Science.gov

Sample records for molecular contamination assessments

  1. Approaches to airborne molecular contamination assessment

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian

    2011-03-01

    Airborne molecular contamination (AMC) assessment approaches can vary greatly between different fabs and even between different divisions within a given company. Some companies have very rigorous testing schedules (such as those needed to maintain tool warranties) while others feel AMC testing is only necessary when they are having a problem. While choosing to only test for AMC when a trouble arises may be cost effective in the short term it can have significant impacts on tools, in particular tool optics, and product losses due to defects which can cost significantly more in the long term than the AMC testing would have. Another critical issue in assessing AMC is what species you should be testing for. Some volatile species may not cause an issue in your process while part-per-trillion volume (pptv) amounts of others can do serious damage to your tools and/or products. Knowledge of which volatile compounds can cause problems in your applications and at what levels is crucial in deciding what type of AMC assessment to perform and at what frequency. Typically four classes of AMC are routinely monitored in clean rooms and tool environments: acids, bases, hydrocarbons, and refractory compounds. Real world examples will be presented using the solely solid-state trap collection methods utilized by SAES Pure Gas.

  2. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies. PMID:20193970

  3. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies.

  4. Molecular biomarkers to assess health risks due to environmental contaminants exposure.

    PubMed

    Poblete-Naredo, Irais; Albores, Arnulfo

    2016-01-01

    Biomarkers, or bioindicators, are metric tools that, when compared with reference values, allow specialists to perform risk assessments and provide objective information to decision makers to design effective strategies to solve health or environmental problems by efficiently using the resources assigned. Health risk assessment is a multidisciplinary exercise, and molecular biology is a discipline that greatly contributes to these evaluations because the genome, transcriptome, proteome and metabolome could be affected by xenobiotics causing measurable changes that might be useful biomarkers. Such changes may greatly depend on individual genetic background; therefore, the polymorphic distribution of exposed populations becomes an essential feature for adequate data interpretation. The aim of this paper is to offer an up-to-date review of the role of different molecular biomarkers in health risk assessments. PMID:27622493

  5. In vivo experimentation with simian herpesviruses: assessment of biosafety and molecular contamination.

    PubMed

    Ritchey, Jerry W; Black, Darla H; Rogers, Kristin M; Eberle, Richard

    2006-03-01

    In vivo studies with highly pathogenic viruses prompt concerns regarding the persistence of infectious virus in pathology specimens. Although formalin fixation of tissues may inactivate infectious virus, fixation may also degrade viral nucleic acid and antigens, thereby limiting detection of virus in tissues by polymerase chain reaction (PCR) amplification or immunohistochemistry (IHC). We sought to: 1) assess the rate of inactivation of infectious virus in tissue specimens during formalin fixation, 2) assess IHC recognition of viral antigens and PCR detection of viral DNA after long-term (14 d) formalin fixation, and 3) investigate microtome contamination by DNA carry-over to subsequently sectioned tissues. Infectious baboon herpesvirus HVP2 could be recovered from fresh tissues of infected mice but not those fixed in formalin for >/=24 h. The intensity of IHC staining of viral antigen was unaffected by the duration of formalin fixation. PCR detection of viral DNA was negatively impacted by formalin fixation and/or heat inherent to paraffin processing; however, amplification of very short DNA sequences using real-time PCR was not affected. Lastly, microtome contamination by viral DNA was demonstrated by PCR screening of uninoculated control tissues that were sectioned after sectioning infected tissues. In summary, infectious virus is inactivated after only 24 h of formalin fixation whereas IHC staining remains sensitive in tissues fixed for up to 14 d. Formalin fixation does degrade DNA, but viral DNA can be detected by PCR amplification of very short DNA sequences. In addition, viral DNA can contaminate a microtome knife such that subsequently sectioned uninoculated control tissues exhibit false positive PCR amplification.

  6. In vivo experimentation with simian herpesviruses: assessment of biosafety and molecular contamination.

    PubMed

    Ritchey, Jerry W; Black, Darla H; Rogers, Kristin M; Eberle, Richard

    2006-03-01

    In vivo studies with highly pathogenic viruses prompt concerns regarding the persistence of infectious virus in pathology specimens. Although formalin fixation of tissues may inactivate infectious virus, fixation may also degrade viral nucleic acid and antigens, thereby limiting detection of virus in tissues by polymerase chain reaction (PCR) amplification or immunohistochemistry (IHC). We sought to: 1) assess the rate of inactivation of infectious virus in tissue specimens during formalin fixation, 2) assess IHC recognition of viral antigens and PCR detection of viral DNA after long-term (14 d) formalin fixation, and 3) investigate microtome contamination by DNA carry-over to subsequently sectioned tissues. Infectious baboon herpesvirus HVP2 could be recovered from fresh tissues of infected mice but not those fixed in formalin for >/=24 h. The intensity of IHC staining of viral antigen was unaffected by the duration of formalin fixation. PCR detection of viral DNA was negatively impacted by formalin fixation and/or heat inherent to paraffin processing; however, amplification of very short DNA sequences using real-time PCR was not affected. Lastly, microtome contamination by viral DNA was demonstrated by PCR screening of uninoculated control tissues that were sectioned after sectioning infected tissues. In summary, infectious virus is inactivated after only 24 h of formalin fixation whereas IHC staining remains sensitive in tissues fixed for up to 14 d. Formalin fixation does degrade DNA, but viral DNA can be detected by PCR amplification of very short DNA sequences. In addition, viral DNA can contaminate a microtome knife such that subsequently sectioned uninoculated control tissues exhibit false positive PCR amplification. PMID:16542036

  7. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils.

    PubMed

    Layton, A C; Lajoie, C A; Easter, J P; Jernigan, R; Sanseverino, J; Sayler, G S

    1994-11-01

    The microbial populations in PCB-contaminated electric power substation capacitor bank soil (TVA soil) and from another PCB-contaminated site (New England soil) were compared to determine their potential to degrade PCB. Known biphenyl operon genes were used as gene probes in colony hybridizations and in dot blots of DNA extracted from the soil to monitor the presence of PCB-degrading organisms in the soils. The microbial populations in the two soils differed in that the population in New England soil was enriched by the addition of 1000 p.p.m. 2-chlorobiphenyl (2-CB) whereas the population in the TVA capacitor bank soil was not affected. PCB degradative activity in the New England soil was indicated by a 50% PCB disappearance (gas chromatography), accumulation of chlorobenzoates (HPLC), and 14CO2 evolution from 14C-2CB. The PCB-degrading bacteria in the New England soil could be identified by their positive hybridization to the bph gene probes, their ability to produce the yellow meta-cleavage product from 2,3-dihydroxybiphenyl (2,3-DHB), and the degradation of specific PCB congeners by individual isolates in resting cell assays. Although the TVA capacitor bank soil lacked effective PCB-degrading populations, addition of a PCB-degrading organism and 10,000 p.p.m. biphenyl resulted in a > 50% reduction of PCB levels. Molecular characterization of soil microbial populations in laboratory scale treatments is expected to be valuable in the design of process monitoring and performance verification approaches for full scale bioremediation. PMID:7765670

  8. Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water.

    PubMed

    Ruecker, Norma J; Matsune, Joanne C; Wilkes, Graham; Lapen, David R; Topp, Edward; Edge, Thomas A; Sensen, Christoph W; Xiao, Lihua; Neumann, Norman F

    2012-10-15

    The high sequence diversity and heterogeneity observed within species or genotypes of Cryptosporidium requires phylogenetic approaches for the identification of novel sequences obtained from the environment. A long-term study on Cryptosporidium in the agriculturally-intensive South Nation River watershed in Ontario, Canada was undertaken, in which 60 sequence types were detected. Of these sequence types 33 were considered novel with no identical matches in GenBank. Detailed phylogenetic analysis identified that most sequences belonged to 17 previously described species: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium hominis, Cryptosporidium parvum, Cryptosporidium ubiquitum, Cryptosporidium meleagridis, muskrat I, muskrat II, deer mouse II, fox, vole, skunk, shrew, W12, W18, W19 and W25 genotypes. In addition, two new genotypes were identified, W27 and W28. C. andersoni and the muskrat II genotype were most frequently detected in the water samples. Species associated with livestock made up 39% of the total molecular detections, while wildlife associated species and genotypes accounted for 55% of the Cryptosporidium identified. The human pathogenic species C. hominis and C. parvum had an overall prevalence of 1.6% in the environment, indicating a small risk to humans from the Cryptosporidium present in the watershed. Phylogenetic analysis and knowledge of host-parasite relationships are fundamental in using Cryptosporidium as a source-tracking or human health risk assessment tool. PMID:22841595

  9. Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities

    SciTech Connect

    Arai, Y.; Tappero, R.; Rick, A.R.; Saylor, T.; Faas, E. & Lanzirotti, A.

    2011-05-24

    Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understand the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting

  10. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  11. Monitoring reticle molecular contamination in ASML EUV Alpha Demo Tool

    NASA Astrophysics Data System (ADS)

    Okoroanyanwu, Uzodinma; Jiang, Aiqin; Dittmar, Kornelia; Fahr, Torsten; Laursen, Thomas; Wood, Obert; Cummings, Kevin; Holfeld, Christian; Peters, Jan-Hendrik; Gullikson, Eric; La Fontaine, Bruno

    2010-04-01

    Molecular contamination risk to an EUV reticle exposed to up to 1600J/cm2 of 13.5 nm EUV radiation in ASML Alpha Demo Tool (ADT) is negligible. Carbon film (< 0.5 nm) deposition and oxidation (surface oxides ~1 nm) are the two main molecular contaminants observed on this EUV reticle. These results run counter to recent empirical results obtained from EUV micro-exposure tools (MET) which suggest that molecular contamination of EUV reticles, even at the very low partial pressures expected in the exposure chamber of EUV exposure tools, poses challenges in the implementation of EUV lithography in large-scale volume manufacturing of devices. To assess the molecular contamination risk to the use and lifetime of a given EUV reticle, we monitored the contamination buildup on a specially designed reticle during one year as it was exposed on ASML ADT located in Albany, New York. The reticle was analyzed with a suite of complementary surface analytical technique (such as Auger Electron Spectroscopy, AES) and chemical analytical techniques (such as Grazing Incidence Reflection Fourier Transform Infra-red Spectroscopy, GIR-FTIR), as well as imaging technique (such as Scanning Electron Microscopy). The influence of molecular contamination on the reflectivity of this reticle was measured at the Lawrence Berkeley Advanced Light Source EUV reflectometry. The differences in the contamination outcome of EUV reticles exposed in ASML ADT and MET may be related to the implementation of active contamination mitigation schemes in ADT and the lack of similar schemes in METs.

  12. Microbial communities in a chlorinated solvent contaminated tidal freshwater wetland: molecular techniques for assessing potentially important biodegrading organisms

    NASA Astrophysics Data System (ADS)

    Kirshtein, J. D.; Voytek, M. A.; Lorah, M m

    2001-05-01

    Aberdeen Proving Ground MD (APG) is a hazardous waste site where a chlorinated solvent plume discharges into anaerobic sediments in a tidal freshwater wetland. Wetlands can be ideal sites for intrinsic remediation of chlorinated volatile organic compounds (VOCs) due to availability of organic substrates and the wide range of redox zones. And indeed natural attenuation of these compounds appears to be an important process at this site. The biodegradation of chlorinated VOCs such as PCA can follow several pathways: 1) sequential hydrogenolysis of PCA to ethane or ethene via TCA 2) dichloroelimation of TCA to vinyl chloride (VC) or 3) dichloroelimination of PCA to DCE, and hydrogenolysis of DCE to VC. Pathways 2 and 3 can result in the accumulation of VC which is considered more hazardous than the original parent compounds. Identifying microbial components involved in the series of degradation steps of each pathway can provide a better understanding of factors controlling the intrinsic bioremediation of these compounds. PCA-amended microcosm experiments were conducted during two seasons, March-April, and July-August 1999 at APG using wetland sediments collected from two distinct sites (one is methanogenic and one is both iron reducing and methanogenic). During the course of the experiments, VOCs, methane, ferrous iron and sulfate were measured. Terminal restriction fragment polymorphism (tRFLP) analysis provides a molecularly-derived microbial "fingerprint" and was used to document the total microbial abundance and characterize the diversity of the bacterial and methanogen communities. Higher rates of degradation observed during the spring sampling were associated with higher biomass and microbial diversity. As the microcosm proceeded, shifts in redox conditions and associated degradation rates and pathways were observed. These shifts were tracked by changes in the microbial community. Three phylotypes were identified that appear to be important in controlling the

  13. Spacecraft external molecular contamination analysis

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1990-01-01

    Control of contamination on and around spacecraft is required to avoid adverse effects on the performance of instruments and spacecraft systems. Recent work in this area is reviewed and discussed. Specific issues and limitations to be considered as part of the effort to predict contamination effects using modeling techniques are addressed. Significant results of Space Shuttle missions in the field of molecule/surface interactions as well as their implications for space station design and operation are reviewed.

  14. External induced contamination environment assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Leger, Lubert; Ehlers, Horst; Hakes, Charles; Theall, Jeff; Soares, Carlos

    1993-01-01

    An assessment of the Space Station Freedom performance as affected by the external induced contamination environment is in progress. The assessment procedure involves comparing the Space Station Freedom external contamination requirements, SSP 30426, Revision B (1991), with calculated molecular deposition, molecular column density, and other effects from potential sources of contamination. The current assessment comprises discussions of Space Shuttle proximity operations, Space Shuttle waste-water dumps (while docked to the Space Station), Space Station fluid and waste-gas venting, system gas leakage, external material outgassing, and a combined contamination assessment. This performance assessment indicates that Space Station Freedom contamination requirements are realistic and can be satisfied when all contamination sources are included.

  15. Molecular contamination math model support

    NASA Technical Reports Server (NTRS)

    Wells, R.

    1983-01-01

    The operation and features of a preprocessor for the Shuttle/Payload Contamination Evaluation Program Version 2) are described. A preliminary preprocessor for SPACE 2 is developed. Further refinements and enhancements of the preprocessor to insure complete user friendly operation, are recommended.

  16. Mie Scattering of Growing Molecular Contaminants

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.

  17. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  18. Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, Eileen K.

    2005-01-01

    Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.

  19. Space station contamination study: Assessment of contaminant spectral brightness

    NASA Technical Reports Server (NTRS)

    Torr, D. G.

    1988-01-01

    The assessment of spectral brightness resulting from the ambient-contaminant interaction requires a knowledge of the details of cross sections and excitation mechanisms. The approach adopted was to utilize the spectral brightness measurements made on Spacelab 1 and on the S3-4 spacecraft to identify source mechanisms, key cross sections and hence, the abundance of contaminant species. These inferred abundances were then used to update the composition comprising the total column concentrations predicted by the Science and Engineering Associates' configuration contamination model for the Space Station and to scale the irradiances to four altitudes: 300, 350, 400, and 463 km. The concentration irradiances are compared with zodiacal natural background levels. The results demonstrate that emissive contamination is significantly more severe than anticipated. It is shown that spectral emissions can become competitive with the zodiacal background up to altitudes as high as 400 km for the vacuum ultraviolet and visible emissions.

  20. The JPL Molecular Contamination Investigation Facility

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David; Osborn, David

    1990-01-01

    The Molecular Contamination Investigation Facility (MCIF) is discussed in terms of its use for improving the far-UV performance of a camera and its broader applications. The MCIF incorporates two independent vacuum systems with sample isolation chambers and regulated heat exchangers as well as three quartz-crystal microbalances (QCMs) and a residual gas analyzer. One cryogenic QCM is heat sunk into an LN2 heat exchanger, while the others are thermoelectrically controlled and are heat sunk into a regulated heat exchanger. Outgas accumulation can be measured at three surface temperatures between -180 and 80 C simultaneously, and results are presented for the testing of 34 samples in a large-chambered system and 22 samples in a system with a smaller chamber. The MCIF results provide a database for fabrication processes, material selection, maximum bakeout temperatures, and the development of an ultraclean bakeout chamber.

  1. Bioassay for assessing marine contamination

    SciTech Connect

    Lapota, D.; Copeland, H.; Mastny, G.; Rosenberger, D.; Duckworth, D.

    1996-03-01

    The Qwiklite bioassay, developed by the laboratory at NCCOSC, is used as a biological tool to gauge the extent of environmental contamination. Some species of marine phytoplankton produce bioluminescence. The Qwiklite bioassay determines acute response and chronic effects of a wide variety of toxicants upon bioluminescent dinotlagellates by measuring their light output after exposure.

  2. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  3. Determination of molecular contamination performance for space chamber tests

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1973-01-01

    The limitations of chamber tests with regard to the molecular contamination of a spacecraft undergoing vacuum test were examined. The molecular flow conditions existing in the chamber and the parameters dictating the degree of contamination were analyzed. Equations and graphs were developed to show the fraction of molecules returning to the spacecraft out of those emitted and to show other chamber flow parameters as a function of chamber and spacecraft surface molecular pumping and geometric configuration. Type and location of instruments required to measure the outgassing, the degree of contamination, and the returning flows are also discussed.

  4. Assessment of the probability of contaminating Mars

    NASA Technical Reports Server (NTRS)

    Judd, B. R.; North, D. W.; Pezier, J. P.

    1974-01-01

    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth.

  5. ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing Allergenicity of Indoor Air Fungal Contaminants
    M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA.
    Rationale: The indoor environment has increased in impor...

  6. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.

    PubMed

    Montiel-Rozas, M M; Madejón, E; Madejón, P

    2016-09-01

    Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. PMID:27267743

  7. Molecular contamination study by interaction of a molecular beam with a platinum surface

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1976-01-01

    The capability of molecular beam scattering from a solid surface is analyzed for identification of molecular contamination of the surface. The design and setup of the molecular beam source and the measuring setup for the application of a phase sensitive measuring technique for the determination of the scattered beam intensity are described. The scattering distributions of helium and nitrogen molecular beams interacting with a platinum surface were measured for different amounts of contamination from diffusion pump oil for surface temperatures ranging from 30 to 400 C. The results indicate the scattering of molecular beams from a platinum surface is a very sensitive method for detecting surface contamination.

  8. Optical Characterization of Molecular Contaminant Films

    NASA Technical Reports Server (NTRS)

    Visentine, James T.

    2007-01-01

    A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of

  9. Ecological risk assessment of contaminated soil.

    PubMed

    Jensen, John; Pedersen, Marianne Bruus

    2006-01-01

    This review has described three cases of ecological risk assessment. The cases include two heavy metals (Cu and Zn) and an anthropogenic organic chemical (DDT). It concludes that there are at least two major constraints hampering the use of laboratory tests to predict effects under natural field conditions. One key issue is bioavailability, and another is suboptimal conditions or multiple stresses in the field such as climatic stress (drought, frost), predators, competition, or food shortage. On the basis of the presented case studies, it was possible to answer three essential questions often raised in connection to ecological risk assessment of contaminated sites. 1. To what extend does soil screening level (SSL) estimate the risk? The SSL are generally derived at levels corresponding to the lowest observed effect levels in laboratory studies, which often is close to the background levels found in many soils. In the cases of zinc and especially DDT, the SSL seemed quite conservative, whereas for copper they resemble the level at which changes in the community structure of soil microarthropods and the plant community have been observed at contaminated sites. The SSL correspond as a whole relatively well with concentrations where no effects or only minor effects were observed in controlled field studies. However, large variation in field surveys can often make it difficult to conclude to what extent the SSL corresponded to no-effect levels in the field. 2. Do bioassays represent a more realistic risk estimate? Here, there is no firm conclusion. The zinc study in UK showed a better relationship between the outcome of ex situ bioassays and field observations than the SSL. The latter overestimated the risk compared to field observations. However, this would be species dependent, as the sensitivity to metals may vary considerably between recognized test species, even within the same group of organisms, such as Folsomia candida and Folsomia fimetaria or Eisenia fetida

  10. Implications of uncertainty in exposure assessment for groundwater contamination

    USGS Publications Warehouse

    Reichard, Eric G.; Izbicki, John A.; Martin, Peter

    1995-01-01

    Decision-making on regulation, mitigation, and treatment of drinking water contamination depends, in part, on estimates of human exposure. Assessment of past, present and potential future exposure levels requires quantitative characterization of the contaminant sources, the transport of contaminants and the level of actual human exposure to the contaminated water. Failure to consider the uncertainties in these three components of exposure assessment can lead to poor decisions such as implementing an inappropriate mitigation strategy or failing to regulate an important contaminant. Three examples from US Geological Survey hydrogeologic studies in southern California are presented to illustrate some of the unique uncertainties associated with exposure assessment for groundwater contamination.

  11. Molecular detection of bacterial contamination in gnotobiotic rodent units

    PubMed Central

    Packey, Christopher D; Shanahan, Michael T; Manick, Sayeed; Bower, Maureen A; Ellermann, Melissa; Tonkonogy, Susan L; Carroll, Ian M; Sartor, R Balfour

    2013-01-01

    Gnotobiotic rodents provide an important technique to study the functional roles of commensal bacteria in host physiology and pathophysiology. To ensure sterility, these animals must be screened frequently for contamination. The traditional screening approaches of culturing and Gram staining feces have inherent limitations, as many bacteria are uncultivable and fecal Gram stains are difficult to interpret. Thus, we developed and validated molecular methods to definitively detect and identify contamination in germ-free (GF) and selectively colonized animals. Fresh fecal pellets were collected from rodents housed in GF isolators, spontaneously contaminated ex-GF isolators, selectively colonized isolators and specific pathogen-free (SPF) conditions. DNA isolated from mouse and rat fecal samples was amplified by polymerase chain reaction (PCR) and subjected to quantitative PCR (qPCR) using universal primers that amplify the 16S rRNA gene from all bacterial groups. PCR products were sequenced to identify contaminating bacterial species. Random amplification of polymorphic DNA (RAPD) PCR profiles verified bacterial inoculation of selectively colonized animals. These PCR techniques more accurately detected and identified GF isolator contamination than current standard approaches. These molecular techniques can be utilized to more definitively screen GF and selectively colonized animals for bacterial contamination when Gram stain and/or culture results are un-interpretable or inconsistent. PMID:23887190

  12. Field Analysis of Microbial Contamination Using Three Molecular Methods in Parallel

    NASA Technical Reports Server (NTRS)

    Morris, H.; Stimpson, E.; Schenk, A.; Kish, A.; Damon, M.; Monaco, L.; Wainwright, N.; Steele, A.

    2010-01-01

    Advanced technologies with the capability of detecting microbial contamination remain an integral tool for the next stage of space agency proposed exploration missions. To maintain a clean, operational spacecraft environment with minimal potential for forward contamination, such technology is a necessity, particularly, the ability to analyze samples near the point of collection and in real-time both for conducting biological scientific experiments and for performing routine monitoring operations. Multiple molecular methods for detecting microbial contamination are available, but many are either too large or not validated for use on spacecraft. Two methods, the adenosine- triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays have been approved by the NASA Planetary Protection Office for the assessment of microbial contamination on spacecraft surfaces. We present the first parallel field analysis of microbial contamination pre- and post-cleaning using these two methods as well as universal primer-based polymerase chain reaction (PCR).

  13. Soil slurry reactors for the assessment of contaminant biodegradation

    NASA Astrophysics Data System (ADS)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  14. Assessment of surface contamination with contact mechanics

    SciTech Connect

    EMERSON,JOHN A.; MILLER,GREGORY V.; SORENSEN,CHRISTOPHER R.; PEARSON,RAYMOND A.

    2000-02-21

    The authors are particularly interested in the work of adhesion measurements as a means to facilitate the understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. Of the several issues under investigation, one is the effect of organic contamination on the adhesive strength for several types of polymer/metal interface combinations. The specific question that the authors are trying to address is at what level of contamination does adhesive strength decrease. The use of contact mechanics, the JKR method, is a good approach for studying this question. Another approach being studied is the use of interracial fracture mechanics. The model contaminant is hexadecane--non-polar, medium molecular weight hydrocarbon fluid. They choose hexadecane because it replicates typical machining fluids, is nonreactive with Al surfaces, and should not dissolve readily into the adhesive systems of interest. The application of a uniform, controllable and reproducible hexadecane layer on Al surfaces has proven to be difficult. A primary concern is whether studies of model systems can be extended to systems of technological interest. The JKR theory is a continuum mechanics model of contact between two solid spheres that was developed by Johnson, Kendall and Roberts. The JKR theory is an extension of Hertzian contact theory and attributes the additional increase in the contact area between a soft elastomeric hemisphere to adhesive forces between the two surfaces. The JKR theory allows a direct estimate of the surface free energy of interface as well as the work of adhesion (Wa) between solids. Early studies performed in this laboratory involved the determination of Wa between silicone (PDMS) and Al surfaces in order to establish the potential adhesive failure mechanisms. However, the JKR studies using commercial based PDMS [poly(dimethylsiloxane)] was fraught with difficulty that were attributed to the additives used in commercial PDMS

  15. Ecological risk assessment of contaminated soil.

    PubMed

    Jensen, John; Pedersen, Marianne Bruus

    2006-01-01

    This review has described three cases of ecological risk assessment. The cases include two heavy metals (Cu and Zn) and an anthropogenic organic chemical (DDT). It concludes that there are at least two major constraints hampering the use of laboratory tests to predict effects under natural field conditions. One key issue is bioavailability, and another is suboptimal conditions or multiple stresses in the field such as climatic stress (drought, frost), predators, competition, or food shortage. On the basis of the presented case studies, it was possible to answer three essential questions often raised in connection to ecological risk assessment of contaminated sites. 1. To what extend does soil screening level (SSL) estimate the risk? The SSL are generally derived at levels corresponding to the lowest observed effect levels in laboratory studies, which often is close to the background levels found in many soils. In the cases of zinc and especially DDT, the SSL seemed quite conservative, whereas for copper they resemble the level at which changes in the community structure of soil microarthropods and the plant community have been observed at contaminated sites. The SSL correspond as a whole relatively well with concentrations where no effects or only minor effects were observed in controlled field studies. However, large variation in field surveys can often make it difficult to conclude to what extent the SSL corresponded to no-effect levels in the field. 2. Do bioassays represent a more realistic risk estimate? Here, there is no firm conclusion. The zinc study in UK showed a better relationship between the outcome of ex situ bioassays and field observations than the SSL. The latter overestimated the risk compared to field observations. However, this would be species dependent, as the sensitivity to metals may vary considerably between recognized test species, even within the same group of organisms, such as Folsomia candida and Folsomia fimetaria or Eisenia fetida

  16. Estimation and assessment of Mars contamination.

    PubMed

    Debus, A

    2005-01-01

    respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets.

  17. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1998-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCM) device during the test. A solvent rinse sample was taken at the conclusion of each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  18. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1999-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCNO device during the test. A solvent rinse sample was taken at the conclusion of each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  19. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1997-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCM) device during the test. A solvent rinse sample was taken at the conclusion of the each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  20. Molecular analysis for bacterial contamination in dental unit water lines.

    PubMed

    Watanabe, Akari; Tamaki, Naofumi; Matsuyama, Miwa; Kokeguchi, Susumu

    2016-04-01

    Bacterial contamination in dental unit waterlines (DUWLs) was evaluated by molecular techniques in addition to the conventional culture method. Water samples (n=8) from DUWLs were investigated for heterotrophic bacteria by culture method using R2A agar. The selected bacterial antibiotic-resistance genes and Legionella species-specific 16SrDNA were identified by PCR. The profiles of bacterial contamination in DUWLs were further identified by PCR-DGGE. In this study, no antibiotic-resistant or Legionella genes were detected. Polycyclic aromatic hydrocarbon-degrading bacterium, Novosphingobium sp. was the most prevalent in DUWLs. Conventional PCR and PCR-DGGE were shown to be potentially useful for monitoring of bacterial contamination in DUWLs. PMID:27196554

  1. Development of versatile molecular transport model for modeling spacecraft contamination

    NASA Astrophysics Data System (ADS)

    Chang, Chien W.; Kannenberg, Keith; Chidester, Michael H.

    2010-08-01

    This paper describes a MATLAB-based molecular transport model developed for modeling contamination of spacecraft and optical instruments in space. The model adopts the Gebhart inverse-matrix theory for thermal radiation to analyze mass (molecular) transfer due to direct and reflected flux processes by balancing the mass fluxes instead of heat fluxes among surfaces with prescribed boundary conditions (contamination sticking fractions). The model can easily input view factor results from current thermal tools as well as measured outgassing data from ASTM E 1559 tests or vacuum bake-outs of flight components. Application examples of a geosynchronous satellite and an optical telescope are given to demonstrate versatile applications of the developed model.

  2. Solid phase extraction of food contaminants using molecular imprinted polymers.

    PubMed

    Baggiani, Claudio; Anfossi, Laura; Giovannoli, Cristina

    2007-05-15

    Food contamination from natural or anthropogenic sources poses severe risks to human health. It is now largely accepted that continuous exposure to low doses of toxic chemicals can be related to several chronic diseases, including some type of cancer and serious hormonal dysfunctions. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but direct application of these methods on food samples can be rarely performed. In fact, the matrix introduces severe disturbances, and analysis can be performed only after some clean-up and preconcentration steps. Current sample pre-treatment methods, mostly based on the solid phase extraction technique, are very fast and inexpensive but show a lack of selectivity, while methods based on immunoaffinity extraction are very selective but expensive and not suitable for harsh environments. Thus, inexpensive, rapid and selective clean-up methods, relaying on "intelligent" materials are needed. Recent years have seen a significant increase of the "molecularly imprinted solid phase extraction" (MISPE) technique in the food contaminant analysis. In fact, this technique seems to be particularly suitable for extractive applications where analyte selectivity in the presence of very complex and structured matrices represents the main problem. In this review, several applications of MISPE in food contamination analysis will be discussed, with particular emphasis on the extraction of pesticides, drugs residua, mycotoxins and environmental contaminants.

  3. Modeling effects of common molecular contaminants on the Euclid infrared detectors

    NASA Astrophysics Data System (ADS)

    Holmes, W.; McKenney, C.; Barbier, R.; Cho, H.; Cillis, A.; Clemens, J.-C.; Dawson, O.; Delo, G.; Ealet, A.; Feizi, A.; Ferraro, N.; Foltz, R.; Goodsall, T.; Hickey, M.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Lotkin, G.; Maciaszek, T.; McClure, S.; Miko, L.; Nguyen, L.; Pravdo, S.; Prieto, E.; Powers, T.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Waczynski, A.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    Cleanliness specifications for infrared detector arrays are usually so stringent that effects are neglibile. However, the specifications determine only the level of particulates and areal density of molecular layer on the surface, but the chemical composition of these contaminants are not specified. Here, we use a model to assess the impact on system quantum efficiency from possible contaminants that could accidentally transfer or cryopump to the detector during instrument or spacecraft testing and on orbit operation. Contaminant layers thin enough to meet typical specifications, < 0.5μgram/cm2, have a negligible effect on the net quantum efficiency of the detector, provided that the contaminant does not react with the detector surface, Performance impacts from these contaminant plating onto the surface become important for thicknesses 5 - 50μgram/cm2. Importantly, detectable change in the "ripple" of the anti reflection coating occurs at these coverages and can enhance the system quantum efficiency. This is a factor 10 less coverage for which loss from molecular absorption lines is important. Thus, should contamination be suspected during instrument test or flight, detailed modelling of the layer on the detector and response to very well known calibrations sources would be useful to determine the impact on detector performance.

  4. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Chinn, S.; Gordon, T.; Rantanen, R.

    1987-01-01

    The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.

  5. Organic contaminants in direct coal liquefaction--a preliminary assessment.

    PubMed

    Tanita, R; Telesca, D; Walker, J; Berardinelli, S

    1980-11-01

    Area samples taken at two coal liquefaction facilities were analyzed by either gas chromatography or gas chromatography/mass spectrometry to identify the types of organic contaminants to which workers may be exposed. Results indicate that the contaminants consisted primarily of one or two ring low-molecular weight aromatic compounds.

  6. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  7. Assessment of hot gas contaminant control

    SciTech Connect

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  8. Space station contamination study: Assessment of contaminant spectral brightness

    NASA Technical Reports Server (NTRS)

    Torr, D. G.

    1990-01-01

    The results presented show that spectral emissions which arise as a result of vehicle-ambient atmospheric interactions are significant and can become competitive with the natural zodiacal background up to altitudes as high as 400 km for the Vacuun Ultraviolet (VUV) and Visible Infrared Spectra (VIS) for the worst case conditions used. The empirical database on the induced environment of space vehicles is very sparse, and these results are based on a number of assumptions and cannot be regarded as definitive at the present time. Since the technique for doing calculations of this kind was developed in its preliminary form for the purpose of this study, a list of greatly improved estimates are provided of the contamination irradiances. Tasks which are considered most important in order to achieve a higher confidence level for the preliminary conclusions drawn are provided.

  9. Clostridium difficile in a children's hospital: assessment of environmental contamination.

    PubMed

    Warrack, Simone; Duster, Megan; Van Hoof, Sarah; Schmitz, Michelle; Safdar, Nasia

    2014-07-01

    Clostridium difficile infection (CDI) is the most frequent infectious cause of health care-associated diarrhea. Three cases of CDI, in children age 2, 3, and 14 years, occurred in the hematology/oncology ward of our children's hospital over 48 hours. We aimed to assess environmental contamination with C difficile in the shared areas of this unit, and to determine whether person-to-person transmission occurred. C difficile was recovered from 5 of 18 samples (28%). We compared C difficile isolated from each patient and the environment using pulsed-field gel electrophoresis, and found that none of the patient strains matched any of the others, and that none matched any strains recovered from the environment, suggesting that person-to-person transmission had not occurred. We found that C difficile was prevalent in the environment throughout shared areas of the children's hospital unit. Molecular typing to identify mechanisms of transmission is useful for devising appropriate interventions.

  10. [Quantitative method of representative contaminants in groundwater pollution risk assessment].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-03-01

    In the light of the problem that stress vulnerability assessment in groundwater pollution risk assessment is lack of an effective quantitative system, a new system was proposed based on representative contaminants and corresponding emission quantities through the analysis of groundwater pollution sources. And quantitative method of the representative contaminants in this system was established by analyzing the three properties of representative contaminants and determining the research emphasis using analytic hierarchy process. The method had been applied to the assessment of Beijing groundwater pollution risk. The results demonstrated that the representative contaminants hazards greatly depended on different research emphasizes. There were also differences between the sequence of three representative contaminants hazards and their corresponding properties. It suggested that subjective tendency of the research emphasis had a decisive impact on calculation results. In addition, by the means of sequence to normalize the three properties and to unify the quantified properties results would zoom in or out of the relative properties characteristic of different representative contaminants.

  11. Molecular and ionic contamination monitoring for cleanroom air and wafer surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Adams, Marty; Shive, Larry; Pirooz, Saeed

    1997-09-01

    Advances in the electronic industry toward large-scale integration of semiconductor devices have placed strict demands on the ability to measure and monitor ultratrace levels of impurities. Even though they have been found to have increasingly detrimental impacts on the performance and yield of semiconductor products, organic and non-metal ionic contaminants have not received the same attention as particles and metallics. Method developments for ultratrace measurements of molecular and ionic contamination are far behind the demands. This paper describes the use of different sampling and analytical techniques to assess and monitor molecular and ionic contaminants in cleanroom ambient air and on wafer surfaces. Thermal desorption gas chromatography mass spectrometry/nitrogen phosphorous detector is used for the identification and quantification of organic contaminants. Ammonium (NH4+) and inorganic anions are analyzed by using capillary electrophoresis with indirect UV detection methods. The identification and quantification of specific organic compounds, which outgas from cleanroom ULPA filters and wafer package boxes and tend to adsorb on silicon wafers, will be demonstrated. Ammonium and anion contamination for different wafer cleaning processes will be compared. The capabilities, applications, and limitations of these techniques will be discussed in further details.

  12. Plant sentinels and molecular probes that monitor environmental munitions contaminants

    SciTech Connect

    Jackson, P.J.; DeWitt, J.G.; Hill, K.K.; Kuske, C.R.; Kim, D.Y.

    1994-08-01

    Plants accumulate TNT and similar compounds from soil. Their sessile nature requires that plants adapt to environmental changes by biochemical and molecular means. In principle, it is possible to develop a monitoring capability based on expression of any gene that is activated by specific environmental conditions. The authors have identified plant genes activated upon exposure to TNT. Partial gene sequences allow design of DNA probes that measure TNT-induced gene activity. These will be used to develop sensitive assays that monitor gene expression in plants growing in environments possibly contaminated with explosives.

  13. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  14. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  15. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    PubMed

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency.

  16. Fungal contamination assessment in Portuguese elderly care centers.

    PubMed

    Viegas, C; Almeida-Silva, M; Gomes, A Quintal; Wolterbeek, H T; Almeida, S M

    2014-01-01

    Individuals spend 80-90% of their day indoors and elderly subjects are likely to spend even a greater amount of time indoors. Thus, indoor air pollutants such as bioaerosols may exert a significant impact on this age group. The aim of this study was to characterize fungal contamination within Portuguese elderly care centers. Fungi were measured using conventional as well as molecular methods in bedrooms, living rooms, canteens, storage areas, and outdoors. Bioaerosols were evaluated before and after the microenvironments' occupancy in order to understand the role played by occupancy in fungal contamination. Fungal load results varied from 32 colony-forming units CFU m(-3) in bedrooms to 228 CFU m(-3) in storage areas. Penicillium sp. was the most frequently isolated (38.1%), followed by Aspergillus sp. (16.3%) and Chrysonilia sp. (4.2%). With respect to Aspergillus genus, three different fungal species in indoor air were detected, with A. candidus (62.5%) the most prevalent. On surfaces, 40 different fungal species were isolated and the most frequent was Penicillium sp. (22.2%), followed by Aspergillus sp. (17.3%). Real-time polymerase chain reaction did not detect the presence of A. fumigatus complex. Species from Penicillium and Aspergillus genera were the most abundant in air and surfaces. The species A. fumigatus was present in 12.5% of all indoor microenvironments assessed. The living room was the indoor microenvironment with lowest fungal concentration and the storage area was highest.

  17. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  18. Toxicity assessment for RMA target contaminants. Volume 1. Endangerment assessment RMA, task 35. Final draft report

    SciTech Connect

    1987-06-01

    This report is detailed discussion of the evaluations performed to develop the toxicity assessment for RMA contaminants in soil. The objectives of the toxicity assessment are to determine the nature and extent of health and environmental hazards associated with exposure to contaminants present at the site and identify a quantitative index of toxicity for each target contaminant, referred to in this assessment as DT. The toxicity assessment for the RMA target contaminants has been performed consistent with published EPA guidelines and addresses only human health hazards associated with contaminants in soil. Each toxicity profile is composed of seven sections: 1. summary; 2. chemical and physical properties; and 3. transport and rate.

  19. TRACKING FECAL CONTAMINATION WITH BACTEROIDALES MOLECULAR MARKERS: AN ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION IN THE TILLAMOOK BASIN, OREGON

    EPA Science Inventory

    Although amplification of source-specific molecular markers from Bacteroidales fecal bacteria can identify several different kinds of fecal contamination in water, it remains unclear how this technique relates to fecal indicator measurements in natural waters. The objectives of t...

  20. Orbiter/payload contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Strange, D. A.; Hetrick, M. A.

    1978-01-01

    The development and integration of 16 payload bay liner filters into the existing shuttle/payload contamination evaluation (SPACE) computer program is discussed as well as an initial mission profile model. As part of the mission profile model, a thermal conversion program, a temperature cycling routine, a flexible plot routine and a mission simulation of orbital flight test 3 are presented.

  1. SURROGATE SPECIES IN ASSESSING CONTAMINANT RISK FOR ENDANGERED FISHES

    EPA Science Inventory

    Rainbow trout, fathead minnows, and sheepshead minnows were tested as surrogate species to assess contaminant risk for 17 endangered fishes and one toad species. Acute toxicity tests were conducted with carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin in accord...

  2. Assessment of Molecular Modeling & Simulation

    SciTech Connect

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  3. Assessment of community contamination: a critical approach.

    PubMed

    Clark, Lauren; Barton, Judith A; Brown, Nancy J

    2002-01-01

    The purpose of this paper is to review data from two Superfund sites and describe the latitude of interpretation of "environmental risk" by residents living in the area, governmental agencies, and the media. The first community was located within a 5-mi perimeter of the Rocky Flats Environmental Technology Site (RFETS) outside Denver, Colorado. The second community was located on the south side of Tucson, Arizona, adjacent to the Tucson International Airport area (TIAA) Superfund site. Critical theory was the perspective used in this analysis and proposal of public health actions to attain social justice. Differences between the two populations' experiences with risk and contamination coincided with divergent levels of trust in government. RFETS residents demanded monitoring, whereas the minority residents at TIAA were ambivalent about their trust in government cleanup activities. Unraveling the purpose of "facts" and the social force of "truth" can direct nurses to address environmental justice issues. By policing governmental and business activities in halting or cleaning up environmental contamination, nurses may become mouthpieces for the concerns underlying the fragile surface of "virtual trust" in contaminated communities. Cutting through competing rhetoric to police environmental safety, the core function of assurance becomes what nurses do, not what they say. PMID:12182695

  4. Assessment of community contamination: a critical approach.

    PubMed

    Clark, Lauren; Barton, Judith A; Brown, Nancy J

    2002-01-01

    The purpose of this paper is to review data from two Superfund sites and describe the latitude of interpretation of "environmental risk" by residents living in the area, governmental agencies, and the media. The first community was located within a 5-mi perimeter of the Rocky Flats Environmental Technology Site (RFETS) outside Denver, Colorado. The second community was located on the south side of Tucson, Arizona, adjacent to the Tucson International Airport area (TIAA) Superfund site. Critical theory was the perspective used in this analysis and proposal of public health actions to attain social justice. Differences between the two populations' experiences with risk and contamination coincided with divergent levels of trust in government. RFETS residents demanded monitoring, whereas the minority residents at TIAA were ambivalent about their trust in government cleanup activities. Unraveling the purpose of "facts" and the social force of "truth" can direct nurses to address environmental justice issues. By policing governmental and business activities in halting or cleaning up environmental contamination, nurses may become mouthpieces for the concerns underlying the fragile surface of "virtual trust" in contaminated communities. Cutting through competing rhetoric to police environmental safety, the core function of assurance becomes what nurses do, not what they say.

  5. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.

