

    PubMed

    Barboiu, Mihail; Petit, Eddy; Vaughan, Gavin

    2004-05-03

    The binding of Co(2+) and Pb(2+) ions to the terpyridine and pyridine subunits of the ligand 1 leads to the self-complementary molecular clefts 2-6, which result from the crossover combination of orthogonal-terpyridine and linear-pyridine metal-coordination subprograms and are stabilized by strong pi-pi stacking interactions. Four different cleft-type entities, [Co(2+) (2)(1)(2)] (3), [Pb(2+) (2)(1)(2)] (4), [Co(2+) (4)(1)(2)] (5), [Pb(2+) (4)(1)(2)] (6), are generated in both solution and the solid state, and may be interconverted as a function of metal/ligand stoichiometry. One- and two-dimensional metallosupramolecular zipper architectures result from self-assembly in the solid state driven by a combination of different pi-pi stacking subprograms. The U-shaped geometry of the ligand influences the possibility of zipping and thus, in turn, the generation of different zipper architectures. The structures of 2-5 have been confirmed by X-ray crystallography; that of 6 is based on NMR spectral data.

  16. Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations

    PubMed Central

    Michielssens, Servaas; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes. PMID:25992736

  17. Conformational choreography of a molecular switch region in myelin basic protein--molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments.

    PubMed

    Polverini, Eugenia; Coll, Eoin P; Tieleman, D Peter; Harauz, George

    2011-03-01

    The 18.5 kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5 kDa myelin basic protein (residues Glu80-Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (α-helix from Glu80-Val91 and extended poly-proline type II from Thr92-Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of β-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic α-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the α-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this α-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic α-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the

  18. Generation of a neutralization-resistant CCR5 tropic simian/human immunodeficiency virus (SHIV-MK38) molecular clone, a derivative of SHIV-89.6.

    PubMed

    Ishida, Yuki; Yoneda, Mai; Otsuki, Hiroyuki; Watanabe, Yuji; Kato, Fumihiro; Matsuura, Kanako; Kikukawa, Minako; Matsushita, Shuzo; Hishiki, Takayuki; Igarashi, Tatsuhiko; Miura, Tomoyuki

    2016-05-01

    Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.

  19. Deducing conformational variability of intrinsically disordered proteins from infrared spectroscopy with Bayesian statistics

    PubMed Central

    Sethi, Anurag; Anunciado, Divina; Tian, Jianhui; Vu, Dung M.; Gnanakaran, S.

    2013-01-01

    As it remains practically impossible to generate ergodic ensembles for large intrinsically disordered proteins (IDP) with molecular dynamics (MD) simulations, it becomes critical to compare spectroscopic characteristics of the theoretically generated ensembles to corresponding measurements. We develop a Bayesian framework to infer the ensemble properties of an IDP using a combination of conformations generated by MD simulations and its measured infrared spectrum. We performed 100 different MD simulations totaling more than 10 µs to characterize the conformational ensemble of αsynuclein, a prototypical IDP, in water. These conformations are clustered based on solvent accessibility and helical content. We compute the amide-I band for these clusters and predict the thermodynamic weights of each cluster given the measured amide-I band. Bayesian analysis produces a reproducible and non-redundant set of thermodynamic weights for each cluster, which can then be used to calculate the ensemble properties. In a rigorous validation, these weights reproduce measured chemical shifts. PMID:24187427

  20. Protein Conformational Switches: From Nature to Design

    PubMed Central

    Ha, Jeung-Hoi

    2012-01-01

    Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation—which can be carried out by a molecule as small as a thousand atoms or so—belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, bio-technology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and “smart” biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding–unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts. PMID:22688954

  1. Novel photoresist thin films with in-situ photoacid generator by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Bent, Stacey F.

