Nonequilibrium molecular dynamics
Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
Substructured multibody molecular dynamics.
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Molecular dynamics simulations.
Lindahl, Erik
2015-01-01
Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.
Molecular dynamics simulations.
Lindahl, Erik R
2008-01-01
Molecular simulation is a very powerful toolbox in modern molecular modeling, and enables us to follow and understand structure and dynamics with extreme detail--literally on scales where motion of individual atoms can be tracked. This chapter focuses on the two most commonly used methods, namely, energy minimization and molecular dynamics, that, respectively, optimize structure and simulate the natural motion of biological macromolecules. The common theoretical framework based on statistical mechanics is covered briefly as well as limitations of the computational approach, for instance, the lack of quantum effects and limited timescales accessible. As a practical example, a full simulation of the protein lysozyme in water is described step by step, including examples of necessary hardware and software, how to obtain suitable starting molecular structures, immersing it in a solvent, choosing good simulation parameters, and energy minimization. The chapter also describes how to analyze the simulation in terms of potential energies, structural fluctuations, coordinate stability, geometrical features, and, finally, how to create beautiful ray-traced movies that can be used in presentations.
Multiscale reactive molecular dynamics
NASA Astrophysics Data System (ADS)
Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.
2012-12-01
Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.
Multiscale reactive molecular dynamics
Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.
2012-01-01
Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062
Interactive molecular dynamics
NASA Astrophysics Data System (ADS)
Schroeder, Daniel V.
2015-03-01
Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.
Introduction to Accelerated Molecular Dynamics
Perez, Danny
2012-07-10
Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.
Molecular Dynamics Calculations
NASA Technical Reports Server (NTRS)
1996-01-01
The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two
NASA Astrophysics Data System (ADS)
Martin, Fernando
2015-05-01
The development of attosecond laser pulses allows one to probe the inner working of atoms, molecules and surfaces on the timescale of the electronic response. In molecules, attosecond pump-probe spectroscopy enables investigations of the prompt charge redistribution and localization that accompany photo-excitation processes, where a molecule is lifted from the ground Born-Oppenheimer potential energy surface to one or more excited surfaces, and where subsequent photochemistry evolves on femto- and attosecond timescales. In this talk I will present a few theoretical examples of realistic molecular attosecond pump-probe experiments in which simple molecules are ionized with a single attosecond pulse (or a train of attosecond pulses) and are subsequently probed by one or several infrared or xuv few-cycle pulses. The evolution of the electronic and nuclear densities in the photo-excited molecule or remaining molecular ions is calculated with attosecond time-resolution and is visualized by varying the delay between the pump and probe pulses. The results of these calculations allow us to explain several experimental observations as well as to guide future experimental efforts to uncover ultrafast electron and nuclear dynamics in molecules.
VMD: visual molecular dynamics.
Humphrey, W; Dalke, A; Schulten, K
1996-02-01
VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web.
Floating orbital molecular dynamics simulations.
Perlt, Eva; Brüssel, Marc; Kirchner, Barbara
2014-04-21
We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated.
MDplot: Visualise Molecular Dynamics.
Margreitter, Christian; Oostenbrink, Chris
2017-05-10
The MDplot package provides plotting functions to allow for automated visualisation of molecular dynamics simulation output. It is especially useful in cases where the plot generation is rather tedious due to complex file formats or when a large number of plots are generated. The graphs that are supported range from those which are standard, such as RMsD/RMsF (root-mean-square deviation and root-mean-square fluctuation, respectively) to less standard, such as thermodynamic integration analysis and hydrogen bond monitoring over time. All told, they address many commonly used analyses. In this article, we set out the MDplot package's functions, give examples of the function calls, and show the associated plots. Plotting and data parsing is separated in all cases, i.e. the respective functions can be used independently. Thus, data manipulation and the integration of additional file formats is fairly easy. Currently, the loading functions support GROMOS, GROMACS, and AMBER file formats. Moreover, we also provide a Bash interface that allows simple embedding of MDplot into Bash scripts as the final analysis step. The package can be obtained in the latest major version from CRAN (https://cran.r-project.org/package=MDplot) or in the most recent version from the project's GitHub page at https://github.com/MDplot/MDplot, where feedback is also most welcome. MDplot is published under the GPL-3 license.
Molecular dynamics with quantum fluctuations
Georgescu, Ionut; Mandelshtam, Vladimir A.
2010-09-01
A quantum dynamics approach, called Gaussian molecular dynamics, is introduced. As in the centroid molecular dynamics, the N-body quantum system is mapped to an N-body classical system with an effective Hamiltonian arising within the variational Gaussian wave-packet approximation. The approach is exact for the harmonic oscillator and for the high-temperature limit, accurate in the short-time limit and is computationally very efficient.
Molecular dynamics of silicon indentation
NASA Astrophysics Data System (ADS)
Kallman, J. S.; Hoover, W. G.; Hoover, C. G.; de Groot, A. J.; Lee, S. M.; Wooten, F.
1993-04-01
We use nonequilibrium molecular dynamics to simulate the elastic-plastic deformation of silicon under tetrahedral nanometer-sized indentors. The results are described in terms of a rate-dependent and temperature-dependent phenomenological yield strength. We follow the structural change during indentation with a computer technique that allows us to model the dynamic simulation of diffraction patterns.
Molecular modelling and molecular dynamics of CFTR.
Callebaut, Isabelle; Hoffmann, Brice; Lehn, Pierre; Mornon, Jean-Paul
2017-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Modeling Molecular Dynamics from Simulations
Hinrichs, Nina Singhal
2009-01-28
Many important processes in biology occur at the molecular scale. A detailed understanding of these processes can lead to significant advances in the medical and life sciences. For example, many diseases are caused by protein aggregation or misfolding. One approach to studying these systems is to use physically-based computational simulations to model the interactions and movement of the molecules. While molecular simulations are computationally expensive, it is now possible to simulate many independent molecular dynamics trajectories in a parallel fashion by using super- or distributed- computing methods such as Folding@Home or Blue Gene. The analysis of these large, high-dimensional data sets presents new computational challenges. In this seminar, I will discuss a novel approach to analyzing large ensembles of molecular dynamics trajectories to generate a compact model of the dynamics. This model groups conformations into discrete states and describes the dynamics as Markovian, or history-independent, transitions between the states. I will discuss why the Markovian state model (MSM) is suitable for macromolecular dynamics, and how it can be used to answer many interesting and relevant questions about the molecular system. I will also discuss many of the computational and statistical challenges in building such a model, such as how to appropriately cluster conformations, determine the statistical reliability, and efficiently design new simulations.
Molecular dynamics simulation of pyridine
NASA Astrophysics Data System (ADS)
Trumpakaj, Zygmunt; Linde, Bogumił
2015-04-01
Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.
Integration methods for molecular dynamics
Leimkuhler, B.J.; Reich, S.; Skeel, R.D.
1996-12-31
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.
SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.
1999-06-09
The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.
Dynamic molecular graphs: "hopping" structures.
Cortés-Guzmán, Fernando; Rocha-Rinza, Tomas; Guevara-Vela, José Manuel; Cuevas, Gabriel; Gómez, Rosa María
2014-05-05
This work aims to contribute to the discussion about the suitability of bond paths and bond-critical points as indicators of chemical bonding defined within the theoretical framework of the quantum theory of atoms in molecules. For this purpose, we consider the temporal evolution of the molecular structure of [Fe{C(CH2 )3 }(CO)3 ] throughout Born-Oppenheimer molecular dynamics (BOMD), which illustrates the changing behaviour of the molecular graph (MG) of an electronic system. Several MGs with significant lifespans are observed across the BOMD simulations. The bond paths between the trimethylenemethane and the metallic core are uninterruptedly formed and broken. This situation is reminiscent of a "hopping" ligand over the iron atom. The molecular graph wherein the bonding between trimethylenemethane and the iron atom takes place only by means of the tertiary carbon atom has the longest lifespan of all the considered structures, which is consistent with the MG found by X-ray diffraction experiments and quantum chemical calculations. In contrast, the η(4) complex predicted by molecular-orbital theory has an extremely brief lifetime. The lifespan of different molecular structures is related to bond descriptors on the basis of the topology of the electron density such as the ellipticities at the FeCH2 bond-critical points and electron delocalisation indices. This work also proposes the concept of a dynamic molecular graph composed of the different structures found throughout the BOMD trajectories in analogy to a resonance hybrid of Lewis structures. It is our hope that the notion of dynamic molecular graphs will prove useful in the discussion of electronic systems, in particular for those in which analysis on the basis of static structures leads to controversial conclusions.
ERIC Educational Resources Information Center
Bean, Robert
2007-01-01
In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…
Oleuropein: Molecular Dynamics and Computation.
Gentile, Luigi; Uccella, Nicola A; Sivakumar, Ganapathy
2017-09-11
Olive oil and table olive biophenols have been shown to significantly enrich the hedonic-sensory and nutritional quality of the Mediterranean diet. Oleuropein is one of the predominate biophenols in green olives and leaves, which not only has noteworthy free-radical quenching activity but also putatively reduces the incidence of various cancers. Clinical trials suggest that the consumption of extra virgin olive oil reduces the risk of several degenerative diseases. The oleuropein-based bioactives in olive oil could reduce tumor necrosis factor α, interleukin-1β and nitric oxide. Therefore, olive bioactives quality should be preserved and even improved due to their disease-fighting properties. Understanding the molecular dynamics of oleuropein is crucial to increase olive oil and table olive quality. The objective of this review is to provide the molecular dynamics and computational mapping of oleuropein. It is a biophenol-secoiridoid expressing different functionalities such as two π-bonds, two esters, two acetals, one catechol, and four hexose hydroxyls within 540 mw. The molecular bond sequential breaking mechanisms were analyzed through unimolecular reactions under electron spray ionization, collision activated dissociations, and fast atom bombardment mass spectrometry. The oleuropein solvent-free reactivity is leading to glucose loss and bioactive aglycone-dialdehydes via secoiridoid ring opening. Oleuropein electron distribution revealed that the free-radical non-polar processes occur from its highest occupied molecular orbital, while the lowest unoccupied molecular orbital is clearly devoted to nucleophilic and base site reactivity. This molecular dynamics and computational mapping of oleuropein could contribute to the engineering of olive-based biomedicine and/or functional food. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Available Instruments for Analyzing Molecular Dynamics Trajectories
Likhachev, I. V.; Balabaev, N. K.; Galzitskaya, O. V.
2016-01-01
Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964
Novel methods for molecular dynamics simulations.
Elber, R
1996-04-01
In the past year, significant progress was made in the development of molecular dynamics methods for the liquid phase and for biological macromolecules. Specifically, faster algorithms to pursue molecular dynamics simulations were introduced and advances were made in the design of new optimization algorithms guided by molecular dynamics protocols. A technique to calculate the quantum spectra of protein vibrations was introduced.
Scalable Molecular Dynamics with NAMD
Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus
2008-01-01
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654
Scalable molecular dynamics with NAMD.
Phillips, James C; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D; Kalé, Laxmikant; Schulten, Klaus
2005-12-01
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. (c) 2005 Wiley Periodicals, Inc.
Better, Cheaper, Faster Molecular Dynamics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.
Better, Cheaper, Faster Molecular Dynamics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.
The Digital Material: Molecular Dynamics
NASA Astrophysics Data System (ADS)
Bailey, Nicholas P.; Cretegny, Thierry; Dolgert, Andrew J.; Myers, Christopher R.; Schiøtz, Jakob; Sethna, James P.
2001-03-01
We announce the release of the molecular dynamics component of the Digital Material. The Digital Material is our multiscale modeling software infrastructure, designed for flexibility, extensibility, and for compatibility between simulations on disparate length scales. We illustrate how we use the high-level scripting language Python to control our low-level numerical kernals, and to interface them with standard visualization and data repository tools. Our use of design-patterns methodology leads us to decompose the MD simulation into a few weakly-coupled classes, such as AtomsMover, NeighborLocator, Potential, Constraint, and BoundaryConditions.
Non-Equilibrium Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro
Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.
Molecular dynamics of interface rupture
NASA Technical Reports Server (NTRS)
Koplik, Joel; Banavar, Jayanth R.
1993-01-01
Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.
Molecular dynamics of interface rupture
NASA Astrophysics Data System (ADS)
Koplik, Joel; Banavar, Jayanth R.
1993-03-01
Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.
Molecular dynamics of interface rupture
NASA Technical Reports Server (NTRS)
Koplik, Joel; Banavar, Jayanth R.
1993-01-01
Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.
The "Collisions Cube" Molecular Dynamics Simulator.
ERIC Educational Resources Information Center
Nash, John J.; Smith, Paul E.
1995-01-01
Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)
Nonadiabatic Molecular Dynamics with Trajectories
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2012-02-01
In the mixed quantum-classical description of molecular systems, only the quantum character of the electronic degrees of freedom is considered while the nuclear motion is treated at a classical level. In the adiabatic case, this picture corresponds to the Born-Oppenheimer limit where the nuclei move as point charges on the potential energy surface (PES) associated with a given electronic state. Despite the success of this approximation, many physical and chemical processes do not fall in the regime where nuclei and electrons can be considered decoupled. In particular, most photoreactions pass through regions of the PES in which electron-nuclear quantum interference effects are sizeable and often crucial for a correct description of the phenomena. Recently, we have developed a trajectory-based nonadiabatic molecular dynamics scheme that describes the nuclear wavepacket as an ensemble of particles following classical trajectories on PESs derived from time-dependent density functional theory (TDDFT) [1]. The method is based on Tully's fewest switches trajectories surface hopping (TSH) where the nonadiabatic coupling elements between the different potential energy surfaces are computed on-the-fly as functionals of the ground state electron density or, equivalently, of the corresponding Kohn-Sham orbitals [2]. Here, we present the theoretical fundamentals of our approach together with an extension that allows for the direct coupling of the dynamics to an external electromagnetic field [3] as well as to the external potential generated by the environment (solvent effects) [4]. The method is applied to the study of the photodissociation dynamics of simple molecules in gas phase and to the description of the fast excited state dynamics of molecules in solution (in particular Ruthenium (II) tris(bipyridine) in water). [4pt] [1] E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett., 98, (2007) 023001. [0pt] [2] Tavernelli I.; Tapavicza E.; Rothlisberger U., J. Chem
Modeling Nanocomposites for Molecular Dynamics (MD) Simulations
2015-01-01
Maximum 200 Words) The minimum energy configuration for Molecular Dynamics (MD) simulations is found for a carbon nanotube (CNT)/polymer... Carbon Nanotubes (CNTs), Molecular Dynamics Simulations 15. NUMBER OF PAGES 18 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT... Carbon Nanotubes ,” Macromolecules, Volume 39, Number 16, pp. 5194-5205, July 2006. 6. “VMD-Visual Molecular Dynamics ,” March 2014, http
Molecular dynamics simulation of benzene
NASA Astrophysics Data System (ADS)
Trumpakaj, Zygmunt; Linde, Bogumił B. J.
2016-03-01
Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.
Uncertainty quantification in molecular dynamics
NASA Astrophysics Data System (ADS)
Rizzi, Francesco
This dissertation focuses on uncertainty quantification (UQ) in molecular dynamics (MD) simulations. The application of UQ to molecular dynamics is motivated by the broad uncertainty characterizing MD potential functions and by the complexity of the MD setting, where even small uncertainties can be amplified to yield large uncertainties in the model predictions. Two fundamental, distinct sources of uncertainty are investigated in this work, namely parametric uncertainty and intrinsic noise. Intrinsic noise is inherently present in the MD setting, due to fluctuations originating from thermal effects. Averaging methods can be exploited to reduce the fluctuations, but due to finite sampling, this effect cannot be completely filtered, thus yielding a residual uncertainty in the MD predictions. Parametric uncertainty, on the contrary, is introduced in the form of uncertain potential parameters, geometry, and/or boundary conditions. We address the UQ problem in both its main components, namely the forward propagation, which aims at characterizing how uncertainty in model parameters affects selected observables, and the inverse problem, which involves the estimation of target model parameters based on a set of observations. The dissertation highlights the challenges arising when parametric uncertainty and intrinsic noise combine to yield non-deterministic, noisy MD predictions of target macroscale observables. Two key probabilistic UQ methods, namely Polynomial Chaos (PC) expansions and Bayesian inference, are exploited to develop a framework that enables one to isolate the impact of parametric uncertainty on the MD predictions and, at the same time, properly quantify the effect of the intrinsic noise. Systematic applications to a suite of problems of increasing complexity lead to the observation that an uncertain PC representation built via Bayesian regression is the most suitable model for the representation of uncertain MD predictions of target observables in the
Molecular dynamics of membrane proteins.
Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson
2004-10-01
Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.
Dynamical Localization in Molecular Systems.
NASA Astrophysics Data System (ADS)
Wang, Xidi
In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems
Molecular Dynamics Simulation of Supercritical Spray Phenomena
2008-09-26
Dynamics of the Rheological and Structural Properties of Linear and Branched Molecules. Simple Shear and Poiseuille Flows ; Instabilities and Slip...Michael Barrucco Publications: "Comparison of Wall Models for the Molecular Dynamics Simulation of Micro flows ," R. D. Branam and M. M...Performance 3. DATES COVERED (From - To) 1 Dec. 2003 - 31 May 2008 4. TITLE AND SUBTITLE Molecular Dynamics Simulation of Supercritical
Hele, Timothy J H; Willatt, Michael J; Muolo, Andrea; Althorpe, Stuart C
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the "Classical Wigner" approximation. Here, we show that the further approximation of this "Matsubara dynamics" gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Time-Dependent Molecular Reaction Dynamics
NASA Astrophysics Data System (ADS)
Öhrn, Yngve
2007-11-01
This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.
Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Guo, Qian; Chung, Pil Seung; Chen, Haigang; Jhon, Myung S.
2006-04-01
Molecular rheology of perfluoropolyether (PFPE) systems is particularly important in designing effective lubricants that control the friction and wear in tribological applications. Using the coarse-grained, bead-spring model, equilibrium molecular dynamics based on the Langevin equation in a quiescent flow was first employed to examine the nanostructure of PFPE. Further, by integrating the modified Langevin equation and imposing the Lees-Edwards boundary condition, nonequilibrium molecular dynamics of steady shear was investigated. We observe that the shear viscosity of PFPE system depends strongly on molecular architecture (e.g., molecular weight and endgroup functionality) and external conditions (e.g., temperature and shear rate). Our study of the flow activation energy/entropy and their correlations with nanostructure visualization showed that the PFPE structure was substantially modified.
Molecular dynamics on hypercube parallel computers
NASA Astrophysics Data System (ADS)
Smith, W.
1991-03-01
The implementation of molecular dynamics on parallel computers is described, with particular reference to hypercube computers. Three particular algorithms are described: replicated data (RD); systolic loop (SLS-G), and parallelised link-cells (PLC), all of which have good load balancing. The performance characteristics of each algorithm and the factors affecting their scaling properties are discussed. The article is pedagogic in intent, to introduce a novice to the main aspects of parallel computing in molecular dynamics.
Modeling the Hydrogen Bond within Molecular Dynamics
ERIC Educational Resources Information Center
Lykos, Peter
2004-01-01
The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.
Molecular ions, Rydberg spectroscopy and dynamics
Jungen, Ch.
2015-01-22
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.
Molecular Dynamics Simulations of Simple Liquids
ERIC Educational Resources Information Center
Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.
2004-01-01
An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.
Modeling the Hydrogen Bond within Molecular Dynamics
ERIC Educational Resources Information Center
Lykos, Peter
2004-01-01
The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.
Molecular Dynamics Simulations of Simple Liquids
ERIC Educational Resources Information Center
Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.
2004-01-01
An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.
Fermionic Molecular Dynamics for Nuclear Dynamics and Thermodynamics
NASA Astrophysics Data System (ADS)
Hasnaoui, K. H. O.; Chomaz, Ph; Gulminelli, F.
A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presented.
Molecular dynamics simulations of nanostructures
NASA Astrophysics Data System (ADS)
Yuan, Zaoshi
This dissertation is focused on multimillion-atom molecular dynamics (MD) simulations of nanoscale materials. In the past decade, nanoscale materials have made significant commercial impacts, which will potentially lead to the next industrial revolution. The interest lies in the novel and promising features nanoscale materials exhibit due to their confined sizes. However, not all novel behaviors are understood or controllable. Many uncontrollable parameters, e.g. defects and dangling bonds, are known to hinder the performance of nanodevices. Solutions to these problems rely on our understanding of fundamental elements in nanoscience: isolated individual nanostructures and their assemblies. In this dissertation, we will address atomistic foundations of several problems of technological importance in nanoscience. Specifically, three basic problems are discussed: (1) embrittlement of nanocrystalline metal; (2) novel thermo-mechanical behaviors of nanowires (NWs); and (3) planar defect generation in NWs. With a scalable algorithm implemented on massively parallel computing platforms and various data mining methods, MD simulations can provide valuable insights into these problems. An essential role of sulfur segregation-induced amorphization of crystalline nickel was recently discovered experimentally, but the atomistic mechanism of the amorphization remains unexplained. Our MD simulations reveal that the large steric size of sulfur impurity causes strong sulfur-sulfur interaction mediated by lattice distortion, which leads to amorphization near the percolation threshold at the sulfur-sulfur network in nickel crystal. The generality of the mechanism due to the percolation of an impurity network is further confirmed by a model binary system. In our study of novel behaviors of semiconductor NWs, MD simulations construct a rich size-temperature `phase diagram' for the mechanical response of a zinc-oxide NW under tension. For smaller diameters and higher temperatures, novel
Modeling hybrid perovskites by molecular dynamics.
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Modeling hybrid perovskites by molecular dynamics
NASA Astrophysics Data System (ADS)
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Molecular dynamics simulations: advances and applications
Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L
2015-01-01
Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800
Molecular Dynamics Studies of Matrix Metalloproteases.
Díaz, Natalia; Suárez, Dimas
2017-01-01
Matrix metalloproteases are multidomain enzymes with a remarkable proteolytic activity located in the extracellular environment. Their catalytic activity and structural properties have been intensively studied during the last few decades using both experimental and theoretical approaches, but many open questions still remain. Extensive molecular dynamics simulations enable the sampling of the configurational space of a molecular system, thus contributing to the characterization of the structure, dynamics, and ligand binding properties of a particular MMP. Based on previous computational experience, we provide in this chapter technical and methodological guidelines that may be useful to and stimulate other researchers to perform molecular dynamics simulations to help address unresolved questions concerning the molecular mode of action of MMPs.
Dynamic molecular crystals with switchable physical properties.
Sato, Osamu
2016-06-21
The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials.
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.
Dynamics of excited molecular states
NASA Astrophysics Data System (ADS)
Meyer, Hans-Dieter
2005-01-01
The photo-excitation or photo-ionization of a polyatomic molecule is typically accompanied by a strong excitation of the vibrational modes. In particular when a conical intersection of the electronic potential energy surfaces involved lies within or close to the Frank-Condon zone, the nuclear motion becomes very complicated, often chaotic, and the spectra become irregular and dense. An accurate simulation of the dynamics of such excited molecules requires firstly that the multi-dimensional and multi-state potential energy surface - or a reliable model thereof - can be determined. Secondly, the multi-dimensional quantum dynamics have to be solved. This is a very difficult task, because of the high dimensionality of the problem (6 to 30 degrees of freedom, say). The multi-configuration time-dependent Hartree (MCTDH) method has proven to be very useful for the study of such problems. In fact, an accurate treatment of the quantal dynamics of molecules like the allene cation (C3 H+4, 15D), the butatriene cation (C4 H+4, 18D), or the pyrazine molecule (C4N2H4, 24D) in their full dimensionality, is - up to date - only possible with MCTDH. (The acronym n D denotes the dimensionality.) The construction of the vibronic model Hamiltonian and the MCTDH method will be briefly discussed. After this, the excited state dynamics of the butatriene and pyrazine molecules will be discussed.
Molecular dynamics simulations of substitutional diffusion
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less
Molecular dynamics simulations of substitutional diffusion
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.
Discrete Molecular Dynamics Simulation of Biomolecules
NASA Astrophysics Data System (ADS)
Ding, Feng
2011-10-01
Discrete molecular dynamics (DMD) simulation of hard spheres was the first implementation of molecular dynamics (MD) in history. DMD simulations are computationally more efficient than continuous MD simulations due to simplified interaction potentials. However, also due to these simplified potentials, DMD has often been associated with coarse-grained modeling, and hence continuous MD has become the dominant approach used to study the internal dynamics of biomolecules. With the recent advances in DMD methodology, including the development of high-resolution models for biomolecules and approaches to increase DMD efficiency, DMD simulations are emerging as an important tool in the field of molecular modeling, including the study of protein folding, protein misfolding and aggregation, and protein engineering. Recently, DMD methodology has been applied to modeling RNA folding and protein-ligand recognition. With these improvements to DMD methodology and the continuous increase in available computational power, we expect a growing role of DMD simulations in our understanding of biology.
Liouville-von Neumann molecular dynamics.
Jakowski, Jacek; Morokuma, Keiji
2009-06-14
We present a novel first principles molecular dynamics scheme, called Liouville-von Neumann molecular dynamics, based on Liouville-von Neumann equation for density matrices propagation and Magnus expansion of the time-evolution operator. The scheme combines formally accurate quantum propagation of electrons represented via density matrices and a classical propagation of nuclei. The method requires a few iterations per each time step where the Fock operator is formed and von Neumann equation is integrated. The algorithm (a) is free of constraint and fictitious parameters, (b) avoids diagonalization of the Fock operator, and (c) can be used in the case of fractional occupation as in metallic systems. The algorithm is very stable, and has a very good conservation of energy even in cases when a good quality conventional Born-Oppenheimer molecular dynamics trajectories is difficult to obtain. Test simulations include initial phase of fullerene formation from gaseous C(2) and retinal system.
Liouville-von Neumann molecular dynamics
NASA Astrophysics Data System (ADS)
Jakowski, Jacek; Morokuma, Keiji
2009-06-01
We present a novel first principles molecular dynamics scheme, called Liouville-von Neumann molecular dynamics, based on Liouville-von Neumann equation for density matrices propagation and Magnus expansion of the time-evolution operator. The scheme combines formally accurate quantum propagation of electrons represented via density matrices and a classical propagation of nuclei. The method requires a few iterations per each time step where the Fock operator is formed and von Neumann equation is integrated. The algorithm (a) is free of constraint and fictitious parameters, (b) avoids diagonalization of the Fock operator, and (c) can be used in the case of fractional occupation as in metallic systems. The algorithm is very stable, and has a very good conservation of energy even in cases when a good quality conventional Born-Oppenheimer molecular dynamics trajectories is difficult to obtain. Test simulations include initial phase of fullerene formation from gaseous C2 and retinal system.