    PubMed

    Sangion, Alessandro; Gramatica, Paola

    2016-05-01

    The strong and widespread use of pharmaceuticals, together with incorrect disposal procedures, has recently made these products contaminants of emerging concern (CEC). Unfortunately, little is known about pharmaceuticals' environmental behaviour and ecotoxicity, so that EMEA (European Medicines Agency) released guidelines for the pharmaceuticals' environmental risk assessment. In particular, there is a severe lack of information about persistence, bioaccumulation and toxicity (PBT) of the majority of the thousands of substances on the market. Computational tools, like QSAR (Quantitative Structure Activity Relationship) models, are the only way to screen large sets of chemicals in short time, with the aim of ranking, highlighting and prioritizing the most environmentally hazardous for focusing further experimental studies. In this work we propose a screening method to assess the potential persistence, bioaccumulation and toxicity of more than 1200 pharmaceutical ingredients, based on the application of two different QSAR models. We applied the Insubria-PBT Index, a MLR (Multiple Linear Regression) QSAR model based on four simple molecular descriptors, implemented in QSARINS software, and able to synthesize the PBT potential in a unique cumulative value and the US-EPA PBT Profiler that assesses the PBT behaviour evaluating separately P, B and T. Particular attention was given to the study of Applicability Domain in order to provide reliable predictions. An agreement of 86% was found between the two models and a priority list of 35 pharmaceuticals, highlighted as potential PBTs by consensus, was proposed for further experimental validation. Moreover, the results of this computational screening are in agreement with preliminary experimental data in the literature. This study shows how in silico models can be applied in the hazard assessment to perform preliminary screening and prioritization of chemicals, and how the identification of the structural features, mainly

  6. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.

    PubMed

    Sangion, Alessandro; Gramatica, Paola

    2016-05-01

    The strong and widespread use of pharmaceuticals, together with incorrect disposal procedures, has recently made these products contaminants of emerging concern (CEC). Unfortunately, little is known about pharmaceuticals' environmental behaviour and ecotoxicity, so that EMEA (European Medicines Agency) released guidelines for the pharmaceuticals' environmental risk assessment. In particular, there is a severe lack of information about persistence, bioaccumulation and toxicity (PBT) of the majority of the thousands of substances on the market. Computational tools, like QSAR (Quantitative Structure Activity Relationship) models, are the only way to screen large sets of chemicals in short time, with the aim of ranking, highlighting and prioritizing the most environmentally hazardous for focusing further experimental studies. In this work we propose a screening method to assess the potential persistence, bioaccumulation and toxicity of more than 1200 pharmaceutical ingredients, based on the application of two different QSAR models. We applied the Insubria-PBT Index, a MLR (Multiple Linear Regression) QSAR model based on four simple molecular descriptors, implemented in QSARINS software, and able to synthesize the PBT potential in a unique cumulative value and the US-EPA PBT Profiler that assesses the PBT behaviour evaluating separately P, B and T. Particular attention was given to the study of Applicability Domain in order to provide reliable predictions. An agreement of 86% was found between the two models and a priority list of 35 pharmaceuticals, highlighted as potential PBTs by consensus, was proposed for further experimental validation. Moreover, the results of this computational screening are in agreement with preliminary experimental data in the literature. This study shows how in silico models can be applied in the hazard assessment to perform preliminary screening and prioritization of chemicals, and how the identification of the structural features, mainly

  7. Probabilistic assessment of ground-water contamination. 1: Geostatistical framework

    SciTech Connect

    Rautman, C.A.; Istok, J.D.

    1996-09-01

    Characterizing the extent and severity of ground-water contamination at waste sites is expensive and time-consuming. A probabilistic approach, based on the acceptance of uncertainty and a finite probability of making classification errors (contaminated relative to a regulatory threshold vs. uncontaminated), is presented as an alternative to traditional site characterization methodology. The approach utilizes geostatistical techniques to identify and model the spatial continuity of contamination at a site (variography) and to develop alternate plausible simulations of contamination fields (conditional simulation). Probabilistic summaries of many simulations provide tools for (a) estimating the range of plausible contaminant concentrations at unsampled locations, (b) identifying the locations of boundaries between contaminated and uncontaminated portions of the site and the degree of certainty in those locations, and (c) estimating the range of plausible values for total contaminant mass. The first paper in the series presents the geostatistical framework and illustrates the approach using synthetic data for a hypothetical site. The second paper presents an application of the proposed methodology to the probabilistic assessment of ground-water contamination at a site involving ground-water contamination by nitrate and herbicide in a shallow, unconfined alluvial aquifer in an agricultural area in eastern Oregon.

  8. Comprehensive methodology for ecological risk assessment of contaminated soils

    SciTech Connect

    Kuperman, R.G.

    1994-12-31

    Development of a comprehensive methodology for ecological risk assessment and monitoring of contaminated soils is essential to assess the impacts of environmental contaminants on soil community and biologically-mediated processes in soil. The proposed four-step plan involves (1) a thorough survey of the soil community to establish biodiversity and a base-line community structure, (2) toxicity trials on indicator species and whole soil invertebrate communities, (3) laboratory and field tests on indicator processes and (4) the use of statistical and simulation models to ascertain changes in the soil ecosystems. This methodology was used in portions of the US Army`s Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. Previous soil analyses showed extensive surface soil contamination with metals, nitrate and PCBs. Preliminary results from field surveys of soil invertebrate communities showed significant reductions in total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local ``background`` area. Laboratory tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment. The proposed comprehensive methodology appears to offer an efficient and potentially cost saving tool for remedial investigations of contaminated sites.

  9. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α). PMID:23307052

  10. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  11. Molecular conductivity indices for modelling toxicities of Great Lakes contaminants to Daphnia pulex

    USGS Publications Warehouse

    Hickey, James P.; Passino, Dora R.M.; Frank, Anthony M.

    1988-01-01

    Hazard assessment of hundreds of observed and potential contaminants in fish, sediment, and water of the Great Lakes is necessary to determine impact on fishery sources and other aquatic biota. The hundreds of new compunds introduced each year have few measured properties. Mathematical models based on quantitative structure-activity relationships (QSARs) provide rapid, inexpensive estimates of physical properties and toxicites. These models are useful when the contaminants are not commercially available for testing. To develop these predicitive models, acute bioassay results (48-hr EC50 of Daphnia pulex) of 62 compounds were regressed against several modes of molecular connectivity indices. The compunds were selected from the more hazardous classes in a list of 476 compunds tentatively identified by GC/MS in Great Lakes fish.

  12. Passive sampling methods for contaminated sediments: Risk assessment and management

    PubMed Central

    Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F

    2014-01-01

    This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr

  13. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  14. Developing an integration tool for soil contamination assessment

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  15. SOFTWARE TOOLS FOR ASSESSMENT OF CONTAMINATED SITES

    EPA Science Inventory

    Models have become an integral part of decision-making for many LUST sites if only because they form the basis of RCBA tiered assessments. Models, though, are based on a series of assumptions concerning how chemicals behave in the environment, how water flows through the ground,...

  16. Environmental assessment of a site contaminated by organic compounds.

    PubMed

    Riccardi, C; Berardi, S; Di Basilio, M; Gariazzo, C; Giardi, P; Villarini, M

    2001-01-01

    This paper presents a study on environmental assessment of an abandoned industrial area located in central Italy. Main production was refractory materials and compounds for treatment of industrial wastewater. The present work deals with a methodology for development of a sound sampling design, chemical characterization of soil samples, definition of the degree of site contamination according to law limits and evaluation of the fate and transport of contaminants by EPA simulation model (VLEACH 2.2a). Results indicate that toxic compounds (polycyclic aromatic hydrocarbons and plasticizers) are uniformly distributed in the contaminated site and only in one sampling point their concentrations exceed law limits. Modeling results confirm that contaminants migration to groundwater can be excluded, addressing for a site remediation limited to the surface layer.

  17. Assessing Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    EPA Science Inventory

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...

  18. Passive sampling methods for contaminated sediments: risk assessment and management.

    PubMed

    Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F

    2014-04-01

    This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree ), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal ) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree ) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. PMID

  19. Passive sampling methods for contaminated sediments: risk assessment and management.

    PubMed

    Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F

    2014-04-01

    This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree ), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal ) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree ) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed.

  20. A fuzzy areal assessment approach for potentially contaminated sites

    NASA Astrophysics Data System (ADS)

    Özdamar, Linet; Demirhan, Melek; Özpinar, Alper; Kilanç, Burak

    2000-04-01

    This article describes a new fuzzy areal site assessment approach in the detection of contaminated zones within a site which is under environmental investigation. Conventional techniques utilized in this field are mostly interpolation based. These methods interpolate the contaminant concentration values at unobserved locations using observed values. Unlike these interpolation techniques, the motivation of the approach introduced here consists of partitioning a given site into smaller sections. Partitioning is carried out iteratively where subregions of interest are divided into further smaller regions. This re-partitioning scheme leads to a dynamic grouping of observations, since areas of differing sizes and boundaries contain different sets of samples. The potential of an area to contain contaminated zones is assessed by a fuzzy measure which converts the data values in that area into an aggregate grade normalized on [0, 1]. Thus, this approach does not assume concentration values at unobserved locations, rather, an areal potential is evaluated.

  1. ASSESSING THE ALLERGIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing the Allergic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yonjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, S...

  2. Incorporating Contaminant Bioavailability into Sediment Quality Assessment Frameworks

    EPA Science Inventory

    The recently adopted sediment quality assessment framework for evaluating bay and estuarine sediments in the State of California incorporates bulk sediment chemistry as a key line of evidence(LOE) but does not address the bioavailability of measured contaminants. Thus, the chemis...

  3. Toxicity assessment for RMA target contaminants. Volume 2. Endangerment assessment, RMA, task 35. Final draft report

    SciTech Connect

    1987-06-01

    This report is a detailed discussion of the evaluations performed to develop the toxicity assessment for RMA contaminants in soil. The objectives of the toxicity assessment are to: (1) determine the nature and extent of health and environmental hazards associated with exposure to contaminants present at the site and (2) identify a quantitative index of toxicity for each target contaminant, referred to in this assessment as DT. The toxicity assessment for the RMA target contaminants has been performed consistent with published EPA guidelines and addresses only human health hazards associated with contaminants in soil. Each toxicity profile is composed of seven sections: (1) summary; (2) chemical and physical properties; and (3) transport and fate.

  4. Nitrate contamination risk assessment in groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully

  5. Status and Assessment of Chesapeake Bay Wildlife Contamination

    USGS Publications Warehouse

    Heinz, G.H.; Wiemeyer, Stanley N.; Clark, D.R., Jr.; Albers, P.H.; Henry, P.; Batiuk, R.A.

    1992-01-01

    As an integral component of its priority setting process, the Chesapeake Bay Program`s Toxics Subcommittee has sought the expertise of Chesapeake Bay researchers and managers in developing a series of Chesapeake Bay toxics status and assessment papers. In the report, evidence for historical and current contaminant effects on key bird species, mammals, reptiles and amphibians which inhabit the Chesapeake Bay basin is examined. For each group of wildlife species, a general overview of effects caused by specific toxic substances is followed by detailed accounts of contaminant effects on selected species. Sponsored by Environmental Protection Agency, Annapolis, MD. Chesapeake Bay Program.

  6. Status and assessment of Chesapeake Bay wildlife contamination

    SciTech Connect

    Heinz, G.H.; Wiemeyer, S.N.; Clark, D.R.; Albers, P.; Henry, P.

    1992-10-01

    As an integral component of its priority setting process, the Chesapeake Bay Program's Toxics Subcommittee has sought the expertise of Chesapeake Bay researchers and managers in developing a series of Chesapeake Bay toxics status and assessment papers. In the report, evidence for historical and current contaminant effects on key bird species, mammals, reptiles and amphibians which inhabit the Chesapeake Bay basin is examined. For each group of wildlife species, a general overview of effects caused by specific toxic substances is followed by detailed accounts of contaminant effects on selected species.

  7. Assessment of environmental contaminant-induced lymphocyte dysfunction.

    PubMed Central

    Silkworth, J B; Loose, L D

    1981-01-01

    Although it has been established that environmental contaminants can alter immune function, the mechanisms of action have yet to be determined. This paper reviews the effects of hydrocarbon environmental contaminants on lymphocyte function and presents an approach which may serve to delineate the mechanisms of action. The approach is based on the use of the developmental phases of an immune response and assays which can be used for their functional assessment. Possible interactions between environmental contaminants and lymphocyte function and factors which must be considered in the evaluation of immune status are discussed. In addition, a study on the influence of the chronic exposure to two polyhalogenated hydrocarbons, PCB and HCB, on several parameters of lymphocyte function in mice is presented. PMID:7016518

  8. A Contamination Vulnerability Assessment for the Sacramento Area Groundwater Basin

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-03-10

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement the groundwater assessment program in cooperation with local water purveyors. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basin of Sacramento suburban area, located to the north of the American River and to the east of the Sacramento River. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3

  9. Identification of contaminants of concern Columbia River Comprehensive Impact Assessment

    SciTech Connect

    Napier, B.A.; Batishko, N.C.; Heise-Craff, D.A.; Jarvis, M.F.; Snyder, S.F.

    1995-01-01

    The Columbia River Comprehensive Impact Assessment (CRCIA) Project at the Pacific Northwest Laboratory (PNL) is evaluating the current human and ecological risks from contaminants in the Columbia River. The risks to be studied are those attributable to past and present activities on the Hanford Site. The Hanford Site is located in southcentral Washington State near the town of Richland. Human risk from exposure to radioactive and hazardous materials will be addressed for a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The overall purpose of the project is to determine if enough contamination exists in the Columbia River to warrant cleanup actions under applicable environmental regulations. This report documents an initial review, from a risk perspective, of the wealth of historical data concerning current or potential contamination in the Columbia River. Sampling data were examined for over 600 contaminants. A screening analysis was performed to identify those substances present in such quantities that they may pose a significant human or ecological risk. These substances will require a more detailed analysis to assess their impact on humans or the river ecosystem.

  10. Importance of stationarity for geostatistical assessment of environmental contamination

    SciTech Connect

    Dagdelen, K.; Turner, A.K.

    1996-12-31

    This paper describes a geostatistical case study to assess TCE contamination from multiple point sources that is migrating through the geologically complex conditions with several aquifers. The paper highlights the importance of the stationarity assumption by demonstrating how biased assessments of TCE contamination result when ordinary kriging of the data that violates stationarity assumptions. Division of the data set into more homogeneous geologic and hydrologic zones improved the accuracy of the estimates. Indicator kriging offers an alternate method for providing a stochastic model that is more appropriate for the data. Further improvement in the estimates results when indicator kriging is applied to individual subregional data sets that are based on geological considerations. This further enhances the data homogeneity and makes use of stationary model more appropriate. By combining geological and geostatistical evaluations, more realistic maps may be produced that reflect the hydrogeological environment and provide a sound basis for future investigations and remediation.

  11. Molecular Characterization of Microbial Communities in a JP-5 Fuel Contaminated Soil

    SciTech Connect

    Barcelona, M.J.; Chang, Y.-J.; Gan, Y.D.; Macnaughton, S.J.; Peacock, A.; Stephen, J.R.; White, D.C.

    1999-04-19

    In this study, lipid biomarker characterization of the bacterial and eukaryotic communities was combined with PCR-DGGE analysis of the eubacterial community to evaluate correlation between JP-4 fuel concentration and community structure shifts. Vadose, capillary fringe and saturated-soils were taken from cores within, up- and down-gradient of the contaminant plume. Significant differences in biomass and proportion of Gram negative bacteria were found inside and outside the plume. Sequence analysis of DGGE bands from within the spill site suggested dominance by a limited number of phylogenetically diverse bacteria. Used in tandem with pollutant quantification, these molecular techniques should facilitate significant improvements over current assessment procedures for determination of remediation end points.

  12. Z306 molecular contamination ad hoc committee results

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    LDEF external surfaces which did not receive significant amounts of atomic oxygen were observed to be coated with a brown contamination, apparently the result of a condensed organic residue darkened due to UV radiation exposure. During the initial Materials Special Investigation Group (MSIG) Meeting after LDEF deintegration, held in Seattle - July 1990, this organic contamination was the subject of much discussion. The amount of contamination was thought to be significant and its source was immediately believed to be the Z306 black thermal control coating used to coat the entire inner surface of LDEF. Due to the size of the structure, it was not feasible to bake-out the coating. However, initial data on the contamination film was confusing in that significant amounts of silicon was observed by several different researchers. Silicon (from silicone) was not expected to be a potential outgassing product of the Z306 polyurethane coating. To investigate the connection between external contamination and the interior paint, a MSIG ad hoc committee was formed.

  13. Ecological risk assessment for river sediments contaminated by creosote

    SciTech Connect

    Pastorok, R.A.; Sampson, J.R.; Jacobson, M.A. ); Peek, D.C. )

    1994-12-01

    An ecological risk assessment was conducted for sediments of the lower Willamette River near a wood-treatment (creosote) facility. Both surface ad subsurface sediments near the facility are contaminated by polycyclic aromatic hydrocarbons (PAHs). Limited contamination of sediments by dioxins/furans, chlorinated phenols, and arsenic was also observed. Sediment bioassays based on amphipod (Hyalella azteca) mortality and Microtox[reg sign] (Photobacterium phosphoreum) bioluminescence showed toxicity within approximately 300 ft of the shoreline, with a highly toxic area (i.e., possible acute lethal effects in sedentary benthic species) near a dock used for creosote off-loading. The relatively low concentrations of contaminants measured in crayfish muscle tissue and the absence of serious lesions in livers of large-scale sucker collected near the site suggest that excess risk to mobile species from chronic contamination is low. Cursory observations indicate that acute toxic effects on crayfish may be associated with creosote seeps. There is no evidence of adverse biological effects throughout most of the main channel of the river. Evaluation of sediment chemistry data for PAHs relative to available sediment-quality criteria proposed by the US Environmental Protection Agency supports this conclusion.

  14. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  15. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems. PMID:27441860

  16. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    ERIC Educational Resources Information Center

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  17. Assessment of fluoride contamination in groundwater as precursor for electrocoagulation.

    PubMed

    Sajil Kumar, P J

    2012-07-01

    The Present study was conducted in January 2010, in order to assess the fluoride contamination in the Thirupathur Taluk. The major objective of this study was to locate the vulnerable areas in terms of fluoride contamination. The range of fluoride concentration varied between .26 and 2.75 mg/L. 60 % of the samples were above the permissible limit. Good correlation was observed between pH, Na, HCO(3), CO(3) TDS and NO(3). A negative correlation showed by Ca and K. The results show that Geochemistry of these ions controls the Fluoride concentration in the study area. All the samples exceeded the permissible limit of F was characterized by Na-HCO(3) type of water. A fairly good correlation between F and NO(3) suggest an anthropogenic input of F, mainly from the agricultural fields. Spatial distribution map of Fluoride shows very high concentration in the SW part of the study area.

  18. [Molecular Identification and Toxicity of Pufferfish Juveniles Contaminating Whitebait Products].

    PubMed

    Kiriake, Aya; Ohta, Akira; Okayama, Sakurako; Matsuura, Keiichi; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-01-01

    Catches of whitebait, sardine fry, sometimes contains other marine animals, including fishes, mollusks, and crustaceans, and therefore boiled and dried whitebait products may contain these marine animals if sorting is incomplete. In September 2014, contamination of boiled and dried whitebait products with pufferfish juveniles became a serious food safety concern, as tiger pufferfish Takifugu rubripes juveniles are toxic and contain tetrodotoxin (TTX). The toxicity of the juveniles of other pufferfish species, however, is unclear. To evaluate the food safety of whitebait products contaminated with pufferfish juveniles, we identified the species and toxicity of pufferfish juveniles contaminating whitebait products processed between July and September, 2014. Nucleotide sequence analysis of 16S rRNA or cytochrome b gene fragments of the mitochondrial DNA indicated that partial sequences of the polymerase chain reaction products of 15 specimens were identical with those of Lagocephalus spadiceus, and partial sequence from 2 specimens were identical with those of Takifugu vermicularis. We analyzed TTX by liquid chromatography-tandem mass spectrometry. TTX was not detected in the L. spadiceus specimens and was below the quantification limits (30 ng/g) in a T. vermicularis specimen. Based on whitebait product manufacturer's research, 795 individuals and 27.2 g of pufferfish juveniles were detected in 8,245 kg whitebait product. Thus, the ratio of pufferfish to whitebait product was estimated to be 0.096 individual/kg whitebait product and 0.0033 g/kg whitebait product, respectively. PMID:26936304

  19. [Molecular Identification and Toxicity of Pufferfish Juveniles Contaminating Whitebait Products].

    PubMed

    Kiriake, Aya; Ohta, Akira; Okayama, Sakurako; Matsuura, Keiichi; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-01-01

    Catches of whitebait, sardine fry, sometimes contains other marine animals, including fishes, mollusks, and crustaceans, and therefore boiled and dried whitebait products may contain these marine animals if sorting is incomplete. In September 2014, contamination of boiled and dried whitebait products with pufferfish juveniles became a serious food safety concern, as tiger pufferfish Takifugu rubripes juveniles are toxic and contain tetrodotoxin (TTX). The toxicity of the juveniles of other pufferfish species, however, is unclear. To evaluate the food safety of whitebait products contaminated with pufferfish juveniles, we identified the species and toxicity of pufferfish juveniles contaminating whitebait products processed between July and September, 2014. Nucleotide sequence analysis of 16S rRNA or cytochrome b gene fragments of the mitochondrial DNA indicated that partial sequences of the polymerase chain reaction products of 15 specimens were identical with those of Lagocephalus spadiceus, and partial sequence from 2 specimens were identical with those of Takifugu vermicularis. We analyzed TTX by liquid chromatography-tandem mass spectrometry. TTX was not detected in the L. spadiceus specimens and was below the quantification limits (30 ng/g) in a T. vermicularis specimen. Based on whitebait product manufacturer's research, 795 individuals and 27.2 g of pufferfish juveniles were detected in 8,245 kg whitebait product. Thus, the ratio of pufferfish to whitebait product was estimated to be 0.096 individual/kg whitebait product and 0.0033 g/kg whitebait product, respectively.

  20. Regional risk assessment for contaminated sites part 1: vulnerability assessment by multicriteria decision analysis.

    PubMed

    Zabeo, A; Pizzol, L; Agostini, P; Critto, A; Giove, S; Marcomini, A

    2011-11-01

    As highlighted in the EU Soil Communication, local contamination is one of the main soil threats and it is often related to present and past industrial activities which left a legacy of a high number of contaminated sites in Europe. These contaminated sites can be harmful to many different receptors according to their sensitivity/susceptibility to contamination, and specific vulnerability evaluations are needed in order to manage this widely spread environmental issue. In this paper a novel comprehensive vulnerability assessment framework to assess regional receptor susceptibility to contaminated site is presented. The developed methodology, which combines multi criteria decision analysis (MCDA) techniques and spatial analysis, can be applied to different receptors recognized as relevant for regional assessment. In order to characterize each receptor, picked parameters significant for the estimation of the vulnerability to contaminated sites have been selected, normalized and aggregated by means of multi criteria decision analysis (MCDA) techniques. The developed MCDA methodology, based on the Choquet integral, allows to include expert judgments for the elicitation of synergic and conflicting effects between involved criteria and is applied to all the geographical objects representing the identified receptors. To test the potential of the vulnerability methodology, it has been applied to a specific case study area in the upper Silesia region of Poland where it proved to be reliable and consistent with the environmental experts' expected results. The vulnerability assessment results indicate that groundwater is the most vulnerable receptor characterized by a wide area with vulnerability scores belonging to the highest vulnerability class. As far as the other receptors are concerned, human health and surface water are characterized by quite homogeneous vulnerability scores falling in the medium-high vulnerability classes, while protected areas resulted to be the less

  1. Assessing organic contaminant fluxes from contaminated sediments following dam removal in an urbanized river.

    PubMed

    Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John

    2014-08-01

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as

  2. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  3. TXRF analysis of soils and sediments to assess environmental contamination.

    PubMed

    Bilo, Fabjola; Borgese, Laura; Cazzago, Davide; Zacco, Annalisa; Bontempi, Elza; Guarneri, Rita; Bernardello, Marco; Attuati, Silvia; Lazo, Pranvera; Depero, Laura E

    2014-12-01

    Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.

  4. Mercury contamination and exposure assessment of fishery products in Korea.

    PubMed

    Yang, Hye-Ran; Kim, Na-Young; Hwang, Lae-Hong; Park, Ju-Sung; Kim, Jung-Hun

    2015-01-01

    In this study, total (T-Hg) and methyl mercury (Me-Hg) contamination was investigated in fishery products including canned fish, fish sauces, dried bonito and frozen tuna sashimi, collected from retail markets in Korea, to assess dietary exposure. Direct mercury analyser and gas chromatography-electron captured detector were employed to measure T-Hg and Me-Hg, respectively. The highest T-Hg and Me-Hg contamination was present in tuna sashimi, followed by dried bonito, respectively. Canned tuna showed more frequent detection and higher content than other canned fishery products. The weekly exposure estimate indicates that exposure to mercury from fishery products is safe, showing 2.59% provisional tolerable weekly intake (PTWI) for T-Hg, 1.82% PTWI for Me-Hg and 4.16% reference dose for Me-Hg. However, it should be addressed to monitor the mercury contamination in fish and fishery products regularly, to safeguard vulnerable population such as children, to limit intake of these food products.

  5. Mercury contamination and exposure assessment of fishery products in Korea.

    PubMed

    Yang, Hye-Ran; Kim, Na-Young; Hwang, Lae-Hong; Park, Ju-Sung; Kim, Jung-Hun

    2015-01-01

    In this study, total (T-Hg) and methyl mercury (Me-Hg) contamination was investigated in fishery products including canned fish, fish sauces, dried bonito and frozen tuna sashimi, collected from retail markets in Korea, to assess dietary exposure. Direct mercury analyser and gas chromatography-electron captured detector were employed to measure T-Hg and Me-Hg, respectively. The highest T-Hg and Me-Hg contamination was present in tuna sashimi, followed by dried bonito, respectively. Canned tuna showed more frequent detection and higher content than other canned fishery products. The weekly exposure estimate indicates that exposure to mercury from fishery products is safe, showing 2.59% provisional tolerable weekly intake (PTWI) for T-Hg, 1.82% PTWI for Me-Hg and 4.16% reference dose for Me-Hg. However, it should be addressed to monitor the mercury contamination in fish and fishery products regularly, to safeguard vulnerable population such as children, to limit intake of these food products. PMID:25249274

  6. [Risk assessment of quaternary groundwater contamination in Beijing Plain].

    PubMed

    Guo, Gao-Xuan; Li, Yu; Xu, Liang; Li, Zhi-Ping; Yang, Qing; Xu, Miao-Juan

    2014-02-01

    Firstly, advances in investigation and evaluation of groundwater pollution in China in the last decade were presented, and several issues in the field which hinder the development of groundwater environment were pointed out. Then, four key concepts in risk assessment of groundwater pollution were briefly described with more emphasis on the difference between groundwater pollution assessment and groundwater quality assessment in this paper. After that, a method on risk assessment of groundwater pollution which included four indicators, the pollution assessment, the quality assessment, the vulnerability and the pollution load of groundwater, was presented based on the regional characteristics of Beijing Plain. Also, AHP and expert scoring method were applied to determine the weight of the four evaluation factors. Finally, the application of this method in Beijing Plain showed the area with high, relative high, medium, relative low and low risk of groundwater contamination was 1 232.1 km2, 699.3 km2, 1 951.4 km, 2 644 km2, and 133.2 km2, respectively. The study results showed that the higher risk in the western region was likely caused by the higher pollution load and its higher vulnerability, while the relatively high risk in the southeast of Beijing plain area, the Tongzhou District, is mainly caused by historical pollution sources.

  7. Contaminants as viral cofactors: assessing indirect population effects

    USGS Publications Warehouse

    Springman, Katherine R.; Kurath, Gael; Anderson, James J.; Emlen, John M.

    2005-01-01

    Current toxicological methods often miss contaminant effects, particularly when immune suppression is involved. The failure to recognize and evaluate indirect and sublethal effects severely limits the applicability of those methods at the population level. In this study, the Vitality model is used to evaluate the population level effects of a contaminant exerting only indirect, sublethal effects at the individual level. Juvenile rainbow trout (Oncorhynchus mykiss) were injected with 2.5 or 10.0 mg/kg doses of the model CYP1A inducer, β-naphthoflavone (BNF) as a pre-stressor, then exposed to a challenge dose of 102 or 104 pfu/fish of infectious hematopoietic necrosis virus (IHNV), an important viral pathogen of salmonids in North America. At the end of the 28-d challenge, the mortality data were processed according to the Vitality model which indicated that the correlation between the average rate of vitality loss and the pre-stressor dose was strong:R2 = 0.9944. Average time to death and cumulative mortality were dependent on the BNF dose, while no significant difference between the two viral dosages was shown, implying that the history of the organism at the time of stressor exposure is an important factor in determining the virulence or toxicity of the stressor. The conceptual framework of this model permits a smoother transfer of results to a more complex stratum, namely the population level, which allows the immunosuppressive results generated by doses of a CYP1A inducer that more accurately represent the effects elicited by environmentally-relevant contaminant concentrations to be extrapolated to target populations. The indirect effects of other environmental contaminants with similar biotransformation pathways, such as polycyclic aromatic hydrocarbons (PAH), could be assessed and quantified with this model and the results applied to a more complex biological hierarchy.

  8. Assessment of sampling strategy for explosives-contaminated soils

    SciTech Connect

    Thiboutot, S.; Ampleman, G.; Jenkins, T.F.; Walsh, M.E.; Thorne, P.G.; Ranney, T.A.; Grant, C.L.

    1997-12-31

    An explosives-contaminated site was characterized using composite sampling, in-field sample homogenization and on-site analysis. Explosives contaminated sites demonstrate large short-range heterogeneity due to the crystalline nature and poor water solubility of the dispersed contaminants. The sampling strategy must be carefully planned in order to minimize sampling error and total uncertainty. The site investigated in this particular study is an anti-tank firing range that has been in-use for over 20 years. The ammunition fired at this range is a melt-cast explosive based on a mixture of HMX and TNT in the ratio of 70:30. Two previous preliminary sampling surveys of this site have shown high levels of HMX in soil samples collected nearby the targeted tanks. This particular site was chosen for a collaborative effort between the Canadian Department of National Defence and the USA Department of Defense to study sampling strategies and sample heterogeneity where HMX is the main contaminant. On-site colorimetric TNT and HMX methods and enzyme immunoassay TNT and RDX methods were used initially to evaluate if the sampling pattern used provided representative results. A 6 m square grid (36 m{sup 2}) pattern was established, including two of the targeted tanks. Seventeen grids were installed and composite samples were collected within those grids. Four surface composite samples were collected in each quadrant of each grid using a circular pattern that sampled about 10% of the top 5 cm of the surface. Replicates were collected to assess the representativeness achieved. Field analysis showed concentrations of HMX ranged from as high as 1640 mg/kg near one target to 2.1 mg/kg at a distance of 15 m from the target. On the other hand, TNT concentrations were much lower than would be expected based on the 70:30 composition ratio. Results from the colorimetric on-site analyses were in excellent agreement with laboratory results.

  9. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  10. In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh

    2005-09-01

    This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.

  11. Vacuum Ultraviolet Radiation Desorption of Molecular Contaminants Deposited on Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewitt

    2006-01-01

    Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.

  12. Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data

    NASA Astrophysics Data System (ADS)

    Drabek, E.; Hatchell, J.; Friberg, P.; Richer, J.; Graves, S.; Buckle, J. V.; Nutter, D.; Johnstone, D.; Di Francesco, J.

    2012-10-01

    Observations of the dust emission using millimetre/submillimetre bolometer arrays can be contaminated by molecular line flux, such as flux from 12CO. As the brightest molecular line in the submillimetre, it is important to quantify the contribution of CO flux to the dust continuum bands. Conversion factors were used to convert molecular line integrated intensities to flux detected by bolometer arrays in mJy beam-1. These factors were calculated for 12CO line integrated intensities to the SCUBA-2 850 and 450 μm bands. The conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud complex to quantify the respective 12CO flux contribution to the 850 μm dust continuum emission. Sources with high molecular line contamination were analysed in further detail for molecular outflows and heating by nearby stars to determine the cause of the 12CO contribution. The majority of sources had a 12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular outflows, the 12CO can dominate the source dust continuum (up to 79 per cent contamination) with 12CO fluxes reaching ˜68 mJy beam-1.

  13. ASSESSING CONTAMINANT SENSITIVITY OF ENDANGERED AND THREATENED AQUATIC SPECIES WITH ACUTE TOXICITY TESTS

    EPA Science Inventory

    Assessment of contaminant impacts to endangered and threatened (listed) species requires understanding of a species' sensitivity to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation...

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect

    Not Available

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  15. ASSESSMENT OF STACHYBOTRYS REGROWTH ON CONTAMINATED WALLBOARD AFTER TREATMENT WITH COMMON SURFACE CLEANERS/DISINFECTANTS

    EPA Science Inventory

    The paper describes results of experiments assessing the efficacy of treating mold-contaminated gypsum wallboard with cleaners and/or disinfectants. Although the accepted recommendations for handling Stachybotrys chartarum contaminated gypsum wallboard are removal and replacement...

  16. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  17. Incorporating ecologically relevant habitat and demographic data in assessment of contaminant risk to wildlife

    EPA Science Inventory

    Evaluating population-level effects of contamination on wildlife requires specific information on habitat quality, species distribution, and contaminant concentration. Establishing broadly applicable thresholds for risk assessment involves an understanding of the applicability o...

  18. Photodeposition of molecular contaminants with a vacuum ultraviolet solar illumination lamp

    NASA Astrophysics Data System (ADS)

    Frink, Mark E.; Folkman, Mark A.; Darnton, Lane A.

    1992-12-01

    Several molecular species (hydrocarbons) outgassed from spacecraft materials adhere and darken on satellite optical surfaces when exposed to solar ultraviolet (UV) radiation. This absorbing molecular film of photolyzed contamination can severely degrade spacecraft optical system performance. In the Optical Scatter and Contamination Effects Facility (OSCEF) at TRW outgassed molecular species can be photo-deposited onto witness optics and an adjacent quartz crystal microbalance with vacuum ultraviolet radiation, simulating a spacecraft UV illuminated environment. Measurement of outgassing rates and concomitant photodeposition efficiencies provides useful data required in the selection of present and new spacecraft materials and accurate predictions of platform operating lifetimes. This paper will describe the methods used to measure the molecular outgassing and photodeposition rates of species from several spacecraft materials in which the samples are used in their operational configurations (no heating or grinding of the sample as in the ASTM E595 test), thus providing data highly representative of on-orbit photodeposition conditions.

  19. Assessment of basic contamination withstand voltage characteristics of polymer insulators

    SciTech Connect

    Matsuoka, R.; Shinokubo, H.; Kondo, K.; Mizuno, Y.; Naito, K.; Fujimura, T.; Terada, T.

    1996-10-01

    An artificial contamination method for hydrophobic polymer insulators was newly developed, which can provide a uniform contaminant layer similar to the natural one neither by damaging the polymer surface nor by adding any chemical agent to the conventional contamination slurry. Using this method, basic contamination withstand voltage characteristics of polymer insulators were investigated comparing with those of porcelain insulators. The results show that although hydrophobic withstand voltage characteristics critical reduction of withstand voltage occurs sometimes under rapid and heavy wetting and contamination conditions.

  20. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  1. Indirect methods of dried sewage sludge contamination assessments.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz; Grübel, Klaudiusz

    2016-07-28

    Thermal conversion (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for sewage sludge management in the future. Nevertheless, safe and ecological usage of sewage sludge as a fuel requires information about their contamination. The aim of this paper is to present the photoacoustic spectroscopy (PAS) as a good method for contamination assessments of dried sewage sludge. Two types of granular sewage sludge: Sewage sludge 1 (SS1) taken from Polish wastewater treatment plant operating in the mechanical-biological system and sewage sludge 2 (SS2) taken from mechanical-biological-chemical wastewater treatment plant with phosphorus precipitation were analysed. The spectrophotometer FTIR Nicolet 6700 equipped with photoacoustic cell (Model 300, MTEC, USA) was used. The comparison with the most popular analytical methods (GC-MS) was also done. The results of PAS studies confirm the difference between the SS1 and SS2 which is in agreement with the GC-MS analysis. Higher absorbance was observed at each wavelength characteristics for the oscillator of chemical moieties for the SS1 with respect to the SS2. PMID:27149560

  2. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  3. ISSUES IN ASSESSING LOW LEVEL IONIZABLE CONTAMINANT PARTITIONING IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Solubilization has profound implications for such diverse risk assessment activities as assessing sediment contaminant porewater exposures to benthic fauna, determining half lives of refractory toxicants in natural soils and sediments, and assessing the fate and transport of th...

  4. Alpha contamination assessment for D&D activities: Technology overview

    SciTech Connect

    Conaway, J.G.; Rawool-Sullivan, M.W.; MacArthur, D.W.

    1996-02-01

    Instruments based on the principle of Long-Range Alpha Detection (LRAD) detect the ions created in ambient air by Ionizing radiation, particularly alpha radiation, interacting with air molecules. Using either an electrostatic field or forced convection, these ions can be transported to a detection grid where the ions produce a small current that is measured with a sensitive electrometer. LRAD-based instruments can give separate, simultaneous measurements of alpha-emitting solids and inert radioactive gases such as radon. LRAD-based instruments assess surface contamination on an entire object or large surface area in a single, rapid measurement, including relatively inaccessible areas such as interior surfaces of pipes and process equipment. The LRAD concept is well proven and has been developed into a range of different radiation detection devices. This paper presents an overview of the technology, while several associated papers explore specific applications in greater detail.

  5. Assessing Ground-Water Contamination Across Broad Regions

    NASA Astrophysics Data System (ADS)

    Helsel, D. R.

    2001-05-01

    Ground-water quality is measured at discrete locations, and often interpreted at local scales. However, regional patterns in ground-water quality can be used to: 1) Assess relations between water quality and broad patterns of human activities or geochemical variation; 2) Reduce monitoring costs by sampling more frequently in areas of highest concentration or vulnerability; 3) Prioritize locations for prevention efforts such as for nitrate reduction, to obtain maximum benefits for lower costs; and 4) Project water-quality conditions to unsampled locations based on a regional understanding or "model". Examples of methods for modeling and interpreting ground-water quality at regional scales are presented along with their utility for cost reduction and contamination prevention purposes.

  6. Assessment of natural background levels in potentially contaminated coastal aquifers.

    PubMed

    Molinari, A; Chidichimo, F; Straface, S; Guadagnini, A

    2014-04-01

    The estimation of natural background levels (NBLs) of dissolved concentrations of target chemical species in subsurface reservoirs relies on a proper assessment of the effects of forcing terms driving flow and transport processes taking place within the system and whose dynamics drive background concentration values. We propose coupling methodologies based on (a) global statistical analyses and (b) numerical modeling of system dynamics to distinguish between the impacts of different types of external forcing components influencing background concentration values. We focus on the joint application of a statistical methodology based on Component Separation and experimental/numerical modeling studies of groundwater flow and transport for the NBL estimation of selected chemical species in potentially contaminated coastal aquifers. We consider a site which is located in Calabria, Italy, and constitutes a typical example of a Mediterranean coastal aquifer which has been subject to intense industrial development. Our study is keyed to the characterization of NBLs of manganese and sulfate and is geared to the proper identification of the importance of a natural external forcing (i.e., seawater intrusion) on NBL assessment. Results from the Component Separation statistical approach are complemented by numerical simulations of the advective-dispersive processes that could influence the distribution of chemical species (i.e., sulfate) within the system. Estimated NBLs for manganese are consistent with the geochemical composition of soil samples. While Component Separation ascribes the largest detected sulfate concentrations to anthropogenic sources, our numerical modeling analysis suggests that they are mainly related to the natural process of seawater intrusion. Our results indicate that the use of statistical methodologies in complex groundwater systems should be assisted by a detailed characterization of the dynamics of natural (and/or induced) processes to distinguish

  7. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes.

    PubMed

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential "keystone" genes, defined as either "hubs" or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  8. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  9. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  10. Review of methods for assessing nonpoint-source contaminated ground-water discharge to surface water

    SciTech Connect

    Not Available

    1991-04-01

    The document provides an overview of selected methods that have been used for assessing nonpoint source contaminated ground water discharge to surface water. EPA undertook the project in response to the growing awareness that contaminated ground water discharge is a significant source of nonpoint source contaminant loading to surface water in many parts of the country.

  11. An approach for assessing potential sediment-bound contaminant threats near the intake of a drinking water treatment plant.

    PubMed

    Chen, Fei; Anderson, William B; Huck, Peter M

    2013-01-01

    To assist in assessing a potential contaminated sediment threat near a drinking water intake in a large lake, a technique known as the fingerprint analysis of leachate contaminants (FALCON), was investigated and enhanced to help draw more statistically significant definitive conclusions. This represents the first application of this approach, originally developed by the USEPA to characterize and track leachate penetration in groundwater and contaminant migration from waste and landfill sites, in a large lake from the point-of-view of source water protection. FALCON provided valuable information regarding contaminated sediment characterization, source attribution, and transport within a surface water context without the need for knowledge of local hydrodynamic conditions, potentially reducing reliance on complicated hydrodynamic analysis. A t-test to evaluate the significance of correlations was shown to further enhance the FALCON procedure. In this study, the sensitivity of FALCON was found to be improved by using concentration data from both conserved organics and heavy metals in combination. Furthermore, data analysis indicated that it may be possible to indirectly assess the success of remediation efforts (and the corresponding need to plan for a treatment upgrade in the event of escalating contaminant concentrations) by examining the temporal change in correlation between the source and intake sediment fingerprints over time. This method has potential for widespread application in situations where conserved contaminants such as heavy metals and higher molecular weight polycyclic aromatic hydrocarbons (PAHs), are being or have previously been deposited in sediment somewhere in, or within range of, an intake protection zone.

  12. Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment

    SciTech Connect

    Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

    1999-07-01

    Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

  13. A TOXICITY ASSESSMENT APPROACH FOR EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of organic contaminants known for their prevalence and persistence in petroleum-impacted environment such as groundwater, soils and sediments. Many high molecular weight PAHs are suspected carcinogens and the existence of...

  14. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    PubMed

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs.

  15. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    PubMed Central

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students’ conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α = 0.80) and test–retest stability (r = 0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. PMID:25713098

  16. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  17. Assessment of lead bioaccessibility in peri-urban contaminated soils.

