Topology of molecular interaction networks.
Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick
2013-09-16
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.
Topology of molecular interaction networks
2013-01-01
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013
Mapping biological process relationships and disease perturbations within a pathway network.
Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc
2018-01-01
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Experimental evolution of protein–protein interaction networks
Kaçar, Betül; Gaucher, Eric A.
2013-01-01
The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk
2014-10-01
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.
Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.
van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis
2012-01-01
This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.
Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey
2003-11-01
Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Learning contextual gene set interaction networks of cancer with condition specificity
2013-01-01
Background Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to patients. Results In this study, we describe a novel method to discern molecular interactions specific to certain molecular contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions. When compared to an existing approach, the proposed method was much more sensitive in identifying condition-specific interactions even in heterogeneous data set. The results also revealed that network components specific to different types of cancer are related to different biological functions than cancer-generic network components. We found not only the results that are consistent with previous studies, but also new hypotheses on the biological mechanisms specific to certain cancer types that warrant further investigations. Conclusions The analysis on the contextual gene sets and characterization of networks of interaction composed of these sets discovered distinct functional differences underlying various types of cancer. The results show that our method successfully reveals many subtype-specific regions in the identified maps of biological contexts, which well represent biological functions that can be connected to specific subtypes. PMID:23418942
Complementary molecular information changes our perception of food web structure
Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas
2014-01-01
How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902
ERIC Educational Resources Information Center
Trujillo, Caleb; Cooper, Melanie M.; Klymkowsky, Michael W.
2012-01-01
Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios;…
Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna
2017-01-01
Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.
Protein complexes and functional modules in molecular networks
NASA Astrophysics Data System (ADS)
Spirin, Victor; Mirny, Leonid A.
2003-10-01
Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.
Mallik, Mrinmay Kumar
2018-02-07
Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular ecological network analyses.
Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong
2012-05-30
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
The Biomolecular Interaction Network Database and related tools 2005 update
Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.
2005-01-01
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229
Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano
2016-01-01
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320
Elastic and thermal expansion asymmetry in dense molecular materials.
Burg, Joseph A; Dauskardt, Reinhold H
2016-09-01
The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.
Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems
Kohn, Kurt W.
1999-01-01
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network. PMID:10436023
System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks
Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou
2014-01-01
Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143
Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy
2015-01-02
Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.
Systematic Evaluation of Molecular Networks for Discovery of Disease Genes.
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku; Zhang, Wei; Kreisberg, Jason F; Tamayo, Pablo; Ideker, Trey
2018-04-25
Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall. A general tendency is that performance scales with network size, suggesting that new interaction discovery currently outweighs the detrimental effects of false positives. Correcting for size, we find that the DIP network provides the highest efficiency (value per interaction). Based on these results, we create a parsimonious composite network with both high efficiency and performance. This work provides a benchmark for selection of molecular networks in human disease research. Copyright © 2018 Elsevier Inc. All rights reserved.
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
Gross, Adam S; Chu, Jhih-Wei
2010-10-28
Biomass recalcitrance is a fundamental bottleneck to producing fuels from renewable sources. To understand its molecular origin, we characterize the interaction network and solvation structures of cellulose microfibrils via all-atom molecular dynamics simulations. The network is divided into three components: intrachain, interchain, and intersheet interactions. Analysis of their spatial dependence and interaction energetics indicate that intersheet interactions are the most robust and strongest component and do not display a noticeable dependence on solvent exposure. Conversely, the strength of surface-exposed intrachain and interchain hydrogen bonds is significantly reduced. Comparing the interaction networks of I(β) and I(α) cellulose also shows that the number of intersheet interactions is a clear descriptor that distinguishes the two allomorphs and is consistent with the observation that I(β) is the more stable form. These results highlight the dominant role of the often-overlooked intersheet interactions in giving rise to biomass recalcitrance. We also analyze the solvation structures around the surfaces of microfibrils and show that the structural and chemical features at cellulose surfaces constrict water molecules into specific density profiles and pair correlation functions. Calculations of water density and compressibility in the hydration shell show noticeable but not drastic differences. Therefore, specific solvation structures are more prominent signatures of different surfaces.
Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L
2013-01-01
Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
Robinson, J M; Henderson, W A
2018-01-12
We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.
Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan
2010-01-01
Motivation Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. Results We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. Availability A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm. PMID:21234299
Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan
2010-12-12
Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.
Social interaction in synthetic and natural microbial communities.
Xavier, Joao B
2011-04-12
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.
Papini, Christina; Royer, Catherine A
2018-02-01
Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.
Disentangling the multigenic and pleiotropic nature of molecular function
2015-01-01
Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917
2011-01-01
Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730
Topology and static response of interaction networks in molecular biology
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2005-01-01
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.
King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S
2018-05-01
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.
Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A
King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.
2018-01-01
ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008
Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell.
De Las Rivas, Javier; Fontanillo, Celia
2012-11-01
Mapping and understanding of the protein interaction networks with their key modules and hubs can provide deeper insights into the molecular machinery underlying complex phenotypes. In this article, we present the basic characteristics and definitions of protein networks, starting with a distinction of the different types of associations between proteins. We focus the review on protein-protein interactions (PPIs), a subset of associations defined as physical contacts between proteins that occur by selective molecular docking in a particular biological context. We present such definition as opposed to other types of protein associations derived from regulatory, genetic, structural or functional relations. To determine PPIs, a variety of binary and co-complex methods exist; however, not all the technologies provide the same information and data quality. A way of increasing confidence in a given protein interaction is to integrate orthogonal experimental evidences. The use of several complementary methods testing each single interaction assesses the accuracy of PPI data and tries to minimize the occurrence of false interactions. Following this approach there have been important efforts to unify primary databases of experimentally proven PPIs into integrated databases. These meta-databases provide a measure of the confidence of interactions based on the number of experimental proofs that report them. As a conclusion, we can state that integrated information allows the building of more reliable interaction networks. Identification of communities, cliques, modules and hubs by analysing the topological parameters and graph properties of the protein networks allows the discovery of central/critical nodes, which are candidates to regulate cellular flux and dynamics.
Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook
2014-01-01
Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang
2015-03-01
Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less
Cooperation and coexpression: How coexpression networks shift in response to multiple mutualists.
