Science.gov

Sample records for molecular genetic markers

  1. Molecular Marker Systems for Oenothera Genetics

    PubMed Central

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G.; Greiner, Stephan

    2008-01-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome–genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9·8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed. PMID:18791241

  2. Molecular markers: a potential resource for ginger genetic diversity studies.

    PubMed

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  3. Intelligent DNA-based molecular diagnostics using linked genetic markers

    SciTech Connect

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  4. Genetic characterization of fig tree mutants with molecular markers.

    PubMed

    Rodrigues, M G F; Martins, A B G; Desidério, J A; Bertoni, B W; Alves, M C

    2012-08-06

    The fig (Ficus carica L.) is a fruit tree of great world importance and, therefore, the genetic improvement becomes an important field of research for better crops, being necessary to gather information on this species, mainly regarding its genetic variability so that appropriate propagation projects and management are made. The improvement programs of fig trees using conventional procedures in order to obtain new cultivars are rare in many countries, such as Brazil, especially due to the little genetic variability and to the difficulties in obtaining plants from gamete fusion once the wasp Blastophaga psenes, responsible for the natural pollinating, is not found in Brazil. In this way, the mutagenic genetic improvement becomes a solution of it. For this reason, in an experiment conducted earlier, fig plants formed by cuttings treated with gamma ray were selected based on their agronomic characteristics of interest. We determined the genetic variability in these fig tree selections, using RAPD and AFLP molecular markers, comparing them to each other and to the Roxo-de-Valinhos, used as the standard. For the reactions of DNA amplification, 140 RAPD primers and 12 primer combinations for AFLP analysis were used. The selections did not differ genetically between themselves and between them and the Roxo-de-Valinhos cultivar. Techniques that can detect polymorphism between treatments, such as DNA sequencing, must be tested. The phenotypic variation of plants may be due to epigenetic variation, necessitating the use of techniques with methylation-sensitive restriction enzymes.

  5. Genetic diversity assessment of summer squash landraces using molecular markers.

    PubMed

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  6. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    PubMed Central

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  7. Molecular genetic variation in cultivated peanut cultivars and breeding lines revealed by highly informative SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut or peanut (Arachis hypogaea L.) is an economically important crop worldwide as a source of protein and cooking oil, particularly in developing countries. Because of its narrow genetic background and shortage of polymorphic genetic markers, molecular characterization of cultivated peanuts e...

  8. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    PubMed

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.

  9. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  10. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    PubMed Central

    Küpper Cardoso Perseguini, Juliana Morini; Chioratto, Alisson Fernando; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Carbonell, Sérgio Augusto Moraes; Costa Mondego, Jorge Mauricio; Gazaffi, Rodrigo; Franco Garcia, Antonio Augusto; de Campos, Tatiana; de Souza, Anete Pereira; Rubiano, Luciana Benchimol

    2011-01-01

    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm. PMID:21637550

  11. Genetic diversity of spineless Cereus jamacaru accessions using morphological and molecular markers.

    PubMed

    Oliveira, F I C; Bordallo, P N; Castro, A C R; Correia, D

    2013-10-17

    This is the first study to examine the genetic diversity of mandacaru cactus (Cereus jamacaru P. DC.). Plants of spineless mandacaru are commonly found in gardens and parks of urban areas in northeastern Brazil. In addition to exploring their ornamental potential, morphological, and genetic characterization may contribute to the development of plant materials that can be used as a source of macromolecules of potential economic interest. The goal of this study was to estimate the genetic variability of spineless mandacaru accessions using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) molecular markers, and to characterize their morphology. Ten samples of newly emitted shoots with differentiated areolas and ribs were collected from each accession from the Cactaceous Germplasm Collection of Embrapa Agroindústria Tropical, in Fortaleza, CE. Shoot shape and aspects of spine primordia (presence, location, grouping, and size of spines) were evaluated. The morphological analysis showed that the spineless mandacaru presented spine primordia. Twenty-six RAPD and 15 ISSR primers were polymorphic. A total of 262 markers were obtained, 129 of which were polymorphic. The average polymorphism of ISSR markers was higher than that of RAPD markers. The dendrograms for both analyses showed differentiation between accessions. Nevertheless, the molecular markers detected higher levels of diversity and a different pattern of diversity than those found using morphological markers. The molecular results revealed significant genetic variability both within and between groups.

  12. Molecular marker development and genetic diversity exploration by RNA-seq in Platycodon grandiflorum.

    PubMed

    Kim, Hyun Jung; Jung, Jungsu; Kim, Myung-Shin; Lee, Je Min; Choi, Doil; Yeam, Inhwa

    2015-10-01

    Platycodon grandiflorum, generally known as the bellflower or balloon flower, is the only species in the genus Platycodon of the family Campanulaceae. Platycodon plants have been traditionally used as a medicinal crop in East Asia for their antiphlogistic, antitussive, and expectorant properties. Despite these practical uses, marker-assisted selection and molecular breeding in platycodons have lagged due to the lack of genetic information on this genus. In this study, we performed RNA-seq analysis of three platycodon accessions to develop molecular markers and explore genetic diversity. First, genic simple sequence repeats (SSRs) were retrieved and compared; dinucleotide motifs were the most abundant repeats (39%-40%) followed by trinucleotide (25%-31%), tetranucleotide (1.5%-1.9%), and pentanucleotide (0.3%-1.0%) repeats. The result of in silico SSR analysis, three SSR markers were detected and showed possibility to distinguish three platycodon accessions. After several filtering procedures, 180 single nucleotide polymorphisms (SNPs) were used to design 40 cleaved amplified polymorphic sequence (CAPS) markers. Twelve of these PCR-based markers were validated as highly polymorphic and utilized to investigate genetic diversity in 21 platycodon accessions collected from various regions of South Korea. Collectively, the 12 markers yielded 35 alleles, with an average of 3 alleles per locus. Polymorphism information content (PIC) values ranged from 0.087 to 0.693, averaging 0.373 per locus. Since platycodon genetics have not been actively studied, the sequence information and the DNA markers generated from our research have the potential to contribute to further genetic improvements, genomic studies, and gene discovery in this genus.

  13. Molecular Analysis of Genetic Markers for Non-Hodgkin Lymphomas.

    PubMed

    Sholl, Lynette M; Longtine, Janina; Kuo, Frank C

    2017-04-06

    Molecular analysis complements the clinical and histopathologic tools used to diagnose and subclassify hematologic malignancies. The presence of clonal antigen-receptor gene rearrangements can help to confirm the diagnosis of a B or T cell lymphoma and can serve as a fingerprint of that neoplasm to be used in identifying concurrent disease at disparate sites or recurrence at future time points. Certain lymphoid malignancies harbor a characteristic chromosomal translocation, a finding that may have significant implications for an individual's prognosis or response to therapy. The polymerase chain reaction (PCR) is typically used to detect antigen-receptor gene rearrangements as well as specific translocations that can be supplemented by fluorescence in situ hybridization (FISH) and karyotype analysis. © 2017 by John Wiley & Sons, Inc.

  14. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR).

    PubMed

    Hasnaoui, Nejib; Buonamici, Anna; Sebastiani, Federico; Mars, Messaoud; Zhang, Dapeng; Vendramin, Giovanni G

    2012-02-01

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He=0.245; Ho=0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies.

  15. [Genetic singularity coefficients of common vetch Vicia sativa L. accessions determined with molecular markers].

    PubMed

    Potokina, E K; Aleksandrova, T G

    2008-11-01

    Organization and practical application of ex situ collections require estimation of genetic differences between numerous accessions of local cultivars and field weed forms collected from the same ecological and geographical region and similar in their morphophysiological characteristics. A mathematical algorithm for estimating the degree of genetic singularity of a specimen in the system of local gene pool determined with the help of molecular markers is described. The utility of this algorithm is demonstrated by the example of classification of 677 common vetch accessions from the collection of the Vavilov Institute of Plant Industry from 11 ecological-geographic regions of Russia analyzed using AFLP. The proposed classification of accessions is the result of processing the AFLP data by weighting the marker traits based on their frequency in particular regions. This allowed each accession to be characterized according to the ratio of rare and frequent alleles as a genetic singularity coefficient. The proposed method is appropriate for any types of molecular markers. A practical result of its application is the classification of accessions using a five-point score scale, which can be added to descriptors of certificate databases and used for optimization of the work with collections.

  16. Evaluation of genetically modified sugarcane lines carrying Cry 1AC gene using molecular marker techniques.

    PubMed

    Ismail, Roba M

    2013-01-01

    Five genetically modified insect resistant sugarcane lines harboring the Bt Cry 1AC gene to produce insecticidal proteins were compared with non-transgenic control by using three types of molecular marker techniques namely, RAPD, ISSR and AFLP. These techniques were applied on transgenic and non-transgenic plants to investigate the genetic variations, which may appear in sugarcane clones. This variation might demonstrate the genomic changes associated with the transformation process, which could change important molecular basis of various biological phenomena. Genetic variations were screened using 22 different RAPD primers, 10 ISSR primers and 13 AFLP primer combinations. Analysis of RAPD and ISSR banding patterns gave no exclusive evidence for genetic variations. Meanwhile, the percentage of polymorphic bands was 0.45% in each of RAPD and ISSR, while the polymorphism generated by AFLP analysis was 1.8%. The maximum percentage of polymorphic bands was 1.4%, 1.1% and 5.5% in RAPD, ISSR and AFLP, respectively. These results demonstrate that most transgenic lines showed genomic homogeneity and verified minor genomic changes. Dendrograms revealing the relationships among the transgenic and control plants were developed from the data of each of the three marker types.

  17. Assessment of genetic diversity among faba bean genotypes using agro-morphological and molecular markers

    PubMed Central

    Ammar, Megahed H.; Alghamdi, Salem S.; Migdadi, Hussein M.; Khan, Muhammad A.; El-Harty, Ehab H.; Al-Faifi, Sulieman A.

    2015-01-01

    Forty faba bean (Vicia faba L.) genotypes were evaluated for their agro-morphological performance and molecular diversity under Central Region of Saudi Arabia conditions during 2010–11 and 2011–12 seasons. Field performance results showed that faba genotypes exhibited a significant amount of variation for their agro-morphological studied parameters. Giza40 recorded the tallest genotype (139.5 cm), highest number of seeds per plants (100.8), and the highest seed yield per plant (70.8 g). The best performing genotypes were Giza40, FLIP03-014FB, Gazira1 and Goff1. Genetic variability among genotypes was determined using Sequence Related Amplified Polymorphism (SRAP) and Amplified Fragment Length Polymorphism (AFLP) markers. A total of 183 amplified fragments (alleles) and 1758 polymorphic fragments (bands) in SRAP and 202 alleles and 716 bands in AFLP were obtained using six SRAP and four AFLP primer combinations respectively. Polymorphism information content (PIC) values for AFLP and SRAP markers were higher than 0.8, indicating the existence of a considerable amount of genetic diversity among faba tested genotypes. The UPGMA based clustering of faba genotypes was largely based on origin and/or genetic background. Result of cluster analysis based on SRAP showed weak and not significant correlation while, it was highly significant based on AFLP analysis with agro-morphological characters (r = 0.01, p > 0.54 and r = 0.26, p < 0.004 respectively). Combined SRAP and AFLP markers proved to be significantly useful for genetic diversity assessment at molecular level. They exhibited high discrimination power, and were able to distinguish the faba bean genotypes with high efficiency and accuracy levels. PMID:25972757

  18. Comparison of algorithms to infer genetic population structure from unlinked molecular markers.

    PubMed

    Peña-Malavera, Andrea; Bruno, Cecilia; Fernandez, Elmer; Balzarini, Monica

    2014-08-01

    Identifying population genetic structure (PGS) is crucial for breeding and conservation. Several clustering algorithms are available to identify the underlying PGS to be used with genetic data of maize genotypes. In this work, six methods to identify PGS from unlinked molecular marker data were compared using simulated and experimental data consisting of multilocus-biallelic genotypes. Datasets were delineated under different biological scenarios characterized by three levels of genetic divergence among populations (low, medium, and high FST) and two numbers of sub-populations (K=3 and K=5). The relative performance of hierarchical and non-hierarchical clustering, as well as model-based clustering (STRUCTURE) and clustering from neural networks (SOM-RP-Q). We use the clustering error rate of genotypes into discrete sub-populations as comparison criterion. In scenarios with great level of divergence among genotype groups all methods performed well. With moderate level of genetic divergence (FST=0.2), the algorithms SOM-RP-Q and STRUCTURE performed better than hierarchical and non-hierarchical clustering. In all simulated scenarios with low genetic divergence and in the experimental SNP maize panel (largely unlinked), SOM-RP-Q achieved the lowest clustering error rate. The SOM algorithm used here is more effective than other evaluated methods for sparse unlinked genetic data.

  19. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers

    PubMed Central

    Crossa, José; Campos, Gustavo de los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P.; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-01-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed. PMID:20813882

  20. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae)

    PubMed Central

    West, Andrea J.; Cardilini, Adam P. A.; Clark, Jennalee A.; Maute, Kimberley L.; Legge, Sarah; Brazill-Boast, James; Griffith, Simon C.; Rollins, Lee A.

    2016-01-01

    Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae) is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species. PMID:27936082

  1. Population genetic structure of rare and endangered plants using molecular markers

    USGS Publications Warehouse

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  2. Genetic approaches for studying myiasis-causing flies: molecular markers and mitochondrial genomics.

    PubMed

    de Azeredo-Espin, Ana Maria Lima; Lessinger, Ana Cláudia

    2006-01-01

    "Myiasis-causing flies" is a generic term that includes species from numerous dipteran families, mainly Calliphoridae and Oestridae, of which blowflies, screwworm flies and botflies are among the most important. This group of flies is characterized by the ability of their larvae to develop in animal flesh. When the host is a live vertebrate, such parasitism by dipterous larvae is known as primary myiasis. Myiasis-causing flies can be classified as saprophagous (free-living species), facultative or obligate parasites. Many of these flies are of great medical and veterinary importance in Brazil because of their role as key livestock insect-pests and vectors of pathogens, in addition to being considered important legal evidence in forensic entomology. The characterization of myiasis-causing flies using molecular markers to study mtDNA (by RFLP) and nuclear DNA (by RAPD and microsatellite) has been used to identify the evolutionary mechanisms responsible for specific patterns of genetic variability. These approaches have been successfully used to analyze the population structures of the New World screwworm fly Cochliomyia hominivorax and the botfly Dermatobia hominis. In this review, various aspects of the organization, evolution and potential applications of the mitochondrial genome of myiasis-causing flies in Brazil, and the analysis of nuclear markers in genetic studies of populations, are discussed.

  3. Genetic diversity analysis of Croton antisyphiliticus Mart. using AFLP molecular markers.

    PubMed

    Oliveira, T G; Pereira, A M S; Coppede, J S; França, S C; Ming, L C; Bertoni, B W

    2016-02-19

    Croton antisyphiliticus Mart. is a medicinal plant native to Cerrado vegetation in Brazil, and it is popularly used to treat urogenital tract infections. The objective of the present study was to assess the genetic variability of natural C. antisyphiliticus populations using AFLP molecular markers. Accessions were collected in the states of Minas Gerais, São Paulo, and Goiás. The genotyping of individuals was performed using a LI-COR® DNA Analyzer 4300. The variability within populations was found to be greater than the variability between them. The F(ST) value was 0.3830, which indicated that the populations were highly structured. A higher percentage of polymorphic loci (92.16%) and greater genetic diversity were found in the population accessions from Pratinha-MG. Gene flow was considered restricted (N(m) = 1.18), and there was no correlation between genetic and geographic distances. The populations of C. antisyphiliticus exhibited an island-model structure, which demonstrates the vulnerability of the species.

  4. Comparative analyses of mitochondrial and nuclear genetic markers for the molecular identification of Rhipicephalus spp.

    PubMed

    Latrofa, Maria S; Dantas-Torres, Filipe; Annoscia, Giada; Cantacessi, Cinzia; Otranto, Domenico

    2013-12-01

    The genus Rhipicephalus (Acari: Ixodidae) comprises a large number of vectors of pathogens of substantial medical and veterinary concern; however, species identification based solely on morphological features is often challenging. In the present study, genetic distance within selected Rhipicephalus species (i.e., Rhipicephalus bursa, Rhipicephalus guilhoni, Rhipicephalus muhsamae, Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus), were investigated based on molecular and phylogenetic analyses of fragments of the mitochondrial 16S, 12S and cytochrome c oxidase subunit 1 (cox1) genes, as well as of the whole sequences of the ribosomal internal transcribed spacer-2 (ITS-2) region. Mean values of inter-specific genetic distance (e.g., up to 12.6%, 11.1% and 15.2%), as well as of intra-specific genetic distance (e.g., 0.9%, 0.9% and 1%), calculated using the Kimura-2 parameter substitution model with uniform rates among sites for 16S, 12S and cox1 genes, respectively, confirmed the differentiation of the rhipicephaline species herein examined. The molecular identification was also supported by the distinct separation of species-specific clades inferred from the phylogenetic analyses of all mitochondrial sequences. Conversely, little interspecific divergence was detected amongst ribosomal ITS-2 sequences (i.e., up to 2.8%) for species belonging to the R. sanguineus complex, which resulted in the ambiguous placement of selected R. sanguineus s.l. and R. turanicus sequences in the corresponding phylogenetic tree. Results from this study confirm the suitability of mtDNA markers for the reliable identification of ticks within the Rhipicephalus genus and provide a framework for future studies of taxonomy, speciation history and evolution of this group of ticks.

  5. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques.

    PubMed

    Leigh, F; Kalendar, R; Lea, V; Lee, D; Donini, P; Schulman, A H

    2003-07-01

    The Sequence-Specific Amplification Polymorphism (S-SAP) method, and the related molecular marker techniques IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism), are based on retrotransposon activity, and are increasingly widely used. However, there have been no systematic analyses of the parameters of these methods or of the utility of different retrotransposon families in producing polymorphic, scorable fingerprints. We have generated S-SAP, IRAP, and REMAP data for three barley (Hordeum vulgare L.) varieties using primers based on sequences from six retrotransposon families (BARE-1, BAGY-1, BAGY-2, Sabrina, Nikita and Sukkula). The effect of the number of selective bases on the S-SAP profiles has been examined and the profiles obtained with eight MseI+3 selective primers compared for all the elements. Polymorphisms detected in the insertion pattern of all the families show that each can be used for S-SAP. The uniqueness of each transposition event and differences in the historic activity of each family suggest that the use of multiple retrotransposon families for genetic analysis will find applications in mapping, fingerprinting, and marker-assisted selection and evolutionary studies, not only in barley and other Hordeum species and related taxa, but also more generally.

  6. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  7. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

    PubMed Central

    Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance. PMID:27494320

  8. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  9. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers.

    PubMed

    Verma, Sushma; Singh, Shweta; Sharma, Suresh; Tewari, S K; Roy, R K; Goel, A K; Rana, T S

    2015-04-01

    Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03-0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.

  10. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    PubMed

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop.

  11. Molecular Genetic Markers of Intra- and Interspecific Divergence within Starfish and Sea Urchins (Echinodermata).

    PubMed

    Petrov, N B; Vladychenskaya, I P; Drozdov, A L; Kedrova, O S

    2016-09-01

    A fragment of the mitochondrial COI gene from isolates of several echinoderm species was sequenced. The isolates were from three species of starfish from the Asteriidae family (Asterias amurensis and Aphelasterias japonica collected in the Sea of Japan and Asterias rubens collected in the White Sea) and from the sea urchin Echinocardium cordatum (family Loveniidae) collected in the Sea of Japan. Additionally, regions including internal transcribed spacers and 5.8S rRNA (ITS1 - 5.8S rDNA - ITS2) were sequenced for the three studied starfish species. Phylogenetic analysis of the obtained COI sequences together with earlier determined homologous COI sequences from Ast. forbesii, Ast. rubens, and Echinocardium laevigaster from the North Atlantic and E. cordatum from the Yellow and North Seas (GenBank) placed them into strictly conspecific clusters with high bootstrap support (99% in all cases). Only two exceptions - Ast. rubens DQ077915 sequence placed with the Ast. forbesii cluster and Aph. japonica DQ992560 sequence placed with the Ast. amurensis cluster - were likely results of species misidentification. The intraspecific polymorphism for the COI gene within the Asteriidae family varied within a range of 0.2-0.9% as estimated from the genetic distances. The corresponding intrageneric and intergeneric values were 10.4-12.1 and 21.8-29.8%, respectively. The interspecific divergence for the COI gene in the sea urchin of Echinocardium genus (family Loveniidae) was significantly higher (17.1-17.7%) than in the starfish, while intergeneric divergence (14.6-25.7%) was similar to that in asteroids. The interspecific genetic distances for the nuclear transcribed sequences (ITS1 - 5.8S rDNA - ITS2) within the Asteriidae family were lower (3.1-4.5%), and the intergeneric distances were significantly higher (32.8-35.0%), compared to the corresponding distances for the COI gene. These results suggest that the investigated molecular-genetic markers could be used for segregation

  12. The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations

    PubMed Central

    Thomas, Stuart C

    2005-01-01

    Molecular marker data collected from natural populations allows information on genetic relationships to be established without referencing an exact pedigree. Numerous methods have been developed to exploit the marker data. These fall into two main categories: method of moment estimators and likelihood estimators. Method of moment estimators are essentially unbiased, but utilise weighting schemes that are only optimal if the analysed pair is unrelated. Thus, they differ in their efficiency at estimating parameters for different relationship categories. Likelihood estimators show smaller mean squared errors but are much more biased. Both types of estimator have been used in variance component analysis to estimate heritability. All marker-based heritability estimators require that adequate levels of the true relationship be present in the population of interest and that adequate amounts of informative marker data are available. I review the different approaches to relationship estimation, with particular attention to optimizing the use of this relationship information in subsequent variance component estimation. PMID:16048788

  13. Acrocomia emensis (Arecaceae) genetic structure and diversity using SSR molecular markers.

    PubMed

    Neiva, D S; Melo Júnior, A F; Oliveira, D A; Royo, V A; Brandão, M M; Menezes, E V

    2016-03-24

    Acrocomia emensis, popularly known as the creeping tucum, belongs to the family Arecaceae, and is an oilseed specie of the Brazilian Savannah. The expansion of agricultural activity has rapidly destroyed its natural habitat, leading to a decrease in its population size. Genetic studies can be used to investigate the genetic variability, and may assist with the charting future conservation strategies. In this study the genetic diversity and structure of 150 individuals sampled in three locations in Minas Gerais were analysed, based on the transferability of six microsatellite markers, previously developed for A. aculeata. The results indicate that the populations studied have low levels of genetic variability (Ho = 0.148) and high, positive and significant inbreeding coefficient, indicating an excess of homozygotes. The average heterozygosity within the population (Hs = 0.700) accounted for 95.03% of the total genetic diversity, indicating that there is greater variability within population than between them, consistent with low genetic differentiation between population (GST = 0.046). Bayesian analysis identified three distinct groups; however, populations shared large numbers of alleles, which can be explained by the reduced distance between populations. These results reveal the need to implement genetic conservation programs for the maintenance of this species and to prioritize population from Bonito and Brasília, which showed the lowest values of genetic diversity.

  14. Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees and whole-genome-based data

    PubMed Central

    Edwards, J. D.; Baldo, A. M.; Mueller, L. A.

    2016-01-01

    Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining datasets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data and molecular marker fragment size data. Rice research has benefited from early adoption and extensive use of simple sequence repeat (SSR) markers; however, the majority of rice SSR markers were developed prior to the latest rice pseudomolecule assembly. Interpretation of new research using SNPs in the context of literature citing SSRs requires a common coordinate system. A new pipeline, using a stepwise relaxation of stringency, was used to map SSR primers onto the latest rice pseudomolecule assembly. The SSR markers and experimentally assayed amplicon sizes are presented in a relational database with a web-based front end, and are available as a track loaded in a genome browser with links connecting the browser and database. The combined capabilities of Ricebase link genetic markers, genome context, allele states across rice germplasm and potentially user curated phenotypic interpretations as a community resource for genetic discovery and breeding in rice. PMID:27515824

  15. Mosaic small supernumerary marker chromosome 1 at amniocentesis: prenatal diagnosis, molecular genetic analysis and literature review.

    PubMed

    Chen, Chih-Ping; Chen, Ming; Su, Yi-Ning; Huang, Jian-Pei; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chang, Shun-Ping; Chen, Yu-Ting; Lee, Chen-Chi; Chen, Li-Feng; Pan, Chen-Wen; Wang, Wayseen

    2013-10-15

    We present prenatal diagnosis and molecular cytogenetic analysis of mosaic small supernumerary marker chromosome 1 [sSMC(1)]. We review the literature of sSMC(1) at amniocentesis and chromosome 1p21.1-p12 duplication syndrome. We discuss the genotype-phenotype correlation of the involved genes of ALX3, RBM15, NTNG1, SLC25A24, GPSM2, TBX15 and NOTCH2 in this case.

  16. The use of genetic markers in the molecular epidemiology of histoplasmosis: a systematic review.

    PubMed

    Damasceno, L S; Leitão, T M J S; Taylor, M L; Muniz, M M; Zancopé-Oliveira, R M

    2016-01-01

    Histoplasmosis is a systemic mycosis caused by Histoplasma capsulatum, a dimorphic fungal pathogen that can infect both humans and animals. This disease has worldwide distribution and affects mainly immunocompromised individuals. In the environment, H. capsulatum grows as mold but undergoes a morphologic transition to the yeast morphotype under special conditions. Molecular techniques are important tools to conduct epidemiologic investigations for fungal detection, identification of infection sources, and determination of different fungal genotypes associated to a particular disease symptom. In this study, we performed a systematic review in the PubMed database to improve the understanding about the molecular epidemiology of histoplasmosis. This search was restricted to English and Spanish articles. We included a combination of specific keywords: molecular typing [OR] genetic diversity [OR] polymorphism [AND] H. capsulatum; molecular epidemiology [AND] histoplasmosis; and molecular epidemiology [AND] Histoplasma. In addition, we used the specific terms: histoplasmosis [AND] outbreaks. Non-English or non-Spanish articles, dead links, and duplicate results were excluded from the review. The results reached show that the main methods used for molecular typing of H. capsulatum were: restriction fragment length polymorphism, random amplified polymorphic DNA, microsatellites polymorphism, sequencing of internal transcribed spacers region, and multilocus sequence typing. Different genetic profiles were identified among H. capsulatum isolates, which can be grouped according to their source, geographical origin, and clinical manifestations.

  17. Genetic diversity of Capsicum chinensis (Solanaceae) accessions based on molecular markers and morphological and agronomic traits.

    PubMed

    Finger, F L; Lannes, S D; Schuelter, A R; Doege, J; Comerlato, A P; Gonçalves, L S A; Ferreira, F R A; Clovis, L R; Scapim, C A

    2010-09-21

    We estimated the genetic diversity of 49 accessions of the hot pepper species Capsicum chinensis through analyses of 12 physicochemical traits of the fruit, eight multi-categorical variables, and with 32 RAPD primers. Data from the physicochemical traits were submitted to analysis of variance to estimate the genetic parameters, and their means were clustered by the Scott-Knott test. The matrices from the individual and combined distance were estimated by multivariate analyses before applying Tocher's optimization method. All physicochemical traits were examined for genetic variability by analysis of variance. The responses of these traits showed more contribution from genetic than from environmental factors, except the percentage of dry biomass, content of soluble solids and vitamin C level. Total capsaicin had the greatest genetic divergence. Nine clusters were formed from the quantitative data based on the generalized distance of Mahalanobis, using Tocher's method; four were formed from the multi-categorical data using the Cole-Rodgers coefficient, and eight were formed from the molecular data using the Nei and Li coefficient. The accessions were distributed into 14 groups using Tocher's method, and no significant correlation between pungency and origin was detected. Uni- and multivariate analyses permitted the identification of marked genetic diversity and fruit attributes capable of being improved through breeding programs.

  18. Study Of Genetic Diversity Between Grasspea Landraces Using Morphological And Molecular Marker

    NASA Astrophysics Data System (ADS)

    Sedehi, Abbasali Vahabi; Lotfi, Asefeh; Solooki, Mahmood

    2008-01-01

    Grass pea is a beneficial crop to Iran since it has some major advantageous such as high grain and forage quality, high drought tolerance and medium level of salinity tolerance and a good native germplasm variation which accessible for breeding programs. This study was carried out to evaluate morphological traits of the grass pea landraces using a randomized complete block design with 3 replications at Research Farm of Isfahan University of Technology. To evaluate genetic diversity of 14 grass pea landraces from various locations in Iran were investigated using 32 RAPD & ISJ primers at Biocenter of University of Zabol. Analysis of variance indicated a highly significant differences among 14 grass pea landrace for the morphological traits. Average of polymorphism percentage of RAPD primer was 73.9%. Among used primer, 12 random primers showed polymorphism and a total of 56 different bands were observed in the genotypes. Jafar-abad and Sar-chahan genotypes with similarity coefficient of 66% and Khoram-abad 2 and Khoram-abad 7 genotypes with similarity coefficient of 3% were the most related and the most distinct genotypes, respectively. Fourteen primers out of 17 semi random primers produced 70 polymorphic bands which included 56% of the total 126 produced bands. Genetic relatedness among population was investigated using Jacard coefficient and unweighted pair group mean analysis (UPGMA) algorithm. The result of this research verified possibility of use of RAPD & ISJ markers for estimation of genetic diversity, management of genetic resources and determination of repetitive accessions in grass pea.

  19. Genetic variability and geographic typicality of Italian former Prosecco grape variety using PCR-derived molecular markers.

    PubMed

    Meneghetti, Stefano; Costacurta, Angelo; Bavaresco, Luigi; Calo', Antonio

    2014-05-01

    This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 80 Italian Prosecco accessions coming from Prosecco DOC area (north-east area of Italy). The studied samples include genotypes from Veneto and Friuli Venezia Giulia region. In order to verify the varietal identity of the samples, analyses based on 22 SSR loci were performed, and two grape varieties were found: Prosecco tondo and Prosecco lungo. In addition to microsatellite analysis, intra-varietal variability study was performed using AFLP, SAMPL, ISSR, and M-AFLP molecular markers. This molecular approach could discriminate different Prosecco tondo accessions coming from Treviso hills, from Veneto plain, from Friuli Venezia Giulia region, and from Padua hills (Serprina samples). As concerning Prosecco lungo variety, it was possible to discriminate molecularly the accessions from Veneto region and those from Friuli Venezia Giulia region. The molecular analysis allowed a distinction of the Prosecco genotypes on the basis of their geographic origins with plant-specific markers able to differentiate all Prosecco accessions. In this paper, the studied grape variety is termed Prosecco and not Glera (which is the present name) because the sampled vineyards were established many years ago when the name of the variety was Prosecco.

  20. Genetic diversity in Tunisian populations of faba bean (Vicia faba L.) based on morphological traits and molecular markers.

    PubMed

    Backouchi, I Z; Aouida, M; Khemiri, N; Jebara, M

    2015-07-13

    Genetic diversity within Vicia faba L. is key to the genetic improvement of this important species. In this study, morphological traits and RAPD molecular markers were used to assess the levels of polymorphism across 12 Tunisian populations, three major and nine minor from different locations. Analysis of morphological traits indicated that the three major populations showed significant differences and the nine minor populations exhibited considerable variation for most traits. The grain yield of the Alia population could be increased by inoculation. Of the seven primers tested, it was clear that the Cs12 primer would be recommend for genetic diversity analysis of V. faba.Within population genetic diversity exhibited 94% of total diversity. Intra-population genetic diversity (HS) was 0.16, which was clearly higher than between population genetic diversity (DST = 0.06) UPG-MA showed a high level of genetic variation between major and minor populations of V. faba L. Particularly the minor populations showed a high level of diversity and was divided into two subclusters. Ltaifia was separated from the other populations. In addition to a high grain yield, these populations showed the lowest Nei and Shannon indices (H = 0.08 and I = 0.13) justifying their homogeneity. For these reasons, these cultivars can be considered a selected population. However, the Takelsa population showed the highest Nei and Shannon indices (H = 0.13 and I = 0.21), indicating that this population was the most heterogeneous, which is interesting for breeding programs.

  1. Molecular markers for genetics and plant breeding: the MFLP marker system and its application in narrow-leafed lupin (Lupinus angustifolius).

    PubMed

    Shahidul, Islam; Yang, Huaan; Yan, Guijun

    2013-01-01

    Since the development of molecular markers to tag genes of agronomic traits of interests, molecular markers have played an increasingly significant role in breeding programs. Molecular markers have been implemented for large-scale marker-assisted selection in the breeding program of many important crops including lupin. So far, more than a dozen molecular markers for disease resistance genes and for other agronomic traits of interest have been developed in lupin. The DNA fingerprinting method, "MFLP" has played a pivotal role in the success of lupin breeding program in Australia. Here, we describe the MFLP technique used in lupin breeding which could be easily transferable to other crop species.

  2. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.)

    PubMed Central

    2013-01-01

    Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different

  3. Molecular cloning and characterisation of the RESA gene, a marker of genetic diversity of Plasmodium falciparum.

    PubMed

    Moyano, Eva M; González, Luis Miguel; Cuevas, Laureano; Perez-Pastrana, Esperanza; Santa-Maria, Ysmael; Benito, Agustín

    2010-07-01

    To identity immunodiagnostic antigen genes, a Plasmodium falciparum (Dd2 clone) expression library was screened using human immune sera. The ring-infected erythrocyte surface antigen (RESA) was isolated: this antigen of the resistant clone presents repeat tandem sequences like the 3D7 clone, albeit in different numbers. RESA has been studied as a marker of genetic diversity, with different sizes being observed in different isolates and clones of Plasmodium falciparum. The native protein was localised in cultures by western-blot and immuno-transmission electron microscopy. The antigenicity of RESA was evaluated by ELISA, using the carboxy-terminal repeat region as antigen. The assay's sensitivity and specificity were 78.2 and 94% respectively.

  4. Species-specific markers provide molecular genetic evidence for natural introgression of bullhead catfishes in Hungary

    PubMed Central

    Béres, Beatrix; Kánainé Sipos, Dóra; Müller, Tamás; Staszny, Ádám; Farkas, Milán; Bakos, Katalin; Urbányi, Béla

    2017-01-01

    Since three bullhead catfish species were introduced to Europe in the late 19th century, they have spread to most European countries. In Hungary, the brown bullhead (Ameiurus nebulosus) was more widespread in the 1970s–1980s, but the black bullhead (Ameiurus melas) has gradually supplanted since their second introduction in 1980. The introgressive hybridization of the two species has been presumed based on morphological examinations, but it has not previously been supported by genetic evidence. In this study, 11 different Hungarian habitats were screened with a new species-specific nuclear genetic, duplex PCR based, marker system to distinguish the introduced catfish species, Ameiurus nebulosus, Ameiurus melas, and Ameiurus natalis, as well as the hybrids of the first two. More than 460 specimens were analyzed using the above markers and additional mitochondrial sequence analyses were also conducted on >25% of the individuals from each habitat sampled. The results showed that only 7.9% of the specimens from two habitats belonged to Ameiurus nebulosus, and 92.1% were classified as Ameiurus melas of all habitats, whereas the presence of Ameiurus natalis was not detected. Two specimens (>0.4%) showed the presence of both nuclear genomes and they were identified as hybrids of Ameiurus melas and Ameiurus nebulosus. An additional two individuals showed contradicting results from the nuclear and mitochondrial assays as a sign of a possible footprint of introgressive hybridization that might have happened two or more generations before. Surprisingly, the level of hybridization was much smaller than expected based on the analyses of the North American continent’s indigenous stock from the hybrid zones. This phenomenon has been observed in several invasive fish species and it is regarded as an added level of complexity in the management of their rapid adaptation. PMID:28265489

  5. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    PubMed

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  6. Identification of Single-Copy Orthologous Genes between Physalis and Solanum lycopersicum and Analysis of Genetic Diversity in Physalis Using Molecular Markers

    PubMed Central

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei’s genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis. PMID:23166835

  7. Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

    PubMed Central

    Melnikova, Nataliya V.; Kudryavtseva, Anna V.; Zelenin, Alexander V.; Lakunina, Valentina A.; Yurkevich, Olga Yu.; Speranskaya, Anna S.; Dmitriev, Alexey A.; Krinitsina, Anastasia A.; Belenikin, Maxim S.; Uroshlev, Leonid A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Koroban, Nadezda V.; Amosova, Alexandra V.; Samatadze, Tatiana E.; Guzenko, Elena V.; Lemesh, Valentina A.; Savilova, Anastasya M.; Rachinskaia, Olga A.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Bolsheva, Nadezhda L.; Muravenko, Olga V.

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  8. Molecular study of Trypanosoma caninum isolates based on different genetic markers.

    PubMed

    Barros, Juliana H S; Toma, Helena K; de Fatima Madeira, Maria

    2015-02-01

    Trypanosoma caninum is a parasite recently described in dogs, whose life cycle is rather unknown. Here, we performed a genetic study with T. caninum samples obtained in different Brazilian regions. The study was based on PCR assays target to small and large subunit ribosomal DNA (rDNA) (18S rDNA and 24Sα rDNA), cytochrome B (Cyt b), and internal transcribed spacer 1 rDNA (ITS1 rDNA) following by the sequence analysis. Additionally, we used primers for the variable regions of kinetoplast DNA (kDNA) minicircles and endonucleases restriction in the ITS1 rDNA amplification product. T. caninum samples displayed the same patterns. Tree construction confirmed the close relationship between T. caninum samples, regardless of the molecular target used and endonuclease restriction digestion revealed that all samples have the same restriction profile. Therefore, T. caninum seems to be a genetically homogeneous specie. In the kDNA assay, T. caninum possessed a different molecular size profile with respect to others trypanosomes, 330 and 350 bp. This study provides nucleotide sequences from different regions of the genome of T. caninum that certainly facilitate future studies.

  9. Genetic variation assessment of acid lime accessions collected from south of Iran using SSR and ISSR molecular markers.

    PubMed

    Sharafi, Ata Allah; Abkenar, Asad Asadi; Sharafi, Ali; Masaeli, Mohammad

    2016-01-01

    Iran has a long history of acid lime cultivation and propagation. In this study, genetic variation in 28 acid lime accessions from five regions of south of Iran, and their relatedness with other 19 citrus cultivars were analyzed using Simple Sequence Repeat (SSR) and Inter-Simple Sequence Repeat (ISSR) molecular markers. Nine primers for SSR and nine ISSR primers were used for allele scoring. In total, 49 SSR and 131 ISSR polymorphic alleles were detected. Cluster analysis of SSR and ISSR data showed that most of the acid lime accessions (19 genotypes) have hybrid origin and genetically distance with nucellar of Mexican lime (9 genotypes). As nucellar of Mexican lime are susceptible to phytoplasma, these acid lime genotypes can be used to evaluate their tolerance against biotic constricts like lime "witches' broom disease".

  10. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].

    PubMed

    Omasheva, M E; Chekalin, S V; Galiakparov, N N

    2015-07-01

    The territory of Kazakhstan is part of the distribution range of Malus sieversii, which is one of the ancestors of cultivated apple tree varieties. The collected samples of Sievers apple leaves from five populations growing in the Zailiysky Alatau region served as a source not only for the creation of a bank of genomic DNA but also for determination ofthe wild apple genetic polymorphism. The seven microsatellite markers used in this study revealed 86 alleles with different frequencies, as well as the characteristic pools of rare alleles for each of the populations. Molecular genetic analysis showed a high level of genetic diversity (H(o) = 0.704; PIC = 0.752; I = 1.617). Moreover, interpopulation variability accounted only for 7.5% of total variability, confirming the genetic closeness of the populations examined. Based on phylogenetic analysis, it was demonstrated that the Bel'bulak and Almaty Reserve populations were closest to each other, while the most distant were the Ketmen and Great Almaty gorge populations, which suggests the dependence of genetic distance on the geographical.

  11. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  12. Genetic identification of bucktooth parrotfish Sparisoma radians (Valenciennes, 1840) (Labridae, Scarinae) by chromosomal and molecular markers.

    PubMed

    Paim, Fabilene Gomes; Brandão, José Henrique Souza Galdino; Sampaio, Iracilda; de Mello Affonso, Paulo Roberto Antunes; Diniz, Débora

    2014-10-01

    Parrotfishes (Labridae, Scarinae) comprise a large marine fish group of difficult identification, particularly during juvenile phase when the typical morphology and coloration of adults are absent. Therefore, the goal of this study was to test cytogenetic markers and DNA barcoding in the identification of bucktooth parrtotfish Sparisoma radians from the northeastern coast of Brazil. Sequencing of cytochrome c oxidase subunit I (COI) confirmed all studied samples as S. radians, and all showed high similarity (99-100%) with Caribbean populations. The karyotype of this species was divergent from most marine Perciformes, being composed of 2n = 46 chromosomes. These consisted of a large number of metacentric and submetacentric pairs with small amounts of heterochromatin and GC-rich single nucleolar organizer regions (NORs) not syntenic to 5S rDNA clusters. These are the first data about DNA barcoding in parrotfish from the Brazilian province and the first refined chromosomal analysis in Scarinae, providing useful data to a reliable genetic identification of S. radians.

  13. Genetic identification of bucktooth parrotfish Sparisoma radians (Valenciennes, 1840) (Labridae, Scarinae) by chromosomal and molecular markers

    PubMed Central

    Paim, Fabilene Gomes; Brandão, José Henrique Souza Galdino; Sampaio, Iracilda; de Mello Affonso, Paulo Roberto Antunes; Diniz, Débora

    2014-01-01

    Parrotfishes (Labridae, Scarinae) comprise a large marine fish group of difficult identification, particularly during juvenile phase when the typical morphology and coloration of adults are absent. Therefore, the goal of this study was to test cytogenetic markers and DNA barcoding in the identification of bucktooth parrtotfish Sparisoma radians from the northeastern coast of Brazil. Sequencing of cytochrome c oxidase subunit I (COI) confirmed all studied samples as S. radians, and all showed high similarity (99–100%) with Caribbean populations. The karyotype of this species was divergent from most marine Perciformes, being composed of 2n = 46 chromosomes. These consisted of a large number of metacentric and submetacentric pairs with small amounts of heterochromatin and GC-rich single nucleolar organizer regions (NORs) not syntenic to 5S rDNA clusters. These are the first data about DNA barcoding in parrotfish from the Brazilian province and the first refined chromosomal analysis in Scarinae, providing useful data to a reliable genetic identification of S. radians. PMID:25505839

  14. Genetic diversity of Cercospora kikuchii isolates from soybean cultured in Argentina as revealed by molecular markers and cercosporin production.

    PubMed

    Lurá, María Cristina; Latorre Rapela, María Gabriela; Vaccari, María Celia; Maumary, Roxana; Soldano, Anabel; Mattio, Mónica; González, Ana María

    2011-05-01

    Leaf blight and purple seed, caused by the fungal pathogen Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner are very important diseases of soybean (Glycine max L. Merr.) in Argentina. The aims of this work were: (a) to confirm and to assess the genetic variability among C. kikuchii isolates collected from different soybean growing areas in Santa Fe province using inter simple sequence repeats (ISSR) markers and sequence information from the internal transcribed spacer (ITS) region of rDNA and (b) to analyze the cercosporin production of the regional C. kikuchi isolates in order to assess whether there was any relationship between the molecular profiles and the toxin production. Isolates from different regions in Santa Fe province were studied. The sequence of the ITS regions showed high similarity (99-100%) to the GenBank sequences of C. kikuchii BRCK179 (accession number AY633838). The ISSR markers clustered all the isolates into many groups and cercosporin content was highly variable among isolates. No relationship was observed between ITS region, ISSR groups and origin or cercosporin content. The high degree of genetic variability and cercosporin production among isolates compared in this study characterizes a diverse population of C. kikuchii in the region.

  15. Assessment of genetic relationship in Persea spp by traditional molecular markers.

    PubMed

    Reyes-Alemán, J C; Valadez-Moctezuma, E; Barrientos-Priego, A F

    2016-04-04

    Currently, the reclassification of the genus Persea is under discussion with molecular techniques for DNA analysis representing an alternative for inter- and intra-specific differentiation. In the present study, the traditional random-amplified polymorphic DNA (RAPD) and the inter simple sequence repeat (ISSR) markers were used to determine the genomic relationship of different species and hybrids representative of the subgenera Eriodaphne and Persea in a population conserved in a germplasm bank. The data were analyzed statistically using multivariate methods. In the RAPD analysis, a total of 190 polymorphic bands were produced, with an average of 23.7 bands per primer, the percentage contribution of each primer was from 7.66 to 19.63; the polymorphic information content (PIC) ranged from 0.23 to 0.45, with an average of 0.35. In the ISSR analysis, a total of 111 polymorphic bands were considered, with an average of 18.5 bands per primer, the percentage contribution of each was from 11.83 to 19.57; the PIC ranged from 0.35 to 0.48, with an average of 0.42. The phenograms obtained in each technique showed the relationship among the accessions through the clusters formed. In general, both the techniques grouped representatives of the Persea americana races (P. americana var. drymifolia, P. americana var. guatemalensis, and P. americana var. americana). However, it was not possible to separate the species of Persea used as reference into independent clades. In addition, they tended to separate the representatives of subgenera Eriodaphne and Persea.

  16. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultra-dense consensus (UDC) genetic map of tetraploid cotton was constructed using six high-density component maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cut...

  17. Genetic analysis of molecular markers for propamocarb residue in Cucumis sativus using quantitative trait locus mapping.

    PubMed

    Xin, M; Wang, L; Ma, B H; Qin, Z W; Zhou, X Y

    2016-11-03

    The use of pesticides to protect plants against harmful organisms, such as pathogenic microorganisms, is one of the most effective ways to improve agricultural production. However, the continuous use of pesticides might present a risk to human health, animals, and the environment. In this study, two cucumber (Cucumis sativus) varieties containing different levels of pesticide residues, D9320 and D0351, were selected to establish an F2 population. A genetic model and genetic linkage map were constructed. The results showed that the heredity of pesticide residues was dominated by an additive effect and was significantly influenced by non-additive factors in cucumber. QCp1 was detected as a quantitative trait locus (QTL) that might be involved in regulating the levels of pesticide residue in cucumber. Moreover, the cucumber genetic map was compared with the LG6 map, and the results indicated that this QTL was closely related to the level of pesticide residue in cucumber.