    PubMed

    Smith, Euan; Weber, John; Naidu, Ravi; McLaren, Ronald G; Juhasz, Albert L

    2011-02-15

    Lead (Pb) bioaccessibility was assessed in a range of peri-urban soils (n=31) with differing sources of Pb contamination, including shooting range soils, and soils affected by incinerator, historical fill, mining/smelting, and gasworks activities. A gossan soil sample was also included. Lead bioaccessibility was determined using both gastric and intestinal phases of the SBRC in vitro assay and in vitro data was then incorporated into in vivo-in vitro regression equations to calculate Pb relative bioavailability. Lead bioaccessibility ranged from 26.8-105.2% to 5.5-102.6% for gastric and intestinal phase extractions respectively. Generally, Pb bioaccessibility was highest in the shooting range soils and lowest in the gossan soil. Predictions of relative Pb bioavailability derived from in vitro data were comparable for shooting ranges soils, but highly variable for the other soils examined. For incinerator, historical fill, gasworks and gossan soils, incorporating in vitro gastric data into the in vivo-in vitro regression equation resulting in more conservative Pb relative bioavailability values than those derived using the intestinal in vitro data. PMID:21115224

  18. Surface Water Contamination Risk Assessment Modeled by Fuzzy-WRASTIC.

    PubMed

    Alavipoor, Fatemeh Sadat; Ghorbaninia, Zahra; Karimi, Saeed; Jafari, Hamidreza

    2016-07-01

    This research provides a Fuzzy-WRASTIC new model for water resource contamination risk assessment in a GIS (Geographic Information System) environment. First, this method setting in a multi-criteria evaluation framework (MCE) reviewed and mapped the sub criteria of every above-mentioned criterion. Then, related sub-layers were phased by the observance of GIS environment standards. In the next step, first the sub-layers were combined together, next the modeling of pollution risk status was done by utilizing a fuzzy overlay method and applying the OR, AND, SUM, PRODUCT and GAMMA operators by using WLC (Weighted Linear Combination) method and providing weights in the WRASTIC model. The results provide the best combination of modeling and the percentages of its risk categories of low, medium, high and very high, which are respectively 1.8, 14.07, 51.43 and 32.7. More areas have severe risk due to the unbalanced arrangement and compact of land uses around the compact surface water resources. PMID:27329055

  19. A global indicator as a tool to follow airborne molecular contamination in a controlled environment.

    PubMed

    Cariou, Stéphane; Guillot, Jean-Michel; Pépin, Laurence; Kaluzny, Pascal; Faure, Louis-Paul

    2005-02-01

    The impact of pollutants on production quality in nanotechnology necessitates reduction of contaminant levels in cleanrooms. So, devising a global airborne-pollutant indicator (GAPI) for rapid determination of the level of pollution and its danger to the process is justified. This tool used relative impact weights of the different molecules to quantify the pollution. A calculation of impact weight is proposed in this paper. Impact weights could take into account several characteristics of the molecules (molecular volume, sticking coefficient, ...). They could also be combined to be as close as possible to reality. An example of calculations of the impact of molecular volumes on air quality is given.

  20. Assessing OSL signal contamination with the composition test

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Daniels, J. T.; Rhodes, E. J.

    2013-12-01

    Optically Stimulated Luminescence (OSL) has been applied towards the dating of many geomorphologic contexts and surface processes. The evolution of fluvial systems have been extensively studied using OSL (e.g. Rittenour, 2008), but has yet to overcome the limitations for quartz based OSL dating of fluvial sediments in active tectonic areas. Unfortunately, quartz in these regions is often characterized by weak OSL emissions and can suffer from signal contamination from small mineral inclusions. The OSL signal contributions from these inclusions may dominate the measured signal, given that feldspar often has an inherently brighter signal than quartz. Previously, we presented a signal composition test (Lawson et al., 2012) which utilizes thermal quenching and susceptibility to infrared bleaching to assess the contributions of quartz emissions to the total OSL signal. Additional measurements have been made, accessing how small volumes of feldspar can affect the results of aliquots tested with this composition test. Further, additional feldspar samples have been assessed for their response to the composition test, whose chemistry was determined using energy-dispersive X-ray (EDAX) spectroscopy. The test offers a new tool to determine the best strategy to access signal properties within varying dating contexts, delivering a way to access the best way to date sediments. Lawson, M., Roder, B., Stang, D., & Rhodes, E., 2012. OSL and IRSL characteristics of quartz and feldspar from southern California, USA. Radiation Measurements 47, 830-836. Rittenour, R.M, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, paleoseismic and archaeological research. Boreas 37, 613-635.

  1. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  2. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  3. Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Kao, Yu-Hsuan; Jang, Cheng-Shin

    2015-08-15

    This study applied advanced multivariate methods and risk assessment to evaluate the characteristics of polycyclic aromatic hydrocarbons (PAHs) in the sediment of the severely polluted Erjen River in Taiwan. High-molecular-weight PAHs (HPAHs) dominated in the rainy season. The ecological risk of PAHs in the sediment was low, whereas the total health risk through ingestion and dermal contact was considerably high. The SOM (self-organizing map) analysis clustered the datasets of PAH-contaminated sediment into five groups with similar concentration levels. Factor analysis identified major factors, namely coal combustion, traffic, petrogenic, and petrochemical industry factors, accounting for 88.67% of the variance in the original datasets. The major tributary and the downstream of the river were identified as PAH-contamination hotspots. The PMF (positive matrix factorization) was combined with toxicity assessment to estimate the possible apportionment of sources and the associated toxicity. Spills of petroleum-related products, vehicle exhaust, coal combustion, and exhaust from a petrochemical industry complex constituted respectively 12%, 6%, 74%, and 86% of PAHs in the sediment, but contributed respectively 7%, 15%, 22%, and 56% of toxicity posed by PAHs in the sediment. To improve the sediment quality, best management practices should be adopted to eliminate nonpoint sources of PAHs flushed by storm water into the major tributary and the downstream of the Erjen River. The proposed methodologies and results provide useful information on remediating river PAH-contaminated sediment and may be applicable to other basins with similar properties that are experiencing resembled river environmental issues. PMID:25889545

  4. Molecular approaches to identification of tissue contamination in surgical pathology sections.

    PubMed

    Worsham, M J; Wolman, S R; Zarbo, R J

    2001-02-01

    The finding of possibly contaminant tissues or cells in surgical or cytology case material can be a challenging problem in diagnostic anatomical pathology samples. The reported rates of occurrence have ranged from 0 to 8.8% (including prospective and retrospective cases). A diagnostically dissimilar tissue fragment, whether contiguous with other tissue or among other fragments within a paraffin section, and which is not incompatible with the case tissue, often requires a rigorous investigation to confirm or deny its relevance to the case. Fluorescence in situ hybridization using dual red and green DNA probes to regions of the X and Y chromosomes, respectively, were used in one case where the potential contaminant was suspected to have originated from a male patient. The putative contaminant tissue fragment was confirmed as male, with cells having one X and one Y chromosome, unlike the other tissue fragments on the slide with two X chromosomes. In a second case, DNA polymorphisms were used to compare allelic patterns that were informative not only in proving the extraneous tissue as a contaminant, but in addition, could be used to trace the latter to its original tissue source. The molecular tools of fluorescence in situ hybridization in sex-mismatched cases and of DNA microsatellite probes that are applicable to paraffin sections can provide definitive identifiers of tissues and individual cells. They are important adjuncts to histology for the anatomical pathologist when faced with the diagnostic problems of tissue contamination encountered in routine practice.

  5. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  6. [Use of bioindicators for assessing and monitoring pesticides contamination in streams and rivers].

    PubMed

    Arias, Ana Rosa Linde; Buss, Daniel Forsin; de Alburquerque, Carla; Inácio, Alan Ferreira; Freire, Marina Moreira; Egler, Mariana; Mugnai, Riccardo; Baptista, Darcilio Fernandes

    2007-01-01

    The objective of this article is to present an analysis of the main bioindicators that are currently used to assess the environmental impact of pollution in water resources. The simple quantification of chemicals in the environment is not enough to reveal the real effects of contamination on ecosystems, making necessary the assessment of the biological effects that pollution causes at different hierarchical levels. The bioindicators used in this article on two case studies comprehend different hierarchical levels: in case study 1, three organization levels were utilized: individual, cellular and molecular, to detect the early effects of exposition to environmental pollutants in three hydrographic basins. By observing the inhibition of AChE activity in fish it was possible to assess the effects of organophosphorate and carbamate pesticides, showing the effects of agricultural activities. In case study 2, we present an assessment at the macroinvertebrate community level using the Extended Biotic Index. We discuss the advantages and limitations in the production of reliable data that could be used in the implementation of adequate actions to protect and/or recover ecosystems. PMID:17680059

  7. Sustainable mineral resources management: from regional mineral resources exploration to spatial contamination risk assessment of mining

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo

    2009-07-01

    Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background contamination associated with mineral deposits, industrial activities and contamination in the three-dimensional subsurface space, problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites, land use conflicts and abandoned mines. These problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to show how regional mineral resources mapping has developed into the spatial contamination risk assessment of mining and how geological knowledge can be transferred to environmental assessment of mines. The paper provides a state-of-the-art review of the spatial mine inventory, hazard, impact and risk assessment and ranking methods developed by national and international efforts in Europe. It is concluded that geological knowledge on mineral resources exploration is essential and should be used for the environmental contamination assessment of mines. Also, sufficient methodological experience, knowledge and documented results are available, but harmonisation of these methods is still required for the efficient spatial environmental assessment of mine contamination.

  8. Health risk-based assessment and management of heavy metals-contaminated soil sites in Taiwan.

    PubMed

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-10-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan.

  9. A spatially-evaluated methodology for assessing risk to a population from contaminated land.

    PubMed

    Gay, J Rebecca; Korre, Anna

    2006-07-01

    A methodology is proposed which combines quantitative probabilistic human health risk assessment and spatial statistical methods (geostatistics) to produce an assessment of risks to human health from exposure to contaminated land, in a manner which preserves the spatial distribution of risks and provides a measure of uncertainty in the assessment. Maps of soil contaminant levels, which incorporate uncertainty, are produced from sparse sample data using sequential indicator simulation. A real, age-stratified population is mapped across the contaminated area, and intake of soil contaminants by individuals is calculated probabilistically using an adaptation of the Contaminated Land Exposure Assessment (CLEA) model. An abundance of information is contained in results which can be interrogated at the population and individual level, and mapped to provide a powerful visual tool for risk managers, enabling efficient targeting of risk reduction measures to different locations. PMID:16352380

  10. Assessment of SRS radiological liquid and airborne contaminants and pathways

    SciTech Connect

    Jannik, G.T.

    1997-04-01

    This report compiles and documents the radiological critical-contaminant/critical-pathway analysis performed for SRS. The analysis covers radiological releases to the atmosphere and to surface water, which are the principal media that carry contaminants off site. During routine operations at SRS, limited amounts of radionuclides are released to the environment through atmospheric and/or liquid pathways. These releases potentially result in exposure to offsite people. Though the groundwater beneath an estimated 5 to 10 percent of SRS has been contaminated by radionuclides, there is no evidence that groundwater contaminated with these constituents has migrated offsite (Arnett, 1996). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people.

  11. USING SPMDS TO ASSESS MANAGEMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS.

    EPA Science Inventory

    Abstract: Dredging in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an...

  12. Field-based Metabolomics for Assessing Contaminated Surface Waters

    EPA Science Inventory

    Metabolomics is becoming well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical tox...

  13. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATIONS RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Considerable emphasis has been placed on developing watershed-based strategies with the potential to reduce non-point-source fecal contamination. Molecular methods applied used 16S-ribosomal-deoxyribonucleic-acid (rDNA) to try to determine sources of fecal contamination. Objectiv...

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    SciTech Connect

    Not Available

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  15. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect

    Not Available

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  16. Molecular Tools to Monitor Microbial Contaminants During Long-Term Exploration Class Missions

    NASA Astrophysics Data System (ADS)

    Larios-Sanz, M.; Kourentzi, K.; Willson, R.; Pierson, D.; Fox, G.

    Microbial contaminants will inevitably accompany a human crew in our adventures into space. Humans constantly shed large numbers of microorganisms into the environment, and during spaceflight some normally benign microbes may become pathogenic. Concerns about microbial disease during Exploration Class human space missions are particularly important in light of the clinically significant changes that the immune system undergoes during spaceflight. Additionally, increased microbial burdens on closed air and water systems may lead to disease and become dangerous sources of contamination for replacement crews. These microbes might also become a serious threat to regenerative life support systems. The development of a robust system to detect, identify and monitor these contaminants i therefore critical. Wes are currently developing a monitoring system that employs 16S ribosomal RNA sequence information to identify bacterial contaminants at the genus and species level. Despite extensive secondary structure, a large number of regions on the 16S rRNA molecule have been successfully targeted. Probes specific for certain groups, such as "all bacteria", "Gram positives", "Gram negatives", and "enterics", as well as some targeting specific genera and species have been designed and optimized. A set of working probes is now being tested in a variety of solution assays that exploit new and exciting technologies such as molecular beacons and DNA microarrays.

  17. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil.

    PubMed

    Vítková, Martina; Komárek, Michael; Tejnecký, Václav; Šillerová, Hana

    2015-08-15

    Various low-molecular-weight organic acids (LMWOAs) play an important role in the mobilisation of contaminants and their subsequent uptake by plants. Nano-maghemite (NM) and an amorphous Mn oxide (AMO) were investigated for their stabilisation potential under simulated rhizosphere conditions in terms of their use during chemical stabilisation and aided phytostabilisation of metal(loid)s in contaminated soils. In order to understand the reactivity of these potential sorbents of contaminants in soils and subsequent mobility of metal(loid)s, a set of time-dependent batch leaching experiments was performed using a mix of acetic, lactic, citric, malic and formic acids simulating root exudates. Despite being relatively unstable under given conditions, the AMO proved to be an efficient amendment for rapid stabilisation of both metals and As compared to NM. Generally, low pH (∼ 4) and the presence of citrate complexes resulted in higher mobility of metals in the non- and NM-amended soil. In contrast, the presence of AMO in the soil accelerated the neutralisation reactions related to pH increase and (co-) precipitation of secondary Fe/Mn/Al oxyhydroxides. Mineralogical transformations of the AMO showed to be crucial for contaminant immobilisation. PMID:25814334

  18. A model for the assessment of aquifer contamination potential based on regional geologic framework

    USGS Publications Warehouse

    Soller, D.R.; Berg, R.C.

    1992-01-01

    The texture and three-dimensional framework of geologic materials should be considered in assessments of groundwater's vulnerability to contamination because geology controls the movement of contaminants and groundwater and influences groundwater quality. Contaminants are introduced into, transmitted through, and stored by geologic materials. We present a model that identifies aquifers and ranks sequences of geologic materials by their relative potential for transmitting water and contaminants from land surface. With this basis, the model can be used to assess the potential for contamination of aquifers by surface activities such as landfitling of wastes or application of agricultural chemicals. A regional map of aquifer contamination potential can be generated from the model; it retains the geologic map information intact and available for reinterpretation or other uses. The model was developed using broad, regional map information and is intended to be a general tool for assessing the regional vulnerability of aquifers to contamination. It is not intended for local, site-specific use, but for prioritizing local areas where contamination potential and/or land-use history warrant more detailed assessment or monitoring. Because it provides a regional view of contamination potential, regional patterns or trends of map units should be evaluated, rather than using the map information literally to assess local areas. Methods of applying this model and contamination potential map to groundwater protection and management are currently being studied; research includes an attempt to statistically validate the model with water-quality data, and to identify natural groupings of the ranked contamination potential map units. ?? 1992 Springer-Verlag New York Inc.

  19. The Effect of Molecular Contamination on the Emissivity Spectral Index in Orion A

    NASA Astrophysics Data System (ADS)

    Coudé, Simon; Bastien, Pierre; Drabek, Emily; Johnstone, Doug; Hatchell, Jennifer

    2013-07-01

    The emissivity spectral index is a critical component in the study of the physical properties of dust grains in cold and optically thin interstellar star forming regions. Since submillimeter astronomy is an ideal tool to measure the thermal emission of those dust grains, it can be used to characterize this important parameter. We present the SCUBA-2 shared risks observations at 450 μm and 850 μm of the Orion A molecular cloud obtained at the James-Clerk-Maxwell telescope. Previous studies showed that molecular emission lines can also contribute significantly to the measured fluxes in those continuum bands. We use HARP 12CO 3-2 maps to evaluate the total molecular line contamination in the SCUBA-2 maps and its effect on the determination of the spectral index in highly contaminated areas. With the corrected fluxes, we have obtained new spectral index maps for different regions of the well-known integral-shaped filament. This work is part of an ongoing effort to characterize the properties of star forming regions in the Gould belt with the new instruments available at the JCMT.

  20. Equilibrium Partitioning Approach for Assessing Toxicity of Contaminants in Sediments: Linking Measured Concentrations to Effects

    EPA Science Inventory

    A variety of approaches exist for assessing the degree, extent and/or risk of metals contamination in sediments. Selection of the “correct” approach depends on the nature of the question being asked (e.g., the degree of metals contamination in marine sediments may be estimated by...

  1. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  2. [Assessment of risk of contamination of drinking water for the health of children in Tula region].

    PubMed

    Grigor'ev, Iu I; Liapina, N V

    2013-01-01

    The hygienic analysis of centralized drinking water supply in Tula region has been performed Thepriority contaminants of drinking water have been detected On the basis of risk assessment methodology non-carcinogenic health risks to the child population was calculated. A direct relationship between the incidence of some diseases in childhood population and pollution by chemical contaminants of drinking water has been established.

  3. Emerging contaminants: presentations at the 2009 Toxicology and Risk Assessment Conference.

    PubMed

    Murnyak, George; Vandenberg, John; Yaroschak, Paul J; Williams, Larry; Prabhakaran, Krishnan; Hinz, John

    2011-07-15

    A session entitled "Emerging Contaminants" was held in April 2009 in Cincinnati, OH at the 2009 Toxicology and Risk Assessment Conference. The purpose of the session was to share information on both programmatic and technical aspects associated with emerging contaminants. Emerging contaminants are chemicals or materials that are characterized by a perceived or real threat to human health or environment, a lack of published health standards or an evolving standard. A contaminant may also be "emerging" because of the discovery of a new source, a new pathway to humans, or a new detection method or technology. The session included five speakers representing the Department of Defense (DoD), the Environmental Protection Agency (EPA), and each of the military services. The DoD created the Emerging Contaminant Directorate to proactively address environmental, health, and safety concerns associated with emerging contaminants. This session described the scan-watch-action list process, impact assessment methodology, and integrated risk management concept that DoD has implemented to manage emerging contaminants. EPA presented emerging trends in health risk assessment. Researchers made technical presentations on the status of some emerging contaminates in the assessment process (i.e. manganese, RDX, and naphthalene). PMID:21034762

  4. Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment Conference

    SciTech Connect

    Murnyak, George; Vandenberg, John; Yaroschak, Paul J.; Williams, Larry; Prabhakaran, Krishnan; Hinz, John

    2011-07-15

    A session entitled 'Emerging Contaminants' was held in April 2009 in Cincinnati, OH at the 2009 Toxicology and Risk Assessment Conference. The purpose of the session was to share information on both programmatic and technical aspects associated with emerging contaminants. Emerging contaminants are chemicals or materials that are characterized by a perceived or real threat to human health or environment, a lack of published health standards or an evolving standard. A contaminant may also be 'emerging' because of the discovery of a new source, a new pathway to humans, or a new detection method or technology. The session included five speakers representing the Department of Defense (DoD), the Environmental Protection Agency (EPA), and each of the military services. The DoD created the Emerging Contaminant Directorate to proactively address environmental, health, and safety concerns associated with emerging contaminants. This session described the scan-watch-action list process, impact assessment methodology, and integrated risk management concept that DoD has implemented to manage emerging contaminants. EPA presented emerging trends in health risk assessment. Researchers made technical presentations on the status of some emerging contaminates in the assessment process (i.e. manganese, RDX, and naphthalene).

  5. Assessment of contaminants in Dubai coastal region, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Al-Darwish, H. A.; Abd El-Gawad, E. A.; Mohammed, F. H.; Lotfy, M. M.

    2005-12-01

    Coastal uses and other human activities have inevitably impinged on the Gulf environment; therefore, these regions require continuous monitoring. The investigated area covered the maximum fragments of Dubai coastal region in the Arabian Gulf. The determination of major oxides and trace metal concentrations in Dubai sediments revealed three heavily and moderately contaminated regions. One is in the far northeastern part at Al-Hamriya Sts 1 3 and contaminated by Fe, Cu, Pb, and Zn; the second is in the mid-northeastern part at Dry Docks and contaminated by Cu, Ni, Pb, and Zn; and finally, the third is in the near southwestern part at Dubal and contaminated by Fe, Mg, Cr, Ni, and Zn. Al-Hamriya St 3 represented the highest values of Cu, Pb, and Zn, whereas Dubal exhibited the maximum values of Fe, Mg, Ba, Cr, Mn, Ni, and V. The anthropogenic discharge and natural deposits are the main sources of contamination. In general, all trace and major elements showed the minimal levels at Jebel Ali Sanctuary (Sts 11, 12, 13) except for Sr and Ca, which showed their maximum values. The highest concentrations of Ca and Sr are mainly attributed to carbonate gravel sands and sands, which cover most stations. Each of V and Ni showed negative correlation with TPH, which may be indicated that the source of oil contamination in the region is not related to crude oil but mostly attributable to anthropogenic sources. The significant positive correlation, which was found between trace metals and TOC indicates that organic matter plays an important role in the accumulation of trace metals in case of Cu, Zn, and Pb.

  6. Geomorphological assessment of sediment contamination in an urban stream system

    USGS Publications Warehouse

    Rhoads, B.L.; Cahill, R.A.

    1999-01-01

    Little is known about the influence of fluvial-geomorphological features on the dispersal of sediment-related contaminants in urban drainage systems. This study investigates the relation between reach-scale geomorphological conditions and network-scale patterns of trace-element concentrations in a partially urbanized stream system in East-Central Illinois, USA Robust statistical analysis of bulk sediment samples reveals levels of Cr, Cu, Pb, Ni, and Zn exceed contamination thresholds in the portion of the watershed in close proximity to potential sources of pollution-in this case storm-sewer outfalls. Although trace-element concentrations decrease rapidly downstream from these sources, substantial local variability in metal levels exists within contaminated reaches. This local variability is related to reach-scale variation in fluvial-geomorphic conditions, which in turn produces variation in the degree of sorting and organic-matter content of bed material. Metal concentrations at contaminated sites also exhibit considerable variability over time. Analytical tests on specific size fractions of material collected at a highly contaminated site indicate that Cr and Ni are concentrated in the 0.063 to 0.250 mm fraction of the sediment. This fraction also has elevated concentration of Zr. SEM analysis shows that the fine sand fraction contains shards of stainless steel within a matrix of zircon sand, an industrial material associated with a nearby alloy casting operation. Samples of suspended load and bedload at the contaminated site also have elevated amounts of trace metals, but concentrations of Ni and Cr in the bedload are less than concentrations in the bed material, suggesting that these trace elements are relatively immobile. Off the other hand, amounts of CU and Zn in the bedload exceed concentrations in the bed material, implying that these trace metals are preferentially mobilized during transport events.

  7. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants.

    PubMed

    McGrath, Terry F; Campbell, Katrina; Fodey, Terry L; O'Kennedy, Richard; Elliott, Christopher T

    2013-03-01

    The safety of our food is an essential requirement of society. One well-recognised threat is that of chemical contamination of our food, where low-molecular-weight compounds such as biotoxins, drug residues and pesticides are present. Low-cost, rapid screening procedures are sought to discriminate the suspect samples from the population, thus selecting only these to be forwarded for confirmatory analysis. Many biosensor assays have been developed as screening tools in food contaminant analysis, but these tend to be electrochemical, fluorescence or surface plasmon resonance based. An alternative approach is the use of biolayer interferometry, which has become established in drug discovery and life science studies but is only now emerging as a potential tool in the analysis of food contaminants. A biolayer interferometry biosensor was assessed using domoic acid as a model compound. Instrument repeatability was tested by simultaneously producing six calibration curves showing replicate repeatability (n = 2) ranging from 0.1 to 6.5 % CV with individual concentration measurements (n = 12) ranging from 4.3 to 9.3 % CV, giving a calibration curve midpoint of 7.5 ng/ml (2.3 % CV (n = 6)). Reproducibility was assessed by producing three calibration curves on different days, giving a midpoint of 7.5 ng/ml (3.4 %CV (n = 3)). It was further shown, using assay development techniques, that the calibration curve midpoint could be adjusted from 10.4 to 1.9 ng/ml by varying assay parameters before the simultaneous construction of three calibration curves in matrix and buffer. Sensitivity of the assay compared favourably with previously published biosensor data for domoic acid. PMID:23338757

  8. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants.

    PubMed

    McGrath, Terry F; Campbell, Katrina; Fodey, Terry L; O'Kennedy, Richard; Elliott, Christopher T

    2013-03-01

    The safety of our food is an essential requirement of society. One well-recognised threat is that of chemical contamination of our food, where low-molecular-weight compounds such as biotoxins, drug residues and pesticides are present. Low-cost, rapid screening procedures are sought to discriminate the suspect samples from the population, thus selecting only these to be forwarded for confirmatory analysis. Many biosensor assays have been developed as screening tools in food contaminant analysis, but these tend to be electrochemical, fluorescence or surface plasmon resonance based. An alternative approach is the use of biolayer interferometry, which has become established in drug discovery and life science studies but is only now emerging as a potential tool in the analysis of food contaminants. A biolayer interferometry biosensor was assessed using domoic acid as a model compound. Instrument repeatability was tested by simultaneously producing six calibration curves showing replicate repeatability (n = 2) ranging from 0.1 to 6.5 % CV with individual concentration measurements (n = 12) ranging from 4.3 to 9.3 % CV, giving a calibration curve midpoint of 7.5 ng/ml (2.3 % CV (n = 6)). Reproducibility was assessed by producing three calibration curves on different days, giving a midpoint of 7.5 ng/ml (3.4 %CV (n = 3)). It was further shown, using assay development techniques, that the calibration curve midpoint could be adjusted from 10.4 to 1.9 ng/ml by varying assay parameters before the simultaneous construction of three calibration curves in matrix and buffer. Sensitivity of the assay compared favourably with previously published biosensor data for domoic acid.

  9. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  10. Control and assessment of the hydrocarbon contamination of Ukrainian soils

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, N. N.

    2008-05-01

    Regularities governing the self-purification of soils from oil hydrocarbons, as well as migration of hydrocarbons, and the effect on the water-physical properties and fertility of soils were revealed in a series of experiments. A system of ecological, economic, and reclamation standards was proposed for regulating economic activities in the case of soil contamination with hydrocarbons.

  11. Assessment of exposures to fecally-contaminated recreational water

    EPA Science Inventory

    Exposure to fecally-contaminated recreational waters can pose a health risk to swimmers and other recreators. Since 2003, we have interviewed nearly 27,000 respondents at seven beaches impacted by treated sewage discharge. Information was collected about the duration and exposure...

  12. SURROGATE SPECIES IN ASSESSING CONTAMINANT RISK FOR ENDANGERED FISHES, INCLUDING INTERSPECIES TOXICITY CORRELATIONS

    EPA Science Inventory

    Rainbow trout, fathead minnows, and sheepshead minnows were tested as surrogate species to assess contaminant risk for 17 endangered fishes and one toad species. Acute toxicity tests were conducted with carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin in accorda...

  13. ASSESSING CONTAMINANT SENSITIVITY OF ENDANGERED AND THREATENED SPECIES: 3. EFFLUENT TOXICITY TESTS

    EPA Science Inventory

    Dwyer, F. James, Douglas K. Hardesty, Christopher E. Henke, Christopher G. Ingersoll, David W. Whites, Tom Augspurger, Timothy J. Canfield, David R. Mount and Foster L. Mayer. Submitted. Assessing Contaminant Sensitivity of Endangered and Threatened Species: 3. Effluent Tests. Ar...

  14. Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water.

    PubMed

    Leusch, Frederic D L; Khan, Stuart J; Laingam, Somprasong; Prochazka, Erik; Froscio, Suzanne; Trinh, Trang; Chapman, Heather F; Humpage, Andrew

    2014-02-01

    The growing use of recycled water in large urban centres requires comprehensive public health risk assessment and management, an important aspect of which is the assessment and management of residual trace chemical substances. Bioanalytical methods such as in vitro bioassays may be ideal screening tools that can detect a wide range of contaminants based on their biological effect. In this study, we applied thirteen in vitro assays selected explicitly for their ability to detect molecular and cellular effects relevant to potential chemical exposure via drinking water as a means of screening for chemical contaminants from recycled water at 9 Australian water reclamation plants, in parallel to more targeted direct chemical analysis of 39 priority compounds. The selected assays provided measures of primary non-specific (cytotoxicity to various cell types), specific (inhibition of acetylcholinesterase and endocrine receptor-mediated effects) and reactive toxicity (mutagenicity and genotoxicity), as well as markers of adaptive stress response (modulation of cytokine production) and xenobiotic metabolism (liver enzyme induction). Chemical and bioassay analyses were in agreement and complementary to each other: the results show that source water (treated wastewater) contained high levels of biologically active compounds, with positive results in almost all bioassays. The quality of the product water (reclaimed water) was only marginally better after ultrafiltration or dissolved air floatation/filtration, but greatly improved after reverse osmosis often reducing biological activity to below detection limit. The bioassays were able to detect activity at concentrations below current chemical method detection limits and provided a sum measure of all biologically active compounds for that bioassay, thus providing an additional degree of confidence in water quality.

  15. Recent advances in containment assessment offer proactive alternatives for managing contaminated fisheries

    SciTech Connect

    Bevelhimer, M.S.

    1995-12-01

    For a variety of reasons, many fisheries managers seem reluctant to get involved in contaminant issues even though the effect on fisheries can be far-reaching. The involvement of fisheries managers in this process is critical, and recent advances in assessment techniques offer hope that a more active management of contaminated fisheries is possible. Managing contaminated systems is often limited to contaminant analysis of fish tissue (and sometimes water and sediment), community surveys, and posting of consumption advisories. New approaches using advanced statistical analyses, simulation modeling, and bioindicators of environmental stress offer additional tools that can be used to better understand the transport and fate of contaminants, to assess potential ecological injury, and to evaluate proposed remedial actions. For these tools to be useful in management situations, managers and researchers will need to cooperate in both the development and use of these new techniques. 29 refs.

  16. Cumulative health risk assessment: integrated approaches for multiple contaminants, exposures, and effects

    SciTech Connect

    Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne

    2007-07-01

    Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)

  17. Behavior of phosphorous and contaminants from molecular doping combined with a conventional spike annealing method

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasuo; Takamizawa, Hisashi; Inoue, Koji; Yano, Fumiko; Nagai, Yasuyoshi; Lamagna, Luca; Mazzeo, Giovanni; Perego, Michele; Prati, Enrico

    2013-12-01

    The fabrication of future nanoscale semiconductor devices calls for precise placement of dopant atoms into their crystal lattice. Monolayer doping combined with a conventional spike annealing method provides a bottom-up approach potentially viable for large scale production. While the diffusion of the dopant was demonstrated at the start of the method, more sophisticated techniques are required in order to understand the diffusion, at the near surface, of P and contaminants such as C and O carried by the precursor, not readily accessible to direct time-of-flight secondary ion mass spectrometry measurements. By employing atom probe tomography, we report on the behavior of dopant and contaminants introduced by the molecular monolayer doping method into the first nanometers. The unwanted diffusion of C and O-related molecules is revealed and it is shown that for C and O it is limited to the first monolayers, where Si-C bonding formation is also observed, irrespective of the spike annealing temperature. From the perspective of large scale employment, our results suggest the benefits of adding a further process to the monolayer doping combined with spike annealing method, which consists of removing a sacrificial Si layer to eliminate contaminants.

  18. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    NASA Technical Reports Server (NTRS)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  19. Possibilities of implementation of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework.

    PubMed

    Brand, Ellen; Lijzen, Johannes; Peijnenburg, Willie; Swartjes, Frank

    2013-10-15

    In the Netherlands, risk assessment of contaminated soils is based on determining the total contaminant concentration. If this measured soil concentration exceeds the Soil Quality Standards (SQS) a higher tier risk evaluation must be performed. Experiences from the field have given rise to the perception that performing risk evaluations based on (measured) total concentrations may lead to an inaccurate assessment of the actual risks. Assuming that only the bioavailable fraction is capable of exerting adverse effects in the soil ecosystem, it is suggested, that by taking bioavailability into account in a (higher tier) risk evaluation, a more effect-based risk assessment can be performed. Bioavailability has been a subject of research for several decades. However up to now bioavailability has not been implemented in the Dutch Soil Quality Assessment Framework. First actions were taken in the Netherlands to determine whether the concept of bioavailability could be implemented in the risk assessment of contaminated soils and to find out how bioavailability can become part of the Dutch Soil Quality Assessment Framework. These actions have led to a concrete proposal for implementation of bioavailability methods in the risk assessment of organic contaminants in soils. This paper focuses on the chemical prediction of bioavailability for ecological risk assessment of contaminated soils.

  20. Identification of molecular markers to follow up the bioremediation of sites contaminated with chlorinated compounds.

    PubMed

    Marzorati, Massimo; Balloi, Annalisa; De Ferra, Francesca; Daffonchio, Daniele

    2010-01-01

    The use of microorganisms to clean up xenobiotics from polluted ecosystems (soil and water) represents an ecosustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and sensitive strategies for monitoring and identifying bacteria and catabolic genes involved in the degradation of xenobiotics. This chapter provides a description of recently developed molecular-biology-based techniques, such as PCR with degenerate primers set, real-time quantitative PCR (qPCR), reverse transcription PCR (RT-PCR), southern blot hybridization, and long-range PCR, used to give a picture of the catabolically relevant microorganisms and of the functional genes present in a polluted system. By using a case study of a groundwater aquifer contaminated with 1,2-dichloroethane (1,2-DCA), we describe the identification of microorganisms potentially involved in the 1,2-DCA dehalorespiration (Dehalobacter sp. and Desulfitobacterium sp.) and a complete new gene cluster encoding for a 1,2-DCA reductive dehalogenase. The application of these techniques to bioremediation can improve our understanding of the inner mechanisms to evaluate the feasibility of a given treatment and provide us with a method to follow up bacteria and catabolic genes involved in the degradation of contaminants during the activities in situ.

  1. Site-specific risk assessment in contaminated vegetable gardens.

    PubMed

    Sipter, Emese; Rózsa, Eniko; Gruiz, Katalin; Tátrai, Erzsébet; Morvai, Veronika

    2008-04-01

    A field survey was carried on in Gyöngyösoroszi, Hungary, near to an abandoned lead/zinc mine to analyse the metal contamination of flooded and non-flooded vegetable gardens, and to evaluate the health risks to local population. Contamination levels of arsenic, cadmium, lead, mercury and zinc were measured in soil and homegrown vegetable samples and bioconcentration factors and hazard indices were calculated. The high metal contents of flooded vegetable gardens were caused by floods, the results indicated significant differences between flooded and non-flooded vegetable gardens. The most accumulating vegetable was sorrel, the most mobile elements were cadmium and lead. Arsenic was not available for vegetables. The health risk was calculated for two exposure routes: ingestion of soil and ingestion of vegetables. The site-specific exposure parameters were established after a population based survey and a special equation was created to calculate the health risk due to homegrown vegetable consumption. The highest risk was associated with ingestion of vegetables, the most hazardous element being lead. The hazard index did not exceed the threshold value of one in flooded or non-flooded gardens. The analyses of health risk indicated that despite the high metal concentrations of soil the contamination of vegetable gardens does not pose an unacceptable risk to the inhabitants of the village. PMID:18191173

  2. National rivers and streams assessment: fish tissue contaminants

    EPA Science Inventory

    Overview of the National Rivers and Streams Assessment (NRSA), a statistical survey of flowing waters in the U.S. Survey is designed to: assess the condition of the nation's rivers and streams; help build state and tribal capacity for monitoring and assessment; promote collabor...

  3. Decision support methods for the environmental assessment of contamination at mining sites.

    PubMed

    Jordan, Gyozo; Abdaal, Ahmed

    2013-09-01

    Polluting mine accidents and widespread environmental contamination associated with historic mining in Europe and elsewhere has triggered the improvement of related environmental legislation and of the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background pollution associated with natural mineral deposits, industrial activities and contamination located in the three-dimensional sub-surface space, the problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites and abandoned mines in historic regions like Europe. These mining-specific problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to review and evaluate some of the decision support methods that have been developed and applied to mining contamination. In this paper, only those methods that are both efficient decision support tools and provide a 'holistic' approach to the complex problem as well are considered. These tools are (1) landscape ecology, (2) industrial ecology, (3) landscape geochemistry, (4) geo-environmental models, (5) environmental impact assessment, (6) environmental risk assessment, (7) material flow analysis and (8) life cycle assessment. This unique inter-disciplinary study should enable both the researcher and the practitioner to obtain broad view on the state-of-the-art of decision support methods for the environmental assessment of contamination at mine sites. Documented examples and abundant references are also provided.

  4. Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers

    USGS Publications Warehouse

    Focazio, Michael J.; Reilly, Thomas E.; Rupert, Michael G.; Helsel, Dennis R.

    2002-01-01

    Throughout the United States increasing demands for safe drinking water and requirements to maintain healthy ecosystems are leading policy makers to ask complex social and scientific questions about how to assess and manage our water resources. This challenge becomes particularly difficult as policy and management objectives require scientific assessments of the potential for ground-water resources to become contaminated from anthropogenic, as well as natural sources of contamination. Assessments of the vulnerability of ground water to contamination range in scope and complexity from simple, qualitative, and relatively inexpensive approaches to rigorous, quantitative, and costly assessments. Tradeoffs must be carefully considered among the competing influences of the cost of an assessment, the scientific defensibility, and the amount of acceptable uncertainty in meeting the objectives of the water-resource decision maker.

  5. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    PubMed Central

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  6. Heavy metal contamination assessment and partition for industrial and mining gathering areas.

    PubMed

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-07-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  7. Assessing Practical Laboratory Skills in Undergraduate Molecular Biology Courses

    ERIC Educational Resources Information Center

    Hunt, Lynne; Koenders, Annette; Gynnild, Vidar

    2012-01-01

    This study explored a new strategy of assessing laboratory skills in a molecular biology course to improve: student effort in preparation for and participation in laboratory work; valid evaluation of learning outcomes; and students' employment prospects through provision of evidence of their skills. Previously, assessment was based on written…

  8. A comparative review of optical surface contamination assessment techniques

    NASA Technical Reports Server (NTRS)

    Heaney, James B.

    1987-01-01

    This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.

  9. Human health risk assessment related to contaminated land: state of the art.

    PubMed

    Swartjes, F A

    2015-08-01

    Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.

  10. Incorporating biologically based models into assessments of risk from chemical contaminants

    NASA Technical Reports Server (NTRS)

    Bull, R. J.; Conolly, R. B.; De Marini, D. M.; MacPhail, R. C.; Ohanian, E. V.; Swenberg, J. A.

    1993-01-01

    The general approach to assessment of risk from chemical contaminants in drinking water involves three steps: hazard identification, exposure assessment, and dose-response assessment. Traditionally, the risks to humans associated with different levels of a chemical have been derived from the toxic responses observed in animals. It is becoming increasingly clear, however, that further information is needed if risks to humans are to be assessed accurately. Biologically based models help clarify the dose-response relationship and reduce uncertainty.

  11. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  12. Assessment of combined electro-nanoremediation of molinate contaminated soil.

    PubMed

    Gomes, Helena I; Fan, Guangping; Mateus, Eduardo P; Dias-Ferreira, Celia; Ribeiro, Alexandra B

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. PMID:24946031

  13. Approaches to assessing the risk of chemical contamination of Urban Soils

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Makarov, A. A.

    2016-09-01

    The existing approaches to studying the risk of chemical contamination of soils are analyzed. It is noted that the actual and critical loads of contaminants on the soil cover are often compared for estimating these risks. The insufficient use of economic tools and methods for assessing the risk of soil contamination is emphasized. The sanitary-hygienic standards are found out to be exceeded for lead, zinc, cadmium and copper content in soils in six localities, each of 6250 m2 in the area, situated in the industrial and transport zones of Podol'sk and Moscow. The values of actual and maximal permissible damage exerted by the heavy-metal contamination to the studied soils are calculated. The probable damage R and the degree of probable damage implementation (DPDI) are used as the indices of soil contamination risk.

  14. Integration of analytical and biological measurements for assessing the effects of contaminants present at Great Lakes areas of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is often a challenge for ecotoxicologists. Instrumental analysis of site waters provides insights into the occurrence of contaminants, but provides little information about possibl...

  15. Integration of analytical and biological measurements for assessing the effects of contaminants present at a Great Lakes area of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is a challenge. Instrumental analyses of site waters provide insights into the occurrence of contaminants, but provide little information about possible effects. Biological measur...

  16. Community-based risk assessment of water contamination from high-volume horizontal hydraulic fracturing.

    PubMed

    Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya

    2013-01-01

    The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.

  17. Community-based risk assessment of water contamination from high-volume horizontal hydraulic fracturing.

    PubMed

    Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya

    2013-01-01

    The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking. PMID:23552652

  18. A multi-level assessment methodology for determining the potential for groundwater contamination by pesticides.

    PubMed

    Crowe, A S; Booty, W G

    1995-05-01

    A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  20. Assessment of quantitative imaging of contaminant distributions in porous media

    NASA Astrophysics Data System (ADS)

    Catania, F.; Massabò, M.; Valle, M.; Bracco, G.; Paladino, O.

    2008-01-01

    In this article an experimental setup designed to assist in the characterization of complex solute transport problems in porous media is described. Glass beads representing the medium are confined in a 2-D transparent Perspex box and a water flow transports a fluorescent dye. Under suitable illumination, the dye emits visible light which is collected by a CCD camera. The image acquired by this non-invasive optical technique is processed to estimate the 2-dimensional distribution of tracer concentrations by using an appropriate calibration curve that links fluorescent intensity and solute concentration. Details about the dye choice and discussion about photobleaching are reported. An analysis of the experimental error on the concentration profile is also presented. A few recent results of a study on contaminant plume within a homogenous porous matrix constituted by glass beads having mean diameter of 1 mm or 2 mm shows the performance of constructed model.

  1. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  2. Laboratory and greenhouse assessment of phytoremediation of petroleum contaminated soils

    SciTech Connect

    Banks, M.K.; Schwab, A.P.; Wang, X.

    1996-12-31

    Phytoremediation of soils contaminated with petroleum and associated priority pollutants was evaluated in greenhouse and laboratory experiments. Mineralization of several PAHs was measured in rhizosphere soil, non-rhizosphere soil, and sterile soil amended with simulated root exudates. The least amount of mineralization was observed in sterile soil, but there were no differences among all other soils. Mineralization of 14 C-benzo[a]pyrene was determined in chambers to determine the effects of tall fescue on dissipation of this compound. After 180 days, the soils with fescue had more than twice the mineralization than soils without plants. In the soils with plants, evolution of 14CO2 from the soil was five times greater than from the plant biomass. These experiments demonstrate that the presence of plants is a necessary part of the phytoremediation process. There appears to be no residual rhizosphere effect, and the simple exudation of organic compounds does not mimic fully the presence of roots.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  4. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions.