Palakurty, Sathvik X; Stinchcombe, John R; Afkhami, Michelle E
2018-04-01
A mechanistic understanding of community ecology requires tackling the nonadditive effects of multispecies interactions, a challenge that necessitates integration of ecological and molecular complexity-namely moving beyond pairwise ecological interaction studies and the "gene at a time" approach to mechanism. Here, we investigate the consequences of multispecies mutualisms for the structure and function of genomewide differential coexpression networks for the first time, using the tractable and ecologically important interaction between legume Medicago truncatula, rhizobia and mycorrhizal fungi. First, we found that genes whose expression is affected nonadditively by multiple mutualists are more highly connected in gene networks than expected by chance and had 94% greater network centrality than genes showing additive effects, suggesting that nonadditive genes may be key players in the widespread transcriptomic responses to multispecies symbioses. Second, multispecies mutualisms substantially changed coexpression network structure of 18 modules of host plant genes and 22 modules of the fungal symbionts' genes, indicating that third-party mutualists can cause significant rewiring of plant and fungal molecular networks. Third, we found that 60% of the coexpressed gene sets that explained variation in plant performance had coexpression structures that were altered by interactive effects of rhizobia and fungi. Finally, an "across-symbiosis" approach identified sets of plant and mycorrhizal genes whose coexpression structure was unique to the multiple mutualist context and suggested coupled responses across the plant-mycorrhizal interaction to rhizobial mutualists. Taken together, these results show multispecies mutualisms have substantial effects on the molecular interactions in host plants, microbes and across symbiotic boundaries. © 2018 John Wiley & Sons Ltd.
Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.
Webb, Ryan L; Ma'ayan, Avi
2011-03-21
The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.
Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.
Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek
2016-06-20
A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.
Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun
2017-12-21
Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.
Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei
2016-01-01
Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718
Serçinoglu, Onur; Ozbek, Pemra
2018-05-25
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle
2014-11-11
We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.
Network representations of immune system complexity
Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar
2015-01-01
The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853
A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease
Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel
2013-01-01
Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213
Wang, Jia-Hong; Zhao, Ling-Feng; Lin, Pei; Su, Xiao-Rong; Chen, Shi-Jun; Huang, Li-Qiang; Wang, Hua-Feng; Zhang, Hai; Hu, Zhen-Fu; Yao, Kai-Tai; Huang, Zhong-Xi
2014-09-01
Identifying biological functions and molecular networks in a gene list and how the genes may relate to various topics is of considerable value to biomedical researchers. Here, we present a web-based text-mining server, GenCLiP 2.0, which can analyze human genes with enriched keywords and molecular interactions. Compared with other similar tools, GenCLiP 2.0 offers two unique features: (i) analysis of gene functions with free terms (i.e. any terms in the literature) generated by literature mining or provided by the user and (ii) accurate identification and integration of comprehensive molecular interactions from Medline abstracts, to construct molecular networks and subnetworks related to the free terms. http://ci.smu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Stetz, Gabrielle; Verkhivker, Gennady M
2016-08-22
Although molecular mechanisms of allosteric regulation in the Hsp70 chaperones have been extensively studied at both structural and functional levels, the current understanding of allosteric inhibition of chaperone activities by small molecules is still lacking. In the current study, using a battery of computational approaches, we probed allosteric inhibition mechanisms of E. coli Hsp70 (DnaK) and human Hsp70 proteins by small molecule inhibitors PET-16 and novolactone. Molecular dynamics simulations and binding free energy analysis were combined with network-based modeling of residue interactions and allosteric communications to systematically characterize and compare molecular signatures of the apo form, substrate-bound, and inhibitor-bound chaperone complexes. The results suggested a mechanism by which the allosteric inhibitors may leverage binding energy hotspots in the interaction networks to stabilize a specific conformational state and impair the interdomain allosteric control. Using the network-based centrality analysis and community detection, we demonstrated that substrate binding may strengthen the connectivity of local interaction communities, leading to a dense interaction network that can promote an efficient allosteric communication. In contrast, binding of PET-16 to DnaK may induce significant dynamic changes and lead to a fractured interaction network and impaired allosteric communications in the DnaK complex. By using a mechanistic-based analysis of distance fluctuation maps and allosteric propensities of protein residues, we determined that the allosteric network in the PET-16 complex may be small and localized due to the reduced communication and low cooperativity of the substrate binding loops, which may promote the higher rates of substrate dissociation and the decreased substrate affinity. In comparison with the significant effect of PET-16, binding of novolactone to HSPA1A may cause only moderate network changes and preserve allosteric coupling between the allosteric pocket and the substrate binding region. The impact of novolactone on the conformational dynamics and allosteric communications in the HSPA1A complex was comparable to the substrate effect, which is consistent with the experimental evidence that PET-16, but not novolactone binding, can significantly decrease substrate affinity. We argue that the unique dynamic and network signatures of PET-16 and novolactone may be linked with the experimentally observed functional effects of these inhibitors on allosteric regulation and substrate binding.
Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis
2012-01-31
Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.
Rationalizing Tight Ligand Binding through Cooperative Interaction Networks
2011-01-01
Small modifications of the molecular structure of a ligand sometimes cause strong gains in binding affinity to a protein target, rendering a weakly active chemical series suddenly attractive for further optimization. Our goal in this study is to better rationalize and predict the occurrence of such interaction hot-spots in receptor binding sites. To this end, we introduce two new concepts into the computational description of molecular recognition. First, we take a broader view of noncovalent interactions and describe protein–ligand binding with a comprehensive set of favorable and unfavorable contact types, including for example halogen bonding and orthogonal multipolar interactions. Second, we go beyond the commonly used pairwise additive treatment of atomic interactions and use a small world network approach to describe how interactions are modulated by their environment. This approach allows us to capture local cooperativity effects and considerably improves the performance of a newly derived empirical scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding. PMID:22087588
PyPathway: Python Package for Biological Network Analysis and Visualization.
Xu, Yang; Luo, Xiao-Chun
2018-05-01
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi
2015-01-01
It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328
New perspectives in tracing vector-borne interaction networks.
Gómez-Díaz, Elena; Figuerola, Jordi
2010-10-01
Disentangling trophic interaction networks in vector-borne systems has important implications in epidemiological and evolutionary studies. Molecular methods based on bloodmeal typing in vectors have been increasingly used to identify hosts. Although most molecular approaches benefit from good specificity and sensitivity, their temporal resolution is limited by the often rapid digestion of blood, and mixed bloodmeals still remain a challenge for bloodmeal identification in multi-host vector systems. Stable isotope analyses represent a novel complementary tool that can overcome some of these problems. The utility of these methods using examples from different vector-borne systems are discussed and the extents to which they are complementary and versatile are highlighted. There are excellent opportunities for progress in the study of vector-borne transmission networks resulting from the integration of both molecular and stable isotope approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
Identification of common coexpression modules based on quantitative network comparison.
Jo, Yousang; Kim, Sanghyeon; Lee, Doheon
2018-06-13
Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.
Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro
2013-01-01
Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.