    2013-03-01

    Current photoresist materials are facing many challenges introduced by advanced lithographies, particularly the need for excellent compositional homogeneity and ultrathin film thickness. Traditional spin-on polymeric resists have inherent limitations in achieving a high level of control over the chemical composition, leading to interest in development of alternative methods for making photoresists. In this work, we demonstrate that molecular layer deposition (MLD) is a potential method for synthesizing photoresists because it allows for precise control over organic film thickness and composition. MLD utilizes sequential, self-limiting reactions of organic precursors to build a thin film directly on a substrate surface and grows organic films by depositing only one molecular layer at each precursor dose, which in turn allows for fine-tuning of the position and concentration of various functionalities in the deposited film. In this study, we use bifunctional precursors, diamine and diisocyanate, to build polyurea resist films via urea coupling reaction between the amine and isocyanate groups. Acid-labile groups and photoacid generators (PAGs) are embedded in the backbone of the resist films with a highly uniform distribution. The resist films were successfully deposited and characterized for both materials properties and resist response. E-beam patterning was achieved with the resist films. Cross-linking behavior of the resist films was observed, likely due to the aromatic rings in the films, which is undesirable for application as a positive-tone photoresist. Moreover, the in-situ polymer-bound PAGs had low sensitivity. It is suggested that this effect may arise because the PAG is cation-bound, leading to lower efficiency of sulfur-carbon bond cleavage in the sulfonium cation, which is needed to produce the photoacid, and consequently a lower photoacid yield. Further work is needed to improve the performance of the MLD resist films.

  2. Feasibility of a workflow for the molecular characterization of single cells by next generation sequencing

    PubMed Central

    Salvianti, Francesca; Rotunno, Giada; Galardi, Francesca; De Luca, Francesca; Pestrin, Marta; Vannucchi, Alessandro Maria; Di Leo, Angelo; Pazzagli, Mario; Pinzani, Pamela

    2015-01-01

    The purpose of the study was to explore the feasibility of a protocol for the isolation and molecular characterization of single circulating tumor cells (CTCs) from cancer patients using a single-cell next generation sequencing (NGS) approach. To reach this goal we used as a model an artificial sample obtained by spiking a breast cancer cell line (MDA-MB-231) into the blood of a healthy donor. Tumor cells were enriched and enumerated by CellSearch® and subsequently isolated by DEPArray™ to obtain single or pooled pure samples to be submitted to the analysis of the mutational status of multiple genes involved in cancer. Upon whole genome amplification, samples were analysed by NGS on the Ion Torrent PGM™ system (Life Technologies) using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies), designed to investigate genomic “hot spot” regions of 50 oncogenes and tumor suppressor genes. We successfully sequenced five single cells, a pool of 5 cells and DNA from a cellular pellet of the same cell line with a mean depth of the sequencing reaction ranging from 1581 to 3479 reads. We found 27 sequence variants in 18 genes, 15 of which already reported in the COSMIC or dbSNP databases. We confirmed the presence of two somatic mutations, in the BRAF and TP53 gene, which had been already reported for this cells line, but also found new mutations and single nucleotide polymorphisms. Three variants were common to all the analysed samples, while 18 were present only in a single cell suggesting a high heterogeneity within the same cell line. This paper presents an optimized workflow for the molecular characterization of multiple genes in single cells by NGS. The described pipeline can be easily transferred to the study of single CTCs from oncologic patients. PMID:27077040

  3. Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Pandurangan, B.; Cheeseman, B. A.; Fountzoulas, C.; Patel, P.

    2012-08-01

    A non-equilibrium molecular dynamics method is employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Specific attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at, or in the vicinity of, the shock front. The results obtained revealed that the shock loading causes a 2-4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si-O rings. These processes are associated with substantial energy absorption and dissipation and are believed to greatly influence the blast/ballistic impact mitigation potential of soda-lime glass. The present work was also aimed at the determination of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength (as quantified by the shock speed). The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.

  4. Structure-based design of conformation- and sequence-specific antibodies against amyloid β

    PubMed Central

    Perchiacca, Joseph M.; Ladiwala, Ali Reza A.; Bhattacharya, Moumita; Tessier, Peter M.