  5. Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment.

    PubMed

    Niemeyer, Júlia Carina; Moreira-Santos, Matilde; Ribeiro, Rui; Rutgers, Michiel; Nogueira, Marco Antonio; da Silva, Eduardo Mendes; Sousa, José Paulo

    2015-01-01

    This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical

  6. Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment

    PubMed Central

    Niemeyer, Júlia Carina; Moreira-Santos, Matilde; Ribeiro, Rui; Rutgers, Michiel; Nogueira, Marco Antonio; da Silva, Eduardo Mendes; Sousa, José Paulo

    2015-01-01

    This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical

  7. Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment.

    PubMed

    Niemeyer, Júlia Carina; Moreira-Santos, Matilde; Ribeiro, Rui; Rutgers, Michiel; Nogueira, Marco Antonio; da Silva, Eduardo Mendes; Sousa, José Paulo

    2015-01-01

    This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical

  8. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  9. Cross-contamination in the molecular detection of Bartonella from paraffin-embedded tissues.

    PubMed

    Varanat, M; Maggi, R G; Linder, K E; Horton, S; Breitschwerdt, E B

    2009-09-01

    The genus Bartonella comprises a group of gram-negative, fastidious bacteria. Because of diagnostic limitations of culture and serologic testing, polymerase chain reaction (PCR) has become a powerful tool for the detection of Bartonella spp. in blood and tissue samples. However, because many wild and domestic animals harbor Bartonella spp., transfer of Bartonella DNA during sample collection or histologic processing could result in false-positive PCR test results. In this study, we describe evidence of Bartonella DNA dissemination and transfer in the necropsy room and during the subsequent processing of formalin-fixed paraffin-embedded tissues. Bartonella DNA was amplified from different areas of the necropsy room, from the liquid paraffin in the tissue processor, and from different parts of the microtome. Unless stringent procedures are established and followed to avoid cross-contamination, the molecular detection of Bartonella spp. from tissue samples obtained at necropsy or processed in a multispecies histopathology laboratory will not be reliable. PMID:19429988

  10. Culture and molecular identification of fungal contaminants in edible bird nests.

    PubMed

    Chen, Jennifer Xiao Jing; Wong, Shew Fung; Lim, Patricia Kim Chooi; Mak, Joon Wah

    2015-01-01

    Widespread food poisoning due to microbial contamination has been a major concern for the food industry, consumers and governing authorities. This study is designed to determine the levels of fungal contamination in edible bird nests (EBNs) using culture and molecular techniques. Raw EBNs were collected from five house farms, and commercial EBNs were purchased from five Chinese traditional medicine shops (companies A-E) in Peninsular Malaysia. The fungal contents in the raw and commercial EBNs, and boiled and unboiled EBNs were determined. Culturable fungi were isolated and identified. In this study, the use of these methods revealed that all EBNs had fungal colony-forming units (CFUs) that exceeded the limit set by Standards and Industrial Research Institute of Malaysia (SIRIM) for yeast and moulds in EBNs. There was a significant difference (p < 0.05) in the number of types of fungi isolated from raw and commercial EBNs, but no significant difference in the reduction of the number of types of fungi after boiling the EBNs (p > 0.05). The types of fungi isolated from the unboiled raw EBNs were mainly soil, plant and environmental fungi, while the types of fungi isolated from the boiled raw EBNs, unboiled and boiled commercial EBNs were mainly environmental fungi. Aspergillus sp., Candida sp., Cladosporium sp., Neurospora sp. and Penicillum sp. were the most common fungi isolated from the unboiled and boiled raw and commercial EBNs. Some of these fungi are mycotoxin producers and cause opportunistic infections in humans. Further studies to determine the mycotoxin levels and methods to prevent or remove these contaminations from EBNs for safe consumption are necessary. The establishment and implementation of stringent regulations for the standards of EBNs should be regularly updated and monitored to improve the quality of the EBNs and consumer safety.

  11. Culture and molecular identification of fungal contaminants in edible bird nests.

    PubMed

    Chen, Jennifer Xiao Jing; Wong, Shew Fung; Lim, Patricia Kim Chooi; Mak, Joon Wah

    2015-01-01

    Widespread food poisoning due to microbial contamination has been a major concern for the food industry, consumers and governing authorities. This study is designed to determine the levels of fungal contamination in edible bird nests (EBNs) using culture and molecular techniques. Raw EBNs were collected from five house farms, and commercial EBNs were purchased from five Chinese traditional medicine shops (companies A-E) in Peninsular Malaysia. The fungal contents in the raw and commercial EBNs, and boiled and unboiled EBNs were determined. Culturable fungi were isolated and identified. In this study, the use of these methods revealed that all EBNs had fungal colony-forming units (CFUs) that exceeded the limit set by Standards and Industrial Research Institute of Malaysia (SIRIM) for yeast and moulds in EBNs. There was a significant difference (p < 0.05) in the number of types of fungi isolated from raw and commercial EBNs, but no significant difference in the reduction of the number of types of fungi after boiling the EBNs (p > 0.05). The types of fungi isolated from the unboiled raw EBNs were mainly soil, plant and environmental fungi, while the types of fungi isolated from the boiled raw EBNs, unboiled and boiled commercial EBNs were mainly environmental fungi. Aspergillus sp., Candida sp., Cladosporium sp., Neurospora sp. and Penicillum sp. were the most common fungi isolated from the unboiled and boiled raw and commercial EBNs. Some of these fungi are mycotoxin producers and cause opportunistic infections in humans. Further studies to determine the mycotoxin levels and methods to prevent or remove these contaminations from EBNs for safe consumption are necessary. The establishment and implementation of stringent regulations for the standards of EBNs should be regularly updated and monitored to improve the quality of the EBNs and consumer safety. PMID:26429550

  12. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    USGS Publications Warehouse

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  13. Passive sampling in contaminated sediment assessment: building consensus to improve decision making.

    PubMed

    Parkerton, Thomas F; Maruya, Keith A

    2014-04-01

    Contaminated sediments pose an ongoing, pervasive, global challenge to environmental managers, because sediments can reflect a legacy of pollution that can impair the beneficial uses of water bodies. A formidable challenge in assessing the risks of contaminated sediments has been the elucidation and measurement of contaminant bioavailability, expressed as the freely dissolved concentration (Cfree ) in interstitial water, which serves as a surrogate measure of the substances' chemical activity. Recent advances in passive sampling methods (PSMs) enable Cfree of sediment-associated contaminants to be quantified at trace levels, thereby overcoming current limitations of predictive models. As a result, PSMs afford the opportunity for a paradigm shift from traditional practice that can effectively reduce uncertainty in risk assessment and bolster confidence in the science used to support management of contaminated sediments. This paper provides a brief overview of the 5 subsequent papers in this series that review literature on PSM use in sediments for both organic and metal(loid) contaminants, outline the technical rationale for using PSMs as a preferred basis for risk assessment over conventional chemical analyses, describe practical considerations for and uncertainties associated with laboratory and field deployment of PSMs, discuss management application of PSMs, including illustrative case studies in which PSMs have been used in decision making, and highlight future research and communication needs. PMID:24142815

  14. Guidance for treatment of variability and uncertainty in ecological risk assessments of contaminated sites

    SciTech Connect

    1998-06-01

    Uncertainty is a seemingly simple concept that has caused great confusion and conflict in the field of risk assessment. This report offers guidance for the analysis and presentation of variability and uncertainty in ecological risk assessments, an important issue in the remedial investigation and feasibility study processes. This report discusses concepts of probability in terms of variance and uncertainty, describes how these concepts differ in ecological risk assessment from human health risk assessment, and describes probabilistic aspects of specific ecological risk assessment techniques. The report ends with 17 points to consider in performing an uncertainty analysis for an ecological risk assessment of a contaminated site.

  15. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites.

    PubMed

    Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  16. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites.

    PubMed

    Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  17. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    NASA Astrophysics Data System (ADS)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  18. Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry

    SciTech Connect

    Blunt, D.L.; Smith, K.P.

    1995-08-01

    The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

  19. Assessment of bacterial contamination of drinking water provided to mice.

    PubMed

    Haist, Carrie; Cadillac, Joan; Dysko, Robert

    2004-11-01

    The objective of this study was to evaluate whether an 240-ml water bottle provided to individually housed mice would remain potable for a 2-week interval (based on absence of coliforms). The study used inbred C57BL/6 mice and CB6F1 x C3D2F1 hybrid mice. Test groups were assigned to minimize the variables of strain, caging type (non-ventilated static versus ventilated) and building location. A 3-cc sample of drinking water was removed aseptically from the bottles and vacuum-filtered using a 250-ml filter funnel with a 0.45-mum pore size. The membrane filter was removed using sterile forceps and placed on a blood agar plate for 10 min. The plate was streaked and incubated at 37 degrees C for 5 days. The plates were observed daily, and if growth had occurred, further testing was done to determine specific organisms. Of the 148 samples only 23 had any bacterial growth. Typical bacteria were unspeciated gram-positive bacilli and Staphylococcus, Micrococcus, Streptococcus, and Pantoea species. The absence of coliforms and low percentage of bacterial contamination suggest that drinking water will remain potable for 2 weeks when supplied to an individual mouse.

  20. Assessment of bacterial contamination of drinking water provided to mice.

    PubMed

    Haist, Carrie; Cadillac, Joan; Dysko, Robert

    2004-11-01

    The objective of this study was to evaluate whether an 240-ml water bottle provided to individually housed mice would remain potable for a 2-week interval (based on absence of coliforms). The study used inbred C57BL/6 mice and CB6F1 x C3D2F1 hybrid mice. Test groups were assigned to minimize the variables of strain, caging type (non-ventilated static versus ventilated) and building location. A 3-cc sample of drinking water was removed aseptically from the bottles and vacuum-filtered using a 250-ml filter funnel with a 0.45-mum pore size. The membrane filter was removed using sterile forceps and placed on a blood agar plate for 10 min. The plate was streaked and incubated at 37 degrees C for 5 days. The plates were observed daily, and if growth had occurred, further testing was done to determine specific organisms. Of the 148 samples only 23 had any bacterial growth. Typical bacteria were unspeciated gram-positive bacilli and Staphylococcus, Micrococcus, Streptococcus, and Pantoea species. The absence of coliforms and low percentage of bacterial contamination suggest that drinking water will remain potable for 2 weeks when supplied to an individual mouse. PMID:15636548

  1. International Space Station flights 1A/R-6A external contamination observations and surface assessment

    NASA Astrophysics Data System (ADS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Scharf, Robert A.; Miles, Erica A.

    2002-09-01

    This paper documents International Space Station (ISS) external contamination observations and surface assessments covering Flights 1A/R through 6A. These observations are based on imaging from ISS missions, as active external contamination monitoring is not present in the configuration at this time. Imaging from ISS missions is a critical resource as it records the condition of ISS surfaces and helps identify visible signs of surface degradation. The observations are divided into three main sections; the first section covers the Functional Cargo Block (FGB - Russian Segment), the second section covers the Service Module (SM - Russian Segment), and the third section covers the U.S. Segment (Node 1 and Primary Mating Adapters 1 and 2). This distinction is important as materials selection, design and contamination control procedures differ between the FGB and Service Module on the Russian Segment and the U.S. Segment. Numerous observations of FGB self-contamination have been made through ISS imaging obtained during Shuttle flights. These observations were not surprising as external contamination studies conducted during the Shuttle-Mir (Phase I) Program showed extensive contamination induced by the Russian hardware. The impact of FGB induced contamination on ISS sensitive surfaces was mitigated due to FGB on-orbit time vacuum baking the Russian hardware prior to the deployment of ISS contamination sensitive hardware. Service Module impacts on ISS hardware were mitigated with a combination of changes in materials selection and on-orbit vacuum baking as there would be less on-orbit time before deployment of sensitive surfaces. While changes were made to materials selection, self-contamination observations have also been made on the Service Module. At this point, the U.S. Segment appears to be largely free of self-induced contamination. This confirms predictions made during the design and integration phase. Observed darkening and degradation of surfaces on the U

  2. Development of transmissometer system for evaluating molecular contamination effects and the preliminary results

    NASA Astrophysics Data System (ADS)

    Itoh, Nobunari; Katoh, Masahiro; Okano, Nobuaki

    2005-01-01

    The presence of propagated molecular gas is one of the most probable causes of on-orbit degradation. The performance of optical sensors would be affected seriously if the strong absorption bands of the contaminants exist in the region of our interest and phase transition of adsorption gas on optical surfaces would induce not only absorption but also scatter. Although there are amount of trials to predict spectral degradation with model calculations, experimental approaches are also necessary to clarify degradation processes occurred in orbit and to improve the on-board calibration reliability. We built up the measurement system in order to evaluate transmittance degradation with various kinds of gases under different temperature and vacuum conditions. In our system, an optical glass, the site of adsorption, is set inside a cryostat and then a certain amount of molecular gas is injected. The amount of injected gas adsorption onto the optical surface is controlled by adjusting the sample surface temperature. Our systems have the capability to control vacuum within the range from 10-3Pa to 102Pa and temperature from 150K to 423K. As for the measurement of transmittance change, we adopted commercially available spectrophotometer and FTIR. The optical spectrophotometer covers the wavelength range from 300nm to 2.5um and the FTIR covers from 2um to 25um. We would present the details of our system and discuss about measurement accuracy and preliminary results of our measurements.

  3. Assessment of fungal contamination in waste sorting and incineration-case study in Portugal.

    PubMed

    Viegas, Carla; Gomes, Anita Q; Abegão, João; Sabino, Raquel; Graça, Tiago; Viegas, Susana

    2014-01-01

    Organic waste is a rich substrate for microbial growth, and because of that, workers from waste industry are at higher risk of exposure to bioaerosols. This study aimed to assess fungal contamination in two plants handling solid waste management. Air samples from the two plants were collected through an impaction method. Surface samples were also collected by swabbing surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. Air samples were also subjected to molecular methods by real-time polymerase chain reaction (RT PCR) using an impinger method to measure DNA of Aspergillus flavus complex and Stachybotrys chartarum. Assessment of particulate matter (PM) was also conducted with portable direct-reading equipment. Particles concentration measurement was performed at five different sizes (PM0.5; PM1; PM2.5; PM5; PM10). With respect to the waste sorting plant, three species more frequently isolated in air and surfaces were A. niger (73.9%; 66.1%), A. fumigatus (16%; 13.8%), and A. flavus (8.7%; 14.2%). In the incineration plant, the most prevalent species detected in air samples were Penicillium sp. (62.9%), A. fumigatus (18%), and A. flavus (6%), while the most frequently isolated in surface samples were Penicillium sp. (57.5%), A. fumigatus (22.3%) and A. niger (12.8%). Stachybotrys chartarum and other toxinogenic strains from A. flavus complex were not detected. The most common PM sizes obtained were the PM10 and PM5 (inhalable fraction). Since waste is the main internal fungal source in the analyzed settings, preventive and protective measures need to be maintained to avoid worker exposure to fungi and their metabolites.

  4. A tiered assessment framework to evaluate human health risk of contaminated sediment.

    PubMed

    Greenfield, Ben K; Melwani, Aroon R; Bay, Steven M

    2015-07-01

    For sediment contaminated with bioaccumulative pollutants (e.g., PCBs and organochorine pesticides), human consumption of seafood that contain bioaccumulated sediment-derived contaminants is a well-established exposure pathway. Historically, regulation and management of this bioaccumulation pathway has focused on site-specific risk assessment. The state of California (United States) is supporting the development of a consistent and quantitative sediment assessment framework to aid in interpreting a narrative objective to protect human health. The conceptual basis of this framework focuses on 2 key questions: 1) do observed pollutant concentrations in seafood from a given site pose unacceptable health risks to human consumers? and 2) is sediment contamination at a site a significant contributor to seafood contamination? The first question is evaluated by interpreting seafood tissue concentrations at the site, based on health risk calculations. The second question is evaluated by interpreting site-specific sediment chemistry data using a food web bioaccumulation model. The assessment framework includes 3 tiers (screening assessment, site assessment, and refined site assessment), which enables the assessment to match variations in data availability, site complexity, and study objectives. The second and third tiers use a stochastic simulation approach, incorporating information on variability and uncertainty of key parameters, such as seafood contaminant concentration and consumption rate by humans. The framework incorporates site-specific values for sensitive parameters and statewide values for difficult to obtain or less sensitive parameters. The proposed approach advances risk assessment policy by incorporating local data into a consistent region-wide problem formulation, applying best available science in a streamlined fashion. PMID:25641876

  5. A tiered assessment framework to evaluate human health risk of contaminated sediment.

    PubMed

    Greenfield, Ben K; Melwani, Aroon R; Bay, Steven M

    2015-07-01

    For sediment contaminated with bioaccumulative pollutants (e.g., PCBs and organochorine pesticides), human consumption of seafood that contain bioaccumulated sediment-derived contaminants is a well-established exposure pathway. Historically, regulation and management of this bioaccumulation pathway has focused on site-specific risk assessment. The state of California (United States) is supporting the development of a consistent and quantitative sediment assessment framework to aid in interpreting a narrative objective to protect human health. The conceptual basis of this framework focuses on 2 key questions: 1) do observed pollutant concentrations in seafood from a given site pose unacceptable health risks to human consumers? and 2) is sediment contamination at a site a significant contributor to seafood contamination? The first question is evaluated by interpreting seafood tissue concentrations at the site, based on health risk calculations. The second question is evaluated by interpreting site-specific sediment chemistry data using a food web bioaccumulation model. The assessment framework includes 3 tiers (screening assessment, site assessment, and refined site assessment), which enables the assessment to match variations in data availability, site complexity, and study objectives. The second and third tiers use a stochastic simulation approach, incorporating information on variability and uncertainty of key parameters, such as seafood contaminant concentration and consumption rate by humans. The framework incorporates site-specific values for sensitive parameters and statewide values for difficult to obtain or less sensitive parameters. The proposed approach advances risk assessment policy by incorporating local data into a consistent region-wide problem formulation, applying best available science in a streamlined fashion.

  6. Riverland ERA maintenance pad site diesel contamination risk assessment

    SciTech Connect

    Valcich, P.J.

    1993-12-02

    The maintenance pad site consists of a concrete pad and underlying soils, approximately 15 by 46 m in area, and a drainage ditch with dimensions of 2.4 by 91 m. The ditch is located approximately 60 m from the concrete pad and is oriented parallel to the pads long axis. The facility was built in 1943, at which time the concrete pad was the floor of a maintenance shed for railroad activities. In 1955, use of the facility as a maintenance shed was discontinued. Between 1955 and 1957, the facility was used as a radioactivity decontamination area for railroad cars; acetone-soaked rags were used to remove surface contamination from the cars. The concrete pad was washed down with a mixture of water and diesel fuel, which was then flushed via clay pipe to the drainage ditch. In 1963, the maintenance shed was torn down and the concrete pad covered with approximately one-half meter of fill. The concrete pad was re-exposed in 1993. The site was sampled for Toxicity Characteristic Leachate Procedure (TCLP) metals, volatile, and semi-volatile compounds, as well as for extractable fuel hydrocarbons. A total of 17 samples were collected from surface concrete, soil beneath surface concrete, and ditch soil. One concrete sample and one ditch soil sample were split. The ditch soil sample was also duplicated. The relative percent difference (RPD) in extractable hydrocarbons of the two split samples, one from concrete and one from ditch soil are, respectively, 52% and 186%. The RPD for the duplicate sample, taken from the same ditch soil sample from which one of the splits was taken, is 39%.

  7. Field studies in estuarine ecosystems: A review of approaches for assessing contaminant effects

    SciTech Connect

    Clark, J.R.

    1989-01-01

    The types of data obtained in field studies must correspond to data used for risk assessment in order to verify approaches to predicting contaminant fate and effects in estuarine systems. Survival of caged test animals at field test sites provides field data for direct comparison with laboratory toxicity test results. Coupling survival and other effects data from caged-animal studies with assessments of stocks and dynamics of populations of the same or a related species at the field site allows extrapolation from simple laboratory and field test results to more complex and ecologically significant interpretations. The paper presents examples of various approaches to contaminant problems in estuaries.

  8. Methodology for back-contamination risk assessment for a Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Merkhofer, M. W.; Quinn, D. J.

    1977-01-01

    The risk of back-contamination from Mars Surface Sample Return (MSSR) missions is assessed. The methodology is designed to provide an assessment of the probability that a given mission design and strategy will result in accidental release of Martian organisms acquired as a result of MSSR. This is accomplished through the construction of risk models describing the mission risk elements and their impact on back-contamination probability. A conceptual framework is presented for using the risk model to evaluate mission design decisions that require a trade-off between science and planetary protection considerations.

  9. Risk assessment for chemical pickling of metals contaminated by radioactive materials.

    PubMed

    Donzella, A; Formisano, P; Giroletti, E; Zenoni, A

    2007-01-01

    In recent years, many cases of contamination of metal scraps by unwanted radioactive materials have occurred. Moreover, international organisations are evaluating the possibility to re-use or to recycle metals coming from nuclear power plants. The metal recycling industry has started to worry about radiation exposure of workers that could be in contact with contaminated metals during each manufacturing phase. Risks are strongly dependent on the radiation source features. The aim of this study is to perform risk assessment for workers involved in chemical pickling of steel coils. Monte Carlo simulations have been performed, using the MCNP package and considering coils contaminated with (60)Co, (137)Cs, (241)Am and (226)Ra. Under the most conservative conditions (coil contaminated with 1.0 kBq g(-1) of (60)Co), the dose assessment results lower than the European dose limit for the population (1 mSv y(-1)), considering a maximum number of 10 contaminated coils handled per year. The only exception concerns the case of (241)Am, for which internal contamination could be non- negligible and should be verified in the specific cases. In every case, radiation exposure risk for people standing at 50 m from the coil is widely <1 mSv y(-1).

  10. Risk assessment for chemical pickling of metals contaminated by radioactive materials.

    PubMed

    Donzella, A; Formisano, P; Giroletti, E; Zenoni, A

    2007-01-01

    In recent years, many cases of contamination of metal scraps by unwanted radioactive materials have occurred. Moreover, international organisations are evaluating the possibility to re-use or to recycle metals coming from nuclear power plants. The metal recycling industry has started to worry about radiation exposure of workers that could be in contact with contaminated metals during each manufacturing phase. Risks are strongly dependent on the radiation source features. The aim of this study is to perform risk assessment for workers involved in chemical pickling of steel coils. Monte Carlo simulations have been performed, using the MCNP package and considering coils contaminated with (60)Co, (137)Cs, (241)Am and (226)Ra. Under the most conservative conditions (coil contaminated with 1.0 kBq g(-1) of (60)Co), the dose assessment results lower than the European dose limit for the population (1 mSv y(-1)), considering a maximum number of 10 contaminated coils handled per year. The only exception concerns the case of (241)Am, for which internal contamination could be non- negligible and should be verified in the specific cases. In every case, radiation exposure risk for people standing at 50 m from the coil is widely <1 mSv y(-1). PMID:16849378

  11. Consumer product in vitro digestion model: Bioaccessibility of contaminants and its application in risk assessment.

    PubMed

    Brandon, Esther F A; Oomen, Agnes G; Rompelberg, Cathy J M; Versantvoort, Carolien H M; van Engelen, Jacqueline G M; Sips, Adrienne J A M

    2006-03-01

    This paper describes the applicability of in vitro digestion models as a tool for consumer products in (ad hoc) risk assessment. In current risk assessment, oral bioavailability from a specific product is considered to be equal to bioavailability found in toxicity studies in which contaminants are usually ingested via liquids or food matrices. To become bioavailable, contaminants must first be released from the product during the digestion process (i.e. become bioaccessible). Contaminants in consumer products may be less bioaccessible than contaminants in liquid or food. Therefore, the actual risk after oral exposure could be overestimated. This paper describes the applicability of a simple, reliable, fast and relatively inexpensive in vitro method for determining the bioaccessibility of a contaminant from a consumer product. Different models, representing sucking and/or swallowing were developed. The experimental design of each model can be adjusted to the appropriate exposure scenarios as determined by the risk assessor. Several contaminated consumer products were tested in the various models. Although relevant in vivo data are scare, we succeeded to preliminary validate the model for one case. This case showed good correlation and never underestimated the bioavailability. However, validation check needs to be continued.

  12. Assessment of the contamination of marine fauna by chlordecone in Guadeloupe and Martinique (Lesser Antilles).

    PubMed

    Dromard, Charlotte R; Bodiguel, Xavier; Lemoine, Soazig; Bouchon-Navaro, Yolande; Reynal, Lionel; Thouard, Emmanuel; Bouchon, Claude

    2016-01-01

    Chlordecone is an organochlorine pesticide, used in the Lesser Antilles from 1972 to 1993 to fight against a banana weevil. That molecule is very persistent in the natural environment and ends up in the sea with runoff waters. From 2003 to 2013, seven campaigns of samplings have been conducted to evaluate the level of contamination of fish, crustaceans, and mollusks. The present study is the first assessment and the first comparison of the concentrations of chlordecone between marine areas, taxonomic groups, and ecological factors like trophic groups or preferential habitat of fish species. The four most contaminated marine areas are located downstream the contaminated rivers and banana plantations. Crustaceans seemed to be more sensitive to the contamination than fish or mollusks. Finally, when comparing contamination of fish according to their ecology, we found that fish usually living at the border of mangrove and presenting detritivores-omnivores diets were the most contaminated by chlordecone. These results are particularly useful to protect the health of the local population by controlling the fishing and the commercialization of seafood products, potentially contaminated by chlordecone. PMID:25994274

  13. Assessment of the contamination of marine fauna by chlordecone in Guadeloupe and Martinique (Lesser Antilles).

    PubMed

    Dromard, Charlotte R; Bodiguel, Xavier; Lemoine, Soazig; Bouchon-Navaro, Yolande; Reynal, Lionel; Thouard, Emmanuel; Bouchon, Claude

    2016-01-01

    Chlordecone is an organochlorine pesticide, used in the Lesser Antilles from 1972 to 1993 to fight against a banana weevil. That molecule is very persistent in the natural environment and ends up in the sea with runoff waters. From 2003 to 2013, seven campaigns of samplings have been conducted to evaluate the level of contamination of fish, crustaceans, and mollusks. The present study is the first assessment and the first comparison of the concentrations of chlordecone between marine areas, taxonomic groups, and ecological factors like trophic groups or preferential habitat of fish species. The four most contaminated marine areas are located downstream the contaminated rivers and banana plantations. Crustaceans seemed to be more sensitive to the contamination than fish or mollusks. Finally, when comparing contamination of fish according to their ecology, we found that fish usually living at the border of mangrove and presenting detritivores-omnivores diets were the most contaminated by chlordecone. These results are particularly useful to protect the health of the local population by controlling the fishing and the commercialization of seafood products, potentially contaminated by chlordecone.

  14. Identification and assessment of trace contaminants associated with oil and gas pipelines abandoned in place

    SciTech Connect

    Thorne, W.E.R.; Basso, A.C.; Dhol, S.K.

    1996-12-31

    As more Alberta oil and gas fields become depleted, attention is being given to development of economically and environmentally sound abandonment procedures. The objective of this study was to identify and assess residual internal and external contaminants associated with abandoned pipelines, particularly those to be abandoned in place. Circumstances which might increase the risk of contaminant release, and other issues relating to residual pipeline contaminants, were also identified. It was found that there are thousands of different substances which could potentially be associated with abandoned pipelines. A wide range in the potential quantities of residual contaminants was also found. Of the issues identified, the effectiveness of pipeline pigging and cleaning procedures prior to abandonment was the most critical determinant of the potential quantities of residual contaminants. However, a number of trace contaminants, such as PCBs (Polychlorinated Biphenyls) and NORMs (Naturally Occurring Radioactive Materials) may remain after thorough cleaning. A brief review of the legislation and regulations from a number of jurisdictions shows that pipeline abandonment has only recently become an issue of concern. Regulations specific to abandonment are lacking, and more general regulations and guidelines are being applied on a contaminant-specific basis, or in terms of waste disposal requirements.

  15. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China.

    PubMed

    Li, Ying; Li, Jinhui; Chen, Shusheng; Diao, Weihua

    2012-06-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China.

  16. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques.

    PubMed

    Jin, Song; Fallgren, Paul; Cooper, Jeffrey; Morris, Jeffrey; Urynowicz, Michael

    2008-05-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  17. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques

    SciTech Connect

    Jin, S.; Fallgren, P.; Cooper, J.; Morris, J; . Urynowicz, M.

    2008-07-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  18. Using a temperature-controlled quartz crystal microbalance in a space equipment cleanroom to monitor molecular contamination

    NASA Technical Reports Server (NTRS)

    Mitchell, William J.

    1994-01-01

    There is a need for continuous monitoring for molecular contamination in clean rooms where spaceflight equipment is assembled, integrated, and tested to insure that contamination budgets are met. The TQCM (temperature-controlled quartz crystal microbalance) can be used to provide both a real time warning and a cumulative measurement of molecular contamination. It has advantages over the other measurement methods such as witness mirrors, NVR (non-volatile residue) plates, and gas analyzers. A comparison of the TQCM sensitivity and ease of operations is made with the other methods. The surface acoustic wave microbalance (SAW), a newly developed instrument similar to TQCM, is considered in the comparison. An example is provided of TQCM use at Goddard Space Flight Center when the Wide Field Planetary Camera 2(WFPC-2) and the Corrective Optics Space Telescope Axial Replacement (COSTAR) were undergoing integrated testing prior to their installation in the Hubble Space Telescope on its first servicing mission. Areas for further investigation are presented.

  19. Risk assessment of groundwater contamination: a multilevel fuzzy comprehensive evaluation approach based on DRASTIC model.

    PubMed

    Zhang, Qiuwen; Yang, Xiaohong; Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information.

  20. Assessing exposures and risks in heterogeneously contaminated areas: A simulation approach

    SciTech Connect

    Fingleton, D.J.; MacDonell, M.M.; Haroun, L.A. ); Oezkaynak, H.; Butler, D.A.; Jianping Xue )

    1991-01-01

    The US Department of Energy (DOE) is responsible for cleanup activities at a number of facilities under its Environmental Restoration and Waste Management Program. The major goals of this program are to eliminate potential hazards to human health and the environment that are associated with contamination of these sites and, to the extent possible, make surplus real property available for other uses. The assessment of potential baseline health risks and ecological impacts associated with a contaminated site is an important component of the remedial investigation/feasibility study (RI/FS) process required at all Superfund sites. The purpose of this paper is to describe one phase of the baseline assessment, i.e., the characterization of human health risks associated with exposure to chemical contaminants in air and on interior building surfaces at a contaminated site. The model combines data on human activity patterns in a particular microenvironment within a building with contaminant concentrations in that microenvironment to calculate personal exposure profiles and risks within the building. The results of the building assessment are presented as probability distributions functions and cumulative distribution functions, which show the variability and uncertainty in the risk estimates. 23 refs., 2 figs., 1 tab.

  1. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays.

    PubMed

    Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed

    2013-04-01

    The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils. PMID:22773148

  2. Risk Assessment of Groundwater Contamination: A Multilevel Fuzzy Comprehensive Evaluation Approach Based on DRASTIC Model

    PubMed Central

    Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information. PMID:24453883

  3. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model.

    PubMed

    Nizzetto, Luca; Butterfield, Dan; Futter, Martyn; Lin, Yan; Allan, Ian; Larssen, Thorjørn

    2016-02-15

    Models for pollution exposure assessment typically adopt an overly simplistic representation of geography, climate and biogeochemical processes. This strategy is unsatisfactory when high temporal resolution simulations for sub-regional spatial domains are performed, in which parameters defining scenarios can vary interdependently in space and time. This is, for example, the case when assessing the influence of biogeochemical processing on contaminant fate. Here we present INCA-Contaminants, the Integrated Catchments model for Contaminants; a new model that simultaneously and realistically solves mass balances of water, carbon, sediments and contaminants in the soil-stream-sediment system of catchments and their river networks as a function of climate, land use/management and contaminant properties. When forced with realistic climate and contaminant input data, the model was able to predict polychlorinated biphenyls (PCBs) concentrations in multiple segments of a river network in a complex landscape. We analyzed model output sensitivity to a number of hydro-biogeochemical parameters. The rate of soil organic matter mineralization was the most sensitive parameter controlling PCBs levels in river water, supporting the hypothesis that organic matter turnover rates will influence re-mobilization of previously deposited PCBs which had accumulated in soil organic matrix. The model was also used to project the long term fate of PCB 101 under two climate scenarios. Catchment diffuse run-off and riverine transport were the major pathways of contaminant re-mobilization. Simulations show that during the next decade the investigated boreal catchment will shift from being a net atmospheric PCB sink to a net source for air and water, with future climate perturbation having little influence on this trend. Our results highlight the importance of using credible hydro-biogeochemical simulations when modeling the fate of hydrophobic contaminants. PMID:26674684

  4. Assessing nitrate contamination and its potential health risk to Kinmen residents.

    PubMed

    Liu, Chen-Wuing; Lin, Chun-Nan; Jang, Cheng-Shin; Ling, Min-Pei; Tsai, Jeng-Wei

    2011-10-01

    Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate-N pollution is found and distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to evaluate the contamination potential of nitrate-N. The health risk associated with the ingestion of nitrate-N contaminated groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely determined the high strength sources (0.09-2.74 kg/m(2)/year) of nitrate contaminant located in the west to the north west area and required 2-5 years travel time to reach the monitoring wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate-N release may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater. The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate-N contaminated groundwater showed that the assessed 95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island. Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable use of groundwater resources.

  5. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    SciTech Connect

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the /sup 239/Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant /sup 239/Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total /sup 239/Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the /sup 239/Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the /sup 239/Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the /sup 239/Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the /sup 239/Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables.

  6. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  7. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark.

    PubMed

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer D; Cederberg, Tommy Licht; Friis-Wandall, Søren; Simonsen, Yvonne; Broesbøl-Jensen, Birgitte; Bonnichsen, Rikke

    2014-01-01

    With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected for analysis and risk assessment. The levels of contaminants in the samples from the official control were below maximum limits from EU regulations with only a few exceptions in the following groups; dioxins and dioxin-like polychlorobiphenyls (PCBs) in fish-containing byproducts and dioxins in vegetable and animal fat, hydrogen cyanide in linseed, and cadmium in sunflowers. The levels of pesticides and mycotoxins in the additionally collected samples were below maximum limits. Enniatin B (ENN B) was present in all DDGS samples. The hypothetical cases of carry-over of contamination from these byproducts were designed assuming total absorption and accumulation of the ingested contaminant in meat and milk and high exposure (a byproduct formed 15-20% of the feed ration depending on the species). The risk assessment was refined based on literature data on metabolism in relevant animal species. Risk assessment of contaminants in byproducts is generally based on a worst-case approach, as data on carry-over of a contaminant are sparse. This may lead to erroneous estimation of health hazards. The presence of ENN B in all samples of DDGS indicates that potential impact of this emerging mycotoxin on feed and food safety deserves attention. A challenge for the future is to fill up gaps in toxicological databases and improve models for carry-over of contaminants. PMID:25190554

  8. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark.

    PubMed

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer D; Cederberg, Tommy Licht; Friis-Wandall, Søren; Simonsen, Yvonne; Broesbøl-Jensen, Birgitte; Bonnichsen, Rikke

    2014-01-01

    With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected for analysis and risk assessment. The levels of contaminants in the samples from the official control were below maximum limits from EU regulations with only a few exceptions in the following groups; dioxins and dioxin-like polychlorobiphenyls (PCBs) in fish-containing byproducts and dioxins in vegetable and animal fat, hydrogen cyanide in linseed, and cadmium in sunflowers. The levels of pesticides and mycotoxins in the additionally collected samples were below maximum limits. Enniatin B (ENN B) was present in all DDGS samples. The hypothetical cases of carry-over of contamination from these byproducts were designed assuming total absorption and accumulation of the ingested contaminant in meat and milk and high exposure (a byproduct formed 15-20% of the feed ration depending on the species). The risk assessment was refined based on literature data on metabolism in relevant animal species. Risk assessment of contaminants in byproducts is generally based on a worst-case approach, as data on carry-over of a contaminant are sparse. This may lead to erroneous estimation of health hazards. The presence of ENN B in all samples of DDGS indicates that potential impact of this emerging mycotoxin on feed and food safety deserves attention. A challenge for the future is to fill up gaps in toxicological databases and improve models for carry-over of contaminants.

  9. Opportunities and challenges of integrating ecological restoration into assessment and management of contaminated ecosystems.

    PubMed

    Hull, Ruth N; Luoma, Samuel N; Bayne, Bruce A; Iliff, John; Larkin, Daniel J; Paschke, Mark W; Victor, Sasha L; Ward, Sara E

    2016-04-01

    Ecosystem restoration planning near the beginning of the site assessment and management process ("early integration") involves consideration of restoration goals from the outset in developing solutions for contaminated ecosystems. There are limitations to integration that stem from institutional barriers, few successful precedents, and limited availability of guidance. Challenges occur in integrating expertise from various disciplines and multiple, sometimes divergent interests and goals. The more complex process can result in timing, capacity, communication, and collaboration challenges. On the other hand, integrating the 2 approaches presents new and creative opportunities. For example, integration allows early planning for expanding ecosystem services on or near contaminated lands or waters that might otherwise have been unaddressed by remediation alone. Integrated plans can explicitly pursue ecosystem services that have market value, which can add to funds for long-term monitoring and management. Early integration presents opportunities for improved and productive collaboration and coordination between ecosystem restoration and contaminant assessment and management. Examples exist where early integration facilitates liability resolution and generates positive public relations. Restoration planning and implementation before the completion of the contaminated site assessment, remediation, or management process ("early restoration") can facilitate coordination with offsite restoration options and a regional approach to restoration of contaminated environments. Integration of performance monitoring, for both remedial and restoration actions, can save resources and expand the interpretive power of results. Early integration may aid experimentation, which may be more feasible on contaminated lands than in many other situations. The potential application of concepts and tools from adaptive management is discussed as a way of avoiding pitfalls and achieving benefits in

  10. Opportunities and challenges of integrating ecological restoration into assessment and management of contaminated ecosystems.

    PubMed

    Hull, Ruth N; Luoma, Samuel N; Bayne, Bruce A; Iliff, John; Larkin, Daniel J; Paschke, Mark W; Victor, Sasha L; Ward, Sara E

    2016-04-01

    Ecosystem restoration planning near the beginning of the site assessment and management process ("early integration") involves consideration of restoration goals from the outset in developing solutions for contaminated ecosystems. There are limitations to integration that stem from institutional barriers, few successful precedents, and limited availability of guidance. Challenges occur in integrating expertise from various disciplines and multiple, sometimes divergent interests and goals. The more complex process can result in timing, capacity, communication, and collaboration challenges. On the other hand, integrating the 2 approaches presents new and creative opportunities. For example, integration allows early planning for expanding ecosystem services on or near contaminated lands or waters that might otherwise have been unaddressed by remediation alone. Integrated plans can explicitly pursue ecosystem services that have market value, which can add to funds for long-term monitoring and management. Early integration presents opportunities for improved and productive collaboration and coordination between ecosystem restoration and contaminant assessment and management. Examples exist where early integration facilitates liability resolution and generates positive public relations. Restoration planning and implementation before the completion of the contaminated site assessment, remediation, or management process ("early restoration") can facilitate coordination with offsite restoration options and a regional approach to restoration of contaminated environments. Integration of performance monitoring, for both remedial and restoration actions, can save resources and expand the interpretive power of results. Early integration may aid experimentation, which may be more feasible on contaminated lands than in many other situations. The potential application of concepts and tools from adaptive management is discussed as a way of avoiding pitfalls and achieving benefits in

  11. The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

    NASA Astrophysics Data System (ADS)

    Coudé, S.; Bastien, P.; Kirk, H.; Johnstone, D.; Drabek-Maunder, E.; Graves, S.; Hatchell, J.; Chapin, E. L.; Gibb, A. G.; Matthews, B.; JCMT Gould Belt Survey Team

    2016-04-01

    Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the Submillimetre Common-User Bolometer Array (SCUBA-2) shared-risk observations at 450 and 850 μm of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the Heterodyne Array Receiver Programme 12CO J = 3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12CO J = 3-2 line contamination, to 27 previously identified clumps in OMC 4. This allows us to quantify the effect of line contamination on the ratio of 850-450 μm flux densities and how it modifies the deduced spectral index of emissivity β for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC 5 has a 12CO J = 3-2 contamination level of 16 per cent. Furthermore, we find the strongest contamination level (44 per cent) towards a young star with disc near OMC 2. This work is part of the JCMT Gould Belt Legacy Survey.

  12. Bacterial diversity in a contaminated Alpine glacier as determined by culture-based and molecular approaches.

    PubMed

    Cappa, Fabrizio; Suciu, Nicoleta; Trevisan, Marco; Ferrari, Susanna; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2014-11-01

    Glaciers are important ecosystems, hosting bacterial communities that are adapted to cold conditions and scarcity of available nutrients. Several works focused on the composition of bacterial communities in glaciers and on the long-range atmospheric deposition of pollutants in glaciers, but it is not clear yet if ski resorts can represent a source of point pollution in near-by glaciers, and if these pollutants can influence the residing bacterial communities. To test these hypotheses, 12 samples were analyzed in Madaccio Glacier, in a 3200 ma.s.l. from two areas, one undisturbed and one close to a summer ski resort that is active since the 1930s. Chemical analyses found concentrations up to 43 ng L(-1) for PCBs and up to 168 μg L(-1) for PAHs in the contaminated area: these values are significantly higher than the ones found in undisturbed glaciers because of long-range atmospheric deposition events, and can be explained as being related to the near-by ski resort activities. Isolation of strains on rich medium plates and PCR-DGGE analyses followed by sequencing of bands allowed the identification of a bacterial community with phylogenetic patterns close to other glacier environments, with Proteobacteria and Actinobacteria the mostly abundant phyla, with Acidobacteria, Firmicutes and Cyanobacteria also represented in the culture-independent analyses. A number of isolates were identified by molecular and biochemical methods as phylogenetic related to known xenobiotic-degrading strains: glaciers subjected to chemical contamination can be important reservoirs of bacterial strains with potential applications in bioremediation.

  13. Identification and Molecular Interaction Studies of Thyroid Hormone Receptor Disruptors among Household Dust Contaminants.