  18. A High Density Consensus Genetic Map of Tetraploid Cotton That Integrates Multiple Component Maps through Molecular Marker Redundancy Check

    PubMed Central

    Blenda, Anna; Fang, David D.; Rami, Jean-François; Garsmeur, Olivier; Luo, Feng; Lacape, Jean-Marc

    2012-01-01

    A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous AT and DT chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per AT/DT chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton. PMID:23029214

  19. Reviewe: Genetics and genomics in equine exercise physiology: an overview of the new applications of molecular biology as positive and negative markers of performance and health.

    PubMed

    Barrey, E

    2010-11-01

    Equine breeding selection has been developed by applying quantitative genetic methods for calculating the heritability of the complex traits such as performance in racing or sport competitions. With the great development of biotechnologies, equine molecular genetics has come of age. The recent sequencing of the equine genome by an international consortium was a major advance that will impact equine genomics in the near future. With the rapid progress in equine genetics, new applications in early performance evaluation and the detection of disease markers become available. Many new biomolecular tools will change management of horse selection, disease diagnosis and treatment. The purpose of this review is to present new developments in equine genetics and genomics for performance evaluation and health markers after a short summary of the previous knowledge about the genetic components of the exercise performance traits.

  20. Classical and molecular genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief history of classical genetic mapping in soybean [Glycine max (L.) Merr.] is described. Detailed descriptions are given of the development of molecular genetic linkage maps based upon various types of DNA markers Like many plant and animal species, the first molecular map of soybean was bas...

  1. Comparative analysis of genetic diversity of sesame (Sesamum indicum L.) from Vietnam and Cambodia using agro-morphological and molecular markers.

    PubMed

    Pham, Toan Duc; Geleta, Mulatu; Bui, Tri Minh; Bui, Tuyen Cach; Merker, Arnulf; Carlsson, Anders S

    2011-02-01

    The purpose of this study was to comparatively analyze the genetic diversity of sesame (Sesamum indicum L.) using agro-morphological and molecular markers. Twelve sesame populations collected from three regions in Cambodia and Vietnam were used in this study. A high genetic variation was revealed both by agro-morphological and RAPD markers within and among the 12 sesame populations. The range of agro-morphological trait based average taxonomic distance among populations (0.02 to 0.47) was wider than that of RAPD based genetic distance (0.06 to 0.27). The mean distance revealed by agro-morphological markers (0.23) and RAPD markers (0.22) was similar. RAPD based analysis revealed a relatively higher genetic diversity in populations from South Vietnam as compared to the other two regions. Interestingly, populations from this region also had higher values for yield related traits such as number of capsules per plant, number of seeds per capsule, and seed yield per plant suggesting positive correlation between the extent of genetic variation within population and yield related traits in sesame. A highly significant positive correlation (r = 0.88, P < 0.001) was found between agro-morphological and RAPD markers in estimating the genetic distance between populations. Both methods suggested the existence of a substantial amount of genetic diversity both in the Vietnamese and Cambodian populations. Although both agro-morphological and RAPD markers were found to be useful in genetic diversity analysis in sesame, their combined use would give superior results.

  2. Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations using ISSR and RAPD molecular marker.

    PubMed

    Mostafa, Noroozi; Omar, Hishamuddin; Tan, Soon Guan; Napis, Suhaimi

    2011-03-22

    Haematococcus pluvialis (Flotow) is a unicellular green alga, which is considered to be the best astaxanthin-producing organism. Molecular markers are suitable tools for the purpose of finding out genetic variations in organisms; however there have been no studies conducted on ISSR or RAPD molecular markers for this organism. The DNA of 10 different strains of H. pluvialis (four strains from Iran, two strains from Finland, one strain from Switzerland and three strains from the USA) was extracted. A genetic similarity study was carried out using 14 ISSR and 12 RAPD primers. Moreover, the molecular weights of the bands produced ranged from 0.14 to 3.4 Kb. The PCA and dendrogram clustered the H. pluvialis strains into various groups according to their geographical origin. The lowest genetic similarity was between the Iran2 and USA2 strains (0.08) and the highest genetic similarity was between Finland1 and Finland2 (0.64). The maximum numbers of bands produced by the ISSR and RAPD primers were 35 and 6 bands, respectively. The results showed that ISSR and RAPD markers are useful for genetic diversity studies of Haematococcus as they showed geographical discrimination.

  3. A molecular marker for in situ genetic resource conservation of Capsicum annuum var. acuminatum (Solanaceae).

    PubMed

    Kaewdoungdee, N; Tanee, T

    2013-02-28

    The Thailand cultivar pepper 'phrik man bangchang' (Capsicum annuum var. acuminatum, Solanaceae) was originally cultivated in the Bangchang Subdistrict, Amphawa District in Samut Songkhram Province. The cultivated areas are limited; we verified its distribution in Thailand for in situ 'phrik man bangchang' genetic resource conservation. Samples were collected from the original cultivation area of Bangchang Subdistrict (Or) and were randomly explored in Ratchaburi Province (RB), Khon Kaen Province (KK), and Sakon Nakhon Province (SN). A pure line from The Tropical Vegetable Research Center at Kasetsart University was used as the standard indicator. Two more Capsicum species, C. chinensis and C. frutescens, and a species from another genus in the family, Solanum melongena, were included. A dendrogram constructed from random amplified polymorphic DNA fingerprints indicated that the Or, RB, KK, and SN samples were C. annuum var. acuminatum with supportive similarity coefficients of 0.79 to 0.98. Finally, DNA barcodes, from psbA-trnH spacer region, were provided for the 3 wild species, C. annuum var. acuminatum, C. chinensis, and C. frutescens under GenBank accession Nos. JQ087869-JQ087871. The nucleotide variations between species were 0.23 to 0.26. In summary, 'phrik man bangchang' is still being planted in Bangchang Subdistrict, but only in small areas. The distribution of planting areas is expected to be throughout Thailand.

  4. Generation and release of molecular markers for Poa Arachnifera Torr

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA based molecular markers can be utilized in a wide array of plant genetic studies, marker-trait associations, seed purity evaluations and cultivar protection. However, for the genus Poa, the use of molecular markers is limited by the current lack of informative DNA based markers. This report r...

  5. [Genetic diversity revealed by ISSR molecular marker in common wheat, spelt, compactum and progeny of recurrent selection].

    PubMed

    Du, Jin-Kun; Yao, Ying-Yin; Ni, Zhong-Fu; Peng, Hui-Ru; Sun, Qi-Xin

    2002-05-01

    It is important to estimate the genetic diversity between the parents for improving the heterosis of hybrid wheat. In this study, ISSR(inter-simple sequence repeat) marker was used to measure the genetic diversity within and among common wheat (Triticum aestivum L.), spelt (Triticum spelta L.), compactum (Triticum compactum Host.) and progeny of foreign wheat-based recurrent selection, and the possibility of establishing the new heterotic group was also assessed. Forty seven genotypes were used for ISSR analysis, which included 14 common wheat, 10 spelt wheat, 11 compactum and 12 progeny of recurrent selection. Eleven of 33 ISSR primers that can produce distinguishable bands were selected for PCR amplification. A total of 238 bands were amplified, among which 207 (87%) bands were polymorphic. The polymorphic bands amplified by each primer ranged from 11 to 38, with an averaged of 18.8. The percentage of polymorphic band (80.3%) in common wheat was higher than that in progeny of recurrent selection (78.7%), spelt (75.0%) and compactum (74.9%). The 238 polymorphic products were used to calculate Nei's similarity index (GS) and the genetic distance (GD). It was found that the mean genetic distance between different wheat types (0.3115-0.3442) was obviously higher than that within common wheat (0.2743), spelt (0.2351), compactum (0.2622). In addition, progeny of recurrent selection also showed much higher genetic distance with other three wheat types (0.3217, 0.3256, 0.3198). The cluster analysis was performed based on the genetic distance (GD) matrix by using UPGMA method. Common wheat, spelt, compactum and progeny of recurrent selection were classified into four different groups. In this study, ISSR marker was firstly used to assess genetic diversity among common wheat, spelt, compactum and progeny of recurrent selection, and can differentiate the wheat cultivars (lines) that selected from the same cross combination. It was concluded that spelt, compactum and progeny

  6. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    PubMed

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings.

  7. Genetic markers as instrumental variables

    PubMed Central

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. PMID:26614692

  8. Molecular marker-based genetic diversity analysis of scantly studied Brazilian accessions of a medicinal plant, Morinda citrifolia L. (noni).

    PubMed

    Bordallo, P N; Monteiro, A M R; Sousa, J A; Aragão, F A S

    2017-02-23

    Morinda citrifolia L., commonly known as noni, has been used for the treatment of various diseases for over two centuries. It was introduced and widely disseminated in Brazil because of its high market value and ease of adaptation to the soil and climatic conditions of the country. The aim of this study was to estimate the genetic variability of noni accessions from the collection of Embrapa Agroindústria Tropical in Brazil. We evaluated 36 plants of the 13 accessions of noni from the germplasm collection of M. citrifolia. Several methods of DNA extraction were tested. After definition of the method, the DNA of each sample was subjected to polymerase chain reactions using 20 random amplified polymorphic DNA primers. The band patterns on agarose gel were converted into a binary data matrix, which was used to estimate the genetic distances between the plants and to perform the cluster analyses. Of the total number of markers used in this study, 125 (81.1%) were polymorphic. The genetic distances between the genotypes ranged from 0.04 to 0.49. Regardless of the high number of polymorphic bands, the genetic variability of the noni plants evaluated was low since most of the genotypes belonged to the same cluster as shown by the dendrogram and Tocher's cluster analysis. The low genetic diversity among the studied noni individuals indicates that additional variability should be introduced in the germplasm collection of noni by gathering new individuals and/or by hybridizing contrasting individuals.

  9. Application of Molecular Genetics and Transformation to Barley Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter of the new barley monograph summarizes current applications of molecular genetics and transformation to barley improvement. The chapter describes recent applications of molecular markers including association genetics, QTL mapping and marker assisted selection in barley programs, and in...

  10. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Chen, Song-Lin; Li, Jing; Deng, Si-Ping; Tian, Yong-Sheng; Wang, Qing-Yin; Zhuang, Zhi-Meng; Sha, Zhen-Xia; Xu, Jian-Yong

    2007-01-01

    The sex-specific molecular marker is a useful gene resource for studying sex- determining mechanisms and controlling fish sex. Artificially produced male and female half-smooth tongue sole (Cynoglossus semilaevis) were used to screen sex-specific amplified fragment length polymorphism (AFLPs) molecular markers. The phenotypic sex of 28 tongue soles was determined by histological sectioning of gonads. The AFLP analysis of 15 females and 13 males via 64 primer combinations produced a total of 4681 scorable bands, of which 42.11% and 43.39% of bands were polymorphic in females and males, respectively. Seven female-specific AFLP markers were identified and designated as CseF382, CseF575, CseF783, CseF464, CseF136, CseF618, and CseF305, respectively. One female-specific AFLP marker (CseF382) was amplified, recovered from the gels, cloned, and sequenced (accession no. DQ487760). This female-specific AFLP marker was converted into a single-locus polymerase-chain reaction (PCR) marker of a sequence-characterized amplified region (SCAR). A simple PCR method of using the specific primers was developed for identifying genetic sex of half-smooth tongue sole. PCR products demonstrated that the initial 15 females produced the female-specific band of about 350 bp, but the initial 13 male individuals failed to produce the band. We also investigated the applicability of the PCR primers in other tongue sole individuals. The same female-specific fragment of about 350 bp was found in the additional 59 female individuals, but not in the additional 58 male individuals. This AFLP-based molecular sexing technique may have great application potential in elucidation of sex determination mechanisms and sex control in half-smooth tongue sole.

  11. Phylogenetic analysis, genetic diversity and relationships between the recently segregated species of Corynandra and Cleoserrata from the genus Cleome using DNA barcoding and molecular markers.

    PubMed

    Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Gholave, Avinash Ramchandra; Kadam, Suhas Kishor; Kotibhaskar, Shreya Vijaykumar; Yadav, Shrirang Ramchandra; Govindwar, Sanjay Prabhu

    2016-01-01

    Cleome is the largest genus in the family Cleomaceae and it is known for its various medicinal properties. Recently, some species from the Cleome genus (Cleome viscosa, Cleome chelidonii, Cleome felina and Cleome speciosa) are split into genera Corynandra (Corynandra viscosa, Corynandra chelidonii, Corynandra felina), and Cleoserrata (Cleoserrata speciosa). The objective of this study was to obtain DNA barcodes for these species for their accurate identification and determining phylogenetic relationships. Out of 10 screened barcoding regions, rbcL, matK and ITS1 regions showed higher PCR efficiency and sequencing success. This study added matK, rbcL and ITS1 barcodes for the identification of Corynandra chelidonii, Corynandra felina, Cleome simplicifolia and Cleome aspera species in existing barcode data. Corynandra chelidonii and Corynandra felina species belong to the Corynandra genus, but they are not grouped with the Corynandra viscosa species, however clustered with the Cleome species. Molecular marker analysis showed 100% polymorphism among the studied plant samples. Diversity indices for molecular markers were ranged from He=0.1115-0.1714 and I=0.2268-0.2700, which indicates a significant amount of genetic diversity among studied species. Discrimination of the Cleome and Corynandra species from Cleoserrata speciosa was obtained by two RAPD primers (OPA-4 and RAPD-17) and two ISSR primers (ISSR-1 and ISSR-2). RAPD and ISSR markers are useful for the genetic characterization of these studied species. The present investigation will be helpful to understand the relationships of Cleome lineages with Corynandra and Cleoserrata species.

  12. High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of Upper Brahmaputra Valley Zone of NE India using molecular markers

    PubMed Central

    Medhi, K.; Sarmah, D.K.; Deka, M.; Bhau, B.S.

    2014-01-01

    The genetic diversity in Zanthoxylum species viz.  Zanthoxylum nitidum, Zanthoxylum oxyphyllum and Zanthoxylum rhesta collected from the Upper Brahmaputra Valley Zone of Assam (NE India) was amplified using 13 random amplified polymorphic DNA (RAPD) markers and 9 inter-simple sequence repeat (ISSR) markers. RAPD markers were able to detect 81.82% polymorphism whereas ISSR detected 98.02% polymorphism. The genetic similarities were analyzed from the dendrogram constructed by RAPD and ISSR fingerprinting methods which divided the 3 species of Zanthoxylum into 3 clear different clusters. The principle component analysis (PCA) was carried out to confirm the clustering pattern of RAPD and ISSR analysis. Analysis of molecular variance (AMOVA) revealed the presence of significant variability between different Zanthoxylum species and within the species by both RAPD and ISSR markers. Z. nitidum was found to be sharing a high degree of variation with the other two Zanthoxylum species under study. The Nei's gene diversity (h), Shannon's information index (I), observed number of alleles (na) and effective number of alleles (ne) were also found to be higher in ISSR markers (0.3526, 0.5230, 1.9802 and 1.6145) than in RAPD markers (0.3144, 0.4610, 1.8182 and 1.5571). The values for total genotype diversity for among population (HT), within population diversity (Hs) and gene flow (Nm) were more in ISSR (0.3491, 0.2644 and 1.5610) than RAPD (0.3128, 0.2264 and 1.3087) but the mean coefficient of gene differentiation (GST) was more in RAPD (0.2764) than ISSR (0.2426). A comparison of this two finger printing methods was done by calculating MR, EMI and MI. The correlation coefficient between data matrices of RAPD and ISSR based on Mantel test was found to be significant (r = 0.65612). PMID:25606454

  13. Genetic Dissection of Sympatric Populations of Brown Planthopper, Nilaparvata lugens (Stål), Using DALP-PCR Molecular Markers

    PubMed Central

    Latif, M. A.; Rafii, M. Y.; Mazid, M. S.; Ali, M. E.; Ahmed, F.; Omar, M. Y.; Tan, S. G.

    2012-01-01

    Direct amplified length polymorphism (DALP) combines the advantages of a high-resolution fingerprint method and also characterizing the genetic polymorphisms. This molecular method was also found to be useful in brown planthopper, Nilaparvata lugens species complex for the analysis of genetic polymorphisms. A total of 11 populations of Nilaparvata spp. were collected from 6 locations from Malaysia. Two sympatric populations of brown planthopper, N. lugens, one from rice and the other from a weed grass (Leersia hexandra), were collected from each of five locations. N. bakeri was used as an out group. Three oligonucleotide primer pairs, DALP231/DALPR′5, DALP234/DALPR′5, and DALP235/DALPR′5 were applied in this study. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on genetic distances for the 11 populations of Nilaparvata spp. revealed that populations belonging to the same species and the same host type clustered together irrespective of their geographical localities of capture. The populations of N. lugens formed into two distinct clusters, one was insects with high esterase activities usually captured from rice and the other was with low esterase activities usually captured from L. hexandra. N. bakeri, an out group, was the most isolated group. Analyses of principal components, molecular variance, and robustness also supported greatly to the findings of cluster analysis. PMID:22593700

  14. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study.

    PubMed

    Schmidt, Ulrike; Willmund, Gerd-Dieter; Holsboer, Florian; Wotjak, Carsten T; Gallinat, Jürgen; Kowalski, Jens T; Zimmermann, Peter

    2015-01-01

    Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan.

  15. Molecular Typing and Presence of Genetic Markers Among Strains of Banana Finger-Tip Rot Pathogen, Burkholderia cenocepacia, in Taiwan.

    PubMed

    Lee, Yung-An; Chan, Chih-Wen

    2007-02-01

    ABSTRACT Burkholderia cenocepacia (genomovar III of B. cepacia complex), the causal agent of banana finger-tip rot, is a common plant-associated bacterium but also an important opportunistic pathogen of humans. To better understand the nature of B. cenocepacia from banana, the genetic variation among B. cenocepacia isolates from various banana-growing regions in southern Taiwan was examined. Forty-four serial isolates recovered from diseased banana stigmata from three banana-growing regions during the periods ranging from 2002 to 2004 were investigated. All B. cenocepacia isolates picked from quinate-yeast extract tetracycline-polymyxin semiselective medium could cause onion maceration and were polymerase chain reaction (PCR) positive for bcscV, which is a type III secretion gene present in all members of the B. cepacia complex except B. cepacia (formerly genomovar I). Genetic diversity was assessed using recA PCR restriction fragment length polymorphism, recA nucleotide sequence analysis, and pulsed-field gel electrophoresis assays. The assays revealed the genetic variability among the isolates and also allowed us to trace the relationship among isolates. The isolates all were assigned to genomovar III and consisted of two groups, A and B, which corresponded to recA lineage IIIA and IIIB. The group B strains were separated into B1 and B2 subgroups and the B1 strains were further divided into distinct lineages. The B1 strains were the most frequently detected and occurred in all regions tested. There was no significant difference between strains from each subgroup in the virulence on banana fingers of cv. Cavendish. PCR assays were further used to determine whether B. cenocepacia from banana contained the cable pilus subunit gene (cblA), IS1356, and B. cepacia epidemic strain marker (BCESM), which are DNA markers associated with epidemic B. cepacia clinic strains. The results indicated that cblA and IS1356 were absent but the BCESM was found in all isolates. The

  16. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    PubMed

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  17. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers (2010) Fungal Genetics and Biology

    SciTech Connect

    Murat, Claude; Riccioni, C; Belfiori, B; Cichocki, N; Labbe, Jessy L; Morin, Emmanuelle; Tisserant, Emilie; Paolocci, F; Rubini, A; Martin, Francis

    2011-01-01

    The level of genetic diversity and genetic structure in the Perigord black truffle (Tuber melanosporum Vittad.) has been debated for several years, mainly due to the lack of appropriate genetic markers. Microsatellites or simple sequence repeats (SSRs) are important for the genome organisation, phenotypic diversity and are one of the most popular molecular markers. In this study, we surveyed the T. melanosporum genome (1) to characterise its SSR pattern; (2) to compare it with SSR patterns found in 48 other fungal and three oomycetes genomes and (3) to identify new polymorphic SSR markers for population genetics. The T. melanosporum genome is rich in SSRs with 22,425 SSRs with mono-nucleotides being the most frequent motifs. SSRs were found in all genomic regions although they are more frequent in non-coding regions (introns and intergenic regions). Sixty out of 135 PCR-amplified mono-, di-, tri-, tetra, penta, and hexanucleotides were polymorphic (44%) within black truffle populations and 27 were randomly selected and analysed on 139 T. melanosporum isolates from France, Italy and Spain. The number of alleles varied from 2 to 18 and the expected heterozygosity from 0.124 to 0.815. One hundred and thirty-two different multilocus genotypes out of the 139 T. melanosporum isolates were identified and the genotypic diversity was high (0.999). Polymorphic SSRs were found in UTR regulatory regions of fruiting bodies and ectomycorrhiza regulated genes, suggesting that they may play a role in phenotypic variation. In conclusion, SSRs developed in this study were highly polymorphic and our results showed that T. melanosporum is a species with an important genetic diversity, which is in agreement with its recently uncovered heterothallic mating system.

  18. Genetic markers on chromosome 7.

    PubMed Central

    Tsui, L C

    1988-01-01

    Chromosome 7 is frequently associated with chromosome aberrations, rearrangements, and deletions. It also contains many important genes, gene families, and disease loci. This brief review attempts to summarise these and other interesting aspects of chromosome 7. With the rapid accumulation of cloned genes and polymorphic DNA fragments, this chromosome has become an excellent substrate for molecular genetic studies. PMID:3290488

  19. Introgression Threatens the Genetic Diversity of Quercus austrocochinchinensis (Fagaceae), an Endangered Oak: A Case Inferred by Molecular Markers

    PubMed Central

    An, Miao; Deng, Min; Zheng, Si-Si; Jiang, Xiao-Long; Song, Yi-Gang

    2017-01-01

    Natural introgression can cause negative effects where rare species experience genetic assimilation and invade by their abundant congeners. Quercus austrocochinchinensis and Q. kerrii (subgenus Cyclobalanopsis) are a pair of closely related species in the Indo-China area. Morphological intermediates of the two species have been reported in this region. In this study, we used AFLP, SSR and two key leaf morphological diagnostic traits to study the two Q. austrocochinchinensis populations, two pure Q. kerrii and two putative hybrid populations in China. Rates of individual admixture were examined using the Bayesian clustering programs STRUCTURE and NewHybrids, with no a priori species assignment. In total, we obtained 151 SSR alleles and 781 polymorphic loci of AFLP markers. Population differentiation inferred by SSR and AFLP was incoherent with recognized species boundaries. Bayesian admixture analyses and principal coordinate analysis identified more hybrids and backcrossed individuals than morphological intermediates in the populations. SSR inferred a wide genetic assimilation in Q. austrocochinchinensis, except for subpopulation D2 in the core area of Xi-Shuang-Ban-Na Nature Reserve (XSBN). However, AFLP recognized more Q. austrocochinchinensis purebreds than SSR. Analysis using NewHybrids on AFLP data indicated that these hybridized individuals were few F2 and predominantly backcrosses with both parental species. All these evidences indicate the formation of a hybrid swarm at XSBN where the two species co-exist. Both AFLP and SSR recognized that the core protected area of XSBN (D2) has a high percentage of Q. austrocochinchinensis purebreds and a unique germplasm. The Hainan population and the other subpopulations of XSBN of the species might have lost their genetic integrity. Our results revealed a clear genetic differentiation in the populations and subpopulations of Q. austrocochinchinensis and ongoing introgression between Q. austrocochinchinensis and Q

  20. Introgression Threatens the Genetic Diversity of Quercus austrocochinchinensis (Fagaceae), an Endangered Oak: A Case Inferred by Molecular Markers.

    PubMed

    An, Miao; Deng, Min; Zheng, Si-Si; Jiang, Xiao-Long; Song, Yi-Gang

    2017-01-01

    Natural introgression can cause negative effects where rare species experience genetic assimilation and invade by their abundant congeners. Quercus austrocochinchinensis and Q. kerrii (subgenus Cyclobalanopsis) are a pair of closely related species in the Indo-China area. Morphological intermediates of the two species have been reported in this region. In this study, we used AFLP, SSR and two key leaf morphological diagnostic traits to study the two Q. austrocochinchinensis populations, two pure Q. kerrii and two putative hybrid populations in China. Rates of individual admixture were examined using the Bayesian clustering programs STRUCTURE and NewHybrids, with no a priori species assignment. In total, we obtained 151 SSR alleles and 781 polymorphic loci of AFLP markers. Population differentiation inferred by SSR and AFLP was incoherent with recognized species boundaries. Bayesian admixture analyses and principal coordinate analysis identified more hybrids and backcrossed individuals than morphological intermediates in the populations. SSR inferred a wide genetic assimilation in Q. austrocochinchinensis, except for subpopulation D2 in the core area of Xi-Shuang-Ban-Na Nature Reserve (XSBN). However, AFLP recognized more Q. austrocochinchinensis purebreds than SSR. Analysis using NewHybrids on AFLP data indicated that these hybridized individuals were few F2 and predominantly backcrosses with both parental species. All these evidences indicate the formation of a hybrid swarm at XSBN where the two species co-exist. Both AFLP and SSR recognized that the core protected area of XSBN (D2) has a high percentage of Q. austrocochinchinensis purebreds and a unique germplasm. The Hainan population and the other subpopulations of XSBN of the species might have lost their genetic integrity. Our results revealed a clear genetic differentiation in the populations and subpopulations of Q. austrocochinchinensis and ongoing introgression between Q. austrocochinchinensis and Q

  1. Genetic analysis of the Saimiri breeding colony of the Pasteur Institute (French Guiana): development of a molecular typing method using a combination of nuclear and mitochondrial DNA markers.

    PubMed

    Lavergne, Anne; Catzeflis, François; Lacôte, Sandra; Barnaud, Antoine; Bordier, Marion; Mercereau-Puijalon, Odile; Contamin, Hugues

    2003-12-01

    Saimiri (Cebidae) groups a complex of species and subspecies, which present a large morphological plasticity. Genetic analysis is complicated by the absence of consensus on classification criteria and the paucity of molecular tools available for the genus. As the squirrel monkey is widely used in biomedical research, breeding centers have been established, but the genetic make up and diversity of many of the existing colonies is unknown precluding a rationale breeding policy. To develop a genetic typing strategy for the Saimiri breeding colony of Pasteur Institute of French Guiana, we have used Cytochrome b, a mitochondrial marker, and nuclear microsatellites. Cytochrome b sequences from wild-caught Saimiri boliviensis, Saimiri sciureus sciureus and S. s. collinsi reference specimens and captive animals identified 11 haplotypes, grouped into three distinct clades. An estimate of genetic variability within each captive morphotype, and of the extent of molecular divergence between the Bolivian, Guyanese and Brazilian breeds was obtained from the analysis of three nuclear microsatellites. Taxon-specific microsatellites enabled typing of F0-F3 animals, but did not differentiate Brazilian from Guyanese animals. Three locus microsatellite analysis of a representative sample from each generation showed no trend for loss of heterozygosity, and identified hybrid animals between Bolivian and the two others sub-species. These data provide novel evidence for taxonomic classification and a rationale strategy to further type the whole colony.

  2. Biological identification systems: genetic markers.

    PubMed

    Cunningham, E P; Meghen, C M

    2001-08-01

    Individual animals differ from each other on a number of biological levels. At the most basic level, the deoxyribonucleic acid (DNA) of each animal is different, and transcription of the DNA code yields variations at the protein level, which in turn give rise to individual diversity at the physical level. In recent years, accessing the primary genetic code of individual animals has become straightforward. The authors briefly review the development of biological identification technologies and then consider in more detail the application of current DNA testing technologies to issues of traceability of live animals and derived products. Although largely focused on cattle and beef traceability, the principles described are relevant to ovine, porcine and equine traceability. The accelerating pace of innovation and development within the field of molecular genetics suggests that the technologies described may soon be superseded. However, the principles of genetic identification will remain unchanged.

  3. A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers

    PubMed Central

    Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.

    2007-01-01

    Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112

  4. Molecular genetic survey of European mistletoe (Viscum album) subspecies with allele-specific and dCAPS type markers specific for chloroplast and nuclear DNA sequences.

    PubMed

    Piotrowski, Arkadiusz; Ochocka, J Renata; Stefanowicz, Justyna; ŁUczkiewicz, Maria

    2003-10-01

    The qualitative and quantitative content of mistletoe metabolites, and bioactivity of extracts is related to the subspecies of Viscum album L. These were indicated to be genetically distinct and host specific. We aimed to check (i) whether the specificity is strict and (ii) how frequently hybridization occurs among the subspecies. We designed two sets of allele-specific and dCAPS molecular genetic markers that would facilitate identification of Viscum album L. subspecies and their hybrid derivatives on the basis of chloroplast trnH(GUG)- trnK(UUU) and nuclear rDNA ITS1&2 sequences. Out of 118 plants surveyed, 103 displayed characteristics that confirmed strict host specificity of the subspecies, in addition, the results were compliant between nuclear and chloroplast markers showing no indication of hybridization among subspecies. From 15 samples that showed deviations from this model 13 came from the Mediterranean Sea basin, and only two originated from Central and Western Europe. Abbreviations. dCAPS:derived Cleaved Amplified Polymorphic Sequence ITS1&2:Internal Transcribed Spacers 1&2 MAMA:Mismatch Amplification Mutation Assay

  5. Introductory molecular genetics

    SciTech Connect

    Edwards-Moulds, J.

    1986-01-01

    This book begins with an overview of the current principles of genetics and molecular genetics. Over this foundation, it adds detailed and specialized information: a description of the translation, transcription, expression and regulation of DNA and RNA; a description of the manipulation of genetic material via promoters, enhancers, and gene splicing; and a description of cloning techniques, especially those for blood group genes. The last chapter looks to the impact of molecular genetics on transfusion medicine.

  6. Ex situ conservation of Phyllanthus fraternus Webster and evaluation of genetic fidelity in regenerates using DNA-based molecular marker.

    PubMed

    Upadhyay, Richa; Kashyap, Sarvesh Pratap; Singh, Chandra Shekhar; Tiwari, Kavindra Nath; Singh, Karuna; Singh, Major

    2014-11-01

    Germplasm storage of Phyllanthus fraternus by using synseed technology has been optimized. Synseeds were prepared from nodal segments taken from in vitro-grown plantlets. An encapsulation matrix of 3 % sodium alginate and 100 mM calcium chloride with polymerization duration up to 15 min was found most suitable for synseed formation. Maximum plantlet conversion (92.5 ± 2.5 %) was obtained on a growth regulator-free ½-strength solid Murashige and Skoog (MS) medium. Multiple shoot proliferation was optimum on a ½ MS medium containing 0.5 mg/l 6-benzylaminopurine (BAP). Shoots were subjected to rooting on MS media containing 1 mg/l α-naphthaleneacetic acid (NAA) and acclimatized successfully. Encapsulated nodal segments can be stored for up to 90 days with a survival frequency of 47.33 %. The clonal fidelity of synseed-derived plantlets was also assessed and compared with that of the mother plant using rapid amplified polymorphic DNA and inter-simple sequence repeat analysis. No changes in molecular profiles were observed among the synseed-derived plantlets and mother plant, which confirms the genetic stability of regenerates. This synseed production protocol could be useful for in vitro multiplication, short-term storage, and exchange of germplasm of this important antiviral and hepatoprotective plant.

  7. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  8. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data.

  9. Estimation of genetic diversity using SSR markers in sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  10. Study of intra-varietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origins.

    PubMed

    Meneghetti, Stefano; Costacurta, Angelo; Morreale, Giacomo; Calò, Antonio

    2012-01-01

    The genetic grapevine intravarietal variability will be analyzed by PCR-derived marker systems. In particular, the object of the investigation will be the clonal variations of Malvasia nera di Brindisi/Lecce, Negroamaro and Primitivo, also known as Zinfandel, which are three grapevine varieties cultivated in Apulia region (Italy). In order to assess varietal identity of the samples, 132 DNA tests were performed by amplifying 16 SSR loci. The study of the intravarietal variability was performed using AFLPs, SAMPLs, ISSRs, and M-AFLPs. The application of the above-mentioned techniques allowed both to discriminate all genotypes of the three cultivars and to distinguish the accessions of each cultivar sampled from different geographic cultivation areas. Furthermore, the study of biotypes cultivated in different geographical environments of Salento (i.e., Apulia region) allowed important correlations between molecular marker variability and phenotypic traits. These results are suggesting both to focus our attention on the effects of the environment on the genotype and to consider, as a practical consequence, the importance of preserving autochthon grapevine biotypes found in different areas to truly preserve the richness of the germplasm. Thus, more accurate DNA studies give new information that can be extremely useful to the vine nurseries for the correct choice (i.e., supported by more accurate intravarietal variability analysis) of the grape multiplication materials.

  11. Biochemical genetic markers in sugarcane.

    PubMed

    Glaszmann, J C; Fautret, A; Noyer, J L; Feldmann, P; Lanaud, C

    1989-10-01

    Isozyme variation was used to identify biochemical markers of potential utility in sugarcane genetics and breeding. Electrophoretic polymorphism was surveyed for nine enzymes among 39 wild and noble sugarcane clones, belonging to the species most closely related to modern varieties. Up to 114 distinct bands showing presence versus absence type of variation were revealed and used for qualitative characterization of the materials. Multivariate analysis of the data isolated the Erianthus clone sampled and separated the Saccharum spontaneum clones from the S. robustum and S. officinarum clones; the latter two were not differentiated from one another. The analysis of self-progenies of a 2n=112 S. spontaneum and of a commercial variety showed examples of mono- and polyfactorial segregations. Within the progeny of the variety, co-segregation of two isozymes frequent in S. spontaneum led to them being assigned to a single chromosome initially contributed by a S. spontaneum donor. This illustrates how combined survey of ancestral species and segregation analysis in modern breeding materials should permit using the lack of interspecific cross-over to establish linkage groups in a sugarcane genome.

  12. Molecular markers for colorectal cancer screening

    PubMed Central

    Dickinson, Brandon T.; Kisiel, John; Ahlquist, David A.; Grady, William M.

    2016-01-01

    Colorectal cancer (CRC), although a significant cause of morbidity and mortality worldwide, has seen a declining incidence and mortality in countries with programmatic screening. Fecal occult blood testing (FOBT) and endoscopic approaches are the predominant screening methods currently. The discovery of the adenoma→carcinoma sequence and a greater understanding of the genetic and epigenetic changes that drive the formation of CRC have contributed to innovative research to identify molecular markers for highly accurate, non-invasive screening tests for CRC. DNA, proteins, messenger RNA, and micro-RNA have all been evaluated. The observation of tumor cell exfoliation into the mucocellular layer of the colonic epithelium and proven stability of DNA in a harsh stool environment make stool DNA a particularly promising marker. The development of a clinically useful stool DNA test has required numerous technical advances, including optimization in DNA stabilization, the development of assays with high analytical sensitivity, and the identification of specific and broadly informative molecular markers. A multi-target stool DNA (MT-sDNA) test, which combines both mutant and methylated DNA markers and a fecal immunochemical test (FIT), recently performed favorably in a large cross-sectional validation study and has been approved by the US Food and Drug Administration (FDA) for the screening of asymptomatic, average risk individuals. The ultimate way in which molecular marker screening assays will be used in clinical practice will require additional studies to determine optimal screening intervals, factors affecting compliance, management of false positive results, and the use of these assays in high-risk populations, as well as other considerations. PMID:25994221

  13. Molecular markers for colorectal cancer screening.

    PubMed

    Dickinson, Brandon T; Kisiel, John; Ahlquist, David A; Grady, William M

    2015-09-01

    Colorectal cancer (CRC), although a significant cause of morbidity and mortality worldwide, has seen a declining incidence and mortality in countries with programmatic screening. Faecal occult blood testing and endoscopic approaches are the predominant screening methods currently. The discovery of the adenoma-carcinoma sequence and a greater understanding of the genetic and epigenetic changes that drive the formation of CRC have contributed to innovative research to identify molecular markers for highly accurate, non-invasive screening tests for CRC. DNA, proteins, messenger RNA and micro-RNA have all been evaluated. The observation of tumour cell exfoliation into the mucocellular layer of the colonic epithelium and proven stability of DNA in a harsh stool environment make stool DNA a particularly promising marker. The development of a clinically useful stool DNA test has required numerous technical advances, including optimisation in DNA stabilisation, the development of assays with high analytical sensitivity, and the identification of specific and broadly informative molecular markers. A multitarget stool DNA test, which combines mutant and methylated DNA markers and a faecal immunochemical test, recently performed favourably in a large cross-sectional validation study and has been approved by the US Food and Drug Administration for the screening of asymptomatic, average-risk individuals. The ultimate way in which molecular marker screening assays will be used in clinical practice will require additional studies to determine optimal screening intervals, factors affecting compliance, management of false-positive results, and the use of these assays in high-risk populations, as well as other considerations.

  14. Use of AFLP and RAPD molecular genetic markers and cytogenetic analysis to explore relationships among taxa of the Patagonian Bromus setifolius complex

    PubMed Central

    2009-01-01

    Bromus setifolius var. pictus (Hook) Skottsb., B. setifolius var. setifolius Presl. and B.setifolius var. brevifolius Ness are three native Patagonian taxa in the section Pnigma Dumort of the genus Bromus L. AFLP and RAPD analysis, in conjunction with genetic distance measurements and statistical techniques, revealed variation within this group and indicated that B. setifolius var. brevifolius was closely related to B. setifolius var. pictus, with both taxa being more distantly related to B. setifolius var. setifolius. Cytogenetic analysis confirmed the chromosomal number of B. setifolius var. pictus (2n = 70) and B. setifolius var. setifolius (2n = 28) and showed for the first time that B. setifolius var. brevifolius had 2n = 70. The combination of molecular genetic and cytogenetic evidence supported a species status for two of the three taxa and suggested hypotheses for the evolutionary origin of these complex taxa. Species status was also indicated for B. setifolius var. setifolius. Based on these findings, we suggest that B. setifolius var. pictus be referred to as B. pictus Hook var. pictus, and B. setifolius var brevifolius as B. pictus Hook var brevifolius. The correlation between AFLP diversity and variation in ecological parameters suggested that this marker system could be used to assess breeding progress and to monitor the domestication of Patagonian Bromus species for agronomic use. PMID:21637686

  15. Use of molecular markers to improve relationship information in the genetic evaluation of beef cattle tick resistance under pedigree-based models.

    PubMed

    Junqueira, V S; Cardoso, F F; Oliveira, M M; Sollero, B P; Silva, F F; Lopes, P S

    2017-02-01

    The selection of genetically superior individuals is conditional upon accurate breeding value predictions which, in turn, are highly depend on how precisely relationship is represented by pedigree. For that purpose, the numerator relationship matrix is essential as a priori information in mixed model equations. The presence of pedigree errors and/or the lack of relationship information affect the genetic gain because it reduces the correlation between the true and estimated breeding values. Thus, this study aimed to evaluate the effects of correcting the pedigree relationships using single-nucleotide polymorphism (SNP) markers on genetic evaluation accuracies for resistance of beef cattle to ticks. Tick count data from Hereford and Braford cattle breeds were used as phenotype. Genotyping was carried out using a high-density panel (BovineHD - Illumina(®) bead chip with 777 962 SNPs) for sires and the Illumina BovineSNP50 panel (54 609 SNPs) for their progenies. The relationship between the parents and progenies of genotyped animals was evaluated, and mismatches were based on the Mendelian conflicts counts. Variance components and genetic parameters estimates were obtained using a Bayesian approach via Gibbs sampling, and the breeding values were predicted assuming a repeatability model. A total of 460 corrections in relationship definitions were made (Table 1) corresponding to 1018 (9.5%) tick count records. Among these changes, 97.17% (447) were related to the sire's information, and 2.8% (13) were related to the dam's information. We observed 27.2% (236/868) of Mendelian conflicts for sire-progeny genotyped pairs and 14.3% (13/91) for dam-progeny genotyped pairs. We performed 2174 new definitions of half-siblings according to the correlation coefficient between the coancestry and molecular coancestry matrices. It was observed that higher-quality genetic relationships did not result in significant differences of variance components estimates; however, they

  16. Genetic identity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by molecular markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indonesia is the 3rd largest cocoa producing countries in the world and 71% of its production is from Sulawesi Island. Knowledge about the genetic background of farmer selections is highly important for effective identification and rational deployment of superior cacao clones in farmers’ fields. Mor...

  17. Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees, and whole-genome-based data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining data sets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data, and mol...

  18. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers.

    PubMed Central

    Hagelberg, E; Kayser, M; Nagy, M; Roewer, L; Zimdahl, H; Krawczak, M; Lió, P; Schiefenhövel, W

    1999-01-01

    Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific. PMID:10091254

  19. Genetic Structure of Earthworm Populations at a Regional Scale: Inferences from Mitochondrial and Microsatellite Molecular Markers in Aporrectodea icterica (Savigny 1826)

    PubMed Central

    Torres-Leguizamon, Magally; Mathieu, Jérôme; Decaëns, Thibaud; Dupont, Lise

    2014-01-01

    Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations. PMID:25003795

  20. Genetic structure of earthworm populations at a regional scale: inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826).

    PubMed

    Torres-Leguizamon, Magally; Mathieu, Jérôme; Decaëns, Thibaud; Dupont, Lise

    2014-01-01

    Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.

  1. Modulation of Molecular Markers by CLA

    DTIC Science & Technology

    1999-10-01

    AD __ _ _ _ _ _ Award Number: DAMD17-94-J-4274 TITLE: Modulation of Molecular Markers by CLA PRINCIPAL INVESTIGATOR: Henry Thompson, Ph.D...DATES COVERED October 1999 Final (14 Sep 94 - 13 Sep 99) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Modulation of Molecular Markers by CLA DAMD1 7-94-J...for the prevention of human breast cancer. 14. SUBJECT TERMS 15. NUMBER OF PAGES Breast Cancer, Molecular Markers 10 9 16. PRICE CODE 17. SECURITY

  2. Molecular genetic analysis of Plasmodium vivax isolates from Eastern and Central Sudan using pvcsp and pvmsp-3α genes as molecular markers.

    PubMed

    Talha, Albadawi Abdelbagi; Pirahmadi, Sekineh; Mehrizi, Akram Abouie; Djadid, Navid Dinparast; Nour, Bakri Y M; Zakeri, Sedigheh

    2015-06-01

    In Sudan, Plasmodium vivax accounts for approximately 5-10% of malaria cases. This study was carried out to determine the genetic diversity of P. vivax population from Sudan by analyzing the polymorphism of P. vivax csp (pvcsp) and pvmsp-3α genes. Blood samples (n=76) were taken from suspected malaria cases from 2012-2013 in three health centers of Eastern and Central Sudan. Parasite detection was performed by microscopy and molecular techniques, and genotyping of both genes was performed by PCR-RFLP followed by DNA sequence for only pvcsp gene (n=30). Based on microscopy analysis, 76 (%100) patients were infected with P. vivax, whereas nested-PCR results showed that 86.8% (n=66), 3.9% (n=3), and 3.9% (n=3) of tested samples had P. vivax as well as Plasmodium falciparum mono- and mixed infections, respectively. Four out of 76 samples had no results in molecular diagnosis. All sequenced samples were found to be of VK210 (100%) genotype with six distinct amino acid haplotypes, and 210A (66.7%) was the most prevalent haplotype. The Sudanese isolates displayed variations in the peptide repeat motifs (PRMs) ranging from 17 to 19 with GDRADGQPA (PRM1), GDRAAGQPA (PRM2) and DDRAAGQPA (PRM3). Also, 54 polymorphic sites with 56 mutations were found in repeat and post-repeat regions of the pvcsp and the overall nucleotide diversity (π) was 0.02149±0.00539. A negative value of dN-dS (-0.0344) was found that suggested a significant purifying selection of Sudanese pvcsp, (Z test, P<0.05). Regarding pvmsp-3α, three types were detected: types A (94.6%, 52/55), type C (3.6%, 2/55), and type B (1.8%, 1/55). No multiclonal infections were detected, and RFLP analysis identified 13 (Hha I, A1-A11, B1, and C1) and 16 (Alu I, A1-A14, B1, and C1) distinct allelic forms. In conclusion, genetic investigation among Sudanese P. vivax isolates indicated that this antigen showed limited antigenic diversity.

  3. The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent.

    PubMed

    Villarino, Maria; De Cal, Antonieta; Melgarejo, Paloma; Larena, Inmaculada; Espeso, Eduardo A

    2016-01-01

    Penicillium oxalicum strain 212 (PO212) is an effective biocontrol agent (BCA) against a large number of economically important fungal plant pathogens. For successful registration as a BCA in Europe, PO212 must be accurately identified. In this report, we describe the use of classical genetic and molecular markers to characterize and identify PO212 in order to understand its ecological role in the environment or host. We successfully generated pyrimidine (pyr-) auxotrophic mutants. In addition we also designed specific oligonucleotides for the pyrF gene at their untranslated regions for rapid and reliable identification and classification of strains of P. oxalicum and P. rubens, formerly P. chrysogenum. Using these DNA-based technologies, we found that PO212 is a strain of P. rubens, and is not a strain of P. oxalicum. This work presents PO212 as the unique P. rubens strain to be described as a BCA and the information contained here serves for its registration and commercialization in Europe.

  4. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  5. Molecular marker systems in insects: current trends and future avenues.