On the sufficiency of pairwise interactions in maximum entropy models of networks
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Merchan, Lina
Biological information processing networks consist of many components, which are coupled by an even larger number of complex multivariate interactions. However, analyses of data sets from fields as diverse as neuroscience, molecular biology, and behavior have reported that observed statistics of states of some biological networks can be approximated well by maximum entropy models with only pairwise interactions among the components. Based on simulations of random Ising spin networks with p-spin (p > 2) interactions, here we argue that this reduction in complexity can be thought of as a natural property of some densely interacting networks in certain regimes, and not necessarily as a special property of living systems. This work was supported in part by James S. McDonnell Foundation Grant No. 220020321.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
Lin, Hui-Heng; Zhang, Le-Le; Yan, Ru; Lu, Jin-Jian; Hu, Yuanjia
2017-09-25
The U.S. Food and Drug Administration (FDA) approves new drugs every year. Drug targets are some of the most important interactive molecules for drugs, as they have a significant impact on the therapeutic effects of drugs. In this work, we thoroughly analyzed the data of small molecule drugs approved by the U.S. FDA between 2000 and 2015. Specifically, we focused on seven classes of new molecular entity (NME) classified by the anatomic therapeutic chemical (ATC) classification system. They were NMEs and their corresponding targets for the cardiovascular system, respiratory system, nerve system, general anti-infective systemic, genito-urinary system and sex hormones, alimentary tract and metabolisms, and antineoplastic and immunomodulating agents. To study the drug-target interaction on the systems level, we employed network topological analysis and multipartite network projections. As a result, the drug-target relations of different kinds of drugs were comprehensively characterized and global pictures of drug-target, drug-drug, and target-target interactions were visualized and analyzed from the perspective of network models.
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Karamzadeh, Razieh; Karimi-Jafari, Mohammad Hossein; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Salekdeh, Ghasem Hosseini; Moosavi-Movahedi, Ali Akbar
2017-06-16
The human protein disulfide isomerase (hPDI), is an essential four-domain multifunctional enzyme. As a result of disulfide shuffling in its terminal domains, hPDI exists in two oxidation states with different conformational preferences which are important for substrate binding and functional activities. Here, we address the redox-dependent conformational dynamics of hPDI through molecular dynamics (MD) simulations. Collective domain motions are identified by the principal component analysis of MD trajectories and redox-dependent opening-closing structure variations are highlighted on projected free energy landscapes. Then, important structural features that exhibit considerable differences in dynamics of redox states are extracted by statistical machine learning methods. Mapping the structural variations to time series of residue interaction networks also provides a holistic representation of the dynamical redox differences. With emphasizing on persistent long-lasting interactions, an approach is proposed that compiled these time series networks to a single dynamic residue interaction network (DRIN). Differential comparison of DRIN in oxidized and reduced states reveals chains of residue interactions that represent potential allosteric paths between catalytic and ligand binding sites of hPDI.
Hermjakob, Henning; Montecchi-Palazzi, Luisa; Bader, Gary; Wojcik, Jérôme; Salwinski, Lukasz; Ceol, Arnaud; Moore, Susan; Orchard, Sandra; Sarkans, Ugis; von Mering, Christian; Roechert, Bernd; Poux, Sylvain; Jung, Eva; Mersch, Henning; Kersey, Paul; Lappe, Michael; Li, Yixue; Zeng, Rong; Rana, Debashis; Nikolski, Macha; Husi, Holger; Brun, Christine; Shanker, K; Grant, Seth G N; Sander, Chris; Bork, Peer; Zhu, Weimin; Pandey, Akhilesh; Brazma, Alvis; Jacq, Bernard; Vidal, Marc; Sherman, David; Legrain, Pierre; Cesareni, Gianni; Xenarios, Ioannis; Eisenberg, David; Steipe, Boris; Hogue, Chris; Apweiler, Rolf
2004-02-01
A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).
Tse, Amanda; Verkhivker, Gennady M.
2016-01-01
The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment. PMID:27861609
Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks
2014-01-01
Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Inferring protein domains associated with drug side effects based on drug-target interaction network
2013-01-01
Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527
Protein-protein interaction networks (PPI) and complex diseases
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram
2014-01-01
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Back to the biology in systems biology: what can we learn from biomolecular networks?
Huang, Sui
2004-02-01
Genome-scale molecular networks, including protein interaction and gene regulatory networks, have taken centre stage in the investigation of the burgeoning disciplines of systems biology and biocomplexity. What do networks tell us? Some see in networks simply the comprehensive, detailed description of all cellular pathways, others seek in networks simple, higher-order qualities that emerge from the collective action of the individual pathways. This paper discusses networks from an encompassing category of thinking that will hopefully help readers to bridge the gap between these polarised viewpoints. Systems biology so far has emphasised the characterisation of large pathway maps. Now one has to ask: where is the actual biology in 'systems biology'? As structures midway between genome and phenome, and by serving as an 'extended genotype' or an 'elementary phenotype', molecular networks open a new window to the study of evolution and gene function in complex living systems. For the study of evolution, features in network topology offer a novel starting point for addressing the old debate on the relative contributions of natural selection versus intrinsic constraints to a particular trait. To study the function of genes, it is necessary not only to see them in the context of gene networks, but also to reach beyond describing network topology and to embrace the global dynamics of networks that will reveal higher-order, collective behaviour of the interacting genes. This will pave the way to understanding how the complexity of genome-wide molecular networks collapses to produce a robust whole-cell behaviour that manifests as tightly-regulated switching between distinct cell fates - the basis for multicellular life.
Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki
2016-01-01
Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465
The autophagy interaction network of the aging model Podospora anserina.
Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina
2017-03-27
Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.
Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo
2016-01-01
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020
Interconnectivity of human cellular metabolism and disease prevalence
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2010-12-01
Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.
Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S
2014-08-01
The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.
Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers
Chen, Hao; Zhu, Zhitu; Zhu, Yichun; Wang, Jian; Mei, Yunqing; Cheng, Yunfeng
2015-01-01
It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed. PMID:25560835
Ndesendo, Valence M K; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Buchmann, Eckhart; Meyer, Leith C R; Khan, Riaz A
2012-01-01
This study aimed at elucidating an optimal synergistic polymer composite for achieving a desirable molecular bioadhesivity and Matrix Erosion of a bioactive-loaded Intravaginal Bioadhesive Polymeric Device (IBPD) employing Molecular Mechanic Simulations and Artificial Neural Networks (ANN). Fifteen lead caplet-shaped devices were formulated by direct compression with the model bioactives zidovudine and polystyrene sulfonate. The Matrix Erosion was analyzed in simulated vaginal fluid to assess the critical integrity. Blueprinting the molecular mechanics of bioadhesion between vaginal epithelial glycoprotein (EGP), mucin (MUC) and the IBPD were performed on HyperChem 8.0.8 software (MM+ and AMBER force fields) for the quantification and characterization of correlative molecular interactions during molecular bioadhesion. Results proved that the IBPD bioadhesivity was pivoted on the conformation, orientation, and poly(acrylic acid) (PAA) composition that interacted with EGP and MUC present on the vaginal epithelium due to heterogeneous surface residue distributions (free energy= -46.33 kcalmol(-1)). ANN sensitivity testing as a connectionist model enabled strategic polymer selection for developing an IBPD with an optimally prolonged Matrix Erosion and superior molecular bioadhesivity (ME = 1.21-7.68%; BHN = 2.687-4.981 N/mm(2)). Molecular modeling aptly supported the EGP-MUC-PAA molecular interaction at the vaginal epithelium confirming the role of PAA in bioadhesion of the IBPD once inserted into the posterior fornix of the vagina.