    PubMed

    Zhang, Jin; Li, Yaozong; Gupta, Arun A; Nam, Kwangho; Andersson, Patrik L

    2016-08-15

    Thyroid hormone disrupting chemicals (THDCs), often found abundantly in the environment, interfere with normal thyroid hormone signaling and induce physiological malfunctions, possibly by affecting thyroid hormone receptors (THRs). Indoor dust ingestion is a significant human exposure route of THDCs, raising serious concerns for human health. Here, we developed a virtual screening protocol based on an ensemble of X-ray crystallographic structures of human THRβ1 and the generalized Born solvation model to identify potential THDCs targeting the human THRβ1 isoform. The protocol was applied to virtually screen an in-house indoor dust contaminant inventory, yielding 31 dust contaminants as potential THRβ1 binders. Five predicted binders and one negative control were tested using isothermal titration calorimetry, of which four, i.e., 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE-HCl-H2O), 2,2',4,4'-tetrahydroxybenzophenone (BP2), and 2,4-dichlorophenoxyacetic acid (2,4-D), were identified as THRβ1 binders with binding affinities ranging between 60 μM and 460 μM. Molecular dynamics (MD) simulations were employed to examine potential binding modes of these binders and provided a rationale for explaining their specific recognition by THRβ1. The combination of in vitro binding affinity measurements and MD simulations allowed identification of four new potential THR-targeting THDCs that have been found in household dust. We suggest using the developed structure-based virtual screening protocol to identify and prioritize testing of potential THDCs. PMID:27410513

  14. [Probabilistic assessment of radionuclide accumulation in agricultural products and permissible levels of soil radioactive contamination].

    PubMed

    Spiridonov, S I; Ivanov, V V

    2013-01-01

    A number of models have been developed to assess the risks of radionuclide accumulation in agricultural products and to determine the permissible levels of soil radioactive contamination. The proposed approach takes into account uncertainties of some parameters that describe the radionuclide content in different links of food chains. The models are implemented in the form of software for on-line computations. The validity of applying the probabilistic methods for assessing the impacts of radioactive fallout as compared with the deterministic ones is demonstrated on some specific examples. A universal nature of the dependence between the risks of radionuclide content in products and the density of soil contamination is shown. Contamination limits of the agricultural land are found to vary significantly as a function of the risk size. Directions for further research are defined within the framework of this research.

  15. The rationale for simple approaches for sustainability assessment and management in contaminated land practice.

    PubMed

    Bardos, R Paul; Bone, Brian D; Boyle, Richard; Evans, Frank; Harries, Nicola D; Howard, Trevor; Smith, Jonathan W N

    2016-09-01

    The scale of land-contamination problems, and of the responses to them, makes achieving sustainability in contaminated land remediation an important objective. The Sustainable Remediation Forum in the UK (SuRF-UK) was established in 2007 to support more sustainable remediation practice in the UK. The current international interest in 'sustainable remediation' has achieved a fairly rapid consensus on concepts, descriptions and definitions for sustainable remediation, which are now being incorporated into an ISO standard. However the sustainability assessment methods being used remain diverse with a range of (mainly) semi-quantitative and quantitative approaches and tools developed, or in development. Sustainability assessment is site specific and subjective. It depends on the inclusion of a wide range of considerations across different stakeholder perspectives. Taking a tiered approach to sustainability assessment offers important advantages, starting from a qualitative assessment and moving through to semi-quantitative and quantitative assessments on an 'as required' basis only. It is also clear that there are a number of 'easy wins' that could improve performance against sustainability criteria right across the site management process. SuRF-UK has provided a checklist of 'sustainable management practices' that describes some of these. This paper provides the rationale for, and an outline of, and recently published SuRF-UK guidance on preparing for and framing sustainability assessments; carrying out qualitative sustainability assessment; and simple good management practices to improve sustainability across contaminated land management activities.

  16. A diagnostic assessment for introductory molecular and cell biology.

    PubMed

    Shi, Jia; Wood, William B; Martin, Jennifer M; Guild, Nancy A; Vicens, Quentin; Knight, Jennifer K

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed for use as a pre- and posttest to measure student learning gains. To develop the assessment, we first worked with faculty to create a set of learning goals that targeted important concepts in the field and seemed likely to be emphasized by most instructors teaching these subjects. We interviewed students using open-ended questions to identify commonly held misconceptions, formulated multiple-choice questions that included these ideas as distracters, and reinterviewed students to establish validity of the instrument. The assessment was then evaluated by 25 biology experts and modified based on their suggestions. The complete revised assessment was administered to more than 1300 students at three institutions. Analysis of statistical parameters including item difficulty, item discrimination, and reliability provides evidence that the IMCA is a valid and reliable instrument with several potential uses in gauging student learning of key concepts in molecular and cell biology.

  17. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment

    EPA Science Inventory

    This document represents the first volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with non-radionuclide and/or radionuclide inorganic contaminants. Vo...

  18. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  19. Assessment of Adoption Gaps in Management of Aflatoxin Contamination of Groundnut ("Arachis Hypogaea" L.)

    ERIC Educational Resources Information Center

    Kumar, G. D. S.; Popat, M. N.

    2010-01-01

    One of the major impediments for diversification of groundnut ("Arachis Hypogaea" L.) as food crop is aflatoxin contamination. The study was conducted with an objective to assess the adoption gaps in aflatoxin management practices of groundnut (AMPG) and the farmer's characteristics influencing these gaps. The study used an expost-facto research…

  20. Multispecies toxicity assessment of compost produced in bioremediation of an explosives-contaminated sediment

    SciTech Connect

    Gunderson, C.A.; Napolitano, G.E.; Wicker, L.F.; Richmond, J.E.; Stewart, A.J.; Kostuk, J.M.; Gibbs, M.H.

    1997-12-01

    A multispecies terrestrial test system was used to assess the environmental effectiveness of composting for bioremediation of explosives-contaminated soils. The assessment involved comparing biological responses, from the individual to the community level, in remediated and reference composts. A 6-month greenhouse study incorporated two soil invertebrate species, three plant species and an associated symbiont, and the naturally occurring complement of soil microorganisms. Measured parameters included growth and reproduction of earthworms and isopods; soil mote diversity; soil lipid class composition as an indicator of soil microbial community structure; plant growth, photosynthesis, and reproduction; and root nodulation and symbiotic N{sub 2} fixation. Additional short-term toxicity tests of seed germination and earthworm survival were performed to supplement the mesocosm data. Compost prepared from the explosives-contaminated soil inhibited several aspects of plant growth and physiology, but few adverse effects on soil invertebrates were detected. An initial lag in earthworm and isopod reproduction occurred in the reference compost, reflecting some inherent compost differences not associated with contamination, and highlighting the importance and the difficulty of finding appropriate reference soils for assessing hazardous waste sites or remediation technologies. Nonetheless, the results from this study suggested some nonlethal effects from the contaminated-soil compost, primarily to plants. The mesocosm methodology used in this study can bridge the gap between traditional short-term toxicity testing and longer term field assessments, and provide information on ecological effects by explicitly including measurements of multiple species across several levels of ecological organization.

  1. HOLISTIC APPROACH FOR ASSESSING THE PRESENCE AND POTENTIAL IMPACTS OF WATERBORNE ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipe...

  2. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus.

    PubMed

    Jensen, Louise Kiel; Halvorsen, Elisabeth; Song, You; Hallanger, Ingeborg G; Hansen, Elisabeth Lindbo; Brooks, Steven J; Hansen, Bjørn Henrik; Tollefsen, Knut Erik

    2016-01-01

    In the Barents Sea region new petroleum fields are discovered yearly and extraction of petroleum products is expected to increase in the upcoming years. Despite enhanced technology and stricter governmental legislation, establishment of the petroleum industry in the Barents Sea may potentially introduce a new source of contamination to the area, as some discharges of produced water will be allowed. Whether the presence of produced water poses a risk to the Arctic marine life remains to be investigated. The aim of this study was to examine effects of exposure to several compounds found in produced water-a mixture of selected organic compounds (APW), radium-226 ((226)Ra), barium (Ba), and a scale inhibitor-on the copepod species Calanus finmarchicus. Experiments were performed using exposure concentrations at realistic levels based on those detected in the vicinity of known discharge points. The influence of lethal and sublethal effects on early life stages was determined and significantly lower survival in the APW exposure groups was found. In the Ba treatment the life stage development did not proceed to the same advanced stages as observed in the control (filtered sea water). The scale inhibitor and (226)Ra treatments showed no significant difference from control. In addition, adult females were exposed to APW, (226)Ra, and a mixture of the two. Both individual-level effects (egg production and feeding) and molecular-level effects (gene expression) were assessed. On the individual level endpoints, only treatments including APW produced an effect compared to control. However, on the molecular level the possibility that also (226)Ra induced toxicologically relevant effects cannot be ruled out. PMID:27484140

  3. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    SciTech Connect

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-12-31

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health.

  4. Assessment of the sanitary and environmental risks posed by a contaminated industrial site.

    PubMed

    Di Sante, M; Mazzieri, F; Pasqualini, E

    2009-11-15

    Sites contaminated with hazardous material are a topical and urgent problem all over the world. In accordance with recent Italian regulations, appropriate risk assessment is required in order to determine health risks associated with contaminated sites. The paper presents a case study regarding a disused industrial plant contaminated with polycyclic aromatic hydrocarbons, heavy hydrocarbons and polychlorinated biphenyls. The site is characterized by three different topographical levels. Therefore both the characterization and the conceptual model had to be adapted to the site conditions: we divided the site into three discrete areas and we developed a separate risk assessment for each area. Besides health risk assessment, we performed ecological risk assessment for both groundwater and surface water targets, as required by Italian regulations. The future reuse scenario has not yet been defined and, consequently, risk assessment results will be useful for the remediation program. Risk assessment was supported by leaching tests and hydrocarbon "finger printing". Leaching tests allowed us to determine site-specific soil-water partition coefficient. Hydrocarbon "finger printing" allowed us to differentiate the mobility of the different hydrocarbon groups in migration analyses. We found the site required remediation based on Italian standard. We propose a simple risk-based remediation action consisting in the replacement of the upper 1m with "clean" soil and the placement of a barrier to vapors.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  6. Risk assessment and prioritisation of contaminated sites on the catchment scale.

    PubMed

    Troldborg, Mads; Lemming, Gitte; Binning, Philip J; Tuxen, Nina; Bjerg, Poul L

    2008-10-23

    Contaminated sites pose a significant threat to groundwater resources worldwide. Due to limited available resources a risk-based prioritisation of the remediation efforts is essential. Existing risk assessment tools are unsuitable for this purpose, because they consider each contaminated site separately and on a local scale, which makes it difficult to compare the impact from different sites. Hence a modelling tool for risk assessment of contaminated sites on the catchment scale has been developed. The CatchRisk screening tool evaluates the risk associated with each site in terms of its ability to contaminate abstracted groundwater in the catchment. The tool considers both the local scale and the catchment scale. At the local scale, a flexible, site specific leaching model that can be adjusted to the actual data availability is used to estimate the mass flux over time from identified sites. At the catchment scale, a transport model that utilises the source flux and a groundwater model covering the catchment is used to estimate the transient impact on the supply well. The CatchRisk model was tested on a groundwater catchment for a waterworks north of Copenhagen, Denmark. Even though data scarcity limited the application of the model, the sites that most likely caused the observed contamination at the waterworks were identified. The method was found to be valuable as a basis for prioritising point sources according to their impact on groundwater quality. The tool can also be used as a framework for testing hypotheses on the origin of contamination in the catchment and for identification of unknown contaminant sources.

  7. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  8. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  9. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  10. Assessment of radionuclide and metal contamination in a thorium rich area in Norway.

    PubMed

    Popic, Jelena Mrdakovic; Salbu, Brit; Strand, Terje; Skipperud, Lindis

    2011-06-01

    The Fen Central Complex in southern Norway, a geologically well investigated area of magmatic carbonatite rocks, is assumed to be among the world largest natural reservoirs of thorium ((232)Th). These rocks, also rich in iron (Fe), niobium (Nb), uranium ((238)U) and rare earth elements (REE), were mined in several past centuries. Waste locations, giving rise to enhanced levels of both radionuclides and metals, are now situated in the area. Estimation of radionuclide and metal contamination of the environment and radiological risk assessment were done in this study. The average outdoor gamma dose rate measured in Fen, 2.71 μGy h(-1), was significantly higher than the world average dose rate of 0.059 μGy h(-1). The annual exposure dose from terrestrial gamma radiation, related to outdoor occupancy, was in the range 0.18-9.82 mSv. The total activity concentrations of (232)Th and (238)U in soil ranged from 69 to 6581 and from 49 to 130 Bq kg(-1), respectively. Enhanced concentrations were also identified for metals, arsenic (As), lead (Pb), chromium (Cr) and zinc (Zn), in the vicinity of former mining sites. Both radionuclide and heavy metal concentrations suggested leaching, mobilization and distribution from rocks into the soil. Correlation analysis indicated different origins for (232)Th and (238)U, but same or similar for (232)Th and metals As, Cr, Zn, nickel (Ni) and cadmium (Cd). The results from in situ size fractionation of water demonstrated radionuclides predominately present as colloids and low molecular mass (LMM) species, being potentially mobile and available for uptake in aquatic organisms of Norsjø Lake. Transfer factors, calculated for different plant species, showed the highest radionuclide accumulation in mosses and lichens. Uptake in trees was, as expected, lower. Relationship analysis of (232)Th and (238)U concentrations in moss and soil samples showed a significant positive linear correlation. PMID:21556423

  11. Molecular characterization and lipase profiling of the yeasts isolated from environments contaminated with petroleum.

    PubMed

    Yalçın, H Tansel; Corbacı, Cengiz; Uçar, Füsun B

    2014-07-01

    In the present study, 120 yeast isolates from different sources (active sludge, soil, and wastewater samples obtained from petroleum refinery and soil contaminated by petroleum) were obtained. The yeast isolates were screened for lipase production and twelve of the isolates (D3, D17, D24, D27, D30, D38, D40, D42, D44, D46, D56, and D57) exhibited lipase activity. Molecular characterization of the yeasts showing the lipase production was performed with RFLP of ITS1-5.8S-ITS2 and 18S rRNA and sequence analysis of D1/D2 domain of 26S rRNA. The 26S rRNA sequencing revealed that four new strains, D38, D40, D44 and D57 identified as Rhodotorula slooffiae, Candida davisiana, Cryptococcus diffluens, and Cryptococcus uzbekistanensis, respectively, are lipase producing yeast species. This study is the first report showed lipase production by these species. The other lipase producing strains identified as Candida parapsilosis (D3), Rhodotorula muciloginosa (D17 and D42), Cryptococcus albidus (D24, D27, D30, and D56), and Wickerhamomyces anomalus (D46).

  12. Molecular characterization and lipase profiling of the yeasts isolated from environments contaminated with petroleum.

    PubMed

    Yalçın, H Tansel; Corbacı, Cengiz; Uçar, Füsun B

    2014-07-01

    In the present study, 120 yeast isolates from different sources (active sludge, soil, and wastewater samples obtained from petroleum refinery and soil contaminated by petroleum) were obtained. The yeast isolates were screened for lipase production and twelve of the isolates (D3, D17, D24, D27, D30, D38, D40, D42, D44, D46, D56, and D57) exhibited lipase activity. Molecular characterization of the yeasts showing the lipase production was performed with RFLP of ITS1-5.8S-ITS2 and 18S rRNA and sequence analysis of D1/D2 domain of 26S rRNA. The 26S rRNA sequencing revealed that four new strains, D38, D40, D44 and D57 identified as Rhodotorula slooffiae, Candida davisiana, Cryptococcus diffluens, and Cryptococcus uzbekistanensis, respectively, are lipase producing yeast species. This study is the first report showed lipase production by these species. The other lipase producing strains identified as Candida parapsilosis (D3), Rhodotorula muciloginosa (D17 and D42), Cryptococcus albidus (D24, D27, D30, and D56), and Wickerhamomyces anomalus (D46). PMID:23712936

  13. CONSIDERATIONS FOR DEVELOPING A DOSIMETRY-BASED CUMULATIVE RISK ASSESSMENT APPROACH FOR MIXTURES OF ENVIRONMENTAL CONTAMINANTS (Final Report)

    EPA Science Inventory

    This final report, Considerations for Developing a Dosimetry-Based Cumulative Risk Assessment Approach for Mixtures of Environmental Contaminants, addresses the justification for developing physiologically based pharmacokinetic (PBPK) models for cumulative risk assessment....

  14. International Mussel Watch: A global assessment of environmental levels of chemical contaminants

    SciTech Connect

    Not Available

    1992-01-01

    The primary goal of the International Mussel Watch is to ascertain and assess the levels of chlorinated hydrocarbon pesticide (CHP) and polychlorinated biphenyls (PCB) in bivalves collected from coastal marine waters throughout the world. Increased use of these persistent toxic biocides may result in contamination of living coastal resources from whole ecosystems to specific food resources with consequent implication for human health and the integrity of marine communities. Another goal for the International Mussel Watch Project will be to help develop a sustainable activity for observation and monitoring chemical contamination in especially susceptible regions of the world's oceans.

  15. Approaches for assessment of terrestrial vertebrate responses to contaminants: moving beyond individual organisms

    USGS Publications Warehouse

    Albers, P.H.; Heinz, G.H.; Hall, R.J.; Albers, Peter H.; Heinz, Gary H.; Ohlendorf, Harry M.

    2000-01-01

    Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e

  16. Developing methods to assess and predict the population level effects of environmental contaminants.

    USGS Publications Warehouse

    Emlen, J.M.; Springman, K.R.

    2007-01-01

    The field of ecological toxicity seems largely to have drifted away from what its title implies--assessing and predicting the ecological consequences of environmental contaminants--moving instead toward an emphasis on individual effects and physiologic case studies. This paper elucidates how a relatively new ecological methodology, interaction assessment (INTASS), could be useful in addressing the field's initial goals. Specifically, INTASS is a model platform and methodology, applicable across a broad array of taxa and habitat types, that can be used to construct population dynamics models from field data. Information on environmental contaminants and multiple stressors can be incorporated into these models in a form that bypasses the problems inherent in assessing uptake, chemical interactions in the environment, and synergistic effects in the organism. INTASS can, therefore, be used to evaluate the effects of contaminants and other stressors at the population level and to predict how changes in stressor levels or composition of contaminant mixtures, as well as various mitigation measures, might affect population dynamics.

  17. Efficacy of a Passive Diffusion Sampler to Assess Microbial Spatial Dynamics in a Contaminated Aquifer-wetland System

    NASA Astrophysics Data System (ADS)

    Kirshtein, J. D.; Kneeshaw, T. A.; Voytek, M. A.; Cozzarelli, I. M.; McGuire, J. T.; Baez Cazull, S.

    2006-05-01

    Microbiological processes affect biogeochemical cycling of nutrients and contaminants in subsurface systems. Microbial response to changes in terminal electron accepting processes (TEAPs), and in turn the microbes' effect on TEAP distribution are critical to understanding the fate and transport of contaminants. A challenge to studying microbial processes is obtaining samples that yield enough biomass to assess microbial communities and are spatially and temporally representative of changes in water chemistry. Our study focuses on the interface between ground water affected by landfill leachate at the closed Norman, Oklahoma landfill and porewater in a slough adjacent to the landfill (a contaminated aquifer-wetland system). We used a combination of more traditional and newer molecular microbiological approaches to provide an extension of the biochemical and culture approaches commonly employed in studies of microbial processes in subsurface environments. In order to enable contemporaneous and spatially concordant sampling of water chemistry and microbiology, passive diffusion samplers containing sponge material at discrete intervals were installed in the slough sediment. Unlike peeper diffusion samplers, the sampler installed is porous enough to allow native organisms to flow through the device and colonize the substrate. In addition to obtaining critical biomass, this setup allows us to extract nucleic acids easily while minimizing the affect of inhibitors to molecular analyses that are found commonly in organic rich sediments and contaminated systems. Discrete interval microbe samplers (DIMPS, Geosyntec) were deployed at 2 sites in the Norman Landfill slough and allowed to equilibrate for 14 days before retrieval and removal of sponge substrate at 14 depth intervals. Cores were taken near the passive diffusion samplers, sectioned for Most Probable Number (MPN) analysis and assessed by quantitative PCR (qPCR) for microbial abundance of metabolically important

  18. Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast, Egypt.

    PubMed

    El-Sorogy, Abdelbaset S; Attiah, Abdullah

    2015-12-30

    In order to assess metal contamination on the Mediterranean coast of Egypt, 45 sediment samples, seawaters and bivalve specimens were collected from Rosetta coastal area for Mg, Al, K, Fe, Sr, Zn, Pb, Mn, As, Ce, Ni, Cr and Zr analyses by Inductively Coupled Plasma-Mass Spectrometer. The Enrichment Factor (EF), the Geoaccumulation Index (Igeo) and the Contamination Factor (CF) indicated that the coastal sediments of Rosetta area were severely enriched, strongly polluted with As, Pb and very highly contaminated with As, Pb, Ni, Ce, mostly as a result of anthropogenic inputs. Comparison with other samples from the Arabian Gulf, Red Sea and abroad coasts suggested that the studied samples have higher concentrations of Fe, Pb, As, Zn and Ni. The natural sources of heavy metals in the study area are attributed to weathering and decomposition of mountain ranges of the Sudan and Ethiopia, while the anthropogenic ones are the metals produced from industrial, sewage, irrigation and urban runoff.

  19. Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast, Egypt.

    PubMed

    El-Sorogy, Abdelbaset S; Attiah, Abdullah

    2015-12-30

    In order to assess metal contamination on the Mediterranean coast of Egypt, 45 sediment samples, seawaters and bivalve specimens were collected from Rosetta coastal area for Mg, Al, K, Fe, Sr, Zn, Pb, Mn, As, Ce, Ni, Cr and Zr analyses by Inductively Coupled Plasma-Mass Spectrometer. The Enrichment Factor (EF), the Geoaccumulation Index (Igeo) and the Contamination Factor (CF) indicated that the coastal sediments of Rosetta area were severely enriched, strongly polluted with As, Pb and very highly contaminated with As, Pb, Ni, Ce, mostly as a result of anthropogenic inputs. Comparison with other samples from the Arabian Gulf, Red Sea and abroad coasts suggested that the studied samples have higher concentrations of Fe, Pb, As, Zn and Ni. The natural sources of heavy metals in the study area are attributed to weathering and decomposition of mountain ranges of the Sudan and Ethiopia, while the anthropogenic ones are the metals produced from industrial, sewage, irrigation and urban runoff. PMID:26563548

  20. A hierarchical approach to ecological assessment of contaminated soils at Aberdeen Proving Ground, USA

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    Despite the expansion of environmental toxicology studies over the past decade, soil ecosystems have largely been ignored in ecotoxicological studies in the United States. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach that integrates biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to determine community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input to the decision-making, process. This methodology appears to, offer an efficient and potentially cost-saving tool for remedial investigations of contaminated sites.

  1. Molecular profiling of marine fauna: integration of omics with environmental assessment of the world's oceans.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Helbing, Caren C

    2012-02-01

    Many species that contribute to the commercial and ecological richness of our marine ecosystems are harbingers of environmental change. The ability of organisms to rapidly detect and respond to changes in the surrounding environment represents the foundation for application of molecular profiling technologies towards marine sentinel species in an attempt to identify signature profiles that may reside within the transcriptome, proteome, or metabolome and that are indicative of a particular environmental exposure event. The current review highlights recent examples of the biological information obtained for marine sentinel teleosts, mammals, and invertebrates. While in its infancy, such basal information can provide a systems biology framework in the detection and evaluation of environmental chemical contaminant effects on marine fauna. Repeated evaluation across different seasons and local marine environs will lead to discrimination between signature profiles representing normal variation within the complex milieu of environmental factors that trigger biological response in a given sentinel species and permit a greater understanding of normal versus anthropogenic-associated modulation of biological pathways, which prove detrimental to marine fauna. It is anticipated that incorporation of contaminant-specific molecular signatures into current risk assessment paradigms will lead to enhanced wildlife management strategies that minimize the impacts of our industrialized society on marine ecosystems. PMID:22036265

  2. Global assessment of exposure to faecal contamination through drinking water based on a systematic review

    PubMed Central

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-01-01

    Objectives To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. Methods We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. Results We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least ‘moderate’ risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be ‘high’ risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%–51%) than in urban areas (12%, CI: 8–18%), and contamination is most prevalent in Africa (53%, CI: 42%–63%) and South-East Asia (35%, CI: 24%–45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Conclusions Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. PMID:24811893

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  4. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    NASA Astrophysics Data System (ADS)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  5. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    SciTech Connect

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  6. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-06

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  7. California GAMA Program: A Contamination Vulnerability Assessment for the Bakersfield Area

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-11-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MTBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey (USGS), the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the groundwater basin that underlies Bakersfield, in the southern San Joaquin Valley. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements help determine the recharge water

  8. Assessment of post-contamination treatments affecting different bonding stages to dentin

    PubMed Central

    Elkassas, Dina; Arafa, Abla

    2016-01-01

    Objectives: To assess the effect of cleansing treatments following saliva and blood contamination at different bonding stages to dentin. Materials and Methods: Labial surfaces of 168 permanent maxillary central incisors were ground flat exposing superficial dentin. Specimens were divided into: uncontaminated control (A), contamination after etching (B), contamination after adhesive application (C), contamination after adhesive polymerization (D). Groups were further subdivided according to cleansing treatments into: rinsing (B1, C1, D1), re-etching (B2, D3), sodium hypochlorite application (B3), ethyl alcohol application (C2), acetone application (C3), rinsing and rebonding (D2), re-etching and rebonding (D4). Composite microcylinders were bonded to treated substrates and shear loaded micro-shear bond strength (μSBS) until failure and treated surfaces were examined with scanning electron microscope. Debonded surfaces were classified as adhesive, cohesive or mixed failure. The data were analyzed using one-way ANOVA and Tukey's post hoc test. Results: The μSBS values were ranked as follow; Group B: A > B3 > B2 > B1 > B, Group C: A > C3 > C2 > C1 > C, Group D: A > D4 > D1 = D2 ≥ D3. Debonded surfaces showed adhesive failure in Group B while cohesive failure in Groups C and D. Conclusions: Cleansing treatments differ according to bonding step; re-etching then rebonding suggested if etched substrate or polymerized adhesive were contaminated while acetone application decontaminated affected unpolymerized adhesive. PMID:27403048

  9. Chemical contamination assessment of Gulf of Mexico oysters in response to hurricanes Katrina and Rita.

    PubMed

    Johnson, W E; Kimbrough, K L; Lauenstein, G G; Christensen, J

    2009-03-01

    Hurricane Katrina made landfall on August 29, 2005 and caused widespread devastation along the central Gulf Coast states. Less than a month later Hurricane Rita followed a similar track slightly west of Katrina's. A coordinated multi-agency response followed to collect water, sediment and tissue samples for a variety of chemical, biological and toxicological indicators. The National Oceanic and Atmospheric Administration's National Status and Trends Program (NS&T) participated in this effort by measuring chemical contamination in sediment and oyster tissue as part of the Mussel Watch Program, a long-term monitoring program to assess spatial and temporal trends in a wide range of coastal pollutants. This paper describes results for contaminants measured in oyster tissue collected between September 29 and October 10, 2005 and discusses the results in the context of Mussel Watch and its 20-year record of chemical contamination in the region and the nation. In general, levels of metals in oyster tissue were higher then pre- hurricane levels while organic contaminants were at or near record lows. No contaminant reported here exceeded the FDA action level for food safety.

  10. Long-term assessment of contaminated articles from the Chernobyl reactor.

    PubMed

    Alkhomashi, N; Monged, M H E

    2015-06-01

    The Chernobyl accident caused a release of radioactive materials from the reactor into the environment. This event contaminated people, their surroundings and their personal property, especially in the zone around the reactor. Among the affected individuals were British students who were studying in Minsk and Kiev at the time of the Chernobyl accident. These students were exposed to external and internal radiation, and the individuals' articles of clothing were contaminated. The primary objective of this study was to analyze a sample of this contaminated clothing 20 years after the accident using three different detectors, namely, a BP4/4C scintillation detector, a Min-Con Geiger-Müller tube detector and a high-purity germanium (HPGe) detector. The clothing articles were initially assessed and found not to be significantly contaminated. However, there were several hot spots of contamination in various regions of the articles. The net count rates for these hot spots were in the range of 10.00 ± 3.16 c/s to 41.00 ± 6.40 c/s when the BP4/4C scintillation detector was used. The HPGe detector was used to identify the radionuclides present in the clothing, and the results indicated that the only active radionuclide was (137)Cs because of this isotope's long half-life.

  11. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. PMID:27057992

  12. Performance of different assessment methods to evaluate contaminant sources and fate in a coastal aquifer.

    PubMed

    Sbarbati, C; Colombani, N; Mastrocicco, M; Aravena, R; Petitta, M

    2015-10-01

    The present study deals with the application of different monitoring techniques and numerical models to characterize coastal aquifers affected by multiple sources of contamination. Specifically, equivalent freshwater heads in 243 monitoring wells were used to reconstruct the piezometric map of the studied aquifer; flow meter tests were carried out to infer vertical groundwater fluxes at selected wells; deuterium and oxygen isotopes were used to identify the groundwater origin, and tritium was analyzed to estimate the residence time; compound-specific isotope analyses and microbial analyses were employed to track different sources of contamination and their degradation; numerical modelling was used to estimate and verify groundwater flow direction and magnitude throughout the aquifer. The comparison of the information level for each technique allowed determining which of the applied approaches showed the best results to locate the possible sources and better understanding of the fate of the contaminants. This study reports a detailed site characterization process and outcomes for a coastal industrial site, where a comprehensive conceptual model of pollution and seawater intrusion has been built using different assessment methods. Information and results from this study encourages combining different methods for the design and implementation of the monitoring activities in real-life coastal contaminated sites in order to develop an appropriate strategy for control and remediation of the contamination.

  13. Assessment of concentrations and effects of organohalogen contaminants in a terrestrial passerine, the European starling.

    PubMed

    Eng, Margaret L; Williams, Tony D; Letcher, Robert J; Elliott, John E

    2014-03-01

    European starlings (Sturnus vulgaris) are a valuable model species for the assessment of concentrations and effects of environmental contaminants in terrestrial birds. Polybrominated diphenyl ethers (PBDEs) are found in birds throughout the world, but relatively little is known of their concentrations or effects in free-living terrestrial passerines. We used a nest box population of European starlings to 1) measure the variation in egg concentrations of persistent organohalogen contaminants at an agricultural site, and 2) assess whether individual variation in PBDE concentrations in eggs was related to reproductive parameters, as well as maternal or nestling characteristics including body condition, thyroid hormones, oxidative stress, and hematocrit. As PBDEs were the main contaminant class of interest, we only assessed a subset of eggs for other organohalogen contaminants to establish background concentrations. Exposure to organohalogen contaminants was extremely variable over this relatively small study area. Geometric mean wet weight concentrations (range in brackets) of the major contaminants were 36.5 (12-174) ng/g ΣDDT (n=6 eggs) and 10.9 (2-307) ng/g ΣPBDEs (n=14). ΣPCBs at 3.58 (1.5-6.4) ng/g (n=6) were lower and less variable. There were low levels of other organochlorine (OC) pesticides such as dieldrin (2.02 ng/g), chlordanes (1.11 ng/g) and chlorobenzenes (0.23 ng/g). The only form of DDT detected was p,p'-DDE. The congener profiles of PBDEs and PCBs reflect those of industrial mixtures (i.e. DE-71, Aroclors 1254, 1260 and 1262). For all of the contaminant classes, concentrations detected in eggs at our study site were below levels previously reported to cause effects. Due to small sample sizes, we did not assess the relationship between ΣPCBs or ΣOCs and adult or chick condition. We observed no correlative relationships between individual variation in PBDE concentrations in starling eggs and reproductive success, maternal condition, or nestling

  14. Gastrointestinal campylobacteriosis in industrialised countries: comparison of the disease situation with salmonellosis, and microbiological contamination assessment.

    PubMed

    Laroche, M; Magras, C

    2013-12-01

    The science-based assessment of foodborne zoonotic risk is used to evaluate the public health impact of a hazard and to guide public decision-making on control measures. Key information for the hazard characterisation and microbiological contamination assessment phases of risk assessment may be obtained from the collection and structured statistical analysis of international data. This approach was used for the hazard characterisation phase of a risk assessment of gastrointestinal campylobacteriosis and salmonellosis in 30 industrialised countries over the period 2005-2009. The results showed an overall increase in the annual ratio campylobacteriosis/salmonellosis (R(moy) > 2), despite significant differences among countries (P < 0.0001). For countries with complete data over 20 years, the results showed significantly higher exposure to campylobacteriosis among certain population segments (men, children under 5 years of age and adults aged between 20 and 30), as well as in summer. A number of paired factors (Campylobacter species/animal species-meat type) are observed in this consumer exposure. However, the overall rate of bacterial transfer in meat supply chains varies widely, with far lower values for cattle (0.16) and pigs (0.24) than for poultry (0.60) and chickens (1.17). A lack of harmonised epidemiological data on the contamination status of foodstuffs (frequency, level, site, and species) further hampers the accurate identification of critical points of contamination and of the spread of the hazard throughout the food chain. PMID:24761724

  15. Uncertainties in human health risk assessment of environmental contaminants: A review and perspective.

    PubMed

    Dong, Zhaomin; Liu, Yanju; Duan, Luchun; Bekele, Dawit; Naidu, Ravi

    2015-12-01

    Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an 'adequate' protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making. PMID:26386465

  16. Risk assessment for furan contamination through the food chain in Belgian children.

    PubMed

    Scholl, Georges; Huybrechts, Inge; Humblet, Marie-France; Scippo, Marie-Louise; De Pauw, Edwin; Eppe, Gauthier; Saegerman, Claude

    2012-08-01

    Young, old, pregnant and immuno-compromised persons are of great concern for risk assessors as they represent the sub-populations most at risk. The present paper focuses on risk assessment linked to furan exposure in children. Only the Belgian population was considered because individual contamination and consumption data that are required for accurate risk assessment were available for Belgian children only. Two risk assessment approaches, the so-called deterministic and probabilistic, were applied and the results were compared for the estimation of daily intake. A significant difference between the average Estimated Daily Intake (EDI) was underlined between the deterministic (419 ng kg⁻¹ body weight (bw) day⁻¹) and the probabilistic (583 ng kg⁻¹ bw day⁻¹) approaches, which results from the mathematical treatment of the null consumption and contamination data. The risk was characterised by two ways: (1) the classical approach by comparison of the EDI to a reference dose (RfD(chronic-oral)) and (2) the most recent approach, namely the Margin of Exposure (MoE) approach. Both reached similar conclusions: the risk level is not of a major concern, but is neither negligible. In the first approach, only 2.7 or 6.6% (respectively in the deterministic and in the probabilistic way) of the studied population presented an EDI above the RfD(chronic-oral). In the second approach, the percentage of children displaying a MoE above 10,000 and below 100 is 3-0% and 20-0.01% in the deterministic and probabilistic modes, respectively. In addition, children were compared to adults and significant differences between the contamination patterns were highlighted. While major contamination was linked to coffee consumption in adults (55%), no item predominantly contributed to the contamination in children. The most important were soups (19%), dairy products (17%), pasta and rice (11%), fruit and potatoes (9% each). PMID:22632631

  17. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination.

    PubMed

    Li, Jianbing; Huang, Gordon H; Zeng, Guangming; Maqsood, Imran; Huang, Yuefei

    2007-01-01

    An integrated fuzzy-stochastic risk assessment (IFSRA) approach was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with site conditions, environmental guidelines, and health impact criteria. The contaminant concentrations in groundwater predicted from a numerical model were associated with probabilistic uncertainties due to the randomness in modeling input parameters, while the consequences of contaminant concentrations violating relevant environmental quality guidelines and health evaluation criteria were linked with fuzzy uncertainties. The contaminant of interest in this study was xylene. The environmental quality guideline was divided into three different strictness categories: "loose", "medium" and "strict". The environmental-guideline-based risk (ER) and health risk (HR) due to xylene ingestion were systematically examined to obtain the general risk levels through a fuzzy rule base. The ER and HR risk levels were divided into five categories of "low", "low-to-medium", "medium", "medium-to-high" and "high", respectively. The general risk levels included six categories ranging from "low" to "very high". The fuzzy membership functions of the related fuzzy events and the fuzzy rule base were established based on a questionnaire survey. Thus the IFSRA integrated fuzzy logic, expert involvement, and stochastic simulation within a general framework. The robustness of the modeling processes was enhanced through the effective reflection of the two types of uncertainties as compared with the conventional risk assessment approaches. The developed IFSRA was applied to a petroleum-contaminated groundwater system in western Canada. Three scenarios with different environmental quality guidelines were analyzed, and reasonable results were obtained. The risk assessment approach developed in this study offers a unique tool for systematically quantifying various uncertainties in contaminated site management, and it also

  18. An evaluation of the effectiveness of utilizing bioassays in the assessment of contaminated sites

    SciTech Connect

    Mroz, R.; Carter, J.; Tay, K.L.; Doe, K.

    1995-12-31

    The purpose of this study was to evaluate the battery of biological tests recommended by Environment Canada in the document ``A Review of Whole Organism Bioassays for Assessing the Quality of Soil, Freshwater Sediment and Freshwater in Canada`` for the assessment of contaminated sites. Soil and sediment samples were collected from three contaminated sites in the Atlantic Region and subjected to biological and chemical tests. Four bioassays were conducted on the soil samples: lettuce (Lactuca sativa) seedling emergence, algal (Selenastrum capricornutum) population growth inhibition, earthworm (Eisenia andrel) survival and inhibition of light output in Microtox (Vibrio fischeri). Soil samples collected from Makinsons, Newfoundland had elevated levels of PCBs, total petroleum hydrocarbons (TPH) and heavy metals and showed some toxicity in the algal population growth inhibition test. Samples from the Weldon, New Brunswick site were high in TPH and were marginally toxic to Microtox and lettuce seedlings. The earthworm survival test did not appear sensitive to any of the contaminated soil samples. Freshwater sediment samples, collected from Five Island Lake, Nova Scotia had elevated PCB and heavy metal concentrations. These samples underwent four biological tests: midge (Chironomus tentans) survival, amphipod (Hyalella azteca) survival, algal population growth inhibition and Microtox. At 100% concentration, the sediment was toxic to the first three species, with toxicities ranging from marginal to high. For all samples, the bioassay results were compared to chemical analyses and, in most cases, there was a positive correlation between contaminant concentrations and toxicity.

  19. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone

    PubMed Central

    Youkee, Daniel; Brown, Colin S.; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B.; Walker, Naomi F.; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  20. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    PubMed

    Youkee, Daniel; Brown, Colin S; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B; Walker, Naomi F; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  1. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    PubMed

    Youkee, Daniel; Brown, Colin S; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B; Walker, Naomi F; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks.

  2. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  3. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    SciTech Connect

    Davis, M. J.; Janke, R.; Taxon, T. N.

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  4. Assessing the Impact of Source-Zone Remediation Efforts at the Contaminant-Plume Scale Through Analysis of Contaminant Mass Discharge

    PubMed Central

    Brusseau, M. L.; Hatton, J.; DiGuiseppi, W.

    2011-01-01

    The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7 kg/d, and then declined to approximately 2 kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2 kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly-accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure. PMID:22115080

  5. Assessing the impact of source-zone remediation efforts at the contaminant-plume scale through analysis of contaminant mass discharge.

    PubMed

    Brusseau, M L; Hatton, J; DiGuiseppi, W

    2011-11-01

    The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7kg/d, and then declined to approximately 2kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure.

  6. Geoelectric assessment of soil properties modification due to underground water contamination

    NASA Astrophysics Data System (ADS)

    Chitea, F.; Ioane, D.; Georgescu, P.; Mezincescu, M.

    2009-04-01

    Geophysical investigations, including resistivity and conductivity measurements, have been carried out in an agricultural area with variations of crop growth, located in the vicinity of the Petrobrazi oil refinery, Romania. The scientific project was devoted to the geoelectric assessment of soil and underground water contamination with oil derived products, based on the physical properties modification due to high resistivity contaminants. The shallow geological structure consists of soil (1 m), loess (0.5 m), sandy gravels (20 m) and clay, the oil contaminants being displaced horizontally by the aquifer dynamics with ca 100 m/year at a mean depth of 5 m, at the limit between the vadose and saturated zones. Due to sudden increase of underground contaminantion during technical accidents within the refinery, when the contaminant height above the aquifer reached 4.5 m, and oscilations of water table level associated with seasonal high precipitation regime, the geological formations within the vadose zone were upward polluted. More of that, due to capillarity processes developed on more then 70 years of industrial activity, this upward contamination affected also the soil layer. Results of 3D multielectrode resistivity measurements using the AGI SuperSting showed significant variations of this physical parameter between the surface and 1 m depth. The southern sector, affected by high contamination at the aquifer depth displays high resistivity values, the highest geoelectric anomalies being interpreted as small areas where oil derived products accumulated as a consequence of vertical migration. The soil of the southern sector is characterised by low resistivity values, suggesting that upward contamination processes were much weaker. In the area surveyed with the multielectrode system, conductivity measurements were carried out using a high resolution conductivity meter. Variations of soil quality between the northern sector and the southern one have been observed also

  7. Assessment and modelling of heavy metal contamination from Madneuli open-pit mine, Georgia

    NASA Astrophysics Data System (ADS)

    Tchelidze, T.; Melikadze, G.; Leveinen, J.; Kaija, J.; Kumpalainen, S.

    2003-04-01

    Acid mine drainage from banked waste rocks (150 million m^3) and sulfide ore tailings of the Madneuli Cu-Au open-pit mine have created major environmental pollution problem in Bolnisi district, Georgia. Intensive leaching of exposed rocks and direct discharge of mine waters to nearby watercourses have lead to strong heavy metal pollution of groundwater and Rivers Kazretula, Poladauri and Mashavera. Increased concentrations of Cu, Zn, Pb, Ni, Mn, Cr, Cd and Hg exceeding maximum permissible values by 3-2000 times, are registered almost everywhere. Polluted surface waters are used intensively for irrigation. Besides, contaminated groundwater is pumped for irrigation and drinking water supply in alluvial deposits along the rivers. Because the spread of contamination is a slow process, the adverse health effects may not yet have emerged in the investigation area. The transport modelling was used in the framework of risk assessment to estimate the direction, rate and extent of chemical migration in the contaminated site in order to support environmental management and decisionmaking involving identification of high-risk areas, protection from pollutants, and planning of remediation work. Geochemical and contamination transport modelling conducted in this study suggest that the present contamination levels will eventually reach the total investigation area causing serious health risks to the local population in long terms. Mineral lifetime estimates suggest that the contamination might continue for centuries with current pollution loads. Furthermore, geochemical modelling showed that there is no reason to expect the natural attenuation of the contamination. The potential impacts of preventive actions were studied by preparing a model scenario where the present heavy metal contamination level was lowered to 0.1 mg/l in two streams entering the model area. The model results suggest that within 5 years, already significant reduction of concentrations can be reached. The

  8. Risk assessment for dioxin contamination at Midland, Michigan (second edition). Final report

    SciTech Connect

    Nisbet, I.C.T.; Mendez, W.M.; Phillips, W.; Barnes, D.G.