    PubMed

    Behura, Susanta K

    2006-10-01

    Insects comprise the largest species composition in the entire animal kingdom and possess a vast undiscovered genetic diversity and gene pool that can be better explored using molecular marker techniques. Current trends of application of DNA marker techniques in diverse domains of insect ecological studies show that mitochondrial DNA (mtDNA), microsatellites, random amplified polymorphic DNA (RAPD), expressed sequence tags (EST) and amplified fragment length polymorphism (AFLP) markers have contributed significantly for progresses towards understanding genetic basis of insect diversity and for mapping medically and agriculturally important genes and quantitative trait loci in insect pests. Apart from these popular marker systems, other novel approaches including transposon display, sequence-specific amplification polymorphism (S-SAP), repeat-associated polymerase chain reaction (PCR) markers have been identified as alternate marker systems in insect studies. Besides, whole genome microarray and single nucleotide polymorphism (SNP) assays are becoming more popular to screen genome-wide polymorphisms in fast and cost effective manner. However, use of such methodologies has not gained widespread popularity in entomological studies. The current study highlights the recent trends of applications of molecular markers in insect studies and explores the technological advancements in molecular marker tools and modern high throughput genotyping methodologies that may be applied in entomological researches for better understanding of insect ecology at molecular level.

  6. Molecular identification of blood meal sources of ticks (Acari, Ixodidae) using cytochrome b gene as a genetic marker

    PubMed Central

    Che Lah, Ernieenor Faraliana; Yaakop, Salmah; Ahamad, Mariana; Md Nor, Shukor

    2015-01-01

    Abstract Blood meal analysis (BMA) from ticks allows for the identification of natural hosts of ticks (Acari: Ixodidae). The aim of this study is to identify the blood meal sources of field collected on-host ticks using PCR analysis. DNA of four genera of ticks was isolated and their cytochrome b (Cyt b) gene was amplified to identify host blood meals. A phylogenetic tree was constructed based on data of Cyt b sequences using Neighbor Joining (NJ) and Maximum Parsimony (MP) analysis using MEGA 5.05 for the clustering of hosts of tick species. Twenty out of 27 samples showed maximum similarity (99%) with GenBank sequences through a Basic Local Alignment Search Tool (BLAST) while 7 samples only showed a similarity range of between 91–98%. The phylogenetic trees showed that the blood meal samples were derived from small rodents (Leopoldamys sabanus, Rattus tiomanicus and Sundamys muelleri), shrews (Tupaia glis) and mammals (Tapirus indicus and Prionailurus bengalensis), supported by 82–88% bootstrap values. In this study, Cyt b gene as a molecular target produced reliable results and was very significant for the effective identification of ticks’ blood meal. The assay can be used as a tool for identifying unknown blood meals of field collected on-host ticks. PMID:25685009

  7. Primer on molecular genetics

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  8. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  9. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers

    PubMed Central

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-01-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups

  10. [Hereditary deafness: molecular genetics].

    PubMed

    Hardelin, Jean-Pierre; Denoyelle, Françoise; Levilliers, Jacqueline; Simmler, Marie-Christine; Petit, Christine

    2004-03-01

    This article outlines recent advances in explaining hereditary deafness in molecular terms, focusing on isolated (i.e. nonsyndromic) hearing loss. The number of genes identified (36 to date) is growing rapidly. However, difficulties inherent in genetic linkage analysis, coupled with the possible involvement of environmental causes, have so far prevented the characterization of the main genes causative or predisposing to the late-onset forms of deafness.

  11. Construction of a genetic linkage map for identification of molecular markers associated with resistance to Xanthomonas arboriciola pv. pruni in peach [Prunus persica (L.) Batsch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot, caused by Xanthomonas campestris pv. pruni, is a serious disease that can affect peach fruit quality and production. The molecular basis of its tolerance and susceptibility is yet to be understood. To study the genetics of the peach in response to bacterial spot, an F2 population of ...

  12. (ISEA) MOLECULAR MARKER ANALYSIS OF DEARS SAMPLES

    EPA Science Inventory

    Source apportionment based on organic molecular markers provides a promising approach for meeting the Detroit Exposure and Aerosol Research Study (DEARS) objective of comparing source contributions between community air monitoring stations and various neighborhoods. Source appor...

  13. MOLECULAR MARKER ANALYSIS OF DEARS SAMPLES

    EPA Science Inventory

    Source apportionment based on organic molecular markers provides a promising approach for meeting the Detroit Exposure and Aerosol Research Study (DEARS) objective of comparing source contributions between community air monitoring stations and various neighborhoods. Source appor...

  14. Genetics and biological markers in urachal cancer

    PubMed Central

    van Rhijn, Bas W. G.

    2016-01-01

    Urachal cancer (UraC) is a rare tumor entity that usually develops at the basis of the remnant embryologic urachus. Consisting of mostly adenocarcinomas, most patients present with secondary symptoms due to an advanced stage with urinary bladder infiltration. One third of patients are already metastasized at presentation rendering them unsuitable for curative surgical treatment. In order to improve staging, treatment and follow-up, adequate knowledge about the genetic origin and potential markers is necessary. This paper reviews the English literature until December 2015. Pathologists argue for and against metaplasia or remnant enteric cells as origin for the adenomatous tissue found in UraC. Mutations in KRAS, BRAF, GNAS and Her2 have been associated with UraC. Immunohistochemical (IHC) markers like CEA, 34βE12, Claudin-18 and RegIV are indicative for mucous producing UraC. So far, IHC markers fail as prognosticators when matched to clinical data. Little is known about serum markers for UraC. CEA, CA19-9, CA125 and CA724 are mentioned as being elevated in UraC by some reports. Regarding the literature for biological markers in UraC, knowledge is mostly derived from case reports or cohort studies mentioning markers or predictors. More genetic research is needed to show whether UraC stems from progenitor cells of the cloaca or is due to metaplasia of transitional cells. Few IHC markers have shown indicative potential for UraC. A useful panel for differential diagnostics and clinicopathologic prognostication needs to be developed. Serum markers show very little potential for neither diagnosis nor follow-up in UraC. Further research on larger cohorts is necessary. PMID:27785422

  15. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers.

    PubMed Central

    Deka, R; Chakravarti, A; Surti, U; Hauselman, E; Reefer, J; Majumder, P P; Ferrell, R E

    1990-01-01

    Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere. Images Figure 1 Figure 2 PMID:1977308

  16. Molecular genetic analysis of some mutations in the cystic fibrosis gene in Moldova: Characterization of molecular markers and their linkage to various mutations

    SciTech Connect

    Gimbovskaya, S.D.; Kalinin, V.N.; Ivashchenko, T.E.; Baranov, V.S.

    1994-12-01

    Sixty-one patients with cystic fibrosis (CF) from Moldova were tested for mutations {Delta}F508, G551D, and R553X. Frequencies of various alleles of the repeated GATT sequence in intron 6B of the GFTR gene, their linkage to other polymorphic markers, and various mutations were determined. The frequency of occurrence of mutation {Delta}F508 was only 25%. An absolute majority of CF patients (80%) had pancreatic insufficiency. Mutations G551D and R553X were not found in our sample. Each of 31 chromosomes with mutation {Delta}F508 carry the 6-GATT allele. Most {open_quotes}non {Delta}F508{close_quotes} (78%) and normal (80%) chromosomes were marked by the 7-GATT allele. Twenty-seven {Delta}F508 chromosomes (96.4%) belong to haplotype B6, and only one to D6. Most chromosomes with {open_quotes}non {Delta}F508{close_quotes} mutations are associated with haplotypes D7 (26.3%) and C7 (21%). In addition, a significant portion of chromosomes from this subgroup were associated with haplotypes A7 (23.7%), A6 (10.5%), and C6 (2.7%), which are not yet described for mutant chromosomes. The results obtained demonstrate that CF in Moldova is mainly associated with mutations other than {Delta}F508, G551D, and R553X. Severe forms of the disease, with pancreatic insufficiency, are more frequently caused by these mutations; moreover, our data provides strong evidence for the presence of at least seven additional CF mutations in Moldova, apart from {Delta}F508, G551D, and R553X. Some of these are probably not described.

  17. Genetic and metal analyses of fragmented populations of Betula papyrifera (Marsh) in a mining reclaimed region: identification of population–diagnostic molecular marker

    PubMed Central

    Theriault, Gabriel; Nkongolo, Kabwe K; Michael, Paul

    2014-01-01

    White birch (Betula papyrifera) is an open pollinate species that is, dominant in the Northern Ontario after land reclamation. In fact, this species represents 65% of all trees in the region. We hypothesized that the exchange of genetic information between fragmented populations by range-wide paternal introgression is possible in wind-pollinated species such as B. papyrifera. On the other hand, the effects of heavy metal contamination from the mining activities on plant growth and population dynamics are well documented. The main objectives of this study were (1) to assess the level of genetic variation, gene flow, and population sustainability of B. papyrifera after land reclamation; and (2) to determine the level of phytoavailable metals in soil and their accumulation in trees. We found that B. papyrifera is a Ni and Zn accumulator with a translocation factor of 6.4 and 81, respectively, and an indicator of Cu and Pb. The level of polymorphic loci, Shannon index, Nei's genetic diversity, observed number of alleles, and gene flow were determined for the fragmented populations within the targeted region. The percent of polymorphic loci ranged from 28% to 56%; the gene flow was also low with a value of 0.89, and the population differentiation was very high with a value of 0.36. Two population–diagnostic ISSR markers were identified. They were cloned, sequenced, and converted to SCAR markers. Overall, the fragmented populations of B. papyrifera in Northern Ontario are genetically sustainable based on the moderate level of intrapopulation variability. PMID:25535559

  18. Genetic markers in alcoholic liver cirrhosis.

    PubMed

    Lareu, M V; Alvarez-Prechous, A; Pardiñas, C; Concheiro, L; Carracedo, A

    1992-01-01

    11 genetic markers were typed in 157 individuals suffering from alcoholic cirrhosis, and compared with a random sample of healthy individuals. No significant differences were found for transferrin, specific group component, orosomucoid, esterase D, phosphogluconate dehydrogenase and adenylate kinase. Strong associations between alcoholic cirrhosis and alpha-1-antitrypsin PI*Z allele, haptoglobin HP*1 allele and acid phosphatase ACP AC phenotype were observed. The biological significance of these associations and their relationships with the development of alcoholic cirrhosis are also discussed.

  19. Glioblastoma: pathology, molecular mechanisms and markers.

    PubMed

    Aldape, Kenneth; Zadeh, Gelareh; Mansouri, Sheila; Reifenberger, Guido; von Deimling, Andreas

    2015-06-01

    Recent advances in genomic technology have led to a better understanding of key molecular alterations that underlie glioblastoma (GBM). The current WHO-based classification of GBM is mainly based on histologic features of the tumor, which frequently do not reflect the molecular differences that describe the diversity in the biology of these lesions. The current WHO definition of GBM relies on the presence of high-grade astrocytic neoplasm with the presence of either microvascular proliferation and/or tumor necrosis. High-throughput analyses have identified molecular subtypes and have led to progress in more accurate classification of GBM. These findings, in turn, would result in development of more effective patient stratification, targeted therapeutics, and prediction of patient outcome. While consensus has not been reached on the precise nature and means to sub-classify GBM, it is clear that IDH-mutant GBMs are clearly distinct from GBMs without IDH1/2 mutation with respect to molecular and clinical features, including prognosis. In addition, recent findings in pediatric GBMs regarding mutations in the histone H3F3A gene suggest that these tumors may represent a 3rd major category of GBM, separate from adult primary (IDH1/2 wt), and secondary (IDH1/2 mut) GBMs. In this review, we describe major clinically relevant genetic and epigenetic abnormalities in GBM-such as mutations in IDH1/2, EGFR, PDGFRA, and NF1 genes-altered methylation of MGMT gene promoter, and mutations in hTERT promoter. These markers may be incorporated into a more refined classification system and applied in more accurate clinical decision-making process. In addition, we focus on current understanding of the biologic heterogeneity and classification of GBM and highlight some of the molecular signatures and alterations that characterize GBMs as histologically defined. We raise the question whether IDH-wild type high grade astrocytomas without microvascular proliferation or necrosis might best be

  20. [Molecular genetics of hypercholesterolemia].

    PubMed

    Schwarzová, Lucie

    2016-01-01

    The review focuses on the molecular background of an inborn error of lipid metabolism -familial hypercholesterolemia. FH describes a group of genetic defects resulting in severe elevations of blood cholesterol levels and increased risk of premature coronary heart disease. Most cases are due to the mutations decreasing and/or destroying the function of the LDL receptor (85-90 % of cases), smaller portion of cases is caused by defects in the gene encoding the ligand for LDL receptor - apolipoprotein B-100 (5-10 %). Less than 5 % of cases has gain-of-function station of the PCSK9 gene that increases the rate of degradation of the LDL receptor molecules. Autosomal recessive form of the disease, caused by the mutations in LDLR adaptor protein 1 gene, is extremely rare.Key words: APOB - familial hypercholesterolemia - LDLR - LDLRAP1 - PCSK9.

  1. Micropropagation of Pithecellobium dulce (Roxb.) Benth-a multipurpose leguminous tree and assessment of genetic fidelity of micropropagated plants using molecular markers.

    PubMed

    Goyal, Pooja; Kachhwaha, Sumita; Kothari, S L

    2012-04-01

    An efficient and reproducible protocol has been developed for in vitro propagation of Pithecellobium dulce (Roxb.) Benth (a multipurpose leguminous tree) from field grown nodal segments (axillary bud). Shoot bud induction occurred from nodal explants of 15-years-old tree on Murashige and Skoog (MS) basal medium supplemented with 4.4 μM 6-benzyladenine (BA) and multiplication was achieved on MS medium supplemented with 4.4 μM BA + 0.73 μM phenylacetic acid (PAA) i.e. up to 7 shoot buds in the period of 5-6 weeks. Addition of adenine sulphate (AdS) to this medium further enhanced the number of shoot buds up to 10. Proliferating shoot cultures were established by repeatedly subculturing primary culture on fresh medium (MS + 4.4 μM BA + 0.73 μM PAA) after every 25 days. In vitro rooting was achieved on MS medium supplemented with 2.46 μM Indole-3-butyric acid (IBA) + 41.63 μM activated charcoal (AC). The micropropagated shoots with well developed roots were acclimatized in green house in pots containing sand, soil and manure (1:1:1). Genetic stability of micropropagated clones was evaluated using Random amplified polymorphic DNA (RAPD) and Inter simple sequence repeat (ISSR) markers. The amplification products were monomorphic in micropropagated plants and similar to those of mother plant. No polymorphism was detected revealing the genetic uniformity of micropropagated plants. This is the first report of an efficient protocol for regeneration of P. dulce through organogenesis, which can be used for further genetic transformation and pharmaceutical purposes.

  2. Neutral Genetic Markers and Conservation Genetics: Simulated Germplasm Collections

    PubMed Central

    Bataillon, T. M.; David, J. L.; Schoen, D. J.

    1996-01-01

    This study examines the use of neutral genetic markers to guide sampling from a large germplasm collection with the objective of establishing from it a smaller, but genetically representative sample. We simulated evolutionary change and germplasm sampling in a subdivided population of a diploid hermaphrodite annual plant to create an initially large collection. Several strategies of sampling from this collection were then compared. Our results show that a strategy based on information obtained from marker genes led to retention of the maximum number of neutral and nonneutral alleles in the smaller sample. This occurred when demes were composed of self-fertilizing individuals or when no migration occurred among demes, but not when demes of an outcrossing population were connected by high levels of migration. PMID:8878704

  3. Molecular genetics of human chromosome 21.

    PubMed Central

    Watkins, P C; Tanzi, R E; Cheng, S V; Gusella, J F

    1987-01-01

    Chromosome 21 is the smallest autosome, comprising only about 1.9% of human DNA, but represents one of the most intensively studied regions of the genome. Much of the interest in chromosome 21 can be attributed to its association with Down's syndrome, a genetic disorder that afflicts one in every 700 to 1000 newborns. Although only 17 genes have been assigned to chromosome 21, a very large number of cloned DNA segments of unknown function have been isolated and regionally mapped. The majority of these segments detect restriction fragment length polymorphisms (RFLPs) and therefore represent useful genetic markers. Continued molecular genetic investigation of chromosome 21 will be central to elucidating molecular events leading to meiotic non-disjunction and consequent trisomy, the contribution of specific genes to the pathology of Down's syndrome, and the possible role of chromosome 21 in Alzheimer's disease and other as yet unmapped genetic defects. PMID:2884319

  4. Using Molecular Genetic Markers to Resolve a Subspecies Boundary: The Northern Boundary of the Southwestern Willow Flycatcher in the Four-Corner States

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Theimer, Tad C.; Girard, Jessica; Keim, Paul

    2008-01-01

    *Executive Summary* The northern boundary of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) is currently approximated as running through southern Colorado and Utah, but the exact placement is uncertain because this subspecies shares a border with the more northern and non-endangered E. t. adastus. To help resolve this issue, we evaluated the geographic distribution of mitochondrial and nuclear DNA by sampling breeding sites across the four-corner states (Arizona, Colorado, New Mexico, and Utah). We found that breeding sites clustered into two major groups generally consistent with the currently designated boundary, with the exception of three sites situated along the current boundary. However, delineating a precise boundary that would separate the two subspecies is made difficult because (1) we found evidence for a region of intergradation along the boundary area, suggesting the boundary is not discreet, and (2) the boundary region is sparsely populated, with too few extant breeding populations to precisely locate a boundary. The boundary region encompasses an area where elevation changes markedly over relatively short distances, with low elevation deserts to the south and more mesic, higher elevation habitats to the north. We hypothesized that latitudinal and elevational differences and their concomitant ecological effects could form an ecological barrier that inhibited gene flow between the subspecies, forming the basis for the subspecies boundary. We modeled changes in geographic patterns of genetic markers as a function of latitude and elevation finding significant support for this relationship. The model was brought into a GIS environment to create multiple subspecies boundaries, with the strength of each predicted boundary evaluated on the basis of how much genetic variation it explained. The candidate boundary that accounted for the most genetic variation was situated generally near the currently recognized subspecies boundary

  5. Genetic and biological markers in drug abuse and alcoholism

    SciTech Connect

    Braude, M.C.; Chao, H.M.

    1986-01-01

    This book contains 11 selections. Some of the titles are: Polymorphic Gene Marker Studies; Pharmacogenetic Approaches to the Prediction of Drug Response; Genetic Markers of Drug Abuse in Mouse Models; Genetics as a Tool for Identifying Biological Markers of Drug Abuse; and Studies of an Animal Model of Alcoholism.

  6. Molecular markers and conservation of plant species in Latin America: the case of Phaedranassa viridflora (Amaryllidaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellites are molecular markers with great potential for investigating genetic structure of populations. This information is valuable for generating effective conservation plans. We studied the endemic and endangered Phaedranassa viridiflora (Amaryllidaceae) to show the utility of microsatelli...

  7. The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers.

    PubMed

    Golestan Hashemi, Farahnaz Sadat; Rafii, Mohd Y; Ismail, Mohd Razi; Mohamed, Mahmud Tengku Muda; Rahim, Harun A; Latif, Mohammad Abdul; Aslani, Farzad

    2015-01-25

    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.

  8. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers ...

  9. De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics

    PubMed Central

    Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia

    2016-01-01

    Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus. PMID:27128031

  10. Molecular markers of serine protease evolution

    PubMed Central

    Krem, Maxwell M.; Di Cera, Enrico

    2001-01-01

    The evolutionary history of serine proteases can be accounted for by highly conserved amino acids that form crucial structural and chemical elements of the catalytic apparatus. These residues display non- random dichotomies in either amino acid choice or serine codon usage and serve as discrete markers for tracking changes in the active site environment and supporting structures. These markers categorize serine proteases of the chymotrypsin-like, subtilisin-like and α/β-hydrolase fold clans according to phylogenetic lineages, and indicate the relative ages and order of appearance of those lineages. A common theme among these three unrelated clans of serine proteases is the development or maintenance of a catalytic tetrad, the fourth member of which is a Ser or Cys whose side chain helps stabilize other residues of the standard catalytic triad. A genetic mechanism for mutation of conserved markers, domain duplication followed by gene splitting, is suggested by analysis of evolutionary markers from newly sequenced genes with multiple protease domains. PMID:11406580

  11. Teaching molecular genetics: chapter 4-positional cloning of genetic disorders.

    PubMed

    Puliti, Aldamaria; Caridi, Gianluca; Ravazzolo, Roberto; Ghiggeri, Gian Marco

    2007-12-01

    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molecular studies, to define a critical DNA region of interest. This analysis culminates in a statistical estimate of the probability that disease features may segregate in the families independently or in association with specific molecular markers located in known regions. In this latter case, a marker can be defined as being linked to the disease manifestations. The genetic markers define an interval that is a function of their recombination frequencies with the disease, in which the disease gene is localised. The identification and characterisation of chromosome abnormalities as translocations, deletions and duplications by classical cytogenetic methods or by the newly developed microarray-based comparative genomic hybridisation (array CGH) technique may define extensions and borders of the genomic regions involved. The step following the definition of a critical genomic region is the identification of candidate genes that is based on the analysis of available databases from genome browsers. Positional cloning culminates in the identification of the causative gene mutation, and the definition of its functional role in the pathogenesis of the disorder, by the use of cell-based or animal-based experiments. More often, positional cloning ends with the generation of mice with homologous mutations reproducing the human clinical phenotype. Altogether, positional cloning has represented a fundamental step in the research on genetic renal disorders, leading to the definition of several

  12. Developing AFLP Markers to study genetic differentiation of the Cotton Fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic comparisons of fleahopper populations in cotton and weed hosts may be useful for identifying the weed sources contributing the majority of fleahoppers in cotton. Molecular markers such as amplified fragment length polymorphisms (AFLP) are useful to identify genetic similarities and differen...

  13. Ecological proteomics: finding molecular markers that matter.

    PubMed

    Dalziel, Anne C; Schulte, Patricia M

    2012-07-01

    It is becoming increasingly clear that local adaptation can occur even in the face of high gene flow and limited overall genomic differentiation among populations (reviewed by Nosil et al. 2009). Thus, one important task for molecular ecologists is to sift through genomic data to identify the genes that matter for local adaptation (Hoffmann & Willi 2008; Stapley et al. 2010). Recent advances in high-throughput molecular technologies have facilitated this search, and a variety of approaches can be applied, including those grounded in population genetics [e.g. outlier analysis (Pavlidis et al. 2008)], classical and quantitative genetics [e.g. quantitative trait locus analysis (MacKay et al. 2009)], and cellular and molecular biology [e.g. transcriptomics (Larsen et al. 2011)]. However, applying these approaches in nonmodel organisms that lack extensive genetic and genomic resources has been a formidable challenge. In this issue, Papakostas et al. (2012). demonstrate how one such approach – high-throughput label-free proteomics (reviewed by Gstaiger & Aebersold 2009; Domon & Aebersold 2010) – can be applied to detect genes that may be involved in local adaptation in a species with limited genomic resources. Using this approach, they identified genes that may be implicated in local adaptation to salinity in European whitefish (Coregonus lavaretus L.) and provide insight into the mechanisms by which fish cope with changes in this critically important environmental parameter.

  14. De Novo Transcriptome Assembly of Pummelo and Molecular Marker Development

    PubMed Central

    Liang, Mei; Yang, Xiaoming; Li, Hang; Su, Shiying; Yi, Hualin; Chai, Lijun; Deng, Xiuxin

    2015-01-01

    Pummelo (Citrus grandis) is an important fruit crop worldwide because of its nutritional value. To accelerate the pummelo breeding program, it is essential to obtain extensive genetic information and develop relative molecular markers. Here, we obtained a 12-Gb transcriptome dataset of pummelo through a mixture of RNA from seven tissues using Illumina pair-end sequencing, assembled into 57,212 unigenes with an average length of 1010 bp. The annotation and classification results showed that a total of 39,584 unigenes had similar hits to the known proteins of four public databases, and 31,501 were classified into 55 Gene Ontology (GO) functional sub-categories. The search for putative molecular markers among 57,212 unigenes identified 10,276 simple sequence repeats (SSRs) and 64,720 single nucleotide polymorphisms (SNPs). High-quality primers of 1174 SSR loci were designed, of which 88.16% were localized to nine chromosomes of sweet orange. Of 100 SSR primers that were randomly selected for testing, 87 successfully amplified clear banding patterns. Of these primers, 29 with a mean PIC (polymorphic information content) value of 0.52 were effectively applied for phylogenetic analysis. Of the 20 SNP primers, 14 primers, including 54 potential SNPs, yielded target amplifications, and 46 loci were verified via Sanger sequencing. This new dataset will be a valuable resource for molecular biology studies of pummelo and provides reliable information regarding SNP and SSR marker development, thus expediting the breeding program of pummelo. PMID:25799271

  15. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method.

    PubMed

    Lee, Gi-An; Sung, Jung-Sook; Lee, Sok-Young; Chung, Jong-Wook; Yi, Jung-Yoon; Kim, Yeon-Gyu; Lee, Myung-Chul

    2014-01-01

    A genetic evaluation of safflower germplasm collections derived from different geographical regions and countries will provide useful information for sustainable conservation and the utilization of genetic diversity. However, the molecular marker information is limited for evaluation of genetic diversity of safflower germplasm. In this study, we acquired 509 putative genomic SSR markers for sufficient genome coverage using next-generation sequencing methods and characterized thirty polymorphic SSRs in safflower collection composed of 100 diverse accessions. The average allele number and expected heterozygosity were 2.8 and 0.386, respectively. Analysis of population structure and phylogeny based on thirty SSR profiles revealed genetic admixture between geographical regions contrary to genetic clustering. However, the accessions from Korea were genetically conserved in distinctive groups in contrast to other safflower gene pool. In conclusion, these new genomic SSRs will facilitate valuable studies to clarify genetic relationships as well as conduct population structure analyses, genetic map construction and association analysis for safflower.

  16. The chloroplast psbK-psbI intergenic region, a potential genetic marker for broad sectional relationships in Anthurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear and chloroplast genetic markers have been extensively used for plant identification and molecular taxonomy studies. The efficacy of genetic markers to be used as DNA barcodes is under constant evaluation and improvement, with identification of new barcodes that provide greater resolution an...

  17. Genetic diversity in three natural populations of Pitcairnia flammea (l.) John (Bromeliaceae) estimated by ISSR markers.

    PubMed

    Souza-Sobreira, F B; Souza, G B; Rosado, C C G; Miranda, F D; Soares, T C B; Gontijo, A B P L

    2015-12-03

    Bromeliads are greatly represented in the Atlantic Forest, although many species are threatened with extinction owing to habitat fragmentation and intense extraction for ornamental purposes. Therefore, it is necessary to conduct studies generating knowledge about genetic diversity and the distribution of this diversity among and within natural populations to establish conservation strategies. These studies can be performed with the use of molecular markers. Molecular markers are advantageous for studies of natural populations, for conservation programs, and to aid in properly classifying plant species. This study aimed to evaluate the genetic diversity among and within natural populations of Pitcairnia flammea, occurring in three fragments of the Atlantic Forest in the southern State of Espírito Santo through the use of inter-simple sequence repeat (ISSR) markers. DNA samples from 55 individuals were amplified with 18 ISSR primers, generating 180 bands, 159 of which were polymorphic. The Shannon genetic diversity index ranged from 0.348 to 0.465, with an average of 0.412. The Bayesian approach for the molecular data indicated the existence of two genetic groups. Analysis of molecular variance indicated the existence of 90.3% diversity within the population and 9.74% among populations. The amount of genetic differentiation of populations was moderate (0.0974), indicating that gene flow rates may be enough to counteract the effects of genetic drift. Greater genetic variability found in population B indicates that this area is an important source of genetic variability.

  18. Cry1A(b)16 Toxin from Bacillus thuringiensis: Theoretical Refinement of Three-Dimensional Structure and Prediction of Peptides as Molecular Markers for Detection of Genetically Modified Organisms.

    PubMed

    Plácido, Alexandra; Coelho, Andreia; Nascimento, Lucas Abreu do; Vasconcelos, Andreanne Gomes; Barroso, Maria Fátima; Ramos-Jesus, Joilson; Costa, Vladimir; Lima, Francisco das Chagas Alves; Delerue-Matos, Cristina; Ramos, Ricardo Martins; Marani, Mariela M; Leite, José Roberto de Souza de Almeida

    2017-03-18

    Transgenic maize produced by the insertion of the Cry transgene into its genome became the second most cultivated crop worldwide. Cry gene from Bacillus thuringiensis kurstaki expresses protein derivatives of crystalline endotoxins which confer insect resistance onto the maize crop. Mandatory labeling of processed food containing or made by genetically modified organisms is in force in many countries, so, it is very urgent to develop fast and practical methods for GMO identification, e.g., biosensors. In the absence of an available empirical structure of Cry1A(b)16 protein, a theoretical model was effectively generated, in this work, by homology modeling and molecular dynamics simulations based on two available homologous protein structures. Molecular dynamics simulations were carried out to refine the selected model, and an analysis of its global structure was performed. The refined models of Cry1A(b)16 showed a standard fold and structural characteristics similar to those seen in Bacillus thuringiensis Cry1A(a) insecticidal toxin and Bacillus thuringiensis serovar kurstaki Cry1A(c) toxin. After in silico analysis of Cry1A(b)16, two immunoreactive candidate peptides were selected and specific polyclonal antibodies were produced resulting in antibody-peptide interaction. Biosensing devices are expected to be developed for detection of the Cry1A(b) protein as a marker of transgenic maize in food. This article is protected by copyright. All rights reserved.

  19. Genetic markers and the coregonid problem

    USGS Publications Warehouse

    Stott, W.; Todd, T.N.; ,

    2007-01-01

    Coregonid fishes are the forage base in many ecosystems in the northern hemisphere and they have traditionally been part of commercial and native fisheries. Coregonids display extreme variability in morphology, life history, and behavior. Defining boundaries among coregonid taxa has been (and continues to be) the focus of many studies. Cytogenetic, biochemical, and molecular methods have been used to study the 'coregonid problem'. A survey of the literature reveals that questions of taxonomy, followed by phylogeography are most often studied. Sample collections have occurred throughout a representative portion of the coregonid range. The whitefish species Coregonus clupeaformis and C. lavaretus are most often studied. This was expected however because they are the most widely distributed, display the most variation, and are the most commercially important. However, species with restricted ranges such as the Irish pollan (C. pollan) or omul (C. migratorius) have also been studied intensively. Genetic methods have provided insights into several issues, including the placement of Stenodus and the status of C. clupeaformis and C. lavaretus. More recently, studies of sympatric forms over broad geographic scales shed light on processes involved in the evolution of the group and suggest different approaches for management and designation of taxa. ?? 2007 E. Schweizerbart'sche Verlagsbuchhandlung.

  20. Novel Molecular Markers for Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2016-01-01

    The use of molecular biomarkers assures that breast cancer (BC) patients receive optimal treatment. Established biomarkers, such as estrogen receptor, progesterone receptor, HER2, and Ki67, have been playing significant roles in the subcategorization of BC to predict the prognosis and decide the specific therapy to each patient. Antihormonal therapy using 4-hydroxytamoxifen or aromatase inhibitors have been employed in patients whose tumor cells express hormone receptors, while monoclonal antibody to HER2 has been administered to HER2-positive BCs. Although new therapeutic agents have been developed in the past few decades, many patients still die of the disease due to relapse; thus, novel molecular markers that predict therapeutic failure and those that can be targets for specific therapy are expected. We have chosen four of such molecules by reviewing recent publications, which are cyclin E, B-Myb, Twist, and DMP1β. The oncogenicity of these molecules has been demonstrated in vivo and/or in vitro through studies using transgenic mice or siRNAs, and their expressions have been shown to be associated with shortened overall or disease-free survival of BC patients. The former three molecules have been shown to accelerate epithelial–mesenchymal transition that is often associated with cancer stem cell-ness and metastasis; all these four can be novel therapeutic targets as well. Thus, large prospective studies employing immunohistochemistry will be needed to establish the predictive values of these molecules in patients with BC. PMID:26997872

  1. Validation of genetic markers associated with chalkbrood resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chalkbrood is one of the major fungal diseases of honey bee brood. Systemic mycoses caused by the fungus, Ascosphaera apis, may significantly reduce brood population, and consequently, colony strength and productivity. Developing genetic marker(s) associated with the enhanced brood survival will be ...

  2. Genetic diversity of Poa pratensis L. depending on geographical origin and compared with genetic markers

    PubMed Central

    Śmietana, Przemysław; Stępień, Edyta

    2016-01-01

    Background Poa pratensis is one of the most common species of meadow grass in Europe. Most cultivars of the species found in Poland were originally derived from its ecotypes. We compared the effectiveness of the RAPD and ISSR methods in assessing the genetic diversity of the selected populations of P. pratensis. We examined whether these methods could be useful for detecting a possible link between the geographical origin of a given population and its assessed genetic variation. Methods The molecular markers RAPD and ISSR were used and their efficiency compared using, inter alia, statistical multivariate methods (UPGMA and PCA). Results The low value of Dice’s coefficient (0.369) along with the significantly high percentage of polymorphic products indicates a substantial degree of genetic diversity among the studied populations. Our results found a correlation between the geographical origin of the studied populations and their genetic variations. For ISSR, which proved to be the more effective method in that respect, we selected primers with the greatest differentiating powers correlating to geographical origin. Discussion The populations evaluated in this study were characterized by a high genetic diversity. This seems to confirm the hypothesis that ecotypes of P. pratensis originating from different regions of Central Europe with different terrain structures and habitat conditions can be a source of great genetic variability. PMID:27703847

  3. Genetic relationships among Heliconia (Heliconiaceae) species based on RAPD markers.

    PubMed

    Marouelli, L P; Inglis, P W; Ferreira, M A; Buso, G S C

    2010-07-13

    The family Heliconiaceae contains a single genus, Heliconia, with approximately 180 species of Neotropical origin. This genus was formerly allocated to the family Musaceae, but today forms its own family, in the order Zingiberales. The combination of inverted flowers, a single staminode and drupe fruits is an exclusive characteristic of Heliconia. Heliconias are cultivated as ornamental garden plants, and are of increasing importance as cut flowers. However, there are taxonomic confusions and uncertainties about the number of species and the relationships among them. Molecular studies are therefore necessary for better understanding of the species boundaries of these plants. We examined the genetic variability and the phylogenetic relationships of 124 accessions of the genus Heliconia based on RAPD markers. Phenetic and cladistic analyses, using 231 polymorphic RAPD markers, demonstrated that the genus Heliconia is monophyletic. Groupings corresponding to currently recognized species and some subgenera were found, and cultivars and hybrids were found to cluster with their parents. RAPD analysis generally agreed with morphological species classification, except for the position of the subgenus Stenochlamys, which was found to be polyphyletic.

  4. Molecular genetics of myocardial infarction

    PubMed Central

    Ichihara, Sahoko; Nishida, Tamotsu

    2008-01-01

    Abstract Myocardial infarction (MI) is an important clinical problem because of its large contribution to mortality. The main causal and treatable risk factors for MI include hypertension, hypercholesterolemia or dyslipidemia, diabetes mellitus, and smoking. In addition to these risk factors, recent studies have shown the importance of genetic factors and interactions between multiple genes and environmental factors. Disease prevention is an important strategy for reducing the overall burden of MI, with the identification of markers for disease risk being key both for risk prediction and for potential intervention to lower the chance of future events. Although genetic linkage analyses of families and sib-pairs as well as candidate gene and genome-wide association studies have implicated several loci and candidate genes in predisposition to coronary heart disease (CHD) or MI, the genes that contribute to genetic susceptibility to these conditions remain to be identified definitively. In this review, we summarize both candidate loci for CHD or MI identified by linkage analyses and candidate genes examined by association studies. We also review in more detail studies that have revealed the association with MI or CHD of polymorphisms in MTHFR, LPL, and APOE by the candidate gene approach and those in LTA and at chromosomal region 9p21.3 by genome-wide scans. Such studies may provide insight into the function of implicated genes as well as into the role of genetic factors in the development of CHD and MI. PMID:18704761

  5. Applications and Implications of Neutral versus Non-neutral Markers in Molecular Ecology

    PubMed Central

    Kirk, Heather; Freeland, Joanna R.

    2011-01-01

    The field of molecular ecology has expanded enormously in the past two decades, largely because of the growing ease with which neutral molecular genetic data can be obtained from virtually any taxonomic group. However, there is also a growing awareness that neutral molecular data can provide only partial insight into parameters such as genetic diversity, local adaptation, evolutionary potential, effective population size, and taxonomic designations. Here we review some of the applications of neutral versus adaptive markers in molecular ecology, discuss some of the advantages that can be obtained by supplementing studies of molecular ecology with data from non-neutral molecular markers, and summarize new methods that are enabling researchers to generate data from genes that are under selection. PMID:21747718

  6. Genetic diversity of functional food species Spinacia oleracea L. by protein markers.

    PubMed

    Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A

    2014-01-01

    Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.

  7. Beyond STRs: The Role of Diallelic Markers in Forensic Genetics

    PubMed Central

    Schneider, Peter M.

    2012-01-01

    Short tandem repeat (STR) polymorphisms have been firmly established as standard DNA marker systems since more than 15 years both in forensic stain typing as well as in paternity and kinship testing. However, when analyzing genetic relationships in deficiency cases, STRs have a couple of disadvantages due to the sometimes poor biostatistical efficiency as well as the possibility to observe one or more genetic inconsistencies that could also be explained by mutational events. In such situations, additional robust markers with negligible mutations rates such as single nucleotide polymorphisms (SNPs) and insertion/deletion markers (indels) can be used as adjuncts to provide decisive genetic information in favor for or against the assumed relationship. Both SNPs and indels can now be typed more easily using multiplexes of up to 50 loci based on fragment length analysis on instruments available in all routine forensic and paternity testing laboratories, thus making it possible to extend the range of markers beyond the currently used STRs. PMID:22851932

  8. Analysis of Variance Components for Genetic Markers with Unphased Genotypes.

    PubMed

    Wang, Tao

    2016-01-01

    An ANOVA type general multi-allele (GMA) model was proposed in Wang (2014) on analysis of variance components for quantitative trait loci or genetic markers with phased or unphased genotypes. In this study, by applying the GMA model, we further examine estimation of the genetic variance components for genetic markers with unphased genotypes based on a random sample from a study population. In one locus and two loci cases, we first derive the least square estimates (LSE) of model parameters in fitting the GMA model. Then we construct estimators of the genetic variance components for one marker locus in a Hardy-Weinberg disequilibrium population and two marker loci in an equilibrium population. Meanwhile, we explore the difference between the classical general linear model (GLM) and GMA based approaches in association analysis of genetic markers with quantitative traits. We show that the GMA model can retain the same partition on the genetic variance components as the traditional Fisher's ANOVA model, while the GLM cannot. We clarify that the standard F-statistics based on the partial reductions in sums of squares from GLM for testing the fixed allelic effects could be inadequate for testing the existence of the variance component when allelic interactions are present. We point out that the GMA model can reduce the confounding between the allelic effects and allelic interactions at least for independent alleles. As a result, the GMA model could be more beneficial than GLM for detecting allelic interactions.

  9. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  10. Genetic diversity of Mycosphaerella fijiensis in Brazil analyzed using an ERIC-PCR marker.

    PubMed

    Silva, G F; Paixão, R D V; Queiroz, C B; Santana, M F; Souza, A; Sousa, N R; Hanada, R E; Gasparotto, L

    2014-09-26

    The Enterobacterial repetitive intergenic consensus (ERIC) marker was used to analyze the genetic variability of Mycosphaerella fijiensis, the causative agent of Black Sigatoka disease in banana plants. A total of 123 isolates were used, which were divided into populations based on their original hosts and collection sites in Brazil. A total of 9 loci were amplified, 77.8% of which were found to be polymorphic. The genetic diversity found in the population was 0.20. Analysis of molecular variance (AMOVA) demonstrated that the highest level of genetic variation is within populations. Cluster analysis revealed three main groups in Brazil, with no correlation between geographic and genetic distance.

  11. Molecular evidence of host-associated genetic divergence in the holly leafminer Phytomyza glabricola (Diptera: Agromyzidae): apparent discordance among marker systems.

    PubMed

    Scheffer, Sonja J; Hawthorne, David J

    2007-07-01

    Host races play a central part in understanding the role of host plant mediated divergence and speciation of phytophagous insects. Of greatest interest are host-associated populations that have recently diverged; however, finding genetic evidence for very recent divergences is difficult because initially only a few loci are expected to evolve diagnostic differences. The holly leafminer Phytomyza glabricola feeds on two hollies, Ilex glabra and I. coriacea, that are broadly sympatric throughout most of their ranges. The leafminer is often present on both host plants and exhibits a dramatic life history difference on the two hosts, suggesting that host races may be present. We collected 1393 bp of mitochondrial cytochrome oxidase I (COI) sequence and amplified fragment length polymorphism (AFLP) data (45 polymorphic bands) from sympatric populations of flies reared from the two hosts. Phylogenetic and frequency analysis of mitochondrial COI sequence data uncovered considerable variation but no structuring by the host plant, and only limited differentiation among geographical locations. In contrast, analysis of AFLP frequency data found a significant effect with host plant, and a much smaller effect with geographical location. Likewise, neighbour-joining analysis of AFLP data resulted in clustering by host plant. The AFLP data indicate that P. glabricola is most likely comprised of two host races. Because there were no fixed differences in mitochondrial or AFLP data, this host-associated divergence is likely to have occurred very recently. P. glabricola therefore provides a new sympatric system for exploring the role of geography and ecological specialization in the speciation of phytophagous insects.

  12. Molecular genetics of Thiobacillus ferrooxidans.

    PubMed Central

    Rawlings, D E; Kusano, T

    1994-01-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms. PMID:8177170

  13. [Matrix metalloproteases as molecular markers in gastric cancer].

    PubMed

    de la Peña, Sol; Sampieri, Clara L; León-Córdoba, Kenneth

    2010-02-06

    Gastric cancer is the second leading cause of cancer-associated mortality in the world. Prognosis in patients with gastric cancer is difficult to establish because it is commonly diagnosed when gastric wall invasion and metastasis have occurred. Currently, some members of the extracellular matrix metalloproteinases have been identified, whose expression in gastric tumor tissue is significantly elevated compared to healthy gastric tissue. Matrix metalloproteinases are 24 zinc-dependent endopeptidases that catalyze the proteolysis of the extracellular matrix. This degradation allows the cancer cells invade the surrounding stroma and trigger metastasis. Upregulation of certain matrix metalloproteinases in gastric cancer has been associated with a poor prognosis and elevated invasive capacity. This review compiles evidence about the genetic expression of matrix metalloproteinases in gastric cancer and their role in tumour invasion and metastasis, emphasizing their potential as molecular markers of prognosis.

  14. Genetic markers in atherosclerosis: a review.

    PubMed Central

    Morton, N E

    1976-01-01

    There is a growing number of lipoprotein markers recognized by immunological, electrophoretic, and other biochemical methods, and a beginning has been made on studying their modes of inheritance and linkage relations. Suggestive but inconclusive evidence of a relation between the cerumen polymorphism and arteriosclerosis has been published. Associations of the ABO blood groups with cardiovascular disease and serum lipid levels have been established, but the exact relation to lipoproteins and atherosclerosis remains to be determined. PMID:180292

  15. Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps.

    PubMed

    Mõttus, René; Marioni, Riccardo; Deary, Ian J

    2017-02-01

    Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities.

  16. Molecular genetics in affective illness

    SciTech Connect

    Mendlewicz, J.; Sevy, S.; Mendelbaum, K. )

    1993-01-01

    Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

  17. Alport syndrome. Molecular genetic aspects.

    PubMed

    Hertz, Jens Michael

    2009-08-01

    Alport syndrome (AS) is a progressive renal disease that is characterised by hematuria and progressive renal failure, and often accompanied by progressive high-tone sensorineural hearing loss and ocular changes in form of macular flecks and lenticonus. AS is a genetic heterogenous disease, and X-linked dominant in about 85% of the families. The autosomal recessive and dominant forms constitute about 15% of the cases. In the first part of the study is a multipoint linkage analysis of 12 families suspected of X-linked AS. The aim of that part of the study was to map a number of X-chromosomal polymorphic markers in relation to the locus for AS, in order to be able to perform carrier detection and prenatal diagnosis in the families. In addition, a more precise map of the region could form the basis for positional cloning of the gene for X-linked AS. In 1990 it was found that the X-linked form of AS is caused by mutation in the COL4A5 gene located at Xq22, and encoding the alpha 5-chain of type IV-collagen. The COL4A5 gene is a very large gene spanning 257 kb with a transcript of 6.5 kb distributed on 51 exons. In addition, two alternatively transcribed exons have been identified. In the second part of the study methods were set up for detection and characterisation of mutations in the COL4A5 gene in 135 patients suspected of AS. The aims of that part of the study were to develop an efficient and reliable approach for mutation detection, and to implement the results of the mutation analysis in clinical practice for carrier detection and prenatal diagnosis, in order to be able to offer a better genetic counselling to the families. Knowledge of a possible correlation between genotype and phenotype can be of help in predicting the prognosis. Samples from 135 probands suspected of AS and 359 of their relatives were collected, together with available clinical information. Southern blotting analysis and multiplex ligation-dependent probe amplification (MLPA) were used to

  18. Uniparental genetic markers in South Amerindians

    PubMed Central

    Bisso-Machado, Rafael; Bortolini, Maria Cátira; Salzano, Francisco Mauro

    2012-01-01

    A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data. PMID:22888284

  19. Genetic markers cannot determine Jewish descent

    PubMed Central

    Falk, Raphael

    2015-01-01

    Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify. PMID:25653666

  20. Analysis of the genetic relationships among Thai gibbon species using AFLP markers.

    PubMed

    Tanee, Tawatchai; Chaveerach, Arunrat; Sattayasai, Nison; Tanomtong, Alongkoad; Suarez, Scott A; Nuchadomrong, Suporn

    2007-05-01

    Cytogenetic studies of three gibbon species using conventional banding patterns were investigated showing an identical number of 44 diploid chromosomes. They are assumed to have common evolutionary relationships. For in depth study, molecular markers were assessed using the Amplified Fragment Length Polymorphism (AFLP) method. With seven successful primer combinations, a total of 1669 scorable bands were generated. The resulting bands were used for dendrogram construction. From the dendrogram, the individuals of Hylobates lar are closely related to H. agilis more than H. pileatus with a bootstrap value of 78%. Averages of inter-specific genetic similarity values among all gibbon species studied are 67.15% (between H. lar and H. pileatus) to 71.03% (between H. lar and H. agilis). In summary three gibbon species show genetic stability within a species. The development of specific molecular markers of a species is beneficial for genetic differentiation of this group of primates.