    2012-01-01

    Conformation-specific antibodies that recognize aggregated proteins associated with several conformational disorders (e.g., Parkinson and prion diseases) are invaluable for diagnostic and therapeutic applications. However, no systematic strategy exists for generating conformation-specific antibodies that target linear sequence epitopes within misfolded proteins. Here we report a strategy for designing conformation- and sequence-specific antibodies against misfolded proteins that is inspired by the molecular interactions governing protein aggregation. We find that grafting small amyloidogenic peptides (6–10 residues) from the Aβ42 peptide associated with Alzheimer’s disease into the complementarity determining regions of a domain (VH) antibody generates antibody variants that recognize Aβ soluble oligomers and amyloid fibrils with nanomolar affinity. We refer to these antibodies as gammabodies for grafted amyloid-motif antibodies. Gammabodies displaying the central amyloidogenic Aβ motif () are reactive with Aβ fibrils, whereas those displaying the amyloidogenic C terminus () are reactive with Aβ fibrils and oligomers (and weakly reactive with Aβ monomers). Importantly, we find that the grafted motifs target the corresponding peptide segments within misfolded Aβ conformers. Aβ gammabodies fail to cross-react with other amyloidogenic proteins and scrambling their grafted sequences eliminates antibody reactivity. Finally, gammabodies that recognize Aβ soluble oligomers and fibrils also neutralize the toxicity of each Aβ conformer. We expect that our antibody design strategy is not limited to Aβ and can be used to readily generate gammabodies against other toxic misfolded proteins. PMID:22171009

  5. Structure-based design of conformation- and sequence-specific antibodies against amyloid β.

    PubMed

    Perchiacca, Joseph M; Ladiwala, Ali Reza A; Bhattacharya, Moumita; Tessier, Peter M

    2012-01-03

    Conformation-specific antibodies that recognize aggregated proteins associated with several conformational disorders (e.g., Parkinson and prion diseases) are invaluable for diagnostic and therapeutic applications. However, no systematic strategy exists for generating conformation-specific antibodies that target linear sequence epitopes within misfolded proteins. Here we report a strategy for designing conformation- and sequence-specific antibodies against misfolded proteins that is inspired by the molecular interactions governing protein aggregation. We find that grafting small amyloidogenic peptides (6-10 residues) from the Aβ42 peptide associated with Alzheimer's disease into the complementarity determining regions of a domain (V(H)) antibody generates antibody variants that recognize Aβ soluble oligomers and amyloid fibrils with nanomolar affinity. We refer to these antibodies as gammabodies for grafted amyloid-motif antibodies. Gammabodies displaying the central amyloidogenic Aβ motif (18VFFA21) are reactive with Aβ fibrils, whereas those displaying the amyloidogenic C terminus (34LMVGGVVIA42) are reactive with Aβ fibrils and oligomers (and weakly reactive with Aβ monomers). Importantly, we find that the grafted motifs target the corresponding peptide segments within misfolded Aβ conformers. Aβ gammabodies fail to cross-react with other amyloidogenic proteins and scrambling their grafted sequences eliminates antibody reactivity. Finally, gammabodies that recognize Aβ soluble oligomers and fibrils also neutralize the toxicity of each Aβ conformer. We expect that our antibody design strategy is not limited to Aβ and can be used to readily generate gammabodies against other toxic misfolded proteins.

  6. Conformational analysis of ethyl-substituted Criegee intermediate by FTMW spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabezas, Carlos; Guillemin, Jean-Claude; Endo, Yasuki

    2016-12-01

    Ethyl-substituted Criegee intermediate, C2H5CHOO, has been generated in the discharged plasma of a 1,1-diiodopropane/O2 gas mixture and spectroscopically characterized by Fourier transform microwave spectroscopy in a pulsed supersonic jet. The comparison between the experimental rotational constants and those calculated ab initio unambiguously confirms the identification of three conformers, providing the definitive probe for their molecular structures. Some of the observed pure rotational transitions show small splittings corresponding to the A/E components due to the threefold methyl internal rotation, which made it possible to determine the barrier heights of the hindered methyl rotation. The conformational abundances as well as the non observation of a plausible fourth conformer have been rationalized in terms of interconversion processes between conformers and interactions between the terminal oxygen and the protons of the ethyl moiety.