    1988-04-01

    Results are presented of a comprehensive, multi-media, human-health risk assessment of the contamination in the Midland, Michigan, area with 2,3,7,8-tetrachlorodibenzo-p-dioxin, or TCDD, and related compounds (dioxin) resulting primarily from past releases from the Dow Chemical Company's Michigan Division plant. The risk assessment follows USEPA's published guidelines for carcinogen risk assessment and exposure assessment. An exposure-assessment section summarizes the available environmental-monitoring data for the Midland area and derives estimated human intakes of dioxin for a number of scenarios based upon exposure of the local population to ambient air, drinking water, soil, and fish. Finally, a risk-characterization section combines the dose response and exposure information to determine estimated probabilities of adverse health effects for the scenarios considered.

  9. Improvement of modelling capabilities for assessing urban contamination : The EMRAS Urban Remediation Working Group.

    SciTech Connect

    Thiessen, K. M.; Batandjieva, B.; Andersson, K. G.; Arkhipov, A.; Charnock, T. W.; Gallay, F.; Gaschak, S.; Golikov, V.; Hwang, W. T.; Kaiser, J. C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.; Ziemer, R. L.; Zlobenko, B.; Environmental Science Division; SENES Oak Ridge; IAEA; Riso National Lab.; Chernobyl Center for Nuclear Safety; Health Protection Agency; IRSN; Inst. of Radiation Hygene of the Ministry of Public Health, Russian Federation; KAERI, Republic of Korea; GSF, Germany; BfS, Germany; CPHR, Cuba; State Office for Radiation Protection, Croatia; AECL, Canada; National Academy of Science, Ukraine

    2008-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modeling for Radiation Safety (EMRAS) programme was established to improve modeling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful.

  10. Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, Co Tipperary, Ireland.

    PubMed

    Aslibekian, Olga; Moles, Richard

    2003-06-01

    A centuries long history of mining and mineral processing has resulted in elevated Cd, Pb and Zn soil concentrations in the vicinity of the Silvermines abandoned mine site (AMS), Co. Tipperary, Ireland. A process for preliminary evaluation of environmental risk was developed and implemented. Potential pathways of metal compound transport and deposition were mapped and used to optimise the subsequent site investigation. Elevated soil metals are shown to be predominantly in areas where metal deposition in soil is associated with water related pathways (surface runoff, seasonal groundwater seepage and floodplains). Extensive areas of soil in the surrounding district are classified as contaminated on the basis of Cd, Pb and Zn concentrations, both total and potential bioavailable (EDTA-extractable). The most affected areas, with metal concentrations in soil comparable with that within the AMS, were floodplains located 2-3 km downstream from the site. Assessment of the sequential effects on grass and grazing animals indicates that Pb poses the greatest risk due to its high toxicity and high concentrations in soil (more than 10,000 mg kg-1). Within floodplain areas grazing cattle may intake a lethal dose of Pb. On the basis of the investigation an approach to risk assessment was developed which allowed quantified assessment of the risks related to individual metals, areas of contamination and contamination targets.

  11. Improving Modeling of Iodine-129 Groundwater Contamination Plumes Using the System Assessment Capability

    SciTech Connect

    Dirkes, J.; Nichols, W.E.; Wurstner, S.K.

    2004-01-01

    Years of production of radioactive materials at the Hanford Site in southeastern Washington State has resulted in contamination of surface, subsurface, and surface water environments. Cleanup of the site has been aided by various tools, including computer software used to predict contaminant migration in the future and estimate subsequent impacts. The System Assessment Capability (SAC) is a total systems tool designed to simulate the movement of contaminants from all waste sites at Hanford through the vadose zone, the unconfined aquifer, and the Columbia River. Except for iodine-129, most of the contaminants modeled by SAC have acceptably matched field measurements. The two most likely reasons for the inconsistency between the measured field data and SAC modeled predictions are an underestimated inventory and an overestimated sorption value (Kd). Field data tend to be point measurements taken from near the surface of the unconfined aquifer. Thus, the depth of the iodine-129 contamination plume on the site is not well characterized. Geostatistical analyses of the measured data were conducted to determine the mass of iodine-129 for four assumed plume depths within the unconfined aquifer. Several simulations for two different Kd’s using the initial SAC inventory were run to determine the effect of an overestimated sorption value on SAC modeled predictions. The initial SAC inventory was then increased for the two different Kd’s to determine the influence of an underestimated inventory on SAC modeled predictions. It was found that evidence for both an underestimated inventory and for an overestimated sorption value for iodine-129 exist. These results suggest that the Kd for iodine-129 should be reevaluated and that a more complete inventory must be generated in order to more accurately model iodine-129 groundwater contamination plumes that match available field data.

  12. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument

    USGS Publications Warehouse

    Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy

    2013-01-01

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  13. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument.

    PubMed

    Bargar, Timothy A; Garrison, Virginia H; Alvarez, David A; Echols, Kathy R

    2013-05-15

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17-0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  14. Assessment of coastal storm impacts on contaminant body burdens of oysters collected from the Gulf of Mexico.

    PubMed

    Apeti, Dennis A; Lauenstein, Gunnar G; Christensen, John D; Johnson, Edward W; Mason, Andrew

    2011-10-01

    This study evaluated changes in oyster tissue contaminant levels following North Atlantic tropical cyclones to determine if changes in contaminant concentrations were predictable. The basis for this study was analysis of coastal chemical contaminant data from the National Oceanic and Atmospheric Administration's (NOAA) National Status and Trends Mussel Watch Program and NOAA's National Weather Service storm track data. The tendency for contaminant (metals and organic compounds) body burdens to increase or decrease in oyster tissue after a storm was assessed using contingency and correspondence analyses. Post-storm contaminant levels in oysters revealed a consistent pattern of distribution, which could be described as follows: (1) most of the organic contaminants stay within their long-term concentration ranges, (2) very few organic contaminants decreased, and (3) metals overwhelmingly tend to increase.

  15. Integrated assessment of metal contamination in sediments from two tropical estuaries.

    PubMed

    Krull, Marcos; Abessa, Denis M S; Hatje, Vanessa; Barros, Francisco

    2014-08-01

    In order to evaluate if sediment metal contamination is responsible for benthic degradation and identify possible reference sites in Todos os Santos Bay (TSB), comparisons between a highly impacted (Subaé) and less impacted (Jaguaripe) estuarine systems were made based on (i) field assessment of macrobenthic assemblage, (ii) sediment metal concentrations and (iii) chronic toxicity test with the tropical copepod Nitokra sp. Data were integrated by multivariate analysis (BIOENV and PCA) and the ratio-to-mean (RTMe) approach. Estuaries were divided into four different salinity zones to avoid misclassification of benthic conditions. Salinity was the main variable correlated to the benthic distribution in both estuaries, indicating that categories based on salinity features seem to be suitable in TSB. Correspondence among lines of evidence differed in low and high metal contaminated systems. Chronic toxicity was found along both the entire systems, being considerably higher in Jaguaripe. However, there was no clear evidence of metal contamination and benthic alteration in most stations of Jaguaripe. Although the concentrations of Sr and Cu were correlated to the benthic assemblage in Jaguaripe, it is unlikely that toxicity has been caused by these elements. The benthic assemblage distribution of Jaguaripe seems to be rather related to natural stressful conditions of transitional waters. Even though the Jaguaripe estuary might not be pristine, it can be used as a reference estuary for benthic assessment in TSB. Regarding the Subaé estuary, toxicity and Zn were also correlated to the benthic assemblage and most stations showed signs of benthic alteration and metal contamination. All lines of evidence were in agreement providing evidences that metal contamination might be responsible for benthic degradation in Subaé.

  16. Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed

    NASA Astrophysics Data System (ADS)

    Ko, K.; Koh, D.; Chae, G.; Cheong, B.

    2007-12-01

    Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The

  17. A spatial risk assessment methodology to support the remediation of contaminated land.

    PubMed

    Carlon, Claudio; Pizzol, Lisa; Critto, Andrea; Marcomini, Antonio

    2008-04-01

    When soil and groundwater contaminations occur over large areas, remediation measures should be spatially prioritized on the basis of the risk posed to human health and in compliance with technological and budget constraints. Within this scope, the application of human health risk assessment algorithms in a spatially resolved environment raises a number of methodological and technical complexities. In this paper, a methodology is proposed and applied in a case study to support the entire formulation process of remediation plans, encompassing hazard assessment, exposure assessment, risk characterisation, uncertainty assessment and allocation of risk reduction measures. In the hazard assessment, it supports the selection of Contaminants of Concern (CoC) with regard to both their average concentrations and peak concentrations, i.e. hot spots. In the exposure assessment, it provides a zoning of the site based on the geostatistical mapping of contaminant. In the risk characterisation, it generates vector maps of Risk Factors on the basis of the risk posed by multiple substances and allows the interrogation of most relevant CoC and exposure pathways for each zone of the site. It also supports the Monte Carlo based probabilistic estimation of the Risk Factors and generates maps of the associated uncertainty. In the risk reduction phase, it supports the formulation of remediation plans based on the stepwise spatial allocation of remediation interventions and the on-time simulation of risk reduction performances. The application of this methodology is fully supported by an easy-to-use and customized Geographical Information System and does not require high expertise for interpretation. The proposed methodology is the core module of a Decision Support System (DSS) that was implemented in the DESYRE software aimed at supporting the risk-based remediation of megasites.

  18. Dead or Alive: Molecular Assessment of Microbial Viability

    PubMed Central

    Meschke, John S.

    2014-01-01

    Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology. PMID:25038100

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  20. Assessment of in-situ bioremediation at a refinery waste-contaminated site and an aviation gasoline contaminated site.

    PubMed

    Bhupathiraju, Vishvesh K; Krauter, Paula; Holman, Hoi-Ying N; Conrad, Mark E; Daley, Paul F; Templeto, Alexis S; Hunt, James R; Hernandez, Mark; Alvarez-Cohen, Lisa

    2002-01-01

    A combination of geochemical, microbiological and isotopic methods were used to evaluate in-situ bioremediation of petroleum hydrocarbons at one site contaminated with refinery waste and a second site contaminated with aviation gasoline at Alameda Point, California. At each site, geochemical and microbiological characteristics from four locations in the contaminated zone were compared to those from two uncontaminated background locations. At both sites, the geochemical indicators of in-situ biodegradation included depleted soil gas and groundwater oxygen, elevated groundwater alkalinity, and elevated soil gas carbon dioxide and methane in the contaminated zone relative to the background. Radiocarbon content of methane and carbon dioxide measured in soil gas at both sites indicated that they were derived from hydrocarbon contaminant degradation. Direct microscopy of soil core samples using cell wall stains and activity stains, revealed elevated microbial numbers and enhanced microbial activities in contaminated areas relative to background areas, corroborating geochemical findings. While microbial plate counts and microcosm studies using soil core samples provided laboratory evidence for the presence of some microbial activity and contaminant degradation abilities, they did not correlate well with either contaminant location, geochemical, isotopic, or direct microscopy data.

  1. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect

    Not Available

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  4. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    NASA Astrophysics Data System (ADS)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  5. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  6. Assessment of potential groundwater contamination sources in a wellhead protection area.

    PubMed

    Harman, W A; Allan, C J; Forsythe, R D

    2001-07-01

    Determining the human health dangers from potential contamination sources, within a wellhead protection area (WHPA), requires that a risk analysis be undertaken. In this study, a desktop geographic information system and spreadsheet software are used to implement an EPA risk screening methodology for WHPAs called 'Managing Ground Water Contamination Sources in Wellhead Protection Areas--A Priority Setting Approach'. The methodology was applied to a WHPA in Gaston County, North Carolina. Results indicate that the risk of well contamination from an interstate highway and gas station with old steel underground storage tanks were comparatively high. Medium risks included a thoroughfare and highway, while low risks were assigned to machine shops, a body shop, septic systems and a gas station with new underground storage tanks and secondary containment. A sensitivity analyses of the Priority Setting Approach indicated that risk scores were extremely sensitive to hydrogeologic variables such as hydraulic conductivity. It is recommended that risk assessors utilize a range of hydrogeologic parameters to assess overall risk from each potential contamination source.

  7. Prevalence of microbiological contaminants in groundwater sources and risk factor assessment in Juba, South Sudan.

    PubMed

    Engström, Emma; Balfors, Berit; Mörtberg, Ulla; Thunvik, Roger; Gaily, Tarig; Mangold, Mikael

    2015-05-15

    In low-income regions, drinking water is often derived from groundwater sources, which might spread diarrheal disease if they are microbiologically polluted. This study aimed to investigate the occurrence of fecal contamination in 147 improved groundwater sources in Juba, South Sudan and to assess potential contributing risk factors, based on bivariate statistical analysis. Thermotolerant coliforms (TTCs) were detected in 66% of the investigated sources, including 95 boreholes, breaching the health-based recommendations for drinking water. A significant association (p<0.05) was determined between the presence of TTCs and the depth of cumulative, long-term prior precipitation (both within the previous five days and within the past month). No such link was found to short-term rainfall, the presence of latrines or damages in the borehole apron. However, the risk factor analysis further suggested, to a lesser degree, that the local topography and on-site hygiene were additionally significant. In summary, the analysis indicated that an important contamination mechanism was fecal pollution of the contributing groundwater, which was unlikely due to the presence of latrines; instead, infiltration from contaminated surface water was more probable. The reduction in fecal sources in the environment in Juba is thus recommended, for example, through constructing latrines or designating protection areas near water sources. The study results contribute to the understanding of microbiological contamination of groundwater sources in areas with low incomes and high population densities, tropical climates and weathered basement complex environments, which are common in urban sub-Saharan Africa.

  8. Reducing uncertainty in ecological risk assessment: The pros of measuring contaminant exposures

    SciTech Connect

    Burris, J.A.; Pease, A.

    1995-12-31

    Wildlife species (mammals, birds and reptiles) are primarily exposed to contamination in soils via ingestion of food. Uncertainties in risk analyses for this pathway are largely associated with the estimation of the amount of contamination in food items. The benefits of measuring contaminant concentrations in food items are examined based on comparison of risk results with and without measurements of exposure. At two hazardous waste sites, plants and earthworms were analyzed for metals and organics. Site-specific bioaccumulation factors (BAFs) were calculated and compared to literature reported values. In general, the metals concentrations in plant samples were higher than those predicted by literature values with the exception of cadmium and copper. Metal concentrations measured in invertebrates (worms) were lower than those predicted by literature values with the exception of arsenic. Literature BAFs did not adequately predict concentrations of barium, mercury or copper in invertebrate tissue. In the ecological risk assessments for both of the sites, if site-specific measurements were used, risks for wildlife species were not predicted. However if literature BAF values were used, unacceptable risks were predicted. The higher estimates of risks were associated with overestimates of dietary exposures of lead, cadmium, chromium, copper and zinc. Measurement of contaminant exposures provided for a more realistic and cost-effective estimate of ecological risks. The effect of using the empirical data on the magnitude of risks were evaluated including decisions concerning remediation. A cost-benefit analysis will be provided comparing the costs of measurement of exposures versus remediation.

  9. Use of artificial oak log substrates to assess the impact of contaminants on soil macroinvertebrates

    SciTech Connect

    Henry, R.; Charters, D.W.

    1995-12-31

    Consideration of aquatic benthic macroinvertebrates can yield insight concerning the effects of chemical contamination on community structure and function. This approach has been used successfully to distinguish subtle changes in community response to water quality and watershed degradation. Analyses of this type however, has not been developed to the same extent for terrestrial soil macroinvertebrate communities. A number of factors, including sampling protocols and habitat variability, may inhibit efforts in this direction. An artificial substrate was developed that mimics a decaying oak log. These artificial logs are constructed of oak slats filled with various sized oak particles and measure approximately 7 cm x 7 cm x 30 cm. The substrates are deployed on the soil surface across a contaminant gradient and allowed to colonize. Following recovery, the logs are transported to a laboratory where they are disassembled, and the colonizers extracted for taxonomic, numeric, or other analyses. Since the artificial substrate community is a reflection of the endemic soil inhabitants, the results of this type of evaluation can be used in the assessment of ecological concerns associated with soil contamination. The practical and theoretical concerns of this method will be discussed along with the results of an initial trial at a metal contaminated site.

  10. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    PubMed

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  12. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites.

    PubMed

    Wcisło, Eleonora; Bronder, Joachim; Bubak, Anicenta; Rodríguez-Valdés, Eduardo; Gallego, José Luis R

    2016-09-01

    In Europe soil contamination has been recognized as a serious problem. The needs to remediate contaminated sites are not questionable, although the remediation actions are often hindered by their very high financial costs. On the other hand, the abandoned contaminated sites may have the potential for redevelopment and creating conditions appropriate for their productive reuse bringing social, economic and environmental benefits. The main concern associated with the contaminated sites is their potential adverse health impact. Therefore, in the process of contaminated site redevelopment the risk assessment and the subsequent risk management decisions will play a crucial role. The main objective of this study was to illustrate the role of the human health risk assessment (HRA) in supporting site remediation and reuse decisions. To exemplify the significance of the HRA process in this field the Nitrastur site, located in Asturias, Spain was used. Risks resulting from soil contamination with arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), mercury (Hg), zinc (Zn) and lead (Pb) were assessed under three potential future land use patterns: industrial, residential and recreational. The results of the study indicated that soil at the Nitrastur site might pose non-cancer and cancer risks to potential future receptors - industrial workers, residents and recreational users. Arsenic and lead are the main substances responsible for the health risk and the primary drivers of remedial decisions at the site. The highest total cancer risks were observed under the residential scenario, followed in descending order by the recreational and industrial ones. The remedial maps illustrate in which areas remediation activities are required, depending on a given land use pattern. The obtained results may be used to develop, analyse, compare and select the remedial options within the intended land use pattern. They may also be used to support the decisions concerning the

  13. Risk assessment of heavy metals and their source distribution in waters of a contaminated industrial site.

    PubMed

    Krishna, A Keshav; Mohan, K Rama

    2014-03-01

    Industrially contaminated sites with hazardous materials are a priority and urgent problem all over the world. Appropriate risk assessment is required to determine health risks associated with contaminated sites. The present study was conducted to investigate distribution of potentially hazardous, heavy metal (As, Cd, Cr, Cu, Ni, Pb and Zn) concentrations in surface and groundwater samples collected during summer (pre-monsoon) and winter (post-monsoon) seasons from an industrially contaminated site, Hyderabad, India, with potential source of metal contamination because of industrial effluents and usage of pesticides in agriculture. Heavy metal (HM) concentrations were analysed by using inductively coupled plasma-mass spectrometer and were compared with permissible limits set by the World Health Organisation. Data obtained was treated using multivariate statistical approaches like R-mode factor analysis (FA), principal component analysis, cluster analysis, geoaccumulation index, enrichment factor, contamination factor and the degree of contamination. Health risk assessment like chronic daily intake (CDI) and hazard quotient (HQ) were also calculated. Relatively high levels were noted in surface water with average concentrations during summer and winter seasons showing 16.13 and 11.83 for As, 7.91 and 1.64 for Cd, 88.33 and 32.90 for Cr, 58.11 and 28.26 for Cu, 53.62 and 69.96 for Ni, 173.8 and 118.6 for Pb, and 2,943 and 1,889 μg/L for Zn. While in groundwater, the mean metal levels during two seasons were 18.18 and 3.76 for As, 1.67 and 0.40 for Cd, 29.40 and 5.15 for Cr, 17.03 and 4.19 for Cu, 25.4 and 6.09 for Ni, 81.7 and 2.87 for Pb and 953 and 989 μg/L for Zn, respectively. FA identified two factors with cumulative loadings of F1-60.82 % and F2-76.55 % for pre-monsoon surface water and F1-48.75 % and F2-67.55 % for groundwater. Whereas, three factors with cumulative loadings of F1-39.13 %, F2-66.60 % and F3-81.01 % for post-monsoon surface water and F1

  14. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites.

    PubMed

    Wcisło, Eleonora; Bronder, Joachim; Bubak, Anicenta; Rodríguez-Valdés, Eduardo; Gallego, José Luis R

    2016-09-01

    In Europe soil contamination has been recognized as a serious problem. The needs to remediate contaminated sites are not questionable, although the remediation actions are often hindered by their very high financial costs. On the other hand, the abandoned contaminated sites may have the potential for redevelopment and creating conditions appropriate for their productive reuse bringing social, economic and environmental benefits. The main concern associated with the contaminated sites is their potential adverse health impact. Therefore, in the process of contaminated site redevelopment the risk assessment and the subsequent risk management decisions will play a crucial role. The main objective of this study was to illustrate the role of the human health risk assessment (HRA) in supporting site remediation and reuse decisions. To exemplify the significance of the HRA process in this field the Nitrastur site, located in Asturias, Spain was used. Risks resulting from soil contamination with arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), mercury (Hg), zinc (Zn) and lead (Pb) were assessed under three potential future land use patterns: industrial, residential and recreational. The results of the study indicated that soil at the Nitrastur site might pose non-cancer and cancer risks to potential future receptors - industrial workers, residents and recreational users. Arsenic and lead are the main substances responsible for the health risk and the primary drivers of remedial decisions at the site. The highest total cancer risks were observed under the residential scenario, followed in descending order by the recreational and industrial ones. The remedial maps illustrate in which areas remediation activities are required, depending on a given land use pattern. The obtained results may be used to develop, analyse, compare and select the remedial options within the intended land use pattern. They may also be used to support the decisions concerning the

  15. A contamination assessment of the CI carbonaceous meteorite Orgueil using a DNA-directed approach

    NASA Astrophysics Data System (ADS)

    Aerts, J. W.; Elsaesser, A.; RöLing, W. F. M.; Ehrenfreund, P.

    2016-05-01

    The Orgueil meteorite has become one of the most well-studied carbonaceous meteorites, after it fell in France 150 yr ago. Extraterrestrial organic compounds such as amino acids and nucleobases in the parts per billion ranges were identified in Orgueil samples with supporting isotopic analyses. However, speculations of terrestrial contamination such as organic inclusions in the form of microbes and seeds accompanied the analyses of the Orgueil meteorite ever since its fall. By using molecular analysis, we performed DNA extractions and spiking experiments combined with 16S and 18S rRNA gene targeted PCR amplification to quantify the level of terrestrial biocontamination. Our results indicate that terrestrial contamination with DNA was insignificant in the investigated meteorite fraction. We also remeasured and confirmed concentrations of amino acids found in previous studies and conclude that their rather high concentrations and distribution cannot be explained by terrestrial contamination with microorganisms alone. These results represent the first analysis using DNA-directed tools in the analysis of the Orgueil meteorite to determine trace levels of biomarkers.

  16. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    N'Guessan, L.A.; Elifantz, H.; Nevin, K.P.; Mouser, P.J.; Methe, B.; Woodard, T. L.; Manley, K.; Williams, K. H.; Wilkins, M. J.; Larsen, J.T.; Long, P. E.; Lovley, D. R.

    2009-09-01

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

  17. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.; Mouser, Paula; Methe, Barbara; Woodard, Trevor L.; Manley, Kimberley; Williams, Kenneth H.; Wilkins, Michael J.; Larsen, Joern T.; Long, Philip E.; Lovley, Derek R.

    2010-01-10

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphatelimitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

  18. Molecular Analysis of Phosphate Limitation in Geobacteraceae During the Bioremediation of a Uranium-Contaminated Aquifer

    SciTech Connect

    N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.; Mouser, Paula; Methe, Barbara; Woodard, Trevor L.; Manley, Kimberley; Williams, Kenneth H.; Wilkins, Michael J.; Larsen, Joern T.; Long, Philip E.; Lovley, Derek R.

    2010-02-01

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

  19. [Assessment of risk of contamination of drinking water for the health of children in the Tula region].

    PubMed

    Grigorev, Yu I; Lyapina, N V

    2014-01-01

    The hygienic analysis of centralized drinking water supply in Tula region was performed. Priority contaminants of drinking water were established. On the base of the application of risk assessment methodology there was calculated carcinogenic risk for children's health. A direct relationship between certain classes of diseases and pollution of drinking water with chemical contaminants has been determined.

  20. Molecular-level processes governing the interaction of contaminants with iron and manganese oxides. 1997 annual progress report

    SciTech Connect

    Chambers, S.A.; Brown, G.

    1997-06-01

    'The central tenet of this proposal is that a fundamental understanding of specific mineral surface-site reactivities will substantially improve reactive transport models of contaminants in geologic systems, and will allow more effective remediation schemes to be devised. Most large-scale, macroscopic models employ global chemical reaction kinetics and thermochemistry. However, such models do not incorporate molecular-level input critical to the detailed prediction of how contaminants interact with minerals in the subsurface. A first step leading to the incorporation of molecular-level processes in large-scale macroscopic models is the ability to understand which molecular-level processes will dominate the chemistry at the microscopic grain level of minerals. To this end, the research focuses on the fundamental mechanisms of redox chemistry at mineral surfaces. As much of this chemistry in sediments involves the Fe(III)/Fe(II) and Mn(IV)/Mn(II) couples, the authors focus on mineral phases containing these species. Of particular interest is the effect of the local coordination environment of Fe and Mn atoms on their reactivity toward contaminant species. Studies of the impact of local atomic structure on reactivity in combination with knowledge about the types and amounts of various surfaces on natural grain- size minerals provide the data for statistical models. These models in turn form the basis of the larger-scale macroscopic descriptions of reactivity that are needed for reactive transport models. A molecular-level understanding of these mechanisms will enhance the ability to design much greater performance efficiency, cost effectiveness, and remediation strategies that have minimal negative impact on the local environment. For instance, a comprehensive understanding of how minerals that contain Fe(II) reduce oxyanions and chlorinated organics should enable the design of other Fe(II)-containing remediation materials in a way that is synergistic with existing

  1. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  2. Genetic diversity assessment of summer squash landraces using molecular markers.

    PubMed

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  3. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

    PubMed Central

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047

  4. Relevance of abattoir hygiene assessment to microbial contamination of British beef carcases.

    PubMed

    Hudson, W R; Mead, G C; Hinton, M H

    1996-12-14

    Eleven beef abattoirs were visited, each on five separate occasions. On each occasion, an audit was carried out according to the official Hygiene Assessment System (HAS) and 10 carcases were sampled at four different sites to assess total viable counts and counts of presumptive coliform bacteria. The HAS scores ranged from 11 to 84 (maximum 100), and the logarithmic mean total viable counts for all sampling sites on each batch of carcases varied between 1.98 and 4.14 colony forming units/cm2. The mean prevalence of coliform contamination ranged from 0 to 85 per cent. There was a significant negative correlation (P < 0.001) between the mean HAS scores and the mean total viable count for each abattoir, but not between the HAS scores and the numbers of coliforms. Within the HAS, the mean scores for all five categories, before weighting, showed a significant correlation with the mean total viable count (P < 0.001); however, the categories concerned with slaughter and dressing, and personnel and practices were of most value in determining trends in carcase contamination. A new advisory classification is proposed for levels of microbial contamination on beef carcases. PMID:8981733

  5. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    PubMed

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site.

  6. Assessing the arsenic-contaminated rice (Oryza sativa) associated children skin lesions.

    PubMed

    Liao, Chung-Min; Lin, Tzu-Ling; Hsieh, Nan-Hung; Chen, Wei-Yu

    2010-04-15

    The purpose of this study was to assess the potential risk of children skin lesions from arsenic-contaminated rice (Oryza sativa) consumption in West Bengal (India). Published age- and gender-specific skin lesions data in West Bengal were reanalyzed and incorporated into a Weibull dose-response model to predict children skin lesion prevalence. Monomethylarsonous acid (MMA(III)) levels in urine was used as a biomarker that could be predicted from a human physiologically based pharmacokinetic (PBPK) model. This study integrated arsenic contents in irrigation water, bioaccumulation factors of paddy soil, cooking methods, and arsenic bioavailability of cooked rice in gastrointestinal tract into a probabilistic risk model. Results indicated that children aged between 13 and 18 years might pose a relative higher potential risk of skin lesions to arsenic-contaminated cooked rice (odds ratios (ORs)=1.18 (95% CI 1.12-2.15)) than those of 1-6 years children (ORs=0.98 (0.85-1.40)). This study revealed the need to consider the relationships between cooking method and arsenic in cooked rice when assessing the risk associated with children skin lesions from rice consumption. This study suggested that arsenic-associated skin lesions risk from arsenic-contaminated rice consumption would be reduced significantly by adopting traditional rice cooking method (wash until clean; rice:water=1:6; discard excess water) as followed in West Bengal (India) and using water containing lower arsenic (e.g., <10 microg L(-1)) for cooking. PMID:19945215

  7. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    PubMed

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation.

  8. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the

  9. Source-term development for a contaminant plume for use by multimedia risk assessment models

    SciTech Connect

    Whelan, Gene ); McDonald, John P. ); Taira, Randal Y. ); Gnanapragasam, Emmanuel K.; Yu, Charley; Lew, Christine S.; Mills, William B.

    1999-12-01

    Multimedia modelers from the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: DOE's Multimedia Environmental Pollutant Assessment System (MEPAS), EPA's MMSOILS, EPA's PRESTO, and DOE's RESidual RADioactivity (RESRAD). These models represent typical analytically, semi-analytically, and empirically based tools that are utilized in human risk and endangerment assessments for use at installations containing radioactive and/or hazardous contaminants. Although the benchmarking exercise traditionally emphasizes the application and comparison of these models, the establishment of a Conceptual Site Model (CSM) should be viewed with equal importance. This paper reviews an approach for developing a CSM of an existing, real-world, Sr-90 plume at DOE's Hanford installation in Richland, Washington, for use in a multimedia-based benchmarking exercise bet ween MEPAS, MMSOILS, PRESTO, and RESRAD. In an unconventional move for analytically based modeling, the benchmarking exercise will begin with the plume as the source of contamination. The source and release mechanism are developed and described within the context of performing a preliminary risk assessment utilizing these analytical models. By beginning with the plume as the source term, this paper reviews a typical process and procedure an analyst would follow in developing a CSM for use in a preliminary assessment using this class of analytical tool.

  10. Assessing 2,4,6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods.

    PubMed

    Schaefer, M

    2004-01-01

    Within the scope of a phytoremediation project, the toxicity of 2,4,6-trinitrotoluene (TNT) contaminated soil (and its toxic metabolites) on earthworms was assessed. In addition to the standard acute and reproduction tests (ISO 11268), an avoidance response test was applied. The test methods covered all important ecological relevant endpoints (acute, chronic, behavioral). At a concentration of 1142 mg/kg, TNT caused significant toxic effects in all test methods, but at lower test concentrations no significant acute or reproduction toxic effects could be observed. The avoidance response test, however, showed significant repellent effects at a concentration of 29 mg/kg TNT and therefore proved to be more sensitive than the other tests in this case. Results of the earthworm tests compared well with results of an ecotoxicological biotest battery. Thus, earthworm toxicity tests are useful tools for terrestrial risk assessment but require a hierarchy of test designs that differ in effect levels (behavior, sublethal, lethal). Whereas higher concentrations of a pollutant can easily be assessed with the acute test (which requires lethal concentrations to show an effect), contaminated soils with lower (sublethal) pollutant concentrations require more sensitive test methods such as reproduction or behavioral tests in their risk assessment.

  11. Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India

    NASA Astrophysics Data System (ADS)

    Krishna, A. K.; Govil, P. K.

    2008-06-01

    The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8-418.0 mg/kg), Copper (22.4-372.0 mg/kg), Nickel (11.8-78.8 mg/kg), Zinc (63.5-213.6 mg/kg) and Molybdenum (2.3-15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.

  12. Risk assessment of coccidostatics during feed cross-contamination: animal and human health aspects.

    PubMed

    Dorne, J L C M; Fernández-Cruz, M L; Bertelsen, U; Renshaw, D W; Peltonen, K; Anadon, A; Feil, A; Sanders, P; Wester, P; Fink-Gremmels, J

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  13. Risk assessment of coccidostatics during feed cross-contamination: Animal and human health aspects

    SciTech Connect

    Dorne, J.L.C.M.; Fernández-Cruz, M.L.; Bertelsen, U.; Renshaw, D.W.; Peltonen, K.; Anadon, A.; Feil, A.; Sanders, P.; Wester, P.; Fink-Gremmels, J.

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  14. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils.

    PubMed

    Lors, Christine; Ponge, Jean-François; Martínez Aldaya, Maite; Damidot, Denis

    2011-10-01

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox(®) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. PMID:21570756

  15. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Lau, Steffen; Geyer, Wolfgang; Knöller, Kay

    2007-02-01

    The noble gas radon has a strong affinity to non-aqueous phase-liquids (NAPLs). That property makes it applicable as naturally occurring partitioning tracer for assessing residual NAPL contamination of aquifers. In a NAPL contaminated aquifer, radon dissolved in the groundwater partitions preferably into the NAPL. The magnitude of the resulting radon deficit in the groundwater depends on the NAPL-specific radon partition coefficient and on the NAPL saturation of the pore space. Hence, if the partition coefficient is known, the NAPL saturation is attainable by determination of the radon deficit. After a concise discussion of theoretical aspects regarding radon partitioning into NAPL, related experimental data and results of a field investigation are presented. Aim of the laboratory experiments was the determination of radon partition coefficients of multi-component NAPLs of environmental concern. The on-site activities were carried out in order to confirm the applicability of the "radon method" under field conditions.

  16. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils.

    PubMed

    Juhasz, Albert L; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2007-08-01

    Arsenic (As) bioaccessibility in contaminated soils (n=50) was assessed using the simplified bioaccessibility extraction test (SBET). Soils used in the study were collected from sites where As was used as an herbicide (railway corridor) or pesticide (cattle dip sites), from former gold mines and from highly mineralised locations containing geogenic As sources (gossans). In all but three soils, As bioaccessibility was less than 50% indicating that a significant proportion of the total As concentration may not be available for absorption in the gastrointestinal tract following incidental soil ingestion. When regression models were developed based on soil properties, the descriptive variables best able to describe As bioaccessibility in railway corridor, dip site and mine site soils were total As and total or dithionite-citrate extractable (free) iron (Fe). While As bioaccessibility could be predicted (r(2)=0.955, n=50) in these contaminated soils, As bioaccessibility for gossan soils was a poor fit using linear or multivariate regression analysis.

  17. Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study.

    PubMed

    Chandra Sekhar, K; Chary, N S; Kamala, C T; Venkateswara Rao, J; Balaram, V; Anjaneyulu, Y

    2003-08-01

    Different areas in the industrial region of Patancheru near Hyderabad, Andhra Pradesh (A.P), India are contaminated with high concentration of arsenic, which is attributed to industrial source like veterinary chemicals, pharmaceuticals, pesticide industries, etc. Fourteen villages of this area of Patancheru were assessed for arsenic contamination by collecting samples of water (surface and ground), soil, fodder, milk, and vegetables. The total arsenic content in the whole blood, urine, hair, and nails of the residents showing arsenical skin lesions and other clinical manifestations were also studied. To understand the bioavailability of arsenic in this environment and its possible entry into human food chain, speciation studies of arsenic was carried out and the results are presented in this paper.

  18. Assessment of fish health status in the Pechora River: effects of contamination.

    PubMed

    Lukin, A; Sharova, J; Belicheva, L; Camus, L

    2011-03-01

    The present study aimed to assess the ecological situation in the Pechora River Basin (east part of Sub-Arctic Russia) using histopathologies of fish and to relate fish health to environmental quality. This paper reports histopathological alterations of fish kidney, liver, and gills and their association with chemical contamination of the Pechora River. A variety of histopathological changes was found. Differences between studied species and sites of the Pechora River with regard to the type, prevalence, and severity of lesions were studied. The types of the lesions indicated that fish respond to both direct toxicant effects of contaminated water and sediment, and secondary stress effects caused by factors such as parasitism. The structural modifications found in this study are a result of acute damage associated with short-term exposure as much as chronic response due to long-term pollution.

  19. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. PMID:27073165

  20. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils.

    PubMed

    Li, Shi-Wei; Sun, Hong-Jie; Li, Hong-Bo; Luo, Jun; Ma, Lena Q

    2016-09-01

    In vitro assays have been developed to determine metal bioaccessibility in contaminated soils; however, their application to Cd is limited. To assess their suitability to determine Cd relative bioavailability (RBA), Cd-RBA in 12 contaminated soils containing 3.00-296mgkg(-1) Cd were determined using a mouse model and compared with Cd bioaccessibility data based on four assays including the UBM, SBRC, IVG, and PBET. After being administered feed amended with soil or CdCl2 for 10-day, the Cd concentrations in the mouse liver and/or kidneys were used as biomarkers to estimate Cd-RBA. Cd-RBA was comparable at 34-90% and 40-78% based on mouse liver and kidneys with RSD of 7.10-8.99%, and 37-84% based on mouse liver plus kidneys with lower RSD of 5.8%. Cadmium bioaccessibility in soils varied with assays, with 61-99, 59-103, 54-107, and 35-97% in the gastric phase and 20-56, 38-77, 42-88, and 19-64% in the intestinal phase of the UBM, SBRC, IVG and PBET assays. Based on the combined biomarker of liver plus kidneys, better correlation was observed for PBET (r(2)=0.61-0.70) than those for IVG, UBM and SBRC assays (0.12-0.52). The monthly Cd intake in children was 0.24-23.9μgkg(-1) using total Cd concentration in soils, which was reduced by 43% to 0.18-12.3μgkg(-1) using bioavailable Cd. Our data suggest it is important to consider Cd-RBA to assess risk associated with contaminated soils and the PBET may have potential to predict Cd-RBA in contaminated soils.

  1. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils.

    PubMed

    Li, Shi-Wei; Sun, Hong-Jie; Li, Hong-Bo; Luo, Jun; Ma, Lena Q

    2016-09-01

    In vitro assays have been developed to determine metal bioaccessibility in contaminated soils; however, their application to Cd is limited. To assess their suitability to determine Cd relative bioavailability (RBA), Cd-RBA in 12 contaminated soils containing 3.00-296mgkg(-1) Cd were determined using a mouse model and compared with Cd bioaccessibility data based on four assays including the UBM, SBRC, IVG, and PBET. After being administered feed amended with soil or CdCl2 for 10-day, the Cd concentrations in the mouse liver and/or kidneys were used as biomarkers to estimate Cd-RBA. Cd-RBA was comparable at 34-90% and 40-78% based on mouse liver and kidneys with RSD of 7.10-8.99%, and 37-84% based on mouse liver plus kidneys with lower RSD of 5.8%. Cadmium bioaccessibility in soils varied with assays, with 61-99, 59-103, 54-107, and 35-97% in the gastric phase and 20-56, 38-77, 42-88, and 19-64% in the intestinal phase of the UBM, SBRC, IVG and PBET assays. Based on the combined biomarker of liver plus kidneys, better correlation was observed for PBET (r(2)=0.61-0.70) than those for IVG, UBM and SBRC assays (0.12-0.52). The monthly Cd intake in children was 0.24-23.9μgkg(-1) using total Cd concentration in soils, which was reduced by 43% to 0.18-12.3μgkg(-1) using bioavailable Cd. Our data suggest it is important to consider Cd-RBA to assess risk associated with contaminated soils and the PBET may have potential to predict Cd-RBA in contaminated soils. PMID:27346741

  2. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible.

  3. Contamination of fish in UK fresh water systems: risk assessment for human consumption.

    PubMed

    Rose, Martin; Fernandes, Alwyn; Mortimer, David; Baskaran, Christina

    2015-03-01

    There is growing evidence that more people in the UK are consuming fish taken from inland waterways. This may be partly due to the increased numbers of migrants from Eastern Europe where this is part of traditional culture and partly because of a desire to try new foods encouraged by celebrity chefs. Fish can bioaccumulate environmental contaminants and so could contribute a significant amount to dietary exposure to these chemicals. This study examined the changing habits of anglers and consumers and characterised a range of existing and emerging contaminants in freshwater fish species with a view to determining current levels of occurrence and possible risk from consumption. The project was conducted in two stages. The first stage included (a) a study that identified freshwater systems that are contaminated either by anthropogenic activity or as a result of the geology of the area; and (b) socioeconomic research to assess the consumption habits of the public, particularly anglers, with respect to fish and shellfish from unmanaged inland waterways. Based on the outcome from the first stage, specific rivers and other inland waterways were chosen for investigation, along with the range of contaminants to be included in the analytical programme. Predicted contamination levels and prevalence of anglers were among the factors taken into consideration. The second stage of the project involved sampling and analysis of fish taken from selected locations on the chosen waterways. A range of fish species from a variety of inland water habitats were obtained. These were analysed for the following contaminants: heavy metals, chlorinated dioxins (PCDD/Fs), polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs), brominated dioxins (PBDD/Fs), polychlorinated naphthalenes (PCNs), polybrominated diphenylethers (PBDEs), OC pesticides, organotin compounds and organo-fluorine compounds. Legal limits for contaminants apply only to food traded commercially, but some samples

  4. Contamination of fish in UK fresh water systems: risk assessment for human consumption.

    PubMed

    Rose, Martin; Fernandes, Alwyn; Mortimer, David; Baskaran, Christina

    2015-03-01

    There is growing evidence that more people in the UK are consuming fish taken from inland waterways. This may be partly due to the increased numbers of migrants from Eastern Europe where this is part of traditional culture and partly because of a desire to try new foods encouraged by celebrity chefs. Fish can bioaccumulate environmental contaminants and so could contribute a significant amount to dietary exposure to these chemicals. This study examined the changing habits of anglers and consumers and characterised a range of existing and emerging contaminants in freshwater fish species with a view to determining current levels of occurrence and possible risk from consumption. The project was conducted in two stages. The first stage included (a) a study that identified freshwater systems that are contaminated either by anthropogenic activity or as a result of the geology of the area; and (b) socioeconomic research to assess the consumption habits of the public, particularly anglers, with respect to fish and shellfish from unmanaged inland waterways. Based on the outcome from the first stage, specific rivers and other inland waterways were chosen for investigation, along with the range of contaminants to be included in the analytical programme. Predicted contamination levels and prevalence of anglers were among the factors taken into consideration. The second stage of the project involved sampling and analysis of fish taken from selected locations on the chosen waterways. A range of fish species from a variety of inland water habitats were obtained. These were analysed for the following contaminants: heavy metals, chlorinated dioxins (PCDD/Fs), polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs), brominated dioxins (PBDD/Fs), polychlorinated naphthalenes (PCNs), polybrominated diphenylethers (PBDEs), OC pesticides, organotin compounds and organo-fluorine compounds. Legal limits for contaminants apply only to food traded commercially, but some samples

  5. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    SciTech Connect

    Not Available

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  6. Ecological risk assessment methodology for species exposed to contaminant mixtures with application to Chesapeake Bay striped bass

    SciTech Connect

    Logan, D.T.; Wilson, H.T.