  1. Chondrosarcoma: with updates on molecular genetics.

    PubMed

    Kim, Mi-Jung; Cho, Kyung-Ja; Ayala, Alberto G; Ro, Jae Y

    2011-01-01

    Chondrosarcoma (CHS) is a malignant cartilage-forming tumor and usually occurs within the medullary canal of long bones and pelvic bones. Based on the morphologic feature alone, a correct diangosis of CHS may be difficult, Therefore, correlation of radiological and clinicopathological features is mandatory in the diagnosis of CHS. The prognosis of CHS is closely related to histologic grading, however, histologic grading may be subjective with high inter-observer variability. In this paper, we present histologic grading system and clinicopathological and radiological findings of conventional CHS. Subtypes of CHSs, such as dedifferentiated, mesenchymal, and clear cell CHSs are also presented. In addition, we introduce updated cytogenetic and molecular genetic findings to expand our understanding of CHS biology. New markers of cell differentiation, proliferation, and cell signaling might offer important therapeutic and prognostic information in near future.

  2. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    PubMed

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  3. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  4. Genetic Markers and Quantitative Genetic Variation in Medicago Truncatula (Leguminosae): A Comparative Analysis of Population Structure

    PubMed Central

    Bonnin, I.; Prosperi, J. M.; Olivieri, I.

    1996-01-01

    Two populations of the selfing annual Medicago truncatula Gaertn. (Leguminoseae), each subdivided into three subpopulations, were studied for both metric traits (quantitative characters) and genetic markers (random amplified polymorphic DNA and one morphological, single-locus marker). Hierarchical analyses of variance components show that (1) populations are more differentiated for quantitative characters than for marker loci, (2) the contribution of both within and among subpopulations components of variance to overall genetic variance of these characters is reduced as compared to markers, and (3) at the population level, within population structure is slightly but not significantly larger for markers than for quantitative traits. Under the hypothesis that most markers are neutral, such comparisons may be used to make hypotheses about the strength and heterogeneity of natural selection in the face of genetic drift and gene flow. We thus suggest that in these populations, quantitative characters are under strong divergent selection among populations, and that gene flow is restricted among populations and subpopulations. PMID:8844165

  5. RAPD-SCAR marker and genetic relationship analysis of three Demodex species (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-06-01

    For a long time, classification of Demodex mites has been mainly based on their hosts and phenotype characteristics. The study was the first to conduct molecular identification and genetic relationship analysis for six isolates of three Demodex species by random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) marker. Totally, 239 DNA fragments were amplified from six Demodex isolates with 10 random primers in RAPD, of which 165 were polymorphic. Using a single primer, at least five fragments and at most 40 in the six isolates were amplified, whereas within a single isolate, a range of 35-49 fragments were amplified. DNA fingerprints of primers CZ 1-9 revealed intra- and interspecies difference in six Demodex isolates, whereas primer CZ 10 only revealed interspecies difference. The genetic distance and dendrogram showed the intraspecific genetic distances were closer than the interspecific genetic distances. The interspecific genetic distances of Demodex folliculorum and Demodex canis (0.7931-0.8140) were shorter than that of Demodex brevis and D. canis (0.8182-0.8987). The RAPD-SCAR marker displayed primer CZ 10 could be applied to identify the three Demodex species. The 479-bp fragment was specific for D. brevis, and the 261-bp fragment was specific for D. canis. The conclusion was that the RAPD-SCAR multi-marker was effective in molecular identification of three Demodex species. The genetic relationship between D. folliculorum and D. canis was nearer than that between D. folliculorum and D. brevis.

  6. Molecular Analyses Reveal Unexpected Genetic Structure in Iberian Ibex Populations

    PubMed Central

    Pérez, Jesús M.; Soriguer, Ramón C.; Granados, José E.

    2017-01-01

    Background Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex. Methodology/Principal Findings We used 30 neutral microsatellite markers from 333 Iberian ibex to explore genetic diversity in the three main Iberian ibex populations in Spain corresponding to the two persisting subspecies (victoria and hispanica). Our molecular analyses detected recent genetic bottlenecks in all the studied populations, a finding that coincides with the documented demographic decline in C. pyrenaica in recent decades. Genetic divergence between the two C. pyrenaica subspecies (hispanica and victoriae) was substantial (FST between 0.39 and 0.47). Unexpectedly, we found similarly high genetic differentiation between two populations (Sierra Nevada and Maestrazgo) belonging to the subspecies hispanica. The genetic pattern identified in our study could be the result of strong genetic drift due to the severe genetic bottlenecks in the studied populations, caused in turn by the progressive destruction of natural habitat, disease epidemics and/or uncontrolled hunting. Conclusions Previous Capra pyrenaica conservation decision-making was based on the clear distinction between the two subspecies (victoriae and hispanica); yet our paper raises questions about the usefulness for conservation plans of the distinction between these subspecies. PMID:28135293

  7. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species.

    PubMed

    Buyyarapu, Ramesh; Kantety, Ramesh V; Yu, John Z; Saha, Sukumar; Sharma, Govind C

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps.

  8. c-GAMMA:Comparative Genome Analysis of Molecular Markers

    NASA Astrophysics Data System (ADS)

    Peterlongo, Pierre; Nicolas, Jacques; Lavenier, Dominique; Vorc'h, Raoul; Querellou, Joël

    Discovery of molecular markers for efficient identification of living organisms remains a challenge of high interest. The diversity of species can now be observed in details with low cost genomic sequences produced by new generation of sequencers. A method, called c-GAMMA, is proposed. It formalizes the design of new markers for such data. It is based on a series of filters on forbidden pairs of words, followed by an optimization step on the discriminative power of candidate markers.

  9. Molecular markers and strategies to control aflatoxin in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods of isolation of molecular markers and software developed in ARS for finding the most informative markers will be presented. Also, two different approaches being used at the NPRL to reduce aflatoxin in peanut will be discussed. One is the development of phytoalexin-detoxification enzyme inh...

  10. Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers

    PubMed Central

    Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A

    2015-01-01

    In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624

  11. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii.

    PubMed

    Gygax, M; Gianfranceschi, L; Liebhard, R; Kellerhals, M; Gessler, C; Patocchi, A

    2004-11-01

    Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype-phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.

  12. Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.)

    PubMed Central

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N.; Aslam, M.N.; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A.; Kilian, A.; Sharpe, Andrew G.; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines ‘Lynx-037DH’ and ‘Monty-028DH’. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  13. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    PubMed

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.

  14. Association of genetic markers in cattle receiving differing implant protocols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential interaction of growth-promoting implants and genetic markers previously reported to be associated with growth, carcass traits, and tenderness was evaluated. Two implant protocols were applied to subsets of steers (n=383) and heifers (n=65) that were also genotyped for 47 SNP reported ...

  15. Estimating ancestry and heterozygosity of hybrids using molecular markers

    PubMed Central

    2012-01-01

    Background Hybridization, genetic mixture of distinct populations, gives rise to myriad recombinant genotypes. Characterizing the genomic composition of hybrids is critical for studies of hybrid zone dynamics, inheritance of traits, and consequences of hybridization for evolution and conservation. Hybrid genomes are often summarized either by an estimate of the proportion of alleles coming from each ancestral population or classification into discrete categories like F1, F2, backcross, or merely “hybrid” vs. “pure”. In most cases, it is not realistic to classify individuals into the restricted set of classes produced in the first two generations of admixture. However, the continuous ancestry index misses an important dimension of the genotype. Joint consideration of ancestry together with interclass heterozygosity (proportion of loci with alleles from both ancestral populations) captures all of the information in the discrete classification without the unrealistic assumption that only two generations of admixture have transpired. Methods I describe a maximum likelihood method for joint estimation of ancestry and interclass heterozygosity. I present two worked examples illustrating the value of the approach for describing variation among hybrid populations and evaluating the validity of the assumption underlying discrete classification. Results Naively classifying natural hybrids into the standard six line cross categories can be misleading, and false classification can be a serious problem for datasets with few molecular markers. My analysis underscores previous work showing that many (50 or more) ancestry informative markers are needed to avoid erroneous classification. Conclusion Although classification of hybrids might often be misleading, valuable inferences can be obtained by focusing directly on distributions of ancestry and heterozygosity. Estimating and visualizing the joint distribution of ancestry and interclass heterozygosity is an effective way

  16. Evaluation of algorithms used to order markers on genetic maps.

    PubMed

    Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F

    2009-12-01

    When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.

  17. Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    PubMed Central

    Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.

    2011-01-01

    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885

  18. Behavioral and genetic markers of sleepiness.

    PubMed

    Goel, Namni; Dinges, David F

    2011-10-15

    Neurobehavioral responses to acute total and chronic partial sleep deprivation occur in healthy adults and are particularly evident in vigilant attention performance. There are large inter-individual differences in the degree of cognitive deficits--such differences are manifested in proportionality between the mean and variance as sleep loss progresses. It has recently been demonstrated via laboratory experiments that differential neurobehavioral vulnerability to sleep deprivation is not random--but rather is stable and trait-like--strongly suggesting a phenotypic response with possible genotypic involvement. These experiments also showed that vulnerability was not explained by subjects' baseline functioning or a number of other potential predictors. Differential vulnerability has been shown to extend to chronic partial sleep deprivation. One potential genetic biomarker for such differential vulnerability is the human leukocyte antigen (HLA) DQB1*0602, an allele which we recently demonstrated predicts interindividual differences in sleepiness, physiological sleep, and fatigue to chronic partial sleep deprivation in healthy adults. Determination of biomarkers of individual differences to sleep loss will help identify those individuals in the general population who are most in need of prevention of sleep debt and in need of effective countermeasures for sleep loss; will further understanding and management of vulnerability to excessive sleepiness due to common sleep and medical disorders; and will inform public policies pertaining to the need for adequate sleep.

  19. Functional markers for gene mapping and genetic diversity studies in sugarcane

    PubMed Central

    2011-01-01

    Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program. PMID:21798036

  20. Application of DNA markers to estimate genetic diversity of Mycobacterium tuberculosis strains.

    PubMed

    Korzekwa, Karol; Polok, Kornelia; Zieliński, Roman

    2006-01-01

    The obligatory human pathogen, Mycobacterium tuberculosis, is the most important etiological factor of tuberculosis. Unfortunately, there is little information about genetic diversity of this pathogen. The main aim of this research was the estimation of genetic diversity of M. tuberculosis on the basis of various categories of DNA markers. The genome of 32 strains were scanned by DNA markers such RAPD, IS6110 and catalase-peroxidase katG gene. All 162 identified loci were polymorphic. The genetic diversity coefficient (HT) of M. tuberculosis was 0.32 for RAPD and 0.27 for IS 6110. There were 14 alleles in katG gene. All strains were characterised by the individual molecular pattern. Genetic similarity varied from 0.13 to 0.94 (RAPD markers) and from 0 to 1 for (IS6110). M. tuberculosis strains did not represent a clonal structure, single source of transmission and epidemiological relationships as well. The applied DNA markers proved to be highly efficient for analysis of genetic structure of M. tuberculosis.

  1. Molecular genetic medicine. Vol. 2

    SciTech Connect

    Friedmann, T.

    1992-01-01

    Theodore Friedmann has put together an interesting spectrum of articles for volume 2 of Molecular Genetic Medicine. Perhaps related to his own interest in the X chromosome, three articles deal with X-chromosomal topics, while two deal with autosomal disorders and two treat viral disorders. The fragile-X syndrome is thoroughly covered by Brown and Jenkins with an article that is heavily weighted to clinical aspects and now out-of-date RFLP approaches. The timeliness of the volume is insured by the coverage (albeit brief) that they give to the cloning of FMR-1. Gartler et al. present a balanced review of X inactivation - the oft-surveyed subject was comprehensively covered in a manner that provided new perspectives. Lambert et al. provide an exhaustive review of natural and induced mutation of hypoxanthine phosphoribosyltransferase. For autosomal disorders, an excellent review of the molecular genetics of hemoglobin syntheses and their alterations in disease is provided by Berg and Schecter. The level of detail presented seemed just right to this reviewer. A concise review of recent advances in the study of Down syndrome and its animal model, trisomy 16 mice, is provided by Holtzman and Epstein. With regard to viral topics, Chisari thoughtfully reviews hepatitis B virus structure and function and the possible pathogenic mechanisms involved in its induction of hepatocellular carcinoma. Wong-Staal and Haseltine's up-to-date review of the increasingly complex regulatory genes of HIV is marred by a mix-up in figure legends - an exception to an otherwise well-proofread book. In summary, this is a good volume of its type and is recommended for those who might benefit from reading such review articles.

  2. A strategy for using multiple linked markers for genetic counseling.

    PubMed Central

    Chakravarti, A; Buetow, K H

    1985-01-01

    A strategy for using multiple linked markers for genetic counseling is to test sequentially individual markers until a diagnosis can be made. We show that in order to minimize the number of tests performed per case while diagnosing all informative cases the order in which the markers are to be tested is critical. We describe an algorithm to obtain this order using the parameter "I," the frequency of informative cases. The I value for a specific locus used depends on the marker frequency, association with the disease locus, and also on the informativeness of the marker loci already tested. Realizing that a direct assay for the beta S gene already exists, and that most cases of beta-thalassemia in Mediterraneans can be directly diagnosed using synthetic oligonucleotide probes, we illustrate the above technique by examining nine DNA polymorphisms in the human beta-globin cluster for their ability to diagnose sickle-cell anemia in American blacks and beta-thalassemia in Mediterraneans. This analysis shows that 95.39% of all sickle-cell pregnancies can be diagnosed by testing a subset of only six markers chosen by our algorithm. Furthermore, six markers can also diagnose 88.03% of beta-thalassemia in Greeks and 83.56% of beta-thalassemia in Italians. The test set is different from that suggested by the individual informative frequencies due to nonrandom associations between the restriction sites. PMID:2996337

  3. Molecular Imaging Markers to Track Huntington’s Disease Pathology

    PubMed Central

    Wilson, Heather; De Micco, Rosa; Niccolini, Flavia; Politis, Marios

    2017-01-01

    Huntington’s disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET

  4. Molecular Imaging Markers to Track Huntington's Disease Pathology.

    PubMed

    Wilson, Heather; De Micco, Rosa; Niccolini, Flavia; Politis, Marios

    2017-01-01

    Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging

  5. [Research progress on molecular genetics of forest musk deer].

    PubMed

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer.

  6. Segmental distribution of some common molecular markers for colorectal cancer (CRC): influencing factors and potential implications.

    PubMed

    Papagiorgis, Petros Christakis

    2016-05-01

    Proximal and distal colorectal cancers (CRCs) are regarded as distinct disease entities, evolving through different genetic pathways and showing multiple clinicopathological and molecular differences. Segmental distribution of some common markers (e.g., KRAS, EGFR, Ki-67, Bcl-2, COX-2) is clinically important, potentially affecting their prognostic or predictive value. However, this distribution is influenced by a variety of factors such as the anatomical overlap of tumorigenic molecular events, associations of some markers with other clinicopathological features (stage and/or grade), and wide methodological variability in markers' assessment. All these factors represent principal influences followed by intratumoral heterogeneity and geographic variation in the frequency of detection of particular markers, whereas the role of other potential influences (e.g., pre-adjuvant treatment, interaction between markers) remains rather unclear. Better understanding and elucidation of the various influences may provide a more accurate picture of the segmental distribution of molecular markers in CRC, potentially allowing the application of a novel patient stratification for treatment, based on particular molecular profiles in combination with tumor location.

  7. Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment.

    PubMed

    Yıldız, M; Koçak, M; Baloch, F S

    2015-09-08

    Lack of requisite genetic variation in Turkish okra has necessitated the use of different types of markers for estimating the genetic diversity and identifying the source of variation. Transposable elements, present abundantly in plant genomes, generate genomic diversity through their replication and are thus an excellent source of molecular markers. We hypothesized that inter-primer binding site (iPBS)-retrotransposons could be the source of variation because of their genome plasticity nature. In the present study, genetic diversity of 66 okra landraces was analyzed using iPBS-retrotransposon markers. iPBS-retrotransposons detected 88 bands with 40.2% polymorphism and an average of 6.8 bands per primer. Gene diversity and Shannon's information index ranged from 0.01 to 0.13 and 0.02 to 0.21 for iPBS-retrotransposons and from 0.06 to 0.46 and 0.14 to 0.65 for simple sequence repeat (SSR) markers, respectively. Polymorphism information content value for retrotransposons varied between 0.12 and 0.99, while that for SSR was from 0.52 to 0.81. Neighbor joining analysis based on retrotransposons and SSRs divided all the accessions into four clusters; however, SSR markers were more efficient in clustering the landraces based on their origin. Using the STRUCTURE software for determining population structure, and two populations (at the number of hypothetical subpopulations, K = 2) were identified among the landraces. Low genetic diversity in Turkish okra highlights the need for the introduction of plants from countries with greater genetic diversity for these crops. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in okra.

  8. Development of INDEL Markers for Genetic Mapping Based on Whole Genome Resequencing in Soybean.

    PubMed

    Song, Xiaofeng; Wei, Haichao; Cheng, Wen; Yang, Suxin; Zhao, Yanxiu; Li, Xuan; Luo, Da; Zhang, Hui; Feng, Xianzhong

    2015-10-19

    Soybean [Glycine max (L.) Merrill] is an important crop worldwide. In this study, a Chinese local soybean cultivar, Hedou 12, was resequenced by next generation sequencing technology to develop INsertion/DELetion (INDEL) markers for genetic mapping. 49,276 INDEL polymorphisms and 242,059 single nucleotide polymorphisms were detected between Hedou 12 and the Williams 82 reference sequence. Of these, 243 candidate INDEL markers ranging from 5-50 bp in length were chosen for validation, and 165 (68%) of them revealed polymorphisms between Hedou 12 and Williams 82. The validated INDEL markers were also tested in 12 other soybean cultivars. The number of polymorphisms in the pairwise comparisons of 14 soybean cultivars varied from 27 to 165. To test the utility of these INDEL markers, they were used to perform genetic mapping of a crinkly leaf mutant, and the CRINKLY LEAF locus was successfully mapped to a 360 kb region on chromosome 7. This research shows that high-throughput sequencing technologies can facilitate the development of genome-wide molecular markers for genetic mapping in soybean.

  9. (-)-Menthol biosynthesis and molecular genetics

    NASA Astrophysics Data System (ADS)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  10. Genetic diversity in natural populations of Jacaranda decurrens Cham. determined using RAPD and AFLP markers.

    PubMed

    Bertoni, Bianca W; de C Telles, Mariana P; Malosso, Milena G; Torres, Simone C Z; Pereira, José O; Lourenço, Mirian V; de C França, Suzelei; Pereira, Ana M S

    2010-07-01

    Jacaranda decurrens (Bignoniaceae) is an endemic species of the Cerrado with validated antitumoral activity. The genetic diversity of six populations of J. decurrens located in the State of São Paulo was determined in this study by using molecular markers for randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Following optimization of the amplification reaction, 10 selected primers generated 78 reproducible RAPD fragments that were mostly (69.2%) polymorphic. Two hundred and five reproducible AFLP fragments were generated by using four selected primer combinations; 46.3% of these fragments were polymorphic, indicating a considerable level of genetic diversity. Analysis of molecular variance (AMOVA) using these two groups of markers indicated that variability was strongly structured amongst populations. The unweighted pair group method with arithmatic mean (UPGMA) and Pearson's correlation coefficient (RAPD -0.16, p = 0.2082; AFLP 0.37, p = 0.1006) between genetic matrices and geographic distances suggested that the population structure followed an island model in which a single population of infinite size gave rise to the current populations of J. decurrens, independently of their spatial position. The results of this study indicate that RAPD and AFLP markers were similarly efficient in measuring the genetic variability amongst natural populations of J. decurrens. These data may be useful for developing strategies for the preservation of this medicinal species in the Cerrado.

  11. Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers.

    PubMed

    Zhang, L; Zhang, H G; Li, X F

    2013-01-24

    Dahurian larch (Larix gmelinii), a deciduous conifer, is the northernmost tree, native to eastern Siberia and nearby regions of China. We used growth traits and molecular markers to assess genetic variation in different L. gmelinii growing regions; 105 individual samples were collected from seven regions of the Qingshan Forestry Centre, Heilongjiang Province, China. The greatest genetic regional variation was seen in the Youhao area, based on coefficients of variation for tree height, diameter and volume (14.73, 28.25, and 55.27%, respectively). Analysis using molecular markers showed rich genetic diversity. The RAPD and ISSR methods both indicated that most variation came from within populations. The seven regions were divided into two groups (Daxing'an and Xiaoxing'an Mountain ranges) by RAPD cluster analysis: Tianchi, Xiaojiuya, Yuanjiang, and Taiping regions were placed in the first group at a genetic distance of 0.08; while the other regions were in the second group. The correlation between RAPD markers and geographical distance was significant, with a correlation coefficient of 0.752.

  12. Genetic diversity in natural populations of Jacaranda decurrens Cham. determined using RAPD and AFLP markers

    PubMed Central

    2010-01-01

    Jacaranda decurrens (Bignoniaceae) is an endemic species of the Cerrado with validated antitumoral activity. The genetic diversity of six populations of J. decurrens located in the State of São Paulo was determined in this study by using molecular markers for randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Following optimization of the amplification reaction, 10 selected primers generated 78 reproducible RAPD fragments that were mostly (69.2%) polymorphic. Two hundred and five reproducible AFLP fragments were generated by using four selected primer combinations; 46.3% of these fragments were polymorphic, indicating a considerable level of genetic diversity. Analysis of molecular variance (AMOVA) using these two groups of markers indicated that variability was strongly structured amongst populations. The unweighted pair group method with arithmatic mean (UPGMA) and Pearson's correlation coefficient (RAPD -0.16, p = 0.2082; AFLP 0.37, p = 0.1006) between genetic matrices and geographic distances suggested that the population structure followed an island model in which a single population of infinite size gave rise to the current populations of J. decurrens, independently of their spatial position. The results of this study indicate that RAPD and AFLP markers were similarly efficient in measuring the genetic variability amongst natural populations of J. decurrens. These data may be useful for developing strategies for the preservation of this medicinal species in the Cerrado. PMID:21637428

  13. Evaluation of genetic diversity in fig accessions by using microsatellite markers.

    PubMed

    do Val, A D B; Souza, C S; Ferreira, E A; Salgado, S M L; Pasqual, M; Cançado, G M A

    2013-04-25

    Fig (Ficus carica L.) is a fruit of great importance worldwide. Its propagation is carried out with stem cuttings, a procedure that favors the occurrence of synonymy among specimens. Thus, molecular markers have become an important tool for studies of DNA fingerprinting, germplasm characterization, and genetic diversity evaluation in this plant species. The aim of this study was the analysis of genetic diversity among accessions of fig and the detection of synonyms among samples using molecular markers. Five microsatellite markers previously reported as polymorphic to fig were used to characterize 11 fig cultivars maintained in the germplasm bank located in Lavras, Minas Gerais. A total of 21 polymorphic DNA fragments were amplified, with an average of 4.2 alleles per locus. The average allelic diversity and polymorphic information content were 0.6300 and 0.5644, respectively, whereas the total value for the probability of identity was 1.45 x 10(-4). The study allowed the identification of 10 genotypes and 2 synonymous individuals. The principal coordinate analysis showed no defined clusters despite the formation of groups according to geographical origin. However, neighbor-joining analysis identified the same case of synonymy detected using principal coordinate analysis. The data also indicated that the fig cultivars analyzed constitute a population of individuals with high genetic diversity and a broad range of genetic variation.

  14. On marker-assisted prediction of genetic value: beyond the ridge.

    PubMed Central

    Gianola, Daniel; Perez-Enciso, Miguel; Toro, Miguel A

    2003-01-01

    Marked-assisted genetic improvement of agricultural species exploits statistical dependencies in the joint distribution of marker genotypes and quantitative traits. An issue is how molecular (e.g., dense marker maps) and phenotypic information (e.g., some measure of yield in plants) is to be used for predicting the genetic value of candidates for selection. Multiple regression, selection index techniques, best linear unbiased prediction, and ridge regression of phenotypes on marker genotypes have been suggested, as well as more elaborate methods. Here, phenotype-marker associations are modeled hierarchically via multilevel models including chromosomal effects, a spatial covariance of marked effects within chromosomes, background genetic variability, and family heterogeneity. Lorenz curves and Gini coefficients are suggested for assessing the inequality of the contribution of different marked effects to genetic variability. Classical and Bayesian methods are presented. The Bayesian approach includes a Markov chain Monte Carlo implementation. The generality and flexibility of the Bayesian method is illustrated when a Lorenz curve is to be inferred. PMID:12586721

  15. Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers.

    PubMed

    Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Ab Majid, Abdul Hafiz; Hamdan, Mohammad Razak

    2016-10-01

    Three polymerase chain reaction (PCR) techniques were compared to analyse the genetic diversity of Clinacanthus nutans eight populations in the northern region of Peninsular Malaysia. The PCR techniques were random amplified polymorphic deoxyribonucleic acids (RAPD), inter-simple sequence repeats (ISSR) and random amplified microsatellite polymorphisms (RAMP). Leaf genomic DNA was PCR amplified using 17 RAPD, 8 ISSR and 136 RAMP primers . However, only 10 RAPD primers, 5 ISSR primers and 37 RAMP primers produced reproducible bands. The results were evaluated for polymorphic information content (PIC), marker index (MI) and resolving power (RP). The RAMP marker was the most useful marker compared to RAPD and ISSR markers because it showed the highest average value of PIC (0.25), MI (11.36) and RP (2.86). The genetic diversity showed a high percentage of polymorphism at the species level compared to the population level. Furthermore, analysis of molecular variance revealed that the genetic diversity was higher within populations, as compared to among populations of C. nutans. From the results, the RAMP technique was recommended for the analysis of genetic diversity of C. nutans.

  16. Analysis of genetic diversity in red clover (Trifolium pratense L.) breeding populations as revealed by RAPD genetic markers.

    PubMed

    Ulloa, Odeth; Ortega, Fernando; Campos, Hugo

    2003-08-01

    Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed.

  17. Identification of molecular markers to study the Garcinia spp. diversity.

    PubMed

    Parthasarathy, Utpala; Nandakishore, O P; Rosana, O B; Babu, K Nirmal; Kumar, R Senthil; Parthasarathy, V A

    2016-06-01

    The genus Garcinia shows a considerable variation in its morphological characters such as leaf, flower and fruit with taxonomic ambiguity. It is a potential under-exploited multipurpose crop that gained considerable attention for the presence of (-) hydroxycitric acid, an anti-obesity compound, in its fruit rind and leaves. Here, we evaluated the genetic relationship through molecular markers among the selected 9 species commonly available in the Western Ghats and the Northeastern Himalayan foot hills of India. The nucleotide sequence data obtained from two prominent monomorphic bands generated in ISSR profiling of the species was utilized for the study. The selected bands were found to be of ITS region (700 bp) and partial region of KNOX-1 gene (600 bp). The evolutionary cluster was formed using MEGA5 software. The study indicated 2 major clusters, influenced by floral morphology of the species and availability of (-) hydroxycitric acid in their fruit rinds. In the subclusters, one species from the Western Ghats were paired with another from Northeastern Himalayas with relatively similar morphological traits.

  18. Genetic Kinship Investigation from Blood Groups to DNA Markers

    PubMed Central

    Geserick, Gunther; Wirth, Ingo

    2012-01-01

    The forensic application of hereditary characteristics became possible after the discovery of human blood groups by Karl Landsteiner in 1901. The foundation for their use in kinship investigation was laid by Emil von Dungern and Ludwig Hirschfeld in 1910 by clarification of the inheritance of the ABO groups. Up to the middle of the 20th century further red cell membrane systems were discovered. From the 1920s Fritz Schiff and Georg Strassmann fought for the introduction of blood groups into forensic kinship investigation. A new era of hemogenetics was opened from 1955 as genetic polymorphisms were described in serum proteins. Starting in 1958 there followed the complex HLA system of white blood cells, which from 1963 was joined by polymophisms in erythrocyte enzymes. Therefore, from the 1980s, it was possible to clarify the majority of kinship cases with a combination of conventional markers. From 1990 to 2000 the conventional markers were gradually replaced by the more effective DNA markers. Simultaneously typing shifted from the phenotype level to the genotype level. The genomic structure of conventional genetic markers could also now be explained. As a reflection of scientific progress the legal situation also changed, particularly in the form of the official guidelines for kinship investigation. PMID:22851931

  19. Genetic diversity analysis of Bt cotton genotypes in Pakistan using simple sequence repeat markers.

    PubMed

    Ullah, I; Iram, A; Iqbal, M Z; Nawaz, M; Hasni, S M; Jamil, S

    2012-03-14

    The popularity of genetically modified insect resistant (Bt) cotton has promoted large scale monocultures, which is thought to worsen the problem of crop genetic homogeneity. Information on genetic diversity among Bt cotton varieties is lacking. We evaluated genetic divergence among 19 Bt cotton genotypes using simple sequence repeat (SSR) markers. Thirty-seven of 104 surveyed primers were found informative. Fifty-two primers selected on the basis of reported intra-hirsutum polymorphism in a cotton marker database showed a high degree of polymorphism, 56% compared to 13% for randomly selected primers. A total of 177 loci were amplified, with an average of 1.57 loci per primer, generating 38 markers. The amplicons ranged in size from 98 to 256 bp. The genetic similarities among the 19 genotypes ranged from 0.902 to 0.982, with an average of 0.947, revealing a lack of diversity. Similarities among genotypes from public sector organizations were higher than genotypes developed by private companies. Hybrids were found to be more distant compared to commercial cultivars and advanced breeding lines. Cluster analysis grouped the 19 Bt cotton genotypes into three major clusters and two independent entries. Cultivars IR-3701, Ali Akbar-802 and advanced breeding line VH-259 grouped in subcluster B2, with very narrow genetic distances despite dissimilar parentage. We found a very high level of similarity among Pakistani-bred Bt cotton varieties, which means that genetically diverse recurrent parents should be included to enhance genetic diversity. The intra-hirsutum polymorphic SSRs were found to be highly informative for molecular genetic diversity studies in these cotton varieties.

  20. Genetic Markers Associated with Clinical Outcomes in Patients with Inflammatory Bowel Disease.

    PubMed

    Yamamoto-Furusho, Jesús K; Fonseca-Camarillo, Gabriela

    2015-11-01

    Genetic factors play a significant role in determining inflammatory bowel disease (IBD) susceptibility. Epidemiologic data support genetic contribution to the pathogenesis of IBD, which include familial aggregation, twin studies, and racial and ethnic differences in disease prevalence. Recently, several new genes have been identified to be involved in the genetic susceptibility to IBD. The characterization of novel genes potentially will lead to the identification of therapeutic agents and clinical assessment of phenotype and prognosis in patients with IBD. The development of genetic markers associated with clinical outcomes in patients with IBD will be very important in the future. The progress of molecular biology tools (microarrays, proteomics, and epigenetics) have progressed the field of the genetic markers discovery. The advances in bioinformatics coupled with cross-disciplinary collaborations have greatly enhanced our ability to retrieve, characterize, and analyze large amounts of data generated by the technological advances. The techniques available for markers development are genomics (single nucleotide polymorphism genotyping, pharmacogenetics, and gene expression analyses) and proteomics. This could be a potential great benefit in predicting the course of disease in individual patients and in guiding appropriate medical therapy.

  1. Biological (molecular and cellular) markers of toxicity

    SciTech Connect

    McCarthy, J.F.

    1990-04-01

    The overall objective of this study is to evaluate the use of the small aquarium fish, Japanese Medaka, as a predictor of potential genotoxicity following exposure to carcinogens. This will be accomplished by quantitatively investigating the early molecular events associated with genotoxicity of various tissues of Medaka subsequent to exposure of the organism to several known carcinogens, such as diethylnitrosamine (DEN) and benzo(a)pyrene (BaP). 11 refs., 1 fig., 1 tab.

  2. Data resolution: a jackknife procedure for determining the consistency of molecular marker datasets.

    PubMed

    van Hintum, Th J L

    2007-08-01

    The results of genetic diversity studies using molecular markers not only depend on the biology of the studied objects but also on the quality of the marker data. Poor data quality may hamper the correct answering of biological questions. A new statistic is proposed to estimate the quality of a marker data set with regard to its ability to describe the structure of the biological material under study. This statistic is called data resolution (DR). It is calculated by splitting a marker data set at random into two sets each with half the number of markers. In each set, similarities between all pairs of objects are calculated. Subsequently, the similarities obtained for the two sets are correlated. This process is repeated a large number of times. The average of the correlation coefficients obtained in this way is the DR of the dataset. In the present paper, the DR statistic is applied to four studies involving amplified fragment length polymorphism as well as micro-satellite markers. In addition, some properties and possible applications of DR are discussed, including the prediction of the added value of scoring additional markers, and the determination of which similarity measure is, apart from genetical considerations, most appropriate for analyzing the data.

  3. Myeloproliferative neoplasms: Current molecular biology and genetics.

    PubMed

    Saeidi, Kolsoum

    2016-02-01

    Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented.

  4. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers.

    PubMed

    Alikhani, Leila; Rahmani, Mohammad-Shafie; Shabanian, Naghi; Badakhshan, Hedieh; Khadivi-Khub, Abdollah

    2014-11-15

    Persian oak (Quercus brantii Lindl.) is one of the most important woody species of the Zagros forests in Iran. Three molecular marker techniques: start codon targeted (SCoT), inter-simple sequence repeat (ISSR) and inter-retrotransposon amplified polymorphism (IRAP) markers were compared for fingerprinting of 125 individuals of this species collected from different geographical locations of north-west of Iran. A total of 233 bands were amplified by 18 ISSR primers, of which 224 (96.10%) were polymorphic, and 126 polymorphic bands (97.65%) were observed in 129 bands amplified by 10 IRAP primers. Besides, 118 bands were observed for all 10 SCoT primers, of which 113 were polymorphic (95.71%). Average polymorphism information content (PIC) for ISSR, IRAP and SCoT markers was 0.30, 0.32 and 0.38, respectively, and this revealed that SCoT markers were more informative than IRAP and ISSR for the assessment of diversity among individuals. Based on the three different molecular types, cluster analysis revealed that 125 individuals taken for the analysis can be divided into three distinct clusters. The Jaccard's genetic similarity based on the combined data ranged from 0.23 to 0.76. These results suggest that efficiency of SCoT, IRAP and ISSR markers was relatively the same in fingerprinting of individuals. All molecular marker types revealed a low genetic differentiation among populations, indicating the possibility of gene flow between the studied populations. These results have an important implication for Persian oak (Q. brantii) germplasm characterization, improvement, and conservation.

  5. Use of the IRAP marker to study genetic variability in Pseudocercospora fijiensis populations.

    PubMed

    de Queiroz, Casley Borges; Santana, Mateus Ferreira; da Silva, Gilvan Ferreira; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2014-03-01

    Pseudocercospora fijiensis is the etiological agent of black Sigatoka, which is currently considered as one of the most destructive banana diseases in all locations where it occurs. It is estimated that a large portion of the P. fijiensis genome consists of transposable elements, which allows researchers to use transposon-based molecular markers in the analysis of genetic variability in populations of this pathogen. In this context, the inter-retrotransposon-amplified polymorphism (IRAP) was used to study the genetic variability in P. fijiensis populations from different hosts and different geographical origins in Brazil. A total of 22 loci were amplified and 77.3 % showed a polymorphism. Cluster analysis revealed two major groups in Brazil. The observed genetic diversity (H E) was 0.22, and through molecular analysis of variance, it was determined that the greatest genetic variability occurs within populations. The discriminant analysis of principal components revealed no structuring related to the geographical origin of culture of the host. The IRAP-based marker system is a suitable tool for the study of genetic variability in P. fijiensis.

  6. [Genetics and molecular medicine in cardiology].

    PubMed

    Rojas Martínez, A; Ortiz López, R; Delgado Enciso, I

    2001-01-01

    The discoveries on molecular aspects of cellular function are changing the concepts of health and disease. All medical fields, including cardiology, have been enriched with several diagnostic test to determine predisposition and to detect molecular dysfunctions. This review on the genetic and molecular aspects of cardiovascular diseases is written at the Centenary of the rediscovery of Mendel's principles on heredity and at the time of the announcement of the end of the human genome sequencing task. The review starts with considerations on the pluricellular constitution of the human body, and the principles of genetics with their molecular bases; including a short description of the methods for gene mapping. The following sections give a historic synopsis on the concepts of medical genetics, molecular medicine, and the Human Genome Project. The review ends with a brief description of the spectrum of genetic diseases, using examples of cardiovascular diseases.

  7. Assessment of genetic diversity in Brazilian barley using SSR markers

    PubMed Central

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  8. Construction and characterization of porcine circovirus type 2 carrying a genetic marker strain.

    PubMed

    Liu, Changming; Wei, Yanwu; Zhang, Caofan; Lu, Yueha; Kong, Xiangang

    2007-07-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of post-weaning multisystemic wasting syndrome in pigs. To generate a genetic marker strain of PCV2, the full-length genome of the virus was amplified using PCR, and two copies of the genome were ligated in tandem to construct an infectious molecular clone. A Sal I restriction enzyme site was inserted into the clone as a genetic marker, and the recombinant plasmid was transfected into porcine kidney cells to generate mutant virus. The antigenicity of the recovered virus was confirmed by immunoperoxidase monolayer assay. The viral antigen was visualized in the nucleus and cytoplasm of the virus-infected cells. The viral genome could be differentiated from the wild-type parent by PCR and restriction fragment length polymorphism (PCR-RFLP). The mutant virus was stable on multiplication through 60 passages in cell culture; the highest titer reached was 10(6.6)TCID(50)/ml. Four 35-day-old unvaccinated piglets were inoculated with the virus by the intranasal and intravenous routes. Two of the virus-infected pigs developed high temperatures, progressive weight loss, and swollen lymph nodes. The viral antigen and nucleic acid were detected in numerous tissues of the pigs. The results indicate that the genetic marker strain should be a useful tool in studies on pathogenesis, vaccination, and molecular diagnosis of PCV2.

  9. Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits.

    PubMed

    Achleitner, Andreas; Tinker, Nicholas A; Zechner, Elisabeth; Buerstmayr, Hermann

    2008-11-01

    One hundred and fourteen oat (Avena sativa L.) varieties of worldwide origin were evaluated for genetic diversity based on 77 molecular polymorphisms produced by eight selective AFLP primer combinations. Genetic similarity, calculated using the DICE coefficient, was used for cluster analysis and principal component analysis was applied. In addition population structure was explored to identify discrete subpopulations based on allele frequency. Although clustering and population structure showed relationships with region and country of origin, there was no obvious relationship to hull presence or hull colour. Oat varieties originating from European breeding programs showed less diversity than varieties originating from North and South America. Associations between AFLP markers and agronomic traits (grain yield, groat yield, panicle emergence, plant height, and lodging) as well as kernel quality traits (kernel weight, test weight, screening percent and groat percent) were also investigated. Marker-trait associations were tested using a naïve simple regression model and five additional models that account for population structure. Significant associations were found for 23 AFLP markers, with many of these affecting multiple traits. This study demonstrates that diversity can be significantly enhanced using a global collection, and provides evidence for marker-trait associations that can be validated in segregating populations and exploited through marker-assisted selection.

  10. Biological (molecular and cellular) markers of toxicity

    SciTech Connect

    Shugart, L.R.

    1990-10-01

    The overall objective of this study is to evaluate the use of the small aquarium fish, Japanese Medaka (Oryzias latipes), as a predictor of potential genotoxicity following exposure to carcinogens. This will be accomplished by quantitatively investigating the early molecular events associated with genotoxicity of various tissues of Medaka subsequent to exposure of the organism to several known carcinogens, such as diethylnitrosamine (DEN) and benzo(a)pyrene (BaP). Because of the often long latent period between initial contact with certain chemical and physical agents in our environment and subsequent expression of deleterious health or ecological impact, the development of sensitive methods for detecting and estimating early exposure is needed so that necessary interventions can ensue. A promising biological endpoint for detecting early exposure to damaging chemicals is the interaction of these compounds with cellular macromolecules such as Deoxyribonucleic acids (DNA). This biological endpoint assumes significance because it can be one of the critical early events leading eventually to adverse effects (neoplasia) in the exposed organism.

  11. Genetics and molecular biology of breast cancer

    SciTech Connect

    King, M.C.; Lippman, M.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  12. Genetic variability analysis of Byrsonima crassifolia germplasm collected in Pará State using ISSR markers.

    PubMed

    Rodrigues, S M; Moura, E F; Ramos, G K S; Oliveira, M S P

    2016-10-17

    Native of the Amazon, the nanche (Byrsonima crassifolia) is a fruit cultivated by family farmers and used in cooking; as such, it represents an opportunity for regional agribusiness. The Embrapa Eastern Amazon set up an active germplasm bank (BAG) consisting of 22 accessions sampled in 11 municipalities of Pará State. Due to its economic potential, there is an interest to advance the genetic breeding program of this species. The aim of this study was to characterize the BAG nanche collection using inter-simple sequence repeat (ISSR) markers. Accessions were genotyped using 23 pre-selected ISSR primers resulting in 109 amplified polymorphic and 51 monomorphic bands. With eight polymorphic bands each, the most polymorphic primers were UBC 809 and UBC 848. An unweighted pair-group method with arithmetic average cluster analysis based on Jaccard's coefficient indicated that the individuals clustered into two distinct groups. Accessions Igarapé Açu-2 and Augusto Corrêa-Pl 1 were most similar. The genetic dissimilarity values ranged from 0.10 to 0.59. We conclude that the ISSR markers were efficient in detecting polymorphisms in the nanche accessions, and that it is possible to infer the genetic variability among accessions of the collection. This demonstrate the importance of using molecular markers in poorly studied species and the advantages that this information can bring to the genetic improvement of such species.

  13. Confirmation of hybrid origin in Arisaema (Araceae) using molecular markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A population of hybrids between Arisaema triphyllum subsp. stewardsonii and A. dracontium was investigated using molecular markers to document the hybrid origin. Total genomic DNA was extracted from A. triphyllum, A. dracontium, and the hybrids, and subjected to sequence analysis of various regions...

  14. Acceleration of peanut breeding programs by molecular marker assisted selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut breeding has played a significant role in yield increases and disease control. Conventional breeding focuses on field selection and phenotypic analysis and it typically takes 12-15 years before a new cultivar can be released. Molecular markers developed from sequencing data can be of great ...

  15. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    PubMed

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  16. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass

    PubMed Central

    Jespersen, David; Belanger, Faith C.; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection. PMID:28187136

  17. A molecular marker based linkage map of Vitis.

    PubMed

    Lodhi, M A; Daly, M J; Ye, G N; Weeden, N F; Reisch, B I

    1995-08-01

    Genetic linkage maps of Vitis (2n = 38) have been constructed from a single interspecific hybrid grape population (60 seedlings) of 'Cayuga White' X 'Aurore'. The maps were primarily based on 422 RAPD markers but also included 16 RFLP and isozyme markers. These maps had an average distance of 6.1 cM between markers and were developed using a double-pseudotestcross strategy. The 'Cayuga White' map had 214 markers covering 1196 cM and that of 'Aurore' spanned over 1477 cM with 225 markers. The 'Cayuga White' map consisted of 20 linkage groups, whereas 22 linkage groups comprised the 'Aurore' map. The number of groups reduced to 19, as in some instances two or more groups from one parent showed homology with a single group from the other parent on the basis of markers heterozygous in both parents. Each linkage group ranged in size from 14 to 135 cM in 'Aurore' and from 14 to 124 cM in 'Cayuga White'. These maps provide enough coverage of the genome to allow quantitative trait locus analysis and map-based gene cloning.

  18. Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers

    PubMed Central

    2010-01-01

    Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC), Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (HT' = 0.58) and high gene differentiation (G st' = 0.61) were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability. PMID:21637487

  19. Fundamentals of fungal molecular population genetic analyses.

    PubMed

    Xu, Jianping

    2006-07-01

    The last two decades have seen tremendous growth in the development and application of molecular methods in the analyses of fungal species and populations. In this paper, I provide an overview of the molecular techniques and the basic analytical tools used to address various fundamental population and evolutionary genetic questions in fungi. With increasing availability and decreasing cost, DNA sequencing is becoming a mainstream data acquisition method in fungal evolutionary genetic studies. However, other methods, especially those based on the polymerase chain reaction, remain powerful in addressing specific questions for certain groups of taxa. These developments are bringing fungal population and evolutionary genetics into mainstream ecology and evolutionary biology.

  20. Using microsatellite DNA markers to determine the genetic identity of parental clones used in the Louisiana sugarcane breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane propagates asexually through vegetative cuttings. To validate the genetic identity of sugarcane clones during shipping and handling, we produced molecular fingerprints based on 21 microsatellite (SSR) DNA markers for 116 Louisiana parental clones that were included in the crossing program...

  1. Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize ( Zea mays L.) inbred lines.