An Interaction Library for the FcεRI Signaling Network
Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.; ...
2014-04-15
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less
An Interaction Library for the FcεRI Signaling Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less
Zhang, Zhi-Guo; Song, Chang-Heng; Zhang, Fang-Zhen; Chen, Yan-Jing; Xiang, Li-Hua; Xiao, Gary Guishan; Ju, Da-Hong
2016-06-01
Rhizoma Dioscoreae extract (RDE) exhibits a protective effect on alveolar bone loss in ovariectomized (OVX) rats. The aim of this study was to predict the pathways or targets that are regulated by RDE, by re‑assessing our previously reported data and conducting a protein‑protein interaction (PPI) network analysis. In total, 383 differentially expressed genes (≥3‑fold) between alveolar bone samples from the RDE and OVX group rats were identified, and a PPI network was constructed based on these genes. Furthermore, four molecular clusters (A‑D) in the PPI network with the smallest P‑values were detected by molecular complex detection (MCODE) algorithm. Using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) tools, two molecular clusters (A and B) were enriched for biological process in Gene Ontology (GO). Only cluster A was associated with biological pathways in the IPA database. GO and pathway analysis results showed that cluster A, associated with cell cycle regulation, was the most important molecular cluster in the PPI network. In addition, cyclin‑dependent kinase 1 (CDK1) may be a key molecule achieving the cell‑cycle‑regulatory function of cluster A. From the PPI network analysis, it was predicted that delayed cell cycle progression in excessive alveolar bone remodeling via downregulation of CDK1 may be another mechanism underling the anti‑osteopenic effect of RDE on alveolar bone.
Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach
Derocles, Stéphane A. P.; Evans, Darren M.; Nichols, Paul C.; Evans, S. Aifionn; Lunt, David H.
2015-01-01
A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant – leaf miner – parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a) morphological identification of adult specimens; b) identification based on the shape of the mines; c) the COI Mini-barcode (130 bp) and d) the COI full barcode (658 bp) fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant – leaf miner – parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria. PMID:25710377
Kuperstein, Inna; Grieco, Luca; Cohen, David P A; Thieffry, Denis; Zinovyev, Andrei; Barillot, Emmanuel
2015-03-01
Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimality principles in the regulation of metabolic networks.
Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas
2012-08-29
One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.
Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z
2017-02-03
The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leveraging Modeling Approaches: Reaction Networks and Rules
Blinov, Michael L.; Moraru, Ion I.
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Alanis-Lobato, Gregorio
2015-01-01
High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.
Optimality Principles in the Regulation of Metabolic Networks
Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas
2012-01-01
One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646
Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A
2015-01-01
Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. PMID:26192618
Exploring Biomolecular Recognition by Modeling and Simulation
NASA Astrophysics Data System (ADS)
Wade, Rebecca
2007-12-01
Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.
C. elegans network biology: a beginning.
Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc
2006-01-01
The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437
Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome)
2015-01-01
Background Pre-eclampsia is the most common complication occurring during pregnancy. In the majority of cases, it is concurrent with other pathologies in a comorbid manner (frequent co-occurrences in patients), such as diabetes mellitus, gestational diabetes and obesity. Providing bronchial asthma, pulmonary tuberculosis, certain neurodegenerative diseases and cancers as examples, we have shown previously that pairs of inversely comorbid pathologies (rare co-occurrences in patients) are more closely related to each other at the molecular genetic level compared with randomly generated pairs of diseases. Data in the literature concerning the causes of pre-eclampsia are abundant. However, the key mechanisms triggering this disease that are initiated by other pathological processes are thus far unknown. The aim of this work was to analyse the characteristic features of genetic networks that describe interactions between comorbid diseases, using pre-eclampsia as a case in point. Results The use of ANDSystem, Pathway Studio and STRING computer tools based on text-mining and database-mining approaches allowed us to reconstruct associative networks, representing molecular genetic interactions between genes, associated concurrently with comorbid disease pairs, including pre-eclampsia, diabetes mellitus, gestational diabetes and obesity. It was found that these associative networks statistically differed in the number of genes and interactions between them from those built for randomly chosen pairs of diseases. The associative network connecting all four diseases was composed of 16 genes (PLAT, ADIPOQ, ADRB3, LEPR, HP, TGFB1, TNFA, INS, CRP, CSRP1, IGFBP1, MBL2, ACE, ESR1, SHBG, ADA). Such an analysis allowed us to reveal differential gene risk factors for these diseases, and to propose certain, most probable, theoretical mechanisms of pre-eclampsia development in pregnant women. The mechanisms may include the following pathways: [TGFB1 or TNFA]-[IL1B]-[pre-eclampsia]; [TNFA or INS]-[NOS3]-[pre-eclampsia]; [INS]-[HSPA4 or CLU]-[pre-eclampsia]; [ACE]-[MTHFR]-[pre-eclampsia]. Conclusions For pre-eclampsia, diabetes mellitus, gestational diabetes and obesity, we showed that the size and connectivity of the associative molecular genetic networks, which describe interactions between comorbid diseases, statistically exceeded the size and connectivity of those built for randomly chosen pairs of diseases. Recently, we have shown a similar result for inversely comorbid diseases. This suggests that comorbid and inversely comorbid diseases have common features concerning structural organization of associative molecular genetic networks. PMID:25879409
Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang
2016-11-10
Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .
Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.
Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús
2008-10-01
Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.
Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.
Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris
2014-01-01
Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
Integration of biological networks and gene expression data using Cytoscape
Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D
2013-01-01
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979
ERIC Educational Resources Information Center
Hakerem, Gita; And Others
The Water and Molecular Networks (WAMNet) Project uses graduate student written Reduced Instruction Set Computing (RISC) computer simulations of the molecular structure of water to assist high school students learn about the nature of water. This study examined: (1) preconceptions concerning the molecular structure of water common among high…
Molecular parallels between neural and vascular development.
Eichmann, Anne; Thomas, Jean-Léon
2013-01-01
The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.
On the molecular basis of the receptor mosaic hypothesis of the engram.