    1995-12-31

    This report is on the development of a new methodology to assess potential risks to natural populations exposed to contaminant mixtures. The purpose of this project was to develop an objective and quantitative methodology that could help ChesapeakeBay environmental managers assess the potential risks that mixtures of chemical contaminants might pose to resource species. Application of the method was to be demonstrated on Chesapeake Bay striped bass populations to the extent that available data allowed.

  7. Molecular characterization of microbial contaminants isolated from Umbilical Cord Blood Units for transplant.

    PubMed

    Bello-López, Juan Manuel; Noguerón-Silva, Jorge; Castañeda-Sánchez, Jorge Ismael; Rojo-Medina, Julieta

    2015-01-01

    Disposal of Umbilical Cord Blood Units due to microbial contamination is a major problem in Cord Blood Banks worldwide as it reduces the number of units available for transplantation. Additionally, economic losses are generated as result of resources and infrastructure used to obtain such units. Umbilical Cord Blood Units that showed initial microbial contamination were subject to strains isolation, identification, and characterization by sequencing the 16S rRNA gene and Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR). Moreover, tests of antimicrobial resistance/sensitivity and phenotypic activities that may play an important role in microbial infection were performed. Microbial contamination was detected in 120 Umbilical Cord Blood Units (2.31%) in the period from 2003 to 2013. The most frequently isolated strains were Enterococcus faecium, followed by Staphylococcus epidermidis, Escherichia coli, Enterococcus faecalis, Staphylococcus haemoliticus, Klebsiella pneumoniae, Enterococcus durans, Lactobacillus helveticus, Enterococcus hiriae and Roseomonas genomospecies 5. The ERIC-PCR assays revealed a wide genetic diversity in some strains although belonging to the same genus and specie, indicating different sources of contamination. Broad-spectrum penicillins, third generation cephalosporins, aminoglycosides, and fluoroquinolones showed lower inhibitory activity on the tested strains. All strains were proteolytic, 67.69% were amylase-positive, 27.6% hemolysis-positive, and 34.71% nuclease-positive. The most common sources of contamination were: vaginal flora, digestive tract, and skin flora, highlighting the need for staff training in good manufacturing practices in collection SCU since all contaminants identified are part of the microbial flora of the donors. Implications and consequences in the therapeutic use of Umbilical Cord Blood Units for transplantation contaminated by multiresistant bacteria in immunocompromised patients are discussed. PMID

  8. The Penobscot River and environmental contaminants: Assessment of tribal exposure through sustenance lifeways

    USGS Publications Warehouse

    Marshall, Valerie; Kusnierz, Daniel; Hillger, Robert; Ferrario, Joseph; Hughes, Thomas; Diliberto, Janet; Orazio, Carl E.; Dudley, Robert W.; Byrne, Christian; Sugatt, Richard; Warren, Sarah; DeMarini, David; Elskus, Adria; Stodola, Steve; Mierzykowski, Steve; Pugh, Katie; Culbertson, Charles W.

    2015-01-01

    EPA in collaboration with the Penobscot Indian Nation, U.S. Geological Survey (USGS), Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Fish and Wildlife Service (USF&WS) collectively embarked on a four year research study to evaluate the environmental health of the riverine system by targeting specific cultural practices and using traditional science to conduct a preliminary contaminant screening of the flora and fauna of the Penobscot River ecosystem. This study was designed as a preliminary screening to determine if contaminant concentrations in fish, eel, snapping turtle, wood ducks, and plants in Regions of the Penobscot River relevant to where PIN tribal members hunt, fish and gather plants were high enough to be a health concern. This study was not designed to be a statistically validated assessment of contaminant differences among study sites or among species. The traditional methodology for health risk assessment used by the U. S. Environmental Protection Agency (EPA) is based on the use of exposure assumptions (e.g. exposure duration, food ingestion rate, body weight, etc.) that represent the entire American population, either as a central tendency exposure (e.g. average, median) or as a reasonable maximum exposure (e.g. 95% upper confidence limit). Unfortunately, EPA lacked exposure information for assessing health risks for New England regional tribes sustaining a tribal subsistence way of life. As a riverine tribe, the Penobscot culture and traditions are inextricably tied to the Penobscot River watershed. It is through hunting, fishing, trapping, gathering and making baskets, pottery, moccasins, birch-bark canoes and other traditional practices that the Penobscot culture and people are sustained. The Penobscot River receives a variety of pollutant discharges leaving the Penobscot Indian Nation (PIN) questioning the ecological health and water quality of the river and how this may affect the practices that sustain their way of life

  9. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  10. Dismantling of the PETRA glove box: tritium contamination and inventory assessment

    SciTech Connect

    Wagner, R.

    2015-03-15

    The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followed by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  12. A PCR-based approach to assess genomic DNA contamination in RNA: Application to rat RNA samples.

    PubMed

    Padhi, Bhaja K; Singh, Manjeet; Huang, Nicholas; Pelletier, Guillaume

    2016-02-01

    Genomic DNA (gDNA) contamination of RNA samples can lead to inaccurate measurement of gene expression by reverse transcription quantitative real-time PCR (RT-qPCR). We describe an easily adoptable PCR-based method where gDNA contamination in RNA samples is assessed by comparing the amplification of intronic and exonic sequences from a housekeeping gene. Although this alternative assay was developed for rat RNA samples, it could be easily adapted to other species. As a proof of concept, we assessed the effects of detectable gDNA contamination levels on the expression of a few genes that illustrate the importance of RNA quality in acquiring reliable data.

  13. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.

    PubMed

    Guéguen, Marielle; Amiard, Jean-Claude; Arnich, Nathalie; Badot, Pierre-Marie; Claisse, Didier; Guérin, Thierry; Vernoux, Jean-Paul

    2011-01-01

    in similarly semi-enclosed waters elsewhere (bays, estuaries, and harbors).However, the mean concentrations of cadmium, mercury, lead, and benzo[a]pyrene,in transplanted mussels, were below the regulatory limits.In 2007, the mean daily consumption of shellfish in the general French population was estimated to be 4.5 g in adults; however, a wide variation occurs by region and season (INCA 2 study). Tabulated as a proportion of the diet, shellfish consumption represents only 0.16% of overall solid food intake. However, the INCA 2 survey was not well suited to estimating shellfish consumption because of the small number of shellfish consumers sampled. In contrast, the mean consumption rate of bivalve mollusks among adult high consumers of fish and seafood products, i.e., adults who eat fish or seafood at least twice a week, was estimated to be 153 g week-1 (8 kg yr-1). The highest mean consumption is for king scallops (39 g week-1), followed by oysters (34 g week-1) and mussels (22 g week-1). Thus, for high seafood consumers, the contribution of shellfish to inorganic contaminant levels is 1-10% TWI or PTWI for Cd, MeHg, and Sn (up to 19% for Sn), and the arsenic body burden is higher for 22% of individuals studied.The human health risks associated with consuming chemical contaminants in shellfish are difficult to assess for several reasons: effects may only surface after long-term exposure (chronic risk), exposures may be discontinuous, and contamination may derive from multiple sources (food, air, occupational exposure, etc.).Therefore, it is not possible to attribute a high body burden specifically to shellfish consumption even if seafood is a major dietary contributor of any contaminant, e.g.,arsenic and mercury.The data assembled in this review provide the arguments for maintaining the chemical contaminant monitoring programs for shellfish. Moreover, the results presented herein suggest that monitoring programs should be extended to other chemicals that are

  14. State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools.

    PubMed

    Swartjes, F A; Rutgers, M; Lijzen, J P A; Janssen, P J C M; Otte, P F; Wintersen, A; Brand, E; Posthuma, L

    2012-06-15

    This paper presents the policy framework of contaminated site management in The Netherlands and the corresponding risk assessment tools, including innovations that have taken place since an overview was published in 1999. According to the Dutch Soil Protection Act assessment framework, soils are subdivided into three quality classes: clean, slightly contaminated and seriously contaminated. Historic cases of slightly contaminated soils are managed in a sustainable way by re-use of soil material within a region on the basis of risk-based and land use specific Maximal Values and Background Values. In case of serious soil contamination remediation is in principle necessary and the urgency of remediation has to be determined based on site-specific risks for human health, the ecosystem and groundwater. The major risk assessment tools in The Netherlands are the CSOIL exposure model (human health risks and food safety), Species Sensitivity Distributions and the Soil Quality Triad (ecological risks), along with a procedure to assess the risks due to contaminant spreading to and in the groundwater. Following the principle 'simple if possible, complex when necessary', tiered approaches are used. Contaminated site practices are supported with web-based decision support systems. PMID:22578694

  15. State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools.

    PubMed

    Swartjes, F A; Rutgers, M; Lijzen, J P A; Janssen, P J C M; Otte, P F; Wintersen, A; Brand, E; Posthuma, L

    2012-06-15

    This paper presents the policy framework of contaminated site management in The Netherlands and the corresponding risk assessment tools, including innovations that have taken place since an overview was published in 1999. According to the Dutch Soil Protection Act assessment framework, soils are subdivided into three quality classes: clean, slightly contaminated and seriously contaminated. Historic cases of slightly contaminated soils are managed in a sustainable way by re-use of soil material within a region on the basis of risk-based and land use specific Maximal Values and Background Values. In case of serious soil contamination remediation is in principle necessary and the urgency of remediation has to be determined based on site-specific risks for human health, the ecosystem and groundwater. The major risk assessment tools in The Netherlands are the CSOIL exposure model (human health risks and food safety), Species Sensitivity Distributions and the Soil Quality Triad (ecological risks), along with a procedure to assess the risks due to contaminant spreading to and in the groundwater. Following the principle 'simple if possible, complex when necessary', tiered approaches are used. Contaminated site practices are supported with web-based decision support systems.

  16. A case study of risk assessment in contaminated site remediation in China

    NASA Astrophysics Data System (ADS)

    Ye, S.; Guo, J.; Wu, J.; Wang, J.; Chien, C.; Stahl, R.; Mack, E.; Grosso, N.

    2013-12-01

    A field site in Nanjing, China was selected for a case study of risk assessment in contaminated site remediation. This site is about 100m long and 100m wide. A chemical plant (1999-2010) at the site manufactured optical brightener PF, 2-Amino-4-methylphenol and 2-Nitro-4-methylphenol, totally three products. Soil and groundwater samples were collected and analyzed for PPL 126 (126 pollutants in the 'Priority Pollutants List' issued by US EPA). Values of the Dutch Standards were used as the screening criteria for soil and ground water. Low levels of ethylbenezene, chlorobenzene, 1,3-dichlorobenzene and 1,4- dichlorobenzene were detected in one soil sample. Concentrations above Dutch Target Value (DTV) of benzene, toluene, ethylbenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and/or 1,2,4-trichlorobenzene, phenol, and/or 2,4-dichlorophenol were exhibited in two groundwater samples. The ground water was especially highly impacted by bichlorobenzenes and trichlorobenzenes. The maximum concentration of impacts was 7.3 mg/L of 1,2,4-trichlorobenzene in groundwater which was 730 times higher than Dutch Intervention Values (DIV). Risk of soil and groundwater at this site was assessed according to the guidelines issued by Chinese MEP and US EPA, respectively. Finally, remedy techniques were selected according to the result of risk assessment and the characteristics of hydrogeology conditions and contaminants.

  17. Assessment of regional human health risks from lead contamination in Yunnan province, southwestern China.

    PubMed

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3 years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49% health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  18. Ecological assessment of a metal-contaminated pond in southern New England

    SciTech Connect

    Bleiler, J.A.; Fogg, A.; Reed, S.; Jop, K.; Putt, A.; George, C.

    1995-12-31

    An integrated ecological risk assessment was conducted to evaluate toxicity and bioaccumulation associated with sediment contamination in Plow Shop Pond (PSP), a 30-acre pond bordered by a landfill in central Massachusetts. Data from sediment and fish tissue analysis, as well as, results of sediments toxicity tests and a benthic community survey, were considered in the assessment. Arsenic, chromium, copper, lead, manganese, and mercury were found at elevated concentrations in PSP sediments. Fish tissue body weight appeared to be a good predictor of mercury contaminate burden in PSP, with heavier fish having higher concentrations of mercury. Macroinvertebrate community data suggested that PSP may be slightly impacted relative to a reference pond, with a significantly lower taxa richness and fewer pollution-intolerant species than the reference site. Despite the high levels of metals in PSP, only moderate levels of acute toxicity were observed in screening level sediment toxicity tests with Hyalella azteca, Chironomus tentans, and Ceriodaphnia dubia. Reduced growth and reproduction were observed in these tests, indicating potential sub-lethal effects in exposed to PSP sediments. It is likely that high levels of Acid Volatile Sulfides and Total Organic Carbon in PSP sediment have increased its metal-binding capacity, thus reducing bioavailability and toxicity of the inorganics in sediment. A dilution series Toxicity Identification Evaluation (TIE) was implemented to help identify stressors in PSP. The results of the integrated risk assessment at PSP are being used to evaluate remedial alternatives and to make risk management decisions.

  19. Probabilistic assessment of contamination using the two-phase flow model.

    PubMed

    Chen, Guan-Zhi; Hsu, Kuo-Chin; Lee, Cheng-Haw

    2003-08-01

    A physically motivated model is indispensable for a successful analysis of the impact of leaching from nuclear waste storage sites on the environment and public health. While most analyses use the single-phase flow model for modelling unsaturated flow and solute transport, the two-phase flow model considering the resistance of gas to water flow is a more realistic one. The effect of the two-phase flow model on the water content is theoretically investigated first in this study. Then, by combining a geostatistical generator using the turning bands method and a multi-phase transport code TOUGH2, an automatic process is used for Monte Carlo simulation of the solute transport. This stochastic approach is applied to a potentially polluted site by low-level nuclear waste in Taiwan. In the simulation, the saturated hydraulic conductivity is treated as the random variable. The stochastic approach provides a probabilistic assessment of contamination. The results show that even though water content from the two-phase flow model is only 1.5% less than the one from the single-phase flow model, the two-phase flow causes a slower movement but a wider lateral spreading of the plume in the unsaturated zone. The stochastic approach provides useful probability information which is not available from the deterministic approach. The probability assessment of groundwater contamination provides the basis for more informed waste management, better environmental assessment and improved evaluation of impact on public health.

  20. Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Jui-Sheng; Wang, Sheng-Wei; Lee, Jin-Jing; Liu, Chen-Wuing

    2013-08-01

    Seafood farmed in arsenic (As)-contaminated areas is a major exposure pathway for the ingestion of inorganic As by individuals in the southwestern part of Taiwan. This study presents a probabilistic risk assessment using limited data for inorganic As intake through the consumption of the seafood by local residents in these areas. The As content and the consumption rate are both treated as probability distributions, taking into account the variability of the amount in the seafood and individual consumption habits. The Monte Carlo simulation technique is utilized to conduct an assessment of exposure due to the daily intake of inorganic As from As-contaminated seafood. Exposure is evaluated according to the provisional tolerable weekly intake (PTWI) established by the FAO/WHO and the target risk based on the US Environmental Protection Agency guidelines. The assessment results show that inorganic As intake from five types of fish (excluding mullet) and shellfish fall below the PTWI threshold values for the 95th percentiles, but exceed the target cancer risk of 10(-6). The predicted 95th percentile for inorganic As intake and lifetime cancer risks obtained in the study are both markedly higher than those obtained in previous studies in which the consumption rate of seafood considered is a deterministic value. This study demonstrates the importance of the individual variability of seafood consumption when evaluating a high exposure sub-group of the population who eat higher amounts of fish and shellfish than the average Taiwanese.

  1. Assessment of Regional Human Health Risks from Lead Contamination in Yunnan Province, Southwestern China

    PubMed Central

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49 % health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  2. A new dose model for assessment of health risk due to contaminants in air.

    PubMed

    Rajkumar, T; Guesgen, H W; Robinson, S; Fisher, G W

    2000-01-01

    The problem of making quantitative assessments of the risks associated with human exposure to toxic contaminants in the environment is a pressing one. This study demonstrates the capability of a new computational technique involving the use of fuzzy logic and neural networks to produce realistic risk assessments. The systematic analysis of human exposure involves the use of measurements and models, the results of which are sometimes used in regulatory decisions or in the drafting of legislation. Because of limited scientific understanding, however, interpretation of models often involves substantial uncertainty. Extensive measurement programs can be very expensive. The high complexity and inherent heterogeneity of exposure analysis is still a major challenge. The approach to this challenge tested here is to use a new model incorporating sophisticated artificial intelligence algorithms. Exposure assessment often requires that a number of factors be evaluated, including exposure concentrations, intake rates, exposure times, and frequencies. These factors are incorporated into a system that can "learn" the relevant relationships based on a known data set. The results can then be applied to new data sets and thus be applied widely without the need for extensive measurements. In this analysis, an example is developed for human health risk through inhalation exposure to benzene from vehicular emissions in the cities of Auckland and Christchurch, New Zealand. Risk factors considered were inhaled contaminant concentration, age, body weight, and activity patterns of humans. Three major variables affecting the inhaled contaminant concentration were emissions (mainly from motor vehicles), meteorology (wind speed, temperature, and atmospheric stability), and site factors (hilly, flat, etc.). The results are preliminary and used principally to demonstrate the technique, but they are very encouraging.

  3. An integrated subsurface modeling and risk assessment approach for managing the petroleum-contaminated sites.

    PubMed

    Liu, L; Huang, G H; Hao, R X; Cheng, S Y

    2004-01-01

    Soil and groundwater contamination can lead to a variety of impacts and risks to the communities. Identifications of management schemes with sound environmental and socio-economic efficiencies is desired. In fact, before any decisions regarding site remediation actions can be made, three major questions may have to be answered. They include "What happened underground, and what will happen in the future under the given remediation scenarios?," "Are there specific risks on the surrounding community?" and "What remediation alternatives are suitable for the site?" In this study, an integrated subsurface modeling and risk assessment method for petroleum-contaminated site management is proposed. It incorporates multi-phase flow multi-component transport modeling and ELCR-based human health risk assessment into a general framework. The proposed method is applied to a case study within a western Canada context for identifying effective management schemes with improved environmental and socio-economic efficiencies. Given conditions at the study site, six remediation alternatives based on combinations of several technologies are recommended, with the provision of analyses for equipment/manpower requirements, system designs, operations, efficiencies, and costs. These alternatives can be categorized into two groups: hybrid ex situ and in situ remediation approaches, and integrated in situ remediation approaches. This study is a new attempt that integrates issues of subsurface-contamination simulation, risk assessment, and site remediation for a real-world problem within a general research framework. The research outputs are directly useful for the industry to gain insight of the site and to make decisions of the relevant remediation actions.

  4. [Contamination through preparation: risk of molecular genetic studies by using biological preservatives for museum collections].

    PubMed

    Scholz, M; Pusch, C M

    2000-09-01

    In paleogenetic science, artifacts (i.e. non-authentic DNA sequences) are mainly produced by cryptic contamination with (i) edaphon DNA sequences and/or (ii) human biomolecules derived from the involved researchers and the laboratory equipment. A third, and yet underestimated source of contamination with exogenous nucleic acids is provided by (iii) conservation practices applied to old material. Bone glue has been successfully used from the beginning of the 19th century up to the middle of this century, and comprises a rich source of non-authentic nucleic acids. An unequivocal identification of treated samples remains difficult since bone and the glue used for conservatory purposes bear similar chemical properties. Since the majority of agents used for the preservation of museum collections are of biological origin, the differentiation between contaminated and non-treated samples is required.

  5. Health-risk assessment of chemical contamination in Puget Sound seafood. Final report 1985-1988

    SciTech Connect

    Williams, L.

    1988-09-01

    This report provides resource management and health agencies with a general indication of the magnitude of potential human health risks associated with consumption of recreationally harvested seafoods from Puget Sound. Data collection and evaluation focused on a variety of metal and organic contaminants in fish, shellfish and edible seaweeds from 22 locations in the Sound. EPA risk assessment techniques were used to characterize risks to average and high consumer groups for both carcinogens and noncarcinogens. Theoretical risks associated with consumption of both average and high quantities of Puget Sound seafood appear to be comparable to or substantially less than those for fish and shellfish from other locations in the United States.

  6. Groundwater contamination. Volume 2: Management, containment, risk assessment and legal issues

    SciTech Connect

    Rail, C.D.

    2000-07-01

    This book explains in a comprehensive way the sources for groundwater contamination, the regulations governing it, and the technologies for abating it. Volume 2 discusses aquifer management, including technologies to control and stabilize multiple influxes into the water table. This volume outlines strategies for stormwater control and groundwater restoration and presents numerous case histories of site analysis and remediation based on DOE and state documents. Among the many new features of this edition are a full discussion of risk assessment, the preparation of groundwater protection plans, and references linking the text to over 2,300 water-related Web sites.

  7. Multilevel ecotoxicity assessment of polycyclic musk in the earthworm Eisenia fetida using traditional and molecular endpoints.

    PubMed

    Chen, Chun; Xue, Shengguo; Zhou, Qixing; Xie, Xiujie

    2011-11-01

    The ecotoxicity assessment of galaxolide (HHCB) and tonalide (AHTN) was investigated in the earthworm Eisenia fetida using traditional and novel molecular endpoints. The median lethal concentration (LC(50)) for 7-day and 14-day exposures was 573.2 and 436.3 μg g(-1) for AHTN, and 489.0 and 392.4 μg g(-1) for HHCB, respectively. There was no observed significant effect on the growth rate of E. fetida after a 28-day exposure except that at the highest concentration (100 μg g(-1)) of AHTN and HHCB, whereas a significant decrease of cocoon production was found in earthworms exposed to 50 and 100 μg g(-1). To assess molecular-level effect, the expression of encoding antioxidant enzymes and stress protein genes were investigated upon sublethal exposures using the quantitative real time PCR assay. The expression level of SOD, CAT and calreticulin genes was up-regulated significantly, while the level of annetocin (ANN) and Hsp70 gene expression was down-regulated in E. fetida. Importantly, the level of ANN expression had a significant positive correlation with the reproduction rate of earthworms. Furthermore, the lowest observed effect concentration (LOECs) of ANN expression level was 3 μg g(-1) for AHTN and 10 μg g(-1) for HHCB, suggesting that ANN gene expression can serve as a more sensitive indicator of exposure to AHTN and HHCB than traditional endpoints such as cocoon production. The transcriptional responses of these genes may provide early warning molecular biomarkers for identifying contaminant exposure, and the data obtained from this study will contribute to better understand the toxicological effect of AHTN and HHCB.

  8. Assessing the State of Contamination in a Historic Mining Town Using Sediment Chemistry.

    PubMed

    Gutiérrez, Mélida; Wu, Shuo-Sheng; Rodriguez, Jameelah R; Jones, Ashton D; Lockwood, Benjamin E

    2016-05-01

    The United States town of Aurora, Missouri, USA, stockpiled lead (Pb) and zinc (Zn) mining wastes from the early to mid-1900s in the form of chat piles. Clean-up actions were undertaken at intervals in subsequent years including land leveling and removal of chat. This study assessed the current state of contamination by identifying areas where metals are present at toxic levels. For this purpose, stream sediment samples (N = 100) were collected over a 9 × 12 km area in and around Aurora. Their content of cadmium (Cd), Pb, and Zn were measured, and concentration maps were generated using ArcGIS to categorize affected areas. Metal concentrations varied over a wide range of values with the overall highest values observed in the north-northeast part of Aurora where abundant chat piles had been present. Comparison between observed concentrations and sediment-quality guidelines put the contaminated areas mentioned are above-toxic levels for Cd, Pb and Zn. In contrast, levels in rural areas and the southern part of Aurora were at background levels, thus posing no threat to aquatic habitats. The fact that contamination is constrained to a relatively small area can be advantageously used to implement further remediation and, by doing so, to help protect the underlying karst aquifer.

  9. Assessing the State of Contamination in a Historic Mining Town Using Sediment Chemistry.

    PubMed

    Gutiérrez, Mélida; Wu, Shuo-Sheng; Rodriguez, Jameelah R; Jones, Ashton D; Lockwood, Benjamin E

    2016-05-01

    The United States town of Aurora, Missouri, USA, stockpiled lead (Pb) and zinc (Zn) mining wastes from the early to mid-1900s in the form of chat piles. Clean-up actions were undertaken at intervals in subsequent years including land leveling and removal of chat. This study assessed the current state of contamination by identifying areas where metals are present at toxic levels. For this purpose, stream sediment samples (N = 100) were collected over a 9 × 12 km area in and around Aurora. Their content of cadmium (Cd), Pb, and Zn were measured, and concentration maps were generated using ArcGIS to categorize affected areas. Metal concentrations varied over a wide range of values with the overall highest values observed in the north-northeast part of Aurora where abundant chat piles had been present. Comparison between observed concentrations and sediment-quality guidelines put the contaminated areas mentioned are above-toxic levels for Cd, Pb and Zn. In contrast, levels in rural areas and the southern part of Aurora were at background levels, thus posing no threat to aquatic habitats. The fact that contamination is constrained to a relatively small area can be advantageously used to implement further remediation and, by doing so, to help protect the underlying karst aquifer. PMID:26847833

  10. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro

    PubMed Central

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-01-01

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed. PMID:27043601

  11. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro.

    PubMed

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-03-31

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed.

  12. [Risk assessment of the farmland and water contamination with the livestock manure in Anhui province].

    PubMed

    Song, Da-Ping; Zhuang, Da-Fang; Chen, Wei

    2012-01-01

    Basing on the data of livestock in 2001-2009 in Anhui province, the farmland pollution loading and water equal standard pollution loading of livestock manure were calculated utilizing the discharge rate of livestock manure. In addition, the risk assessment was evaluated on the livestock pollution in farmland and water bodies in this province. The industrial production of animal manure of this industry in 2008-2009 in Anhui amounted to 0.67 billion tons, and the averaged farmland loading of livestock manure, N, and P were 16.2 t x hm(-2), 83.8 kg x hm(-2), and 34.5 kg x hm(-2), respectively. The overall averaged risk constant of livestock manure loading in farmland was 0.36 (approximately risk level I). As to the water bodies, the averaged equal standard pollution loading was 7.03. However, significant differences were observed for the farmland and water contamination with livestock manure in different areas of Anhui, suggesting that some areas might receive much higher doses than the averaged amounts. The contamination weakened comparing with that in 2001-2002. But there was a trend of increase for P pollution. According to the information in 2008-2009, the farmland and water bodies in the areas of Hefei, Suzhou, and Bengbu still borne the livestock manure contamination. Results of this work provide some useful information for the water and farmland environmental protection in Huaihe river basin in Anhui province.

  13. A preliminary assessment of the self-induced environment and contamination of the Space Telescope

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1982-01-01

    Preliminary estimates for the internal pressures and surface contamination of the Space Telescope were made. The calculations for the transient pressures in the aft-shroud and telescope compartments considered two large communicating volumes that contain gaseous sources and sinks. The outgassing sources in the aft shroud consist of several scientific instruments, paints, insulations, and graphite-epoxy structures. With the exception of the instruments, these sources also exist in the telescope compartment. the outgassing functions were generated from ample test results at various temperatures and from internal pressure measurements in a vacuum test of one of the instruments. The venting occurs through combinations of series and parallel passages in both compartments. The calculated time constant of the two volumes and their respective passages, with the telescope protective door closed, is a few seconds, which is slightly less than that of the shuttle bay volume with the bay doors closed. With the telescope door closed, the pressures in the two compartments should decay to about 1OE-5 torr in about 200 hours. The contaminant deposits were assessed on the basis of expected partial pressures of the contaminant fraction of the outgassing. These pressures and the activation energies of the source materials were used to calculate the adsorbed and condensed deposits on the surfaces as a function of time.

  14. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro.

    PubMed

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-04-01

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed. PMID:27043601

  15. Assessment of stormwater impoundments as contaminant hazards to red-winged blackbirds

    SciTech Connect

    Eisemann, J.D.; Spading, D.

    1995-12-31

    Stormwater impoundments, a recent engineering solution to the treatment of stormwater, slow runoff and allow the settling of sediments and associated contaminants. They also provide valuable habitat in urban settings. In this study, the authors used red-winged blackbirds (Agelaius phoeniceus) to indicate potential contaminant hazards to avian species reared in stormwater impoundments. The authors studied four types of impoundments, grouped by the development in the supplying drainage; residential, commercial and highway development and a reference site with no development. They examined physiological biomarkers of 56, 8-day old nestlings, nesting parameters and foraging location of parent birds, food items delivered to nestlings, water chemistry, and sediments. Biomarker analysis included whole blood analysis for ALAD, blood serum chemistry (i.e., ALT, AST, CK, LDH, glucose, triglycerides, cholesterol, uric acid) and oxidative stress enzymes in liver tissue. Hepatic EROD and brain acetylcholinesterase levels were analyzed to assess exposure to contaminants other than metals. All samples were assayed for heavy metals by atomic absorption. A total of 198 nests were located. Overall nest success was significantly higher at the impoundment with no development in the supplying drainage. Focal parent feeding observations indicated females foraged less often in impoundments in highway locations. Preliminary analyses indicate sediments are not accumulating high metal levels. Serum and hepatic biomarker analyses indicate no statistically significant effects among drainage types.

  16. Introduction to arsenic contamination and health risk assessment with special reference to Bangladesh.

    PubMed

    Caussy, Deoraj; Priest, Nicholas D

    2008-01-01

    The problem of arsenic contamination in the Bengal River Basin illustrates a classic conundrum in environmental health, namely, that development projects can have double effects: on one hand development of tube wells eliminated bacterial pathogens and on the other it exposed the population to poisoning from arsenic. Thus, in future development projects the full health risk of a project must be considered during the planning, implementation, and decommissioning phases (Caussy 2003b; Caussy et al. 2003b). If such a holistic approach would have been followed, the mass contamination in the Bengal River Basin, in which millions of people were and are exposed to unsafe levels of arsenic, could have been averted. Although definite knowledge gaps in applying risk assessment steps for arsenic contamination exist, arsenic clearly poses a serious health problem and economic consequences to the affected population of the Bengal River Basin. It is binding on the international community to alleviate the problem through remediation measures to reduce arsenic exposure. One Environmental Sustainability Millennium development goal is to increase the proportion of population with sustainable access to an improved water source (Bartram et al. 2005). Providing water with safe levels of arsenic to affected communities of the Bengal River Basin will directly contribute to improved community health.

  17. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine.

    PubMed

    Almasri, Mohammad N

    2008-09-01

    Gaza coastal aquifer (GCA) is the major source of fresh water for the 1.5 million residents of Gaza Strip, Palestine. The aquifer is under deteriorating quality conditions mainly due to the excessive application of fertilizers. The intrinsic vulnerability of GCA to contamination was assessed using the well-known DRASTIC method. Detailed analysis of the intrinsic vulnerability map of GCA was carried out and did consider different relationships between the vulnerability indices and the on-ground nitrogen loadings and land use classes. In addition, correlation between vulnerability values and the nitrate concentrations in GCA was studied. Based on the vulnerability analysis, it was found that 10% and 13% of Gaza Strip area is under low and high vulnerability of groundwater contamination, respectively, while more than 77% of the area of Gaza Strip can be designated as an area of moderate vulnerability of groundwater contamination. It was found that the density of groundwater sampling wells for nitrate concentration is high for the moderate and high vulnerability zones. The highest first quartile, median, mean, and third quartile of nitrate concentrations are reported in the high vulnerability zones. Results of sensitivity analysis show a high sensitivity of the high vulnerability index to the depth to water table.

  18. Phagocytosis in earthworms: An environmentally acceptable endpoint to assess immunotoxic potential of contaminated soils

    SciTech Connect

    Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.; Venables, B.J.; Callahan, C.A.

    1995-12-31

    Phagocytosis, a host-defense mechanism phylogenetically conserved throughout the animal kingdom, by earthworm (Lumbricus terrestris) coelomocytes has potential as a surrogate for vertebrates to be used as an environmentally acceptable endpoint to assess sublethal immunotoxic risks of contaminated soils to environmental (eg. higher wildlife) and public health. Coelomocytes can be exposed in vivo to complex contaminated parent soils by placing earthworms in situ at hazardous waste sites (HWS) or into soil samples and their dilutions with artificial soil (AS) in the laboratory, or in vitro to soil extracts and their fractionations. Here the authors report on phagocytosis by coelomocytes in earthworms exposed to pentachlorophenol (PCP) contaminated soils from a wood treatment HWS, PCP-spiked AS and PCP treated filter paper (FP). HWS soil was diluted to 25% with AS to a sublethal concentration (ca. 125 mg kg{sup {minus}1}) and earthworms exposed for 14d at 10 C under light conditions. AS was spiked at ca. 125 mg kg{sup {minus}1} PCP and earthworms were similarly exposed. Controls for both consisted of earthworms exposed to 100% AS. Earthworms were exposed to FP treated with a sublethal PCP concentration (15 {micro}g cm{sup {minus}2}) at 10 C under dark conditions for 96H. Controls were similarly exposed without PCP. Phagocytosis by coelomocytes in earthworms exposed to HWS soil, spiked AS and treated FP was suppressed 37, 41 and 29%, respectively. Results are discussed in terms of PCP body burdens and exposure protocols.

  19. Assessment of multi-gate interceptors equipped with baffles in contaminated aquifers.

    PubMed

    Hudak, Paul F

    2011-07-01

    Funnel-and-gate structures with three gates, two funnels (collinear with gates), and two perpendicular flow-directing vanes (baffles) were assessed for capturing contaminated groundwater in a hypothetical unconfined aquifer. Simulated structures, anchored into an underlying aquiclude, were 35 m wide. One 5-m wide gate occupied the center, and two 3-m wide gates occupied the ends, of each structure. Both homogeneous and heterogeneous (with respect to hydraulic conductivity) aquifers were modeled, with baffles at various positions along funnels in alternative configurations. A contaminant transport model, accounting for advection and hydrodynamic dispersion, tested the capability of various structures for capturing contaminant plumes. Based upon modeling results: (1) structures with baffles performed up to 17% better (homogeneous case), but also up to 48% worse (heterogeneous case), than structures without them; (2) the most effective baffles generally occupied interior portions of funnels; and (3) small (1-m) shifts in the locations of baffles resulted in up to a 33% increase (homogeneous case) in remediation timeframe.

  20. Sensitive parameters in predicting exposure contaminants concentration in a risk assessment process.

    PubMed

    Avagliano, Salvatore; Vecchio, Antonella; Belgiorno, Vincenzo

    2005-12-01

    A sensitivity analysis (SA) was conducted on the analytical models considered in the risk-based corrective-action (RBCA) methodology of risk analysis, as developed by the American Society for Testing of Materials (ASTM), to predict a contaminant's concentration in the affected medium at the point of human exposure. These models are of interest because evaluations regarding the best approach to contaminated site remediation are shifting toward increased use of risk-based decision, and the ASTM RBCA methodology represents the most effective and internationally widely used standardized guide for risk assessment process. This paper identifies key physical and chemical parameters that need additional precision and accuracy consideration in order to reduce uncertainty in models prediction, thereby saving time, money and engineering effort in the data collection process. SA was performed applying a variance-based method to organic contaminants migration models with reference to soil-to-groundwater leaching ingestion exposure scenario. Results indicate that model output strongly depends on the organic-carbon partition coefficient, organic-carbon content, net infiltration, Darcy velocity, source-receptor distance, and first-order decay constant.

  1. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    PubMed

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  2. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    PubMed

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  3. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants.

  4. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.

    PubMed

    Ellis, Paul A; Rivett, Michael O

    2007-04-01

    This study is believed to be one of the first to assess the impact of urban VOC-(volatile organic compound) contaminated groundwater on river-water quality at the city scale. A network of riverbed piezometers was used to study the 7.4-km urbanised reach of the River Tame that flows across the groundwater-effluent unconfined Triassic sandstone aquifer underlying the city of Birmingham (UK). Aquifer groundwater contained significant chlorinated VOC contamination due to the city's industrial heritage. Chlorinated VOC-contaminated baseflow was widespread along the reach with trichloroethene (TCE) dominant. VOC concentrations in riverbed piezometers were in the range 0.1-100 microg/l with typical regulatory limits occasionally exceeded by an order of magnitude. Although anaerobic biodegradation products such as cis-dichloroethene were widespread, they were unlikely to have formed in the generally aerobic riverbed. The lack of anaerobic conditions was ascribed to insufficient accumulation of low-permeability, organic-carbon rich riverbed sediments in this medium-high energy river. Assumptions a priori that natural attenuation of chlorinated VOCs will occur via reductive dechlorination in urban riverbeds are likely in error, particularly where deposits of medium-high permeability exist transmitting much of the baseflow. Surface-water quality impacts were nevertheless still low with in-river TCE increasing by just 2 microg/l over the 7.4-km reach. Agreement of baseflow contaminant flux estimates based on five flow-concentration product methods was achieved to within an order of magnitude with 22-200 kg/yr of TCE estimated to discharge to the 7.4-km reach (equivalent to 0.8-7.5 mg/d/m2 of riverbed). Such uncertainty was not regarded as unreasonable when the large measurement scale and geological and chemical heterogeneities are considered. Improved flux estimation methods and greater monitoring densities are nevertheless warranted. Considering Birmingham's long industrial

  5. Assessment of PCDD/Fs levels in soil at a contaminated sawmill site in Sweden--a GIS and PCA approach to interpret the contamination pattern and distribution.

    PubMed

    Henriksson, S; Hagberg, J; Bäckström, M; Persson, I; Lindström, G

    2013-09-01

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) were analysed in soil from a Swedish sawmill site where chlorophenols (CPs) had been used more than 40 years ago. The most contaminated area at the site was the preservation subarea where the PCDD/F WHO2005-TEQ level was 3450 times higher than the current Swedish guideline value of 200 ng TEQ/kg soil for land for industrial use. It was also shown that a fire which destroyed the sawmill might have affected the congener distribution at the concerned areas. To get a broader picture of the contamination both GIS (spatial interpolation analysis) and multivariate data analysis (PCA) were applied to visualize and compare PCDD/F levels as well as congener distributions at different areas at the site. It is shown that GIS and PCA are powerful tools in decisions on future investigations, risk assessments and remediation of contaminated sites.

  6. Baseline risk assessment for exposure to contaminants at the St. Louis Site, St. Louis, Missouri

    SciTech Connect

    Not Available

    1993-11-01

    The St. Louis Site comprises three noncontiguous areas in and near St. Louis, Missouri: the St. Louis Downtown Site (SLDS), the St. Louis Airport Storage Site (SLAPS), and the Latty Avenue Properties. The main site of the Latty Avenue Properties includes the Hazelwood Interim Storage Site (HISS) and the Futura Coatings property, which are located at 9200 Latty Avenue. Contamination at the St. Louis Site is the result of uranium processing and disposal activities that took place from the 1940s through the 1970s. Uranium processing took place at the SLDS from 1942 through 1957. From the 1940s through the 1960s, SLAPS was used as a storage area for residues from the manufacturing operations at SLDS. The materials stored at SLAPS were bought by Continental Mining and Milling Company of Chicago, Illinois, in 1966, and moved to the HISS/Futura Coatings property at 9200 Latty Avenue. Vicinity properties became contaminated as a result of transport and movement of the contaminated material among SLDS, SLAPS, and the 9200 Latty Avenue property. This contamination led to the SLAPS, HISS, and Futura Coatings properties being placed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA). The US Department of Energy (DOE) is responsible for cleanup activities at the St. Louis Site under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The primary goal of FUSRAP is the elimination of potential hazards to human health and the environment at former Manhattan Engineer District/Atomic Energy Commission (MED/AEC) sites so that, to the extent possible, these properties can be released for use without restrictions. To determine and establish cleanup goals for the St. Louis Site, DOE is currently preparing a remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS). This baseline risk assessment (BRA) is a component of the process; it addresses potential risk to human health and the environment associated wi

  7. 3H/3He age data in assessing the susceptibility of wells to contamination

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.; Thiros, S.A.

    2005-01-01

    Regulatory agencies are becoming increasingly interested in using young-ground water dating techniques, such as the 3H/3He method, in assessing the susceptibility of public supply wells (PSWs) to contamination. However, recent studies emphasize that ground water samples of mixed age may be the norm, particularly from long-screened PSWs, and tracer-based "apparent" ages can differ substantially from actual mean ages for mixed-age samples. We present age and contaminant data from PSWs in Salt Lake Valley, Utah, that demonstrate the utility of 3H and 3He measurements in evaluating well susceptibility, despite potential age mixing. Initial 3H concentrations (measured 3H + measured tritiogenic 3He) are compared to those expected based on the apparent 3H/3He age and the local precipitation 3H record. This comparison is used to determine the amount of modern water (recharged after ???1950) vs. prebomb water (recharged before ???1950) samples might contain. Concentrations of common contaminants were also measured using detection limits generally lower than those used for regulatory purposes. A clear correlation exists between the potential magnitude of the modern water fraction and both the occurrence and concentration of contaminants. For samples containing dominantly modern water based on their initial 3H concentrations, potential discrepancies between apparent 3H/ 3He ages and mean ages are explored using synthetic samples that are random mixtures of different modern waters. Apparent ages can exceed mean ages by up to 13 years for these samples, with an exponential age distribution resulting in the greatest discrepancies.

  8. Assessing the Public Health Impact and Effectiveness of Interventions To Prevent Salmonella Contamination of Sprouts.

    PubMed

    Ding, Hongliu; Fu, Tong-Jen

    2016-01-01

    Sprouts have been a recurring public health challenge due to microbiological contamination, and Salmonella has been the major cause of sprout-associated outbreaks. Although seed treatment and microbiological testing have been applied as risk reduction measures during sprout production, the extent to which their effectiveness in reducing the public health risks associated with sprouts has not been well investigated. We conducted a quantitative risk assessment to measure the risk posed by Salmonella contamination in sprouts and to determine whether and how mitigation strategies can achieve a satisfactory risk reduction based on the assumption that the risk reduction achieved by a microbiological sampling and testing program at a given sensitivity is equivalent to that achieved by direct inactivation of pathogens. Our results indicated that if the sprouts were produced without any risk interventions, the health impact caused by sprouts contaminated with Salmonella would be very high, with a median annual estimated loss of disability-adjusted life years (DALYs) of 691,412. Seed treatment (with 20,000 ppm of calcium hypochlorite) or microbiological sampling and testing of spent irrigation water (SIW) alone could reduce the median annual impact to 734 or 4,856 DALYs, respectively. Combining seed treatment with testing of the SIW would further decrease the risk to 58 DALYs. This number could be dramatically lowered to 3.99 DALYs if sprouts were produced under conditions that included treating seeds with 20,000 ppm of calcium hypochlorite plus microbiological testing of seeds, SIW, and finished products. Our analysis shows that the public health impact due to Salmonella contamination in sprouts could be controlled if seeds are treated to reduce pathogens and microbiological sampling and testing is implemented. Future advances in intervention strategies would be important to improve sprout safety further.