Wavelet Analysis for Molecular Dynamics
2015-06-01
factor of 1,000. Ultra-high-molecular-weight polyethylene offers a classic example of the scale challenge: despite its simple chemical makeup , CnH2n+2...below, but also disconnected graphs from individual molecules . 6 Linear homopolymers can be ordered to have block tridiagonal structure where each...solutions for this simple system; r̃(0)1 = √ 2rOH , r̃ (0) 2 = 0, which leads to a symmetric linear molecule , and r̃(0)1 = 0, r̃ (0) 2 = rOH √ 4+2mO
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers
2017-01-01
Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.
Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H
2017-02-21
Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular
Dynamic signature of molecular association in methanol.
Bertrand, C E; Self, J L; Copley, J R D; Faraone, A
2016-07-07
Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.
Molecular scale dynamics of large ring polymers.
Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D
2014-10-17
We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.
Molecular Scale Dynamics of Large Ring Polymers
NASA Astrophysics Data System (ADS)
Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.
2014-10-01
We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.
Molecular dynamic simulations of ocular tablet dissolution.
Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire
2013-11-25
Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies.
Understanding Modularity in Molecular Networks Requires Dynamics
Alexander, Roger P.; Kim, Philip M.; Emonet, Thierry; Gerstein, Mark B.
2014-01-01
The era of genome sequencing has produced long lists of the molecular parts from which cellular machines are constructed. A fundamental goal in systems biology is to understand how cellular behavior emerges from the interaction in time and space of genetically encoded molecular parts, as well as non-genetically encoded small molecules. Networks provide a natural framework for the organization and quantitative representation of all the available data about molecular interactions. The structural and dynamic properties of molecular networks have been the subject of intense research. Despite major advances, bridging network structure to dynamics – and therefore to behavior – remains challenging. A key concept of modern engineering that recurs in the functional analysis of biological networks is modularity. Most approaches to molecular network analysis rely to some extent on the assumption that molecular networks are modular – that is, they are separable and can be studied to some degree in isolation. We describe recent advances in the analysis of modularity in biological networks, focusing on the increasing realization that a dynamic perspective is essential to grouping molecules into modules and determining their collective function. PMID:19638611
Numerical methods for molecular dynamics
Skeel, R.D.
1991-01-01
This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Semiclassical guided optimal control of molecular dynamics
Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.
2005-10-15
An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.
Reaction dynamics in polyatomic molecular systems
Miller, W.H.
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Adaptively restrained molecular dynamics in LAMMPS
NASA Astrophysics Data System (ADS)
Kant Singh, Krishna; Redon, Stephane
2017-07-01
Adaptively restrained molecular dynamics (ARMD) is a recently introduced particles simulation method that switches positional degrees of freedom on and off during simulation in order to speed up calculations. In the NVE ensemble, ARMD allows users to trade between precision and speed while, in the NVT ensemble, it makes it possible to compute statistical averages faster. Despite the conceptual simplicity of the approach, however, integrating it in existing molecular dynamics packages is non-trivial, in particular since implemented potentials should a priori be rewritten to take advantage of frozen particles and achieve a speed-up. In this paper, we present novel algorithms for integrating ARMD in LAMMPS, a popular multi-purpose molecular simulation package. In particular, we demonstrate how to enable ARMD in LAMMPS without having to re-implement all available force fields. The proposed algorithms are assessed on four different benchmarks, and show how they allow us to speed up simulations up to one order of magnitude.
Excited State Quantum-Classical Molecular Dynamics
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2005-05-01
The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics.
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A
2012-12-11
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as "multistate". These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations.
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
Dynamic assembly of molecularly imprinted polymer nanoparticles.
Gong, Haiyue; Hajizadeh, Solmaz; Jiang, Lingdong; Ma, Huiting; Ye, Lei
2017-09-11
Manipulation of specific binding and recycling of materials are two important aspects for practical applications of molecularly imprinted polymers. In this work, we developed a new approach to control the dynamic assembly of molecularly imprinted nanoparticles by surface functionalization. Molecularly imprinted polymer nanoparticles with a well-controlled core-shell structure were synthesized using precipitation polymerization. The specific binding sites were created in the core during the first step imprinting reaction. In the second polymerization step, epoxide groups were introduced into the particle shell to act asan intermediate linker to immobilize phenylboronic acids, as well as to introduce cis-diol structures on surface. The imprinted polymer nanoparticles modified with boronic acid and cis-diol structures maintained high molecular binding specificity, and the nanoparticles could be induced to form dynamic particle aggregation that responded to pH variation and chemical stimuli. The possibility of modulating molecular binding and nanoparticle assembly in a mutually independent fashion can be exploited in a number of applications where repeated use of precious nanoparticles is needed. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic strength of molecular adhesion bonds.
Evans, E; Ritchie, K
1997-04-01
In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended Kramers' theory for reaction kinetics in liquids to bond dissociation under force and tested the predictions by smart Monte Carlo (Brownian dynamics) simulations of bond rupture. By definition, bond strength is the force that produces the most frequent failure in repeated tests of breakage, i.e., the peak in the distribution of rupture forces. As verified by the simulations, theory shows that bond strength progresses through three dynamic regimes of loading rate. First, bond strength emerges at a critical rate of loading (> or = 0) at which spontaneous dissociation is just frequent enough to keep the distribution peak at zero force. In the slow-loading regime immediately above the critical rate, strength grows as a weak power of loading rate and reflects initial coupling of force to the bonding potential. At higher rates, there is crossover to a fast regime in which strength continues to increase as the logarithm of the loading rate over many decades independent of the type of attraction. Finally, at ultrafast loading rates approaching the domain of molecular dynamics simulations, the bonding potential is quickly overwhelmed by the rapidly increasing force, so that only naked frictional drag on the structure remains to retard separation. Hence, to expose the energy landscape that governs bond strength, molecular adhesion forces must be examined over an enormous span of time scales. However, a significant gap exists between the time domain of force measurements in the laboratory and the extremely fast scale
Exciton dynamics in perturbed vibronic molecular aggregates
Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.
2015-01-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Choice of timestep in molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Fincham, David
1986-06-01
In molecular dynamics computer simulation of liquids it is important to use as large a timestep as possible in order to sample phase space rapidly and save on computer expense. The effect of the resulting algorithm errors in the trajectories of the molecules is not well understood. An empirical investigation into this question is reported. Several simulations differing only in the timestep used are compared. It is found that much larger timesteps than usual can be employed without producing significant errors in observed thermodynamic, structural or dynamic properties.
Molecular dynamics at constant Cauchy stress.
Miller, Ronald E; Tadmor, Ellad B; Gibson, Joshua S; Bernstein, Noam; Pavia, Fabio
2016-05-14
The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.
Molecular dynamics studies of polyurethane nanocomposite hydrogels
NASA Astrophysics Data System (ADS)
Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.
2013-10-01
Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.
Molecular dynamics modelling of solidification in metals
Boercker, D.B.; Belak, J.; Glosli, J.
1997-12-31
Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.
Vacuum Ultraviolet Studies of Molecular Dynamics
1992-01-15
the Journal of Chemical Physics . Vacuum Ultraviolet Studies of Molecular Dynamics Page 4 B. Quenching of S(’D) by N2...An article on this work has been published in the Journal of Chemical Physics . E. The 157 am Photodissoclation of OCS The photodissociation of OCS...angular momentum vectors are perpendicular to one another. A report of this work has been published in the Journal of Chemical Physics . Vacuum
New faster CHARMM molecular dynamics engine
Hynninen, Antti-Pekka; Crowley, Michael F
2014-01-01
We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores. PMID:24302199
Molecular crowding and protein enzymatic dynamics.
Echeverria, Carlos; Kapral, Raymond
2012-05-21
The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding.
Bead-Fourier path integral molecular dynamics.
Ivanov, Sergei D; Lyubartsev, Alexander P; Laaksonen, Aatto
2003-06-01
Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.
Monoamine transporters: insights from molecular dynamics simulations
Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit
2015-01-01
The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185
Equipartition Principle for Internal Coordinate Molecular Dynamics.
Jain, Abhinandan; Park, In-Hee; Vaidehi, Nagarajan
2012-08-14
The principle of equipartition of (kinetic) energy for all-atom Cartesian molecular dynamics states that each momentum phase space coordinate on the average has ½kT of kinetic energy in a canonical ensemble. This principle is used in molecular dynamics simulations to initialize velocities, and to calculate statistical properties such as entropy. Internal coordinate molecular dynamics (ICMD) models differ from Cartesian models in that the overall kinetic energy depends on the generalized coordinates and includes cross-terms. Due to this coupled structure, no such equipartition principle holds for ICMD models. In this paper we introduce non-canonical modal coordinates to recover some of the structural simplicity of Cartesian models and develop a new equipartition principle for ICMD models. We derive low-order recursive computational algorithms for transforming between the modal and physical coordinates. The equipartition principle in modal coordinates provides a rigorous method for initializing velocities in ICMD simulations thus replacing the ad hoc methods used until now. It also sets the basis for calculating conformational entropy using internal coordinates.
Bead-Fourier path integral molecular dynamics
NASA Astrophysics Data System (ADS)
Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto
2003-06-01
Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.
Learning generative models of molecular dynamics
2012-01-01
We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 reg-ularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories. PMID:22369071
Learning generative models of molecular dynamics.
Razavian, Narges Sharif; Kamisetty, Hetunandan; Langmead, Christopher J
2012-01-01
We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 regularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories.
Control-volume representation of molecular dynamics.
Smith, E R; Heyes, D M; Dini, D; Zaki, T A
2012-05-01
A molecular dynamics (MD) parallel to the control volume (CV) formulation of fluid mechanics is developed by integrating the formulas of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] over a finite cubic volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which yields an equivalent to Reynolds' transport theorem for the discrete system. This approach casts the dynamics of the molecular system into a form that can be readily compared to the continuum equations. The MD equations of motion are reinterpreted in terms of a Lagrangian-to-control-volume (LCV) conversion function ϑ(i) for each molecule i. The LCV function and its spatial derivatives are used to express fluxes and relevant forces across the control surfaces. The relationship between the local pressures computed using the volume average [Lutsko, J. Appl. Phys. 64, 1152 (1988)] techniques and the method of planes [Todd et al., Phys. Rev. E 52, 1627 (1995)] emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for equilibrium and nonequilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative and is, therefore, ideally suited to obtain macroscopic properties from a discrete system.
Andersen, Hans C.
2005-01-01
Supercooled liquids near the glass transition exhibit the phenomenon of heterogeneous relaxation; at any specific time, a nominally homogeneous equilibrium fluid undergoes dynamic fluctuations in its structure on a molecular distance scale with rates that are very different in different regions of the sample. Several theoretical and simulation studies have suggested a change in the nature of the dynamics of fluids as they are supercooled, leading to the concept of a dynamic crossover that is often associated with mode coupling theory. Here, we will review the use of molecular dynamics computer simulation methods to investigate heterogeneous dynamics and dynamic crossovers in models of atomic liquids. PMID:15870201
Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems.
Nebgen, Ben; Prezhdo, Oleg V
2016-09-15
A method for efficiently simulating nonadiabatic molecular dynamics (NAMD) of nanoscale and condensed phase systems is developed and tested. The electronic structure, including force and nonadiabatic coupling, are obtained with the fragment molecular orbital (FMO) approximation, which provides significant computational savings by splitting the system into fragments and computing electronic properties of each fragment subject to the external field due to other all other fragments. The efficiency of the developed technique is demonstrated by studying the effect of explicit solvent molecules on excited state relaxation in the Fe(CO)4 complex. The relaxation in the gas phase occurs on a 50 fs time scale, which is in excellent agreement with previously recorded femtosecond pump-probe spectroscopy. Adding a solvation shell of ethanol molecules to the simulation results in an increase in the excited state lifetime to 100 fs, in agreement with recent femtosecond X-ray spectroscopy measurements.
Molecular Dynamics Studies of Caspase-3
Sulpizi, M.; Rothlisberger, U.; Carloni, P.
2003-01-01
Caspase-3 is a fundamental target for pharmaceutical interventions against a variety of diseases involving disregulated apoptosis. The enzyme is active as a dimer with two symmetry-related active sites, each featuring a Cys-His catalytic dyad and a selectivity loop, which recognizes the characteristic DEVD pattern of the substrate. Here, a molecular dynamics study of the enzyme in complex with two pentapeptide substrates DEVDG is presented, which provides a characterization of the dynamic properties of the active form in aqueous solution. The mobility of the substrate and that of the catalytic residues are rather low indicating a distinct preorganization effect of the Michaelis complex. An essential mode analysis permits us to identify coupled motions between the two monomers. In particular, it is found that the motions of the two active site loops are correlated and tend to steer the substrate toward the reactive center, suggesting that dimerization has a distinct effect on the dynamic properties of the active site regions. The selectivity loop of one monomer turns out to be correlated with the N-terminal region of the p12 subunit of the other monomer, an interaction that is also found to play a fundamental role in the electrostatic stabilization of the quaternary structure. To further characterize the specific influence of dimerization on the enzyme essential motions, a molecular dynamics analysis is also performed on the isolated monomer. PMID:12668429
Molecular dynamics simulations of magnetized dusty plasmas
NASA Astrophysics Data System (ADS)
Piel, Alexander; Reichstein, Torben; Wilms, Jochen
2012-10-01
The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)
Application of optimal prediction to molecular dynamics
Barber, IV, John Letherman
2004-12-01
Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is δ-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.
Spectroscopy and molecular dynamics in nonpolar fluids
NASA Astrophysics Data System (ADS)
Everitt, Karl Frederick
This thesis considers the mechanisms by which molecular dynamics in nonpolar liquids influences solvation dynamics and vibrational energy relaxation. We use semiclassical molecular dynamics simulations to calculate photon echo signals for two simple fluids. We demonstrate that two new observables are directly related to the relevant molecular quantity, the frequency- frequency time correlation function (TCF), in contrast to the commonly measured 3PEPS, which cannot be simply related to this TCF at short times. We also present a semianalytic photon echo theory, based on an ansatz which determines the full time dependence from the short time expansion coefficients of the TCF. We demonstrate that this theory accurately predicts most photon echo observables, even when the theory's gaussian approximation is not accurate. We also consider vibrational energy relaxation (VER) in liquid oxygen. Using semiclassical molecular dynamics simulations and an intermolecular potential from the literature, we evaluate the required quantity (the spectral density of a certain force-force TCF) using the same ansatz described above. We demonstrate numerically that this procedure is accurate. Approximately relating this semiclassical rate to the fully quantum mechanical VER rate, using one of the more accurate ``quantum corrections'' available in the literature, yields a result which is in order-of-magnitude agreement with the experimental VER rate. We also calculate the VER rate for liquid oxygen/argon mixtures. The rotations of the solvent near a vibrationally excited molecule, and of that molecule itself, have important consequences for the short-time dynamics of the force-force TCF. We propose a simple statistical model which quantitatively explains the mole- fraction dependence of the observed VER rate. Next, we demonstrate that a newly-developed model for oxygen very accurately describes the liquid, by comparing to experimental measures of microscopic structure and dynamics. We also
Polymer Fluid Dynamics: Continuum and Molecular Approaches.
Bird, R B; Giacomin, A J
2016-06-07
To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
NASA Astrophysics Data System (ADS)
Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi
2004-01-01
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.
Molecular dynamics in high electric fields
NASA Astrophysics Data System (ADS)
Apostol, M.; Cune, L. C.
2016-06-01
Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Dynamic Molecular Invasion into Multiply Interlocked Catenane.
Yamada, Yasuyuki; Ito, Ryohei; Ogino, Sayaka; Kato, Tatsuhisa; Tanaka, Kentaro
2017-09-14
A multiply interlocked catenane with a novel molecular topology was synthesized; a phthalocyanine bearing four peripheral crown ethers was quadruply interlocked with a cofacial porphyrin dimer bridged with four alkylammonium chains. The supramolecular conjugate has two nanospaces surrounded by a porphyrin, a phthalocyanine, and four alkyl chains to accommodate guest molecules. Because the phthalocyanine is movable along the alkyl chains, it acts as an adjustable wall, permitting the invasion of large molecules to the nanospaces without spoiling the affinity of the association. The dynamic molecular invasion allowed the intercalation of dianionic porphyrins into both the nanospaces with a high affinity. A photometric titration experiment revealed the two-step inclusion phenomenon. The multiply interlocked catenane complexed with three Cu2+ ions, and the spin-spin interaction was switched off by the intercalation of dianionic porphyrins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combining molecular dynamics with mesoscopic Green's function reaction dynamics simulations
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; Bolhuis, Peter G.; ten Wolde, Pieter Rein
2015-12-01
In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.
NASA Astrophysics Data System (ADS)
Arntsen, Christopher; Chen, Chen; Voth, Gregory A.
2017-09-01
We present two new multiscale molecular dynamics (MS-RMD) models for the hydrated excess proton in water developed directly from ab initio molecular dynamics (AIMD) simulation data of the same system. The potential of mean force along the proton transfer reaction coordinate and radial distribution functions for the MS-RMD models are shown to faithfully reproduce those of AIMD. The models are developed using an algorithm based on relative entropy minimization, thus demonstrating the ability of the method to rapidly generate accurate and highly efficient reactive MD force fields.
Arntsen, Christopher; Chen, Chen; Voth, Gregory A
2017-09-01
We present two new multiscale molecular dynamics (MS-RMD) models for the hydrated excess proton in water developed directly from ab initio molecular dynamics (AIMD) simulation data of the same system. The potential of mean force along the proton transfer reaction coordinate and radial distribution functions for the MS-RMD models are shown faithfully reproduce those of AIMD. The models are developed using an algorithm based on relative entropy minimization, thus demonstrating the ability of the method to rapidly generate accurate and highly efficient reactive MD force fields.
Molecular Dynamics: New Frontier in Personalized Medicine.
Sneha, P; Doss, C George Priya
2016-01-01
The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine.
Exploring Hamiltonian dielectric solvent molecular dynamics
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Tavan, Paul; Mathias, Gerald
2014-09-01
Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.
Exchange frequency in replica exchange molecular dynamics
NASA Astrophysics Data System (ADS)
Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.
2008-01-01
The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.
8B structure in Fermionic Molecular Dynamics
NASA Astrophysics Data System (ADS)
Henninger, K. R.; Neff, T.; Feldmeier, H.
2015-04-01
The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.
Molecular Dynamics Simulations of Interface Failure
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Swan, Wm. Trevor, III; Ducatman, Samuel C.
2007-03-01
The mechanical integrity of silicon/silicon nitride interfaces is of great importance in their applications in micro electronics and solar cells. Large-scale molecular dynamics simulations are an excellent tool to study mechanical and structural failure of interfaces subjected to externally applied stresses and strains. When pulling the system parallel to the interface, cracks in silicon nitride and slip and pit formation in silicon are typical failure mechanisms. Hypervelocity impact perpendicular to the interface plane leads to structural transformation and delamination at the interface. Influence of system temperature, strain rate, impact velocity, and system size on type and characteristics of failure will be discussed.
Molecular beam studies of reaction dynamics
Lee, Y.T.
1987-03-01
Purpose of this research project is two-fold: (1) to elucidate detailed dynamics of simple elementary reactions which are theoretically important and to unravel the mechanism of complex chemical reactions or photo chemical processes which play an important role in many macroscopic processes and (2) to determine the energetics of polyatomic free radicals using microscopic experimental methods. Most of the information is derived from measurement of the product fragment translational energy and angular distributions using unique molecular beam apparati designed for these purposes.
Molecular dynamics simulations of dense plasmas
Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.
1993-12-31
We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.
Charge transport network dynamics in molecular aggregates
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.
Collective dynamics of interacting molecular motors.
Campàs, O; Kafri, Y; Zeldovich, K B; Casademunt, J; Joanny, J-F
2006-07-21
The collective dynamics of N interacting processive molecular motors are considered theoretically when an external force is applied to the leading motor. We show, using a discrete lattice model, that the force-velocity curves strongly depend on the effective dynamic interactions between motors and differ significantly from those of a simple approach where the motors equally share the force. Moreover, they become essentially independent of the number of motors if N is large enough (N> or approximately 5 for conventional kinesin). We show that a two-state ratchet model has a very similar behavior to that of the coarse-grained lattice model with effective interactions. The general picture is unaffected by motor attachment and detachment events.
Charge transport network dynamics in molecular aggregates
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-01-01
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ∼100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871
Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.
2016-10-01
SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.
Coarse-grained protein molecular dynamics simulations.
Derreumaux, Philippe; Mousseau, Normand
2007-01-14
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.
Coarse-grained protein molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Derreumaux, Philippe; Mousseau, Normand
2007-01-01
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.
MDLab: a molecular dynamics simulation prototyping environment.
Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jesús A
2010-05-01
Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net. Copyright 2009 Wiley Periodicals, Inc.
Accelerated molecular dynamics simulations of protein folding.
Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew
2015-07-30
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.
Flow and plasticity via nonequilibrium molecular dynamics
Hoover, W.G.
1984-06-11
The viscous flow of fluids and the plastic flow of solids, such as metals, are interesting from both the practical and the theoretical points of view. Atomistic molecular dynamics simulations provide a way of visualizing and understanding these flows in a detailed microscopic way. Simulations are necessarily carried out at relatively high rates of strain. For this reason they are ideally suited to the study of nonlinear flow phenomena: normal stresses induced by shear deformation, stress rotation, and the coupling of stress with heat flow, for instance. The simulations require appropriate boundary conditions, forces, and equations of motion. Newtonian mechanics is relatively inefficient for this simulation task. A modification, Nonequilibrium Molecular Dynamics, has been developed to simulate nonequilibrium flows. By now, many high-strain-rate rheological studies of flowing (viscous) fluids and (plastic) solids have been carried out. Here I describe the new methods used in the simulations and some results obtained in this way. A three-body shear-flow exercise is appended to make these ideas more concrete.
Exact dynamic properties of molecular motors.
Boon, N J; Hoyle, R B
2012-08-28
Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)] on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.
Exact dynamic properties of molecular motors
NASA Astrophysics Data System (ADS)
Boon, N. J.; Hoyle, R. B.
2012-08-01
Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.
Structure and Dynamics of Cellulose Molecular Solutions
NASA Astrophysics Data System (ADS)
Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert
Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.
Dynamic Wetting on Graphene-Coated Surface: Molecular Dynamics Investigation
NASA Astrophysics Data System (ADS)
Hung, Shih-Wei; Shiomi, Junichiro
2015-11-01
Wettability of graphene-coated surface gained significant attention recently due to discussion on the ``transparency'' (whether the wetting characteristics follow that of graphene or the underlying surface) and practical applications of graphene. In terms of static contact angle, the wettability of graphene-coated surfaces have been widely studied by experiments, simulations, and theory in recent years. However, the studies of dynamic wetting on graphene-coated surfaces are limited. In the present study, molecular dynamics simulation was performed to study the dynamic wetting of water droplet on graphene-coated surfaces from a microscopic point of view. The results show that the degree of similarity between the spreading behavior on graphene-coated surface and that on pure graphene (or that on the underlying surface) depends on time, i.e. how nonequilibrium the interface dynamics is. We also found that this feature can be altered by introducing defects into graphene. The work is partially supported by Grant-in-Aid for JSPS Fellows 26-04364 and JST CREST.
Dynamic transitions in molecular dynamics simulations of supercooled silicon
NASA Astrophysics Data System (ADS)
Mei, Xiaojun; Eapen, Jacob
2013-04-01
Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.
Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry.
Luk, Hoi Ling; Feist, Johannes; Toppari, J Jussi; Groenhof, Gerrit
2017-09-12
When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.
The 2011 Dynamics of Molecular Collisions Conference
Nesbitt, David J.
2011-07-11
The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor
Detecting Allosteric Networks Using Molecular Dynamics Simulation.
Bowerman, S; Wereszczynski, J
2016-01-01
Allosteric networks allow enzymes to transmit information and regulate their catalytic activities over vast distances. In principle, molecular dynamics (MD) simulations can be used to reveal the mechanisms that underlie this phenomenon; in practice, it can be difficult to discern allosteric signals from MD trajectories. Here, we describe how MD simulations can be analyzed to reveal correlated motions and allosteric networks, and provide an example of their use on the coagulation enzyme thrombin. Methods are discussed for calculating residue-pair correlations from atomic fluctuations and mutual information, which can be combined with contact information to identify allosteric networks and to dynamically cluster a system into highly correlated communities. In the case of thrombin, these methods show that binding of the antagonist hirugen significantly alters the enzyme's correlation landscape through a series of pathways between Exosite I and the catalytic core. Results suggest that hirugen binding curtails dynamic diversity and enforces stricter venues of influence, thus reducing the accessibility of thrombin to other molecules. © 2016 Elsevier Inc. All rights reserved.
Molecular structures and intramolecular dynamics of pentahalides
NASA Astrophysics Data System (ADS)
Ischenko, A. A.
2017-03-01
This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.
Partial hydrodynamic representation of quantum molecular dynamics
NASA Astrophysics Data System (ADS)
Gu, Bing; Franco, Ignacio
2017-05-01
A hybrid method is proposed to propagate system-bath quantum dynamics that use both basis functions and coupled quantum trajectories. In it, the bath is represented with an ensemble of Bohmian trajectories while the system degrees of freedom are accounted through reduced density matrices. By retaining the Hilbert space structure for the system, the method is able to capture interference processes that are challenging to describe in Bohmian dynamics due to singularities that these processes introduce in the quantum potential. By adopting quantum trajectories to represent the bath, the method beats the exponential scaling of the computational cost with the bath size. This combination makes the method suitable for large-scale ground and excited state fully quantum molecular dynamics simulations. Equations of motion for the quantum trajectories and reduced density matrices are derived from the Schrödinger equation and a computational algorithm to solve these equations is proposed. Through computations in two-dimensional model systems, the method is shown to offer an accurate description of subsystem observables and of quantum decoherence, which is difficult to obtain when the quantum nature of the bath is ignored. The scaling of the method is demonstrated using a model with 21 degrees of freedom. The limit of independent trajectories is recovered when the mass of bath degrees of freedom is much larger than the one of the system, in agreement with mixed quantum-classical descriptions.