Agnati, Luigi F; Ferré, Sergi; Leo, Giuseppina; Lluis, Carme; Canela, Enric I; Franco, Rafael; Fuxe, Kjell
2004-08-01
1. This paper revisits the so-called "receptor mosaic hypothesis" for memory trace formation in the light of recent findings in "functional (or interaction) proteomics." The receptor mosaic hypothesis maintains that receptors may form molecular aggregates at the plasma membrane level representing part of the computational molecular networks. 2. Specific interactions between receptors occur as a consequence of the pattern of transmitter release from the source neurons, which release the chemical code impinging on the receptor mosaics of the target neuron. Thus, the decoding of the chemical message depends on the receptors forming the receptor mosaics and on the type of interactions among receptors and other proteins in the molecular network with novel long-term mosaics formed by their stabilization via adapter proteins formed in target neurons through the incoming neurotransmitter code. The internalized receptor heteromeric complexes or parts of them may act as transcription factors for the formation of such adapter proteins. 3. Receptor mosaics are formed both at the pre- and postsynaptic level of the plasma membranes and this phenomenon can play a role in the Hebbian behavior of some synaptic contacts. The appropriate "matching" of the pre- with the postsynaptic receptor mosaic can be thought of as the "clamping of the synapse to the external teaching signal." According to our hypothesis the behavior of the molecular networks at plasma membrane level to which the receptor mosaics belong can be set in a "frozen" conformation (i.e. in a frozen functional state) and this may represent a mechanism to maintain constant the input to a neuron. 4. Thus, we are suggesting that molecular networks at plasma membrane level may display multiple "attractors" each of which stores the memory of a specific neurotransmitter code due to a unique firing pattern. Hence, this mechanism may play a role in learning processes where the input to a neuron is likely to remain constant for a while.
Advances on plant-pathogen interactions from molecular toward systems biology perspectives.
Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique
2017-05-01
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Bazyan, A S
2016-01-01
The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.
Ferguson, Katie A.; Huh, Carey Y. L.; Amilhon, Bénédicte; Manseau, Frédéric; Williams, Sylvain; Skinner, Frances K.
2015-01-01
Hippocampal theta is a 4–12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens–lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+) basket and axo-axonic cells (BC/AACs), PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored how the number of OLM-BiC connections and connection strength affected local theta power. We found that our models operate in regimes that could be distinguished by whether OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the resulting power of network theta oscillations. Overall, our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta power. PMID:26300744
Podder, Avijit; Jatana, Nidhi; Latha, N
2014-09-21
Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito
2018-05-01
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.
Flexible network reconstruction from relational databases with Cytoscape and CytoSQL
2010-01-01
Background Molecular interaction networks can be efficiently studied using network visualization software such as Cytoscape. The relevant nodes, edges and their attributes can be imported in Cytoscape in various file formats, or directly from external databases through specialized third party plugins. However, molecular data are often stored in relational databases with their own specific structure, for which dedicated plugins do not exist. Therefore, a more generic solution is presented. Results A new Cytoscape plugin 'CytoSQL' is developed to connect Cytoscape to any relational database. It allows to launch SQL ('Structured Query Language') queries from within Cytoscape, with the option to inject node or edge features of an existing network as SQL arguments, and to convert the retrieved data to Cytoscape network components. Supported by a set of case studies we demonstrate the flexibility and the power of the CytoSQL plugin in converting specific data subsets into meaningful network representations. Conclusions CytoSQL offers a unified approach to let Cytoscape interact with relational databases. Thanks to the power of the SQL syntax, this tool can rapidly generate and enrich networks according to very complex criteria. The plugin is available at http://www.ptools.ua.ac.be/CytoSQL. PMID:20594316
Flexible network reconstruction from relational databases with Cytoscape and CytoSQL.
Laukens, Kris; Hollunder, Jens; Dang, Thanh Hai; De Jaeger, Geert; Kuiper, Martin; Witters, Erwin; Verschoren, Alain; Van Leemput, Koenraad
2010-07-01
Molecular interaction networks can be efficiently studied using network visualization software such as Cytoscape. The relevant nodes, edges and their attributes can be imported in Cytoscape in various file formats, or directly from external databases through specialized third party plugins. However, molecular data are often stored in relational databases with their own specific structure, for which dedicated plugins do not exist. Therefore, a more generic solution is presented. A new Cytoscape plugin 'CytoSQL' is developed to connect Cytoscape to any relational database. It allows to launch SQL ('Structured Query Language') queries from within Cytoscape, with the option to inject node or edge features of an existing network as SQL arguments, and to convert the retrieved data to Cytoscape network components. Supported by a set of case studies we demonstrate the flexibility and the power of the CytoSQL plugin in converting specific data subsets into meaningful network representations. CytoSQL offers a unified approach to let Cytoscape interact with relational databases. Thanks to the power of the SQL syntax, this tool can rapidly generate and enrich networks according to very complex criteria. The plugin is available at http://www.ptools.ua.ac.be/CytoSQL.
Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations
NASA Technical Reports Server (NTRS)
Bucholz, Eric W.; Haskins, Justin B.; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2017-01-01
Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents.
Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations.
Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W
2017-04-06
Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final postcured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of the phenolic chain structure and the solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered: ethylene glycol (EGL) and H 2 O. In addition, three phenolic chain structures are considered, including two novolac-type chains with either an ortho-ortho (OON) or an ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through a structural analysis of the solvation shell and the hydrogen-bonding environment as well as through a quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of simulations and the analyses indicate that EGL provides a higher solvation free energy than H 2 O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, the phenolic chain structure significantly affects the solvation performance, with OON having limited intermolecular hydrogen-bond formations, while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H 2 O, and other similar solvents.
The BioPlex Network: A Systematic Exploration of the Human Interactome.
Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P
2015-07-16
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.
The BioPlex Network: A Systematic Exploration of the Human Interactome
Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.
2015-01-01
SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194
1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde.
Ramathilagam, C; Umarani, P R; Venkatesan, N; Rajakumar, P; Gunasekaran, B; Manivannan, V
2014-02-01
In the title compound, C22H15N3O, the dihedral angle between the two indole units is 33.72 (3)°. The mol-ecular structure features a weak intra-molecular C-H⋯N inter-action. In the crystal, weak C-H⋯O and C-H⋯π inter-actions, forming a two-dimensional network parallel to the bc plane.
Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas
2015-01-01
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650
Dulla, Chris G; Coulter, Douglas A; Ziburkus, Jokubas
2016-06-01
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. © The Author(s) 2015.
Scale-space measures for graph topology link protein network architecture to function.
Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen
2014-06-15
The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.
NDEx: A Community Resource for Sharing and Publishing of Biological Networks.