  9. Assessment of a Molecular Diffusion Model in MELCOR

    SciTech Connect

    Chang OH; Richard Moore

    2005-06-01

    The MELCOR (version 1.8.5) [1] computer code with INEEL revisions is being improved for the analysis of very high temperature gas-cooled reactors [2]. Following a loss-of-coolant accident, flow through the reactor vessel may initially stagnate due to a non-uniform concentration of helium and air. However, molecular diffusion will eventually result in a uniform concentration of air and helium. The differences in fluid temperatures within the reactor vessel will then result in the establishment of a natural circulation flow that can supply significant amounts of air to the reactor core. The heat released by the resulting oxidation of graphite in the reactor core has the potential to increase the peak fuel temperature. In order to analyze the effects of oxidation on the response of the reactor during accidents, a molecular diffusion model was added to MELCOR. The model is based on Fick's Second Law for spatially uniform pressure and temperature. This paper describes equimolal counter diffusion experiments in a two bulb diffusion cell and the results of the assessment calculations.

  10. TOOLS FOR ASSESSING MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Management of contaminated sediments poses many challenges due to varied contaminants and volumes of sediments to manage. dredging, capping, and monitored natural recovery (MNR) are the primary approaches at this time for managing contaminated sediment risks. Understanding how we...

  11. Technical and operational assessment of molecular nanotechnology for space operations

    NASA Astrophysics Data System (ADS)

    McKendree, Thomas Lawrence

    2001-07-01

    This study assesses the performance of conventional technology and three levels of molecular nanotechnology (MNT) for space operations. The measures of effectiveness are technical performance parameters for five space transportation architectures, and the total logistics cost for an evaluation scenario with mining, market and factory locations on the Moon, Mars and asteroids. On these measures of effectiveness, improvements of 2--4 orders of magnitude are seen in chemical rockets, solar electric ion engines, solar sail accelerations (but not transit times), and in structural masses for planetary skyhooks and towers. Improvements in tether performance and logistics costs are nearer to 1 order of magnitude. Appendices suggest additional improvements may be possible in space mining, closed-environment life support, flexible operations, and with other space transportation architectures. In order to assess logistics cost, this research extends the facility location problem of location theory to orbital space. This extension supports optimal siting of a single facility serving circular, coplanar orbits, locations in elliptic planetary and moon orbits, and heuristic siting of multiple facilities. It focuses on conventional rocket transportation, and on high performance rockets supplying at least 1 m/s2 acceleration and 500,000 m/s exhaust velocity. Mathematica implementations are provided in appendices. Simple MNT allows diamond and buckytube construction. The main benefits are in chemical rocket performance, solar panel specific power, solar electric ion engine performance, and skyhook and tower structural masses. Complex MNT allows very small machinery, permitting large increases in solar panel specific power, which enables solar electric ion engines that are high performance rockets, and thus reduces total logistics costs an order of magnitude. Most Advance MNT allows molecular manufacturing, which enables self-repair, provides at least marginal improvements in nearly

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  13. MOLECULAR ANALYSIS OF MICROBIAL COMMUNITY STRUCTURES IN PRISTINE AND CONTAMINATED AQUIFERS: FIELD AND LABORATORY MICROCOSM EXPERIMENTS

    EPA Science Inventory

    This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminted (NC) and (ii) examine alterations in micro...

  14. Molecular Scale Determinants of Organic Contaminant and Pesticide Sorption by Clays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clay minerals and soil organic matter (SOM) are generally considered to be the most important soil components in the sorption of aqueous phase organic contaminants. During the past 25 years, much emphasis has been placed on the dominant role of SOM in sorption. However, there is increasing evidence...

  15. MIR Solar Array Return Experiment: Power Performance Measurements and Molecular Contamination Analysis Results

    NASA Technical Reports Server (NTRS)

    Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas

    2001-01-01

    A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.

  16. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  17. Assessment of a nanoparticle bridge platform for molecular electronics measurements

    NASA Astrophysics Data System (ADS)

    Jafri, S. H. M.; Blom, T.; Leifer, K.; Strømme, M.; Löfås, H.; Grigoriev, A.; Ahuja, R.; Welch, K.

    2010-10-01

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal-molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the I-V curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.

  18. Assessment of a nanoparticle bridge platform for molecular electronics measurements.

    PubMed

    Jafri, S H M; Blom, T; Leifer, K; Strømme, M; Löfås, H; Grigoriev, A; Ahuja, R; Welch, K

    2010-10-29

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal-molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the I-V curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.

  19. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  20. Molecular-Scale Characterization of Natural Organic Matter From A Uranium Contaminated Aquifer and its Utilization by Native Microbial Communities

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Wilkins, M. J.; Williams, K. H.; Smith, D. F.; Paša-Tolić, L.

    2011-12-01

    The availability and form of natural organic matter (NOM) strongly influences rates of microbial metabolism and associated redox processes in subsurface environments. This is an important consideration in metal-contaminated aquifers, such as the DOE's Rifle Integrated Field Research Challenge (IFRC) site, where naturally occurring suboxic conditions in groundwater may play an important function in controlling uranium mobility, and therefore the long-term stewardship of the site. Currently, the biophysiochemical processes surrounding the nature of the aquifer and its role in controlling the fate and transport of uranium are poorly understood. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with electrospray ionization (ESI), we characterized dissolved organic matter (DOM) chemistry for three surface and groundwater sources at Rifle and assessed microbial utilization in batch incubation experiments. FT-ICR-MS uniquely offers ultrahigh mass measurement accuracy and resolving power for polar organics, in addition to enabling elemental composition assignments of these compounds. Samples were collected from the Colorado River, a shallow groundwater aquifer adjacent to the river, and a spring/seep discharge point upgradient from the aquifer. DOM was concentrated and purified from each source and analyzed using FT-ICR-MS with ESI. We identified between 6,000 and 7,000 formulae at each location, with the river sample having the smallest and the spring sample having the largest number of identified peaks. The groundwater and spring samples contained DOM with a large percentage of formulae containing nitrogen and sulfur species, while the river sample was dominated by carbon, hydrogen, and oxygen species. Less than 38% of the formulae were shared between any two samples, indicating a significant level of uniqueness across the samples. Unsaturated hydrocarbons, cellulose, and lipids were rapidly utilized by indigenous bacteria during a 24-day

  1. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    SciTech Connect

    Brown, G

    2004-02-05

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  2. Molecular environmental science : an assessment of research accomplishments, available synchrotron radiation facilities, and needs.

    SciTech Connect

    Brown, G. E., Jr.; Sutton, S. R.; Bargar, J. R.; Shuh, D. K.; Fenter, P. A.; Kemner, K. M.

    2004-10-20

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  3. Risk assessment of brine contamination to aquatic resources from energy development in glacial drift deposits: Williston Basin, USA.

    PubMed

    Preston, Todd M; Chesley-Preston, Tara L

    2015-03-01

    Contamination to aquatic resources from co-produced water (brine) associated with energy development has been documented in the northeastern portion of the Williston Basin; an area mantled by glacial drift. The presence and magnitude of brine contamination can be determined using the contamination index (CI) value from water samples. Recently, the U.S. Geological Survey published a section (~2.59 km(2)) level risk assessment of brine contamination to aquatic resources for Sheridan County, Montana, using oilfield and hydrogeological parameters. Our goal was to improve the Sheridan County assessment (SCA) and evaluate the use of this new Williston Basin assessment (WBA) across 31 counties mantled by glacial drift in the Williston Basin. To determine if the WBA model improved the SCA model, results from both assessments were compared to CI values from 37 surface and groundwater samples collected to evaluate the SCA. The WBA (R(2)=0.65) outperformed the SCA (R(2)=0.52) indicating improved model performance. Applicability across the Williston Basin was evaluated by comparing WBA results to CI values from 123 surface water samples collected from 97 sections. Based on the WBA, the majority (83.5%) of sections lacked an oil well and had minimal risk. Sections with one or more oil wells comprised low (8.4%), moderate (6.5%), or high (1.7%) risk areas. The percentage of contaminated water samples, percentage of sections with at least one contaminated sample, and the average CI value of contaminated samples increased from low to high risk indicating applicability across the Williston Basin. Furthermore, the WBA performed better compared to only the contaminated samples (R(2)=0.62) versus all samples (R(2)=0.38). This demonstrates that the WBA was successful at identifying sections, but not individual aquatic resources, with an increased risk of contamination; therefore, WBA results can prioritize future sampling within areas of increased risk.

  4. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    SciTech Connect

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr–1, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L–1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr–1, and compared to the base case (100 mm yr–1) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  5. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    SciTech Connect

    KHALEEL R

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr{sup -1}, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10{sup 6} pCi L{sup -1}. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr{sup -1}, and compared to the basecase(100 mm yr{sup -1}) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  6. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. PMID:22939220

  7. Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water

    SciTech Connect

    Khadam, Ibrahim M.; Kaluarachchi, Jagath J

    2003-10-01

    Traditionally, environmental decision analysis in subsurface contamination scenarios is performed using cost-benefit analysis. In this paper, we discuss some of the limitations associated with cost-benefit analysis, especially its definition of risk, its definition of cost of risk, and its poor ability to communicate risk-related information. This paper presents an integrated approach for management of contaminated ground water resources using health risk assessment and economic analysis through a multi-criteria decision analysis framework. The methodology introduces several important concepts and definitions in decision analysis related to subsurface contamination. These are the trade-off between population risk and individual risk, the trade-off between the residual risk and the cost of risk reduction, and cost-effectiveness as a justification for remediation. The proposed decision analysis framework integrates probabilistic health risk assessment into a comprehensive, yet simple, cost-based multi-criteria decision analysis framework. The methodology focuses on developing decision criteria that provide insight into the common questions of the decision-maker that involve a number of remedial alternatives. The paper then explores three potential approaches for alternative ranking, a structured explicit decision analysis, a heuristic approach of importance of the order of criteria, and a fuzzy logic approach based on fuzzy dominance and similarity analysis. Using formal alternative ranking procedures, the methodology seeks to present a structured decision analysis framework that can be applied consistently across many different and complex remediation settings. A simple numerical example is presented to demonstrate the proposed methodology. The results showed the importance of using an integrated approach for decision-making considering both costs and risks. Future work should focus on the application of the methodology to a variety of complex field conditions to

  8. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  9. Site contamination health risk assessment case study involving tenant relocation from a former gasworks site.

    PubMed

    Turczynowicz, Len; Fitzgerald, D James; Nitschke, Monika; Mangas, Sam; McLean, Angela

    2007-10-01

    An Adelaide suburban public-housing residential site with 16 apartments was investigated after complaints of odor in some yard areas. A distinct 0.5-m layer of dark, odorous (tarry), contaminant material, which in some areas had been covered with plastic sheeting, was subsequently found beneath the topsoil across most of the site. This material appeared to extend beneath the apartments. Analysis indicated high levels of cyanide and polycyclic aromatic hydrocarbons (PAHs), consistent with gasworks waste. Historical investigation revealed that the site was originally owned by a gas company and that a large gasometer (gas-storage tank) existed in one corner of the site. This finding of significant soil contamination precipitated a decision by the health and housing authorities to notify tenants immediately and to plan for their relocation. In addition to tending to the consequent personal disruption and logistical difficulties this posed, a detailed risk assessment process was developed. Urine samples were collected before and after relocation and analyzed for 1-hydroxypyrene (1-OHP), a biomarker for polycyclic aromatic hydrocarbon (PAH) exposure. In addition, samples of tap water, indoor and outdoor air, indoor and ceiling dust, carpets, and soil from tillage areas were analyzed for PAHs. Data indicated a low health risk associated with tenancy on the site. This report presents details of the health risk assessment process undertaken and discusses vindicative reasons for tenant relocation. PMID:17763082

  10. Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea.

    PubMed

    Lee, Sang-Woo; Lee, Byung-Tae; Kim, Ju-Yong; Kim, Kyoung-Woong; Lee, Jin-Soo

    2006-08-01

    Cleanup goals for the contaminated sites are established on the basis of risk assessments and rely on the estimated toxicity of the chemicals of concern (COC). Toxicity estimates are based on bioavailability causing risk of adverse health effects on humans. In this study, bioavailability of As, Cu, Pb and Zn in soil was determined by SBET (Simple Bioavailability Extraction Test), and chemical analysis for groundwater and stream water collected from the abandoned mine areas (Dukeum, Dongil, Dongjung, Myungbong and Songchun mine areas) was conducted. High values of cancer risk for As (1.16x10(-5)) were detected through soil ingestion pathways in the Songchun mine area and assessed through water exposure pathways in the all mines except Dukeum. The hazard index value for As in the Songchun mine area (3.625) exceeded 1.0. The results indicated that the ingestion of As-contaminated soil and water by local inhabitants can pose a potential health threat in these mine areas.

  11. Use of a {sup 15}N isotope dilution method to assess contaminant effects on soil nitrification

    SciTech Connect

    Nason, G.E.; Dinwoodie, G.D.

    1995-12-31

    Ecologically relevant bioassays are needed to assess effects of contaminants on soil processes such as decomposition and nutrient cycling. This study was conducted to assess the potential of a soil-based nitrification bioassay. Soil samples adjusted to 0.03 MPa moisture content were amended with 0.1, 1.0, 10 and 100 mg kg{sup {minus}1} PCP or PCB, and 0.05, 0.5, 5 and 50 mg kg{sup {minus}1} Hg and preincubated for 7 days. A 2-d incubation was then started by addition of 10 mg kg{sup {minus}1} {sup 15}NO{sub 3}-N. Diethyl ether used as a carrier for PCP addition had little effect on inorganic nitrogen concentrations during the incubation. Net nitrogen mineralization and nitrification were unaffected by PCB. Higher amendment levels of both PCP and Hg resulted in increases in ammonium concentrations and decreases in net nitrification. {sup 15}N-nitrate pool dilution was sensitive to contamination and showed some gross nitrification was occurring even when net nitrification had ceased. Recoveries of Hg and PCB at the end of the study were greater than 90%. Recovery of PCP was 5%. Incubations carried out under sterile and non-sterile conditions indicated that both sorption and biological degradation were factors in the low PCP recovery.

  12. Assessing ongoing sources of dissolved-phase polychlorinated biphenyls in a contaminated stream

    USGS Publications Warehouse

    Dang, Viet D.; Walters, David M.; Lee, Cindy M.

    2013-01-01

    Few studies assess the potential of ongoing sources of “fresh” polychlorinated biphenyls (PCBs) to aquatic systems when direct discharge to the environment has been eliminated. In the present study, the authors used single-layered, low-density polyethylene samplers (PEs) to measure total PCB concentrations, congener profiles, and enantiomeric fractions (EFs) in a contaminated stream and to provide multiple lines of evidence for assessing ongoing inputs of PCB. Concentrations were well above background levels that have been monitored for years. Concentrations significantly increased with distance, the farthest downstream PE concentrations being almost five times greater than those at 79 m downstream of a historical point source. The PCBs in the PEs at 79 m downstream of the contamination source were dominated by low KOW congeners, similar to those in the mixture of Aroclors 1016 and 1254 (4:1 v/v) historically released from the former capacitor manufacturer. The only two chiral congeners detected in the PEs downstream were PCBs 91 and 95. The EF values were nonracemic for PCB 91, while the values were either racemic or near racemic for PCB 95. Increased PCB concentrations with distance and a congener composition of predominantly low-weight congeners in the PEs at 79 m downstream of the plant site suggested an ongoing PCB source from the plant site. Chiral signatures suggested aerobic biotransformation of dissolved PCBs but did not shed any light on possible ongoing PCB inputs.

  13. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment.

    PubMed

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-03-04

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  14. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the

  15. Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater.

    PubMed

    Diston, D; Sinreich, M; Zimmermann, S; Baumgartner, A; Felleisen, R

    2015-06-16

    Microbial contamination of groundwater represents a significant health risk to resource users. Culture-dependent Bacteroides phage and molecular-dependent Bacteroidales 16S rRNA assays are employed in microbial source tracking (MST) studies globally, however little is known regarding how these important groups relate to each other in the environment and which is more suitable to indicate the presence of waterborne fecal pollution and human enteric viruses. This study addresses this knowledge gap by examining 64 groundwater samples from sites with varying hydrogeological properties using a MST toolbox containing two bacteriophage groups (phage infecting GB-124 and ARABA-84), and two Bacteroidales 16S rRNA markers (Hf183 and BacR); those were compared to fecal indicator bacteria, somatic coliphage, Bacteroidales 16S rRNA marker AllBac, four human enteric viruses (norovirus GI and II, enterovirus and group A rotavirus) and supplementary hydrogeological/chemical data. Bacteroidales 16S rRNA indicators offered a more sensitive assessment of both human-specific and general fecal contamination than phage indicators, but may overestimate the risk from enteric viral pathogens. Comparison with hydrogeological and land use site characteristics as well as auxiliary microbiological and chemical data proved the plausibility of the MST findings. Sites representing karst aquifers were of significantly worse microbial quality than those with unconsolidated or fissured aquifers, highlighting the vulnerability of these hydrogeological settings.

  16. Applying GORE-TEX technology for rapid contaminant assessments at Fort Gordon, Georgia

    USGS Publications Warehouse

    Falls, Fred W.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army at Fort Gordon, Georgia, deployed GORE1 adsorbent samplers along creeks and floodplains to rapidly assess potential contamination at abandoned facilities and in adjacent surface water. The samplers provide screening-level data to determine the presence or absence of volatile organic compounds, semi-volatile organic compounds, and polycyclic aromatic hydrocarbons and were deployed in saturated creek and floodplain sediments adjacent to four abandoned waste-disposal/warfare-training sites. Fuelrelated compounds, not solvents, are the most prevalent organic compounds detected along segments of McCoys Creek adjacent to the 19th Street landfill; South Prong Creek adjacent to the South Prong Creek waste-disposal area; an unnamed tributary to Butler Creek adjacent to the old hospital landfill; and the Brier Creek floodplain adjacent to the Patterson anti-tank range. All 37 samplers deployed in these assessments had detections of total petroleum hydrocarbons ranging from just above 3 (laboratory method detection level) to 344 micrograms per liter. Detections of octane that ranged from 1 to 7.6 micrograms per liter were common in all assessments, except for South Prong Creek. Calculated concentrations of benzene are at or just above the National Primary Drinking Water Standard maximum contaminant level for all samplers deployed in the floodplain at the Patterson anti-tank range. The highest calculated concentration of a specific fuel-related compound was for toluene collected at one sampling site on McCoys Creek adjacent to the 19th Street landfill, but the concentration was below the National Primary Drinking Water Standard. These results are being used by Fort Gordon environmental compliance personnel to decide if further assessments are needed at these abandoned waste-disposal/warfare-training sites

  17. [Application and benefit evaluation of tiered health risk assessment approach on site contaminated by benzene].

    PubMed

    Jiang, Lin; Zhong, Mao-Sheng; Liang, Jin; Yao, Jue-Jun; Xia, Tian-Xiang; Fan, Yan-Ling; Li, Jing-Dong; Tang, Zheng-Qiang

    2013-03-01

    The procedures of implementing tiered health risk assessment approach were introduced in detail, and took a large-scale site polluted by benzene in Beijing as an example, the difference on the remediation target of benzene in soil, as well as the corresponding soil remediation volume and costs, were compared. The results indicate that the benzene concentration in soil within 1.5 m in depth and the one below should be remediated to 0.26 mg x kg(-1) and 0.15 mg x kg(-1), respectively, in order to keep the cumulative carcinogenic health risk below 1 x 10(-6) based on tiered II assessment. However, according to tiered III assessment result, which is based on the benzene in soil gas within the contaminated areas in the investigated site, the soil in the corresponding depth should only be remediated to 2.6 mg x kg(-1) and 1.5 mg x kg(-1), respectively. That means the soil remediation volume delimited on tiered III assessment result is less than the one on tiered II by 139 537 m3 and the corresponding remediation costs will be reduced by 57 million Yuan, meaning the enormous economic benefits compared to the costs (around 100 thousands Yuan) spent to carry out tiered III assessment in the site.

  18. Use of the aquatic oligochaete lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants

    SciTech Connect

    Phipps, G.L.; Ankley, G.T.; Benoit, D.A.; Mattson, V.R. )

    1993-02-01

    In this paper the authors describe test methods utilizing the aquatic oligochaete Lumbriculus variegatus to assess the acute and chronic toxicity and the presence of bioaccumulatable compounds in contaminated sediments. Lumbriculus variegatus was chosen as a test species because (a) it represents an ecologically relevant component of freshwater ecosystems; (b) it is suitable for long-term testing and evaluation of chronic toxicity end points (e.g., growth, reproduction); (c) it is exposed via all important routes of concern, including ingesting of contaminated particles; and (d) it has sufficient biomass to assess bioaccumulation of contaminants. Also, Lumbriculus variegatus is easily cultured and handled. Described herein are culturing procedures and test protocols for Lumbriculus variegatus, as well as two examples of the types of experimental data generated when using the oligochaete in test with contaminated sediments. Two case studies are presented in which L. variegatus was used to assess the bioaccumulation of metals (cadmium, nickel) from contaminated sediments and assess the toxicity of sediment samples collected from the copper-contaminated Keweenaw Waterway system in Michigan.

  19. Comparative study of multimedia models applied to the risk assessment of soil and groundwater contamination sites in Taiwan.

    PubMed

    Fan, Chihhao; Chen, Yen-chuan; Ma, Hwong-wen; Wang, Gen-shuh

    2010-10-15

    The purpose of this study was to explore the applicability of two popular multimedia risk assessment models to three different soil and groundwater contamination sites in Taiwan. The Multimedia Environmental Pollutant Assessment System (MEPAS) and the Multimedia Contaminant Fate, Transport, and Exposure Model (MMSOILS) were selected because of their wide application and use. Three soil and groundwater contamination sites in Taiwan were employed as illustrative examples in the comparison of these two risk assessment models. Three exposure pathways were investigated, categorized as oral ingestion, dermal absorption, and inhalation. The results show that MEPAS and MMSOILS calculated similar cancer risks and hazard quotients in general, but were different by two orders of magnitude in cancer risk estimates for sites contaminated by volatile organic compounds (VOC). Using MMSOILS may not be appropriate for risk assessment of such sites, as it does not account for indoor inhalation as a potential exposure pathway in its risk calculations. Water ingestion, dermal absorption when showering and indoor inhalation were the three most predominant contributing exposure pathways for risk development among sites contaminated by VOCs. On the other hand, crop and meat ingestion were more important exposure pathways in the context of sites with non-VOC pollutants, because these hydrophobic contaminants may be bio-accumulative in plants and animals, and consequently enter the human body via food chains.

  20. The assessment of groundwater nitrate contamination by using logistic regression model in a representative rural area

    NASA Astrophysics Data System (ADS)

    Ko, K.; Cheong, B.; Koh, D.

    2010-12-01

    Groundwater has been used a main source to provide a drinking water in a rural area with no regional potable water supply system in Korea. More than 50 percent of rural area residents depend on groundwater as drinking water. Thus, research on predicting groundwater pollution for the sustainable groundwater usage and protection from potential pollutants was demanded. This study was carried out to know the vulnerability of groundwater nitrate contamination reflecting the effect of land use in Nonsan city of a representative rural area of South Korea. About 47% of the study area is occupied by cultivated land with high vulnerable area to groundwater nitrate contamination because it has higher nitrogen fertilizer input of 62.3 tons/km2 than that of country’s average of 44.0 tons/km2. The two vulnerability assessment methods, logistic regression and DRASTIC model, were tested and compared to know more suitable techniques for the assessment of groundwater nitrate contamination in Nonsan area. The groundwater quality data were acquired from the collection of analyses of 111 samples of small potable supply system in the study area. The analyzed values of nitrate were classified by land use such as resident, upland, paddy, and field area. One dependent and two independent variables were addressed for logistic regression analysis. One dependent variable was a binary categorical data with 0 or 1 whether or not nitrate exceeding thresholds of 1 through 10 mg/L. The independent variables were one continuous data of slope indicating topography and multiple categorical data of land use which are classified by resident, upland, paddy, and field area. The results of the Levene’s test and T-test for slope and land use were showed the significant difference of mean values among groups in 95% confidence level. From the logistic regression, we could know the negative correlation between slope and nitrate which was caused by the decrease of contaminants inputs into groundwater with

  1. Quantitative assessment of hydrocarbon contamination in soil using reflectance spectroscopy: a "multipath" approach.

    PubMed

    Schwartz, Guy; Ben-Dor, Eyal; Eshel, Gil

    2013-11-01

    Petroleum hydrocarbons are contaminants of great significance. The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil samples is based on extraction with 1,1,2-Trichlorotrifluoroethane (Freon 113), a substance prohibited to use by the Environmental Protection Agency. During the past 20 years, a new quantitative methodology that uses the reflected radiation of solids has been widely adopted. By using this approach, the reflectance radiation across the visible, near infrared-shortwave infrared region (400-2500 nm) is modeled against constituents determined using traditional analytic chemistry methods and then used to predict unknown samples. This technology is environmentally friendly and permits rapid and cost-effective measurements of large numbers of samples. Thus, this method dramatically reduces chemical analytical costs and secondary pollution, enabling a new dimension of environmental monitoring. In this study we adapted this approach and developed effective steps in which hydrocarbon contamination in soils can be determined rapidly, accurately, and cost effectively solely from reflectance spectroscopy. Artificial contaminated samples were analyzed chemically and spectrally to form a database of five soils contaminated with three types of petroleum hydrocarbons (PHCs), creating 15 datasets of 48 samples each at contamination levels of 50-5000 wt% ppm (parts per million). A brute force preprocessing approach was used by combining eight different preprocessing techniques with all possible datasets, resulting in 120 different mutations for each dataset. The brute force was done based on an innovative computing system developed for this study. A new parameter for evaluating model performance scoring (MPS) is proposed based on a combination of several common statistical parameters. The effect of dividing the data into training validation and test sets on modeling accuracy is also discussed. The results of this study clearly show

  2. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol

    PubMed Central

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70–0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area. PMID:26561038

  3. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol.

    PubMed

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area. PMID:26561038

  4. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol.

    PubMed

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  6. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect

    Not Available

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  8. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect

    Not Available

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  9. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

  10. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil.

    PubMed

    Jayanthy, V; Geetha, R; Rajendran, R; Prabhavathi, P; Karthik Sundaram, S; Dinesh Kumar, S; Santhanam, P

    2014-09-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV-vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC-MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  11. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  12. Development of Triad approach based system for ecological risk assessment for contaminated areas of Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Kydralieva, Kamilia; Uzbekov, Beksultan; Khudaibergenova, Bermet; Terekhova, Vera; Jorobekova, Sharipa

    2014-05-01

    This research is aimed to develop a high-effective system of an ecological risk assessment and risk-based decision making for anthropogenic ecosystems, with particular focus on the soils of the Kyrgyz Republic. The study is focused on the integration of Triad data including chemical, biological and ecotoxicological soil markers to estimate the potential risk from soils of highly anthropized areas impacted by deposition of different pollutants from mining operation. We focus on technogenic areas of Kyrgyzstan, the former uranium-producing province. Triad-based ecological risk assessment for technogenic sites are not currently used in Kyrgyzstan. However, the vitality of such research is self-evident. There are about 50 tailing dumps and more than 80 tips of radioactive waste which are formed as a result of uranium and complex ores (mercury, antimony, lead, cadmium and etc) mining around the unfavorable aforementioned places. According to the Mining Wastes' Tailings and Fills Rehabilitation Centre established in 1999 by a special Government's Resolution, one of the most ecologically dangerous uranium tailings resides in Kadzhi-Say. Although uranium processing is no longer practiced in Kadzhi-Say, a large number of open landfills and uranium ore storages still remain abandoned at the vicinity of this settlement. These neglected sites have enormous problems associated with soil erosion known as "technogenic deserts". The upper soil horizons are deprived of humus and vegetation, which favor the formation of low-buffer landscapes in the zones of maximum contamination. As a result, most of these areas are not re-cultivated and remain in critical environmental condition (Bykovchenko, et al., 2005; Tukhvatshin, 2005; Suranova, 2006). Triad data for assessing environmental risk and biological vulnerability at contaminated sites will be integrated. The following Triad-based parameters will be employed: 1) chemical soil analyses (revealing the presence of potentially dangerous

  13. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.

    PubMed

    Valcke, Mathieu; Krishnan, Kannan

    2014-03-01

    A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants. PMID:24038072

  14. Determination of a risk management primer at petroleum-contaminated sites: developing new human health risk assessment strategy.

    PubMed

    Park, In-Sun; Park, Jae-Woo

    2011-01-30

    Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination.

  15. Assessment of cyclodextrin-enhanced extraction of crude oil from contaminated porous media.

    PubMed

    Gao, Heng; Miles, Martin S; Meyer, Buffy M; Wong, Roberto L; Overton, Edward B

    2012-08-01

    The purpose of this study was to evaluate the effects of cyclodextrin (CD) on the extraction of Macondo well oil from contaminated porous media over a range of hydroxypropyl-β-CD (HPβCD) concentrations. To our knowledge, this is the first dataset on this type of CD yet assembled for an actual crude oil. The results showed that HPβCD can significantly increase oil extraction efficiency, demonstrated by increasing concentrations of all tested normal alkanes (nC(15)-nC(35)) and polyaromatic hydrocarbons (PAHs) in the aqueous phase with increasing CD concentration. A linear relationship between the extraction enhancement effect and CD concentration were verified experimentally and high correlation coefficients for total PAHs (R(2) = 0.82) and alkanes (R(2) = 0.99) were determined. For a 20% CD solution, 3.13 wt% of alkanes and 32.12 wt% of total PAHs were extracted to the aqueous phase, which was significantly more than what was extracted with water only (0.04% and 0.21% for alkanes and PAHs, respectively). This result shows that the remediation of oil contaminated media can be significantly enhanced through the use of HPβCD solutions in flushing or pump and treat operations to remove sorbed oil. The CD extraction enhancement effect decreases with increasing n-alkane chain length for the carbon number range tested. CD significantly enhanced PAH extraction from sand and the enhancement effect increased in the order of parent compounds < C-1 substituted < C-2 substituted < C-3 substituted for most PAHs tested. This study provides important information to assess the feasibility of using CD as a near-shore agent to enhance the cleanup of oil contaminated porous media.

  16. Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia.

    PubMed

    Kadhum, Safaa A; Ishak, Mohd Yusoff; Zulkifli, Syaizwan Zahmir

    2016-04-01

    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future. PMID:26614452

  17. Validating the use of biopsy sampling in contamination assessment studies of small cetaceans.

    PubMed

    Méndez-Fernandez, Paula; Galluzzi Polesi, Paola; Taniguchi, Satie; de O Santos, Marcos C; Montone, Rosalinda C

    2016-06-15

    Remote biopsy sampling is the most common technique for acquiring samples from free-ranging marine mammals. However, such techniques may result in variable sampling being sometimes superficial skin and blubber biopsies. For decades, blubber has been used to monitor the exposure of marine mammals to persistent organic pollutants (POPs), but little is known regarding the variability of POPs as a function of blubber depth in small cetaceans and the available literature offers variable results. Thus, the aim of the present study was to validate biopsy sampling for monitoring contaminant concentrations in small, free-ranging cetaceans. Samples from the dorsal blubber of 10 incidentally captured Atlantic spotted dolphins (Stenella frontalis) were separated into two different layers (outer and inner) to investigate the influence of sampling depth on POP concentrations. POP concentrations were compared to those of the full blubber layer. The results revealed no significant differences in lipid content between males and females or among the inner, outer and full blubber layers (p>0.05). Moreover, the wet and lipid weight concentrations of all POP classes analysed [i.e. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), chlordanes (CHLs) and mirex] did not differ significantly with blubber depth (p>0.05). POP classes followed the same decreasing order of wet weight concentrations in blubber layers and full blubber: PCBs>DDTs>PBDEs>mirex>HCB>HCHs>CHLs. Moreover, there was a low degree of differentiation in the accumulation of POP congeners. The present findings indicated that the distribution of contaminants was homogenous with blubber depth, which validates the use of biopsy sampling for the assessment of contaminants in small cetaceans.

  18. Validating the use of biopsy sampling in contamination assessment studies of small cetaceans.

    PubMed

    Méndez-Fernandez, Paula; Galluzzi Polesi, Paola; Taniguchi, Satie; de O Santos, Marcos C; Montone, Rosalinda C

    2016-06-15

    Remote biopsy sampling is the most common technique for acquiring samples from free-ranging marine mammals. However, such techniques may result in variable sampling being sometimes superficial skin and blubber biopsies. For decades, blubber has been used to monitor the exposure of marine mammals to persistent organic pollutants (POPs), but little is known regarding the variability of POPs as a function of blubber depth in small cetaceans and the available literature offers variable results. Thus, the aim of the present study was to validate biopsy sampling for monitoring contaminant concentrations in small, free-ranging cetaceans. Samples from the dorsal blubber of 10 incidentally captured Atlantic spotted dolphins (Stenella frontalis) were separated into two different layers (outer and inner) to investigate the influence of sampling depth on POP concentrations. POP concentrations were compared to those of the full blubber layer. The results revealed no significant differences in lipid content between males and females or among the inner, outer and full blubber layers (p>0.05). Moreover, the wet and lipid weight concentrations of all POP classes analysed [i.e. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), chlordanes (CHLs) and mirex] did not differ significantly with blubber depth (p>0.05). POP classes followed the same decreasing order of wet weight concentrations in blubber layers and full blubber: PCBs>DDTs>PBDEs>mirex>HCB>HCHs>CHLs. Moreover, there was a low degree of differentiation in the accumulation of POP congeners. The present findings indicated that the distribution of contaminants was homogenous with blubber depth, which validates the use of biopsy sampling for the assessment of contaminants in small cetaceans. PMID:27113024

  19. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil.

    PubMed

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2016-02-01

    The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake (<50% variability), but was different from plant root uptake by 134%. A literature review of C. pepo BAFs across DDT soil contamination levels and the inclusion of field data from a 2.5 μg/g DDT-contaminated site found that these plants exhibit a concentration threshold effect at [DDT](soil) > 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies.

  20. Testing contamination risk assessment methods for toxic elements from mine waste sites

    NASA Astrophysics Data System (ADS)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the

  1. Assessment and Remediation of Contaminated Sediments (ARCS) program. Estimating contaminant losses from components of remediation alternatives for contaminated sediments. Report for March 1991-April 1994

    SciTech Connect

    Myers, T.E.; Averette, D.E.; Olin, T.J.; Palermo, M.R.; Reible, D.D.

    1996-03-01

    Industrial and municipal point-source discharges and nonpoint source pollution from agricultural and urban areas over many years have contaminated bottom sediments in the rivers, harbors, and nearshore areas of the Great Lakes. Areas in the Great Lakes that remain seriously impaired have been designated as areas of concern (AOCs) under the Great Lakes Water Quality Agreement (U.S. Environmental Protection Agency (USEPA) 1988).

  2. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.; Grosjean, Emmanuelle; Logan, Graham A.

    2008-02-01

    Biomarker molecules are valuable for the elucidation of ancient microbial ecosystems and the characterization of petroleum source rocks. For such studies, acquisition of reliable hydrocarbon data and proof of their syngeneity are essential. However, contamination of geological samples with anthropogenic petroleum products during drilling, storage and sampling can be particularly problematic because these hydrocarbons may over-print an original indigenous biomarker profile. To evaluate the extent of contamination of drill core and outcrop material, we studied the distribution of hydrocarbons in 26 rocks from different locations in the world. All rocks had petroleum products on their exterior surfaces. Twenty-two samples also contained surficial hydrocarbons derived from polyethylene plastic, including branched alkanes with quaternary carbon centers (BAQCs) and alkylcyclopentanes with pronounced even-over-odd carbon number preference. Using three examples from the Paleoproterozoic Tawallah and McArthur Groups in northern Australia, we show how indigenous biomarkers can be recognized by comparing hydrocarbon distributions between exterior rock surfaces and the rock interior, and how infiltration of allochthonous hydrocarbons can be assessed through the spatial distribution of characteristic polyethylene derived hydrocarbons in the rock. The methods outlined in this paper give confidence in the interpretation of biomarkers in particularly sensitive applications such as the first occurrences of certain organisms in the geological record and the provenance of organic matter in meteorites.

  3. Risk assessment of Belgian adults for furan contamination through the food chain.

    PubMed

    Scholl, G; Humblet, M-F; Scippo, M-L; De Pauw, E; Eppe, G; Saegerman, C

    2012-01-01

    Risk assessment is an interdisciplinary process used to quantify the risk linked to a hazard. In the present paper it is applied to quantify the risk linked to furan ingestion through the food chain for the Belgian adult population. Two approaches, deterministic and probabilistic, were carried out in parallel. The deterministic method relied on a case study, whereas the probabilistic approach involved statistical distributions of contamination and consumption data to calculate a statistical distribution of the daily intake. First, the deterministic method revealed a low estimated daily intake (EDI) for the average population (380 ng*(kg(bw)*day)⁻¹) and a huge contribution of coffee consumption to the EDI (55%). Increasing or decreasing the daily coffee consumption by one cup can affect the EDI by about 22%. Afterwards, the probabilistic approach showed that the average population has a low EDI (494 ng*(kg(bw)*day)⁻¹), and that high contamination levels were only registered in a small proportion of the population. Finally, a comparison of the RfD(chronic oral) showed that less than 10% of the Belgian population had an EDI above the reference dose proposed by the USEPA; the majority of the population had an EDI 20% below the reference dose. The margin of exposure (MoE) approach indicated that the level of risk related to furan intake through ingestion is low, with a MoE > 10,000 for more than 10% of the population and no result < 100. PMID:22168174

  4. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals.

    PubMed

    Hu, Pengjie; Yang, Bingfan; Dong, Changxun; Chen, Like; Cao, Xueying; Zhao, Jie; Wu, Longhua; Luo, Yongming; Christie, Peter

    2014-12-01

    The efficiency of heavy metal removal from soil by EDTA leaching was assessed in a column leaching experiment at the laboratory scale and field heap leaching at the pilot scale using a sandy loam sierozem agricultural soil contaminated with Cd, Cu, Pb, and Zn. Soil amendment and aging were conducted to recover leaching soils. The percentages of Cd, Cu, Pb, and Zn removed by column leaching were 90%, 88%, 90%, and 67%, respectively, when 3.9 bed volumes of 50mM EDTA were used. At the pilot scale, on-site metal removal efficiencies using the selected leaching procedure were 80%, 69%, 73% and 62% for Cd, Cu, Pb and Zn, respectively. EDTA leaching decreased soil CEC, total P, total K and available K concentrations but increased organic matter and total Kjeldahl N concentrations. The subsequent amendment and soil aging further reduced the DTPA-extractable heavy metals in the leached soils. Growth of the first crop of pak choi in the leached soil was inhibited but the second crop grew well after the soil was aged for one year and the concentrations of Cd and Pb in the edible parts were below the Chinese statutory limits. The results demonstrate the potential feasibility of the field leaching technique using EDTA combined with subsequent amendment and soil aging for the remediation of heavy metal-contaminated agricultural soils.

  5. Assessing atmospheric concentration of polychlorinated biphenyls (PCBs) by evergreen Rhododendron maximum next to a contaminated stream

    USGS Publications Warehouse

    Dang, Viet D.; Walters, David; Lee, Cindy M.

    2016-01-01

    Conifers are often used as an “air passive sampler”, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In this study, we used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The study area was located in a rural setting and approximately 2 km downstream of a former Sangamo-Weston (S-W) plant. Leaves from the same mature shrubs were collected in late fall 2010, and winter and spring 2011. PCBs were detected in the collected leaves suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990, 2850, and 931 pg m-3 in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former S-W plant. Leaves had a consistent pattern of high concentrations of tetra- and penta-CBs similar to the congener distribution in polyethylene (PE) passive samplers deployed in the water column suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves.

  6. Assessment of polycyclic aromatic hydrocarbon influx and sediment contamination in an urbanized estuary.

    PubMed

    Garcia, Marina R; Mirlean, Nicolai; Baisch, Paulo R; Caramão, Elina B

    2010-09-01

    Sediments from the Patos Lagoon Estuary in Southern Brazil and sludge from incoming effluents were assessed for the distribution of polycyclic aromatic hydrocarbons (PAHs). Shallow sediments adjoining the City of Rio Grande were found to be contaminated by PAHs mainly near urban effluent discharge, as well as in the port area. Effluents clustered into four groups according to their sources (sewage, industrial, runoff, and mixed), with each demonstrating different contributions of PAHs to the estuary. There was a predominance of runoff and mixed sources. Navigation activity was the second most important source of PAHs to sediments. The PAHs ratio identified the origin of these contaminants as essentially pyrolytic. The impact of PAHs as a result of uncontrolled disposal or accidental discharge of PAH-rich residues was suggested for several points. These points were primarily near gas stations and motor workshops. In about 30% of sampled sediments, the concentration of benzo[a]pyrene surpassed the Threshold Effects Level adopted for marine environments. PMID:19672685

  7. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream.

    PubMed

    Dang, Viet D; Walters, David M; Lee, Cindy M

    2016-09-01

    Conifers are often used as an air passive sampler, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In the present study, the authors used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The present study area was located in a rural setting and approximately 2 km downstream of a former capacitor plant. Leaves from the same mature shrubs were collected in late fall 2010 and winter and spring 2011. Polychlorinated biphenyls were detected in the collected leaves, suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990 pg m(-3) , 2850 pg m(-3) , and 931 pg m(-3) in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former industrial source. Leaves had a consistent pattern of high concentrations of tetra-CBs and penta-CBs similar to the congener distribution in polyethylene passive samplers deployed in the water column, suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves. Environ Toxicol Chem 2016;35:2192-2198. © 2016 SETAC. PMID:26889751

  8. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  9. Uses of probabilistic exposure models in ecological risk assessments of contaminated sites

    SciTech Connect

    MacIntosh, D.L.; Suter, G.W. II; Hoffman, F.O.

    1994-08-01

    Food web models have two uses in assessments of environmental contaminants. First, they are used to determine whether remediation is needed by estimating exposure of end-point species and subsequent effects. Second, they are used to establish cleanup goals by estimating concentrations of contaminants in ambient media that will not cause significant effects. This paper demonstrates how achievement of these goals can be enhanced by the use of stochastic food web models. The models simulate the dynamics of PCBs and mercury in the food webs of mink and great blue herons. All parameters of the models are treated as having knowledge uncertainty, due to imperfect knowledge of the actual parameter values for the site, chemicals, and species of interest. This uncertainty is an indicator of the potential value of