Hydration dynamics in water clusters via quantum molecular dynamics simulations
Turi, László
2014-05-28
We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of
Molecular dynamics studies of nanofluidics and nanomechanics
NASA Astrophysics Data System (ADS)
Lee, Ki-Ho
Developing a membrane that can successfully filter molecules such as hydrocarbons, oxygen, and carbon dioxide from gaseous mixtures is an important issue for the environmental and economic industries. This potential selectivity can be predicted from atomistic simulations of the diffusion and adsorption of gases into and within carbon nanotubes. The computational nanofluidics of hydrocarbons, oxygen, and carbon dioxide have been studied with molecular dynamics simulations in the work reported here. The interactions in the system are modeled by a classical reactive empirical bond-order potential coupled to Lennard-Jones and Coulombic potentials. The transport of gas molecules for long time periods is characterized by initial non-equilibrium states followed by equilibrium states. The non-equilibrium state is induced by the diffusive motion of gas molecules from one end of the nanotubes into the vacuum or low-pressure region at the other end of the nanotubes, and lasts until the gases are evenly distributed in the nanotubes. During the non-equilibrium state, the gas molecules move back and forth through the nanotubes. It is found that this behavior, the time needed for the attainment of equilibrium, and the molecular motions at the openings of the nanotubes are affected by the density (or pressure) of gas molecules both inside and outside of the carbon nanotubes. When the gas molecules reach the end of the nanotubes, the attractive force between the tube end and the gas molecules prevents the molecules from exiting. The mechanical properties of carbon nanotubes have extended the potential applications of nanoelectromechanical systems (HEMS) such as nano-switches, nanosensors, nano-actuators, and nano-tweezers. In this study, the bending motion from externally incident Ar atom impacts on nanotubes with one firmly-fixed end is examined with classical molecular dynamics simulations. The deformation of the carbon nanotubes in the direction perpendicular to their axis is
Osmosis : a molecular dynamics computer simulation study
NASA Astrophysics Data System (ADS)
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Nanodrop contact angles from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim
2016-11-01
The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.
Nonequilibrium molecular dynamics: The first 25 years
Hoover, W.G. |
1992-08-01
Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.
Assessing Electrolyte Transport Properties with Molecular Dynamics
Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...
2017-04-15
Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF4 and O2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimation techniques ismore » necessary for a reliable ranking of a large set of electrolytes.« less
Molecular dynamics simulation of aluminium melting
NASA Astrophysics Data System (ADS)
Novak, Jakob
2016-06-01
Solid-liquid phase transition has been simulated by the molecular dynamics method, using isobaric-isoenthalpic ensemble. For interatomic potential, glue potential has been selected. The original algorithm for bookkeeping of the information on neighbouring relationships of the atoms has been developed and used in this research. Time consumption for calculation of interatomic forces has been reduced from o(N2) to o(N) by the use of this algorithm. Calculations show that phase transition from solid to liquid occurs between 1,000 K and 1,300 K. The simulated temperature of phase transition is higher than the experimental value due to the absence of crystal defects. If constant heat flux is supplied, temperature decreases during melting because the superheated state becomes unstable. During the cooling process, no significant changes of the observed variables were detected due to the high cooling rate, which prevents crystallisation.
Cell list algorithms for nonequilibrium molecular dynamics
NASA Astrophysics Data System (ADS)
Dobson, Matthew; Fox, Ian; Saracino, Alexandra
2016-06-01
We present two modifications of the standard cell list algorithm that handle molecular dynamics simulations with deforming periodic geometry. Such geometry naturally arises in the simulation of homogeneous, linear nonequilibrium flow modeled with periodic boundary conditions, and recent progress has been made developing boundary conditions suitable for general 3D flows of this type. Previous works focused on the planar flows handled by Lees-Edwards or Kraynik-Reinelt boundary conditions, while the new versions of the cell list algorithm presented here are formulated to handle the general 3D deforming simulation geometry. As in the case of equilibrium, for short-ranged pairwise interactions, the cell list algorithm reduces the computational complexity of the force computation from O(N2) to O(N), where N is the total number of particles in the simulation box. We include a comparison of the complexity and efficiency of the two proposed modifications of the standard algorithm.
Classical Molecular Dynamics Simulation of Nuclear Fuel
Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie
2015-10-10
Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.
Cluster production within antisymmetrized molecular dynamics
NASA Astrophysics Data System (ADS)
Ono, Akira
2016-06-01
Clusters are quite important at various situations in heavy-ion collisions. Antisymmetrized molecular dynamics was improved to take into account the correlations to form light clusters, such as deuterons and α particles, and light nuclei composed of several clusters. The momentum fluctuations of emitted particles are also taken into account by a simple method. Formation of fragments and light clusters in a wide range of heavy-ion collisions was well described with a single set of model parameters. Fragmentation in a proton induced reaction was also well reproduced by introducing cluster correlations. Calculated results demonstrate strong impacts of clusters in various observables including those usually regarded as probes of the density dependence of symmetry energy.
Ion mobility analysis of molecular dynamics.
Wyttenbach, Thomas; Pierson, Nicholas A; Clemmer, David E; Bowers, Michael T
2014-01-01
The combination of mass spectrometry and ion mobility spectrometry (IMS) employing a temperature-variable drift cell or a drift tube divided into sections to make IMS-IMS experiments possible allows information to be obtained about the molecular dynamics of polyatomic ions in the absence of a solvent. The experiments allow the investigation of structural changes of both activated and native ion populations on a timescale of 1-100 ms. Five different systems representing small and large, polar and nonpolar molecules, as well as noncovalent assemblies, are discussed in detail: a dinucleotide, a sodiated polyethylene glycol chain, the peptide bradykinin, the protein ubiquitin, and two types of peptide oligomers. Barriers to conformational interconversion can be obtained in favorable cases. In other cases, solution-like native structures can be observed, but care must be taken in the experimental protocols. The power of theoretical modeling is demonstrated.
Molecular Dynamics Simulations of Hypervelocity Impacts
NASA Astrophysics Data System (ADS)
Owens, Eli T.; Bachlechner, Martina E.
2007-03-01
Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.
Molecular-dynamics simulations of lead clusters
NASA Astrophysics Data System (ADS)
Hendy, S. C.; Hall, B. D.
2001-08-01
Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.
On the parallelization of molecular dynamics codes
NASA Astrophysics Data System (ADS)
Trabado, G. P.; Plata, O.; Zapata, E. L.
2002-08-01
Molecular dynamics (MD) codes present a high degree of spatial data locality and a significant amount of independent computations. However, most of the parallelization strategies are usually based on the manual transformation of sequential programs either by completely rewriting the code with message passing routines or using specific libraries intended for writing new MD programs. In this paper we propose a new library-based approach (DDLY) which supports parallelization of existing short-range MD sequential codes. The novelty of this approach is that it can directly handle the distribution of common data structures used in MD codes to represent data (arrays, Verlet lists, link cells), using domain decomposition. Thus, the insertion of run-time support for distribution and communication in a MD program does not imply significant changes to its structure. The method is simple, efficient and portable. It may be also used to extend existing parallel programming languages, such as HPF.
Fiber lubrication: A molecular dynamics simulation study
NASA Astrophysics Data System (ADS)
Liu, Hongyi
Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence
Molecular Dynamics Simulation of a RNA Aptasensor.
Ruan, Min; Seydou, Mahamadou; Noel, Vincent; Piro, Benoit; Maurel, François; Barbault, Florent
2017-04-14
Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.
Molecular dynamics simulations of microscale fluid transport
Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.
1998-02-01
Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.
Molecular beam studies of reaction dynamics
Lee, Y.T.
1993-12-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
Molecular-dynamic study of liquid ethylenediamine
NASA Astrophysics Data System (ADS)
Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.
2016-10-01
Models of liquid ethylenediamine (ED) are built using the molecular dynamics approach at temperatures of 293-363 K and a size of 1000 molecules in a basic cell as a cuboid. The structural and dynamic characteristics of liquid ED versus temperature are derived. The gauche conformation of the ED molecule that is characteristic of the gas phase is shown to transition easily into the trans conformation of the molecules in the liquid. NH···N hydrogen bonds are analyzed in liquid ED. The number of H-bonds per ED molecule is found to vary from 5.02 at 293 K to 3.86 at 363 K. The lifetimes in the range of the temperatures and dissociation activation energy for several H-bonds in liquid ED are found to range from 0.574 to 4.524 ps at 293 K; the activation energies are 8.8 kJ/mol for 50% of the H-bonds and 16.3 kJ/mol for 6.25% of them. A weaker and more mobile spatial grid of H-bonds in liquid ED is observed, compared to data calculated earlier for monoethanolamine.
Molecular beam studies of reaction dynamics
Lee, Y.T.
1990-03-01
The major thrust of this research project is to elucidate detailed dynamics of simple reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation. 34 refs.
Molecular beam studies of reaction dynamics
Lee, Yuan T.
1991-03-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
A molecular dynamics approach to barrodiffusion
NASA Astrophysics Data System (ADS)
Cooley, James; Marciante, Mathieu; Murillo, Michael
2016-10-01
Unexpected phenomena in the reaction rates for Inertial Confinement Fusion (ICF) capsules have led to a renewed interest in the thermo-dynamically driven diffusion process for the past 10 years, often described collectively as barodiffusion. In the current context, barodiffusion would manifest as a process that separates ions of differing mass and charge ratios due to pressure and temperature gradients set-up through shock structures in the capsule core. Barrodiffusion includes additional mass transfer terms that account for the irreversible transport of species due to gradients in the system, both thermodynamic and electric e.g, i = - ρD [ ∇c +kp ∇ln(pi) +kT(i) ∇ln(Ti) +kt(e) ∇ln(Te) +eke/Ti ∇ϕ ] . Several groups have attacked this phenomena using continuum scale models and supplemented with kinetic theory to derive coefficients for the different diffusion terms based on assumptions about the collisional processes. In contrast, we have applied a molecular dynamics (MD) simulation to this system to gain a first-principle understanding of the rate kinetics and to assess the accuracy of the differin
Molecular dynamics simulation in virus research
Ode, Hirotaka; Nakashima, Masaaki; Kitamura, Shingo; Sugiura, Wataru; Sato, Hironori
2012-01-01
Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus–host interactions and evolution, and present future perspectives on this technique. PMID:22833741
GAS-PHASE MOLECULAR DYNAMICS: VIBRATIONAL DYNAMICS OF POLYATOMIC MOLECULES
MUCKERMAN,J.T.
1999-06-09
The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high-temperature, flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.
Molecular dynamics studies on nanoscale gas transport
NASA Astrophysics Data System (ADS)
Barisik, Murat
Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the
Internal coordinate molecular dynamics: a foundation for multiscale dynamics.
Vaidehi, Nagarajan; Jain, Abhinandan
2015-01-29
Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics.
Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics
2015-01-01
Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver
2015-06-01
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.
A quantum molecular dynamics study of aqueous solvation dynamics
NASA Astrophysics Data System (ADS)
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2013-10-01
Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E, and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ˜20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case.
Computational Study of the Structure and Mechanical Properties of the Molecular Crystal RDX
2011-01-01
structure and affect the physiological absorption of advanced pharmaceutical ingredients and the decomposition of high explosives. Report...physiological absorption of advanced pharmaceutical ingredients and the decomposition of high explosives. This work used molecular dynamics to study the...l’Energie Atomique Centre d’Etudes de Vajours, Sevran, France. 221 [35] Yoo, C., Cynn, H., Howard, W. M., and Holmes, N. (1998). Equations of
Structure and dynamics of layered molecular assemblies
NASA Astrophysics Data System (ADS)
Horne, Jennifer Conrad
This dissertation focuses on the goal of understanding and controlling layered material properties from a molecular perspective. With this understanding, materials can be synthetically tailored to exhibit predetermined bulk properties. This investigation describes the optical response of a family of metal-phosphonate (MP) monolayers and multilayers, materials that are potentially useful because the films are easy to synthesize and are chemically and thermally stable. MP films have shown potential in a variety of chemical sensing and optical applications, and in this dissertation, the suitability of MP films for optical information storage is explored For this application, the extent of photonic energy transport within and between optically active layers is an important factor in determining the stability and specificity of optical modifications made to a material. Intralayer and interlayer energy transport processes can be studied selectively in MP films because the composition, and thus the properties, of each layer are controlled synthetically. It was determined by fluorescence relaxation dynamics in conjunction with atomic force microscopy (AFM) that the substrate and layer morphologies are key factors in determining the layer optical and physical properties. The initial MP layers in a multilayer are structurally heterogeneous, characterized by randomly distributed islands that are ~50 A in diameter. The population dynamics measured for these layers are non-exponential, chromophore concentration-independent, and identical for two different chromophores. The data is explained in the context of an excitation hopping model in a system where the surface is characterized by islands of aggregated chromophores as well as non-aggregated monomers. Within a MP monolayer, the dynamics are dominated by intra-island excitation hopping. Forster (dipolar) energy transfer between the energetically overlapped chromophores does not play a significant role in determining the
Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure
2014-08-30
properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to
Molecular dynamics and spectra. II. Diatomic Raman
NASA Astrophysics Data System (ADS)
Berens, Peter H.; White, Steven R.; Wilson, Kent R.
1981-07-01
This paper and paper I in this series [P.H. Berens and K.R. Wilison, J. Chem. Phys. 74, 4872 (1981)] indicate that infrared and Raman rotational and fundamental vibrational-rotational spectra of dense systems (high pressure gases, liquids, and solids) are essentially classical, in that they can be computed and understood from a basically classical mechanical viewpoint, with some caveats for features in which anharmonicity is important, such as the detailed shape of Q branches. It is demonstrated here, using the diatomic case as an example, that ordinary, i.e., nonresonant, Raman band contours can be computed from classical mechanics plus simple quantum corrections. Classical versions of molecular dynamics, linear response theory, and ensemble averaging, followed by straightforward quantum corrections, are used to compute the pure rotational and fundamental vibration-rotational Raman band contours of N2 for the gas phase and for solutions of N2 in different densities of gas phase Ar and in liquid Ar. The evolution is seen from multiple peaked line shapes characteristic of free rotation in the gas phase to single peaks characteristic of hindered rotation in the liquid phase. Comparison is made with quantum and correspondence principle classical gas phase spectral calculations and with experimental measurements for pure N2 and N2 in liquid Ar. Three advantages are pointed out for a classical approach to infrared and Raman spectra. First, a classical approach can be used to compute the spectra of complex molecular systems, e.g., of large molecules, clusters, liquids, solutions, and solids. Second, this classical approach can be extended to compute the spectra of nonequilibrium and time-dependent systems, e.g., infrared and Raman spectra during the course of chemical reactions. Third, a classical viewpoint allows experimental infrared and Raman spectra to be understood and interpreted in terms of atomic motions with the considerable aid of classical models and of our
Thermal transpiration: A molecular dynamics study
T, Joe Francis; Sathian, Sarith P.
2014-12-09
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Nanoscale deicing by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Xiao, Senbo; He, Jianying; Zhang, Zhiliang
2016-07-01
Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice
Nonlinear Resonance Artifacts in Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Schlick, Tamar; Mandziuk, Margaret; Skeel, Robert D.; Srinivas, K.
1998-02-01
The intriguing phenomenon of resonance, a pronounced integrator-induced corruption of a system's dynamics, is examined for simple molecular systems subject to the classical equations of motion. This source of timestep limitation is not well appreciated in general, and certainly analyses of resonance patterns have been few in connection to biomolecular dynamics. Yet resonances are present in the commonly used Verlet integrator, in symplectic implicit schemes, and also limit the scope of current multiple-timestep methods that are formulated as symplectic and reversible. The only general remedy to date has been to reduce the timestep. For this purpose, we derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as useful guidelines in practice for biomolecular simulations. We also devise closely related symplectic implicit schemes for which the limitation on the discretization stepsize is much less severe. Specifically, we design methods to remove third-order, or both the third- and fourth-order, resonances. These severe low-order resonances can lead to instability or very large energies. Our tests on two simple molecular problems (Morse and Lennard-Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N '-methylamide, confirm this prediction; our methods can delay resonances so that they occur only at larger timesteps (EW method) or are essentially removed (LIM2 method). Although stable for large timesteps by this approach, trajectories show large energy fluctuations, perhaps due to the coupling with other factors that induce instability in complex nonlinear systems. Thus, the methods developed here may be more useful for conformational sampling of biomolecular structures. The analysis presented here for the blocked alanine model emphasizes that one-dimensional analysis of resonances can be applied to a more complex, multimode system to analyze resonance behavior, but that resonance due to frequency coupling is more complex to pinpoint
How Dynamic Visualization Technology Can Support Molecular Reasoning
ERIC Educational Resources Information Center
Levy, Dalit
2013-01-01
This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…
How Dynamic Visualization Technology Can Support Molecular Reasoning
ERIC Educational Resources Information Center
Levy, Dalit
2013-01-01
This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…
Molecular dynamics simulations of glycoclusters and glycodendrimers.
von der Lieth, Claus W; Frank, Martin; Lindhorst, Thisbe K
2002-05-01
Protein-carbohydrate recognition plays a crucial role in a wide range of biological processes, required both for normal physiological functions and the onset of disease. Nature uses multivalency in carbohydrate-protein interactions as a strategy to overcome the low affinity found for singular binding of an individual saccharide epitope to a single carbohydrate recognition domain of a lectin. To mimic the complex multi-branched oligosaccharides found in glycoconjugates, which form the structural basis of multivalent carbohydrate-protein interactions, so-called glycoclusters and glycodendrimers have been designed to serve as high-affinity ligands of the respective receptor proteins. To allow a rational design of glycodendrimer-type molecules with regard to the receptor structures involved in carbohydrate recognition, a deeper knowledge of the dynamics of such molecules is desirable. Most glycodendrimers have to be considered highly flexible molecules with their conformational preferences most difficult to elucidate by experimental methods. Longtime molecular dynamics (MD) simulations with inclusion of explicit solvent molecules are suited to explore the conformational space accessible to glycodendrimers. Here, a detailed geometric and conformational analysis of 15 glycodendrimers and glycoclusters has been accomplished, which differ with regard to their core moieties, spacer characteristics and the type of terminal carbohydrate units. It is shown that the accessible conformational space depends strongly on the structural features of the core and spacer moieties and even on the type of terminating sugars. The obtained knowledge about possible spatial distributions of the sugar epitopes exposed on the investigated hyperbranched neoglycoconjugates is detailed for all examples and forms important information for the interpretation and prediction of affinity data, which can be deduced from biological testing of these multivalent neoglycoconjugates.
Microsecond Molecular Dynamics Simulations of Lipid Mixing
2015-01-01
Molecular dynamics (MD) simulations of membranes are often hindered by the slow lateral diffusion of lipids and the limited time scale of MD. In order to study the dynamics of mixing and characterize the lateral distribution of lipids in converged mixtures, we report microsecond-long all-atom MD simulations performed on the special-purpose machine Anton. Two types of mixed bilayers, POPE:POPG (3:1) and POPC:cholesterol (2:1), as well as a pure POPC bilayer, were each simulated for up to 2 μs. These simulations show that POPE:POPG and POPC:cholesterol are each fully miscible at the simulated conditions, with the final states of the mixed bilayers similar to a random mixture. By simulating three POPE:POPG bilayers at different NaCl concentrations (0, 0.15, and 1 M), we also examined the effect of salt concentration on lipid mixing. While an increase in NaCl concentration is shown to affect the area per lipid, tail order, and lipid lateral diffusion, the final states of mixing remain unaltered, which is explained by the largely uniform increase in Na+ ions around POPE and POPG. Direct measurement of water permeation reveals that the POPE:POPG bilayer with 1 M NaCl has reduced water permeability compared with those at zero or low salt concentration. Our calculations provide a benchmark to estimate the convergence time scale of all-atom MD simulations of lipid mixing. Additionally, equilibrated structures of POPE:POPG and POPC:cholesterol, which are frequently used to mimic bacterial and mammalian membranes, respectively, can be used as starting points of simulations involving these membranes. PMID:25237736
Molecular dynamics simulations of xDNA.
Varghese, Mathew K; Thomas, Renjith; Unnikrishnan, N V; Sudarsanakumar, C
2009-05-01
xDNA is a modified DNA, which contains natural as well as expanded bases. Expanded bases are generated by the addition of a benzene spacer to the natural bases. A set of AMBER force-field parameters were derived for the expanded bases and the structural dynamics of the xDNA decamer (xT5' G xT A xC xG C xA xG T3').(xA5' C T xG C G xT A xC A3') was explored using a 22 ns molecular dynamics simulation in explicit solvent. During the simulation, the duplex retained its Watson-Crick base-pairing and double helical structure, with deviations from the starting B-form geometry towards A-form; the deviations are mainly in the backbone torsion angles and in the helical parameters. The sugar pucker of the residues were distributed among a variety of modes; C2' endo, C1' exo, O4' endo, C4' exo, C2' exo, and C3' endo. The enhanced stacking interactions on account of the modification in the bases could help to retain the duplex nature of the helix with minor deviations from the ideal geometry. In our simulation, the xDNA showed a reduced minor groove width and an enlarged major groove width in comparison with the NMR structure. Both the grooves are larger than that of standard B-DNA, but major groove width is larger than that of A-DNA with almost equal minor groove width. The enlarged groove widths and the possibility of additional hydration in the grooves makes xDNA a potential molecule for various applications. Copyright (c) 2009 Wiley Periodicals, Inc.
Statistical coarse-graining of molecular dynamics into peridynamics.
Silling, Stewart Andrew; Lehoucq, Richard B.
2007-10-01
This paper describes an elegant statistical coarse-graining of molecular dynamics at finite temperature into peridynamics, a continuum theory. Peridynamics is an efficient alternative to molecular dynamics enabling dynamics at larger length and time scales. In direct analogy with molecular dynamics, peridynamics uses a nonlocal model of force and does not employ stress/strain relationships germane to classical continuum mechanics. In contrast with classical continuum mechanics, the peridynamic representation of a system of linear springs and masses is shown to have the same dispersion relation as the original spring-mass system.
Multimillion atom molecular dynamics simulations of glasses and ceramic materials
NASA Astrophysics Data System (ADS)
Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro
1999-11-01
Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed.
Molecular dynamics simulation of fractal aggregate diffusion
NASA Astrophysics Data System (ADS)
Pranami, Gaurav; Lamm, Monica H.; Vigil, R. Dennis
2010-11-01
The diffusion of fractal aggregates constructed with the method by Thouy and Jullien [J. Phys. A 27, 2953 (1994)10.1088/0305-4470/27/9/012] comprised of Np spherical primary particles was studied as a function of the aggregate mass and fractal dimension using molecular dynamics simulations. It is shown that finite-size effects have a strong impact on the apparent value of the diffusion coefficient (D) , but these can be corrected by carrying out simulations using different simulation box sizes. Specifically, the diffusion coefficient is inversely proportional to the length of a cubic simulation box, and the constant of proportionality appears to be independent of the aggregate mass and fractal dimension. Using this result, it is possible to compute infinite dilution diffusion coefficients (Do) for aggregates of arbitrary size and fractal dimension, and it was found that Do∝Np-1/df , as is often assumed by investigators simulating Brownian aggregation of fractal aggregates. The ratio of hydrodynamic radius to radius of gyration is computed and shown to be independent of mass for aggregates of fixed fractal dimension, thus enabling an estimate of the diffusion coefficient for a fractal aggregate based on its radius of gyration.
Molecular Dynamics Simulations of Ferroelectric Phase Transitions
NASA Astrophysics Data System (ADS)
Yu, Rici; Krakauer, Henry
1997-03-01
Based on an analysis of the wavevector dependence of the lattice instabilities in KNbO_3, we proposed a real-space chain-like instability and a scenario of sequential freezing out or onset of coherence of these instabilities, which qualitatively explains the sequence of observed temperature-dependent ferroelectric phases.(R. Yu and H. Krakauer, Phys. Rev. Lett. 74), 4067 (1995). We suggested that this chain-like instability should also be found in BaTiO_3, and this has been subsequently confirmed by Ghosez et al.(P. Ghosez et al.), Proc. 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, to be published We will present molecular dynamics simulations on BaTiO_3, using effective Hamiltonians constructed from first-principles calculations,(W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73), 1861 (1994). that reproduce the essential features of diffuse x-ray scattering measurements in the cubic, tetragonal, orthorhombic, and rhombohedral phases. The good agreement supports the interpretation of real-space chain-formation. Simulations for KNbO3 may also be reported.
Integrating influenza antigenic dynamics with molecular evolution
Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew
2014-01-01
Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547
Quantum molecular dynamics simulations of dense matter
Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.
1997-12-31
The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.
Fundamental frequency from classical molecular dynamics.
Yamada, Tomonori; Aida, Misako
2015-02-07
We give a theoretical validation for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the following questions: (1) What is the appropriate initial condition of classical MD to calculate the fundamental frequency? (2) From that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit of using ab initio MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories. As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ: one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio MD to frequency calculations of C-H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower for large molecules.
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
Molecular chaperone-mediated nuclear protein dynamics.
Echtenkamp, Frank J; Freeman, Brian C
2014-05-01
Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus.
Dynamics, flexibility, and allostery in molecular chaperonins.
Skjærven, Lars; Cuellar, Jorge; Martinez, Aurora; Valpuesta, José María
2015-09-14
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Parallel Molecular Dynamics of Coulomb Clusters
NASA Astrophysics Data System (ADS)
Kishimoto, Tokunari; Totsuji, Chieko; Tsuruta, Kenji; Totsuji, Hiroo
2000-10-01
Using parallel computers, we perform large-scale molecular dynamics (MD) simulations of Coulomb clusters in a spherical trapping field. Long-range Coulomb forces are calculated efficiently using the fast multipole method (FMM). Previously Hasse and Avilov [1] have performed numerical analysis of Coulomb clusters, and predicted a crossover between the energy curve of Coulomb clusters and that of finite bcc crystals around N = 10^6. Another prediction [2] has been reported around N = 10^5. Recently, experimental observation of Be^+ clusters in ion trap [3] indicated that structure of N = 8 *10^4 was similar to bcc single crystal. We perform direct simulations of Coulomb clusters of system sizes N = 10^5-10^6. We report preliminary results on 10^5 system: Radial distribution and the Laue-pattern analysis indicates structural evolution of the cluster. The correlation energy of the cluster is found to be lower than finite bcc crystal of the same size. We will show results for larger systems (10^6) and the N dependence of structure and energy of the Coulomb clusters around the crossover region. [1] R. W. Hasse and V. V. Avilov, Phys. Rev. A 44, 4506 (1991). [2] D. H. E. Dubin, Phys. Rev. A 40, 1140 (1989). [3] W. M. Itano et al., Science 279, 686 (1998).