Pillich, Rudolf T; Chen, Jing; Rynkov, Vladimir; Welker, David; Pratt, Dexter
2017-01-01
Networks are a powerful and flexible paradigm that facilitate communication and computation about interactions of any type, whether social, economic, or biological. NDEx, the Network Data Exchange, is an online commons to enable new modes of collaboration and publication using biological networks. NDEx creates an access point and interface to a broad range of networks, whether they express molecular interactions, curated relationships from literature, or the outputs of systematic analysis of big data. Research organizations can use NDEx as a distribution channel for networks they generate or curate. Developers of bioinformatic applications can store and query NDEx networks via a common programmatic interface. NDEx can also facilitate the integration of networks as data in electronic publications, thus making a step toward an ecosystem in which networks bearing data, hypotheses, and findings flow seamlessly between scientists.
Molecular Parallels between Neural and Vascular Development
Eichmann, Anne; Thomas, Jean-Léon
2013-01-01
The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177
Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall.
Combination therapeutics in complex diseases.
He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping
2016-12-01
The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events
Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.
2010-01-01
The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624
On the strong influence of molecular interactions over large distances
NASA Astrophysics Data System (ADS)
Pfennig, Andreas
2018-03-01
Molecular-dynamics simulations of liquid water show deterministic chaos, i.e. an intentionally introduced molecular position shift of an individual molecule increases exponentially by a factor of 10 in 0.23 ps. This is a Lyaponov instability. As soon as it reaches molecular scale, the direction of the resulting shift in molecular motions is unpredictable. The influence of any individual distant particle on an observed molecule will be minute, but the effect will quickly increase to molecular scale and beyond due to this exponential growth. Consequently, any individual particle in the universe will affect the behavior of any molecule within at most 33 ps after the interaction reaches it. A larger distance of the faraway particle does not decrease the influence on an observed molecule, but the effect reaches molecular scale only some ps later. Thus in evaluating the interactions, nearby and faraway molecules have to be equally accounted for. The consequences of this quickly reacting network of interactions on universal scale are fundamental. Even in a strictly deterministic view, molecular behavior is principally unpredictable, and thus has to be regarded random. Corresponding statements apply for any particles interacting. This result leads to a fundamental rethinking of the structure of interactions of molecules and particles as well as the behavior of reality.
Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia
2015-06-01
To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.
Pflieger, Delphine; Gonnet, Florence; de la Fuente van Bentem, Sergio; Hirt, Heribert; de la Fuente, Alberto
2011-01-01
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks. Copyright © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-03-01
Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.
Shanker, Sudhanshu; Bandyopadhyay, Pradipta
2017-08-01
The non-Watson-Crick (non-WC) base pairs of Escherichia coli loop E of 5S rRNA are stabilized by Mg 2+ ions through water-mediated interaction. It is important to know the synergic role of Mg 2+ and the water network surrounding Mg 2+ in stabilizing the non-WC base pairs of RNA. For this purpose, free energy change of the system is calculated using molecular dynamics (MD) simulation as Mg 2+ is pulled from RNA, which causes disturbance of the water network. It was found that Mg 2+ remains hexahydrated unless it is close to or far from RNA. In the pentahydrated form, Mg 2+ interacts directly with RNA. Water network has been identified by two complimentary methods; MD followed by a density-based clustering algorithm and three-dimensional-reference interaction site model. These two methods gave similar results. Identification of water network around Mg 2+ and non-WC base pairs gives a clue to the strong effect of water network on the stability of this RNA. Based on sequence analysis of all Eubacteria 5s rRNA, we propose that hexahydrated Mg 2+ is an integral part of this RNA and geometry of base pairs surrounding it adjust to accommodate the [Formula: see text]. Overall the findings from this work can help in understanding the basis of the complex structure and stability of RNA with non-WC base pairs.
A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network
Song, Jianglong; Tang, Shihuan; Liu, Xi; Gao, Yibo; Yang, Hongjun; Lu, Peng
2015-01-01
For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae. PMID:25927435
Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito
2018-05-15
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
Prediction of interface residue based on the features of residue interaction network.
Jiao, Xiong; Ranganathan, Shoba
2017-11-07
Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, Aaron W.; Grant, Robert A.; Keating, Amy E.
2010-06-21
The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein 'interactome' includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of specialmore » interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.« less
Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki
2013-01-01
Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846
Molecular interaction networks in the analyses of sequence variation and proteomics data.
Stelzl, Ulrich
2013-12-01
Protein-protein interaction networks are typically generated in standard cell lines or model organisms as it is prohibitively difficult to record large interaction datasets from specific tissues or disease models at a reasonable pace. Although the interaction data are of high confidence, they thus do not reflect in vivo relationships as such. A wealth of physiologically relevant protein information, obtained under different conditions and from different systems, is available including information on genetic variation, protein levels, and PTMs. However, these data are difficult to assess comprehensively because the relationships between the entities remain elusive from the measurements. Here, we exemplarily highlight recent studies that gained deeper insight from genetic variation, protein, and PTM measurements using interaction information pointing toward the importance and potential of interaction networks for the interpretation of sequencing and proteomics data. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems
Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh
2016-01-01
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701
A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.
Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo
2015-07-01
In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.
HBVPathDB: a database of HBV infection-related molecular interaction network.
Zhang, Yi; Bo, Xiao-Chen; Yang, Jing; Wang, Sheng-Qi
2005-03-21
To describe molecules or genes interaction between hepatitis B viruses (HBV) and host, for understanding how virus' and host's genes and molecules are networked to form a biological system and for perceiving mechanism of HBV infection. The knowledge of HBV infection-related reactions was organized into various kinds of pathways with carefully drawn graphs in HBVPathDB. Pathway information is stored with relational database management system (DBMS), which is currently the most efficient way to manage large amounts of data and query is implemented with powerful Structured Query Language (SQL). The search engine is written using Personal Home Page (PHP) with SQL embedded and web retrieval interface is developed for searching with Hypertext Markup Language (HTML). We present the first version of HBVPathDB, which is a HBV infection-related molecular interaction network database composed of 306 pathways with 1 050 molecules involved. With carefully drawn graphs, pathway information stored in HBVPathDB can be browsed in an intuitive way. We develop an easy-to-use interface for flexible accesses to the details of database. Convenient software is implemented to query and browse the pathway information of HBVPathDB. Four search page layout options-category search, gene search, description search, unitized search-are supported by the search engine of the database. The database is freely available at http://www.bio-inf.net/HBVPathDB/HBV/. The conventional perspective HBVPathDB have already contained a considerable amount of pathway information with HBV infection related, which is suitable for in-depth analysis of molecular interaction network of virus and host. HBVPathDB integrates pathway data-sets with convenient software for query, browsing, visualization, that provides users more opportunity to identify regulatory key molecules as potential drug targets and to explore the possible mechanism of HBV infection based on gene expression datasets.
Applications of self-organizing neural networks in virtual screening and diversity selection.