    PubMed

    Casa, A M; Mitchell, S E; Smith, O S; Register, J C; Wessler, S R; Kresovich, S

    2002-01-01

    Recently, a new type of molecular marker has been developed that is based on the presence or absence of the miniature inverted repeat transposable element (MITE) family Heartbreaker ( Hbr) in the maize genome. These so-called Hbr markers have been shown to be stable, highly polymorphic, easily mapped, and evenly distributed throughout the maize genome. In this work, we used Hbr-derived markers for genetic characterization of a set of maize inbred lines belonging to Stiff Stalk (SS) and Non-Stiff Stalk (NSS) heterotic groups. In total, 111 markers were evaluated across 62 SS and NSS lines. Seventy six markers (68%) were shared between the two groups, and 25 of the common markers occurred at fairly low frequency (markers (3%) were monomorphic in all samples. Although DNA sequencing indicated that 5.5% of same-sized DNA fragments were non-homologous, this result did not affect the cluster analyses (i.e., relationships obtained from the Hbr data were congruent with those derived from pedigree information). Distance matrices generated from Hbr markers were significantly correlated ( p<0.001) with those obtained from pedigree ( r=0.782), RFLPs ( r=0.747), and SSRs ( r=0.719). Overall, these results indicated that Hbr markers could be used in conjunction with other molecular markers for genotyping and relationship studies of related maize inbred lines.

  2. Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.

    PubMed

    Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng

    2015-01-01

    Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice.

  3. Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation.

    PubMed

    Hoffman, J I; Dasmahapatra, K K; Amos, W; Phillips, C D; Gelatt, T S; Bickham, J W

    2009-07-01

    Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.

  4. Molecular genetic variation in cultivated peanuts germplasm of Henan and detection of their elite allelic variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut or peanut (Arachis hypogaea L.) is an economically important crop worldwide as a source of protein and cooking oil, particularly in developing countries. Because of its narrow genetic background and shortage of polymorphic genetic markers, molecular characterization of cultivated peanuts i...

  5. Genetic diversity of the Phaseolus acutifolius A. Gray collection of the USDA National Plant Germplasm system using targeted region amplified polymorphism markers designed from genes associated with heat and drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular genetic relationships among 222 accessions of the Phaseolus acutifolius A. Gray collection were assessed using Targeted Region Amplified Polymorphic (TRAP) markers designed from sequences of genes associated with heat and drought tolerance. Genetic relationships were compared to reactions ...

  6. Application of resistance gene analog markers to analyses of genetic structure and diversity in rice.

    PubMed

    Ren, Juansheng; Yu, Yuchao; Gao, Fangyuan; Zeng, Lihua; Lu, Xianjun; Wu, Xianting; Yan, Wengui; Ren, Guangjun

    2013-07-01

    Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana.

  7. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  8. Genetic diversity of popcorn genotypes using molecular analysis.

    PubMed

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  9. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    PubMed

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  10. Identification of a molecular marker for genotyping human lymphatic filarial nematode parasite Wuchereria bancrofti.

    PubMed

    Patra, K P; Ramu, Thangadurai; Hoti, S L; Pragasam, G Siva; Das, P K

    2007-05-01

    In India, Mass Drug Administration is on going towards elimination of lymphatic filariasis in many areas, which might lead to intense selection pressure on the parasite populations and their genetic restructuring. This calls for molecular finger printing of Wuchereria bancrofti parasite populations at national level and monitoring genetic changes in the future. For this purpose a reliable, less expensive, rapid, and reproducible molecular tool is necessary, which is not available for W. bancrofti at this time. We identified robust molecular markers based on the comparison of random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) profiles and the genetic data generated from parasite populations collected from areas in Northern (Varanasi, Uttar Pradesh state), Southern (Kozhikode, Kerala State) and Central regions (Jagdalpur, Chattisgarh state) of India, where lymphatic filariasis is endemic for many decades. RAPD profiles for these parasite populations were generated using three different primers and the dendrograms constructed using the profiles were all different. In order to identify appropriate RAPD primer(s), we compared the results of RAPD with the fingerprint profile and genetic data obtained by the more reliable AFLP technique, using the parasite populations from the same areas. RAPD marker (OP8) primer produced phylogenetic data almost similar to that of AFLP analysis. The marker was able to reveal variations between the parasite populations collected from Varanasi, Kozhikode, and Jagdalpur. Most importantly, RAPD primer OP8 produced reproducible results, when tested in three different trials. In view of the limited availability of W. bancrofti parasite DNA, along with a lower cost and ease of performance, RAPD appears to be more suitable compared to AFLP at the present juncture, since complete genome information of this parasite is still not available. Thus, RAPD primer OP8 can be a very useful molecular maker for DNA

  11. Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura

    PubMed Central

    2008-01-01

    Background Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common laboratory environment. Specifically, genetic variability, population differentiation and demographic structure were compared in two replicated groups of Drosophila subobscura populations recently sampled from different wild sources. Results We found evidence for a decline in genetic variability through time, along with an increase in genetic differentiation between all populations studied. The observed decline in genetic variability was higher during the first 14 generations of laboratory adaptation. The two groups of replicated populations showed overall similarity in variability patterns. Our results also revealed changing demographic structure of the populations during laboratory evolution, with lower effective population sizes in the early phase of the adaptive process. One of the ten microsatellites analyzed showed a clearly distinct temporal pattern of allele frequency change, suggesting the occurrence of positive selection affecting the region around that particular locus. Conclusion Genetic drift was responsible for most of the divergence and loss of variability between and within replicates, with most changes occurring during the first generations of laboratory adaptation. We also found evidence suggesting a selective sweep, despite the low number of molecular markers analyzed. Overall, there was a similarity of evolutionary dynamics at the molecular level in our laboratory populations, despite distinct genetic backgrounds and some differences in phenotypic evolution. PMID:18302790

  12. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  13. Molecular Genetics of Mitochondrial Disorders

    ERIC Educational Resources Information Center

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  14. [Molecular Genetics as Best Evidence in Glioma Diagnostics].

    PubMed

    Masui, Kenta; Komori, Takashi

    2016-03-01

    The development of a genomic landscape of gliomas has led to the internally consistent, molecularly-based classifiers. However, development of a biologically insightful classification to guide therapy is still ongoing. Further, tumors are heterogeneous, and they change and adapt in response to drugs. The challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. Therefore, by incorporating molecular markers into the new World Health Organization (WHO) classification of tumors of the central nervous system, the traditional principle of diagnosis based on histologic criteria will be replaced by a multilayered approach combining histologic features and molecular information in an "integrated diagnosis", to define tumor entities as narrowly as possible. We herein review the current status of diagnostic molecular markers for gliomas, focusing on IDH mutation, ATRX mutation, 1p/19q co-deletion, and TERT promoter mutation in adult tumors, as well as BRAF and H3F3A aberrations in pediatric gliomas, the combination of which will be a promising endeavor to render molecular genetics as a best evidence in the glioma diagnositics.

  15. Molecular markers in oral lichen planus: A systematic review

    PubMed Central

    Sagari, Shitalkumar; Sanadhya, Sudhanshu; Doddamani, Mallikarjun; Rajput, Rajan

    2016-01-01

    Oral lichen planus (OLP) is a chronic inflammatory mucosal disease that is usually detected in 0.5–2.2% of the human population. Among these, only 0.5–2.9% of the lesions progress to carcinoma. However, there are no prognostic markers available presently to recognize the increased risk in malignant transformation of the lesions. Selected markers for cell proliferation, adhesion, apoptosis and lymphocytic infiltration were analyzed by immunohistochemistry in addition to static cytometry for DNA content. The concept linking OLP and oral squamous cell carcinoma states that chronic inflammation results in crucial DNA damage, which further progresses to development of carcinoma. Even though in the past decade, enormous information has been accumulated on malignant potential of OLP, its transformation still remains unclear. Hence, the purpose of this article was to review cellular and molecular markers to understand the pathogenesis of OLP and its progression toward malignancy. PMID:27194873

  16. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers.

    PubMed

    Ferriol, M; Picó, B; Nuez, F

    2003-07-01

    Cucurbita pepo is a highly polymorphic species. The cultivars can be grouped into eight morphotypes in two subspecies, ssp. pepo and ssp. ovifera. A collection of 69 accessions representative of the morphotypes and some unclassified types was used for analysing the morphological and molecular diversity of this species. This collection includes commercial cultivars and Spanish landraces, which represent the great diversification of types that have arisen in Europe after this species arrived from America. For the molecular variability studies, two PCR-based systems were employed, AFLP and SRAP, which preferentially amplify ORFs. Principal coordinates analysis and cluster analysis using the UPGMA method clearly separate the accessions into the two subspecies through the use of both markers. However, the gene diversity and the genetic identity values among morphotypes and subspecies varied between the two marker systems. The information given by SRAP markers was more concordant to the morphological variability and to the evolutionary history of the morphotypes than that of AFLP markers. In ssp. ovifera, the accessions of the different morphotypes were basically grouped according to the fruit colour. This may indicate different times of development and also the extent of breeding in the accessions used. This study has allowed identification of new types that can be employed for the development of new cultivars. The landraces of the spp. ovifera, used as ornamental in Europe, have proved to be of great interest for preserving the diversity of C. pepo.

  17. Association of susceptible genetic markers and autoantibodies in rheumatoid arthritis.

    PubMed

    Mohan, Vasanth Konda; Ganesan, Nalini; Gopalakrishnan, Rajasekhar

    2014-08-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder of unknown aetiology resulting in inflammation of the synovium, cartilage and bone. The disease has a heterogeneous character, consisting of clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and APCA-negative disease. Although, the pathogenesis of RA is incompletely understood, genetic factors play a vital role in susceptibility to RA as the heritability of RA is between 50 and 60%, with the human leukocyte antigen (HLA) locus accounting for at least 30% of overall genetic risk. Non-HLA genes, i.e. tumour necrosis factor-α (TNF-α) within the MHC (major histocompatibility complex) have also been investigated for association with RA. Although, some contradictory results have originated from several studies on TNF-α gene, the data published so far indicate the possible existence of TNF-α gene promoter variants that act as markers for disease severity and response to treatment in RA. The correlation of HLA and non-HLA genes within MHC region is apparently interpreted. A considerable number of confirmed associations with RA and other autoimmune disease susceptibility loci including peptidylarginine deiminase type 4 (PADI4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), signal transducer and activator of transcription (STAT4), cluster of differentiation 244 (CD244) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4), located outside the MHC have been reported recently. In this review, we aim to give an update on recent progress in RA genetics, the importance of the combination of HLA-DRB1 alleles, non-HLA gene polymorphism, its detection and autoantibodies as susceptibility markers for early RA disease.

  18. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  19. Molecular Markers for Breast Cancer: Prediction on Tumor Behavior

    PubMed Central

    Banin Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Watanabe, Maria Angelica Ehara

    2014-01-01

    Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity. PMID:24591761

  20. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).

    PubMed

    Peng, Ze; Gallo, Maria; Tillman, Barry L; Rowland, Diane; Wang, Jianping

    2016-02-01

    Molecular markers are important tools for genotyping in genetic studies and molecular breeding. The SSR and SNP are two commonly used marker systems developed from genomic or transcript sequences. The objectives of this study were to: (1) assemble and annotate the publicly available ESTs in Arachis and the in-house short reads, (2) develop and validate SSR and SNP markers, and (3) investigate the genetic diversity and population structure of the peanut breeding lines and the U.S. peanut mini core collection using developed SSR markers. An NCBI EST dataset with 252,951 sequences and an in-house 454 RNAseq dataset with 288,701 sequences were assembled separately after trimming. Transcript sequence comparison and phylogenetic analysis suggested that peanut is closer to cowpea and scarlet bean than to soybean, common bean and Medicago. From these two datasets, 6455 novel SSRs and 11,902 SNPs were identified. Of the discovered SSRs, 380 representing various SSR types were selected for PCR validation. The amplification rate was 89.2 %. Twenty-two (6.5 %) SSRs were polymorphic between at least one pair of four genotypes. Sanger sequencing of PCR products targeting 110 SNPs revealed 13 true SNPs between tetraploid genotypes and 193 homoeologous SNPs within genotypes. Eight out of the 22 polymorphic SSR markers were selected to evaluate the genetic diversity of Florida peanut breeding lines and the U.S. peanut mini core collection. This marker set demonstrated high discrimination power by displaying an average polymorphism information content value of 0.783, a combined probability of identity of 10(-11), and a combined power of exclusion of 0.99991. The structure analysis revealed four sub-populations among the peanut accessions and lines evaluated. The results of this study enriched the peanut genomic resources, provided over 6000 novel SSR markers and the credentials for true peanut SNP marker development, and demonstrated the power of newly developed SSR markers in

  1. Population structure and genotypic variation of Crataegus pontica inferred by molecular markers.

    PubMed

    Rahmani, Mohammad-Shafie; Shabanian, Naghi; Khadivi-Khub, Abdollah; Woeste, Keith E; Badakhshan, Hedieh; Alikhani, Leila

    2015-11-01

    Information about the natural patterns of genetic variability and their evolutionary bases are of fundamental practical importance for sustainable forest management and conservation. In the present study, the genetic diversity of 164 individuals from fourteen natural populations of Crataegus pontica K.Koch was assessed for the first time using three genome-based molecular techniques; inter-retrotransposon amplified polymorphism (IRAP); inter-simple sequence repeats (ISSR) and start codon targeted (SCoT) polymorphism. IRAP, ISSR and SCoT analyses yielded 126, 254 and 199 scorable amplified bands, respectively, of which 90.48, 93.37 and 83.78% were polymorphic. ISSR revealed efficiency over IRAP and SCoT due to high effective multiplex ratio, marker index and resolving power. The dendrograms based on the markers used and combined data divided individuals into three major clusters. The correlation between the coefficient matrices for the IRAP, ISSR and SCoT data was significant. A higher level of genetic variation was observed within populations than among populations based on the markers used. The lower divergence levels depicted among the studied populations could be seen as evidence of gene flow. The promotion of gene exchange will be very beneficial to conserve and utilize the enormous genetic variability.

  2. Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent.

    PubMed

    Eichmiller, Jessica J; Hicks, Randall E; Sadowsky, Michael J

    2013-04-02

    Water, sand, and sediment from a Lake Superior harbor site continuously receiving wastewater effluent was sampled monthly for June to October 2010 and from May to September 2011. Understanding the dynamics of genetic markers of fecal bacteria in these matrices is essential to accurately characterizing health risks. Genetic markers for enterococci, total Bacteroides, and human-associated Bacteroides were measured in site-water, sand, and sediment and in final effluent by quantitative PCR. The similarity between the quantity of molecular markers in the water column and effluent indicated that the abundance of genetic markers in the water column was likely controlled by effluent inputs. Effluent turbidity was positively correlated (p ≤ 0.05) with AllBac and HF183 in final effluent and AllBac in the water column. In sand and sediment, Entero1 and AllBac were most abundant in the upper 1-3 cm depths, whereas HF183 was most abundant in the upper 1 cm of sand and at 7 cm in sediment. The AllBac and Entero1 markers were 1- and 2-orders of magnitude more abundant in sand and sediment relative to the water column per unit mass. These results indicate that sand and sediment may act as reservoirs for genetic markers of fecal pollution at some freshwater sites.

  3. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.

    PubMed

    Mita, Toshihiro; Tachibana, Shin-Ichiro; Hashimoto, Muneaki; Hirai, Makoto

    2016-01-01

    Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.

  4. [Clinical implications of molecular genetic research in otorhinolaryngology].

    PubMed

    Gürtler, N

    2003-08-01

    Molecular-genetic research in Otolaryngology has seen a rapid advancement during the last ten years, especially in the fields of otology and head and neck tumors. The results of this basic research have now started to be implemented in the clinic. In otology the understanding of auditive function has dramatically improved. The syndromic and non-syndromic forms of hereditary hearing impairment can be subdivided into their underlying genetic defects, as more and more genes are identified. Diagnostic of syndromic hearing loss has been improved and can be done earlier. But the molecular-genetic analysis is still time-consuming and difficult. Currently, in our clinic, only patients with suspected Pendred-syndrome, representing the most frequent syndrome with hearing impairment, undergo a routine search for mutation detection in the corresponding gene SLC26A4. A multitude of genes and mutations are seen in the non-syndromic forms of hereditary hearing impairment. The gene gap-junction-protein beta2, encoding connexin 26, is encountered most frequently. Its prevalence in Switzerland is high with about 20% in the non-syndromic group. A molecular-genetic analysis of connexin 26 is offered in cases of congenital hearing loss. Another analysis, which has been implemented in the clinic, is the sequencing of Wolfram-syndrome gene 1 in familial low-frequency hearing loss. This gene seems to be involved in the majority of families with this type of hearing loss. Gene therapy for hearing loss is currently not an option in the clinical field. The different steps in carcinogenesis of head and neck cancer have further been elucidated by molecular-genetic research. Clinical applications are the establishment of risk-profiles for tumor-development and defining prognostic markers as well as the development of new treatment strategies based on genetic therapy.

  5. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers

    PubMed Central

    Xu, Chaoqun; Gao, Jiao; Du, Zengfeng; Li, Dengke; Wang, Zhe; Li, Yingyue; Pang, Xiaoming

    2016-01-01

    Ziziphus is a genus of spiny shrubs and small trees in the Rhamnaceae family. This group has a controversial taxonomy, with more than 200 species described, including Chinese jujube (Ziziphus jujuba Mill. var. jujuba) and Indian jujube (Z. mauritiana), as well as several other important cultivated fruit crops. Using 24 SSR markers distributed across the Chinese jujube genome, 962 jujube accessions from the two largest germplasm repositories were genotyped with the aim of analyzing the genetic diversity and structure and constructing a core collection that retain high genetic diversity. A molecular profile comparison revealed 622 unique genotypes, among which 123 genotypes were genetically identical to at least one other accessions. STRUCTURE analysis and multivariate analyses (Cluster and PCoA) roughly divided the accessions into three major groups, with some admixture among groups. A simulated annealing algorithm and a heuristic algorithm were chosen to construct the core collection. A final core of 150 accessions was selected, comprising 15.6% of the analyzed accessions and retaining more than 99.5% of the total alleles detected. We found no significant differences in allele frequency distributions or in genetic diversity parameters between the chosen core accessions and the 622 genetically unique accessions. This work contributes to the understanding of Chinese jujube diversification and the protection of important germplasm resources. PMID:27531220

  6. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    PubMed

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  7. Genetic maps of SSR and SRAP markers in diploid orchardgrass (Dactylis glomerata L.) using the pseudo-testcross strategy.

    PubMed

    Xie, Wengang; Zhang, Xinquan; Cai, Hongwei; Huang, Linkai; Peng, Yan; Ma, Xiao

    2011-03-01

    Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.

  8. Genetic recombination and molecular evolution.

    PubMed

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  9. Mismatches in genetic markers in a large family study.

    PubMed Central

    Ashton, G C

    1980-01-01

    The Hawaii Family Study of Cognition provided an opportunity to investigate the frequency and implications of non-agreement, or mismatches, between observed and expected genetic marker phenotypes of husbands, wives, and children. Mismatch data from 68 families in which one or both spouses were known not to be a biological parent were used to determine the rate of undeclared nonparentage in 1,748 families in which conventional relationships were claimed. Two independent approaches gave consistent estimates, suggesting that approximately 2.3% of the 2,839 tested children from these families were probably the result of infidelity, concealed adoption, or another event. About two-thirds of the mismatches detected were probably due to properties of the techniques employed. PMID:6930820

  10. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory.

    PubMed

    Slankster, Eryn E; Chase, Jillian M; Jones, Lauren A; Wendell, Douglas L

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  11. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory

    PubMed Central

    Slankster, Eryn E.; Chase, Jillian M.; Jones, Lauren A.; Wendell, Douglas L.

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  12. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers.

    PubMed

    Sobia, Tabassum; Muhammad, Ashraf; Chen, XianMing

    2010-09-01

    Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple

  13. Genetic diversity of bovine Neospora caninum determined by microsatellite markers.

    PubMed

    Salehi, N; Gottstein, B; Haddadzadeh, H R

    2015-10-01

    Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.

  14. The Promise of Novel Molecular Markers in Bladder Cancer

    PubMed Central

    Miremami, Jahan; Kyprianou, Natasha

    2014-01-01

    Bladder cancer is the fourth most common malignancy in the US and is associated with the highest cost per patient. A high likelihood of recurrence, mandating stringent surveillance protocols, has made the development of urinary markers a focus of intense pursuit with the hope of decreasing the burden this disease places on patients and the healthcare system. To date, routine use of markers is not recommended for screening or diagnosis. Interests include the development of a single urinary marker that can be used in place of or as an adjunct to current screening and surveillance techniques, as well identifying a molecular signature for an individual’s disease that can help predict progression, prognosis, and potential therapeutic response. Markers have shown potential value in improving diagnostic accuracy when used as an adjunct to current modalities, risk-stratification of patients that could aid the clinician in determining aggressiveness of surveillance, and allowing for a decrease in invasive surveillance procedures. This review discusses the current understanding of emerging biomarkers, including miRNAs, gene signatures and detection of circulating tumor cells in the blood, and their potential clinical value in bladder cancer diagnosis, as prognostic indicators, and surveillance tools, as well as limitations to their incorporation into medical practice. PMID:25535079

  15. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans).

    PubMed

    Buonaccorsi, V P; McDowell, J R; Graves, J E

    2001-05-01

    Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.

  16. Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis.

    PubMed

    An, Hye Suck; Lee, Jang Wook; Park, Jung Yeon; Jung, Hyung Taek

    2013-05-01

    The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N(A)) = 12, allelic richness (A(R)) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N(A) = 13.86, A(R) = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy-Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F(ST) = 0.008, P < 0.01). Pairwise F(ST), a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.

  17. Molecular genetics of dyslexia: an overview.

    PubMed

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs.

  18. Traditional Approaches to Molecular Genetic Analysis.

    PubMed

    Walker, Christopher J; Goodfellow, Paul J

    2017-01-01

    Molecular studies of endometrial cancer have evolved with the tools available to researchers: the methods for measuring nucleic acids, protein expression, and combinations thereof. Today "molecular genetic analysis" implies a broad range of indirect and direct tests that yield molecular phenotypes or genotypes, immunotypes, or signatures that were not conceived of when the histologic and biologic heterogeneity was first fully acknowledged.We will provide a historical perspective on molecular genetic studies of endometrial cancers focusing on candidate genes and how early foundational research shaped both our understanding of the disease and current research directions. Examples of direct tests (mutation, DNA methylation, and/or protein expression) will be provided along with examples of indirect tests that have been and continue to be central to endometrial cancer molecular biology, such as DNA content or microsatellite instability analysis. We will highlight clinically relevant examples of molecular phenotyping and direct evaluation of candidate genes that integrate direct and indirect testing as part of routine patient care. This is not intended to be an exhaustive review but rather an overview of the progress that has been made and how early work is shaping current molecular, clinical, and biologic studies of endometrial cancer.

  19. Determinant molecular markers for peri-gastrulating bovine embryo development.

    PubMed

    Hue, Isabelle

    2016-01-01

    Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.

  20. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    PubMed

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  1. Identification of Novel Genetic Markers of Breast Cancer Survival

    PubMed Central

    Guo, Qi; Schmidt, Marjanka K.; Kraft, Peter; Canisius, Sander; Chen, Constance; Khan, Sofia; Tyrer, Jonathan; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Michailidou, Kyriaki; Lush, Michael; Kar, Siddhartha; Beesley, Jonathan; Dunning, Alison M.; Shah, Mitul; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Lambrechts, Diether; Weltens, Caroline; Leunen, Karin; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Blomqvist, Carl; Aittomäki, Kristiina; Fagerholm, Rainer; Muranen, Taru A.; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Broeks, Annegien; Hogervorst, Frans B.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; van den Ouweland, Ans M. W.; Marme, Federik; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Holleczek, Bernd; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Li, Jingmei; Brand, Judith S.; Humphreys, Keith; Devilee, Peter; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Mariani, Paolo; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Chenevix-Trench, Georgia; Balleine, Rosemary; Phillips, Kelly-Anne; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Hamann, Ute; Kabisch, Maria; Ulmer, Hans Ulrich; Rüdiger, Thomas; Margolin, Sara; Kristensen, Vessela; Nord, Silje; Evans, D. Gareth; Abraham, Jean E.; Earl, Helena M.; Hiller, Louise; Dunn, Janet A.; Bowden, Sarah; Berg, Christine; Campa, Daniele; Diver, W. Ryan; Gapstur, Susan M.; Gaudet, Mia M.; Hankinson, Susan E.; Hoover, Robert N.; Hüsing, Anika; Kaaks, Rudolf; Machiela, Mitchell J.; Willett, Walter; Barrdahl, Myrto; Canzian, Federico; Chin, Suet-Feung; Caldas, Carlos; Hunter, David J.; Lindstrom, Sara; García-Closas, Montserrat; Hall, Per; Easton, Douglas F.; Eccles, Diana M.; Rahman, Nazneen; Nevanlinna, Heli; Pharoah, Paul D. P.

    2015-01-01

    Background: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer–specific survival. Methods: We conducted a large meta-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)–negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. Results: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases (hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10–8). Genotyping a subset of 2113 case patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus (rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less robust. Conclusions: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in addition to standard tumor prognostic factors. PMID:25890600

  2. Population genetics and drug resistance markers: an essential for malaria surveillance in Pakistan.

    PubMed

    Raza, Afsheen; Beg, Mohammad Asim

    2013-12-01

    Plasmodium (P.) vivax is the prevalent malarial species accounting for 70% of malaria cases in Pakistan. However, baseline epidemiological data on P. vivax population structure and drug resistance are lacking from Pakistan. For population structure studies, molecular genetic markers, circumsporozoite protein (csp) and merozoite surface protein-1 (msp-1) are considered useful as these play an important role in P. vivax survival under immune and environmental pressure. Furthermore, these genes have also been identified as suitable candidates for vaccine development. While efforts for effective vaccine are underway, anti-malarial agents remain the mainstay for control. Evidence of resistance against commonly used anti-malarial agents, particularly Sulphadoxine-Pyrimethamine (SP) is threatening to make this form of control defunct. Therefore, studies on drug resistance are necessary so that anti-malarial treatment strategies can be structured and implemented accordingly by the Malaria Control Program, Pakistan. This review aims to provide information on genetic markers of P. vivax population structure and drug resistance and comment on their usefulness in molecular surveillance and control.

  3. Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers.

    PubMed

    Badiane, F A; Gowda, B S; Cissé, N; Diouf, D; Sadio, O; Timko, M P

    2012-02-08

    Genetic diversity and phylogenetic relationships among 22 local cowpea (Vigna unguiculata) varieties and inbred lines collected throughout Senegal were evaluated using simple sequence repeat molecular markers. A set of 49 primer combinations were developed from cowpea genomic/expressed sequence tags and evaluated for their ability to detect polymorphisms among the various cowpea genotypes. Forty-four primer combinations detected polymorphisms, with the remaining five primer sets failing to yield PCR amplification products. From one to 16 alleles were found among the informative primer combinations; their frequencies ranged from 0.60 to 0.95 (mean = 0.79). The genetic diversity of the sample varied from 0.08 to 0.42 (mean = 0.28). The polymorphic information content ranged from 0.08 to 0.33 (mean = 0.23). The local varieties clustered in the same group, except 53-3, 58-53, and 58-57; while Ndoute yellow pods, Ndoute violet pods and Baye Ngagne were in the second group. The photosensitive varieties (Ndoute yellow pods and Ndoute violet pods) were closely clustered in the second group and so were inbred line Mouride and local cultivar 58-57, which is also one of the parents for inbred line Mouride. These molecular markers could be used for selection and identification of elite varieties for cowpea improvement and germplasm management in Senegal.

  4. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers.

    PubMed

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-04-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F(ST) > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  5. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    PubMed Central

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species. PMID:21637482

  6. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Meng, S; Yang, X L; Dang, P M; Cui, S L; Mu, G J; Chen, C Y; Liu, L F

    2016-08-12

    Peanut is one of the most important oil crops worldwide. We used insertion-deletion (InDel) markers to assess the genetic diversity and population structure in cultivated peanut. Fifty-four accessions from North China were genotyped using 48 InDel markers. The markers amplified 61 polymorphic loci with 1 to 8 alleles and an average of 2.6 alleles per marker. The polymorphism information content values ranged from 0.0364 to 0.9030, with an average of 0.5038. Population structure and neighbor-joining (NJ) tree analyses suggested that all accessions could be divided into four clusters (A1-A4), using the NJ method. Likewise, four subpopulations (G1-G4) were identified using STRUCTURE analysis. A principal component analysis was also used and results concordant with the other analysis methods were found. A multi-linear stepwise regression analysis revealed that 13 InDel markers correlated with five measured agronomical traits. Our results will provide important information for future peanut molecular breeding and genetic research.

  7. A single molecular marker to distinguish between species of Dioscorea.

    PubMed

    Techen, Natascha; Parveen, Iffat; Khan, Ikhlas A

    2017-03-01

    Yams are species of the genus Dioscorea (family Dioscoreaceae), which consists of approximately 630 species. The majority of the world production of yams occurs in Africa with 58.8 million t annually, but they are also produced in the Americas and Asia. The saponins in yams have been reported to possess various properties to improve health. The tuber and aerial parts of various species often share morphological similarities, which can cause problems in the proper identification of sample material. For example, the rootstocks and aerial parts of Dioscorea villosa L. share similarities with Dioscorea polystachia Turcz. Dioscorea bulbifera L. may be mistaken for Dioscorea alata L. owing to similar morphologies. Various molecular analyses have been published to help with the identification of species and varieties within the genus Dioscorea. The multi-loci or single-locus analysis has resulted in varying success, some with only a limited discrimination rate. In the present study, a single nuclear genomic region, biparentally inherited, was analyzed for its usefulness as a molecular marker for species identification and discrimination between D. bulbifera, D. villosa, D. nipponica, D. alata, D. caucasica, and D. deltoidea samples. The results of this study show that the LFY genomic region can be useful as a molecular marker to distinguish between samples.

  8. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology.

  9. Population genetic data and forensic parameters of 30 autosomal InDel markers in Santa Catarina State population, Southern Brazil.

    PubMed

    Torres, Sandra Regina Rachadel; Uehara, Clineu Julien Seki; Sutter-Latorre, Ana Frederica; de Almeida, Bibiana Sgorla; Sauerbier, Tania Streck; Muniz, Yara Costa Netto; Marrero, Andrea Rita; de Souza, Ilíada Rainha

    2014-08-01

    The application of DNA technology in forensic investigations has grown rapidly in the last 25 years and with an exponential increase of short tandem repeats (STRs) data, usually presented as allele frequencies, that may be later used as databases for forensic and population genetics purposes. Thereby, classes of molecular markers such as single nucleotide polymorphisms and insertions/deletions (InDels) have been presented as another option of genetic marker sets. These markers can be used in paternity cases, when mutations in STR polymorphisms are present, as well as in highly degraded DNA analysis. In the present study, the allele frequencies and heterozygosity (H) of a 30 InDel markers set were determined and the forensic efficacy was evaluated through estimation of discrimination power (DP), match probability, typical paternity index and power of paternity exclusion in 108 unrelated volunteers from the State of Santa Catarina (South Brazil). The observed H per locus showed a range between 0.370 and 0.574 (mean = 0.479). HLD128 was the locus with the highest DP (DP = 0.656). DP for all markers combined was greater than 99.9999999999646 % which provides satisfactory levels of information for forensic demands. Genetic comparisons (exact tests of population differentiation and pairwise genetic distances) revealed that the population of Santa Catarina State differs from Korea and USA Afro-American populations but is similar to the Portuguese, German, Polish, Spanish and Basque populations.

  10. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers.

    PubMed

    Verma, Priyanka; Sharma, Tilak R; Srivastava, Prem S; Abdin, M Z; Bhatia, Sabhyata

    2014-09-01

    Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.

  11. Integrating evolutionary and molecular genetics of aging.

    PubMed

    Flatt, Thomas; Schmidt, Paul S

    2009-10-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.

  12. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in ...

  13. Molecular genetic analysis of archival gliomas using diagnostic smears.

    PubMed

    Walker, C; Joyce, K; Du Plessis, D; MacHell, Y; Sibson, D R; Broome, J

    2000-10-01

    Investigation of the clinical significance of genetic alterations in gliomas requires molecular genetic analysis using samples from retrospective or prospective clinical studies. However, diagnostic tissue is often severely limited and because of fixation, paraffin-embedded tissues (PET) contain degraded DNA. Intra-operative cytological preparations (smears) archived after diagnosis may represent an additional source of clinical material for genetic analysis. In this study, tissue samples were obtained by precision microdissection of archived diagnostic smears from 20 cases (1961-1999). All samples produced polymerase chain reaction (PCR) products for the beta globin gene, but the most recent samples amplified best and gave longer amplimers. For six cases, direct comparison was made between samples microdissected from smears and the corresponding PET. Samples from smears showed improved PCR performance and similar alleles on microsatellite marker analysis. One case, with smears of uninvolved cortex and tumour tissue available for microdissection, showed allelic imbalance at 10q23 on the basis of the smear results alone. PCR products from smears were shown to be suitable for direct sequence analysis (p53 gene). A PTEN mutation, found previously in an anaplastic astrocytoma by analysis of PET, was detected in the corresponding diagnostic smear. The results of this study indicate that tissue samples microdissected from diagnostic intra-operative cytological preparations may be suitable for molecular genetic analysis of gliomas.

  14. Genetic Diversity Analysis of Sugarcane Parents in Chinese Breeding Programmes Using gSSR Markers

    PubMed Central

    You, Qian; Xu, Liping; Zheng, Yifeng; Que, Youxiong

    2013-01-01

    Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use. PMID:23990759

  15. Construction of a Genetic Linkage Map Based on Amplified Fragment Length Polymorphism Markers and Development of Sequence-Tagged Site Markers for Marker-Assisted Selection of the Sporeless Trait in the Oyster Mushroom (Pleurotus eryngii)

    PubMed Central

    Ueda, Jun; Obatake, Yasushi; Murakami, Shigeyuki; Fukumasa, Yukitaka; Matsumoto, Teruyuki

    2012-01-01

    A large number of spores from fruiting bodies can lead to allergic reactions and other problems during the cultivation of edible mushrooms, including Pleurotus eryngii (DC.) Quél. A cultivar harboring a sporulation-deficient (sporeless) mutation would be useful for preventing these problems, but traditional breeding requires extensive time and labor. In this study, using a sporeless P. eryngii strain, we constructed a genetic linkage map to introduce a molecular breeding program like marker-assisted selection. Based on the segregation of 294 amplified fragment length polymorphism markers, two mating type factors, and the sporeless trait, the linkage map consisted of 11 linkage groups with a total length of 837.2 centimorgans (cM). The gene region responsible for the sporeless trait was located in linkage group IX with 32 amplified fragment length polymorphism markers and the B mating type factor. We also identified eight markers closely linked (within 1.2 cM) to the sporeless locus using bulked-segregant analysis-based amplified fragment length polymorphism. One such amplified fragment length polymorphism marker was converted into two sequence-tagged site markers, SD488-I and SD488-II. Using 14 wild isolates, sequence-tagged site analysis indicated the potential usefulness of the combination of two sequence-tagged site markers in cross-breeding of the sporeless strain. It also suggested that a map constructed for P. eryngii has adequate accuracy for marker-assisted selection. PMID:22210222

  16. Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers.

    PubMed

    Sanarana, Yandisiwe; Visser, Carina; Bosman, Lydia; Nephawe, Khathutshelo; Maiwashe, Azwihangwisi; van Marle-Köster, Este

    2016-02-01

    The Nguni cattle breed is a landrace breed adapted to different ecological regions of South Africa. A number of ecotypes are recognised based on phenotype within the breed, but it is not known if they are genetically distinct. In this study, molecular characterisation was performed on Makhathini (MAK), Pedi (PED), Shangaan (SHA) and Venda (VEN) Nguni cattle ecotypes. Two Nguni cattle populations, not kept as separate ecotypes, from the University of Fort Hare (UFH) and Agricultural Research Council Loskop South farm (LOS) were also included. Genotypic data was generated for 189 unrelated Nguni cattle selected based on pedigree records using 22 microsatellite markers. The expected heterozygosity values varied from 69 % (UFH) to 72 % (PED) with a mean number of alleles ranging from 6.0 to 6.9. The F ST estimate demonstrated that 4.8 % of the total genetic variation was due to the genetic differentiation between the populations and 92.2 % accounted for differences within the populations. The genetic distances and structure analysis revealed the closest relationship between MAK, PEDI and SHA ecotypes, followed by SHA and VEN. The UFH population clustered with the MAK ecotype, indicating that they are more genetically similar, while the LOS cattle grouped as a distinct cluster. Results suggest that the genetic differentiation between the PED and SHA ecotypes is low and can be regarded as one ecotype based on limited genetic differences. The results of this study can be applied as a point of reference for further genetic studies towards conservation of Nguni cattle ecotypes.

  17. Determination of Genetic Diversity Using 15 Simple Sequence Repeats Markers in Long Term Selected Japanese Quail Lines

    PubMed Central

    Karabağ, Kemal; Balcıoğlu, Murat Soner; Karlı, Taki; Alkan, Sezai

    2016-01-01

    Japanese quail is still used as a model for poultry research because of their usefulness as laying, meat, and laboratory animals. Microsatellite markers are the most widely used molecular markers, due to their relative ease of scoring and high levels of polymorphism. The objective of the research was to determine genetic diversity and population genetic structures of selected Japanese quail lines (high body weight 1 [HBW1], HBW2, low body weight [LBW], and layer [L]) throughout 15th generations and an unselected control (C). A total of 69 individuals from five quail lines were genotyped by fifteen microsatellite markers. When analyzed profiles of the markers the observed (Ho) and expected (He) heterozygosity ranged from 0.04 (GUJ0027) to 0.64 (GUJ0087) and 0.21 (GUJ0027) to 0.84 (GUJ0037), respectively. Also, Ho and He were separated from 0.30 (L and LBW) to 0.33 (C and HBW2) and from 0.52 (HBW2) to 0.58 (L and LBW), respectively. The mean polymorphic information content (PIC) ranged from 0.46 (HBW2) to 0.52 (L). Approximately half of the markers were informative (PIC≥0.50). Genetic distances were calculated from 0.09 (HBW1 and HBW2) to 0.33 (C and L). Phylogenetic dendrogram showed that the quail lines were clearly defined by the microsatellite markers used here. Bayesian model-based clustering supported the results from the phylogenetic tree. These results reflect that the set of studied markers can be used effectively to capture the magnitude of genetic variability in selected Japanese quail lines. Also, to identify markers and alleles which are specific to the divergence lines, further generations of selection are required. PMID:27165027

  18. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    PubMed

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies.

  19. Genetic neurological channelopathies: molecular genetics and clinical phenotypes

    PubMed Central

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. PMID:26558925

  20. Questionable Specificity of Genetic Total Faecal Pollution Markers for Integrated Water Quality Monitoring and Source Tracking

    NASA Astrophysics Data System (ADS)

    Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.

    2010-05-01

    Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For

  1. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations

    PubMed Central

    Szczecińska, Monika

    2016-01-01

    Background Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). Methods The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. Results SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and ΦPT for SSR (20%) and ΦPT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic

  2. Genetic stability of micropropagated plants of Crambe abyssinica Hochst using ISSR markers.

    PubMed

    Werner, E T; Soares, T C B; Gontijo, A B P L; Souza Neto, J D; do Amaral, J A T

    2015-12-09

    Crambe (Crambe abyssinica) is a non-edible annual herb, which was first cultivated to extract oil for industry, and now has great potential for biodiesel production. The objective of this investigation was to evaluate the genetic stability of micropropagated plants of the C. abyssinica Hochst cultivar 'FMS brilhante' using polymerase chain reaction techniques based on inter-simple sequence repeat (ISSR) molecular markers. The aim was to develop a protocol for the in vitro regeneration of these plants with low genetic variation as compared to the donor plant. For micropropagation, shoot tips from in vitro germinated seedlings were used as explants and were initially cultivated for 90 days on MS medium with 5.0 μM 6-benzylaminopurine (BAP), which at 90 days, led to the highest number of shoots per explant (NSE) (12.20 shoots) being detected. After 120 days, the interaction between BAP concentration and naphthalene acetic acid (NAA) was tested, and the highest NSE was observed following exposure to 0.0/0.5 μM BAP/NAA (11.40 shoots) and 1.0/0.0 μM BAP/NAA (11.00 shoots). The highest proportion of rooting phase were observed following exposure to 0.5 μM NAA (30%). The 13 ISSR primers used to analyze genetic stability produced 91 amplification products, of which only eight bands were polymorphic and 83 were monomorphic for all 10 regenerated crambe plants, compared to the donor plant explant. These results indicate that crambe shoot tips are a highly reliable explant that can be used to micropropagate genetically true-to-type plants or to maintain genetic stability, as verified using ISSR markers.

  3. Genetic variation detected by RAPD markers in natural populations of babassu palm (Attalea speciosa Mart.).

    PubMed

    Santos, M F; Damasceno-Silva, K J; Carvalhaes, M A; Lima, P S C

    2015-06-10

    The purpose of this study was to analyze the effects of management on the genetic structure of natural populations of Attalea speciosa in the State of Piauí, Brazil, using random-amplified polymorphic DNA (RAPD) markers. Three babassu populations under different management systems were selected. Polymerase chain reactions were performed for 20 RAPD primers. A total of 146 bands were generated, 141 of which were polymorphic (96.58%), with a variation of 4 and 12 loci and an average of 7 bands per primer. A dendrogram revealed a clear separation between the three populations (0.57). Data reliability and node consistency were verified by bootstrap values and the cophenetic correlation coefficient (88.15%). Coefficients of similarity between pairs of genotypes ranged from 0.26 to 0.86, with a mean of 0.57. Nei's genetic diversity index (HE) value of the population sampled in Teresina was 0.212, of Esperantina it was 0.195, and of José de Freitas it was 0.207. After the HE was decomposed, the complete diversity was found to be 0.3213. Genetic differentiation between populations was 0.362, and the estimation of gene flow between populations was low (0.879). Analysis of molecular variance revealed that 59.52% of the variation was contained within populations, and 40.48% was between populations. RAPD markers were effective for genetic diversity analysis within and between natural babassu populations, and exhibited a high level of polymorphism. Genetic diversity was the highest within populations; variability was lower in the managed populations than in the undisturbed populations.

  4. Molecular diversity analysis of eggplant (Solanum melongena) genetic resources.

    PubMed

    Ali, Z; Xu, Z L; Zhang, D Y; He, X L; Bahadur, S; Yi, J X

    2011-06-14

    Eggplant (Solanum melongena), a vegetable that is cultivated worldwide, is of considerable importance to agriculture in China. We analyzed the diversity of this plant using inter-simple sequence repeat (ISSR) and RAPD procedures to subdivide 143 Chinese-cultivated eggplants based on coefficient of parentage, genetic diversity index (GDI) and canonical discriminant analysis. ISSR markers were more effective than RAPD markers for detecting genetic diversity, which ranged from 0.10-0.51, slightly lower than what is known from other crops. Our ISSR/RAPD data provide molecular evidence that coincides with morphological-based classification into three varieties and further subdivision into eight groups, except for two groups. Intensive use of elite parents and extensive crossing within groups have resulted in increased coefficient of parentage and proportional contribution but decreased GDI during the past decades. The mean coefficient of parentage and proportional contribution increased from 0.05 to 0.10% and from 3.22 to 6.46% during 1980-1991 and 1992-2003, respectively. The GDI of landraces was 0.21, higher than the 0.09 and 0.08 calculated for the hybrid cultivars released during the two periods. The recent introduction of alien genotypes into eggplant breeding programs may broaden the genetic base.

  5. Molecular predictive markers in tumors of the gastrointestinal tract

    PubMed Central

    Papadopoulou, Eirini; Metaxa-Mariatou, Vasiliki; Tsaousis, Georgios; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Efstathiadou, Chrisoula; Apessos, Angela; Agiannitopoulos, Konstantinos; Pepe, Georgia; Bourkoula, Eugenia; Nasioulas, George

    2016-01-01

    Gastrointestinal malignancies are among the leading causes of cancer-related deaths worldwide. Like all human malignancies they are characterized by accumulation of mutations which lead to inactivation of tumor suppressor genes or activation of oncogenes. Advances in Molecular Biology techniques have allowed for more accurate analysis of tumors’ genetic profiling using new breakthrough technologies such as next generation sequencing (NGS), leading to the development of targeted therapeutical approaches based upon biomarker-selection. During the last 10 years tremendous advances in the development of targeted therapies for patients with advanced cancer have been made, thus various targeted agents, associated with predictive biomarkers, have been developed or are in development for the treatment of patients with gastrointestinal cancer patients. This review summarizes the advances in the field of molecular biomarkers in tumors of the gastrointestinal tract, with focus on the available NGS platforms that enable comprehensive tumor molecular profile analysis. PMID:27895815

  6. Genetic African Ancestry and Markers of Mineral Metabolism in CKD

    PubMed Central

    Parsa, Afshin; Isakova, Tamara; Scialla, Julia J.; Chen, Jing; Flack, John M.; Nessel, Lisa C.; Gupta, Jayanta; Bellovich, Keith A.; Steigerwalt, Susan; Sondheimer, James H.; Wright, Jackson T.; Feldman, Harold I.; Kusek, John W.; Lash, James P.; Wolf, Myles

    2016-01-01

    Background and objectives Disorders of mineral metabolism are more common in African Americans with CKD than in European Americans with CKD. Previous studies have focused on the differences in mineral metabolism by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors. Design, setting, participants, & measurements In a cross-sectional analysis of 3013 participants of the Chronic Renal Insufficiency Cohort study with complete data, we compared markers of mineral metabolism (phosphorus, calcium, alkaline phosphatase, parathyroid hormone, fibroblast growth factor 23, and urine calcium and phosphorus excretion) in European Americans versus African Americans and separately, across quartiles of genetic African ancestry in African Americans (n=1490). Results Compared with European Americans, African Americans had higher blood concentrations of phosphorus, alkaline phosphatase, fibroblast growth factor 23, and parathyroid hormone, lower 24-hour urinary excretion of calcium and phosphorus, and lower urinary fractional excretion of calcium and phosphorus at baseline (P<0.001 for all). Among African Americans, a higher percentage of African ancestry was associated with lower 24-hour urinary excretion of phosphorus (Ptrend<0.01) in unadjusted analyses. In linear regression models adjusted for socio-demographic characteristics, kidney function, serum phosphorus, and dietary phosphorus intake, higher percentage of African ancestry was significantly associated with lower 24-hour urinary phosphorus excretion (each 10% higher African ancestry was associated with 39.6 mg lower 24-hour urinary phosphorus, P<0.001) and fractional excretion of phosphorus (each 10% higher African ancestry was associated with an absolute 1.1% lower fractional excretion of phosphorus, P=0.01). Conclusions A higher percentage of African ancestry was independently associated with lower 24-hour urinary phosphorus excretion and lower fractional

  7. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    PubMed Central

    2012-01-01

    Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012

  8. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  9. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.