Liquid Jet Cavitation via Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ashurst, W. T.
1997-11-01
A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).
Direct anharmonic correction method by molecular dynamics
NASA Astrophysics Data System (ADS)
Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang
2017-04-01
The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.
Molecular Dynamics Study of Helicobacter pylori Urease.
Minkara, Mona S; Ucisik, Melek N; Weaver, Michael N; Merz, Kenneth M
2014-05-13
Helicobacter pylori have been implicated in an array of gastrointestinal disorders including, but not limited to, gastric and duodenal ulcers and adenocarcinoma. This bacterium utilizes an enzyme, urease, to produce copious amounts of ammonia through urea hydrolysis in order to survive the harsh acidic conditions of the stomach. Molecular dynamics (MD) studies on the H. pylori urease enzyme have been employed in order to study structural features of this enzyme that may shed light on the hydrolysis mechanism. A total of 400 ns of MD simulation time were collected and analyzed in this study. A wide-open flap state previously observed in MD simulations on Klebsiella aerogenes [Roberts et al. J. Am. Chem. Soc.2012, 134, 9934] urease has been identified in the H. pylori enzyme that has yet to be experimentally observed. Critical distances between residues on the flap, contact points in the closed state, and the separation between the active site Ni(2+) ions and the critical histidine α322 residue were used to characterize flap motion. An additional flap in the active site was elaborated upon that we postulate may serve as an exit conduit for hydrolysis products. Finally we discuss the internal hollow cavity and present analysis of the distribution of sodium ions over the course of the simulation.
Combined molecular dynamics-spin dynamics simulations of bcc iron
Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg
2014-01-01
Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.
Molecular Dynamics Simulation of Disordered Zircon
Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin
2004-02-27
The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.
Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code
NASA Astrophysics Data System (ADS)
Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín
2010-12-01
Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to
Capillary dynamics driven by molecular self-layering.
Wu, Pingkeng; Nikolov, Alex; Wasan, Darsh
2017-02-10
Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction. Here, the capillary rise dynamics of simple molecular fluids in cylindrical capillary is explained by the molecular self-layering model. The proposed model considers the role of the molecular shape on self-layering and its effect on the molecularly thin film viscosity in regards to the advancing (dynamic) contact angle. The model was tested to explain the capillary rise dynamics of fluids of spherical, cylindrical, and disk shape molecules in borosilicate glass capillaries. The good agreement between the capillary rise data and SFA data from the literature for simple fluid self-layering shows the validity of the present model. The present model provides new insights into the design of many applications where dynamic wetting is important because it reveals the significant impact of molecular self-layering close to the wall on dynamic wetting.
Frontiers in molecular dynamics simulations of DNA.
Pérez, Alberto; Luque, F Javier; Orozco, Modesto
2012-02-21
It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global
Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor.
Raharjo, Sentot Joko; Kikuchi, Takeshi
2016-10-01
Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor.
Dynamical analysis of highly excited molecular spectra
Kellman, M.E.
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
Masses, luminosities and dynamics of galactic molecular clouds
NASA Technical Reports Server (NTRS)
Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.
1987-01-01
Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.
Next generation extended Lagrangian first principles molecular dynamics
NASA Astrophysics Data System (ADS)
Niklasson, Anders M. N.
2017-08-01
Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.
Special issue on ultrafast electron and molecular dynamics
NASA Astrophysics Data System (ADS)
Hishikawa, Akiyoshi; Martin, Fernando; Vrakking, Marc
2013-07-01
Your invitation to submit. Journal of Physics. B: Atomic Molecular and Optical Physics (JPhysB) is delighted to announce a forthcoming special issue on ultrafast electron and molecular dynamics to appear in 2014, and invites you to submit a paper. Within the last decade, a number of novel approaches have emerged, both experimental and theoretical, that allow the investigation of (time-resolved) molecular dynamics in novel ways not anticipated before. Experimentally, the introduction of novel light sources such as high-harmonic generation and XUV/x-ray free electron lasers, and the emergence of novel detection strategies, such as time-resolved electron/x-ray diffraction and the fully coincident detection of electrons and fragment ions in reaction microscopes, has significantly expanded the arsenal of available techniques, and has taken studies of molecular dynamics into new domains of spectroscopic, spatial and temporal resolution, the latter including first explorations into the attosecond domain. Along the way, particular types of molecular dynamics, such as dynamics around conical intersections, have gained an increased prominence, sparked by an emerging realization about the essential role that this dynamics plays in relaxation pathways in important bio-molecular systems. The progress on the theoretical side has been no less impressive. Novel generations of supercomputers and a series of novel computational strategies have allowed nearly exact calculations in small molecules, as well as highly successful approximate calculations in large, polyatomic molecules. Frequent and intensive collaborations involving both theory and experiment have been essential for the progress that has been accomplished. The special issue 'Ultrafast electron and molecular dynamics' seeks to provide an overview of some of the most important developments in the field, while at the same time indicating how studies of (time-resolved) molecular dynamics are likely to evolve in the coming
Next generation extended Lagrangian first principles molecular dynamics.
Niklasson, Anders M N
2017-08-07
Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.
Elucidation of molecular dynamics of invasive species of rice
USDA-ARS?s Scientific Manuscript database
Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...
HTMD: High-Throughput Molecular Dynamics for Molecular Discovery.
Doerr, S; Harvey, M J; Noé, Frank; De Fabritiis, G
2016-04-12
Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features.
Molecular dynamics simulation of interfacial adhesion
Yarovsky, I.; Chaffee, A.L.
1996-12-31
Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.
Attosecond molecular dynamics: fact or fiction?
NASA Astrophysics Data System (ADS)
Lépine, Franck; Ivanov, Misha Y.; Vrakking, Marc J. J.
2014-03-01
The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump-probe experiments on molecular systems.
Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations
2013-01-01
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176
Tunable Interfacial Thermal Conductance by Molecular Dynamics
NASA Astrophysics Data System (ADS)
Shen, Meng
We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1
A Molecular Dynamics Simulation of C60-C60 Collision
NASA Astrophysics Data System (ADS)
Liu, Lei; Chen, Kaitai; Li, Yufen
1993-12-01
The formation process of C120-complex in C60-C60 collision has been clearly demonstrated by a molecular dynamics simulation. The complex, with a peanut-shell-like structure, is in a quite stable dynamical state. The results are consistent with recent observations.
The Computer Simulation of Liquids by Molecular Dynamics.
ERIC Educational Resources Information Center
Smith, W.
1987-01-01
Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)
The Computer Simulation of Liquids by Molecular Dynamics.
ERIC Educational Resources Information Center
Smith, W.
1987-01-01
Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)
Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.
Lau, E Y; Krishnan, V V
2007-07-18
The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.
Molecular Dynamics Simulations of Crystal Copper: Bulk Modulus and Shocks
NASA Astrophysics Data System (ADS)
Warrier, M.; Rawat, S.; Chaturvedi, S.
2011-07-01
Molecular dynamics is used to study the response of single crystal copper target to impacts by single crystal copper at velocities in the range 1 km/s to 3 km/s. The Embedded Atom Method (EAM) potential by Foiles et al. for Cu [1] was used in the simulation. The potential and its implementation in the open source, Large-scale Atomic Molecular Massively Parallel Simulator (LAMMPS) [2] was verified by reproducing the experimental values of bulk modulus of Cu. The shock velocity (us) as a function of particle velocity (up) matches published experimental and molecular dynamic simulations results.
Investigation of Ribosomes Using Molecular Dynamics Simulation Methods.
Makarov, G I; Makarova, T M; Sumbatyan, N V; Bogdanov, A A
2016-12-01
The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.
Optimal control of molecular motion expressed through quantum fluid dynamics
NASA Astrophysics Data System (ADS)
Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila
2000-04-01
A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.
On electronic representations in molecular reaction dynamics
NASA Astrophysics Data System (ADS)
Killian, Benjamin J.
For many decades, the field of chemical reaction dynamics has utilized computational methods that rely on potential energy surfaces that are constructed using stationary-state calculations. These methods are typically devoid of dynamical couplings between the electronic and nuclear degrees of freedom, a fact that can result in incorrect descriptions of dynamical processes. Often, non-adiabatic coupling expressions are included in these methodologies. The Electron-Nuclear Dynamics (END) formalism, in contrast, circumvents these deficiencies by calculating all intermolecular forces directly at each time step in the dynamics and by explicitly maintaining all electronic-nuclear couplings. The purpose of this work is to offer two new frameworks for implementing electronic representations in dynamical calculations. Firstly, a new schema is proposed for developing atomic basis sets that are consistent with dynamical calculations. Traditionally, basis sets have been designed for use in stationary-state calculations of the structures and properties of molecules in their ground states. As a consequence of common construction techniques that utilize energy optimization methods, the unoccupied orbitals bear little resemblance to physical virtual atomic orbitals. We develop and implement a method for basis set construction that relies upon physical properties of atomic orbitals and that results in meaningful virtual orbitals. These basis sets are shown to provide a significant improvement in the accuracy of calculated dynamical properties such as charge transfer probabilities. Secondly, the theoretical framework of END is expanded to incorporate a multi-configurational representation for electrons. This formalism, named Vector Hartree-Fock, is based in the theory of vector coherent states and utilizes a complete active space electronic representation. The Vector Hartree-Fock method is fully disclosed, with derivation of the equations of motion. The expressions for the equation
Mott Transition in a Metallic Liquid: Gutzwiller Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei; Barros, Kipton; Batista, Cristian D.; Kress, Joel D.; Kotliar, Gabriel
2017-06-01
We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.
Enhanced sampling techniques in molecular dynamics simulations of biological systems.
Bernardi, Rafael C; Melo, Marcelo C R; Schulten, Klaus
2015-05-01
Molecular dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacial Molecular Searching Using Forager Dynamics
NASA Astrophysics Data System (ADS)
Monserud, Jon H.; Schwartz, Daniel K.
2016-03-01
Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.
Force fields for classical molecular dynamics.
Monticelli, Luca; Tieleman, D Peter
2013-01-01
In this chapter we review the basic features and the principles underlying molecular mechanics force fields commonly used in molecular modeling of biological macromolecules. We start by summarizing the historical background and then describe classical pairwise additive potential energy functions. We introduce the problem of the calculation of nonbonded interactions, of particular importance for charged macromolecules. Different parameterization philosophies are then presented, followed by a section on force field validation. We conclude with a brief overview on future perspectives for the development of classical force fields.
Gas Diffusion in Polyethylene Terepthalate By Molecular Dynamics
NASA Astrophysics Data System (ADS)
Butler, Simon; Adolf, David
2006-03-01
Molecular dynamics simulations of the diffusion of small penetrants through PET have been performed utilising the anisotropic united atom model [1] and a virtual liquid technique. [2] The accuracy and reliability of these two approaches has been assessed in terms of the improvement in equation of state behaviour and of diffusion co-efficients and solubilities. The effect of the diffusion of nitrogen, carbon dioxide, and oxygen on the local dynamics of PET have been investigated as a result. Attention has been focused on the dual mode effect [3] observed during mixed gas diffusion. [1] Molecular dynamics calculation of the equation of state of alkanes, J. Chem. Phys. 93, 6 (1990) [2] Kikuchi, Kuwajima, Fukada, Novel method to estimate the solubility of small molecules in cis-polyisoprene by molecular dynamics simulations, J. Chem. Phys, 115, 13 (2001) [3] Lewis, Duckett, Ward, Fairclough, Ryan, The barrier properties of polyethylene terephthalate to mixtures of oxygen, carbon dioxide and nitrogen, Polymer, 1631, 44 (2003)
Quantum dynamics of light-driven chiral molecular motors.
Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi
2009-03-21
The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.
First principles molecular dynamics without self-consistent field optimization.
Souvatzis, Petros; Niklasson, Anders M N
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
VUV studies of molecular photofragmentation dynamics
White, M.G.
1993-12-01
State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.
Visualizing global properties of a molecular dynamics trajectory.
Zhou, Hao; Li, Shangyang; Makowski, Lee
2016-01-01
Molecular dynamics (MD) trajectories are very large data sets that contain substantial information about the dynamic behavior of a protein. Condensing these data into a form that can provide intuitively useful understanding of the molecular behavior during the trajectory is a substantial challenge that has received relatively little attention. Here, we introduce the sigma-r plot, a plot of the standard deviation of intermolecular distances as a function of that distance. This representation of global dynamics contains within a single, one-dimensional plot, the average range of motion between pairs of atoms within a macromolecule. Comparison of sigma-r plots calculated from 10 ns trajectories of proteins representing the four major SCOP fold classes indicates diversity of dynamic behaviors which are recognizably different among the four classes. Differences in domain structure and molecular weight also produce recognizable features in sigma-r plots, reflective of differences in global dynamics. Plots generated from trajectories with progressively increasing simulation time reflect the increased sampling of the structural ensemble as a function of time. Single amino acid replacements can give rise to changes in global dynamics detectable through comparison of sigma-r plots. Dynamic behavior of substructures can be monitored by careful choice of interatomic vectors included in the calculation. These examples provide demonstrations of the utility of the sigma-r plot to provide a simple measure of the global dynamics of a macromolecule. © 2015 Wiley Periodicals, Inc.
Electron-Nuclear Dynamics of Molecular Systems
1994-04-18
approach with a completely general form of trial function yields the time - dependent Schr ~ dinger equation . Restricting the...dynamical equations approximating the time - dependent SchrOdinger equation . These equations govern the time evolution of the relevant state vector parameters... equations that apprximate the Apuit 18, 1994 time - dependent Schradinger equation and govern the time evolution of
Molecular Dynamics Simulations of Network Glasses
NASA Astrophysics Data System (ADS)
Drabold, David A.
The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References
Molecular Dynamics and Spectra. II. Diatomic Raman.
1981-02-01
applicable to many molecular geometries, and we will use a somewhat more general form than needed for our ’Y diatomic in an attempt to clarify the... aCeit M rach Offta* Naval Pastgraduara SchooI. .4C:i: at. - d. ’eeb.es lontrore’ Calirnia 93940 0300 Sumer 3treec Dr- A. L. SliU:1osk7 3CStOn
Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber
Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.
2010-02-01
We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan -Hendrik; Noe, Frank; Smith, Jeremy C.
2013-11-01
Here, neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Pseudorotational Dynamics of Small Molecular Systems
NASA Astrophysics Data System (ADS)
Hagelberg, Frank
2001-03-01
A variety of dynamic effects related to the pseudorotation of triatomic singly charged species is explored using the Electron Nuclear Dynamics(END)Theory. The concepts relevant to the motion studied are developed through the analysis of the simplest polyatomic molecule, namely H3+. It is shown that the limiting situation of circular pseudorotation is unattainable for this case. This observation is explained by the anisotropy of the ground state potential energy surface caused by the interaction between the D3h ground state of the molecule and its twofold degenerate first excited state. Further, pseudorotational motion is demonstrated to induce a rotational mode which in turn couples the two shape oscillation modes by action of the Coriolis force. Analogous phenomena are found for Li3+. The Jahn-Teller system C3+ exhibits a range of new motional effects. Particularly, a characteristic frequency shift between the two shape oscillation modes is obtained, resulting from the anisotropy in the curvature of the C2v minimum of C3+. The Jahn-Teller parameters of the system are determined from Electron Nuclear Dynamics simulations.
Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics
NASA Astrophysics Data System (ADS)
Ehrlicher, Allen
2012-02-01
Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.
Real-world predictions from ab initio molecular dynamics simulations.
Kirchner, Barbara; di Dio, Philipp J; Hutter, Jürg
2012-01-01
In this review we present the techniques of ab initio molecular dynamics simulation improved to its current stage where the analysis of existing processes and the prediction of further chemical features and real-world processes are feasible. For this reason we describe the relevant developments in ab initio molecular dynamics leading to this stage. Among them, parallel implementations, different basis set functions, density functionals, and van der Waals corrections are reported. The chemical features accessible through AIMD are discussed. These are IR, NMR, as well as EXAFS spectra, sampling methods like metadynamics and others, Wannier functions, dipole moments of molecules in condensed phase, and many other properties. Electrochemical reactions investigated by ab initio molecular dynamics methods in solution, on surfaces as well as complex interfaces, are also presented.
Theoretical analysis of dynamic processes for interacting molecular motors
NASA Astrophysics Data System (ADS)
Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem
2015-02-01
Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.
Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors.
Teimouri, Hamid; Kolomeisky, Anatoly B; Mehrabiani, Kareem
2015-02-13
Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.
Molecular dynamics study of atomic displacements in disordered solid alloys
NASA Astrophysics Data System (ADS)
Puzyrev, Yevgeniy S.
The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.
Zachariah, M; Romanini, M; Tripathi, P; Tamarit, J Ll; Macovez, R
2015-06-28
We probe the ionic conduction and the molecular dynamics in a pure and lithium-salt doped dinitrile molecular plastic crystal. While the diffusion of the Li(+) ions is decoupled from the molecular reorientational dynamics, in the undoped plastic crystal the temperature dependence of the mobility of dinitrile ions and thus of the conductivity is virtually identical to that of on-site molecular rotations. The undoped material is found to obey the Walden and Stokes-Einstein rules typical of ideal liquid electrolytes, implying that an effective viscosity against diffusion can be defined even for a plastic crystalline phase. These surprising results, never reported before in a translationally ordered solid, indicate that in this dinitrile plastic crystalline material the timescale of translational diffusion is perfectly correlated with that of the purely reorientational on-site dynamics.
Dynamic molecular oxygen production in cometary comae
NASA Astrophysics Data System (ADS)
Yao, Yunxi; Giapis, Konstantinos P.
2017-05-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Dynamic molecular oxygen production in cometary comae
Yao, Yunxi; Giapis, Konstantinos P.
2017-01-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov–Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind–surface interactions and gas-phase collisions. Here we report an original Eley–Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2−. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets. PMID:28480881
Dynamics of electron solvation in molecular clusters.
Ehrler, Oli T; Neumark, Daniel M
2009-06-16
Solvated electrons, and hydrated electrons in particular, are important species in condensed phase chemistry, physics, and biology. Many studies have examined the formation mechanism, reactivity, spectroscopy, and dynamics of electrons in aqueous solution and other solvents, leading to a fundamental understanding of the electron-solvent interaction. However, key aspects of solvated electrons remain controversial, and the interaction between hydrated electrons and water is of central interest. For example, although researchers generally accept that hydrated electrons, eaq-, occupy solvent cavities, another picture suggests that the electron resides in a diffuse orbital localized on a H3O radical. In addition, researchers have proposed two physically distinct models for the relaxation mechanism when the electron is excited. These models, formulated to interpret condensed phase experiments, have markedly different timescales for the internal conversion from the excited p state to the ground s state.Studies of negatively charged clusters, such as (H2O)n- and I-(H2O)n, offer a complementary perspective for studying aqueous electron solvation. In this Account, we use time-resolved photoelectron spectroscopy (TRPES), a femtosecond pump-probe technique in which mass-selected anions are electronically excited and then photodetached at a series of delay times, to focus on time-resolved dynamics in these and similar species. In (H2O)n-,TRPES gives evidence for ultrafast internal conversion in clusters up to n=100. Extrapolation of these results yields a p-state lifetime of 50 fs in the bulk limit. This is in good agreement with the nonadiabatic solvation model, one of the models proposed for relaxation of eaq-. Similarly, experiments on (MeOH)n- up to n=450 give an extrapolated p-state lifetime of 150fs. TRPES investigations of I-(H2O)n and I-(CH3CN)n probe a different aspect of electron solvation dynamics. In these experiments,an ultraviolet pump pulse excites the cluster
Trillion-atom molecular dynamics becomes a reality
Kadau, Kai; Germann, Timothy C
2008-01-01
By utilizing the molecular dynamics code SPaSM on Livermore's BlueGene/L architecture, consisting of 212 992 IBM PowerPC440 700 MHz processors, a molecular dynamics simulation was run with one trillion atoms. To demonstrate the practicality and future potential of such ultra large-scale simulations, the onset of the mechanical shear instability occurring in a system of Lennard-Jones particles arranged in a simple cubic lattice was simulated. The evolution of the instability was analyzed on-the-fly using the in-house developed massively parallel graphical object-rendering code MD{_}render.
State-to-state dynamics of molecular energy transfer
Gentry, W.R.; Giese, C.F.
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
Molecular Dynamics Analysis of a Liquid Explosive Reaction Zone
NASA Astrophysics Data System (ADS)
Soulard, L.; Crouzet, B.
2006-07-01
We present an analysis of the reaction zone of a stationary planar detonation by a equilibrium molecular dynamics method (EMD). We particularly focus on the influence of chemical characteristics such as the reactions reversibility and endothermicity. First, equilibrium and unreacted Hugoniot of the reactive system are calculated by EMD. These results are then used to predict the detonation characteristics such as the thermodynamic properties of ZND spike and the sonic point. We observe in particular the influence of the preliminary endothermic phase on the detonation velocity and its stability. The comparison between these predictions and non equilibrium molecular dynamics calculations validate the EMD method.
Nonholonomic Hamiltonian method for molecular dynamics simulations of reacting shocks
NASA Astrophysics Data System (ADS)
Bass, Joseph; Fahrenthold, Eric P.
2017-01-01
Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general the potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new nonholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations, and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted parameters.
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Electron-phonon interaction within classical molecular dynamics
NASA Astrophysics Data System (ADS)
Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.
2016-07-01
We present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e -ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; ...
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; Klintenberg, M.; Aabloo, A.; Caro, A.
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computer simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.
Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems
Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus
2014-01-01
Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Numerical methods for molecular dynamics. Progress report
Skeel, R.D.
1991-12-31
This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Imaging the molecular dynamics of dissociative electron attachment to water
Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali
2009-10-19
Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.
Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes
Rudd, R E
2001-12-21
We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
Mesoscopic Dynamics of Biopolymers and Protein Molecular Machines
NASA Astrophysics Data System (ADS)
Kapral, Raymond
2013-03-01
The dynamics of biopolymers in solution and in crowded molecular environments, which mimic some features of the interior of a biochemical cell, will be discussed. In particular, the dynamics of protein machines that utilize chemical energy to effect cyclic conformational changes to carry out their catalytic functions will be described. The investigation of the dynamics of such complex systems requires knowledge of the time evolution on physically relevant long distance and time scales. This often necessitates a coarse grained or mesoscopic treatment of the dynamics. A hybrid particle-based mesoscopic dynamical method, which combines molecular dynamics for a coarse-grain model of the proteins with multiparticle collision dynamics for the solvent, will be described and utilized to study the dynamics of such systems. See, C. Echeverria, Y. Togashi, A. S. Mikhailov, and R. Kapral, Phys. Chem. Chem. Phys 13, 10527 (2011); C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys., 14, 6755 (2012); J. M. Schofield, P. Inder and R. Kapral, J. Chem. Phys. 136, 205101 (2012). Work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.
Applications of Langevin and Molecular Dynamics methods
NASA Astrophysics Data System (ADS)
Lomdahl, P. S.
Computer simulation of complex nonlinear and disordered phenomena from materials science is rapidly becoming an active and new area serving as a guide for experiments and for testing of theoretical concepts. This is especially true when novel massively parallel computer systems and techniques are used on these problems. In particular the Langevin dynamics simulation technique has proven useful in situations where the time evolution of a system in contact with a heat bath is to be studied. The traditional way to study systems in contact with a heat bath has been via the Monte Carlo method. While this method has indeed been used successfully in many applications, it has difficulty addressing true dynamical questions. Large systems of coupled stochastic ODE's (or Langevin equations) are commonly the end result of a theoretical description of higher dimensional nonlinear systems in contact with a heat bath. The coupling is often local in nature, because it reflects local interactions formulated on a lattice, the lattice for example represents the underlying discreteness of a substrate of atoms or discrete k-values in Fourier space. The fundamental unit of parallelism thus has a direct analog in the physical system the authors are interested in. In these lecture notes the authors illustrate the use of Langevin stochastic simulation techniques on a number of nonlinear problems from materials science and condensed matter physics that have attracted attention in recent years. First, the authors review the idea behind the fluctuation-dissipation theorem which forms that basis for the numerical Langevin stochastic simulation scheme. The authors then show applications of the technique to various problems from condensed matter and materials science.
Molecular circuits for dynamic noise filtering
Zechner, Christoph; Seelig, Georg; Rullan, Marc; Khammash, Mustafa
2016-01-01
The invention of the Kalman filter is a crowning achievement of filtering theory—one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the emerging field of synthetic biology, noise and context dependency are among the key challenges facing the successful implementation of reliable, complex, and scalable synthetic circuits. Although substantial further advancement in the field may very well rely on effectively addressing these issues, a principled protocol to deal with noise—as provided by the Kalman filter—remains completely missing. Here we develop an optimal filtering theory that is suitable for noisy biochemical networks. We show how the resulting filters can be implemented at the molecular level and provide various simulations related to estimation, system identification, and noise cancellation problems. We demonstrate our approach in vitro using DNA strand displacement cascades as well as in vivo using flow cytometry measurements of a light-inducible circuit in Escherichia coli. PMID:27078094
New ways to boost molecular dynamics simulations.
Krieger, Elmar; Vriend, Gert
2015-05-15
We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 Å cutoff, correct atom masses, reproducible trajectory, CPU with 3.6 GHz, no turbo boost, 8 AVX registers). The new features include a mixed multiple time-step algorithm (reaching 5 fs), a tuned version of LINCS to constrain bond angles, the fusion of pair list creation and force calculation, pressure coupling with a "densostat," and exploitation of new CPU instruction sets like AVX2. The impact of Intel's new transactional memory, atomic instructions, and sloppy pair lists is also analyzed. The algorithms map well to GPUs and can automatically handle most Protein Data Bank (PDB) files including ligands. An implementation is available as part of the YASARA molecular modeling and simulation program from www.YASARA.org. © 2015 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Theory of multiexciton dynamics in molecular chains
NASA Astrophysics Data System (ADS)
Wang, Luxia; May, Volkhard
2016-11-01
Ultrafast and strong optical excitation of a molecular system is considered which is formed by a regular one-dimensional arrangement of identical molecules. As it is typical for zinc chlorine-type molecules the transition energy from the ground state to the first excited singlet state is assumed to be smaller than the energy difference between the first excited state and the following one. This enables the creation of many excitons without their immediate quenching due to exciton-exciton annihilation. As a first step into the field of dense Frenkel-exciton systems the present approach stays at a mean-field type of description and ignores vibrational contributions. The resulting nonlinear kinetic equations mix Rabi-type oscillations with those caused by energy transfer and suggest an excitation-dependent narrowing of the exciton band. The indication of this effect in the framework of a two-color pump-probe experiment and of the detection of photon emission is discussed.