Selzer, Paul; Ertl, Peter
2006-01-01
Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.
Dixit, Anshuman; Verkhivker, Gennady M.
2012-01-01
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients. PMID:22624053
VirHostNet 2.0: surfing on the web of virus/host molecular interactions data.
Guirimand, Thibaut; Delmotte, Stéphane; Navratil, Vincent
2015-01-01
VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.
Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till
2018-02-06
Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ultrastable cellulosome-adhesion complex tightens under load.
Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A
2014-12-08
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
The GenTechnique Project: Developing an Open Environment for Learning Molecular Genetics.
ERIC Educational Resources Information Center
Calza, R. E.; Meade, J. T.
1998-01-01
The GenTechnique project at Washington State University uses a networked learning environment for molecular genetics learning. The project is developing courseware featuring animation, hyper-link controls, and interactive self-assessment exercises focusing on fundamental concepts. The first pilot course featured a Web-based module on DNA…
Li, Yongsheng; Sahni, Nidhi; Yi, Song
2016-11-29
Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.
Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito
2017-05-16
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Verkhivker, G M
2016-10-20
Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.
Wang, Jingwen; Zhao, Yuqi; Wang, Yanjie; Huang, Jingfei
2013-01-16
Coevolution between proteins is crucial for understanding protein-protein interaction. Simultaneous changes allow a protein complex to maintain its overall structural-functional integrity. In this study, we combined statistical coupling analysis (SCA) and molecular dynamics simulations on the CDK6-CDKN2A protein complex to evaluate coevolution between proteins. We reconstructed an inter-protein residue coevolution network, consisting of 37 residues and 37 interactions. It shows that most of the coevolved residue pairs are spatially proximal. When the mutations happened, the stable local structures were broken up and thus the protein interaction was decreased or inhibited, with a following increased risk of melanoma. The identification of inter-protein coevolved residues in the CDK6-CDKN2A complex can be helpful for designing protein engineering experiments. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.
Abb, Sabine; Harnau, Ludger; Gutzler, Rico; Rauschenbach, Stephan; Kern, Klaus
2016-01-12
The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molecular nanostructures using peptides as bio-organic building blocks for two-dimensional (2D) self-assembly. Scanning tunnelling microscopy reveals changes from compact or linear assemblies (angiotensin I) to long-range ordered, chiral honeycomb networks (angiotensin II) as a result of removal of steric hindrance by sequence modification. Guided by our observations, molecular dynamic simulations yield atomistic models for the elucidation of interpeptide-binding motifs. This new approach to 2D self-assembly on surfaces grants insight at the atomic level that will enable the use of oligo- and polypeptides as large, multi-functional bio-organic building blocks, and opens a new route towards rationally designed, bio-inspired surfaces.
Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.
2014-01-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology. PMID:24921649
Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C
2014-06-01
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.
Differential network entropy reveals cancer system hallmarks
West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.
2012-01-01
The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773
An expanding universe of circadian networks in higher plants.
Pruneda-Paz, Jose L; Kay, Steve A
2010-05-01
Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Ye; Zhang, Ping; Qin, Yujia
When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less
The role of effectors and host immunity in plant-necrotrophic fungal interactions.
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.
Biological network extraction from scientific literature: state of the art and challenges.
Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich
2014-09-01
Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
MIMO: an efficient tool for molecular interaction maps overlap
2013-01-01
Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344
A network approach to predict pathogenic genes for Fusarium graminearum.
Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan
2010-10-04
Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.
CrosstalkNet: A Visualization Tool for Differential Co-expression Networks and Communities.
Manem, Venkata; Adam, George Alexandru; Gruosso, Tina; Gigoux, Mathieu; Bertos, Nicholas; Park, Morag; Haibe-Kains, Benjamin
2018-04-15
Variations in physiological conditions can rewire molecular interactions between biological compartments, which can yield novel insights into gain or loss of interactions specific to perturbations of interest. Networks are a promising tool to elucidate intercellular interactions, yet exploration of these large-scale networks remains a challenge due to their high dimensionality. To retrieve and mine interactions, we developed CrosstalkNet, a user friendly, web-based network visualization tool that provides a statistical framework to infer condition-specific interactions coupled with a community detection algorithm for bipartite graphs to identify significantly dense subnetworks. As a case study, we used CrosstalkNet to mine a set of 54 and 22 gene-expression profiles from breast tumor and normal samples, respectively, with epithelial and stromal compartments extracted via laser microdissection. We show how CrosstalkNet can be used to explore large-scale co-expression networks and to obtain insights into the biological processes that govern cross-talk between different tumor compartments. Significance: This web application enables researchers to mine complex networks and to decipher novel biological processes in tumor epithelial-stroma cross-talk as well as in other studies of intercompartmental interactions. Cancer Res; 78(8); 2140-3. ©2018 AACR . ©2018 American Association for Cancer Research.
Supra-molecular networks for CO2 capture
NASA Astrophysics Data System (ADS)
Sadowski, Jerzy; Kestell, John
Utilizing capabilities of low-energy electron microscopy (LEEM) for non-destructive interrogation of the real-time molecular self-assembly, we have investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks can act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc). The electrostatic interactions of CO2 molecules with transition metal ions can be tuned by controlling the type of TM ion and the size of the pore in the host network. We further applied infrared reflection-absorption spectroscopy (IRRAS) to determine of the molecular orientation of the functional groups and the whole molecule in the 2D monolayers of carboxylic acid. The kinetics and mechanism of the CO2 adsorption/desorption on the 2D molecular network, with and without the TM ion doping, have been also investigated. This research used resources of the Center for Functional Nanomaterials, which is the U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
2012-01-01
Background The use of biological molecular network information for diagnostic and prognostic purposes and elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets relevant for prostate cancer treatment. Results Our findings demonstrate that a miRNA’s functional role can be explained by its target protein connectivity within a physical and functional interaction network. To detect miRNAs with high influence on target protein modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and could explain most of the gene expression changes in our analyzed prostate cancer data set. Conclusions We describe a novel method to identify active miRNA-target modules relevant to prostate cancer progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used in clinical investigations for prostate cancer treatment. PMID:22929553
Tensegrity II. How structural networks influence cellular information processing networks
NASA Technical Reports Server (NTRS)
Ingber, Donald E.
2003-01-01
The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.
Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto
2014-01-27
The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W(k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
Shin, Sucheol; Willard, Adam P
2018-06-05
We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.
HPIDB 2.0: a curated database for host–pathogen interactions
Ammari, Mais G.; Gresham, Cathy R.; McCarthy, Fiona M.; Nanduri, Bindu
2016-01-01
Identification and analysis of host–pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host–pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct download, and are disseminated to other molecular interaction resources. Database URL: http://www.agbase.msstate.edu/hpi/main.html PMID:27374121
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Parameter space exploration within dynamic simulations of signaling networks.