    PubMed

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-02

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  10. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  11. Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers.

    PubMed

    Shiferaw, E; Pè, M E; Porceddu, E; Ponnaiah, M

    2012-08-01

    Expressed sequence tags (ESTs) in public databases and cross-species transferable markers are considered to be a cost-effective means for developing sequence-based markers for less-studied species. In this study, EST-simple sequence repeat (SSR) markers developed from Lathyrus sativus L. EST sequences and cross-transferable EST-SSRs derived from Medicago truncatula L. were utilized to investigate the genetic diversity among grass pea populations from Ethiopia. A total of 45 alleles were detected using eleven EST-SSRs with an average of four alleles per locus. The average polymorphism information content for all primers was 0.416. The average gene diversity was 0.477, ranging from 0.205 for marker Ls942 to 0.804 for MtBA32F05. F(ST) values estimated by analysis of molecular variance were 0.01, 0.15, and 0.84 for among regions, among accessions and within accessions respectively, indicating that most of the variation (84%) resides within accessions. Model-based cluster analysis grouped the accessions into three clusters, grouping accessions irrespective of their collection regions. Among the regions, high levels of diversity were observed in Gojam, Gonder, Shewa and Welo regions, with Gonder region showing a higher number of different alleles. From breeding and conservation aspects, conducting a close study on a specific population would be advisable for genetic improvement in the crop, and it would be appropriate if future collection and conservation plans give due attention to under-represented regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9662-y) contains supplementary material, which is available to authorized users.

  12. Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris

    PubMed Central

    Zhang, Shu; Hao, Ai-Jing; Zhao, Yu-Xiang; Zhang, Xiao-Yu; Zhang, Yong-Jie

    2017-01-01

    Cordyceps militaris is a fungus used for developing health food, but knowledge about its intraspecific differentiation is limited due to lack of efficient markers. Herein, we assembled the mitochondrial genomes of eight C. militaris strains and performed a comparative mitochondrial genomic analysis together with three previously reported mitochondrial genomes of the fungus. Sizes of the 11 mitochondrial genomes varied from 26.5 to 33.9 kb mainly due to variable intron contents (from two to eight introns per strain). Nucleotide variability varied according to different regions with non-coding regions showing higher variation frequency than coding regions. Recombination events were identified between some locus pairs but seemed not to contribute greatly to genetic variations of the fungus. Based on nucleotide diversity fluctuations across the alignment of all mitochondrial genomes, molecular markers with the potential to be used for future typing studies were determined. PMID:28071691

  13. Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris.

    PubMed

    Zhang, Shu; Hao, Ai-Jing; Zhao, Yu-Xiang; Zhang, Xiao-Yu; Zhang, Yong-Jie

    2017-01-10

    Cordyceps militaris is a fungus used for developing health food, but knowledge about its intraspecific differentiation is limited due to lack of efficient markers. Herein, we assembled the mitochondrial genomes of eight C. militaris strains and performed a comparative mitochondrial genomic analysis together with three previously reported mitochondrial genomes of the fungus. Sizes of the 11 mitochondrial genomes varied from 26.5 to 33.9 kb mainly due to variable intron contents (from two to eight introns per strain). Nucleotide variability varied according to different regions with non-coding regions showing higher variation frequency than coding regions. Recombination events were identified between some locus pairs but seemed not to contribute greatly to genetic variations of the fungus. Based on nucleotide diversity fluctuations across the alignment of all mitochondrial genomes, molecular markers with the potential to be used for future typing studies were determined.

  14. Multidrug resistance as a dominant molecular marker in transformation of wine yeast.

    PubMed

    Kozovska, Z; Maraz, A; Magyar, I; Subik, J

    2001-12-14

    Pure wine yeast cultures are increasingly used in winemaking to perform controlled fermentations and produce wine of reproducible quality. For the genetic manipulation of natural wine yeast strains dominant selective markers are obviously useful. Here we demonstrate the successful use of the mutated PDR3 gene as a dominant molecular marker for the selection of transformants of prototrophic wine yeast Saccharomyces cerevisiae. The selected transformants displayed a multidrug resistance phenotype that was resistant to strobilurin derivatives and azoles used to control pathogenic fungi in agriculture and medicine, respectively. Random amplification of DNA sequences and electrophoretic karyotyping of the host and transformed strains after microvinification experiments resulted in the same gel electrophoresis patterns. The chemical and sensory analysis of experimental wines proved that the used transformants preserved all their useful winemaking properties indicating that the pdr3-9 allele does not deteriorate the technological properties of the transformed wine yeast strain.

  15. Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers.

    PubMed

    Huang, L-K; Zhang, X-Q; Xie, W-G; Zhang, J; Cheng, L; Yan, H D

    2012-08-16

    Hemarthria compressa is one of the most important and widely utilized forage crops in south China, owing to its high forage yield and capability of adaptation to hot and humid conditions. We examined the population structure and genetic variation within and among 12 populations of H. compressa in south China using sequence-related amplified polymorphism (SRAP) markers. High genetic diversity was found in these samples [percentage polymorphic bands (PPB) = 82.21%, Shannon's diversity index (I) = 0.352]. However, there was relatively low level of genetic diversity at the population level (PPB = 29.17%, I = 0.155). A high degree of genetic differentiation among populations was detected based on other measures and molecular markers (Nei's genetic diversity analysis: G(ST) = 54.19%; AMOVA analysis: F(ST) = 53.35%). The SRAP markers were found to be more efficient than ISSR markers for evaluating population diversity. Based on these findings, we propose changes in sampling strategies for appraising and utilizing the genetic resources of this species.

  16. Hypertension genes are genetic markers for insulin sensitivity and resistance.

    PubMed

    Guo, Xiuqing; Cheng, Suzanne; Taylor, Kent D; Cui, Jinrui; Hughes, Randall; Quiñones, Manuel J; Bulnes-Enriquez, Isabel; De la Rosa, Roxana; Aurea, George; Yang, Huiying; Hsueh, Willa; Rotter, Jerome I

    2005-04-01

    Insulin resistance is a determinant of blood pressure variation and risk factor for hypertension. Because insulin resistance and blood pressure cosegregate in Mexican American families, we thus investigated the association between variations in 9 previously reported hypertension genes (ACE, AGT, AGTRI, ADDI, NPPA, ADDRB2, SCNN1A, GNB3, and NOS3) and insulin resistance. Families were ascertained via a coronary artery disease proband in the Mexican American Coronary Artery Disease Project. Individuals from 100 Mexican American families (n=656) were genotyped for 14 polymorphisms in the 9 genes and all adult offspring and offspring spouses were phenotyped for insulin sensitivity by hyperinsulinemic euglycemic clamp (n=449). AGT M235T and NOS3 A(-922)G and E298D polymorphisms were significantly associated with insulin sensitivity (P=0.018, 0.036, 0.039) but were not significant after adjusting for body mass index. ADD1 G460W was associated with insulin sensitivity only after adjusting for body mass index. The NPPA T2238C and SCNN1A A663T were associated with decreased fasting insulin levels after adjusting for body mass index (P=0.015 and 0.028). In conclusion, AGT, NOS3, NPPA, ADRB2, ADD1, and SCNN1A may well be genetic markers for insulin resistance, and adiposity was a potential modifier for only some gene/trait combinations. Our data support the hypothesis that genes in the blood pressure pathway may play a role in insulin resistance in Mexican Americans.

  17. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review.

    PubMed

    Tripathi, Niraj; Khare, Dhirendra

    2016-10-01

    Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and 'omics' research, is provided in this article.

  18. Development of novel SCAR markers for genetic characterization of Lonicera japonica from high GC-RAMP-PCR and DNA cloning.

    PubMed

    Cheng, J L; Li, J; Qiu, Y M; Wei, C L; Yang, L Q; Fu, J J

    2016-04-28

    Sequence-characterized amplified region (SCAR) markers were further developed from high-GC primer RAMP-PCR-amplified fragments from Lonicera japonica DNA by molecular cloning. The four DNA fragments from three high-GC primers (FY-27, FY-28, and FY-29) were successfully cloned into a pGM-T vector. The positive clones were sequenced; their names, sizes, and GenBank numbers were JYHGC1-1, 345 bp, KJ620024; YJHGC2-1, 388 bp, KJ620025; JYHGC7-2, 1036 bp, KJ620026; and JYHGC6-2, 715 bp, KJ620027, respectively. Four novel SCAR markers were developed by designing specific primers, optimizing conditions, and PCR validation. The developed SCAR markers were used for the genetic authentication of L. japonica from its substitutes. This technique provides another means of developing DNA markers for the characterization and authentication of various organisms including medicinal plants and their substitutes.

  19. ACOG Technology Assessment No. 11: Genetics and molecular diagnostic testing.

    PubMed

    2014-02-01

    Human genetics and molecular testing are playing an increasingly important role in medicine, including obstetric and gynecologic practice. As the genetic basis for reproductive disorders, common diseases, and cancer is elucidated with improved molecular technology, genetic testing opportunities are expanding and influencing treatment options and prevention strategies. It is essential that obstetrician-gynecologists be aware of advances in the understanding of genetic disease and the fundamental principles of genetic screening and molecular testing as genetics becomes a more integral part of routine medical practice. This document reviews the basics of genetic transmission and genetic technologies in current use.

  20. Central pattern generators deciphered by molecular genetics.

    PubMed

    Kiehn, Ole; Kullander, Klas

    2004-02-05

    Central pattern generators (CPGs) are localized neuronal networks that have the ability to produce rhythmic movements even in the absence of movement-related sensory feedback. They are found in all animals, including man, and serve as informative model systems for understanding how neuronal networks produce behavior. Traditionally, CPGs have been investigated with electrophysiological techniques. Here we review recent molecular and genetic approaches for dissecting the organization and development of CPGs.

  1. Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers.

    PubMed

    Manica-Cattani, M F; Zacaria, J; Pauletti, G; Atti-Serafini, L; Echeverrigaray, S

    2009-05-01

    Twenty-seven accessions of Lippia alba Mill. collected in Rio Grande do Sul state, Brazil, were analysed by ISSR and RAPD markers to evaluate their genetic variability and relationships. Six ISSR primers and four RAPD primers generated 120 amplified fragments, most of which were polymorphics. The overall genetic variability among accessions was very high when compared with other plant species. The hierarchical analysis of molecular data (UPGMA) showed low relationship between accessions, and no grouping between accessions of the same chemotype. Canonical functions allowed identifying some variables related with the chemical characteristics of the essential oils. Both ISSR and RAPD markers were efficient to address the genetic diversity of L. alba, and may contribute to the conservation and breeding of this increasingly important aromatic and medicinal species.

  2. Molecular genetics of neuronal migration disorders.

    PubMed

    Liu, Judy S

    2011-04-01

    Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.

  3. Microbial Biofilms: from Ecology to Molecular Genetics

    PubMed Central

    Davey, Mary Ellen; O'toole, George A.

    2000-01-01

    Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development. PMID:11104821

  4. Molecular genetic analysis of giant cell glioblastomas.

    PubMed Central

    Meyer-Puttlitz, B.; Hayashi, Y.; Waha, A.; Rollbrocker, B.; Boström, J.; Wiestler, O. D.; Louis, D. N.; Reifenberger, G.; von Deimling, A.

    1997-01-01

    Glioblastomas (GBMs) are a heterogeneous group of tumors. Recently, distinct molecular genetic alterations have been linked to subgroups of patients with GBM. Giant cell (gc)GBMs are a rare variant of GBM characterized by a marked preponderance of multinucleated giant cells. Several reports have associated this entity with a more favorable prognosis than the majority of GBMs. To evaluate whether gcGBM may also represent a genetically defined subgroup of GBM, we analyzed a series of 19 gcGBMs for mutations in the TP53 gene for amplification of the EGFR and CDK4 genes and for homozygous deletions in the CDKN2A (p16/MTS1) gene. Seventeen of nineteen gcGBMs carried TP53 mutations whereas EGFR and CDK4 gene amplification was seen in only one tumor each and homozygous deletion of CDKN2A was not observed at all. The strikingly high incidence of TP53 mutations and the relative absence of other genetic alterations groups gcGBM together with a previously recognized molecular genetic variant of GBM (type 1 GBM). It is tempting to speculate that the better prognosis of gcGBM patients may result from the low incidence of EGFR amplification and CDKN2A deletion, changes known for their growth-promoting potential. Images Figure 1 PMID:9284834

  5. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers.

    PubMed

    Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I

    2011-03-09

    Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.

  6. Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

    PubMed

    Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T

    2015-07-01

    With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several

  7. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa.

    PubMed Central

    Choi, Hong-Kyu; Kim, Dongjin; Uhm, Taesik; Limpens, Eric; Lim, Hyunju; Mun, Jeong-Hwan; Kalo, Peter; Penmetsa, R Varma; Seres, Andrea; Kulikova, Olga; Roe, Bruce A; Bisseling, Ton; Kiss, Gyorgy B; Cook, Douglas R

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map. PMID:15082563

  8. Isolation of Ty1-copia retrotransposon in myrtle genome and development of S-SAP molecular marker.

    PubMed

    Woodrow, Pasqualina; Pontecorvo, Giovanni; Ciarmiello, Loredana F

    2012-04-01

    Long terminal repeat (LTR)-retrotransposons are mobile genetic elements that are ubiquitous in plants and constitute a major portion of their nuclear genomes. LTR- retrotransposons possess unique properties that make them appropriate for investigating relationships between populations, varieties and closely related species. Myrtus communis L. is an evergreen shrub growing spontaneously throughout the Mediterranean area. Accessions show significant variations for agriculturally important traits, so the development of specific molecular markers for conservation and characterization of myrtle germplasm is desirable to conserve biodiversity. In this study, we isolated the first retrotransposon Ty1-copia-like element (Tmc1) in Myrtus communis L. genome and used this as a molecular marker. We successfully employed the S-SAP marker system to specifically characterize four myrtle accessions belonging to different areas in the province of Caserta (Italy). The high level of polymorphism detected in isolated LTRs, make Tmc1 a good molecular marker for this species. Our findings confirm that retrotransposon-based molecular markers are particularly valuable tools for plant molecular characterization studies.

  9. Development of microsatellite markers for Manilkara maxima T.D. Penn. (Sapotaceae) and their use in conservation genetics.

    PubMed

    Silva-Junior, José Audenor; de Souza França, Daniele; Moraes, Ramiris César Souza; Gaiotto, Fernanda Amato

    2016-06-01

    Manilkara maxima is an endemic tree species of the Atlantic Forest in southern Bahia, Brazil. It is considered important for forest conservation due to its mutualistic interactions with endemic and endangered animals. Our aim was to develop microsatellite markers to estimate genetic diversity in order to provide information for effectiveness of future conservation programs. We used next generation sequencing technology to develop the first specific microsatellite markers for M. maxima. Seventeen new microsatellite loci were applied in 72 individuals sampled in three natural populations. On average, the number of alleles per loci was 8.8. The expected heterozygosity varied between 0.72 and 0.77, indicating that the developed set of molecular markers is useful for genetic diversity studies. Additionally, the estimated value for the combined probability of exclusion (Q) was greater than 0.999, which indicates the powerful of these molecular tools for paternity and kinship analysis. Our results demonstrate that the set of microsatellites developed in this work is a powerful tool for population genetics, molecular ecology and conservation biology purposes.

  10. Genetic diversity of Palestine landraces of faba bean (Vicia faba) based on RAPD markers.

    PubMed

    Basheer-Salimia, R; Shtaya, M; Awad, M; Abdallah, J; Hamdan, Y

    2013-09-03

    Until now, neither phenotypic nor molecular approaches have been used to characterize the landraces of Palestine faba beans (Vicia faba). We used PCR-based RAPD markers to determine the genetic diversity and relatedness among 26 Palestinian faba bean landraces (traditional farmers' varieties) from 8 localities in the West Bank, Palestine. In tests with 37 primers, 14 generated no polymorphic bands, 12 exhibited weak and unclear products, and 11 primers produced good amplification products with high intensity and pattern stability. Ninety-four DNA fragments (loci) were detected, with an average of 8.54 loci per primer and size ranging from 160 to 1370 bp. A minimum of 4 and a maximum of 14 DNA fragments were obtained using (OPA-05 and OPA-09) and (BC-261) primers, respectively. The maximum percentage of polymorphic markers was 71.4 (BC-298) and the minimum was 50.0 (OPA-05, -09, -16). The 11 primers exhibited relatively high collective resolving power (Rp) values of 26.316, and varied from 0.154 for the OPA-09 primer to 5.236 for the BC-261, with an overall mean of 2.392. The primers BC-261, -322, and -298 were found to be the most useful RAPD primers to assess the genetic diversity of Palestinian faba beans, as they revealed relatively high Rp rates (5.236, 3.618, and 3.150, respectively). Based on the Jaccard coefficient, the genetic distance ranged from 0.358 to 0.069, with a mean of 0.213. We conclude that the RAPD technique is useful for determining genetic diversity and for developing suitable fingerprints for faba bean landraces grown in Palestine.

  11. Diversity and genetic stability in banana genotypes in a breeding program using inter simple sequence repeats (ISSR) markers.

    PubMed

    Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S

    2017-02-23

    Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.

  12. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers.

    PubMed

    Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A

    2016-10-17

    Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (GST = 0.307). High gene flow (Nm = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.

  13. Genetic diversity analysis of Capparis spinosa L. populations by using ISSR markers.

    PubMed

    Liu, C; Xue, G P; Cheng, B; Wang, X; He, J; Liu, G H; Yang, W J

    2015-12-09

    Capparis spinosa L. is an important medicinal species in the Xinjiang Province of China. Ten natural populations of C. spinosa from 3 locations in North, Central, and South Xinjiang were studied using morphological trait inter simple sequence repeat (ISSR) molecular markers to assess the genetic diversity and population structure. In this study, the 10 ISSR primers produced 313 amplified DNA fragments, with 52% of fragments being polymorphic. Unweighted pair-group method with arithmetic average (UPGMA) cluster analysis indicated that 10 C. spinosa populations were clustered into 3 geographically distinct groups. The Nei gene of C. spinosa populations in different regions had Diversity and Shannon's information index ranges of 0.1312-0.2001 and 0.1004-0.1875, respectively. The 362 markers were used to construct the dendrogram based on the UPGMA cluster analysis. The dendrogram indicated that 10 populations of C. spinosa were clustered into 3 geographically distinct groups. The results showed these genotypes have high genetic diversity, and can be used for an alternative breeding program.

  14. Ageing, longevity, exceptional longevity and related genetic and non genetics markers: panel statement.

    PubMed

    Avery, Peter; Barzilai, Nir; Benetos, Athanase; Bilianou, Helen; Capri, Miriam; Caruso, Calogero; Franceschi, Claudio; Katsiki, Niki; Mikhailidis, Dimitri P; Panotopoulos, George; Sikora, Ewa; Tzanetakou, Irene P; Kolovou, Genovefa

    2014-01-01

    In May 2012, a group of scientists and clinicians met in Athens (Greece) to consider the relevance of ageing, longevity, exceptional longevity and related genetic and non genetic markers. During this meeting, we firstly reviewed recent epidemiological and clinical studies on ageing, longevity and exceptional longevity, briefly analyzed the ageing theories and discussed successful and unsuccessful ageing also taking into account the evolutionary perspective. Secondly, we considered the three phenotypes based on the definition of ageing, longevity and exceptional longevity and the associated biomarkers. Third, we discussed proposed treatments suitable to counteract or slow down ageing. Finally, this panel produced a consensus statement to highlight the importance of ageing, longevity and exceptional longevity, since this is a rapidly increasing phenotype worldwide. We acknowledge that not all experts in this field may completely agree with this statement.

  15. Isolation and characterization of genomic microsatellite markers for small cardamom (Elettaria cardamomum Maton) for utility in genetic diversity analysis.

    PubMed

    Cyriac, Anu; Paul, Ritto; Anupama, K; Senthil Kumar, R; Sheeja, T E; Nirmal Babu, K; Parthasarathy, V A

    2016-04-01

    Microsatellite markers in small cardamom (Elettaria cardamomum Maton) were developed using the selective hybridization enrichment method. A total of 140 microsatellite repeats were identified from 270 clones. Primers were designed for 58 microsatellites and 44 primer pairs amplified products of expected size in cardamom. These markers were used for studying the diversity of 20 important small cardamom genotypes, and six markers were found to be polymorphic. The number of alleles ranged from 2 to 7 with an average of 3.6 per locus. Polymorphic information content values ranged from 0.14 to 0.38 based on dominant scoring. The two markers ECM 47a and ECMG 28 generated specific banding patterns for the genotypes MCC7 (Pink tiller) and APG434 (MA18) respectively. Dendrogram illustrated the genetic similarity between different genotypes of Kerala and Karnataka regions. It differentiated the closely related genotypes and released varieties into separate groups. Principal coordinate analysis revealed PV1 and ICRI 1 as the most divergent genotypes. The study demonstrated that these markers are informative and can be further utilized for generating reliable molecular data for assisting the crop improvement of small cardamom. Cross generic transferability (71.4 %) of the developed primers proved that they are useful for phylogenetic studies in the family Zingiberaceae. This is the first report of de novo isolation, characterisation and utilization of microsatellite markers for the genetic diversity analysis of small cardamom.

  16. A molecular marker-based linkage map of diploid bananas (Musa acuminata).

    PubMed

    Fauré, S; Noyer, J L; Horry, J P; Bakry, F; Lanaud, C; Gońzalez de León, D

    1993-12-01

    A partial molecular linkage map of the Musa acuminata diploid genome is presented. This map is based on 58 RFLP, four isozyme and 28 RAPD markers segregating in an F2 population of 92 individuals. A total of 90 loci was detected, 77 of which were placed on 15 linkage groups while 13 segregated independently. Segregation distortions were shown by 36% of all loci, mostly favoring the male parent. Chromosome structural rearrangements were believed to be one of the main causes of these distortions. The use of genetic linkage data to further the genetic and evolutionary knowledge of the genus Musa, as well as to help improve the design of breeding strategies, is discussed.

  17. New Strategies in Personalized Medicine for Solid Tumors: Molecular Markers and Clinical Trial Designs

    PubMed Central

    Jürgensmeier, Juliane M.; Eder, Joseph P.; Herbst, Roy S.

    2017-01-01

    The delineation of signaling pathways to understand tumor biology combined with the rapid development of technologies that allow broad molecular profiling and data analysis, has led to a new era of personalized medicine in oncology. Many academic institutions now routinely profile patients and discuss them in personalized medicine tumor boards before making treatment recommendations. Clinical trials initiated by pharmaceutical companies often require specific markers for enrollment or at least explore multiple options for future markers. In addition to the still small number of targeted agents that are approved for the therapy of patients with histological and molecularly defined tumors, there is a broad range of novel targeted agents in development that are undergoing clinical studies with companion profiling to determine the best responding patient population. While the present focus of profiling are genetic analyses, additional testing of RNA, protein and immune parameters are being developed and incorporated in clinical research and are likely to contribute significantly to future patient selection and treatment approaches. As the advances in tumor biology and human genetics have identified promising tumor targets, the ongoing clinical evaluation of novel agents will now need to show if the promise can be translated into benefit for patients. PMID:25183480

  18. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characte...

  19. Recent trends and perspectives of molecular markers against fungal diseases in wheat

    PubMed Central

    Goutam, Umesh; Kukreja, Sarvjeet; Yadav, Rakesh; Salaria, Neha; Thakur, Kajal; Goyal, Aakash K.

    2015-01-01

    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40–60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases. PMID:26379639

  20. Molecular Genetic of Atopic dermatitis: An Update

    PubMed Central

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  1. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1

    PubMed Central

    Robarts, Daniel W. H.; Wolfe, Andrea D.

    2014-01-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637

  2. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    PubMed

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  3. Molecular characterization of genetic variation to pea enation mosaic virus resistance in lentil (Lenz culinaris Medik.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of genetically diverse lentil germplasm with resistance to pea enation mosaic virus (PEMV) through combined of molecular marker analysis and phenotyping could prove useful in breeding programs. A total of 44 lentil (Lens culinaris Medik.) accessions, were screened for resistance to PE...

  4. Analysis of genetic diversity of Brassica rapa var. chinensis using ISSR markers and development of SCAR marker specific for Fragrant Bok Choy, a product of geographic indication.

    PubMed

    Shen, X L; Zhang, Y M; Xue, J Y; Li, M M; Lin, Y B; Sun, X Q; Hang, Y Y

    2016-04-25

    Non-heading Chinese cabbage [Brassica rapa var. chinensis (Linnaeus) Kitamura] is a popular vegetable and is also used as a medicinal plant in traditional Chinese medicine. Fragrant Bok Choy is a unique accession of non-heading Chinese cabbage and a product of geographic indication certified by the Ministry of Agriculture of China, which is noted for its rich aromatic flavor. However, transitional and overlapping morphological traits can make it difficult to distinguish this accession from other non-heading Chinese cabbages. This study aimed to develop a molecular method for efficient identification of Fragrant Bok Choy. Genetic diversity analysis, based on inter-simple sequence repeat molecular markers, was conducted for 11 non-heading Chinese cabbage accessions grown in the Yangtze River Delta region. Genetic similarity coefficients between the 11 accessions ranged from 0.5455 to 0.8961, and the genetic distance ranged from 0.0755 to 0.4475. Cluster analysis divided the 11 accessions into two major groups. The primer ISSR-840 amplified a fragment specific for Fragrant Bok Choy. A pair of specific sequence-characterized amplified region (SCAR) primers based on this fragment amplified a target band in Fragrant Bok Choy individuals, but no band was detected in individuals of other accessions. In conclusion, this study has developed an efficient strategy for authentication of Fragrant Bok Choy. The SCAR marker described here will facilitate the conservation and utilization of this unique non-heading Chinese cabbage germplasm resource.

  5. Improving human forensics through advances in genetics, genomics and molecular biology.

    PubMed

    Kayser, Manfred; de Knijff, Peter

    2011-03-01

    Forensic DNA profiling currently allows the identification of persons already known to investigating authorities. Recent advances have produced new types of genetic markers with the potential to overcome some important limitations of current DNA profiling methods. Moreover, other developments are enabling completely new kinds of forensically relevant information to be extracted from biological samples. These include new molecular approaches for finding individuals previously unknown to investigators, and new molecular methods to support links between forensic sample donors and criminal acts. Such advances in genetics, genomics and molecular biology are likely to improve human forensic case work in the near future.

  6. Use of toxicogenomics for identifying genetic markers of pulmonary oedema

    SciTech Connect

    Balharry, Dominique . E-mail: balharry@cf.ac.uk; Oreffo, Victor; Richards, Roy

    2005-04-15

    This study was undertaken primarily to identify genetic markers of oedema and inflammation. Mild pulmonary injury was induced following the instillation of the oedema-producing agent, bleomycin (0.5 units). Oedema was then confirmed by conventional toxicology (lavage protein levels, free cell counts and lung/body weight ratios) and histology 3 days post-bleomycin instillation.The expression profile of 1176 mRNA species was determined for bleomycin-exposed lung (Clontech Atlas macroarray, n = 9). To obtain pertinent results from these data, it was necessary to develop a simple, effective method for bioinformatic analysis of altered gene expression. Data were log{sub 10} transformed followed by global normalisation. Differential gene expression was accepted if: (a) genes were statistically significant (P {<=} 0.05) from a two-tailed t test; (b) genes were consistently outside a two standard deviation (SD) range from control levels. A combination of these techniques identified 31 mRNA transcripts (approximately 3%) which were significantly altered in bleomycin treated tissue. Of these genes, 26 were down-regulated whilst only five were up-regulated. Two distinct clusters were identified, with 17 genes classified as encoding hormone receptors, and nine as encoding ion channels. Both these clusters were consistently down-regulated.The magnitude of the changes in gene expression were quantified and confirmed by Q-PCR (n = 6), validating the macroarray data and the bioinformatic analysis employed.In conclusion, this study has developed a suitable macroarray analysis procedure and provides the basis for a better understanding of the gene expression changes occurring during the early phase of drug-induced pulmonary oedema.

  7. Molecular markers of cell adhesion in ameloblastomas. An update

    PubMed Central

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets. Key words:Ameloblastoma, cellular adhesion, molecular markers, cell-cell adhesion, extracellular matrix-cell adhesion. PMID:23986011

  8. Autism and genetics: Clinical approach and association study with two markers of HRAS gene

    SciTech Connect

    Herault, J.; Petit, E.; Cherpi, C.

    1995-08-14

    Twin studies and familial aggregation studies indicate that genetic factors could play a role in infantile autism. In an earlier study, we identified a possible positive association between autism and a c-Harvey-ras (HRAS) oncogene marker at the 3{prime} end of the coding region. In an attempt to confirm this finding, we studied a larger population, well-characterized clinically and genetically. We report a positive association between autism and two HRAS markers, the 3{prime} marker used in the initial study and an additional marker in exon 1. 46 refs., 1 fig., 2 tabs.

  9. Genetic structure and distribution of pythium aphanidermatum populations in Pennsylvania greenhouses based on analysis of AFLP and SSR markers.

    PubMed

    Lee, Seonghee; Garzón, Carla D; Moorman, Gary W

    2010-01-01

    Pythium aphanidermatum is one of the most aggressive species in the genus and has a wide host range, but little is known about its population genetic structure. We tested 123 P. aphanidermatum isolates with six AFLP primer combinations and four SSR markers. The genetic diversity of P. aphanidermatum was 0.34 with AFLP and 0.55 with SSR markers. SSR genotypes totaled 3-8 for each locus, and a total of 14 SSR genotypes were found among all isolates. Three major genetic groups were identified with the combination of AFLP and SSR marker data. The genetic structure observed among P. aphanidermatum isolates was related to location and mefenoxam fungicide resistance instead of host. Four genotypes (PA1, PA2, PA5 and PA7) were found in the population from a commercial greenhouse, and the genetic diversity of a greenhouse population was similar to that found in the whole sample. The molecular tools for P. aphanidermatum isolates identified the possible gene flow within and among populations in Pennsylvania greenhouses.

  10. Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana.

    PubMed

    Porcher, Emmanuelle; Giraud, Tatiana; Lavigne, Claire

    2006-02-01

    The comparison of the genetic differentiation of quantitative traits (QST) and molecular markers (FST) can inform on the strength and spatial heterogeneity of selection in natural populations, provided that markers behave neutrally. However, selection may influence the behaviour of markers in selfing species with strong linkage disequilibria among loci, therefore invalidating this test of detection of selection. We address this issue by monitoring the genetic differentiation of five microsatellite loci (FST) and nine quantitative traits (QST) in experimental metapopulations of the predominantly selfing species Arabidopsis thaliana, that evolved during eight generations. Metapopulations differed with respect to population size and selection heterogeneity. In large populations, the genetic differentiation of neutral microsatellites was much larger under heterogeneous selection than under uniform selection. Using simulations, we show that this influence of selection heterogeneity on FST can be attributable to initial linkage disequilibria among loci, creating stronger genetic differentiation of QTL than expected under a simple additive model with no initial linkage. We found no significant differences between FST and QST regardless of selection heterogeneity, despite a demonstrated effect of selection on QST values. Additional data are required to validate the role of mating system and linkage disequilibria in the joint evolution of neutral and selected genetic differentiation, but our results suggest that FST/QST comparisons can be conservative tests to detect selection in selfing species.

  11. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.

    PubMed

    Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose

    2016-11-01

    Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.

  12. A Population Genetics Study of Anopheles Darlingi (Diptera: Culicidae) from Colombia Based on Random Amplified Polymorphic DNA-Polymerase Chain Reaction and Amplified Fragment Length Polymorphism Markers

    DTIC Science & Technology

    2007-06-01

    0.029; Nm: 8.5; AFLP: FST = 0.05/; Nm: 4.7). According to molecular variance analysis (AMOYA), the genetic distance between populations was...series of population studies were conducted. using mor- phological and molecular tools (Manguin 1999). ori- ented toward clarifying both taxonomic status...and ge- netic structure within its range of distribution. Lounibos and Conn (2000) recently reviewed the use of molecular markers in the study of the

  13. EST-SSR markers derived from an elite barley cultivar (Hordeum vulgare L. 'Morex'): polymorphism and genetic marker potential.

    PubMed

    Emebiri, Livinus C

    2009-08-01

    Microsatellites or simple sequence repeats have become the markers of choice for marker-assisted selection because of their low template DNA requirement, high reproducibility, and high level of polymorphism. This study investigated a new set of barley (Hordeum vulgare L.) EST-derived SSR markers designed to target gene sequences expressed during grain development, as they are more likely to be important in determining grain quality. The EST sequences (HVSMEh and HVSMEi) were derived from cDNA libraries of the elite six-rowed cultivar Morex, made from spikes harvested at 5 to 45 days after pollination. Approximately half of the 110 SSR markers derived from the ESTs were polymorphic in a panel of 8 diverse barley genotypes, with PIC values between 0.19 and 0.79. Twenty of the new markers were mapped to chromosomal locations using 2 doubled haploid populations. To demonstrate marker potential, quantitative trait locus (QTL) analyses were carried out with phenotypic data on wort beta-glucan content and beta-glucanase activity, two traits with a long history of genetic studies. Most of the EST-SSR markers mapped to within 10 cM of the cellulose synthase (HvCesA) and cellulose synthase-like (HvCslF) genes, which provides highly informative functional markers for tracking these genes in breeding programs. It was also observed that on any given chromosome, the QTL for beta-glucan content and beta-glucanase activity were rarely coincident but tended to occur in adjacent intervals along chromosomal regions, which agreed with their independent genetic basis; the adjacent localization may be important for coordination of cell wall degradation during germination and malting.

  14. Development of Microsatellite Markers and Detection of Genetic Variation between Goniozus Wasp Populations

    PubMed Central

    Khidr, Sahand K.; Hardy, Ian C.W.; Zaviezo, Tania; Mayes, Sean

    2014-01-01

    Molecular genetic markers reveal differences between genotypes according to the presence of alleles (the same or different) at target loci. Microsatellite markers are especially useful codominant markers that have been used in a wide range of studies to elucidate the population structure and dynamics of a range of organisms, including agriculturally beneficial insects such as parasitic wasps (parasitoids). In the present study, twelve primer pairs were designed for the south Asian , Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae), and 24 for its New World congener, Goniozus legneri Gordh, parasitoids of the larvae of the lepidopteran coconut pest Opisina arenosella Walker (Lepidoptera: Crytophasidae) and other lepidopteran pests, respectively, in order to investigate polymorphism within and between populations. The wasps fingerprinted were a total of 85 G. nephantidis and G. legneri, including individuals belonging to three putatively different strains of G. legneri. Annealing gradient tests (50–65°C) were conducted to study the quality of the PCR amplification across an annealing temperature gradient using a mixed genotype DNA template from each species separately. Seven primer pairs, which amplified clear products of approximately the expected size of G. nephantidis and 18 of G. legneri, were then selected for capillary analysis for fragment size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legneri were polymorphic within populations. However, there were six primer pairs that did show polymorphism between G. legneri populations that originated from different geographical areas within South America (Uruguay and Chile). Furthermore, one primer pair revealed diversity between the two strains collected within Chile. One of the markers was subsequently used to provide unbiased assessment of primary sex ratio in G. legneri. PMID:25373190

  15. Development of microsatellite markers and detection of genetic variation between Goniozus wasp populations.

    PubMed

    Khidr, Sahand K; Hardy, Ian C W; Zaviezo, Tania; Mayes, Sean

    2014-03-20

    Molecular genetic markers reveal differences between genotypes according to the presence of alleles (the same or different) at target loci. Microsatellite markers are especially useful co-dominant markers that have been used in a wide range of studies to elucidate the population structure and dynamics of a range of organisms, including agriculturally beneficial insects such as parasitic wasps (parasitoids). In the present study, twelve primer pairs were designed for the south Asian , Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae), and 24 for its New World congener, Goniozus legneri Gordh, parasitoids of the larvae of the lepidopteran coconut pest Opisina arenosella Walker (Lepidoptera: Crytophasidae) and other lepidopteran pests, respectively, in order to investigate polymorphism within and between populations. The wasps fingerprinted were a total of 85 G. nephantidis and G. legneri, including individuals belonging to three putatively different strains of G. legneri. Annealing gradient tests (50-65°C) were conducted to study the quality of the PCR amplification across an annealing temperature gradient using a mixed genotype DNA template from each species separately. Seven primer pairs, which amplified clear products of approximately the expected size of G. nephantidis and 18 of G. legneri, were then selected for capillary analysis for fragment size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legneri were polymorphic within populations. However, there were six primer pairs that did show polymorphism between G. legneri populations that originated from different geographical areas within South America (Uruguay and Chile). Furthermore, one primer pair revealed diversity between the two strains collected within Chile. One of the markers was subsequently used to provide unbiased assessment of primary sex ratio in G. legneri.

  16. Genetic diversity among melon accessions (Cucumis melo) from Turkey based on SSR markers.

    PubMed

    Kaçar, Y A; Simsek, O; Solmaz, I; Sari, N; Mendi, Y Y

    2012-12-19

    Melon (Cucumis melo) is an important vegetable crop in Turkey, where it is grown in many regions; the most widely planted lines are local winter types belonging to the var. inodorous. We examined 81 melon genotypes collected from different provinces of Turkey, compared with 15 reference melon genotypes obtained from INRA/France, to determine genetic diversity among Turkish melons. Twenty polymorphic primers were used to generate the SSR markers. PCR amplification was performed and electrophoresis was conducted. SSR data were used to generate a binary matrix. For cluster analysis, UPGMA was employed to construct a clustering dendrogram based on the genetic distance matrix. The cophenetic correlation was compared with the similarity matrix using the Mantel matrix correspondence test to evaluate the representativeness of the dendrogram. A total of 123 alleles were amplified using the 20 SSR primer sets. The number of alleles detected by a single primer set ranged from 2 to 12, with an average of 6.15. The similarity ranged from 0.22 to 1.00 in the dendrogram developed from microsatellite analysis. Based on this molecular data, we concluded that genetic diversity among these Turkish accessions is relatively high.

  17. Genetics and molecular biology of hypotension

    NASA Technical Reports Server (NTRS)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  18. Molecular genetics of human lactase deficiencies.

    PubMed

    Järvelä, Irma; Torniainen, Suvi; Kolho, Kaija-Leena

    2009-01-01

    Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.

  19. Genetic diversity and identification of Chinese-grown pecan using ISSR and SSR markers.

    PubMed

    Jia, Xiao-Dong; Wang, Tao; Zhai, Min; Li, Yong-Rong; Guo, Zhong-Ren

    2011-12-06

    Pecan is an important horticultural nut crop originally from North America and now widely cultivated in China for its high ecological, ornamental and economic value. Currently, there are over one hundred cultivars grown in China, including introduced American cultivars and Chinese seedling breeding cultivars. Molecular markers were used to assess the genetic diversity of these cultivars and to identify the pedigrees of fine pecan plants with good characteristics and no cultivar-related data. A total of 77 samples grown in China were studied, including 14 introduced cultivars, 12 domestic seedling breeding cultivars, and 49 fine pecan plants with no cultivar data, together with Carya cathayensis and Juglans nigra. A total of 77 ISSR and 19 SSR primers were prescreened; 10 ISSR and eight SSR primers were selected, yielding a total of 94 amplified bands (100% polymorphic) in the range of 140-1,950 bp for the ISSR and 70 amplified bands (100% polymorphic) in the range of 50-350 bp for SSR markers. Genetic diversity analyses indicated Chinese-grown pecan cultivars and fine plants had significant diversity at the DNA level. The dengrograms constructed with ISSR, SSR or combined data were very similar, but showed very weak grouping association with morphological characters. However, the progeny were always grouped with the parents. The great diversity found among the Chinese cultivars and the interesting germplasm of the fine pecan plants analyzed in this study are very useful for increasing the diversity of the pecan gene pool. All 77 accessions in this study could be separated based on the ISSR and SSR fingerprints produced by one or more primers. The results of our study also showed that ISSR and SSR techniques were both suitable for genetic diversity analyses and the identification of pecan resources.

  20. The molecular basis of genetic dominance.

    PubMed Central

    Wilkie, A O

    1994-01-01

    Studies of mutagenesis in many organisms indicate that the majority (over 90%) of mutations are recessive to wild type. If recessiveness represents the 'default' state, what are the distinguishing features that make a minority of mutations give rise to dominant or semidominant characters? This review draws on the rapid expansion in knowledge of molecular and cellular biology to classify the molecular mechanisms of dominant mutation. The categories discussed include (1) reduced gene dosage, expression, or protein activity (haploinsufficiency); (2) increased gene dosage; (3) ectopic or temporally altered mRNA expression; (4) increased or constitutive protein activity; (5) dominant negative effects; (6) altered structural proteins; (7) toxic protein alterations; and (8) new protein functions. This provides a framework for understanding the basis of dominant genetic phenomena in humans and other organisms. Images PMID:8182727

  1. Analysis of genetic diversity of a native population of Myrcia lundiana Kiaersk. plants using ISSR markers.

    PubMed

    Alves, M F; Nizio, D A C; Brito, F A; Sampaio, T S; Silva, A V C; Arrigoni-Blank, M F; Carvalho, S V A; Blank, A F

    2016-12-02

    Myrcia lundiana Kiaersk. is a tree of the family Myrtaceae found in tropical and subtropical areas of the southern hemisphere that produces essential oil. The aim of this study was to characterize the genetic diversity of M. lundiana plants from a native population of Parque Nacional de Itabaiana, using inter-simple sequence repeat molecular markers. Thirty-five primers were tested, 20 of which were polymorphic, resulting in 135 polymorphic and informative bands. Results of the cluster analysis, obtained using the unweighted pair group method with arithmetic mean, grouped plants into three clusters: Cluster I - MLU001, MLU002, MLU003, MLU004, MLU005, MLU006, MLU018, MLU019, MLU020, MLU021, MLU022; MLU008, MLU011, MLU012, MLU014, MLU015, MLU017, MLU026, and MLU028; Cluster II - MLU007, MLU009, MLU010, MLU013, and MLU016; and Cluster III - MLU023, MLU024, MLU025, and MLU027. Jaccard similarity coefficients for pair-wise comparisons of plants ranged between 0.15 and 0.87. MLU014 and MLU015 presented low genetic diversity, with a similarity index of 0.87. Conversely, MLU007 and MLU019 presented high diversity, with a similarity index of 0.15. According to the structure analysis, three distinct clusters were formed. Genetic diversity of M. lundiana plants was intermediate, and expansion of its genetic diversity is necessary. MLU026 and MLU028 are the most suitable for selection in breeding programs, since they clearly represent all of the diversity present in these plants. Moreover, these results provide important information on the existing genetic variability, highlighting the importance of Parque Nacional de Itabaiana for the conservation of this species.

  2. The Cohesive Population Genetics of Molecular Drive

    PubMed Central

    Ohta, Tomoko; Dover, Gabriel A.

    1984-01-01

    The long-term population genetics of multigene families is influenced by several biased and unbiased mechanisms of nonreciprocal exchanges (gene conversion, unequal exchanges, transposition) between member genes, often distributed on several chromosomes. These mechanisms cause fluctuations in the copy number of variant genes in an individual and lead to a gradual replacement of an original family of n genes (A) in N number of individuals by a variant gene (a). The process for spreading a variant gene through a family and through a population is called molecular drive. Consideration of the known slow rates of nonreciprocal exchanges predicts that the population variance in the copy number of gene a per individual is small at any given generation during molecular drive. Genotypes at a given generation are expected only to range over a small section of all possible genotypes from one extreme (n number of A) to the other (n number of a). A theory is developed for estimating the size of the population variance by using the concept of identity coefficients. In particular, the variance in the course of spreading of a single mutant gene of a multigene family was investigated in detail, and the theory of identity coefficients at the state of steady decay of genetic variability proved to be useful. Monte Carlo simulations and numerical analysis based on realistic rates of exchange in families of known size reveal the correctness of the theoretical prediction and also assess the effect of bias in turnover. The population dynamics of molecular drive in gradually increasing the mean copy number of a variant gene without the generation of a large variance (population cohesion) is of significance regarding potential interactions between natural selection and molecular drive. PMID:6500260

  3. Genetic diversity of some Mediterranean populations of the cultivated alfalfa (Medicago sativa L.) using SSR markers.

    PubMed

    Touil, L; Guesmi, F; Fares, K; Zagrouba, C; Ferchichi, A

    2008-08-01

    This species study was to investigate the differentiation level among 26 populations in which 12 are locals originating from the Tunisian South and 14 introduced from Italy, Austerely, France and Morocco with two SSR markers. These highly polymorphic and co dominant markers, together with recent population genetic statistic extended to autotetraploids, offer tools to analyse genetic diversity in alfalfa. The number of alleles per locus varied between 8 and 9. The genetic similarity between these various populations is estimated by the index of Rogers and Tanimoto. Genetic diversity is analysed by two statistical procedures: Hierarchical classification and Correspondence Factorial Analysis (CFA). Four large groups were obtained.

  4. Identification of potential genetic markers for improved growth rate in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of genetic polymorphism associated with muscle growth would improve selection efficiency of channel catfish broodstock. Because faster growth is typically associated with increased food intake, factors involved in food intake regulation may serve as potential gene markers for selecti...