Superspreading: molecular dynamics simulations and experimental results
NASA Astrophysics Data System (ADS)
Theodorakis, Panagiotis; Kovalchuk, Nina; Starov, Victor; Muller, Erich; Craster, Richard; Matar, Omar
2015-11-01
The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Recently, we have observed that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid-vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid-vapor and solid-liquid interfaces with surfactants from the interior of the droplet. Here, we present the structural characteristics and kinetics of the droplet spreading during the different stages of this process, and we compare our results with experimental data for trisiloxane and poly oxy ethylene surfactants. In this way, we highlight and explore the differences between surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting. EPSRC Platform Grant MACIPh (EP/L020564/).
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.
Optimizing legacy molecular dynamics software with directive-based offload
NASA Astrophysics Data System (ADS)
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-10-01
Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.
Reasoning with Atomic-Scale Molecular Dynamic Models
ERIC Educational Resources Information Center
Pallant, Amy; Tinker, Robert F.
2004-01-01
The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Molecular dynamics analysis of a liquid explosive reaction zone
NASA Astrophysics Data System (ADS)
Soulard, Laurent
2005-07-01
We present in this work a detailed analysis by molecular dynamics of the reaction zone of a stationary planar detonation. In particular, we look at the influence of chemical characteristics such as the reactions reversibility and endothermicity. So, equilibrium and frozen Hugoniot of the reactive system are calculated by a specific molecular dynamics method. These results can be used to a predict the detonation characteristics such as the thermodynamic properties of ZND spike and the CJ point. We observe in particular the influence of the preliminary endothermic phase on the detonation velocity and its stability. The comparisons between these predictions and non equilibrium molecular dynamics results confirm the results of this first theoretical part. In a second step, the main hypotheses of a ZND model are extracted from the MD simulations (mainly the formalism of the reactive EOS in the reaction zone). The parameters of the corresponding model are then fitted on MD results. The final step is the implementation of the model in an hydrodynamic code. Direct comparisons between molecular dynamics simulations and hydrodynamics calculations for various 1D and 2D (in the hydrodynamics sens) configurations are presented.
Open boundary molecular dynamics of sheared star-polymer melts.
Sablić, Jurij; Praprotnik, Matej; Delgado-Buscalioni, Rafael
2016-02-28
Open boundary molecular dynamics (OBMD) simulations of a sheared star polymer melt under isothermal conditions are performed to study the rheology and molecular structure of the melt under a fixed normal load. Comparison is made with the standard molecular dynamics (MD) in periodic (closed) boxes at a fixed shear rate (using the SLLOD dynamics). The OBMD system exchanges mass and momentum with adjacent reservoirs (buffers) where the external pressure tensor is imposed. Insertion of molecules in the buffers is made feasible by implementing there a low resolution model (blob-molecules with soft effective interactions) and then using the adaptive resolution scheme (AdResS) to connect with the bulk MD. Straining with increasing shear stress induces melt expansion and a significantly different redistribution of pressure compared with the closed case. In the open sample, the shear viscosity is also a bit lowered but more stable against the viscous heating. At a given Weissenberg number, molecular deformations and material properties (recoverable shear strain and normal stress ratio) are found to be similar in both setups. We also study the modelling effect of normal and tangential friction between monomers implemented in a dissipative particle dynamics (DPD) thermostat. Interestingly, the tangential friction substantially enhances the elastic response of the melt due to a reduction of the kinetic stress viscous contribution.
Reasoning with Atomic-Scale Molecular Dynamic Models
ERIC Educational Resources Information Center
Pallant, Amy; Tinker, Robert F.
2004-01-01
The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…
Molecular dynamics simulations on PGLa using NMR orientational constraints.
Sternberg, Ulrich; Witter, Raiker
2015-11-01
NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.
Molecular dynamics simulation of aqueous solutions of glycine betaine
NASA Astrophysics Data System (ADS)
Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.
2003-01-01
Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.
Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions
NASA Technical Reports Server (NTRS)
Menon, Madhu
1998-01-01
In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.
Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor
Raharjo, Sentot Joko; Kikuchi, Takeshi
2016-01-01
Objective: Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. Methods: Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. Result: The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. Conclusion: Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor. PMID:28077888
Adsorption of homopolypeptides on gold investigated using atomistic molecular dynamics.
Vila Verde, Ana; Beltramo, Peter J; Maranas, Janna K
2011-05-17
We investigate the role of dynamics on adsorption of peptides to gold surfaces using all-atom molecular dynamics simulations in explicit solvent. We choose six homopolypeptides [Ala(10), Ser(10), Thr(10), Arg(10), Lys(10), and Gln(10)], for which experimental surface coverages are not correlated with amino acid level affinities for gold, with the idea that dynamic properties may also play a role. To assess dynamics we determine both conformational movement and flexibility of the peptide within a given conformation. Low conformational movement indicates stability of a given conformation and leads to less adsorption than homopolypeptides with faster conformational movement. Likewise, low flexibility within a given conformation also leads to less adsorption. Neither amino acid affinities nor dynamic considerations alone predict surface coverage; rather both quantities must be considered in peptide adsorption to gold surfaces.
Collisional dynamics in a gas of molecular super-rotors.
Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh
2015-07-10
Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable 'gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the 'gyroscopic stage' is abruptly terminated by an explosive rotational-translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules.
Diversity dynamics: molecular phylogenies need the fossil record.
Quental, Tiago B; Marshall, Charles R
2010-08-01
Over the last two decades, new tools in the analysis of molecular phylogenies have enabled study of the diversification dynamics of living clades in the absence of information about extinct lineages. However, computer simulations and the fossil record show that the inability to access extinct lineages severely limits the inferences that can be drawn from molecular phylogenies. It appears that molecular phylogenies can tell us only when there have been changes in diversification rates, but are blind to the true diversity trajectories and rates of origination and extinction that have led to the species that are alive today. We need to embrace the fossil record if we want to fully understand the diversity dynamics of the living biota.
Molecular dynamics simulation of friction of hydrocarbon thin films
Tamura, Hiroyuki; Yoshida, Muneo; Kusakabe, Kenichi
1999-10-26
Molecular Dynamics (MD) simulations were performed to investigate the dynamic behavior of hydrocarbon molecules under shear conditions. Frictional properties of cyclohexane, n-hexane, and iso-hexane thin films confirmed between two solid surfaces were calculated. Because the affinity of the solid surfaces in these simulations is strong, slippages occurred at inner parts of the confined films, whereas no slippages were observed at the solid boundaries. The hexagonal closest packing structure was observed for the adsorbed cyclohexane molecular layers. The branched methyl groups in the iso-hexane molecules increase the shear stress between the molecular layers. For the n-hexane monolayer, molecules were observed to roll during the sliding simulations. Rolling of the n-hexane molecules decreased the shear stress.
Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.
Tavernelli, Ivano
2015-03-17
Recent developments in nonadiabatic dynamics enabled ab inito simulations of complex ultrafast processes in the condensed phase. These advances have opened new avenues in the study of many photophysical and photochemical reactions triggered by the absorption of electromagnetic radiation. In particular, theoretical investigations can be combined with the most sophisticated femtosecond experimental techniques to guide the interpretation of measured time-resolved observables. At the same time, the availability of experimental data at high (spatial and time) resolution offers a unique opportunity for the benchmarking and the improvement of those theoretical models used to describe complex molecular systems in their natural environment. The established synergy between theory and experiments can produce a better understanding of new ultrafast physical and chemical processes at atomistic scale resolution. Furthermore, reliable ab inito molecular dynamics simulations can already be successfully employed as predictive tools to guide new experiments as well as the design of novel and better performing materials. In this paper, I will give a concise account on the state of the art of molecular dynamics simulations of complex molecular systems in their excited states. The principal aim of this approach is the description of a given system of interest under the most realistic ambient conditions including all environmental effects that influence experiments, for instance, the interaction with the solvent and with external time-dependent electric fields, temperature, and pressure. To this end, time-dependent density functional theory (TDDFT) is among the most efficient and accurate methods for the representation of the electronic dynamics, while trajectory surface hopping gives a valuable representation of the nuclear quantum dynamics in the excited states (including nonadiabatic effects). Concerning the environment and its effects on the dynamics, the quantum mechanics/molecular
Molecular Mechanism of Overhauser Dynamic Nuclear Polarization in Insulating Solids.
Pylaeva, Svetlana; Ivanov, Konstantin L; Baldus, Marc; Sebastiani, Daniel; Elgabarty, Hossam
2017-05-18
Dynamic nuclear polarization (DNP), a technique that significantly enhances NMR signals, is experiencing a renaissance owing to enormous methodological developments. In the heart of DNP is a polarization transfer mechanism that endows nuclei with much larger electronic spin polarization. Polarization transfer via the Overhauser effect (OE) is traditionally known to be operative only in liquids and conducting solids. Very recently, surprisingly strong OE-DNP in insulating solids has been reported, with a DNP efficiency that increases with the magnetic field strength. Here we offer an explanation for these perplexing observations using a combination of molecular dynamics and spin dynamics simulations. Our approach elucidates the underlying molecular stochastic motion, provides cross-relaxation rates, explains the observed sign of the NMR enhancement, and estimates the role of nuclear spin diffusion. The presented theoretical description opens the door for rational design of novel polarizing agents for OE-DNP in insulating solids.
Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates.
Markegard, Cade B; Mazaheripour, Amir; Jocson, Jonah-Micah; Burke, Anthony M; Dickson, Mary N; Gorodetsky, Alon A; Nguyen, Hung D
2015-09-03
Perylene-3,4,9,10-tetracarboxylic diimides (PTCDIs) are a well-known class of organic materials. Recently, these molecules have been incorporated within DNA as base surrogates, finding ready applications as probes of DNA structure and function. However, the assembly dynamics and kinetics of PTCDI DNA base surrogates have received little attention to date. Herein, we employ constant temperature molecular dynamics simulations to gain an improved understanding of the assembly of PTCDI dimers and trimers. We also use replica-exchange molecular dynamics simulations to elucidate the energetic landscape dictating the formation of stacked PTCDI structures. Our studies provide insight into the equilibrium configurations of multimeric PTCDIs and hold implications for the construction of DNA-inspired systems from perylene-derived organic semiconductor building blocks.
Drugs That Target Dynamic Microtubules: A New Molecular Perspective
Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu
2011-01-01
Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049
GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.
HALL, G.E.
2006-05-30
This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.
2006-09-01
Therefore, dynamic quantities of reaction mixtures such as the velocity autocorrelation functions and the diffusion coefficients can be accurately...using the virial expression [25]. A standard NVT molecular dynamics method was em- ployed with the equations of motion solved using the Verlet leapfrog...configurational energy, pressure, and species concen- trations) are compared to quantities calculated by the RxMC approach. Second , the dynamic quantities
Siddick, M M; Ackland, G J; Morrison, C A
2006-08-14
We present a methodology for extracting phonon data from ab initio Born-Oppenheimer molecular dynamics calculations of molecular crystals. Conventional ab initio phonon methods based on perturbations are difficult to apply to lattice modes because the perturbation energy is dominated by intramolecular modes. We use constrained molecular dynamics to eliminate the effect of bond bends and stretches and then show how trajectories can be used to isolate and define in particular, the eigenvalues and eigenvectors of modes irrespective of their symmetry or wave vector. This is done by k-point and frequency filtering and projection onto plane wave states. The method is applied to crystalline ammonia: the constrained molecular dynamics allows a significant speed-up without affecting structural or vibrational modes. All Gamma point lattice modes are isolated: the frequencies are in agreement with previous studies; however, the mode assignments are different.
Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation
2014-01-01
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585
A random rotor molecule: Vibrational analysis and molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.
2012-12-01
Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.
Molecular dynamics computer simulation of permeation in solids
Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.; Ford, D.M.
1997-12-31
In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.
Models of protein linear molecular motors for dynamic nanodevices.
Fulga, Florin; Nicolau, Dan V; Nicolau, Dan V
2009-02-01
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices.
Molecular dynamics simulations on networks of heparin and collagen.
Kulke, Martin; Geist, Norman; Friedrichs, Wenke; Langel, Walter
2017-06-01
Synthetic scaffolds containing collagen (Type I) are of increasing interest for bone tissue engineering, especially for highly porous biomaterials in combination with glycosaminoglycans. In experiments the integration of heparin during the fibrillogenesis resulted in different types of collagen fibrils, but models for this aggregation on a molecular scale were only tentative. We conducted molecular dynamic simulations investigating the binding of heparin to collagen and the influence of the telopeptides during collagen aggregation. This aims at explaining experimental findings on a molecular level. Novel structures for N- and C-telopeptides were developed with the TIGER2 replica exchange algorithm and dihedral principle component analysis. We present an extended statistical analysis of the mainly electrostatic interaction between heparin and collagen and identify several binding sites. Finally, we propose a molecular mechanism for the influence of glycosaminoglycans on the morphology of collagen fibrils. Proteins 2017; 85:1119-1130. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Special issue on ultrafast electron and molecular dynamics
NASA Astrophysics Data System (ADS)
Martin, Fernando; Hishikawa, Akiyoshi; Vrakking, Marc
2014-06-01
In the last few years, the advent of novel experimental and theoretical approaches has made possible the investigation of (time-resolved) molecular dynamics in ways not anticipated before. Experimentally, the introduction of novel light sources such as high-harmonic generation (HHG) and XUV/x-ray free electron lasers, and the emergence of novel detection strategies, such as time-resolved electron/x-ray diffraction and the fully coincident detection of electrons and fragment ions in reaction microscopes, has significantly expanded the arsenal of available techniques, and has taken studies of molecular dynamics into new domains of spectroscopic, spatial and temporal resolution, the latter including first explorations into the attosecond domain, thus opening completely new avenues for imaging electronic and nuclear dynamics in molecules. Along the way, particular types of molecular dynamics, e.g., dynamics around conical intersections, have gained an increased prominence, sparked by the realization of the essential role that this dynamics plays in relaxation pathways in important bio-molecular systems. In the short term, this will allow one to uncover and control the dynamics of elementary chemical processes such as, e.g., ultrafast charge migration, proton transfer, isomerization or multiple ionization, and to address new key questions about the role of attosecond coherent electron dynamics in chemical reactivity. The progress on the theoretical side has been no less impressive. Novel generations of supercomputers and a series of novel computational strategies have allowed nearly exact calculations in small molecules, as well as highly successful approximate calculations in large, polyatomic molecules, including biomolecules. Frequent and intensive collaborations involving both theory and experiment have been essential for the progress that has been accomplished. The special issue 'Ultrafast electron and molecular dynamics' seeks to provide an overview of the current
Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method
NASA Astrophysics Data System (ADS)
Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori
2009-10-01
We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.
Molecular dynamics simulation: A tool for exploration and discovery
NASA Astrophysics Data System (ADS)
Rapaport, Dennis C.
2009-03-01
The exploratory and didactic aspects of science both benefit from the ever-growing role played by computer simulation. One particularly important simulational approach is the molecular dynamics method, used for studying the nature of matter from the molecular to much larger scales. The effectiveness of molecular dynamics can be enhanced considerably by employing visualization and interactivity during the course of the computation and afterwards, allowing the modeler not only to observe the detailed behavior of the systems simulated in different ways, but also to steer the computations in alternative directions by manipulating parameters that govern the actual behavior. This facilitates the creation of potentially rich simulational environments for examining a multitude of complex phenomena, as well as offering an opportunity for enriching the learning process. A series of relatively advanced examples involving molecular dynamics will be used to demonstrate the value of this approach, in particular, atomistic simulations of spontaneously emergent structured fluid flows (the classic Rayleigh--B'enard and Taylor--Couette problems), supramolecular self-assembly of highly symmetric shell structures (involved in the formation of viral capsids), and that most counterintuitive of phenomena, granular segregation (e.g., axial and radial separation in a rotating cylinder).
Ab initio molecular dynamics using hybrid density functionals.
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost
2008-06-07
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio molecular dynamics using hybrid density functionals
NASA Astrophysics Data System (ADS)
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.
Cooke, Ben; Schmidler, Scott C
2008-10-28
We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.
Protocols for Molecular Dynamics Simulations of RNA Nanostructures.
Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A
2017-01-01
Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.
Liu, Qixin; Cai, Zhiyong
2014-01-01
This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron
Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
2010-03-14
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Molecular dynamics study of ionic liquid confined in silicon nanopore
NASA Astrophysics Data System (ADS)
Liu, Y. S.; Sha, M. L.; Cai, K. Y.
2017-05-01
Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.
Molecular dynamics of liquid lead near its melting point
Khusnutdinov, R. M.; Mokshin, A. V. Yul'met'ev, R. M.
2009-03-15
The molecular dynamics of liquid lead is simulated at T = 613 K using the following three models of an interparticle interaction potential: the Dzugutov pair potential and two multiparticle potentials (the 'glue' potential and the Gupta potential). One of the purposes of this work is to determine the optimal model potential of the interatomic interaction in liquid lead. The calculated structural static and dynamic characteristics are compared with the experimental data on X-ray and neutron scattering. On the whole, all three model potentials adequately reproduce the experimental data. The calculations using the Dzugutov pair potential are found to reproduce the structural properties and dynamics of liquid lead on the nanoscale best of all. The role of a multiparticle contribution to the glue and Gupta potentials is studied, and its effect on the dynamic properties of liquid lead in nanoregions is revealed. In particular, the neglect of this contribution is shown to noticeably decrease the acoustic-mode frequency.
Improving structure-based function prediction using molecular dynamics
Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.
2009-01-01
Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472
Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.
Ruggerone, Paolo; Vargiu, Attilio V; Collu, Francesca; Fischer, Nadine; Kandt, Christian
2013-01-01
Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.
A molecular dynamics study of polymer/graphene interfacial systems
Rissanou, Anastassia N.; Harmandaris, Vagelis
2014-05-15
Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.
Anomalous flow behavior in nanochannels: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Murad, Sohail; Luo, Lin; Chu, Liang-Yin
2010-06-01
We report molecular dynamics simulations of flow of water in nanochannels with a range of surface wettability characteristics (hydrophobic to strongly hydrophilic) and driving forces (pressures). Our results show apparently anomalous behavior. At low pressures, the rate is higher in nanochannels with hydrophilic surfaces than that with hydrophobic surfaces; however, with high pressure driven flow we observe opposite trends. This apparently anomalous behavior can be explained on the basis of molecular thermodynamics and fluid mechanics considerations. Understanding such behavior is important in many nanofluidic devices such as nanoreactors, nanosensors, and nanochips that are increasingly being designed and used.
Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps
Ruggerone, Paolo; Vargiu, Attilio V.; Collu, Francesca; Fischer, Nadine; Kandt, Christian
2013-01-01
Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa. PMID:24688701
Concise NMR approach for molecular dynamics characterizations in organic solids.
Aliev, Abil E; Courtier-Murias, Denis
2013-08-22
Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.
1990-01-01
and gravitational and equal to their counterparts in the dynamic test. A vectorial subtraction of the quantities obtained in the two cases yields the...derivatives. 1 4 Since the aerodynamic characteristics are directional, they should be represented in vectorial form. In Figure 6-17 the motion vectors, AX, Aj...combined vectorially in a 6-DOF flight simulation. 6.2.6 Synopsis 1. The orbital platform, or OPLEC, system is a radically different rotary-balance design
Pseudo generators for under-resolved molecular dynamics
NASA Astrophysics Data System (ADS)
Bittracher, A.; Hartmann, C.; Junge, O.; Koltai, P.
2015-09-01
Many features of a molecule which are of physical interest (e.g. molecular conformations, reaction rates) are described in terms of its dynamics in configuration space. This article deals with the projection of molecular dynamics in phase space onto configuration space. Specifically, we study the situation that the phase space dynamics is governed by a stochastic Langevin equation and study its relation with the configurational Smoluchowski equation in the three different scaling regimes: Firstly, the Smoluchowski equations in non-Cartesian geometries are derived from the overdamped limit of the Langevin equation. Secondly, transfer operator methods are used to describe the metastable behaviour of the system at hand, and an explicit small-time asymptotics is derived on which the Smoluchowski equation turns out to govern the dynamics of the position coordinate (without any assumptions on the damping). By using an adequate reduction technique, these considerations are then extended to one-dimensional reaction coordinates. Thirdly, we sketch three different approaches to approximate the metastable dynamics based on time-local information only.
ERIC Educational Resources Information Center
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
ERIC Educational Resources Information Center
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Finite Temperature Quasicontinuum: Molecular Dynamics without all the Atoms
Dupuy, L; Tadmor, E B; Miller, R E; Phillips, R
2005-02-02
Using a combination of statistical mechanics and finite-element interpolation, the authors develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-continuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter.
Molecular Dynamics Simulations of Gas Transport in Polymer Films
NASA Astrophysics Data System (ADS)
Whitley, David; Butler, Simon; Adolf, David
2010-03-01
Parallel molecular dynamics simulations have been carried out to determine the permeability of O2 and N2 through polyethylene terephthalate, polypropylene and cis(1-4) polybutadiene. The permeability of both mixed and unmixed gas penetrants is studied within films of these well known gas barrier polymers. Results are obtained either through the solubility and diffusion (i.e. P=D*S) or via the permeability directly. Encouraging results are obtained. Additional analysis focuses on ``unmixed/mixed gas'' intracomparisons of the simulated permeability data in addition to corresponding penetrant and host polymer local dynamics.
Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.
Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.
Molecular dynamical simulations of melting behaviors of metal clusters
Hamid, Ilyar; Fang, Meng; Duan, Haiming
2015-04-15
The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.
Application of two dimensional periodic molecular dynamics to interfaces.
NASA Astrophysics Data System (ADS)
Gay, David H.; Slater, Ben; Catlow, C. Richard A.
1997-08-01
We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.
Introduction to Molecular Dynamics: Theory and Applications in Biomolecular Modeling
NASA Astrophysics Data System (ADS)
Wang, Yi; McCammon, J. Andrew
Since the first molecular dynamics (MD) simulation of a protein was performed over 30 years ago[87], MD has been used to study a variety of biomolecular systems, including proteins, nucleotides, lipid bilayers, and carbohydrates[88, 16, 64, 101]. Today, the problems tackled by MD range from large conformational changes in proteins to free energy differences associated with subtle modifications in ligands[65, 46, 62, 127]. Since the high spatial and temporal resolution of MD is rarely achieved in conventional experimental techniques, MD is increasingly used in combination with various experimental methods to provide a multiscale description of the structure, dynamics, and function of a biomolecule.
Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S
2014-10-16
The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.
Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S
2014-10-16
The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree-Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.
Molecular dynamics study of bipolar tetraether lipid membranes.
Shinoda, Wataru; Shinoda, Keiko; Baba, Teruhiko; Mikami, Masuhiro
2005-11-01
Membranes composed of bipolar tetraether lipids have been studied by a series of 25-ns molecular dynamics simulations to understand the microscopic structure and dynamics as well as membrane area elasticity. By comparing macrocyclic and acyclic tetraether and diether archaeal lipids, the effect of tail linkage of the two phytanyl-chained lipids on the membrane properties is elucidated. Tetraether lipids show smaller molecular area and lateral mobility. For the latter, calculated diffusion coefficients are indeed one order-of-magnitude smaller than that of the diether lipid. These two tetraether membranes are alike in many physical properties except for membrane area elasticity. The macrocyclic tetraether membrane shows a higher elastic area expansion modulus than its acyclic counterpart by a factor of three. Free energy profiles of a water molecule crossing the membranes show no major difference in barrier height; however, a significant difference is observed near the membrane center due to the lack of the slip-plane in tetraether membranes.
Description of ferrocenylalkylthiol SAMs on gold by molecular dynamics simulations.
Goujon, F; Bonal, C; Limoges, B; Malfreyt, P
2009-08-18
Molecular dynamics simulations of mixed monolayers consisting of Fc(CH2)12S-/C10S-Au SAMs are carried out to calculate structural (density profiles, angular distributions, positions of atoms) and energetic properties. The purpose of this paper is to explore the possible inhomogeneity of the neutral ferrocene moieties within the monolayer. Five systems have been studied using different grafting densities for the ferrocenylalkylthiolates. The angular distributions are described in terms of the relative contributions from isolated and clustered ferrocene moieties in the binary SAMs. It is shown that the energetic contributions strongly depend on the state of the ferrocene. The ability of molecular dynamics simulations to enable better understanding the SAM structure is illustrated in this work.
Enhancing protein adsorption simulations by using accelerated molecular dynamics.
Mücksch, Christian; Urbassek, Herbert M
2014-01-01
The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ([Formula: see text][Formula: see text]s) and experiment (up to hours), and the accordingly different 'final' adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.
Adiabatic molecular-dynamics-simulation-method studies of kinetic friction
NASA Astrophysics Data System (ADS)
Zhang, J.; Sokoloff, J. B.
2005-06-01
An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.
Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.
Omelyan, I P
2006-09-01
A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations.
Shock induced phase transition of water: Molecular dynamics investigation
Neogi, Anupam; Mitra, Nilanjan
2016-02-15
Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.
Long Timestep Molecular Dynamics on the Graphical Processing Unit.
Sweet, James C; Nowling, Ronald J; Cickovski, Trevor; Sweet, Christopher R; Pande, Vijay S; Izaguirre, Jesús A
2013-08-13
Molecular dynamics (MD) simulations now play a key role in many areas of theoretical chemistry, biology, physics, and materials science. In many cases, such calculations are significantly limited by the massive amount of computer time needed to perform calculations of interest. Herein, we present Long Timestep Molecular Dynamics (LTMD), a method to significantly speed MD simulations. In particular, we discuss new methods to calculate the needed terms in LTMD as well as issues germane to a GPU implementation. The resulting code, implemented in the OpenMM MD library, can achieve a significant 6-fold speed increase, leading to MD simulations on the order of 5 μs/day using implicit solvent models.
Molecular dynamics equation of state for nonpolar geochemical fluids
NASA Astrophysics Data System (ADS)
Duan, Zhenhao; Møller, Nancy; Wears, John H.