  7. Conformational analysis of ethyl-substituted Criegee intermediate by FTMW spectroscopy.

    PubMed

    Cabezas, Carlos; Guillemin, Jean-Claude; Endo, Yasuki

    2016-12-14

    Ethyl-substituted Criegee intermediate, C2H5CHOO, has been generated in the discharged plasma of a 1,1-diiodopropane/O2 gas mixture and spectroscopically characterized by Fourier transform microwave spectroscopy in a pulsed supersonic jet. The comparison between the experimental rotational constants and those calculated ab initio unambiguously confirms the identification of three conformers, providing the definitive probe for their molecular structures. Some of the observed pure rotational transitions show small splittings corresponding to the A/E components due to the threefold methyl internal rotation, which made it possible to determine the barrier heights of the hindered methyl rotation. The conformational abundances as well as the non observation of a plausible fourth conformer have been rationalized in terms of interconversion processes between conformers and interactions between the terminal oxygen and the protons of the ethyl moiety.

  8. Generation of viroid conformational isomers that are stable to incubation with magnesium ions and in a nuclear extract from tomato plants.

    PubMed Central

    Pace, U; Branch, A D; Robertson, H D

    1992-01-01

    We identified conditions for heating and quick cooling viroid RNAs in the presence of salt which lead to the production of conformational isomers stable to incubation for at least 45 minutes at 30 degrees in the presence of magnesium ions. Elution in 0.3 M NaCl allowed the purification of an electrophoretically slow form of an in vitro transcript carrying a complete copy of the potato spindle tuber viroid RNA sequence. Slow forms of this transcript and of kinase-labeled linear viroid RNA persisted for longer than 20 minutes when incubated with a protein-rich extract prepared from the nuclei of uninfected tomato plants, although both were slowly cleaved by a nuclease present in this extract. The fast form of the transcript was highly resistant to this tomato ribonuclease. The slow form of the transcript was much more susceptible to cleavage by RNase T1 than the fast form of this RNA, suggesting that the reduced gel mobility of the slow forms results from their relatively open structure. The ability to purify viroid conformational isomers from polyacrylamide gels will facilitate biochemical studies aimed at identifying host components interacting with RNAs of the viroid replication complex, which may not all be present in the most thermodynamically favored rodlike structure of mature viroids. Images PMID:1282703

  9. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  10. The role of dynamic conformational ensembles in biomolecular recognition.

    PubMed

    Boehr, David D; Nussinov, Ruth; Wright, Peter E

    2009-11-01

    Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.

  11. Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology.

    PubMed

    García-Prieto, Francisco F; Fdez Galván, Ignacio; Aguilar, Manuel A; Martín, M Elena

    2011-11-21

    The ASEP/MD method has been employed for studying the solvent effect on the conformational equilibrium of the alanine dipeptide in water solution. MP2 and density functional theory (DFT) levels of theory were used and results were compared. While in gas phase cyclic structures showing intramolecular hydrogen bonds were found to be the most stable, the stability order is reversed in water solution. Intermolecular interaction with the solvent causes the predominance of extended structures as the stabilizing contacts dipeptide-water are favoured. Free-energy differences in solution were calculated and PPII, α(R), and C5 conformers were identified as the most stable at MP2 level. Experimental data from Raman and IR techniques show discrepancies about the relative abundance of α(R) y C5, our results support the Raman data. The DFT level of theory agrees with MP2 in the location and stability of PPII and α(R) forms but fails in the location of C5. MP2 results suggest the possibility of finding traces of C7eq conformer in water solution, in agreement with recent experiments.

  12. Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure.

    PubMed

    Chandran, Thyageshwar; Sharma, Alok; Vijayan, M

    2015-12-01

    The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPs, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPs of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The N-glycosylation of the lectin involves a plant-specific glycan while that in toxic type II RIPs of known structure involves a glycan which is animal as well as plant specific.

  13. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wa