  5. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  6. Molecular Linkage Mapping and Marker-Trait Associations with NlRPT, a Downy Mildew Resistance Gene in Nicotiana langsdorffii

    PubMed Central

    Zhang, Shouan; Gao, Muqiang; Zaitlin, David

    2012-01-01

    Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a “modified backcross” involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina. PMID

  7. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    PubMed Central

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  8. Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers.

    PubMed

    Baydar, Nilgün Göktürk; Baydar, Hasan; Debener, Thomas

    2004-08-05

    Rosa damascena Mill. is the most important rose species for rose oil production. The main rose oil producers in the world are Turkey and Bulgaria and they obtain the rose oil almost exclusively from R. damascena. In spite of coming from the same original populations, R. damascena plants grown in Turkey show some morphological differences. In this study, it was aimed to investigate the genetic relationships among R. damascena plants grown in Turkey by using microsatellite and AFLP markers. Twenty three AFLP and nine microsatellite primer pairs were used for this aim. No polymorphism could be detected among the plants, as the marker patterns obtained from different plants are identical. The conclusion from these data is that all R. damascena plants under study are derived from the same original genotype by vegetative propagation. Furthermore, the observed morphological differences originate from point mutations not detectable by molecular markers. Therefore, they are equivalent to sport mutations frequently observed in cut and garden rose varieties.

  9. Characterization of simple sequence repeat (SSR) markers and genetic relationships within cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 709 SSR markers were collected from public database and 556 SSRs passed an initial screen and were used to characterize 16 Arachis hypogaea genotypes. PIC (polymorphism information content) scores and heterozygosity indices were calculated to access the genetic diversity of SSR markers an...

  10. A Reductionist Approach to Extract Robust Molecular Markers from Microarray Data Series -Isolating Markers to Track Osseointegration.

    PubMed

    Barik, Anwesha; Banerjee, Satarupa; Dhara, Santanu; Chakravorty, Nishant

    2017-03-10

    Complexities in the full genome expression studies hinder the extraction of tracker genes to analyze the course of biological events. In this study, we demonstrate the applications of supervised machine learning methods to reduce the irrelevance in microarray data series and thereby extract robust molecular markers to track biological processes. The methodology has been illustrated by analyzing whole genome expression studies on bone-implant integration (ossointegration). Being a biological process, osseointegration is known to leave a trail of genetic footprint during the course. In spite of existence of enormous amount of raw data in public repositories, researchers still do not have access to a panel of genes that can definitively track osseointegrtion. The results from our study revealed panels comprising of matrix metalloproteinases and collagen genes were able to track osseointegration on implant surfaces (MMP9 and COL1A2 on micro-textured; MMP12 and COL6A3 on superimposed nano-textured surfaces) 100% classification accuracy, specificity and sensitivity. Further, our analysis showed the importance of the progression of the duration in establishment of the mechanical connection at bone-implant surface. The findings from this study are expected to be useful to researchers investigating osseointegration of novel implant materials especially at the early stage. The methodology demonstrated can be easily adapted by scientists in different fields to analyze large databases for other biological processes.

  11. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.).

    PubMed

    Gujaria, Neha; Kumar, Ashish; Dauthal, Preeti; Dubey, Anuja; Hiremath, Pavana; Bhanu Prakash, A; Farmer, Andrew; Bhide, Mangla; Shah, Trushar; Gaur, Pooran M; Upadhyaya, Hari D; Bhatia, Sabhyata; Cook, Douglas R; May, Greg D; Varshney, Rajeev K

    2011-05-01

    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2-20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here

  12. Development of Microsatellite Markers and Analysis of Genetic Diversity and Population Structure of Colletotrichum gloeosporioides from Ethiopia

    PubMed Central

    Moges, Asmare D.; Admassu, Belayneh; Belew, Derbew; Yesuf, Mohammed; Njuguna, Joyce; Kyalo, Martina; Ghimire, Sita R.

    2016-01-01

    Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia. PMID:26978654

  13. Impact of molecular genetic research on peanut cultivar development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) has lagged other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low levels of molecular polymorphism among cultivated varieties. Recent advances in molecular genetic technology have allowed res...

  14. Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus

    PubMed Central

    2013-01-01

    Background Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum). Conclusions The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a

  15. Molecular markers that can be utilized in diet and dietary supplement research.

    PubMed

    Moyad, Mark A; Wojno, Kirk J

    2011-08-01

    Prostate and other cancers have a multitude of potential markers that can be used in laboratory and clinical studies of diet and dietary supplement interventions. More overt clinical markers include imaging tests, biopsy samples, prostate-specific antigen kinetics, and urinary testing. Many molecular markers are currently available, including antiapoptotic and apoptotic proteins, cell adhesion molecules, cell cycle compounds, growth factors, angiogenic markers, and proliferative and inflammatory signals. Protein kinases and transcription factors should also be considered for diversity. Testing of numerous molecular markers has become critical in gaining preliminary insight into the potential impact of a novel diet and supplemental agents.

  16. Molecular characterization of Anthurium genotypes by using DNA fingerprinting and SPAR markers.

    PubMed

    Souza Neto, J D; Soares, T C B; Motta, L B; Cabral, P D S; Silva, J A

    2014-07-02

    We characterized single primer amplification reaction (SPAR) molecular markers from 20 genotypes of Anthurium andraeanum Lind., including 3 from commercial varieties and 17 from 2 communities in the State of Espírito Santo, Brazil. Twenty-four SPAR, consisting of 7 random amplified polymorphic DNA and 17 inter-simple sequence repeat markers were used to estimate the genetic diversity of 20 Anthurium accessions. The set of SPAR markers generated 288 bands and showed an average polymorphism percentage of 93.39%, ranging from 71.43 to 100%. The polymorphism information content (PIC) of the random amplified polymorphic DNA primers averaged 0.364 and ranged from 0.258 to 0.490. Primer OPF 06 showed the lowest PIC, while OPAM 14 was the highest. The average PIC of the inter-simple sequence repeat primers was 0.299, with values ranging from 0.196 to 0.401. Primer UBC 845 had the lowest PIC (0.196), while primer UCB 810 had the highest (0.401). By using the complement of Jaccard's similarity index and unweighted pair group method with arithmetic mean clustering, 5 clusters were formed with a cophenetic correlation coefficient of 0.8093, indicating an acceptable clustering consistency. However, no genotype clustering patterns agreed with the morphological data. The Anthurium genotypes investigated in this study are a germplasm source for conservational research and may be used in improvement programs for this species.

  17. Applicability of RAPD markers on silver-stained polyacrylamide gels to ascertain genetic diversity in Peripatus acacioi (Peripatidae; Onychophora).

    PubMed

    DeLaat, Daiane Mariele; Carvalho, Maria Raquel Santos; Lovato, Maria Bernadete; Acedo, Maria Dolores Porto; da Fonseca, Cleusa Graça

    2005-12-30

    RAPD (random amplification of polymorphic DNA) molecular markers can be utilized for analyzing genetic variability in populations for which only a few or no molecular markers are available. They were used in a study of an endangered species, Peripatus acacioi, found in the Tripuí Ecological Station, in Ouro Preto, MG, Brazil. The ecological station was specifically created to protect this velvet worm species, the first of this group found in Brazil. For an initial evaluation of the genetic diversity of this species, DNA samples from the lobopods of four individuals, collected at random, were analyzed using RAPD. Each reaction was run with a different primer (Operon RAPD 10-mer Kits), totaling 13 primers (OPC2, OPC3, OPC4, OPC6, OPC8, OPC10, OPC11, OPL2, OPL7, OPL11, OPL13, OPL18, and OPL19). Due to the low amplification yield, RAPD fragments were separated in polyacrylamide gels and stained with silver nitrate. Numerous bands were observed. Fifty-five of the amplified bands proved to be reproducible, both in terms of presence and intensity. Among these, 27 were variable and 28 were constant. The average number of bands per gel was 4.2. Nine of the 13 primers tested allowed the identification of constant and variable bands among these four individuals. RAPD analysis of genetic variation using silver-stained polyacrylamide gel electrophoresis provided measures of band sharing among the individuals, and therefore could be used in population genetics studies of P. acacioi.

  18. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  19. Molecular approaches in the prenatal diagnosis and therapy of genetic disorders.

    PubMed

    Myrianthopoulos, N C

    1987-01-01

    During the last decade a new class of DNA markers, the restriction fragment length polymorphisms (RFLPs), has been developed by molecular genetic techniques. Genetic linkage studies using RFLPs have resulted in a large number of chromosome assignments of genes, making possible prenatal diagnosis and presymptomatic testing in many genetic disorders. Even so, of the estimated 100,000 genes that comprise the human genome fewer than 2,000, or 2%, have been mapped. Studies of the molecular basis of some of these mutant genes have brought to light a remarkable multiplicity and diversity of mutations that produce relatively few clinical phenotypes. Many genetic disorders including the thalassemias, familial hypercholesterolemia, Tay-Sachs disease, cystic fibrosis, and congenital adrenal hyperplasia, have been shown to be genetically heterogeneous. It is necessary, therefore, to know the precise mutation in order to make accurate diagnosis and restore proper enzyme or gene function.

  20. Genetic variation and genetic structure of the endangered species Sinowilsonia henryi Hemsi. (Hamamelidaceae) revealed by amplified fragment length polymorphism (AFLP) markers.

    PubMed

    Zhang, H; Ji, W L; Li, M; Zhou, L Y

    2015-10-14

    Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.

  1. [Molecular genetics of colorectal cancer and carcinogenesis].

    PubMed

    Panduro Cerda, A; Lima González, G; Villalobos, J J

    1993-01-01

    Genetic and environmental aspects play an important role in the development of colorectal cancer. However, the common molecular alteration in both hereditary and sporadic colon cancer is localized in the APC gene. the APC gene maps in the long arm of chromosome 5 and was discovered in patients with familial adenomatous polyposis (FAP). The search for the APC gene led to the identification of restriction fragment length polymorphisms (RFLPs) in FAP patients. Using these RFLPs in relatives of FAP patients it is possible to make the presymptomatic and prenatal diagnosis. The FAP syndrome is an interesting model of carcinogenesis in vivo. Thus the different stages involved in the FAP syndrome which include hyperproliferative epithelium, adenoma, adenocarcinoma and metastases, have allowed the analysis of molecular alterations in oncogenes and tumor suppressor genes. The APC gene alteration if not inherited, occurs as the earliest molecular alteration in the development of colorectal cancer whereas structural alterations of the genes myc, ras, p53, MCC and DCC are considered to be late events. All these investigations have lead to 1) a better understanding of the ethiology of cancer and 2) early diagnosis of colorectal cancer in both the hereditary and sporadic forms of the disease.

  2. Rat hippocampal GABAergic molecular markers are differentially affected by ageing.

    PubMed

    Vela, José; Gutierrez, Antonia; Vitorica, Javier; Ruano, Diego

    2003-04-01

    We previously reported that the pharmacological properties of the hippocampal GABAA receptor and the expression of several subunits are modified during normal ageing. However, correlation between these post-synaptic modifications and pre-synaptic deficits were not determined. To address this issue, we have analysed the mRNA levels of several GABAergic molecular markers in young and old rat hippocampus, including glutamic acid decarboxylase enzymes, parvalbumin, calretinin, somatostatin, neuropeptide Y and vasoactive intestinal peptide (VIP). There was a differential age-related decrease in these interneuronal mRNAs that was inversely correlated with up-regulation of the alpha1 GABA receptor subunit. Somatostatin and neuropeptide Y mRNAs were most frequently affected (75% of the animals), then calretinin and VIP mRNAs (50% of the animals), and parvalbumin mRNA (25% of the animals) in the aged hippocampus. This selective vulnerability was well correlated at the protein/cellular level as analysed by immunocytochemistry. Somatostatin interneurones, which mostly innervate principal cell distal dendrites, were more vulnerable than calretinin interneurones, which target other interneurones. Parvalbumin interneurones, which mostly innervate perisomatic domains of principal cells, were preserved. This age-dependent differential reduction of specific hippocampal inteneuronal subpopulations might produce functional alterations in the GABAergic tone which might be compensated, at the post-synaptic level, by up-regulation of the expression of the alpha1 GABAA receptor subunit.

  3. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    PubMed Central

    2011-01-01

    Background Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi) across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs) and 149 were from non-transcribed genomic sequences (genomic-SSRs). Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO) terms. Duplicate (i.e., redundant accessory) and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped genes with Uni

  4. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John...encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  5. Comparison of RAPD, ISSR, and AFLP Molecular Markers to Reveal and Classify Orchardgrass (Dactylis glomerata L.) Germplasm Variations

    PubMed Central

    Costa, Rita; Pereira, Graça; Garrido, Inmaculada; Tavares-de-Sousa, Manuel María; Espinosa, Francisco

    2016-01-01

    Three different DNA-based techniques, Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) markers, were used for fingerprinting Dactylis glomerata genotypes and for detecting genetic variation between the three different subspecies. In this study, RAPD assays produced 97 bands, of which 40 were polymorphic (41.2%). The ISSR primers amplified 91 bands, and 54 showed polymorphism (59.3%). Finally, the AFLP showed 100 bands, of which 92 were polymorphic (92%). The fragments were scored as present (1) or absent (0), and those readings were entered in a computer file as a binary matrix (one for each marker). Three cluster analyses were performed to express–in the form of dendrograms–the relationships among the genotypes and the genetic variability detected. All DNA-based techniques used were able to amplify all of the genotypes. There were highly significant correlation coefficients between cophenetic matrices based on the genetic distance for the RAPD, ISSR, AFLP, and combined RAPD-ISSR-AFLP data (0.68, 0.78, 0.70, and 0.70, respectively). Two hypotheses were formulated to explain these results; both of them are in agreement with the results obtained using these three types of molecular markers. We conclude that when we study genotypes close related, the analysis of variability could require more than one DNA-based technique; in fact, the genetic variation present in different sources could interfere or combine with the more or less polymorphic ability, as our results showed for RAPD, ISSR and AFLP markers. Our results indicate that AFLP seemed to be the best-suited molecular assay for fingerprinting and assessing genetic relationship among genotypes of Dactylis glomerata. PMID:27070939

  6. Comparison of RAPD, ISSR, and AFLP Molecular Markers to Reveal and Classify Orchardgrass (Dactylis glomerata L.) Germplasm Variations.

    PubMed

    Costa, Rita; Pereira, Graça; Garrido, Inmaculada; Tavares-de-Sousa, Manuel María; Espinosa, Francisco

    2016-01-01

    Three different DNA-based techniques, Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) markers, were used for fingerprinting Dactylis glomerata genotypes and for detecting genetic variation between the three different subspecies. In this study, RAPD assays produced 97 bands, of which 40 were polymorphic (41.2%). The ISSR primers amplified 91 bands, and 54 showed polymorphism (59.3%). Finally, the AFLP showed 100 bands, of which 92 were polymorphic (92%). The fragments were scored as present (1) or absent (0), and those readings were entered in a computer file as a binary matrix (one for each marker). Three cluster analyses were performed to express--in the form of dendrograms--the relationships among the genotypes and the genetic variability detected. All DNA-based techniques used were able to amplify all of the genotypes. There were highly significant correlation coefficients between cophenetic matrices based on the genetic distance for the RAPD, ISSR, AFLP, and combined RAPD-ISSR-AFLP data (0.68, 0.78, 0.70, and 0.70, respectively). Two hypotheses were formulated to explain these results; both of them are in agreement with the results obtained using these three types of molecular markers. We conclude that when we study genotypes close related, the analysis of variability could require more than one DNA-based technique; in fact, the genetic variation present in different sources could interfere or combine with the more or less polymorphic ability, as our results showed for RAPD, ISSR and AFLP markers. Our results indicate that AFLP seemed to be the best-suited molecular assay for fingerprinting and assessing genetic relationship among genotypes of Dactylis glomerata.

  7. Addition of four-hundred fifty-five microsatellite marker loci to the high density Gossypium hirsutum TM-1 x G. barbadense 3-79 genetic map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high density genetic linkage map plays important roles in understanding genome structure of tetraploid cotton, dissecting economically important traits, identifying molecular markers associated with a trait, and cloning a gene of interest through map-based cloning strategy. Four hundred fifty f...

  8. Development of 10 microsatellite markers from Pantala flavescens and their applicability in studying genetics diversity.

    PubMed

    Cao, Lingzhen; Fu, Xiaowei; Wu, Kongming

    2015-08-01

    Pantala flavescens (Fabricius 1798) is one of the most common species among migration dragonflies. It is often encountered in large swarms during migration or directed dispersal flights. For a better understanding of its gene flow, genetic structure and migration patterns throughout the world, 10 polymorphic microsatellite markers were isolated in this study. We respectively collected 32 P. flavescens from three places (Hunan, Liaoning and Heilongjiang) and 20 P. flavescens from Beijing. Partial genomic libraries containing microsatellite sequences were constructed with magnetic-bead enrichment method. By screening, sequence analysis, PCR amplification and so on, ten 10 polymorphic microsatellite markers were isolated. In order to assess their applicability, genetic diversity of these novel markers was tested in 96 individuals from three populations in China (Hunan, Liaoning and Heilongjiang). These markers were highly polymorphic, with 3-12 alleles per markers. The observed (Ho) and expected (He) heterozygosities ranged 0.321-0.667 and from 0.531 to 0.948 respectively. The genetic difference between Hunan and Liaoning is 0.429, while the genetic difference between Liaoning and Heilongjiang is 0.0508. These microsatellite markers for P. flavescens were developed for the first time, and will be a powerful tool for studying population genetic diversity and dispersal behavior of P. flavescens in China and worldwide.

  9. Recent patents on biosafety strategies of selectable marker genes in genetically modified crops.

    PubMed

    Jiang, Yiming; Hu, Xiaoning; Huang, Haiying

    2014-01-01

    Genetically modified crops (GMCs) have been planted world wide since 1990s, but the potential insecurity of selectable marker genes raises the questions about GMC safety. Therefore, several researches have been conducted on marker gene safety issues and recently several patents have been issued on this subject. There are two main approaches to achieve this goal: seeking the biosafety selectable marker and eliminating these insecure marker genes after transformation. Results show that these two systems are quite effective. Recent patents on the two ways are discussed in this review.

  10. Biomedical wellness monitoring system based upon molecular markers

    NASA Astrophysics Data System (ADS)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  11. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    PubMed Central

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  12. Obesity: genetic, molecular, and environmental aspects.

    PubMed

    Barness, Lewis A; Opitz, John M; Gilbert-Barness, Enid

    2007-12-15

    Obesity has emerged as one of the most serious public health concerns in the 21st century. Obese children tend to become obese adults. The dramatic rise in pediatric obesity closely parallels the rapid increase in the prevalence of adult obesity. As overweight children become adults they face the multitude of health problems associated with obesity at younger ages. The morbidity and mortality associated with obesity continue to increase. Obesity is one of the leading causes of preventable death. Complications of obesity include cardiovascular risks, hypertension, dyslipidemia, endothelial dysfunction, type 2 diabetes mellitus and impaired glucose tolerance, acanthosis nigricans, hepatic steatosis, premature puberty, hypogonadism and polycystic ovary syndrome, obstructive sleep disorder, orthopedic complications, cholelithiasis and pseudotumor cerebri. Genetic and molecular and environmental factors play an important role in the assessment and management of obesity.

  13. Widespread utility of highly informative AFLP molecular markers across divergent shark species.

    PubMed

    Zenger, Kyall R; Stow, Adam J; Peddemors, Victor; Briscoe, David A; Harcourt, Robert G

    2006-01-01

    Population numbers of many shark species are declining rapidly around the world. Despite the commercial and conservation significance, little is known on even the most fundamental aspects of their population biology. Data collection that relies on direct observation can be logistically challenging with sharks. Consequently, molecular methods are becoming increasingly important to obtain knowledge that is critical for conservation and management. Here we describe an amplified fragment length polymorphism method that can be applied universally to sharks to identify highly informative genome-wide polymorphisms from 12 primer pairs. We demonstrate the value of our method on 15 divergent shark species within the superorder Galeomorphii, including endangered species which are notorious for low levels of genetic diversity. Both the endangered sand tiger shark (Carcharodon taurus, N = 18) and the great white shark (Carcharodon carcharias, N = 7) displayed relatively high levels of allelic diversity. A total of 59 polymorphic loci (H(e) = 0.373) and 78 polymorphic loci (H(e) = 0.316) were resolved in C. taurus and C. carcharias, respectively. Results from other sharks (e.g., Orectolobus ornatus, Orectolobus sp., and Galeocerdo cuvier) produced remarkably high numbers of polymorphic loci (106, 94, and 86, respectively) from a limited sample size of only 2. A major constraint to obtaining much needed genetic data from sharks is the time-consuming process of developing molecular markers. Here we demonstrate the general utility of a technique that provides large numbers of informative loci in sharks.

  14. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  15. Molecular and comparative genetics of mental retardation.

    PubMed Central

    Inlow, Jennifer K; Restifo, Linda L

    2004-01-01

    Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the approximately 700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR. PMID:15020472

  16. Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Moody, Benjamin; Leotaud, John; McCarty, Gregory S.

    2010-03-01

    Methods capable of quickly and inexpensively collecting genetic information are of increasing importance. We report a method of using surface-enhanced Raman spectroscopy to probe single-stranded DNA for genetic markers. This unique approach is used to analyze unmodified genes of moderate length for genetic markers by hybridizing native test oligonucleotides into a surface-enhanced Raman complex, vastly increasing detection sensitivity as compared to traditional Raman spectroscopy. The Raman complex is formed by sandwiching the test DNA between 40-nm gold nanoparticles and a photolithographically defined gold surface. With this design, we are able to collect characteristic Raman spectra about the test DNA and to detect genetic markers such as single-nucleotide polymorphisms (SNPs) and polymorphic regions. Results show that strands containing one of three different types of polymorphism can be differentiated using statistically significant trends regarding Raman intensity.

  17. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple sequence repeat (SSR) marker is a powerful tool for construction of genetic linkage map which can be applied for locating quantitative trait loci (QTL) and marker-assisted selection (MAS). In this study, a genetic map of faba bean was constructed with SSR markers using a population of 129 F2 ...

  18. Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines.

    PubMed

    Li, J; Klindworth, D L; Shireen, F; Cai, X; Hu, J; Xu, S S

    2006-12-01

    might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.

  19. A better surgical resectability of WHO grade II gliomas is independent of favorable molecular markers.

    PubMed

    Cordier, Dominik; Gozé, Catherine; Schädelin, Sabine; Rigau, Valérie; Mariani, Luigi; Duffau, Hugues

    2015-01-01

    A higher extent of resection (EOR) in WHO grade II gliomas (GIIG) is correlated with longer survival. However, the molecular markers also feature prognostic relevance. Here, we examined whether maximal EOR was related to the genetic profile. We retrospectively investigated the predictive value of 1p19q, IDH1, 53 expression and Ki67 index for the EOR in 200 consecutive GIIGs (2007-2013). Data were modeled in a linear model. The analysis was performed with two statistical methods (arcsin-sqrt and Beta-regression model with logit link). There was no deletion 1p19q in 118 cases, codeletion 1p19q (57 cases), single deletion 1p (4 cases) or19q (16 cases). 155 patients had a mutation of IDH1. p53 was graded in 4 degrees (0:92 cases, 1:52 cases, 2:31 cases, 3:8 cases). Mean Ki67 index was 5.2 % (range 1-20 %). Mean preoperative tumor volume was 60.8 cm(3) (range 3.3-250 cm(3)) and mean EOR was 0.917 (range 0.574-1). The statistical analysis was significant for a lower EOR in patients with codeletion 1p19q (OR 0.738, p = 0.0463) and with a single deletion 19q (OR 0.641, p = 0.0168). There was no significant correlation between IDH1 or p53 and the EOR. Higher Ki67 was marginally associated with higher EOR (p = 0.0603). The study demonstrates in a large cohort of GIIG that a higher EOR is not attributable to favorable genetic markers. This original result supports maximal surgical resection as an important therapeutic factor per se to optimize prognosis, independently of the molecular pattern.

  20. Molecular genetics and pathogenesis of Clostridium perfringens.

    PubMed Central

    Rood, J I; Cole, S T

    1991-01-01

    Clostridium perfringens is the causative agent of a number of human diseases, such as gas gangrene and food poisoning, and many diseases of animals. Recently significant advances have been made in the development of C. perfringens genetics. Studies on bacteriocin plasmids and conjugative R plasmids have led to the cloning and analysis of many C. perfringens genes and the construction of shuttle plasmids. The relationship of antibiotic resistance genes to similar genes from other bacteria has been elucidated. A detailed physical map of the C. perfringens chromosome has been prepared, and numerous genes have been located on that map. Reproducible transformation methods for the introduction of plasmids into C. perfringens have been developed, and several genes coding for the production of extracellular toxins and enzymes have been cloned. Now that it is possible to freely move genetic information back and forth between C. perfringens and Escherichia coli, it will be possible to apply modern molecular methods to studies on the pathogenesis of C. perfringens infections. PMID:1779929

  1. Genetic analysis of Apuleia leiocarpa as revealed by random amplified polymorphic DNA markers: prospects for population genetic studies.

    PubMed

    Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A

    2016-12-19

    Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.

  2. Genetic variant as a marker for bladder cancer therapy

    Cancer.gov

    Patients who have inherited a specific common genetic variant develop bladder cancer tumors that strongly express a protein known as prostate stem cell antigen (PSCA), which is also expressed in many pancreatic and prostate tumors, according to research a

  3. Consensus genetic structuring and typological value of markers using multiple co-inertia analysis

    PubMed Central

    Laloë, Denis; Jombart, Thibaut; Dufour, Anne-Béatrice; Moazami-Goudarzi, Katayoun

    2007-01-01

    Working with weakly congruent markers means that consensus genetic structuring of populations requires methods explicitly devoted to this purpose. The method, which is presented here, belongs to the multivariate analyses. This method consists of different steps. First, single-marker analyses were performed using a version of principal component analysis, which is designed for allelic frequencies (%PCA). Drawing confidence ellipses around the population positions enhances %PCA plots. Second, a multiple co-inertia analysis (MCOA) was performed, which reveals the common features of single-marker analyses, builds a reference structure and makes it possible to compare single-marker structures with this reference through graphical tools. Finally, a typological value is provided for each marker. The typological value measures the efficiency of a marker to structure populations in the same way as other markers. In this study, we evaluate the interest and the efficiency of this method applied to a European and African bovine microsatellite data set. The typological value differs among markers, indicating that some markers are more efficient in displaying a consensus typology than others. Moreover, efficient markers in one collection of populations do not remain efficient in others. The number of markers used in a study is not a sufficient criterion to judge its reliability. "Quantity is not quality". PMID:17897596

  4. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers

    PubMed Central

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  5. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers.

    PubMed

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8-27.6% and 9.5-23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5-26.5% and 7.5%-15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48-49% and 30.5-45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321-0.854 and 0.299-0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.

  6. Genetic analysis and identification of SSR markers associated with rice blast disease in a BC2F1 backcross population.

    PubMed

    Hasan, N; Rafii, M Y; Abdul Rahim, H; Nusaibah, S A; Mazlan, N; Abdullah, S

    2017-01-23

    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC2F1), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC2F1 population. The 195 BC2F1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.

  7. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers.

    PubMed

    Ren, Xiaoping; Jiang, Huifang; Yan, Zhongyuan; Chen, Yuning; Zhou, Xiaojing; Huang, Li; Lei, Yong; Huang, Jiaquan; Yan, Liying; Qi, Yue; Wei, Wenhui; Liao, Boshou

    2014-01-01

    One hundred and forty-six highly polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 196 peanut (Arachis Hypogaea L.) cultivars which had been extensively planted in different regions in China. These SSR markers amplified 440 polymorphic bands with an average of 2.99, and the average gene diversity index was 0.11. Eighty-six rare alleles with a frequency of less than 1% were identified in these cultivars. The largest Fst or genetic distance was found between the cultivars that adapted to the south regions and those to the north regions in China. A neighbor-joining tree of cultivars adapted to different ecological regions was constructed based on pairwise Nei's genetic distances, which showed a significant difference between cultivars from the south and the north regions. A model-based population structure analysis divided these peanut cultivars into five subpopulations (P1a, P1b, P2, P3a and P3b). P1a and P1b included most the cultivars from the southern provinces including Guangdong, Guangxi and Fujian. P2 population consisted of the cultivars from Hubei province and parts from Shandong and Henan. P3a and P3b had cultivars from the northern provinces including Shandong, Anhui, Henan, Hebei, Jiangsu and the Yangtze River region including Sichuan province. The cluster analysis, PCoA and PCA based on the marker genotypes, revealed five distinct clusters for the entire population that were related to their germplasm regions. The results indicated that there were obvious genetic variations between cultivars from the south and the north, and there were distinct genetic differentiation among individual cultivars from the south and the north. Taken together, these results provided a molecular basis for understanding genetic diversity of Chinese peanut cultivars.

  8. Measuring the genetic diversity of Arabian Oryx using microsatellite markers: implication for captive breeding.

    PubMed

    Arif, Ibrahim A; Khan, Haseeb A; Shobrak, Mohammad; Homaidan, Ali A Al; Sadoon, Mohammad Al; Farhan, Ahmad H Al

    2010-04-01

    Arabian oryx (Oryx leucoryx) is an endangered antelope that is being protected by captive breeding programs. However, the long term success of these programs mainly depends on the prudent use of molecular information for conservation management. We have used an array of seven microsatellite loci to examine the molecular diversity in a representative population of 24 captive-bred and reintroduced Arabian oryx. The locus-wise mean observed heterozygosity (0.601) was found to be comparatively higher than the mean expected heterozygosity (0.565). The specimen-wise observed heterozygosity ranged from 0.143 to 1.00 with an average of 0.60 whereas the mean d(2) varied from 0.57 to 1023.428 with an average value of 223.357. The results of Shannon information index (I = 0.898) also indicated a high level of within population genetic diversity. The average gene flow was 0.298, ranging between 0.204 and 0.424 for different loci. In conclusion, the information about the extent of heterozygosity, allelic diversity and inbreeding/outbreeding depression using microsatellite markers could be of potential relevance for the management of captive breeding programs for the conservation of Arabian oryx.

  9. Molecular analysis of East Anatolian traditional plum and cherry accessions using SSR markers.

    PubMed

    Öz, M H; Vurgun, H; Bakir, M; Büyük, İ; Yüksel, C; Ünlü, H M; Çukadar, K; Karadoğan, B; Köse, Ö; Ergül, A

    2013-11-07

    We conducted SSR analyses of 59 accessions, including 29 traditional plum (Prunus domestica), 24 sweet cherry (Prunus avium), and 1 sour cherry (Prunus cerasus) selected from East Anatolian gene sources and 3 plum and 2 cherry reference accessions for molecular characterization and investigation of genetic relationships. Eight SSR loci [1 developed from the apricot (UDAp-404), 4 from the peach (UDP96-010, UDP96-001, UDP96-019, Pchgms1) and 3 from the cherry (UCD-CH13, UCD-CH17, UCD-CH31) genome] for plum accessions and 9 SSR loci [5 developed from the cherry (PS12A02, UCD-CH13, UCD-CH17, UCD-CH31, UCD-CH21), 3 from the peach (Pchgms1, UDP96-001, UDP96-005) and 1 from the plum (CPSCT010) genome] for cherry accessions were used for genetic identification. A total of 66 and 65 alleles were obtained in the genetic analyses of 31 plum and 28 cherry accessions, respectively. The number of alleles revealed by SSR analysis ranged from 4 to 14 alleles per locus, with a mean value of 8.25 in plum accessions, and from 5 to 10 alleles per locus with a mean value of 7.2 in cherry accessions. Only one case of synonym was identified among the cherry accessions, while no case of synonym was observed among the plum accessions. Genomic SSR markers used in discrimination of plum and cherry accessions showed high cross-species transferability in the Prunus genus. Because of their appreciable polymorphism and cross species transferability, the SSR markers that we evaluated in this study will be useful for studies involving fingerprinting of cherry and plum cultivars.

  10. Molecular Markers of Lung Cancer in MAYAK Workers

    SciTech Connect

    Steven A. Belinsky, PhD

    2007-02-15

    The molecular mechanisms that result in the elevated risk for lung cancer associated with exposure to radiation have not been well characterized. Workers from the MAYAK nuclear enterprise are an ideal cohort in which to study the molecular epidemiology of cancer associated with radiation exposure and to identify the genes targeted for inactivation that in turn affect individual risk for radiation-induced lung cancer. Epidemiology studies of the MAYAK cohort indicate a significantly higher frequency for adenocarcinoma and squamous cell carcinoma (SCC) in workers than in a control population and a strong correlation between these tumor types and plutonium exposure. Two hypotheses will be evaluated through the proposed studies. First, radiation exposure targets specific genes for inactivation by promoter methylation. This hypothesis is supported by our recent studies with the MAYAK population that demonstrated the targeting of the p16 gene for inactivation by promoter methylation in adenocarcinomas from workers (1). Second, genes inactivated in tumors can serve as biomarkers for lung cancer risk in a cancer-free population of workers exposed to plutonium. Support for this hypothesis is based on exciting preliminary results of our nested, case-control study of persons from the Colorado cohort. In that study, a panel of methylation markers for predicting lung cancer risk is being evaluated in sputum samples from incident lung cancer cases and controls. The first hypothesis will be tested by determining the prevalence for promoter hypermethylation of a panel of genes shown to play a critical role in the development of either adenocarcinoma and/or SCC associated with tobacco. Our initial studies on adenocarcinoma in MAYAK workers will be extended to evaluate methylation of the PAX5 {alpha}, PAX5 {beta}, H-cadherin, GATA5, and bone morphogenesis 3B (BMP3B) genes in the original sample set described under Preliminary studies. In addition, studies will be initiated in SCC

  11. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich

    PubMed Central

    Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits. PMID:26398819

  12. Development of SCAR Markers Based on Improved RAPD Amplification Fragments and Molecular Cloning for Authentication of Herbal Medicines Angelica sinensis, Angelica acutiloba and Levisticum officinale.

    PubMed

    Zhang, Chun; Mei, Zhiqiang; Cheng, Jingliang; He, Yin; Khan, Md Asaduzzaman; Luo, Peiyi; Imani, Saber; Fu, Junjiang

    2015-10-01

    Molecular cloning from DNA fragments of improved RAPD amplification of Angelica sinensis, Angelica acutiloba and Levisticum officinale, provided novel sequence-characterized amplified region (SCAR) markers A13, A23, A1-34 and A1-0 whose sequences were deposited in the GenBank database with the accession numbers KP641315, KP641316, KP641317 and KP641318, respectively. By optional PCR amplification, the SCAR markers A13 and A23 are Levisticum officinale-specific, whereas the SCAR marker A1-34 is Angelica acutiloba-specific, and the SCAR marker A1-0 is Angelica sinensis-specific. These diagnostic SCAR markers may be useful for genetic authentications, for ecological conservation of all three medicinal plants and as a helpful tool for the genetic authentication of adulterant samples.

  13. Assessment of genetic diversity and relationships among wild and cultivated Tunisian plums (Prunus spp) using random amplified microsatellite polymorphism markers.

    PubMed

    Ben Tamarzizt, H; Ben Mustapha, S; Baraket, G; Abdallah, D; Salhi-Hannachi, A

    2015-03-20

    The usefulness of random amplified microsatellite polymorphism markers to study the genetic diversity and relationships among cultivars belonging to Prunus salicina and P. domestica and their wild relatives (P. insititia and P. spinosa) was investigated. A total of 226 of 234 bands were polymorphic (96.58%). The 226 random amplified microsatellite polymorphism markers were screened using 15 random amplified polymorphic DNA and inter-simple sequence repeat primers combinations for 54 Tunisian plum accessions. The percentage of polymorphic bands (96.58%), the resolving power of primers values (135.70), and the polymorphic information content demonstrated the efficiency of the primers used in this study. The genetic distances between accessions ranged from 0.18 to 0.79 with a mean of 0.24, suggesting a high level of genetic diversity at the intra- and interspecific levels. The unweighted pair group with arithmetic mean dendrogram and principal component analysis discriminated cultivars efficiently and illustrated relationships and divergence between spontaneous, locally cultivated, and introduced plum types. These procedures showed continuous variation that occurs independently of the status of the species and geographical origin of the plums. In this study, random amplified microsatellite polymorphism was found to be as a reliable molecular marker for fingerprinting and for examining the diversity study of the plum and its relatives.

  14. The molecular marker of kdr against fenpropathrin in Tetranychus cinnabarinus.

    PubMed

    Xu, Zhifeng; Shi, Li; Feng, Yaning; He, Lin

    2013-12-01

    The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is one of the most important pests in agricultural industry. Pyrethroid insecticide has been used to control insects and mites worldwide. However, the intensive use of pyrethroid insecticide resulted in the development of resistance, which has mainly been induced by a variety of point mutations responsible for voltage-gated sodium channel (VGSC) insensitivity and has become the biggest obstacle to sustain the use of pyrethroid insecticide. In this study, we cloned cDNA full length of the para-homologous sodium channel gene from T. cinnabarinus named TC-vgsc. The complete open reading frame of TC-vgsc contains 6,579 nucleotides, encoding 2,193 amino acids. A point mutation, F1538I, was identified from both the DNA and RNA sequences of VGSC in fenpropathrin-resistant strain, which developed approximately 100-folds resistance against fenpropathrin. The result indicated the F1538I kdr mutation underwent DNA mutation events rather than RNA editing. Single nucleotide polymorphisms detection of F1538I mutation from indoor susceptible strain, fenpropathrin-resistant strain, and seven field populations found that this mutation appeared in all the strains (populations), but the frequency of mutation was closely related to the resistance level, with a r2 value of 0.665 (P < 0.05), that is, the higher the resistance level, the larger the mutation frequency. These results demonstrated that the F1538I mutation in the kdr gene can be used as a molecular marker for fenpropathrin-resistance monitoring in field T. cinnabarinus populations.

  15. The origin of the Japanese race based on genetic markers of immunoglobulin G

    PubMed Central

    Matsumoto, Hideo

    2009-01-01

    This review addresses the distribution of genetic markers of immunoglobulin G (Gm) among 130 Mongoloid populations in the world. These markers allowed the populations to be clearly divided into 2 groups, the northern and southern groups. The northern group is characterized by high frequencies of 2 marker genes, ag and ab3st, and an extremely low frequency of the marker gene afb1b3; and the southern group, in contrast, is indicated by a remarkably high frequency of afb1b3 and low frequencies of ag and ab3st. Based on the geographical distribution of the markers and gene flow of Gm ag and ab3st (northern Mongoloid marker genes) from northeast Asia to the Japanese archipelago, the Japanese population belongs basically to the northern Mongoloid group and is thus suggested to have originated in northeast Asia, most likely in the Baikal area of Siberia. PMID:19212099

  16. ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India.

    PubMed

    Nilkanta, Heikrujam; Amom, Thoungamba; Tikendra, Leimapokpam; Rahaman, Hamidur; Nongdam, Potshangbam

    2017-01-01

    Melocanna baccifera (Roxb.) Kurz is an economically important bamboo of North-East India experiencing population depletion in its natural habitats. Genetic variation studies were conducted in 7 populations sampled from 5 districts of Manipur using ISSR molecular markers. The investigation was carried out as a primary step towards developing effective conservation strategies for the protection of bamboo germplasm. ISSR marker analysis showed significant level of genetic variation within the populations as revealed by moderately high average values of Nei's genetic diversity (H 0.1639), Shannon's diversity index (I 0.2563), percentage of polymorphic bands (PPB 59.18), total genetic variation (Ht 0.1961), and genetic diversity within population (Hs 0.1639). The study also divulged a high genetic variation at species level with Shannon's diversity index (I), Nei's genetic diversity (H), and percentage of polymorphic band (PPB%) recorded at 0.3218, 0.1939, and 88.37, respectively. Genetic differentiation among the populations (Gst) was merely 19.42% leaving 80.58% of genetic variation exhibited within the populations. The low genetic diversity between populations was consistent with AMOVA. The low genetic differentiation among populations coupled with existence of significantly high genetic diversity at species level indicated the urgent necessity of preserving and protecting all the existing natural bamboo populations in the region.

  17. ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India

    PubMed Central

    Nilkanta, Heikrujam; Amom, Thoungamba; Rahaman, Hamidur

    2017-01-01

    Melocanna baccifera (Roxb.) Kurz is an economically important bamboo of North-East India experiencing population depletion in its natural habitats. Genetic variation studies were conducted in 7 populations sampled from 5 districts of Manipur using ISSR molecular markers. The investigation was carried out as a primary step towards developing effective conservation strategies for the protection of bamboo germplasm. ISSR marker analysis showed significant level of genetic variation within the populations as revealed by moderately high average values of Nei's genetic diversity (H 0.1639), Shannon's diversity index (I 0.2563), percentage of polymorphic bands (PPB 59.18), total genetic variation (Ht 0.1961), and genetic diversity within population (Hs 0.1639). The study also divulged a high genetic variation at species level with Shannon's diversity index (I), Nei's genetic diversity (H), and percentage of polymorphic band (PPB%) recorded at 0.3218, 0.1939, and 88.37, respectively. Genetic differentiation among the populations (Gst) was merely 19.42% leaving 80.58% of genetic variation exhibited within the populations. The low genetic diversity between populations was consistent with AMOVA. The low genetic differentiation among populations coupled with existence of significantly high genetic diversity at species level indicated the urgent necessity of preserving and protecting all the existing natural bamboo populations in the region. PMID:28168084

  18. Genetics and molecular biology of deafness. Update.

    PubMed

    Grundfast, K M; Siparsky, N; Chuong, D

    2000-12-01

    This article discusses the latest research in the molecular biology and genetics of hearing impairment and its importance to otolaryngologists. Recent research has led to the discovery of many of the genes and gene products that are responsible for hereditary hearing impairment. State mandated screening of newborn infants for hearing loss ensures that a large number of hearing-impaired children will be detected at a very early age. Additionally, these children often will be referred to the otolaryngologist for evaluation of the hearing impairment. It is the otolaryngologist who must gather a detailed family history and perform a thorough physical examination to fully assess the cause of the hearing impairment. In taking the family history, it is important to note that the diagnosis of a hereditary hearing impairment often involves the evaluation of a large-sized family that has a history of hearing disorders. A history of an affected individual in a small family does not necessarily support a diagnosis of hearing impairment in later affected offspring because of the small sample size. Often, a hearing impairment that is part of a syndrome may not be detected because the physical findings associated with a syndrome are subtle in a young infant. For example, the white forelock seen in patients with Waardenburg's syndrome type I cannot be visualized in the infant who lacks hair. Additionally, some patients with syndromic hearing impairment do not present with physical findings, but rather they exhibit abnormal laboratory studies. Additional points to remember include the following: As infectious iatrogenic causes of hearing impairment decrease, the relative incidence of hereditary hearing impairment will increase. Hereditary hearing impairment can present as an isolated finding, or in association with a number of anomalies recognizable as a syndrome. The study of genetics and molecular biology has led to the identification of genes associated with hearing impairment

  19. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers

    PubMed Central

    Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella

    2017-01-01

    The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs. PMID:28257509

  20. A genetic linkage map of quinoa ( Chenopodium quinoa) based on AFLP, RAPD, and SSR markers.

    PubMed

    Maughan, P J; Bonifacio, A; Jellen, E N; Stevens, M R; Coleman, C E; Ricks, M; Mason, S L; Jarvis, D E; Gardunia, B W; Fairbanks, D J

    2004-10-01

    Quinoa ( Chenopodium quinoa Willd.) is an important seed crop for human consumption in the Andean region of South America. It is the primary staple in areas too arid or saline for the major cereal crops. The objective of this project was to build the first genetic linkage map of quinoa. Selection of the mapping population was based on a preliminary genetic similarity analysis of four potential mapping parents. Breeding lines 'Ku-2' and '0654', a Chilean lowland type and a Peruvian Altiplano type, respectively, showed a low similarity coefficient of 0.31 and were selected to form an F(2) mapping population. The genetic map is based on 80 F(2) individuals from this population and consists of 230 amplified length polymorphism (AFLP), 19 simple-sequence repeat (SSR), and six randomly amplified polymorphic DNA markers. The map spans 1,020 cM and contains 35 linkage groups with an average marker density of 4.0 cM per marker. Clustering of AFLP markers was not observed. Additionally, we report the primer sequences and map locations for 19 SSR markers that will be valuable tools for future quinoa genome analysis. This map provides a key starting point for genetic dissection of agronomically important characteristics of quinoa, including seed saponin content, grain yield, maturity, and resistance to disease, frost, and drought. Current efforts are geared towards the generation of more than 200 mapped SSR markers and the development of several recombinant-inbred mapping populations.

  1. Molecular markers associated with cold-hardiness in Camellia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequence-characterized amplified region (SCAR) markers from expressed sequence tag-polymerase chain reaction (EST-PCR) and random amplified polymorphic DNA (RAPD) markers were developed with the goal to separate cold hardy camellias from non-cold hardy ones. A total of 28 cold hardy and non-cold h...

  2. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  3. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.

  4. Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note

    PubMed Central

    2013-01-01

    Background Plasmodium vivax is the most widespread of the human malaria parasites in terms of geography, and is thought to present unique challenges to local efforts aimed at control and elimination. Parasite molecular markers can provide much needed data on P. vivax populations, but few such markers have been critically evaluated. One marker that has seen extensive use is the gene encoding merozoite surface protein 3-alpha (MSP-3α), a blood-stage antigen known to be highly variable among P. vivax isolates. Here, a sample of complete msp-3α gene sequences is analysed in order to assess its utility as a molecular marker for epidemiologic investigations. Methods Amplification, cloning and sequencing of additional P. vivax isolates from different geographic locations, including a set of Venezuelan field isolates (n = 10), yielded a sample of 48 complete msp-3α coding sequences. Characterization of standard population genetic measures of diversity, phylogenetic analysis, and tests for recombination were performed. This allowed comparisons to patterns inferred from the in silico simulation of a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) protocol used widely. Results The larger sample of MSP-3α diversity revealed incongruence between the observed levels of nucleotide polymorphism, which were high in all populations, and the pattern of PCR-RFLP haplotype diversity. Indeed, PCR-RFLP haplotypes were not informative of a population’s genetic diversity and identical haplotypes could be produced from analogous bands in the commonly used protocol. Evidence of frequent and variable insertion-deletion mutations and recurrent recombination between MSP-3α haplotypes complicated the inference of genetic diversity patterns and reduced the phylogenetic signal. Conclusions The genetic diversity of P. vivax msp-3α involves intragenic recombination events. Whereas the high genetic diversity of msp-3α makes it a promising marker for some

  5. Identification of QTLs Associated with Callogenesis and Embryogenesis in Oil Palm Using Genetic Linkage Maps Improved with SSR Markers

    PubMed Central

    Ting, Ngoot-Chin; Jansen, Johannes; Nagappan, Jayanthi; Ishak, Zamzuri; Chin, Cheuk-Weng; Tan, Soon-Guan; Cheah, Suan-Choo; Singh, Rajinder

    2013-01-01

    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm. PMID:23382832

  6. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars.