1995-04-01
Remarkable agreement between molecular dynamics simulations and experimental measurements has been obtained for methane for a large range of intensive variables, including those corresponding to liquid/vapor coexistence. Using a simple Lennard-Jones potential the simulations not only predict the PVT properties up to 2000°C and 20,000 bar with errors less than 1.5%, but also reproduce phase equilibria well below 0°C with accuracy close to experiment. This two-parameter molecular dynamics equation of state (SOS) is accurate for a much larger range of temperatures and pressures than our previously published EOS with a total fifteen parameters or that of Angus et al. (1978) with thirty-three parameters. By simple scaling, it is possible to predict PVT and phase equilibria of other nonpolar and weakly polar species.
Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics
Mücksch, Christian; Urbassek, Herbert M.
2013-01-01
The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156
Atomistic molecular dynamics simulations of model C36 fullerite
NASA Astrophysics Data System (ADS)
Abramo, Maria C.; Caccamo, C.
2008-02-01
We report atomistic molecular dynamics investigations of a model C36 fullerite in which the fullerene molecules are modeled as rigid cages over which the carbon atoms occupy fixed interaction sites, distributed in space according to the experimentally known atomic positions in the molecule. Carbon sites belonging to different molecules are assumed to interact via a 12-6 Lennard-Jones-type potential; the parameters of the latter are employed in the framework of a molecular dynamics fitting procedure, through which the ambient condition physical quantities characterizing the hcp structure of solid C36 are eventually reproduced. We discuss applications of the adopted modelization to the C36 phases in a temperature range spanning from 300to1500K, and compare the obtained results to the available data for C36 and other fullerenes, and to the predictions of the well known Girifalco central potential modelization of interactions in fullerenes, as applied to the C36 case.
Liu, Qixin; Cai, Zhiyong
2014-07-18
This paper presents studies on the characteristics of gas molecular mean freepath in nanopores by molecular dynamics simulation. Our study results indicate that themean free path of all molecules in nanopores depend on both the radius of the nanoporeand the gas-solid interaction strength. Besides mean free path of all molecules in thenanopore, this paper highlights the gas molecular mean free path at different positions ofthe nanopore and the anisotropy of the gas molecular mean free path at nanopores. Themolecular mean free path varies with the molecule's distance from the center of thenanopore. The least value of the mean free path occurs at the wall surface of the nanopore.The present paper found that the gas molecular mean free path is anisotropic when gas isconfined in nanopores. The radial gas molecular mean free path is much smaller than themean free path including all molecular collisions occuring in three directions. Our studyresults also indicate that when gas is confined in nanopores the gas molecule number densitydoes not affect the gas molecular mean free path in the same way as it does for the gas inunbounded space. These study results may bring new insights into understanding the gasflow's characteristic at nanoscale.
Visual verification and analysis of cluster detection for molecular dynamics.
Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas
2007-01-01
A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.
Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.
NASA Astrophysics Data System (ADS)
Fidelis, Krzysztof Andrzej
1990-08-01
The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.
Li, Jian; Zhang, Lin; Sun, Yan
2012-07-01
Molecular interactions between the von Willebrand factor (VWF) A1 domain and glycoprotein Ibα (GPIbα) promote the initial adhesion of platelets and subsequent arterial thrombus formation. However, little is understood about the interactions at a molecular level. Therefore, the binding dynamics and involved molecular interactions between VWF A1 domain and GPIbα in both water and physiological saline are investigated using molecular dynamics simulations and all-atom models. Faster binding is observed in water than that in physiological saline, and patches of opposite charges are observed at the binding interface. Moreover, molecular mechanics-Poisson-Boltzmann surface area analysis indicates that the binding is promoted by the long-range electrostatic interactions and then maintained by hydrophobic interactions. For the initial binding, the hot spots include the residues E14, E128, D175, D83, E151, D106, D63, E5, D18, E225, D235 in GPIbα, and K608, K569, K644, R571, K572, R636, K599 in VWF A1 domain. For the final complex formation, however, 72% of the favorable contributions are from hydrophobic interactions. The results provided molecular insight into the initial platelet adhesion. The hot spots identified would be beneficial for developing novel drugs for thrombotic diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Iyengar, Srinivasan S; Jakowski, Jacek
2005-03-15
A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented. The approach involves quantum wave packet dynamics using an accurate banded, sparse and Toeplitz representation for the discrete free propagator, in conjunction with ab initio molecular dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be achieved either by using atom-centered density-matrix propagation or by using Born-Oppenheimer dynamics. The two components of the methodology, namely, quantum dynamics and ab initio molecular dynamics, are harnessed together using a time-dependent self-consistent field-like coupling procedure. The quantum wave packet dynamics is made computationally robust by using adaptive grids to achieve optimized sampling. One notable feature of the approach is that important quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate levels of density functional theory, including hybrid or gradient corrected approximations. Benchmark calculations are provided for proton transfer systems and the dynamics results are compared with exact calculations to determine the accuracy of the approach.
NASA Astrophysics Data System (ADS)
Ito, Hiroaki; Higuchi, Yuji; Shimokawa, Naofumi
2016-10-01
Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the prior disturbance of the local molecular orientation in the domain.
Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics
NASA Astrophysics Data System (ADS)
Hoover, W. G.; Hoover, C. G.
1993-08-01
Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics 'smoothed-particle hydrodynamics,' in 1977. It is a likely contributor to 'hybrid' simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.
Accelerating molecular dynamic simulation on graphics processing units.
Friedrichs, Mark S; Eastman, Peter; Vaidyanathan, Vishal; Houston, Mike; Legrand, Scott; Beberg, Adam L; Ensign, Daniel L; Bruns, Christopher M; Pande, Vijay S
2009-04-30
We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. (c) 2009 Wiley Periodicals, Inc.
Molecular dynamics simulation of carbon disulphide with a Gaussian correction
NASA Astrophysics Data System (ADS)
Trumpakaj, Zygmunt; Linde, Bogumił B. J.
2017-02-01
Molecular Dynamics (MD) simulations of liquid carbon disulphide (CS2) in the temperature range 164-318 K under normal pressure and at experimental density were performed using an expa-6 potential with a Gaussian correction plus electrostatic interactions. This correction allowed to modify the curvature of the potential. The results of the MD simulation are compared with available experimental data. The agreement is good.
Molecular dynamics modeling of a nanomaterials-water surface interaction
NASA Astrophysics Data System (ADS)
Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid
2016-04-01
In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.
Symplectic integrator for molecular dynamics of a protein in water
NASA Astrophysics Data System (ADS)
Ishida, Hisashi; Nagai, Yoshinori; Kidera, Akinori
1998-01-01
The symplectic integrator is an algorithm for solving equations of motion, preserving the volume in phase space and ensuring a stable simulation. We carried out molecular dynamics simulations of liquid water and a protein in water using several variations of symplectic integrators. It was found that a fourth-order symplectic integrator of Calvo and Sanz-Serna generated a trajectory of much higher accuracy than the conventional Verlet and Gear methods with the same requirements for CPU time.
Thermal rupture of linear alternate copolymers: a molecular dynamics study.
Ghosh, A; Lee, Won Bo
2011-08-28
The thermal rupture of a linear alternating copolymer fixed at one end and pulled by a constant force at the other end has been studied using molecular dynamics simulation. The dependence of the first breakage time distribution on the mass ratio of the constituent beads has been studied. The Arrhenian nature of the scission process has been confirmed and an estimate of the effective energy barrier has been made. © 2011 American Institute of Physics
Molecular Dynamics study of Pb overlayer on Cu(100)
NASA Technical Reports Server (NTRS)
Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.
1991-01-01
Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.
Calculating Conductance of Ion Channels - Linking Molecular Dynamics and Electrophysiology
NASA Astrophysics Data System (ADS)
Wilson, Michael A.; Pohorille, Andrew
2015-01-01
Molecular dynamics computer simulations were combined with an electrodiffusion model to compute conduction of simple ion channels. The main assumptions of the model, and the consistency, efficiency and accuracy of the ion current calculations were tested and found satisfactory. The calculated current-voltage dependence for a synthetic peptide channel is in agreement with experiments and correctly captures the asymmetry of current with respect to applied field.
Understanding molecular dynamics quantum-state by quantum-state
Lawrance, W.D.; Moore, C.B.; Petek, H.
1985-02-22
It is now possible to resolve completely the initial and final quantum states in chemical processes. Spectra of reactive intermediates, of highly vibrationally excited molecules, and even of molecules in the process of falling apart have been recorded. This information has led to greater understanding of the molecular structure and dynamics of small gas-phase molecules. Many of the concepts and spectroscopic techniques that have been developed will be valuable throughout chemistry.
Molecular Dynamics study of Pb overlayer on Cu(100)
NASA Technical Reports Server (NTRS)
Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.
1991-01-01
Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.
Molecular dynamics investigation of radiation damage in semiconductors
NASA Technical Reports Server (NTRS)
Good, Brian S.
1991-01-01
Results of a molecular dynamics investigation of the effects of radiation damage on the crystallographic structure of semiconductors are reported. Particular cosiderastion is given to the formation of point defects and small defect complexes in silicon at the end of a radiation-damage cascade. The calculations described make use of the equivalent crystal theory of Smith and Banerjea (1988). Results on the existence of an atomic displacement threshold, the defect formation energy, and some crystallographic information on the defects observed are reported.
Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics
Hoover, W. G.; Hoover, C. G.
1993-08-01
Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.
Molecular dynamics simulation of a nanoscopic nematic twist cell
NASA Astrophysics Data System (ADS)
Mirantsev, Leonid V.; Virga, Epifanio G.
2007-08-01
We present molecular dynamics simulations of a nanoscopic nematic twist cell confined within two bounding substrates with conflicting anchoring conditions. The results of our simulations show that the torque transmitted through the cell drops significantly below a certain critical cell’s thickness, thus confirming the predictions of the continuum Landau theory extrapolated down to the nanoscopic scale [F. Bisi, E. G. Virga, and G. E. Durand, Phys. Rev. E 70, 042701 (2004)].
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.
Rapaport, D C
2009-04-01
A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine
NASA Astrophysics Data System (ADS)
Rapaport, D. C.
2009-04-01
A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.
Variational path integral molecular dynamics study of a water molecule
NASA Astrophysics Data System (ADS)
Miura, Shinichi
2013-08-01
In the present study, a variational path integral molecular dynamics method developed by the author [Chem. Phys. Lett. 482, 165 (2009)] is applied to a water molecule on the adiabatic potential energy surface. The method numerically generates an exact wavefunction using a trial wavefunction of the target system. It has been shown that even if a poor trial wavefunction is employed, the exact quantum distribution is numerically extracted, demonstrating the robustness of the variational path integral method.
Quantum tunneling splittings from path-integral molecular dynamics
NASA Astrophysics Data System (ADS)
Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.
2016-03-01
We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.
Molecular dynamics simulations of ordering of polydimethylsiloxane under uniaxial extension
Lacevic, N M; Gee, R H
2005-03-11
Molecular dynamics simulations of a bulk melts of polydimethylsiloxane (PDMS) are utilized to study chain conformation and ordering under constant uniaxial tension. We find that large extensions induce chain ordering in the direction of applied tension. We also find that voids are created via a cavitation mechanism. This study represents a validation of the current model for PDMS and benchmark for the future study of mechanical properties of PDMS melts enriched with fillers under tension.
Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers.
Jin, Yinghua; Wang, Qi; Taynton, Philip; Zhang, Wei
2014-05-20
The current research in the field of dynamic covalent chemistry includes the study of dynamic covalent reactions, catalysts, and their applications. Unlike noncovalent interactions utilized in supramolecular chemistry, the formation/breakage of covalent bonding has slower kinetics and usually requires the aid of a catalyst. Catalytic systems that enable efficient thermodynamic equilibrium are thus essential. In this Account, we describe the development of efficient catalysts for alkyne metathesis, and discuss the application of dynamic covalent reactions (mainly imine, olefin, and alkyne metathesis) in the development of organic functional materials. Alkyne metathesis is an emerging dynamic covalent reaction that offers robust and linear acetylene linkages. By introducing a podand motif into the catalyst ligand design, we have developed a series of highly active and robust alkyne metathesis catalysts, which, for the first time, enabled the one-step covalent assembly of ethynylene-linked functional molecular cages. Imine chemistry and olefin metathesis are among the most well-established reversible reactions, and have also been our main synthetic tools. Various shape-persistent macrocycles and covalent organic polyhedrons have been efficiently constructed in one-step through dynamic imine chemistry and olefin metathesis. The geometrical features and solubilizing groups of the building blocks as well as the reaction kinetics have significant effect on the outcome of a covalent assembly process. More recently, we explored the orthogonality of imine and olefin metatheses, and successfully synthesized heterosequenced macrocycles and molecular cages through one-pot orthogonal dynamic covalent chemistry. In addition to discrete molecular architectures, functional polymeric materials can also be accessed through dynamic covalent reactions. Defect-free solution-processable conjugated polyaryleneethynylenes and polydiacetylenes have been prepared through alkyne metathesis
Insights from molecular dynamics simulations for computational protein design.
Childers, Matthew Carter; Daggett, Valerie
2017-02-01
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
Interfacial properties of an ionic liquid by molecular dynamics.
Heggen, Berit; Zhao, Wei; Leroy, Frédéric; Dammers, Anton J; Müller-Plathe, Florian
2010-05-27
We studied the influence of a liquid-vapor interface on dynamic properties like reorientation and diffusion as well as the surface tension of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) by molecular dynamics simulations. In the interfacial region, reorientation of a short molecular axis is slightly faster than that in the central layer, while that of the longer molecular axis is retarded. The molecular reorientation is well-described by a stretched exponential decay modeled by the Kohlrausch-Williams-Watts equation. Analysis of the average translational diffusion coefficient of molecules in a central layer shows consistency with the Vogel-Fulcher-Tamann equation in a temperature range from 300 to 380 K. A first-passage time analysis of the system at 380 K yields a more refined spatial characterization of translational diffusion perpendicular to the liquid-vapor interfaces. In the central region of the slab, the diffusion coefficient of cations is only marginally higher than that of anions, but close to an interface, this difference is much higher, up to 50%. Apparent activation energies for rotational and diffusional dynamics, respectively, were estimated assuming Arrhenius behavior. They indicate that reorientation of the long molecular axis depends on the diffusion ability, whereas for the reorientation of the short axis, no such correlation is observed. The results are in general agreement with the literature, with slightly overestimated absolute values. This applies as well for the surface tension, where, however, a dependence on the treatment of the electrostatics was found. Particle-mesh Ewald (PME) or reaction field (RF) and the treatment of bonds by constraints have an influence. If no bond constraints are applied, the results are consistent for both methods for the description of the electrostatics.
Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses
NASA Astrophysics Data System (ADS)
Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali
2014-05-01
We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.
Exploiting molecular dynamics in Nested Sampling simulations of small peptides
NASA Astrophysics Data System (ADS)
Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor
2016-04-01
Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.
Molecular dynamics simulations of solutions at constant chemical potential
NASA Astrophysics Data System (ADS)
Perego, C.; Salvalaglio, M.; Parrinello, M.
2015-04-01
Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.
Molecular dynamics insights into human aquaporin 2 water channel.
Binesh, A R; Kamali, R
2015-12-01
In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney. Copyright © 2015 Elsevier B.V. All rights reserved.
Studies of thermal transport properties using molecular dynamics simulation techniques
NASA Astrophysics Data System (ADS)
Ratanapisit, Juraivan
The purpose of this research has been to investigate the transport properties of fluids using novel techniques in molecular dynamics simulations: symplectic integration algorithms for equations of motion, Baranyai's thermostatted fluid wall algorithm, and Rapaport's algorithm for hard chain fluids. In the symplectic integration study, an extensive series of equilibrium molecular dynamic simulations have been performed to investigate the accuracy, stability and efficiency of second order explicit symplectic integrators: position Verlet, velocity Verlet, and the McLauchlan-Atela algorithms. To our knowledge, previous studies of the symplectic integrators have only looked at the thermodynamic energy using a simple model fluid. Our work presents realistic but perhaps the simplest simulations possible to test the effect of the integrators on the three main transport properties. Our results suggest that if an algorithm fails to adequately conserve energy, it will also show significant uncertainties in transport property calculations. A large portion of the simulation study focused on a new algorithm for thermal conductivity based on Baranyai's fluid wall method. This algorithm is stable enough to perform simulations even using large time steps and provides reasonable values and uncertainties for the thermal conductivity. The investigation was conducted using two different thermostat algorithms: the Gaussian and Nosé-Hoover thermostats. The final part of this research focused on the viscosity of hard chain fluids. This study was initiated with an investigation of the equilibrium molecular dynamic simulations of pure hard-sphere molecules. The natural extension of that work was to hard chain fluids. (Abstract shortened by UMI.)
Fast parallel algorithms for short-range molecular dynamics
Plimpton, S.
1993-05-01
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000 atoms on three parallel supercomputers, the nCUBE 2, Intel iPSC/860, and Intel Delta. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and the Intel Delta performs about 30 times faster than a single Y-MP processor and 12 times faster than a single C90 processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.
Molecular Structure and Transport Dynamics in Perfluoro Sulfonyl Imide Membranes
Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel
2011-05-25
We report a detailed and comprehensive analysis of the nanostructure, transport dynamics of water and hydronium and water percolation in hydrated perfluoro sulfonyl imides (PFSI), a polymer considered for proton transport in PEM fuel cells, using classical molecular dynamics simulations. The dynamical changes are related to the changes in the membrane nanostructure. Water network percolation threshold, the level at which a consistent spanning water network starts to develop in the membrane, lies between hydration level (λ) 6 and 7. The higher acidity of the sulfonyl imide acid group of PFSI compared to Nafion reported in our earlier ab initio study, translates into more free hydronium ions at low hydration levels. Nevertheless, the calculated diffusion coefficients of the H3O+ ions and H2O molecules as a function the hydration level were observed to be almost the same as that of Nafion, indicating similar conductivity and consistent with the experimental observations. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.
Shapiro like steps reveals molecular nanomagnets’ spin dynamics
Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid
2015-09-15
We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.
Molecular dynamics simulations of electron irradiated PVDF nanofibers
NASA Astrophysics Data System (ADS)
Miao, Jiayuan; Bhatta, Ram; Kisielowski, Christian; Lolla, Dinesh; Reneker, Darrell; Tsige, Mesfin; Taylor, Philip
2014-03-01
High-resolution, aberration corrected transmission electron microscopy was used to observe morphological changes and segmental motion of electrospun poly(vinylidene fluoride) nanofibers in an 80 kilovolt electron beam. Atomic and molecular scale high-resolution images of fibers were made with an aberration corrected electron microscope. Chemical and morphological changes, which include the breaking of the fiber, loss of fluorine atoms and cross-linking of chains, caused by the high-energy electron beam were observed. We present the results of molecular dynamics (MD) simulations of such atomic and molecular level observations. The calculational models include the influence of chain scission, chain recoiling, and torsional defects on the morphology of a nanofiber. The effects of the loss of fluorine atoms and the applied tension on the morphology of the fibers were also investigated. Work supported by the Petroleum Research Fund of the American Chemical Society.
MDVRY: a polarizable classical molecular dynamics package for biomolecules
NASA Astrophysics Data System (ADS)
Souaille, M.; Loirat, H.; Borgis, D.; Gaigeot, M. P.
2009-02-01
The MDVRY classical molecular dynamics package is presented for the study of biomolecules in the gas and liquid phase. Electrostatic polarization has been implemented in the formalism of point induced dipoles following the model of Thole. Two schemes have been implemented for the calculation of induced dipoles, i.e. resolution of the self-consistent equations and a 'Car-Parrinello' dynamical approach. In this latter, the induced dipoles are calculated at each time step of the dynamics through the dynamics of additional degrees of freedom associated with the dipoles. This method saves computer time and allows to study polarized solvated proteins at a very low CPU cost. The program is written in C-language and runs on LINUX machines. A detailed manual of the code is given. The main features of the package are illustrated taking on examples of proteins in the gas phase or immersed in liquid water. Program summaryProgram title: MDVRY Catalogue identifier: AEBY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 39 156 No. of bytes in distributed program, including test data, etc.: 277 197 Distribution format: tar.bz2 Programming language: C Computer: Linux machines with FFTW Fourier Transform package installed Operating system: Linux machines, SUSE & RedHat distributions Classification: 3, 16.13, 23 External routines: FFTW ( http://www.fftw.org/) Nature of problem: Molecular Dynamics Software package. Solution method: Velocity Verlet algorithm. The implemented force field is composed of intra-molecular interactions and inter-molecular interactions (electrostatics, polarization, van der Waals). Polarization is accounted through induced point dipoles at each atomic site. Supplementary degrees of freedom are
Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.
Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A
2016-01-01
Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics. © 2015 The Protein Society.
Adsorption dynamics of molecular nitrogen at an Fe(111) surface.
Nosir, M A; Martin-Gondre, L; Bocan, G A; Díez Muiño, R
2017-03-08
We present an extensive theoretical study of N2 adsorption mechanisms on an Fe(111) surface. We combine the static analysis of a six-dimensional potential energy surface (6D-PES), based on ab initio density functional theory (DFT) calculations for the system, with quasi-classical trajectory (QCT) calculations to simulate the adsorption dynamics. There are four molecular adsorption states, usually called γ, δ, α, and ε, arising from our DFT calculations. We find that N2 adsorption in the γ-state is non-activated, while the threshold energy is associated with the entrance channel for the other three adsorption states. Our QCT calculations confirm that there are activated and nonactivated paths for the adsorption of N2 on the Fe(111) surface, which is in agreement with previous experimental investigations. Molecular dynamics at a surface temperature Ts = 300 K and impact energies Ei in the 0-5 eV range show the relative occupancy of the γ, δ, α, and ε states. The δ-state, however, is only marginally populated despite its adsorption energy being very similar to that of the γ-state. Our QCT calculations trace the dependence of molecular trapping on the surface temperature Ts and initial impact energy Ei and quantify the rates of the different competitive channels that eventually lead to molecular adsorption.
Hidden Markov models from molecular dynamics simulations on DNA.
Thayer, Kelly M; Beveridge, D L
2002-06-25
An enhanced bioinformatics tool incorporating the participation of molecular structure as well as sequence in protein DNA recognition is proposed and tested. Boltzmann probability models of sequence-dependent DNA structure from all-atom molecular dynamics simulations were obtained and incorporated into hidden Markov models (HMMs) that can recognize molecular structural signals as well as sequence in protein-DNA binding sites on a genome. The binding of catabolite activator protein (CAP) to cognate DNA sequences was used as a prototype case for implementation and testing of the method. The results indicate that even HMMs based on probabilistic roll/tilt dinucleotide models of sequence-dependent DNA structure have some capability to discriminate between known CAP binding and nonbinding sites and to predict putative CAP binding sites in unknowns. Restricting HMMs to sequence only in regions of strong consensus in which the protein makes base specific contacts with the cognate DNA further improved the discriminatory capabilities of the HMMs. Comparison of results with controls based on sequence only indicates that extending the definition of consensus from sequence to structure improves the transferability of the HMMs, and provides further supportive evidence of a role for dynamical molecular structure as well as sequence in genomic regulatory mechanisms.
Hall, G.E.
2011-05-31
This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.
Hall G. E.; Goncharov, V.
2012-05-29
This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.
2011-05-04
molecular intermixing and plays an important role in the degree of completion of the chemical reactions during detona- tion or combustion as well as in the...areas including materials for the energy sector and high-energy density materials. Ab initio quantum mechanical (QM) methods to obtain first...H2Omarks the beginning of the exothermic chemistry. Recent quantum -mechanics-based molecular dynamics simulations on the chemical reactions and time
Structural and dynamic properties of calcium aluminosilicate melts: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Bouhadja, M.; Jakse, N.; Pasturel, A.
2013-06-01
The structural and dynamic properties of calcium aluminosilicate (CaO-Al2O3)1-x(SiO2)x melts with low silica content, namely, along the concentration ratio R = 1 are studied by classical molecular dynamics. An empirical potential has been developed here on the basis of our previous ab initio molecular dynamics. The new potential gives a description of the structural as well as the dynamics with a good accuracy. The self-intermediate scattering function and associated α-relaxation times are analyzed within the mode-coupling theory. Our results indicate a decrease of the fragility whose structural origin is a reduction of the number of fivefold coordinated Al atoms and non-bridging oxygen.
The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering
NASA Astrophysics Data System (ADS)
Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada
2016-11-01
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
Molecular interferometer to decode attosecond electron–nuclear dynamics
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2014-01-01
Understanding the coupled electronic and nuclear dynamics in molecules by using pump–probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses. PMID:24591647
Molecular interferometer to decode attosecond electron-nuclear dynamics.
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2014-03-18
Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.
The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering
Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada
2016-01-01
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome. PMID:27849042
Acceleration of dynamic fluorescence molecular tomography with principal component analysis
Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen
2015-01-01
Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality. PMID:26114027
Acceleration of dynamic fluorescence molecular tomography with principal component analysis.
Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen
2015-06-01
Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality.
Molecular Dynamics Study of a Dual-Cation Ionomer Electrolyte.
Chen, Xingyu; Chen, Fangfang; Jónsson, Erlendur; Forsyth, Maria
2017-01-18
The poly(N1222 )x Li1-x [AMPS] ionomer system (AMPS=2-acrylamido-2-methylpropane sulfonic acid) with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass-transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (i.e. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium-metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222(+) concentrations. At 50 mol % N1222(+) concentration, the polymer backbone is more rigid than for higher N1222(+) concentrations, but with increasing temperature Li ion dynamics are more significant than polymer or quaternary ammonium cation motions. Herein we suggest an ion-hopping mechanism for Li(+) , arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hall,G.E.; Sears, T.J.
2009-04-03
This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.
Molecular dynamics simulation of shock melting of aluminum single crystal
NASA Astrophysics Data System (ADS)
Ju, Yuanyuan; Zhang, Qingming; Gong, Zizheng; Ji, Guangfu; Zhou, Lin
2013-09-01
Molecular dynamics method in conjunction with multi-scale shock technique is employed to study the melting characteristics of aluminum single crystal under dynamic conditions. The simulated results show that a linear relationship exists between the shock wave velocity and particle velocity, in good agreement with the experimental data. Comparing the Lindemann melting curve with the two Hugoniot curves for the solid and liquid phases, the Hugoniot melting is found to begin at 93.6 GPa and end at 140 GPa, which is consistent with the theoretical calculations. The impact of crystal defects on the melting characteristics of aluminum single crystal is also studied, and the results indicate that the pressure and temperature increase slightly for the system experiencing the same dynamic loading due to the crystal defects.
Molecular dynamics studies of interfacial water at the alumina surface.
Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David
2011-01-01
Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.
Glassy behavior of a homopolymer from molecular dynamics simulations.
Dokholyan, Nikolay V; Pitard, Estelle; Buldyrev, Sergey V; Stanley, H Eugene
2002-03-01
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at low temperature using molecular dynamics. The main quantities of interest are the average root mean square displacement of the monomers below the theta point, and the structure factor, as a function of time. The observation of these quantities show a close resemblance to those measured in structural glasses and suggest that the polymer chain in its low temperature phase is in a glassy phase, with its dynamics dominated by traps. In equilibrium, at low temperature, we observe the trapping of the monomers and a slowing down of the overall motion of the polymer as well as nonexponential relaxation of the structure factor. Out of equilibrium, at low temperatures, we compute the two-time quantities and observe breaking of ergodicity in a range of waiting times, with the onset of aging.
Glassy behavior of a homopolymer from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Dokholyan, Nikolay V.; Pitard, Estelle; Buldyrev, Sergey V.; Stanley, H. Eugene
2002-03-01
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at low temperature using molecular dynamics. The main quantities of interest are the average root mean square displacement of the monomers below the θ point, and the structure factor, as a function of time. The observation of these quantities show a close resemblance to those measured in structural glasses and suggest that the polymer chain in its low temperature phase is in a glassy phase, with its dynamics dominated by traps. In equilibrium, at low temperature, we observe the trapping of the monomers and a slowing down of the overall motion of the polymer as well as nonexponential relaxation of the structure factor. Out of equilibrium, at low temperatures, we compute the two-time quantities and observe breaking of ergodicity in a range of waiting times, with the onset of aging.
Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles.
Vraneš, Milan; Borišev, Ivana; Tot, Aleksandar; Armaković, Stevan; Armaković, Sanja; Jović, Danica; Gadžurić, Slobodan; Djordjevic, Aleksandar
2016-12-21
In this work structuring of water and insight into intermolecular interactions between water and fullerenol are studied throughout the process of forming nanoagglomerates at different temperatures applying both experimental and computational approaches. The obtained fullerenol nanoparticles (FNPs) are firstly characterized using dynamic light scattering, atomic force microscopy and transmission electron microscopy. The density, electrical conductivity and dynamic viscosity of aqueous fullerenol solutions are measured in the temperature range of 293.15 to 315.15 K. From the experimental density results other important thermodynamic values, such as apparent molar volumes and the partial molar volumes of water and fullerenol, are also calculated. To support the conclusion derived from the experimental density and calculated volumetric parameters, and to better understand the nature of the interactions with water, molecular dynamics simulations and radial distribution functions are also employed.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
A rotary nano ion pump: a molecular dynamics study.
Lohrasebi, A; Feshanjerdi, M
2012-09-01
The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.
Molecular dynamics simulations of lysozyme in water/sugar solutions
NASA Astrophysics Data System (ADS)
Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.
2008-04-01
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.
ETUDE - European Trade Union Distance Education.
ERIC Educational Resources Information Center
Creanor, Linda; Walker, Steve
2000-01-01
Describes transnational distance learning activities among European trade union educators carried out as part of the European Trade Union Distance Education (ETUDE) project, supported by the European Commission. Highlights include the context of international trade union distance education; tutor training course; tutors' experiences; and…
Centre National d'Etudes Spatiales
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Centre National d'Etudes Spatiales (CNES) draws up, proposes and conducts France's space policy. Its role is to develop the uses of space, to meet the civilian and military needs of public bodies and of the scientific community, and to foster the development and dissemination of new applications, designed to create wealth and jobs....
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A
2013-03-21
The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.
Structural properties of CHAPS micelles, studied by molecular dynamics simulations.
Herrera, Fernando E; Garay, A Sergio; Rodrigues, Daniel E
2014-04-10
Detergents are essential tools to study biological membranes, and they are frequently used to solubilize lipids and integral membrane proteins. Particularly the nondenaturing zwitterionic detergent usually named CHAPS was designed for membrane biochemistry and integrates the characteristics of the sulfobetaine-type detergents and bile salts. Despite the available experimental data little is known about the molecular structure of its micelles. In this work, molecular dynamics simulations were performed to study the aggregation in micelles of several numbers of CHAPS (≤ 18) starting from a homogeneous water dilution. The force field parameters to describe the interactions of the molecule were developed and validated. After 50 ns of simulation almost all the systems result in the formation of stable micelles. The molecular shape (gyration radii, volume, surface) and the molecular structure (RDF, salt bridges, H-bonds, SAS) of the micelles were characterized. It was found that the main interactions that lead to the stability of the micelles are the electrostatic ones among the polar groups of the tails and the OH's from the ring moiety. Unlike micelles of other compounds, CHAPS show a grainlike heterogeneity with hydrophobic micropockets. The results are in complete agreement with the available experimental information from NMR, TEM, and SAXS studies, allowing the modeling of the molecular structure of CHAPS micelles. Finally, we hope that the new force field parameters for this detergent will be a significant contribution to the knowledge of such an interesting molecule.
Simulation of carbohydrates, from molecular docking to dynamics in water.
Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne
2013-01-01
Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.
Hu, Hao; Liu, Haiyan
2013-05-30
Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.
Analysis of molecular diffusion in resist polymer films simulated by molecular dynamics
NASA Astrophysics Data System (ADS)
Toriumi, Minoru; Ohfuji, Takeshi; Endo, Masayuki; Morimoto, Hiroaki
1999-06-01
The diffusion process of acids plays important roles in chemically amplified resists. Polymer matrices from the diffusion path, and the structure significantly influences the behavior of the acid diffusion. We have simulated the diffusions of molecules in polymer matrices by molecular dynamics in order to analyze the diffusion mechanism in chemically amplified resist syste. To represent bulk state conditions of the polymer film, we prepared the molecular structures under the 3D periodic boundary conditions utilizing the molecular simulation. This amorphous cell contained three chains of methacrylate polymers such as poly(methacrylate), poly(tert-butylmethacrylate), poly(isobornylmethacrylate) and one diffusion molecule such as oxygen and methanesulfonic acid. The structure was energy-minimized and equilibrated under stable conditions. The free volumes in the system were estimated as the volumes enclosed by the iso-potential surfaces around the polymer using the Gusev-Suter method. The average size of the free volumes in the poly(methylmethacrylate) system was obtained as 3.7 angstrom3 with large standard deviation of 11.1 angstrom3, which indicates the large width of the size- distribution of free volumes scattered at random in the system. Molecular diffusion in the energy-minimized cell was simulated for 50 picoseconds by the molecular dynamics. The time dependence of the mean-square displacements of diffusing molecules was obtained from the dynamics treatments and it determined the diffusion constant in the resist systems. It is shown that the molecules do not always rapidly diffuse with larger free volumes, but the diffusions also depend upon the interaction with the polymer, and that the computer simulation tools provide the potentia for the molecular level study of resists chemistry.
Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies
NASA Astrophysics Data System (ADS)
St. John, Alexander; Wexler, Carlos
2015-03-01
Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.
Molecular dynamics for computational proteomics of methylated histone H3.
Grauffel, Cédric; Stote, Roland H; Dejaegere, Annick
2015-05-01
Post-translational modifications of histones, and in particular of their disordered N-terminal tails, play a major role in epigenetic regulation. The identification of proteins and proteic domains that specifically bind modified histones is therefore of paramount importance to understand the molecular mechanisms of epigenetics. We performed an energetic analysis using the MM/PBSA method in order to study known complexes between methylated histone H3 and effector domains of the PHD family. We then developed a simple molecular dynamics based predictive model based on our analysis. We present a thorough validation of our procedure, followed by the computational predictions of new PHD domains specific for binding histone H3 methylated on lysine 4 (K4). PHD domains recognize methylated K4 on histone H3 in the context of a linear interaction motif (LIM) formed by the first four amino acids of histone H3 as opposed to recognition of a single methylated site. PHD domains with different sequences find chemically equivalent solutions for stabilizing the histone LIM and these can be identified from energetic analysis. This analysis, in turn, allows for the identification of new PHD domains that bind methylated H3K4 using information that cannot be retrieved from sequence comparison alone. Molecular dynamics simulations can be used to devise computational proteomics protocols that are both easy to implement and interpret, and that yield reliable predictions that compare favorably to and complement experimental proteomics methods. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Ice formation on kaolinite: Insights from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos
2016-12-01
The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.
Accelerated molecular dynamics methods: introduction and recent developments
Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G
2009-01-01
A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what
NASA Astrophysics Data System (ADS)
Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi
2017-06-01
All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.
Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics
Yu H. G.; Muckerman, J.T.
2012-05-29
The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.
Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics
Yu, H.G.; Muckerman, J.T.
2010-06-01
The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.
Recovering position-dependent diffusion from biased molecular dynamics simulations
Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez
2014-02-28
All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica{sup ®} package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics . Given known free energy and D, the package can also generate diffusive trajectories.
Recovering position-dependent diffusion from biased molecular dynamics simulations.
Ljubetič, Ajasja; Urbančič, Iztok; Štrancar, Janez
2014-02-28
All atom molecular dynamics (MD) models provide valuable insight into the dynamics of biophysical systems, but are limited in size or length by the high computational demands. The latter can be reduced by simulating long term diffusive dynamics (also known as Langevin dynamics or Brownian motion) of the most interesting and important user-defined parts of the studied system, termed collective variables (colvars). A few hundred nanosecond-long biased MD trajectory can therefore be extended to millisecond lengths in the colvars subspace at a very small additional computational cost. In this work, we develop a method for determining multidimensional anisotropic position- and timescale-dependent diffusion coefficients (D) by analysing the changes of colvars in an existing MD trajectory. As a test case, we obtained D for dihedral angles of the alanine dipeptide. An open source Mathematica(®) package, capable of determining and visualizing D in one or two dimensions, is available at https://github.com/lbf-ijs/DiffusiveDynamics. Given known free energy and D, the package can also generate diffusive trajectories.
Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lu, Yan; Salsbury, Freddie R.
2015-01-01
ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.
Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite.
Zhu, Runliang; Hu, Wenhao; You, Zhimin; Ge, Fei; Tian, Kaixun
2012-07-01
In this work, molecular dynamics simulation was applied to investigate the adsorption of Tetrachlorodibenzo-p-Dioxin (TCDD) on tetramethylammonium (TMA) and tetrapropylammonium (TPA) modified montmorillonite, with the aim of providing novel information for understanding the adsorptive characteristics of organo-montmorillonite toward organic contaminants. The simulation results showed that on both outer surface and interlayer space of TPA modified montmorillonite (TPA-mont), TCDD was adsorbed between the TPA cations with the molecular edge facing siloxane surface. Similar result was observed for the adsorption on the outer surface of TMA modified montmorillonite (TMA-mont). These results indicated that TCDD had stronger interaction with organic cation than with siloxane surface. While in the interlayer space of TMA-mont, TCDD showed a coplanar orientation with the siloxane surfaces, which could be ascribed to the limited gallery height within TMA-mont interlayer. Comparing with TMA-mont, TPA-mont had larger adsorption energy toward TCDD but smaller interlayer space to accommodate TCDD. Our results indicated that molecular dynamics simulation can be a powerful tool in characterizing the adsorptive characteristics of organoclays and provided additional proof that for the organo-montmorillonite synthesized with small organic cations, the available interlayer space rather than the attractive force plays the dominant role for their adsorption capacity toward HOCs.
Molecular Dynamics Simulation of Carbon Nanotube Based Gears
NASA Technical Reports Server (NTRS)
Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.
Molecular Dynamics Simulation of Carbon Nanotube Based Gears
NASA Technical Reports Server (NTRS)
Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.
Parallel molecular dynamics: Communication requirements for massively parallel machines
NASA Astrophysics Data System (ADS)
Taylor, Valerie E.; Stevens, Rick L.; Arnold, Kathryn E.
1995-05-01
Molecular mechanics and dynamics are becoming widely used to perform simulations of molecular systems from large-scale computations of materials to the design and modeling of drug compounds. In this paper we address two major issues: a good decomposition method that can take advantage of future massively parallel processing systems for modest-sized problems in the range of 50,000 atoms and the communication requirements needed to achieve 30 to 40% efficiency on MPPs. We analyzed a scalable benchmark molecular dynamics program executing on the Intel Touchstone Deleta parallelized with an interaction decomposition method. Using a validated analytical performance model of the code, we determined that for an MPP with a four-dimensional mesh topology and 400 MHz processors the communication startup time must be at most 30 clock cycles and the network bandwidth must be at least 2.3 GB/s. This configuration results in 30 to 40% efficiency of the MPP for a problem with 50,000 atoms executing on 50,000 processors.
Atomic dynamics in molecular dynamics simulations of glassy CuTi thin films
NASA Astrophysics Data System (ADS)
Vauth, Sebastian; Mayr, S. G.
2005-02-01
We present results on atomic dynamics in metallic glass thin films below the glass transition temperature using molecular dynamics simulations. Thin CuTi films of different compositions are prepared by quenching the liquid to an amorphous state. The atomic dynamics on the amorphous surface and inside the bulk of the samples are quantitatively compared by calculating diffusion constants and jump length distributions. Here, we focus on the collective or single particle character of the diffusion mechanism in dependence of the atom type. In addition, single atom exemplifications are analyzed for the different kinds of atomic dynamics. We find that Cu surface atoms diffuse with a single atom jump dynamics, whereas inside the bulk collective behavior dominates for both species.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
Molecular dynamics simulation of liquid water: Hybrid density functionals
Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C
2005-09-12
The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.
Hydrotropic Solubilization by Urea Derivatives: A Molecular Dynamics Simulation Study
Cui, Yong
2013-01-01
Hydrotropy is a phenomenon where the presence of a large quantity of one solute enhances the solubility of another solute. The mechanism of this phenomenon remains a topic of debate. This study employed molecular dynamics simulation to investigate the hydrotropic mechanism of a series of urea derivatives, that is, urea (UR), methylurea (MU), ethylurea (EU), and butylurea (BU). A poorly water-soluble compound, nifedipine (NF), was used as the model solute that was solubilized. Structural, dynamic, and energetic changes upon equilibration were analyzed to supply insights to the solubilization mechanism. The study demonstrated that NF and urea derivatives underwent significant nonstoichiometric molecular aggregation in the aqueous solution, a result consistent with the self-aggregation of urea derivatives under the same conditions. The analysis of hydrogen bonding and energy changes revealed that the aggregation was driven by the partial restoration of normal water structure. The energetic data also suggested that the promoted solubilization of NF is favored in the presence of urea derivatives. While the solutes aggregated to a varying degree, the systems were still in single-phase liquid state as attested by their active dynamics. PMID:26555993
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Molecular dynamics of void collapse mechanisms in shocked media
NASA Astrophysics Data System (ADS)
Mintmire, J. W.; Robertson, D. H.; Elert, M. L.; Brenner, D. W.; White, C. T.
1994-07-01
We have carried out a series of molecular dynamics simulations on a model system to study the dynamics of void defect collapse during pressure-wave propagation in condensed-phase systems. Three-dimensional molecular-dynamics methods were used for a model system of identical particles arranged as diatomic molecules aligned with the center of mass of each molecule at fcc lattice sites, using a {111} layering for the two-dimensional boundary conditions. The diatoms were internally coupled via a harmonic potential; all other interactions were modeled with Morse potentials between all particles other than the immediate diatomic partner. Using this model, we have investigated the effect of a cylindrical void at right angles to the direction of layering (and impact). Depending on the energy density of the incident pressure wave, the void defect can either collapse smoothly and symmetrically (as in a balloon gradually losing air), or asymmetrically and turbulently. In the latter case, we note the transient formation (for periods of several hundreds of femtoseconds) of ``hot spots'' at the void location both in terms of the local effective temperature and the vibrational energies of the diatoms.
Molecular dynamics study of tethered polymers in shear flow.
Gratton, Y; Slater, G W
2005-08-01
Single macromolecules can now be isolated and characterized experimentally using techniques such as optical tweezers and videomicroscopy. An interesting and important single-molecule problem is that of the dynamics of a polymer chain tethered to a solid surface and subjected to a shear flow. An experimental study of such a system was reported by Doyle et al. (Phys. Rev. Lett. 84, 4769 (2000)), and their results showed a surprising recirculating motion of the DNA chain. We explore this problem using molecular dynamics computer simulations with explicit hydrodynamic interactions. The dynamical properties of a Freely Jointed Chain (FJC) with Finitely Extensible Nonlinear Elastic (FENE) links are examined in similar conditions (i.e., confined between two surfaces and in the presence of a Poiseuille flow). We see the remarkable cyclic polymer motion observed experimentally, and we show that a simple cross-correlation function can be used to measure the corresponding period of motion. We also propose a new empirical equation relating the magnitude of the shear flow to the amount of chain deformation, an equation that appears to apply for both weak and strong flows. Finally, we report on packing effects near the molecularly flat wall, an associated chain-sticking phenomenon, and the impact of the chain hydrodynamic drag on the local fluid flow.
Acoustic properties in glycerol glass-former: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Busselez, Remi; Pezeril, Thomas; Institut des Materiaux et Molecules du Mans Team
2013-03-01
Study of high-frequency collective dynamics around TeraHertz region in glass former has been a subject of intense investigations and debates over the past decade. In particular, the presence of the Boson peak characteristic of glassy material and its relation to other glass anomalies. Recently, experiments and simulations have underlined possible relation between Boson peak and transverse acoustic modes in glassy materials. In particular, simulations of simple Lennard Jones glass former have shown a relation between Ioffe-Regel criterion in transverse modes and Boson peak. We present here molecular dynamics simulation on high frequency dynamics of glycerol. In order to study mesoscopic order (0.5-5nm-1), we made use of large simulation box containing 80000 atoms. Analysis of collective longitudinal and transverse acoustic modes shows striking similarities in comparison with simulation of Lennard-Jones particles. In particular, it seems that a connection may exist between Ioffe-Regel criterion for transverse modes and Bose Peak frequency. However,in our case we show that this connection may be related with structural correlation arising from molecular clusters.
Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.
2007-01-01
The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.
Protons in polar media: An ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
von Rosenvinge, Tycho
1998-10-01
The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations
Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
Graziani, F R; Bauer, J D; Murillo, M S
2014-09-01
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD
Molecular-dynamics simulations of void collapse in shocked model-molecular solids
NASA Astrophysics Data System (ADS)
Mintmire, J. W.; Robertson, D. H.; White, C. T.
1994-06-01
We have carried out a series of molecular-dynamics simulations on a model three-dimensional molecular solid to study the dynamics of shock-induced collapse of void defects. Molecular-dynamics methods were used for a model system of identical particles arranged as diatomic molecules aligned with the center of mass of each molecule at fcc lattice sites, using a \\{111\\} layering for the two-dimensional boundary conditions. The diatoms were internally coupled via a harmonic potential; all other interactions were modeled with Morse potentials between all particles other than the immediate diatomic partner. Using this model, we have investigated the effect of a cylindrical void at right angles to the direction of layering (and impact). Depending on the strength of the incident shock wave, the void is found to collapse either smoothly and symmetrically (like a balloon gradually losing air), or asymmetrically and turbulently. In the latter case, we note the transient formation (for periods of several hundreds of femtoseconds) of ``hot spots'' at the void location both in terms of the local effective temperature and the vibrational energies of the diatoms.
NASA Astrophysics Data System (ADS)
Gabdulkhakov, A. G.; Kljashtorny, V. G.; Dontsova, M. V.
2015-11-01
In thylakoids of cyanobacteria and other photosynthetic organisms, the light-induced production of molecular oxygen is catalyzed by the giant lipid-pigment-protein complex called photosystem II (PSII). The oxygen-evolving complex is buried deep in the lumenal part of PSII, and dioxygen molecules need to pass through the protein environment in order to leave the active site of the enzyme free. Previous studies aimed at finding oxygen channels in PSII were based on either an analysis of the cavities within is static structure or experiments on the insertion of noble gas molecules into PSII crystals under elevated pressure. In these studies, some possible exit pathways for the molecules were found and the static positions of molecular oxygen were determined. In the present work, the oxygen movement in the transport system of PSII is simulated by molecular dynamics.
Ortiz-Sánchez, Juan Manuel; Bucher, Denis; Pierce, Levi C T; Markwick, Phineus R L; McCammon, J Andrew
2012-08-14
In the present work, we employ excited state accelerated ab initio molecular dynamics (A-AIMD) to efficiently study the excited state energy landscape and photophysical topology of a variety of molecular systems. In particular, we focus on two important challenges for the modeling of excited electronic states: (i) the identification and characterization of conical intersections and crossing seams, in order to predict different and often competing radiationless decay mechanisms, and (ii) the description of the solvent effect on the absorption and emission spectra of chemical species in solution. In particular, using as examples the Schiff bases formaldimine and salicylidenaniline, we show that A-AIMD can be readily employed to explore the conformational space around crossing seams in molecular systems with very different photochemistry. Using acetone in water as an example, we demonstrate that the enhanced configurational space sampling may be used to accurately and efficiently describe both the prominent features and line-shapes of absorption and emission spectra.
Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro
2012-03-28
A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.
Singh, S.B.
1992-01-01
The structures of the adducts of (+)- and (-)trans-7,8,dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo (a)pyrene (anti-BPDE) formed by trans addition to N[sup 2] of guanine have been of great interest because the high biological activity of BPDE in mammalian mutagenesis and tumorigenesis has been attributed to the predominant (+)-adduct, while the (-)-adduct is inactive. Molecular mechanics and dynamics calculations have been employed to elucidate the structural difference between this mirror image adduct pair in a duplex dodecamer, d(5' GCGCGCG-(BPDE)CGCGC3') [center dot] d(5'GCGCGCGCGCGC3'). Minimized potential energy calculations using the program DUPLEX were employed to locate starting structures for the dynamics. Three types of structures were found in the energy minimized conformation space searches for each enantiomer: pyrenyl moiety in the minor groove of a Watson-Crick base paired B-DNA duplex, pyrenyl moiety in the major groove of a B-DNA duplex with syn guanine and Hoogsteen base pairs at the modification site, and intercalation type structures. The minor groove structure is energetically preferred for the (+) enantiomer while both minor groove and major groove structures are favored and of comparable energy in the (-) enantiomer. These energy-minimized duplex dodecamers, as well as an unmodified B-DNA control of the same sequence, were subjected to 100 ps molecular dynamics simulations with solvent and salt with the program AMBER. The duplex dodecamer, d(CGCGAATTCGCG)[sub 2], was subjected to a similar simulation using the crystal structure as starting coordinates. Detailed analysis of the dynamic evolution of the conformational and the helical parameters of all the dodecamer simulations were carried out with Molecular Dynamics Analysis Toolchest.
Local structure in anisotropic systems determined by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Komolkin, Andrei V.; Maliniak, Arnold
In the present communication we describe the investigation of local structure using a new visualization technique. The approach is based on two-dimensional pair correlation functions derived from a molecular dynamics computer simulation. We have used this method to analyse a trajectory produced in a simulation of a nematic liquid crystal of 4-n-pentyl-4'-cyanobiphenyl (5CB) (Komolkin et al., 1994, J. chem. Phys., 101, 4103). The molecule is assumed to have cylindrical symmetry, and the liquid crystalline phase is treated as uniaxial. The pair correlation functions or cylindrical distribution functions (CDFs) are calculated in the molecular (m) and laboratory (l) frames, gm2(z1 2, d1 2) and g12(Z1 2, D1 2). Anisotropic molecular organization in the liquid crystal is reflected in laboratory frame CDFs. The molecular excluded volume is determined and the effect of the fast motion in the alkyl chain is observed. The intramolecular distributions are included in the CDFs and indicate the size of the motional amplitude in the chain. Absence of long range order was confirmed, a feature typical for a nematic liquid crystal.
Simulating Heat Flux and Bubble Nucleation using Molecular Dynamics
NASA Astrophysics Data System (ADS)
Karayiannis, Tassos; Smith, Edward; Sefiane, Khellil; Matar, Omar
2016-11-01
Modelling the heat flux in multiphase flow situations must account for nucleation of bubbles, non-linear heat transfer coefficients, complex molecular interaction at the surface, detailed surface textures as well as build up of material on the surface. These complex factors combine to define the well known boiling curve, which characterises the heat flux for a given temperature gradient. Understanding and optimisation of this boiling curve, and its critical heat flux (CHF), is a problem of great importance. Molecular dynamics (MD), by modelling the motion of the individual molecules, can replicate the bubble nucleation and heat flux. Details of the wall-fluid interaction are represented with complex textures and the surface materials can be explicitly reproduced. In this talk, MD simulation results are presented for bubble nucleation and heat flux. The heat flux is matched to experimental results and the process of nucleation explored for both fractal and textured surfaces. The unique insights from the molecular scale are discussed and potential applications including surface design and coupled molecular to continuum simulation are presented. EPSRC UK platform Grant MACIPh (EP/L020564/1).
Molecular Dynamics Simulations of Fracture of Model Epoxies
STEVENS,MARK J.
2000-01-18
The failure of thermosetting polymer adhesives is an important problem which particularly lacks understanding from the molecular viewpoint. While linear elastic fracture mechanics works well for such polymers far from the crack tip, the method breaks down near the crack tip where large plastic deformation occurs and the molecular details become important [1]. Results of molecular dynamics simulations of highly crosslinked polymer networks bonded to a solid surface are presented here. Epoxies are used as the guide for modeling. The focus of the simulations is the network connectivity and the interfacial strength. In a random network, the bond stress is expected to vary, and the most stressed bonds will break first [2]. Crack initiation should occur where a cluster of highly constrained bonds exists. There is no reason to expect crack initiation to occur at the interface. The results to be presented show that the solid surface limits the interfacial bonding resulting in stressed interfacial bonds and interfacial fracture. The bonds in highly-crosslinked random networks do not become stressed as expected. The sequence of molecular structural deformations that lead to failure has been determined and found to be strongly dependent upon the network connectivity. The structure of these networks and its influence on the stress-strain behavior will be discussed in general. A set of ideal, ordered networks have been constructed to manipulate the deformation sequence to achieve different fracture modes (i.e. cohesive vs. adhesive).