    PubMed

    Fu, Nan; Wang, Ping-Yong; Liu, Xiao-Dan; Shen, Huo-Lin

    2014-02-10

    Celery (Apium graveolens L.) is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting celery molecular breeding are quite limited, thus few studies on celery have been conducted so far. In this study we made use of simple sequence repeat (SSR) markers generated from previous celery transcriptome sequencing and attempted to detect the genetic diversity and relationships of commonly used celery accessions and explore the efficiency of the primers used for cultivars identification. Analysis of molecular variance (AMOVA) of Apium graveolens L. var. dulce showed that approximately 43% of genetic diversity was within accessions, 45% among accessions, and 22% among horticultural types. The neighbor-joining tree generated by unweighted pair group method with arithmetic mean (UPGMA), and population structure analysis, as well as principal components analysis (PCA), separated the cultivars into clusters corresponding to the geographical areas where they originated. Genetic distance analysis suggested that genetic variation within Apium graveolens was quite limited. Genotypic diversity showed any combinations of 55 genic SSRs were able to distinguish the genotypes of all 30 accessions.

  7. Pollen genetic markers for detection of mutagens in the environment

    SciTech Connect

    Nilan, R.A.; Rosichan, J.L.; Arenaz, P.; Hodgdon, A.L.; Kleinhofs, A.

    1981-01-01

    To utilize pollen for in situ monitoring of the genetic hazards of environmental pollutants, the range of genetic traits in pollen must be identified and analyzed. These include ornamentation, shape and form, male sterility viability, intraspecific incompatibility, proteins, and starch deposition. Several proteins that meet the necessary criteria for mutagen detection systems are discussed. At Washington State Univ., a waxy pollen system is being developed in barley for in situ mutagen monitoring. Studies are being conducted to develop data concerning the nature of the mutations induced by various environmental mutagens.

  8. Child Development and Molecular Genetics: 14 Years Later

    ERIC Educational Resources Information Center

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  9. Reasoning across Ontologically Distinct Levels: Students' Understandings of Molecular Genetics

    ERIC Educational Resources Information Center

    Duncan, Ravit Golan; Reiser, Brian J.

    2007-01-01

    In this article we apply a novel analytical framework to explore students' difficulties in understanding molecular genetics--a domain that is particularly challenging to learn. Our analytical framework posits that reasoning in molecular genetics entails mapping across ontologically distinct levels--an information level containing the genetic…

  10. Assessing genetic diversity in Valencia peanut germplasm using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valencia peanuts (Arachis hypogaea L.ssp. fastigiata var. fastigiata) are well known for their in-shell market value. Assessment of genetic diversity of the available Valencia germplasm is key to the success of developing improved cultivars with desirable agronomic and quality traits. In the pres...

  11. Genetic relationships among wild Felidae in Thailand using AFLP markers.

    PubMed

    Srisamoot, Nattapong; Chaveerach, Arunrat; Nuchadomrong, Suporn; Sattayasai, Nison; Chaveerach, Prapansak; Tanomtong, Alongkoad; Pinthong, Krit

    2007-08-15

    The cytogenetics of eight Felidae species in Thailand were investigated by the colchicines-hypotonic fixation-air drying technique followed by a conventional technique. All species studied have an identical number of 38 diploid chromosomes, indicating a close genetic relationship among species. At a deep study level, the genetic relationships of eight Felidae species were accessed by the AFLP method. Blood samples were collected from sources locating in their original regions for DNA extraction. With ten successful primer combinations, a total of 4208 scorable bands were generated. Of these bands, 18.91% are polymorphic. Percentages of Polymorphic Bands (PPB) for each primer combination range from 15.00 to 23.59%. The generating bands were used for dendrogram construction. The average genetic similarity values among all Felidae species are 68.20% (between Panthera tigris and Neofelis nebulosa) to 85.53% (between Prionailurus bengalensis and Prionailurus viverrinus). The dendrogram shows that the eight Felidae species were clustered together and the subfamily Pantherinae and Felinae with Neofelis nebulosa are distinguished. The Felinae, Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus, Pardofelis marmorata and Neofelis nebulosa were clustered together with 91% bootstrap support and the Pantherinae, Panthera pardus is clustered with Panthera tigris with 92% bootstrap support. In summary, the ten successful primer combinations can be used to determine genetic differences among eight Thailand Felidae species.

  12. Microsatellite Markers Assess Genetic Diversity of Wild Southeastern American Vaccinium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture (USDA)-Agricultural Research Service (ARS)-National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, USA preserves genetic resources of many temperate fruit crops, including blueberry. This genebank contains > 1,750 Vaccinium accessions from 39 cou...

  13. Identification of Novel Prognostic Genetic Marker in Prostate Cancer

    DTIC Science & Technology

    2001-08-01

    Natl Cancer Inst 1993;85(20):1657-69. 5. Thomas DJ, Robinson M, King P, Hasan T, Charlton R, Martin J, et al. p53 expression and clinical outcome in...microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457-460. 9. Pollack, J. R., Perou, C. M., Alizadeh , A. A., Eisen, M. B

  14. Development of DArT Marker Platforms and Genetic Diversity Assessment of the U.S. Collection of the New Oilseed Crop Lesquerella and Related Species

    PubMed Central

    Cruz, Von Mark V.; Kilian, Andrzej; Dierig, David A.

    2013-01-01

    The advantages of using molecular markers in modern genebanks are well documented. They are commonly used to understand the distribution of genetic diversity in populations and among species which is crucial for efficient management and effective utilization of germplasm collections. We describe the development of two types of DArT molecular marker platforms for the new oilseed crop lesquerella (Physaria spp.), a member of the Brassicaceae family, to characterize a collection in the National Plant Germplasm System (NPGS) with relatively little known in regards to the genetic diversity and traits. The two types of platforms were developed using a subset of the germplasm conserved ex situ consisting of 87 Physaria and 2 Paysonia accessions. The microarray DArT revealed a total of 2,833 polymorphic markers with an average genotype call rate of 98.4% and a scoring reproducibility of 99.7%. On the other hand, the DArTseq platform developed for SNP and DArT markers from short sequence reads showed a total of 27,748 high quality markers. Cluster analysis and principal coordinate analysis indicated that the different accessions were successfully classified by both systems based on species, by geographical source, and breeding status. In the germplasm set analyzed, which represented more than 80% of the P. fendleri collection, we observed that a substantial amount of variation exists in the species collection. These markers will be valuable in germplasm management studies and lesquerella breeding, and augment the microsatellite markers previously developed on the taxa. PMID:23724020

  15. Overview of molecular, cellular, and genetic neurotoxicology.

    PubMed

    Wallace, David R

    2005-05-01

    It has become increasingly evident that the field of neurotoxicology is not only rapidly growing but also rapidly evolving, especially over the last 20 years. As the number of drugs and environmental and bacterial/viral agents with potential neurotoxic properties has grown, the need for additional testing has increased. Only recently has the technology advanced to a level that neurotoxicologic studies can be performed without operating in a "black box." Examination of the effects of agents that are suspected of being toxic can occur on the molecular (protein-protein), cellular (biomarkers, neuronal function), and genetic (polymorphisms) level. Together, these areas help to elucidate the potential toxic profiles of unknown (and in some cases, known) agents. The area of proteomics is one of the fastest growing areas in science and particularly applicable to neurotoxicology. Lubec et al, provide a review of the potential and limitations of proteomics. Proteomics focuses on a more comprehensive view of cellular proteins and provides considerably more information about the effects of toxins on the CNS. Proteomics can be classified into three different focuses: post-translational modification, protein-expression profiling, and protein-network mapping. Together, these methods represent a more complete and powerful image of protein modifications following potential toxin exposure. Cellular neurotoxicology involves many cellular processes including alterations in cellular energy homeostasis, ion homeostasis, intracellular signaling function, and neurotransmitter release, uptake, and storage. The greatest hurdle in cellular neurotoxicology has been the discovery of appropriate biomarkers that are reliable, reproducible, and easy to obtain. There are biomarkers of exposure effect, and susceptibility. Finding the appropriate biomarker for a particular toxin is a daunting task. The appropriate biomarker for a particular toxin is a daunting task. The advantage to biomarker

  16. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker.

    PubMed

    Stengel, Anna; Kern, Wolfgang; Zenger, Melanie; Perglerová, Karolína; Schnittger, Susanne; Haferlach, Torsten; Haferlach, Claudia

    2016-01-01

    T-cell prolymphocytic leukemia (T-PLL) is a rare post-thymic T-cell neoplasm with aggressive clinical course and short overall survival. So far, due to the rareness of this disease, genetic data are available only from individual cases or small cohorts. In our study, we aimed at performing a comprehensive cytogenetic and molecular genetic characterization of T-PLL comprising the largest cohort of patients with T-PLL analyzed so far, including correlations between the respective markers and their impact on prognosis. Genetic abnormalities were found in all 51 cases with T-PLL, most frequently involving the TCRA/D locus (86%). Deletions were detected for ATM (69%) and TP53 (31%), whereas i(8)(q10) was observed in 61% of cases. Mutations in ATM, TP53, JAK1, and JAK3 were detected in 73, 14, 6, and 21% of patients, respectively. Additionally, BCOR mutations were observed for the first time in a lymphoid malignancy (8%). Two distinct genetic subgroups of T-PLL were identified: A large subset (86% of patients) showed abnormalities involving the TCRA/D locus activating the proto-oncogenes TCL1 or MTCP1, while the second group was characterized by a high frequency of TP53 mutations (4/7 cases). Further, analyses of overall survival identified JAK3 mutations as important prognostic marker, showing a significant negative impact.

  17. Population genetic structure in Phyla scaberrima from Mexico and Colombia assessed by AFLP markers and implications for conservation.

    PubMed

    Androcioli, L G; Ruas, E A; Rodrigues, L A; Ruas, C F; Perilla, H E R; Ruas, P M

    2015-12-02

    Phyla scaberrima (Verbenaceae) is a herbaceous perennial species that is distributed from Mexico (center of origin) to Colombia, growing in forest and swamp edges or grasslands from sea level up to an altitude of 1800 m. The chemical properties and uses in popular medicine have drastically affected the population size of this species. In this study, we investigated genetic variability in populations of P. scaberrima using AFLP markers. Three AFLP primer combinations rendered a total of 997 markers in a sample of 131 individuals from five populations, including two populations from Mexico and three from Colombia. The average percentage of polymorphic loci, gene diversity and Shannon-Wiener index were 46.62, 0.0695, and 0.119, respectively. Analysis of molecular variance showed that the distribution of the genetic variability within populations (85.41%) was higher than between groups (8.11%) and between populations (6.48%). Principal coordinate analysis and Bayesian analysis for the K number of clusters showed that the individuals were dispersed in five (K= 5) clusters. The low levels of genetic diversity observed in these populations demonstrated that the populations from Mexico and Colombia need urgent management to recover their genetic variability.

  18. Molecular genetics of left ventricular dysfunction.

    PubMed

    Towbin, J A; Bowles, N E

    2001-03-01

    The left ventricle (LV) plays a central role in the maintenance of health of children and adults due to its role as the major pump of the heart. In cases of LV dysfunction, a significant percentage of affected individuals develop signs and symptoms of congestive heart failure (CHF), leading to the need for therapeutic intervention. Therapy for these patients include anticongestive medications and, in some, placement of devices such as aortic balloon pump or left ventricular assist device (LVAD), or cardiac transplantation. In the majority of patients the etiology is unknown, leading to the term idiopathic dilated cardiomyopathy (IDC). During the past decade, the basis of LV dysfunction has begun to unravel. In approximately 30-40% of cases, the disorder is inherited; autosomal dominant inheritance is most common (although X-linked, autosomal recessive and mitochondrial inheritance occurs). In the remaining patients, the disorder is presumed to be acquired, with inflammatory heart disease playing an important role. In the case of familial dilated cardiomyopathy (FDCM), the genetic basis is beginning to unfold. To date, two genes for X-linked FDCM (dystrophin, G4.5) have been identified and four genes for the autosomal dominant form (actin, desmin, lamin A/C, delta-sarcoglycan) have been described. In one form of inflammatory heart disease, coxsackievirus myocarditis, inflammatory mediators and dystrophin cleavage play a role in the development of LV dysfunction. In this review, we will describe the molecular genetics of LV dysfunction and provide evidence for a "final common pathway" responsible for the phenotype.

  19. Molecular Genetic Studies of Complex Phenotypes

    PubMed Central

    Marian, A.J.

    2012-01-01

    The approach to molecular genetic studies of complex phenotypes has evolved considerably during the recent years. The candidate gene approach, restricted to analysis of a few single nucleotide polymorphisms (SNPs) in a modest number of cases and controls, has been supplanted by the unbiased approach of Genome-Wide Association Studies (GWAS), wherein a large number of tagger SNPs are typed in a large number of individuals. GWAS, which are designed upon the common disease- common variant hypothesis (CD-CV), have identified a large number of SNPs and loci for complex phenotypes. However, alleles identified through GWAS are typically not causative but rather in linkage disequilibrium (LD) with the true causal variants. The common alleles, which may not capture the uncommon and rare variants, account only for a fraction of heritability of the complex traits. Hence, the focus is being shifted to rare variants – common disease (RV-CD) hypothesis, surmising that rare variants exert large effect sizes on the phenotype. In conjunctional with this conceptual shift technological advances in DNA sequencing techniques have dramatically enhanced whole genome or whole exome sequencing capacity. The sequencing approach affords identification of not only the rare but also the common variants. The approach – whether used in complementation with GWAS or as a stand-alone approach - could define the genetic architecture of the complex phenotypes. Robust phenotyping and large-scale sequencing studies are essential to extract the information content of the vast number of DNA sequence variants (DSVs) in the genome. To garner meaningful clinical information and link the genotype to a phenotype, identification and characterization of a very large number of causal fields beyond the information content of DNA sequence variants would be necessary. This review provides an update on the current progress and limitations in identifying DSVs that are associated with phenotypic effects. PMID

  20. Molecular genetics at the Fort Collins Science Center

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  1. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius

    PubMed Central

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed

    2016-01-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020

  2. Transcriptome analysis in Concholepas concholepas (Gastropoda, Muricidae): mining and characterization of new genomic and molecular markers.

    PubMed

    Cárdenas, Leyla; Sánchez, Roland; Gomez, Daniela; Fuenzalida, Gonzalo; Gallardo-Escárate, Cristián; Tanguy, Arnaud

    2011-09-01

    The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods.

  3. Molecular Characterization of Cyclamen Species Collected from Different Parts of Turkey by RAPD and SRAP Markers.

    PubMed

    Simsek, Ozhan; Curuk, Pembe; Aslan, Fatma; Bayramoglu, Melda; Izgu, Tolga; da Silva, Jaime A Teixeira; Kacar, Yildiz Aka; Mendi, Yesim Yalcin

    2017-02-01

    The genus Cyclamen (family Myrsinaceae) contains about 20 species, most of which occur in the Mediterranean region. Turkey has critically important Cyclamen genetic resources. Molecular characterization of plant materials collected from different regions of Turkey in which Cyclamen species grow naturally, namely Adana, Antalya, Aydın, Muğla, İzmir, Denizli, Kahramanmaraş, Osmaniye, Eskişehir, Trabzon, and Rize provinces, was performed using RAPD and SRAP markers. DNA was successfully amplified by 30 RAPD primers and 14 SRAP primer pairs. Among the 470 bands generated by the RAPD primers, 467 were polymorphic. The number of bands detected by a single primer set ranged from 11 to 22 (average of 15.6). The percentage polymorphism was 99.3 % based on the RAPD data. In the SRAP analysis, a total of 216 bands were generated, showing 100 % polymorphism. The number of bands detected by a single primer set ranged from 9 to 22 (average of 15.4). All data were scored and UPGMA dendrograms were constructed with similar results in both marker systems, i.e., different species from nine provinces of Turkey were separated from each other in the dendrograms with the same species being clustered together.

  4. Identifying molecular markers for the sensitive detection of residual atypical teratoid rhabdoid tumor cells.

    PubMed

    Vu-Han, Tu-Lan; Frühwald, Michael C; Hasselblatt, Martin; Kerl, Kornelius; Nagel, Inga; Obser, Tobias; Oyen, Florian; Siebert, Reiner; Schneppenheim, Reinhard

    2014-09-01

    Atypical teratoid rhabdoid tumor (AT/RT), a rare and highly malignant tumor entity of the central nervous system that presents in early childhood, has a poor prognosis. AT/RTs are characterized by biallelic inactivating mutations of the gene SMARCB1 in 98% of patients; these mutations may serve as molecular markers for residual tumor cell detection in liquid biopsies. We developed a marker-specific method to detect residual AT/RT cells. Seven of 150 patient samples were selected, each with a histological and genetically ascertained diagnosis of AT/RT. Tumor tissue was either formalin fixed or fresh frozen. DNA was extracted from the patients' peripheral blood leukocytes (PBL) and cerebrospinal fluid (CSF). Multiplex ligation-dependent probe amplification, DNA sequencing, and fluorescence in situ hybridization were used to characterize the tumors' mutations. Residual tumor cell detection used mutation-specific primers and real-time PCR. The detection limit for the residual tumor cell search was 1-18%, depending on the quality of the template provided. The residual tumor cell search in PBL and CSF was negative for all seven patients. The SMARCB1 region of chromosome 22 is prone to DNA double-strand breaks. The individual breakpoints and breakpoint-specific PCR offer the option to detect minimal residual tumor cells in CSF or blood. Even if we did not detect minimal residual tumor cells in the investigated material, proof of principle for this method was confirmed.

  5. Integration of genetic and epigenetic markers for risk stratification: opportunities and challenges.

    PubMed

    Pashayan, Nora; Reisel, Daniel; Widschwendter, Martin

    2016-03-01

    Common genetic susceptibility variants could be used for risk stratification in risk-tailored cancer screening and prevention programmes. Combining genetic variants with environmental risk factors would improve risk stratification. Epigenetic changes are surrogate markers of environmental exposures during individual's lifetime. Integrating epigenetic markers, in lieu of environmental exposure data, with genetic markers would potentially improve risk stratification. Epigenetic changes are reversible and acquired gradually, providing potentials for prevention and early detection strategies. The epigenetic changes are tissue-specific and stage-of-development-specific, raising challenges in choice of sample and timing for evaluation of cancer-associated changes. The Horizon 2020 funded research programme, FORECEE, using empirical data, will investigate the value of integration of epigenomics with genomics for risk prediction and prevention of women-specific cancers.

  6. Breakpoint analysis: Precise localization of genetic markers by means of nonstatistical computation using relatively few genotypes

    SciTech Connect

    Elsner, T.I.; Albertsen, H.; Gerken, S.C.; Cartwright, P.; White, R.

    1995-02-01

    Placing new markers on a previously existing genetic map by using conventional methods of multilocus linkage analysis requires that a large number of reference families be genotyped. This paper presents a methodology for placing new markers on existing genetic maps by genotyping only a few individuals in a selected subset of the reference panel. We show that by identifying meiotic breakpoint events within existing genetic maps and genotyping individuals who exhibit these events, along with one nonrecombinant sibling and their parents, we can determine precise locations for new markers even within subcentimorgan chromosomal regions. This method also improves detection of errors in genotyping and assists in the observation of chromosome behavior in specific regions. 31 refs., 9 figs.

  7. Inheritance studies of SSR and ISSR molecular markers and phylogenetic relationship of rice genotypes resistant to tungro virus.

    PubMed

    Latif, Mohammad Abdul; Rahman, Mohammad Mahfuzur; Ali, Mohammad Eaqub; Ashkani, Sadegh; Rafii, Mohd Yusop

    2013-03-01

    Multivariate analyses were performed using 13 morphological traits and 13 molecular markers (10 SSRs and three ISSRs) to assess the phylogenetic relationship among tungro resistant genotypes. For morphological traits, the genotypes were grouped into six clusters, according to D(2) statistic and Canonical vector analysis. Plant height, days to flowering, days to maturity, panicle length, number of spikelet per panicle, number of unfilled grain per panicle and yield were important contributors to genetic divergence in 14 rice genotypes. Based on Nei's genetic distance for molecular studies, seven clusters were formed among the tungro resistant and susceptible genotypes. Mantel's test revealed a significant correlation (r = 0.834*) between the morphological and molecular data. To develop high yielding tungro resistant varieties based on both morphological and molecular analyses, crosses could be made with susceptible (BR10 and BR11) genotypes with low yielding but highly resistant genotypes, Sonahidemota, Kumragoir, Nakuchimota, Khaiyamota, Khairymota and Kachamota. The chi-square analysis for seven alleles (RM11, RM17, RM20, RM23, RM80, RM108 and RM531) of SSR and five loci (RY1, MR1, MR2, MR4 and GF5) of three ISSR markers in F2 population of cross, BR11×Sonahidemota, showed a good fit to the expected segregation ratio (1:2:1) for a single gene model.

  8. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.

    PubMed

    Bracci, T; Busconi, M; Fogher, C; Sebastiani, L

    2011-04-01

    Olive (Olea europaea L.) is one of the oldest agricultural tree crops worldwide and is an important source of oil with beneficial properties for human health. This emblematic tree crop of the Mediterranean Basin, which has conserved a very wide germplasm estimated in more than 1,200 cultivars, is a diploid species (2n = 2x = 46) that is present in two forms, namely wild (Olea europaea subsp. europaea var. sylvestris) and cultivated (Olea europaea subsp. europaea var. europaea). In spite of its economic and nutritional importance, there are few data about the genetic of olive if compared with other fruit crops. Available molecular data are especially related to the application of molecular markers to the analysis of genetic variability in Olea europaea complex and to develop efficient molecular tools for the olive oil origin traceability. With regard to genomic research, in the last years efforts are made for the identification of expressed sequence tag, with particular interest in those sequences expressed during fruit development and in pollen allergens. Very recently the sequencing of chloroplast genome provided new information on the olive nucleotide sequence, opening the olive genomic era. In this article, we provide an overview of the most relevant results in olive molecular studies. A particular attention was given to DNA markers and their application that constitute the most part of published researches. The first important results in genome analysis were reported.

  9. Genetic Alterations in Medullary Thyroid Cancer: Diagnostic and Prognostic Markers

    PubMed Central

    A, Taccaliti; F, Silvetti; G, Palmonella; M, Boscaro

    2011-01-01

    Medullary thyroid carcinoma (MTC) is a rare calcitonin producing neuroendocrine tumour that originates from the parafollicular C-cells of the thyroid gland. The RET proto-oncogene encodes the RET receptor tyrosine kinase, with consequently essential roles in cell survival, differentiation and proliferation. Somatic or germline mutations of the RET gene play an important role in this neoplasm in development of sporadic and familial forms, respectively. Genetic diagnosis has an important role in differentiating sporadic from familiar MTC. Furthermore, depending on the location of the mutation, patients can be classified into risk classes. Therefore, genetic screening of the RET gene plays a critical role not only in diagnosis but also in assessing the prognosis and course of MTC. PMID:22654561

  10. Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes.

    PubMed

    Penna, Gustavo C; Vaisman, Fernanda; Vaisman, Mario; Sobrinho-Simões, Manuel; Soares, Paula

    2017-02-24

    Thyroid cancer derived from follicular cells (TCDFC) comprises well-differentiated (papillary and follicular) carcinoma, poorly differentiated carcinoma, and anaplastic carcinoma. Papillary thyroid carcinoma is the most common endocrine cancer, and its incidence is steadily increasing. Lethality and aggressiveness of TCDFC is inversely correlated with differentiation degree. In this review, an emphasis has been put on molecular markers involved in tumorigenesis of thyroid carcinoma with a focus on aggressive histotypes and the role of such biomarkers in predicting thyroid cancer outcome. Genetic rearrangements in TCDFC (RET/PTC, PAX8/PPARG) and mutations in RAS, BRAF, TERT promoter (TERTp), TP53, PIK3CA, and AKT1 are discussed. The majority of the studies to date indicate that TERTp mutations can serve as a marker of more aggressive disease in all the subtypes of thyroid carcinoma, being the best current marker of poor prognosis, due to its independent association with distant metastases and increased disease-specific mortality. Some studies suggested that a more accurate prediction of thyroid cancer outcome may be possible through a more extensive genetic analysis. The same is true concerning the identification of other mutations that are only relatively frequent in advanced tumors (e.g., TP53, PIK3CA, or AKT1). A better understanding of the prognostic role of TERTp mutation (together with additional ones like BRAF, RAS, PIK3CA, AKT1, or TP53) and the clarification of their putative role in fine-needle aspiration biopsies are likely to allow, in the future, an early refinement of the stratification risk in patients with well-differentiated carcinomas. It is worth noting that, as with any categorical staging system, the risk evaluation within each category (low, intermediate, and high) varies depending on the specific clinicopathologic features of individual patients and the specific biological behavior of the tumor. Finally, besides the diagnostic and

  11. Inherited genetic markers for thrombophilia in northeastern Iran (a clinical-based report)

    PubMed Central

    Keify, Fatemeh; Azimi-Nezhad, Mohsen; Zhiyan-abed, Narges; Nasseri, Mojila; Abbaszadegan, Mohammad Reza

    2014-01-01

    Background: Thrombophilia is a main predisposition to thrombosis due to a procoagulant state. Several point mutations play key roles in blood-clotting disorders, which are grouped under the term thrombophilia. These thrombophilic mutations are methylenetetrahydrofolate reductase (MTHFR, C677T, and A1298C), factor V Leiden (G1691A), prothrombin gene mutation (factor II, G20210A), and plasminogen activator inhibitor (PAI). In the present study, we assessed the prevalence of the above thrombophilia markers in patients with recurrent pregnancy loss or first and second trimester abortions, infertility, and failed in vitro fertilization (IVF). Methods: This study was conducted among 457 cases those were referred to detect the inherited genetic markers for thrombophilia. Markers for MTHFR, Factor II, and Factor V were assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and PAI was assessed by Amplification Refractory Mutation System (ARMS-PCR). Results: Two hundred sixty cases (56.89%) were diagnosed as having at least one thrombophilia marker, whereas 197 cases (43.11%) had no thrombophilia markers and were normal. Conclusion: According to the current study, the pattern of abnormal genetic markers for thrombophilia in northeastern Iran demonstrates the importance of genetic evaluations in patients who show clinical abnormalities with recurrent spontaneous abortion (RSA) or other serious obstetric complications. PMID:26989725

  12. Patterns of genetic structure and evidence of gene flow among Tunisian Citrus species based on informative nSSR markers.

    PubMed

    Ben Romdhane, Meriam; Riahi, Leila; Selmi, Ayet; Zoghlami, Nejia

    2016-01-01

    This study investigates the extent of genetic diversity, phylogenetic relationships and the amount of gene flow among Tunisian Citrus species based on a set of 15 informative nuclear SSR molecular markers. Genotyping data highlighted an allelic richness among Tunisian Citrus species and has allowed the detection of 168 alleles among them 104.19 were effective. The partition of the total genetic diversity (HT=0.832) showed that the highest amount of variation within the Citrus species is HS=0.550, while the relative amount of the between-species genetic diversity GST does not exceed 0.338. This pattern of genetic structure was supported by low-to-moderate FST pairwise values and the presence of a gene flow (Nm) among the eight Citrus species. The lowest genetic differentiation was revealed between the species C. sinensis and C. insitorum (FST=0.111, Nm=1.99), while the highest genetic differentiation was recorded between the species C. aurantifolia and C. paradisi (FST=0.367, Nm=0.43). The established Neighbor Joining analysis showed that all genotypes were widely discriminated and clearly pooled according to their species of origin, with minor exceptions.

  13. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica.

    PubMed

    Vásquez-Mayorga, Marcela; Fuchs, Eric J; Hernández, Eduardo J; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth; Barboza, Natalia M

    2017-01-01

    We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f =  - 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.

  14. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    PubMed Central

    Vásquez-Mayorga, Marcela; Fuchs, Eric J.; Hernández, Eduardo J.; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth

    2017-01-01

    We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f =  − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica. PMID:28289556

  15. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  16. De novo Transcriptome Analysis and Molecular Marker Development of Two Hemarthria Species

    PubMed Central

    Huang, Xiu; Yan, Hai-Dong; Zhang, Xin-Quan; Zhang, Jian; Frazier, Taylor P.; Huang, De-Jun; Lu, Lu; Huang, Lin-Kai; Liu, Wei; Peng, Yan; Ma, Xiao; Yan, Yan-Hong

    2016-01-01

    Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa “Yaan” and H. altissima “1110.” Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for “Yaan” and “1110,” respectively. In addition, a total of 86,731 “Yaan” and 48,645 “1110” unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11–87.04%) of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus. PMID:27148320

  17. Genetic Counselling for Schizophrenia in the Era of Molecular Genetics

    PubMed Central

    Hodgkinson, Kathleen A; Murphy, Jillian; O’Neill, Sheri; Brzustowicz, Linda; Bassett, Anne S

    2012-01-01

    Objective To review the role of genetic counselling for individuals with psychiatric illnesses. Method Using schizophrenia as an example and including updated information about a genetic subtype (22q deletion syndrome), we discuss the value of the genetic counselling process in psychiatry, with support from the literature and our clinical experience. Results Genetic counselling, the process through which knowledge about the genetics of illnesses is shared, provides information on the inheritance of illnesses and their recurrence risks; addresses the concerns of patients, their families, and their health care providers; and supports patients and their families dealing with these illnesses. For comprehensive medical management, this service should be available to all individuals with schizophrenia and their families. Conclusions New findings in the genetics of psychiatric illness may have important clinical implications for patients and their families. PMID:11280080

  18. Molecular markers and mapping of root-knot nematode resistance in cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is economic and highly effective for root-knot nematode (RKN) Meloidogyne incognita control in cotton Gossypium hirsutum. Recently, nematode R gene mapping in cotton has revealed relationships between resistance sources and linked molecular markers. Markers are important for th...

  19. IDENTIFICATION OF SEX CHROMOSOME MOLECULAR MARKERS USING RAPDS AND FLUORESCENT IN SITU HYBRIDIZATION IN RAINBOW TROUT

    EPA Science Inventory

    The goal of this work is to identify molecular markers associated with the sex chromosomes in rainbow trout to study the mode of sex determination mechanisms in this species. Using the RAPD assay and bulked segregant analysis, two markers were identified that generated polymorphi...

  20. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers

    PubMed Central

    Angelini, David R.; Jockusch, Elizabeth L.

    2008-01-01

    Model species often provide initial hypotheses and tools for studies of development, genetics, and molecular evolution in closely related species. Flour beetles of the genus Tribolium MacLeay (1825) are one group with potential for such comparative studies. Tribolium castaneum (Herbst 1797) is an increasingly useful developmental genetic system. The convenience with which congeneric and other species of tenebrionid flour beetles can be reared in the laboratory makes this group attractive for comparative studies on a small phylogenetic scale. Here we present the results of phylogenetic analyses of relationships among the major pest species of Tribolium based on two mitochondrial and three nuclear markers (cytochrome oxidase 1, 16S ribosomal DNA, wingless, 28S ribosomal DNA, histone H3). The utility of partitioning the dataset in a manner informed by biological structure and function is demonstrated by comparing various partitioning strategies. In parsimony and partitioned Bayesian analyses of the combined dataset, the castaneum and confusum species groups are supported as monophyletic and as each other’s closest relatives. However, a sister group relationship between this clade and Tribolium brevicornis (Leconte 1859) is not supported. Therefore, we suggest transferring brevicornis group species to the genus Aphanotus Leconte (1862). The inferred phylogeny provides an evolutionary framework for comparative studies using flour beetles. PMID:18024090

  1. Molecular Screening of Blast Resistance Genes in Rice using SSR Markers.

    PubMed

    Singh, A K; Singh, P K; Arya, Madhuri; Singh, N K; Singh, U S

    2015-03-01

    Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

  2. Conservation of wild animals by assisted reproduction and molecular marker technology.

    PubMed

    Shivaji, S; Kholkute, S D; Verma, S K; Gaur, Ajay; Umapathy, G; Singh, Anju; Sontakke, Sadanand; Shailaja, K; Reddy, Anuradha; Monika, S; Sivaram, V; Jyotsna, B; Bala, Satyare; Ahmed, M Shakeel; Bala, Aruna; Chandrashekar, B V N; Gupta, Sandeep; Prakash, Surya; Singh, Lalji

    2003-07-01

    Wild animals are an integral component of the ecosystem. Their decimation due to abrupt natural calamities or due to gradual human intervention would be disastrous to the ecosystem and would alter the balance in nature between various biotic components. Such an imbalance could have an adverse effect on the ecosystem. Therefore, there is an urgent need to put an end to the ever increasing list of endangered species by undertaking both in situ and ex situ conservation using tools of modern biology, to ascertain the degree of genetic variation and reproductive competence in these animals. This review highlights the development and use of molecular markers such as microsatellites, minisatellites, mitochondrial control region, cytochrome b and MHC loci to assess the genetic variation in various Indian wild animals such as the lion, tiger, leopard and deer. The review also presents data on the semen profile of the big cats of India. Reproductive technologies such as cryopreservation of semen and artificial insemination in big cats are also highlighted.

  3. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers.

    PubMed

    Sampieri, Clara L; León-Córdoba, Kenneth; Remes-Troche, Jos Maria

    2013-01-01

    Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  4. [Relationship Between Molecular Marker of Western Main Pig H-FABP Gene and IMF Content.].

    PubMed

    Pang, Wei-Jun; Sun, Shi-Duo; Li, Ying; Chen, Guo-Dong; Yang, Gong-She

    2005-05-01

    By using 265 pigs from eight breeds including Duroc,Landrace,Large White,Neijiang,Rongchang,Hanjiang Black,Hanzhong White,Bamei and wild ones, the genetic variations of 5'-upstream region from and the second intron in porcine H-FABP gene were checked by PCR-RFLP molecular marker with HinfI, Hae III and MspI,and effect of H-FABP gene on IMF content was then analyzed by least square analysis.The results showed as follows:(1) 8 pig breeds and wild pig had polymorphism at Hinf I-RFLP site. In above detected breeds,large white,Bamei pig, Hanjiang Black,Hanzhong White pig breeds and wild pig presented low polymorphism while other breeds have mediate polymorphism;(2)Among the tested breeds only 4 Chinese local pig breeds had no polymorphism at the Hae III-RFLP and Msp I-RFLP sites,but Duroc,Landrace,Largewhite, Hanzhong White pig breeds and wild pig had polymorphism. Wild pig at the Hae III-RFLP , Landrace,Largewhite and wild pig at the Hae III-RFLP and Msp I-RFLP sites were low polymorphism,others were mediate polymorphism;(3) H-FABP gene increased IMF content significantly(p0.05). Genetic effect of H-FABP gene on IMF content were HH>Hh>hh,DD.

  5. Genetic characterization of Iranian safflower (Carthamus tinctorius) using inter simple sequence repeats (ISSR) markers.

    PubMed

    Panahi, Bahman; Ghorbanzadeh Neghab, Mahmoud

    2013-04-01

    Safflower (Carthamus tinctorious L.) is valued as a source of high quality vegetable oil. 20 ISSR primers were used to assess the genetic diversity of 18 accessions of safflower collected from different geographical regions of Iran. The ISSR primers combinations revealed 57.6 % polymorphism, among 338 genetic loci amplified from the accessions. The sum of effective number of alleles and observed number of alleles were 29.76 and 36.77, respectively. To understand genetic relationships among these cultivars, Jacquards' similarity coefficient and UPGMA clustering algorithm were applied to the ISSR marker data set. ISSR markers grouped accessions into two main clusters and four sub clusters. Also, the principal coordinate analysis (PCoA) supported the cluster analysis results. The results showed these genotypes have high genetic diversity, and can be used for alternative safflower breeding program.

  6. Development of Microsatellite Markers Derived from Expressed Sequence Tags of Polyporales for Genetic Diversity Analysis of Endangered Polyporus umbellatus

    PubMed Central

    Zhang, Yuejin; Chen, Yuanyuan; Wang, Ruihong; Zeng, Ailin; Deyholos, Michael K.; Shu, Jia; Guo, Hongbo

    2015-01-01

    A large scale of EST sequences of Polyporales was screened in this investigation in order to identify EST-SSR markers for various applications. The distribution of EST sequences and SSRs in five families of Polyporales was analyzed, respectively. Mononucleotide was the most abundant type, followed by trinucleotide. Among five families, Ganodermataceae occupied the most SSR markers, followed by Coriolaceae. Functional prediction of SSR marker-containing EST sequences in Ganoderma lucidum obtained three main groups, namely, cellular component, biological process, and molecular function. Thirty EST-SSR primers were designed to evaluate the genetic diversity of 13 natural Polyporus umbellatus accessions. Twenty one EST-SSRs were polymorphic with average PIC value of 0.33 and transferability rate of 71%. These 13 P. umbellatus accessions showed relatively high genetic diversity. The expected heterozygosity, Nei's gene diversity, and Shannon information index were 0.41, 0.39, and 0.57, respectively. Both UPGMA dendrogram and principal coordinate analysis (PCA) showed the same cluster result that divided the 13 accessions into three or four groups. PMID:26146636

  7. Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers

    PubMed Central

    Tyrka, Mirosław; Tyrka, Dorota; Wędzony, Maria

    2015-01-01

    Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars ‘Hewo’ and ‘Magnat’. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning. PMID:26717308

  8. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars

    PubMed Central

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  9. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    PubMed Central

    Aranguren-Méndez, José; Jordana, Jordi; Gomez, Mariano

    2001-01-01

    Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE) over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P < 0.01). Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, except HMS5 that showed agreement in all analysed populations. The cumulative exclusion probability (PE) was 0.999 in each breed, suggesting that the loci would be suitable for donkey parentage testing. The constructed dendrogram from the DA distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans. PMID:11559485

  10. Identification of Putative Molecular Markers Associated with Root Traits in Coffea canephora Pierre ex Froehner

    PubMed Central

    Achar, Devaraja; Awati, Mallikarjuana G.; Udayakumar, M.; Prasad, T. G.

    2015-01-01

    Coffea canephora exhibit poor root system and are very sensitive to drought stress that affects growth and production. Deeper root system has been largely empirical as better avoidance to soil water limitation in drought condition. The present study aimed to identify molecular markers linked to high root types in Coffea canephora using molecular markers. Contrasting parents, L1 valley with low root and S.3334 with high root type, were crossed, and 134 F1 individuals were phenotyped for root and associated physiological traits (29 traits) and genotyped with 41 of the 320 RAPD and 9 of the 55 SSR polymorphic primers. Single marker analysis was deployed for detecting the association of markers linked to root associated traits by SAS software. There were 13 putative RAPD markers associated with root traits such as root length, secondary roots, root dry weight, and root to shoot ratio, in which root length associated marker OPS1850 showed high phenotypic variance of 6.86%. Two microsatellite markers linked to root length (CPCM13400) and root to shoot ratio (CM211300). Besides, 25 markers were associated with more than one trait and few of the markers were associated with positively related physiological traits and can be used in marker assisted trait selection. PMID:25821599

  11. An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers.

    PubMed

    Travis, S E; Maschinski, J; Keim, P

    1996-12-01

    A recently developed molecular technique (amplified fragment length polymorphisms, AFLP) was used for characterizing genetic heterogeneity within and among populations of a critically endangered species of plant, Astragalus cremnophylax var. cremnophylax. Using AFLP, up to 50 polymorphic genetic markers per AFLP-PCR amplification were generated, and a total of 220 variable markers overall. This information was used first to assess genetic diversity within each of the three known populations of Astragalus cremnophylax var. cremnophylax from Grand Canyon National Park in Arizona, USA: North Rim (NR; n = 970), South Rim Site 1 (SR1; n = 500), and South Rim Site 2 (SR2; n = 2). Diversity in the form of average heterozygosity [symbol: see text] H [symbol: see text] and the proportion of polymorphic genes [symbol: see text] P [symbol: see text] was greatest in the NR population ([symbol: see text] H [symbol: see text] = 0.13 and [symbol: see text] P [symbol: see text] = 0.38) and least in the SR2 population ([symbol: see text] H [symbol: see text] = 0.02 and [symbol: see text] P [symbol: see text] = 0.04). Diversity was also quite low for the SR1 population ([symbol: see text] H [symbol: see text] = 0.04 and [symbol: see text] P [symbol: see text] = 0.10). In addition, substantial genetic differentiation among populations was indicated by both phenetic (AMOVA) and genetic analyses (overall corrected FST = 0.41). This finding was corroborated by the results of several multivariate analyses which utilized the genetic data, including a UPGMA cluster analysis and a principal coordinate analysis which revealed the existence of discrete groups corresponding to the populations. Population structure was further revealed within the NR population which was known to consist of four spatially separated groups of plants. Several recommendations for the future management of the species are discussed.

  12. Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers.

    PubMed

    Parsaeian, M; Mirlohi, A; Saeidi, G

    2011-03-01

    This research was conducted to study the genetic variation among eighteen genotypes of sesame (Sesamum indicum L.) collected from various agro-climatic regions of Iran along with six exotic genotypes from the Asian countries using both agro-morphological and ISSR marker traits. The results showed significant differences among genotypes for all agro-morphological traits and a relatively high genetic coefficient of variation observed for number of fruiting branches per plant, capsules per plant, plant height and seed yield per plant. Cluster analysis based on these traits grouped the genotypes into five separate clusters. Larger inter- than intra cluster distances implies the presence of higher genetic variability between the genotypes of different groups. Genotypes of two clusters with a good amount of genetic divergence and desirable agronomic traits were detected as promising genotypes for hybridization programs. The 13 ISSR primers chosen for molecular analysis revealed 170 bands, of which 130 (76.47%) were polymorphic. The generated dendrogram based on ISSR profiles divided the genotypes into seven groups. A principal coordinate analysis confirmed the results of clustering. The agro-morphological traits and ISSR markers reflected different aspects of genetic variation among the genotypes as revealed by a non significant cophenetic correlation in the Mantel test. Therefore the complementary application of both types of information is recommended to maximize the efficiency of sesame breeding programs. The discordance among diversity patterns and geographical distribution of genotypes found in this investigation implies that the parental lines for hybridization should be selected based on genetic diversity rather than the geographical distribution.

  13. Genetic Structure and Inferences on Potential Source Areas for Bactrocera dorsalis (Hendel) Based on Mitochondrial and Microsatellite Markers

    PubMed Central

    Shi, Wei; Kerdelhué, Carole; Ye, Hui

    2012-01-01

    Bactrocera dorsalis (Diptera: Tephritidae) is mainly distributed in tropical and subtropical Asia and in the Pacific region. Despite its economic importance, very few studies have addressed the question of the wide genetic structure and potential source area of this species. This pilot study attempts to infer the native region of this pest and its colonization pathways in Asia. Combining mitochondrial and microsatellite markers, we evaluated the level of genetic diversity, genetic structure, and the gene flow among fly populations collected across Southeast Asia and China. A complex and significant genetic structure corresponding to the geographic pattern was found with both types of molecular markers. However, the genetic structure found was rather weak in both cases, and no pattern of isolation by distance was identified. Multiple long-distance dispersal events and miscellaneous host selection by this species may explain the results. These complex patterns may have been influenced by human-mediated transportation of the pest from one area to another and the complex topography of the study region. For both mitochondrial and microsatellite data, no signs of bottleneck or founder events could be identified. Nonetheless, maximal genetic diversity was observed in Myanmar, Vietnam and Guangdong (China) and asymmetric migration patterns were found. These results provide indirect evidence that the tropical regions of Southeast Asia and southern coast of China may be considered as the native range of the species and the population expansion is northward. Yunnan (China) is a contact zone that has been colonized from different sources. Regions along the southern coast of Vietnam and China probably served to colonize mainly the southern region of China. Southern coastal regions of China may also have colonized central parts of China and of central Yunnan. PMID:22615898

  14. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  15. Human genetic marker for resistance to radiations and chemicals. 1997 annual progress report

    SciTech Connect

    Lieberman, H.B.

    1997-01-01

    'The specific aims listed in the original application will essentially be pursued as indicated. The major goal of the grant is to characterize a human homologue of the fission yeast Schizosaccharomyces pombe rad9 checkpoint control, radioresistance and chemoresistance gene, which is called HRAD9. The purpose is to gain information about the gene, including its structure and function, such that it can potentially be developed as a human genetic marker indicative of hypersensitivity to the deleterious effects associated with exposure to radiations or certain chemicals. The specific aims are divided into two major sections. The first section includes experiments designed to characterize the HRAD9 gene at the molecular level. Specifically, the genomic version of the gene will be isolated and its DNA sequence determined, in vitro mutagenesis will be used to assess structure/function relationships, and expression in cells and tissues will be examined. The second major set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer. For this aim, human HRAD9 mutants will be constructed and characterized. In addition, the status of HRAD9 in cancer cells and tissues will be assessed.'

  16. Assessing the genetic relationships of Curcuma alismatifolia varieties using simple sequence repeat markers.

    PubMed

    Taheri, S; Abdullah, T L; Abdullah, N A P; Ahmad, Z; Karimi, E; Shabanimofrad, M R

    2014-09-05

    The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cu