Molecular-dynamics simulation of two-dimensional thermophoresis
Paredes; Idler; Hasmy; Castells; Botet
2000-11-01
A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.
Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt
NASA Astrophysics Data System (ADS)
Kong, Bin
2015-03-01
Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.
Symplectic molecular dynamics simulations on specially designed parallel computers.
Borstnik, Urban; Janezic, Dusanka
2005-01-01
We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.
Molecular encryption and reconfiguration for remodeling of dynamic hydrogels.
Li, Shihui; Gaddes, Erin R; Chen, Niancao; Wang, Yong
2015-05-11
Dynamic materials have been widely studied for regulation of cell adhesion that is important to a variety of biological and biomedical applications. These materials can undergo changes mainly through one of the two mechanisms: ligand release in response to chemical, physical, or biological stimuli, and ligand burial in response to mechanical stretching or the change of electrical potential. This study demonstrates an encrypted ligand and a new hydrogel that are capable of inducing and inhibiting cell adhesion, which is controlled by molecular reconfiguration. The ligand initially exhibits an inert state; it can be reconfigured into active and inert states by using unblocking and recovering molecules in physiological conditions. Since molecular reconfiguration does not require the release of the ligand from the hydrogels, inhibiting and inducing cell adhesion on the hydrogels can be repeated for multiple cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comment on molecular dynamics simulations of monolayers of fluorinated amphiphiles
NASA Astrophysics Data System (ADS)
Shin, Seokmin; Collazo, Nancy; Rice, Stuart A.
1993-02-01
We report the results of new molecular dynamics simulations of liquid-supported monolayers of perfluorinated and partially fluorinated amphiphiles such as F(CF2)11COOH and F(CF2)10CH2COOH. The new simulations include a representation of the superhelical structure of the perfluoroalkane portion of the amphiphile chain in the intramolecular potential energy; in addition, the calculation of the collective tilt angle of the monolayer is improved to include the effect of the azimuthal distribution of individual molecular tilt angles. The results of the simulations are in agreement with the available experimental data. In particular, the packing structure and the observed breakup of the homogeneous ordered monolayer into ordered islands with the same collective tilt of the molecules are correctly predicted as are the very small collective tilt angles. These new results remove the discrepancy between predicted and observed collective tilt angles reported in our previous papers [J. Chem. Phys. 96, 1352, 4735 (1992)].
Homogenous mixing of ionic liquids: molecular dynamics simulations.
Payal, Rajdeep Singh; Balasubramanian, Sundaram
2013-12-28
Binary mixtures of room temperature ionic liquids (IL) with a common cation were investigated using atomistic molecular dynamics (MD) simulations. Two different binary ILs, viz., [C4mim][PF6]-[C4mim][Cl] and [C4mim][PF6]-[C4mim][BF4], were studied with varying fractions of either anion. The coordination environment of an anion around the cation is altered in the presence of another type of anion. The extent of change is larger for anions with much different radii. Atomistic MD and coarse grain MD simulations do not show any evidence for the clustering of like anions at any concentration. The binary liquids are well mixed at the molecular level.
Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.
Bahrami, Amir Houshang; Jalali, Mir Abbas
2010-01-14
Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.
Acceleration of coarse grain molecular dynamics on GPU architectures.
Shkurti, Ardita; Orsi, Mario; Macii, Enrico; Ficarra, Elisa; Acquaviva, Andrea
2013-04-05
Coarse grain (CG) molecular models have been proposed to simulate complex systems with lower computational overheads and longer timescales with respect to atomistic level models. However, their acceleration on parallel architectures such as graphic processing units (GPUs) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specific optimizations for CG models, such as dedicated data structures to handle different bead type interactions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three different GPU architectures as case studies. Copyright © 2012 Wiley Periodicals, Inc.
Thermal Transport in Carbon Nanotubes using Molecular Dynamics
NASA Astrophysics Data System (ADS)
Moore, Andrew; Khatun, Mahfuza
2011-10-01
We will present results of thermal transport phenomena in Carbon Nanotube (CNT) structures. CNTs have many interesting physical properties, and have the potential for device applications. Specifically, CNTs are robust materials with high thermal conductance and excellent electrical conduction properties. A review of electrical and thermal conduction of the structures will be discussed. The research requires analytical analysis as well as simulation. The major thrust of this study is the usage of the molecular dynamics (MD) simulator, LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). A significant investigation using the LAMMPS code is conducted on the existing Beowulf Computing Cluster at BSU. NanoHUB, an open online resource to the entire nanotechnology community developed by the researchers of Purdue University, is used for further supplementary resources. Results will include the time-dependence of temperature, kinetic energy, potential energy, heat flux correlation, and heat conduction.
Molecular dynamics study of the M412 intermediate of bacteriorhodopsin.
Xu, D; Sheves, M; Schulten, K
1995-01-01
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region. Images FIGURE 3 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 14 FIGURE 15 FIGURE 16 PMID:8599681
Molecular dynamics of water at high temperatures and pressures
NASA Astrophysics Data System (ADS)
Brodholt, John; Wood, Bernard
1990-09-01
There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.
Molecular Dynamics of a Protein Surface: Ion-Residues Interactions
Friedman, Ran; Nachliel, Esther; Gutman, Menachem
2005-01-01
Time-resolved measurements indicated that protons could propagate on the surface of a protein or a membrane by a special mechanism that enhanced the shuttle of the proton toward a specific site. It was proposed that a suitable location of residues on the surface contributes to the proton shuttling function. In this study, this notion was further investigated by the use of molecular dynamics simulations, where Na+ and Cl− are the ions under study, thus avoiding the necessity for quantum mechanical calculations. Molecular dynamics simulations were carried out using as a model a few Na+ and Cl− ions enclosed in a fully hydrated simulation box with a small globular protein (the S6 of the bacterial ribosome). Three independent 10-ns-long simulations indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. However, it was noted that close to some domains the ions extended their duration near the surface, thus suggesting that the local electrostatic potential hindered their diffusion to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of the molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed. PMID:15894639
Parallel molecular dynamics on a multi signalprocessor system
NASA Astrophysics Data System (ADS)
Scott, W.; Gunzinger, A.; Bäumle, B.; Kohler, P.; Müller, U. A.; Mühll, H.-R. Vonder; Eichenberger, A.; Guggenbühl, W.; Ironmonger, N.; Müller-Plathe, F.; van Gunsteren, W. F.
1993-04-01
This paper gives an overview of a parallel computer architecture called MUSIC (Multi Signalprocessor System with Intelligent Communication), which has been developed at the Swiss Federal Institute of Technology. The current version achieves a peak performance of 3.8 GFlops. We discuss the system software and tools used to program the system and then present our implementation of a molecular dynamics simulation program which uses the architecture of MUSIC in an efficient way. We demonstrate the correctness of our implementation and give measurements of the performance of the system. To the best of our knowledge, MUSIC outperforms the most powerful present-day vector supercomputers.
Molecular dynamics simulation of hollow thick-walled cylinder collapse
Nikonov, A. Yu.
2015-10-27
The generation and evolution of plastic deformation in a hollow single-crystal cylinder under high-rate axisymmetric loading were studied. An advantage of the proposed loading scheme is that all loading modes are applied simultaneously within the chosen crystallographic plane of the cylinder base and different strain degrees are achieved along the specimen cross section. Molecular dynamics simulation was performed to show that the achievement of a certain strain causes the formation of structural defects on the inner surface of the specimen. The obtained results can be used to explain the main plastic deformation mechanisms of crystalline solids.
Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics
NASA Astrophysics Data System (ADS)
Mathiazhagan, S.; Anup, S.
2016-08-01
Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.
Molecular Dynamics Trajectory Compression with a Coarse-Grained Model
Cheng, Yi-Ming; Gopal, Srinivasa Murthy; Law, Sean M.; Feig, Michael
2012-01-01
Molecular dynamics trajectories are very data-intensive thereby limiting sharing and archival of such data. One possible solution is compression of trajectory data. Here, trajectory compression based on conversion to the coarse-grained model PRIMO is proposed. The compressed data is about one third of the original data and fast decompression is possible with an analytical reconstruction procedure from PRIMO to all-atom representations. This protocol largely preserves structural features and to a more limited extent also energetic features of the original trajectory. PMID:22025759
Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions.
Pandit, Sagar A; Berkowitz, Max L
2002-01-01
We performed a molecular dynamics simulation of dipalmitoylphosphatidylserine (DPPS) bilayer with Na+ counterions. We found that hydrogen bonding between the NH group and the phosphate group leads to a reduction in the area per headgroup when compared to the area in dipalmitoylphosphatidylcholine bilayer. The Na+ ions bind to the oxygen in the carboxyl group of serine, thus giving rise to a dipolar bilayer similar to dipalmitoylphosphatidylethanolamine bilayer. The results of the simulation show that counterions play a crucial role in determining the structural and electrostatic properties of DPPS bilayer. PMID:11916841
Molecular dynamics simulation of bicrystalline metal surface treatment
Nikonov, A. Yu.
2015-10-27
The paper reports the molecular dynamics simulation results on the behavior of a copper crystallite in local frictional contact. The crystallite has a perfect defect-free structure and contains a high-angle grain boundary of type Σ5. The influence of the initial structure on the specimen behavior under loading was analyzed. It is shown that nanoblocks are formed in the subsurface layer. The atomic mechanism of nanofragmentation was studied. A detailed analysis of atomic displacements in the blocks showed that the displacements are rotational. Calculations revealed that the misorientation angle of formed nanoblocks along different directions does not exceed 2 degrees.
Molecular dynamics simulations studies of laser ablation in metals
Roth, Johannes; Sonntag, Steffen; Karlin, Johannes; Paredes, Carolina Trichet; Sartison, Marc; Krauss, Armin; Trebin, Hans-Rainer
2012-07-30
An overview of several aspects of our recent molecular dynamics simulations of femtosecond laser ablation is presented. This includes the study of phase diagrams for suitable interactions, analysis of ablated material and bubble formation below threshold, study of two-pulse ablation and the classification of materials with respect to electron properties and electron-phonon coupling in the two-temperature model. A treatment of boundary conditions and of an extended twotemperature model is also included. Most of the results apply to aluminum, others also to copper and iron, and to metals in general.
Dislocation kinematics: a molecular dynamics study in Cu
NASA Astrophysics Data System (ADS)
Oren, E.; Yahel, E.; Makov, G.
2017-02-01
The kinematics and kinetics of edge and screw dislocations in FCC materials were studied by molecular dynamics, with Cu as a case study. It was found that with increasing stress screw dislocations enter into the transonic regime continuously and that they remain stable up to a velocity of about 2.2 km s-1. Edge dislocations are limited by the transverse sound velocity at low stresses and discontinuously cross into the transonic regime at higher stresses. For sufficiently long edge dislocations, the subsonic-transonic transition is initiated by an athermal nucleation process. Finally, an expression for the velocity dependence of the dislocation mobility was derived.
Molecular Dynamics Simulation of Telomere and TRF1
NASA Astrophysics Data System (ADS)
Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru
Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.
Path integral molecular dynamics at zero thermal temperature
NASA Astrophysics Data System (ADS)
Willow, Soohaeng Yoo
2017-04-01
Path integral molecular dynamics (PIMD) simulations at the zero thermal temperature still remain inconceivable. Herein, the quantum-mechanical partition function is revised in conjunction with the time-independent Schrödinger equation. The imaginary temperature for the quantum-mechanical partition function is introduced as an independent variable and defined under the guidance of the virial theorem. In the end, computational evidences are provided showing that this revised PIMD simulation at the zero thermal temperature reproduces both the zero-point energy and the probability density obtained from the Schrödinger equation for the harmonic oscillator.
Extracting the diffusion tensor from molecular dynamics simulation with Milestoning
NASA Astrophysics Data System (ADS)
Mugnai, Mauro L.; Elber, Ron
2015-01-01
We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.
Thermal stability of marks gold nanoparticles: A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Jia, Yanlin; Li, Siqi; Qi, Weihong; Wang, Mingpu; Li, Zhou; Wang, Zhixing
2017-03-01
Molecular dynamics (MDs) simulations were used to explore the thermal stability of Au nanoparticles (NPs) with decahedral, cuboctahedral, icosahedral and Marks NPs. According to the calculated cohesive energy and melting temperature, the Marks NPs have a higher cohesive energy and melting temperature compared to these other shapes. The Lindemann index, radial distribution function, deformation parameters, mean square displacement and self-diffusivity have been used to characterize the structure variation during heating. This work may inspire researchers to prepare Marks NPs and apply them in different fields.
Superionicity in Na3 PO4 : A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Yin, Wei-Guo; Liu, Jianjun; Duan, Chun-Gang; Mei, W. N.; Smith, R. W.; Hardy, J. R.
2004-08-01
Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu -Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.
Using collective variables to drive molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme
2013-12-01
A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.
Brine rejection from freezing salt solutions: a molecular dynamics study.
Vrbka, Lubos; Jungwirth, Pavel
2005-09-30
The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.
Nanoindentation hardness anisotropy of alumina crystal: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Nishimura, Kenji; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2008-04-01
Atomistic mechanisms of the initial stage of plasticity during nanoindentation are studied by molecular dynamics simulations for three surface orientations of alumina crystal. The simulations predict significant anisotropy and indentation depth dependence of the hardness value at the nanometer scale. The nanohardness anisotropy is found to arise from orientation-dependent dislocation activities. In the (0001) basal plane indentation, prism dislocations are emitted, followed by basal and pyramidal dislocations, to form massive subsurface defects; prism and pyramidal dislocations are emitted on (011¯0) and (21¯1¯0) prism plane indentations, respectively, to cause modest deformations. Stacking faults are also observed because these dislocations are extended to Shockley partial dislocations.
State-to-state collision dynamics of molecular free radicals
Macdonald, R.G.; Liu, K.
1992-02-01
State-to-state collision dynamics of molecular radicals were investigated by the laser-induced fluorescence technique in a pulsed, crossed-beam apparatus. Dramatically different product state distributions were observed for two prototypical radicals, NCO({tilde X}{sup 2}{product}) and CH(X{sup 2}{product}). Based on a quantum scattering formalism and general considerations of the potential energy surfaces these observations were interpreted as generic features for the inelastic scattering of {sup 2}{product} radicals. The differences observed for NCO and CH are the results of well-known Hund`s coupling classification of linear molecules.
State-to-state collision dynamics of molecular free radicals
Macdonald, R.G.; Liu, K.
1992-01-01
State-to-state collision dynamics of molecular radicals were investigated by the laser-induced fluorescence technique in a pulsed, crossed-beam apparatus. Dramatically different product state distributions were observed for two prototypical radicals, NCO({tilde X}{sup 2}{product}) and CH(X{sup 2}{product}). Based on a quantum scattering formalism and general considerations of the potential energy surfaces these observations were interpreted as generic features for the inelastic scattering of {sup 2}{product} radicals. The differences observed for NCO and CH are the results of well-known Hund's coupling classification of linear molecules.
Mechanical instability of α-quartz: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Tse, John S.; Klug, Dennis D.
1991-12-01
Pressure-induced amorphization in α-quartz has been investigated using constant-pressure molecular-dynamics calculations with the two-body potential of van Beest, Kramer, and van Santen. Both the static properties and the crystalline-to-amorphous phase transition were very well reproduced. Through an analysis of the elastic moduli, the mechanism for the transformation is shown to be a mechanical instability driven mainly by a cooperative twisting and compression of the helical tetrahedral silicate units with an abrupt decrease in the C12, C23, C13, C14, and C33 elastic moduli.
Anisotropy of Shear Strength of Silica: a Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Zheng, L.; Luo, S.; Tschauner, O.
2005-12-01
We investigate the shear strengths of silica glass, alpha-quartz, coesite, and stishovite using classical molecular dynamics simulations with a modified van Beest-Kramer-van Santen potential. Shear strengths along different crystallographic orientations are studied. We also explore the effects of hydrostatic pressure, temperature, and defects on the shear strength. *Work partly performed under the auspices of the U.S. Department of Energy under contract No. W-7405-ENG-36 and NNSA Cooperative Agreement DE-FC88-01NV14049
Limits of hardness at the nanoscale: Molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal; Caro, Alfredo
2008-12-01
Contrary to the often reported findings from molecular dynamics computer simulation that metals soften as their grain sizes fall below 10-15 nm, we do not observe such softening in nanocrystalline specimens when they are first thermally relaxed. We offer a simple model that illustrates that the increased hardening is a consequence of grain-boundary relaxation, which suppresses grain-boundary sliding and forces the material to deform by dislocation glide. These observations provide an explanation for why some experiments observe an inverse Hall-Petch relationship at grain sizes below 10-20 nm while others do not.
Role of molecular dynamics on descriptions of shock front processes
NASA Astrophysics Data System (ADS)
Karo, A. M.
1981-07-01
A computational approach, based on classical molecular dynamics, is used to form a realistic picture of shock induced processes occurring at the shock front and resulting from the detailed, violent motion associated with shock motion on an atomic scale. Prototype studies of phase transitions are discussed. The interaction of the shock front with defects, surfaces, voids, and inclusions, and across grain boundaries are summarized. The critical question of how mechanical energy imparted to a condensed material by shock loading is converted to the activation energy required to overcome some initial energy barrier in an initiation process, is addressed.
Molecular dynamics simulation of threshold displacement energies in zircon
Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.
2009-10-15
Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.
Frank, Martin
2015-01-01
Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).
Extracting the diffusion tensor from molecular dynamics simulation with Milestoning
Mugnai, Mauro L.; Elber, Ron
2015-01-07
We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.
Molecular dynamical modelling of endohedral fullerenes formation in plasma
NASA Astrophysics Data System (ADS)
Fedorov, A. S.; Kovaleva, E. A.; Lubkova, T. A.; Popov, Z. I.; Kuzubov, A. A.; Visotin, M. A.; Irle, S.
2016-02-01
The initial stages of fullerene and endohedral metallofullerene (EMF) synthesis in carbon-helium plasma at 1500 K and 2500 K have been simulated with quantum chemical molecular dynamics (MD) based on density-functional tight-binding (DFTB). The cases of formation of large (>100 atoms) sp2-carbon clusters with scandium atoms inside were observed. These clusters are considered as precursors of fullerenes or EMFs, and thus it is shown that formation of EMFs can be explained within the framework of "shrinking hot giant" mechanism. Also, the dependence of formation rates on plasma parameters, including temperature, buffer gas and metal atoms concentrations, has been studied.
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
Niklasson, Anders M. N. Cawkwell, Marc J.
2014-10-28
Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.
The A = 8 isotriplet in Fermionic Molecular Dynamics
NASA Astrophysics Data System (ADS)
Henninger, KR
2016-06-01
Nuclear structure of the A = 8 isotriplet is investigated in the Fermionic Molecular Dynamics (FMD) model. All three nuclei have importance to astrophysics, and exhibit clustering or haloes. FMD uses a wave-packet basis and is well-suited for modelling such structures. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo in 8B, and reasonable reproduction of the T =1 states in 8Be.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
NASA Astrophysics Data System (ADS)
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
Molecular nonlinear dynamics and protein thermal uncertainty quantification
Xia, Kelin; Wei, Guo-Wei
2014-01-01
This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction. PMID:24697365
A molecular dynamics study of freezing in a confined geometry
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.
Interfacial interaction between polypropylene and nanotube: A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zhang, Danhui; Yang, Houbo; Liu, Zhongkui; Liu, Anmin; Li, Yunfang
2017-09-01
The interfacial interaction between polypropylene (PE) and single walled carbon nanotube (SWCNT) was studied using molecular dynamics (MD) simulations. The result showed that the PE chain could stabilize the SWCNT and then extended along the direction of SWCNT. The mechanism of interfacial interaction between PE and SWCNT was also discussed. Furthermore, the interfacial interaction between more PE and SWCNT was also investigated and the position also deeply influenced the interaction. This will be beneficial to understanding the interfacial interaction between polymer and CNT in solution, and also guiding the fabrication of high performance polymer/CNT nanocomposites.
Higher-order symplectic Born-Oppenheimer molecular dynamics
Niklasson, Anders; Bock, Nicolas; Challacombe, Matt; Odell, Anders; Delin, Anna; Johansson, Borje
2009-01-01
The extended Lagrangian formulation of time-reversible Born-Oppenheimer molecular dynamics (TR-BOMD) enables the use of geometric integrators in the propagation of both the nuclear and the electronic degrees of freedom on the Born-Oppenheimer potential energy surface. Different symplectic integrators up to the 6th order have been adapted and optimized to TR-BOMD in the framework of ab initio self-consistent-field theory. It is shown how the accuracy can be significantly improved compared to a conventional Verlet integration at the same level of computational cost, in particular for the case of very high accuracy requirements.
Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.
2008-03-01
Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.
Molecular dynamics studies of interfacial crack propagation in heterogeneous media
Corbett, J.M. |; Selinger, R.L.B.
1999-08-01
The authors use molecular dynamics simulation to investigate the evolution of a crack front in interfacial fracture in three dimensions. They find that when a crack passes through a localized region of heterogeneous toughness, crack front waves are initiated and propagate laterally. They also investigate the development of roughness of the crack front when the crack propagates in a region of heterogeneous toughness. They find that in steady state the mean square width W of the front scales with system size L as W {approximately} L{sup 0.35}, in agreement with recent theoretical predictions.
Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces
Grest, G.S.; Webb, E.B.
1999-01-20
The interface between liquid hexadecane and the (010) surface of silicalite was studied by molecular dynamics. The structure of molecules in the interracial region is influenced by the presence of pore mouths on the silicalite surface. For this surface, whose pores are the entrances to straight channels, the concentration profile for partially absorbed molecules is peaked around 10 monomers inside the zeolite. No preference to enter or exit the zeolite based on absorption length is observed except for very small or very large absorption lengths. We also found no preferential conformation of the unabsorbed tails for partially absorbed molecules.
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
Niklasson, Anders M. N.; Cawkwell, Marc J.
2014-10-29
Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.
Easy creation of polymeric systems for molecular dynamics with Assemble!
NASA Astrophysics Data System (ADS)
Degiacomi, Matteo T.; Erastova, Valentina; Wilson, Mark R.
2016-05-01
We present Assemble!, a program greatly simplifying the preparation of molecular dynamics simulations of polymeric systems. The program is controlled either via command line or an intuitive Graphical User Interface, and runs on all major operating systems. Assemble! allows the creation of a desired system of polymer chains from constituent monomers, packs the chains into a box according to the required concentration and returns all the files needed for simulation with Gromacs. We illustrate the capabilities of Assemble! by demonstrating the easy preparation of a 300 monomers-long polyisoprene in hexane, and a heterogeneous mixture of polybutadiene.
Molecular-dynamics simulation of thermal conductivity in amorphous silicon
NASA Astrophysics Data System (ADS)
Lee, Young Hee; Biswas, R.; Soukoulis, C. M.; Wang, C. Z.; Chan, C. T.; Ho, K. M.
1991-03-01
The temperature-dependent thermal conductivity κ(T) of amorphous silicon has been calculated from equilibrium molecular-dynamics simulations using the time correlations of the heat flux operator in which anharmonicity is explicitly incorporated. The Stillinger-Weber two- and three-body Si potential and the Wooten-Weaire-Winer a-Si model were utilized. The calculations correctly predict an increasing thermal conductivity at low temperatures (below 400 K). The κ(T), for T>400 K, is affected by the thermally generated coordination-defect states. Comparisons to both experiment and previous calculations will be described.
A molecular dynamics study of freezing in a confined geometry
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.
Classical molecular dynamics simulations for non-equilibrium correlated plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Talin, B.
2017-03-01
A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.
Coupling lattice Boltzmann and molecular dynamics models for dense fluids
NASA Astrophysics Data System (ADS)
Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.
2007-04-01
We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.
Coupling lattice Boltzmann and molecular dynamics models for dense fluids.
Dupuis, A; Kotsalis, E M; Koumoutsakos, P
2007-04-01
We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.
On the accurate molecular dynamics analysis of biological molecules
NASA Astrophysics Data System (ADS)
Yamashita, Takefumi
2016-12-01
As the evolution of computational technology has now enabled long molecular dynamics (MD) simulation, the evaluation of many physical properties shows improved convergence. Therefore, we can examine the detailed conditions of MD simulations and perform quantitative MD analyses. In this study, we address the quantitative and accuracy aspects of MD simulations using two example systems. First, it is found that several conditions of the MD simulations influence the area/lipid of the lipid bilayer. Second, we successfully detect the small but important differences in antibody motion between the antigen-bound and unbound states.
First-principles molecular dynamics of metals: A Lagrangian formulation
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano; de Vita, Alessandro
2000-12-01
A set of first-principles molecular-dynamics equations of motion involving fractional orbital occupations is derived from a rotationally invariant time-independent Lagrangian function. All velocity-dependent force terms can be removed from these equations by introducing an additional time-dependent term in the Lagrangian. The resulting scheme is formally equivalent to a recently proposed scheme [J. YandeVondele and A. DeVita, Phys. Rev. B 60, 13 241 (1999)], which is thus put on a firmer theoretical basis, and completed by a constant of motion resulting from the analytical expression of energy conservation.
Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Seasholtz, Richard; Panda, Jayanta
1999-01-01
A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.
Extracting the diffusion tensor from molecular dynamics simulation with Milestoning.
Mugnai, Mauro L; Elber, Ron
2015-01-07
We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system-the diffusion along the backbone torsions of a solvated alanine dipeptide.
NASA Astrophysics Data System (ADS)
Shekhar, Adarsh
Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in
Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field
2015-01-01
Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein–water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078
Molecular dynamics simulation of radiation damage cascades in diamond
Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.
2015-06-28
Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.
Coherent states/density functional theory approach to molecular dynamics
NASA Astrophysics Data System (ADS)
Tsereteli, Kakha; Yan, Yun-an; Morales, Jorge A.
2006-03-01
We present a combined coherent states (CS)/density functional theory approach to molecular dynamics within the electron nuclear dynamics framework. Nuclei are described by a product of narrow, frozen Gaussian wave packets that is approximately separable into translational, rotational, and vibrational CS parts. Electrons are described by a single-determinantal Thouless CS in a time-dependent Kohn-Sham fashion. This novel approach improves several features of the Car-Parrinello method by providing an ab initio CS Lagrangian, a quasi-classical CS description for the nuclei, and a non-redundant representation of a general electronic single-determinantal state. Preliminary simulations of the H + + H 2 reaction at ELab = 30 eV are also presented.