De Ambrosi, Cristina; Barla, Annalisa; Tortolina, Lorenzo; Castagnino, Nicoletta; Pesenti, Raffaele; Verri, Alessandro; Ballestrero, Alberto; Patrone, Franco; Parodi, Silvio
2013-02-01
We started offering an introduction to very basic aspects of molecular biology, for the reader coming from computer sciences, information technology, mathematics. Similarly we offered a minimum of information about pathways and networks in graph theory, for a reader coming from the bio-medical sector. At the crossover about the two different types of expertise, we offered some definition about Systems Biology. The core of the article deals with a Molecular Interaction Map (MIM), a network of biochemical interactions involved in a small signaling-network sub-region relevant in breast cancer. We explored robustness/sensitivity to random perturbations. It turns out that our MIM is a non-isomorphic directed graph. For non physiological directions of propagation of the signal the network is quite resistant to perturbations. The opposite happens for biologically significant directions of signal propagation. In these cases we can have no signal attenuation, and even signal amplification. Signal propagation along a given pathway is highly unidirectional, with the exception of signal-feedbacks, that again have a specific biological role and significance. In conclusion, even a relatively small network like our present MIM reveals the preponderance of specific biological functions over unspecific isomorphic behaviors. This is perhaps the consequence of hundreds of millions of years of biological evolution.
Reinharz, Vladimir; Soulé, Antoine; Westhof, Eric; Waldispühl, Jérôme; Denise, Alain
2018-05-04
The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are made of organised sets of long-range tertiary interactions which connect distinct secondary structure elements in 3D structures. Here, we present a de novo data-driven approach to extract automatically from large data sets of full RNA 3D structures the recurrent interaction networks (RINs). Our methodology enables us for the first time to detect the interaction networks connecting distinct components of the RNA structure, highlighting their diversity and conservation through non-related functional RNAs. We use a graphical model to perform pairwise comparisons of all RNA structures available and to extract RINs and modules. Our analysis yields a complete catalog of RNA 3D structures available in the Protein Data Bank and reveals the intricate hierarchical organization of the RNA interaction networks and modules. We assembled our results in an online database (http://carnaval.lri.fr) which will be regularly updated. Within the site, a tool allows users with a novel RNA structure to detect automatically whether the novel structure contains previously observed RINs.
Of truth and pathways: chasing bits of information through myriads of articles.
Krauthammer, Michael; Kra, Pauline; Iossifov, Ivan; Gomez, Shawn M; Hripcsak, George; Hatzivassiloglou, Vasileios; Friedman, Carol; Rzhetsky, Andrey
2002-01-01
Knowledge on interactions between molecules in living cells is indispensable for theoretical analysis and practical applications in modern genomics and molecular biology. Building such networks relies on the assumption that the correct molecular interactions are known or can be identified by reading a few research articles. However, this assumption does not necessarily hold, as truth is rather an emerging property based on many potentially conflicting facts. This paper explores the processes of knowledge generation and publishing in the molecular biology literature using modelling and analysis of real molecular interaction data. The data analysed in this article were automatically extracted from 50000 research articles in molecular biology using a computer system called GeneWays containing a natural language processing module. The paper indicates that truthfulness of statements is associated in the minds of scientists with the relative importance (connectedness) of substances under study, revealing a potential selection bias in the reporting of research results. Aiming at understanding the statistical properties of the life cycle of biological facts reported in research articles, we formulate a stochastic model describing generation and propagation of knowledge about molecular interactions through scientific publications. We hope that in the future such a model can be useful for automatically producing consensus views of molecular interaction data.
Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; Yang, Yunfeng; He, Zhili; Schadt, Christopher Warren; Zhou, Jizhong
2016-01-01
Discerning network interactions among different species/populations in microbial communities has evoked substantial interests in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. Here, we modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140-269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. Particularly, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong
2013-01-01
We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643
MOLSIM: A modular molecular simulation software
Jurij, Reščič
2015-01-01
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597
Pandey, Deeksha; Podder, Avijit; Pandit, Mansi; Latha, Narayanan
2017-09-01
The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.
Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice
2014-10-31
Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.
Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W
2012-01-01
Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.
Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?
Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R
2018-03-16
Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.
Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji
2015-03-27
An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PodNet, a protein-protein interaction network of the podocyte.
Warsow, Gregor; Endlich, Nicole; Schordan, Eric; Schordan, Sandra; Chilukoti, Ravi K; Homuth, Georg; Moeller, Marcus J; Fuellen, Georg; Endlich, Karlhans
2013-07-01
Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.
The role of effectors and host immunity in plant–necrotrophic fungal interactions
Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang
2014-01-01
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi. PMID:25513773
Ultrastable cellulosome-adhesion complex tightens under load
Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.
2014-01-01
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395
Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah
2016-01-01
A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911
Inferring Boolean network states from partial information
2013-01-01
Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954
Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu
2016-01-01
Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487
Multi-disciplinary methods to define RNA-protein interactions and regulatory networks.
Ascano, Manuel; Gerstberger, Stefanie; Tuschl, Thomas
2013-02-01
The advent of high-throughput technologies including deep-sequencing and protein mass spectrometry is facilitating the acquisition of large and precise data sets toward the definition of post-transcriptional regulatory networks. While early studies that investigated specific RNA-protein interactions in isolation laid the foundation for our understanding of the existence of molecular machines to assemble and process RNAs, there is a more recent appreciation of the importance of individual RNA-protein interactions that contribute to post-transcriptional gene regulation. The multitude of RNA-binding proteins (RBPs) and their many RNA targets has only been captured experimentally in recent times. In this review, we will examine current multidisciplinary approaches toward elucidating RNA-protein networks and their regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrated inference and evaluation of host–fungi interaction networks
Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.
2015-01-01
Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851
The IBD interactome: an integrated view of aetiology, pathogenesis and therapy.
de Souza, Heitor S P; Fiocchi, Claudio; Iliopoulos, Dimitrios
2017-12-01
Crohn's disease and ulcerative colitis are prototypical complex diseases characterized by chronic and heterogeneous manifestations, induced by interacting environmental, genomic, microbial and immunological factors. These interactions result in an overwhelming complexity that cannot be tackled by studying the totality of each pathological component (an '-ome') in isolation without consideration of the interaction among all relevant -omes that yield an overall 'network effect'. The outcome of this effect is the 'IBD interactome', defined as a disease network in which dysregulation of individual -omes causes intestinal inflammation mediated by dysfunctional molecular modules. To define the IBD interactome, new concepts and tools are needed to implement a systems approach; an unbiased data-driven integration strategy that reveals key players of the system, pinpoints the central drivers of inflammation and enables development of targeted therapies. Powerful bioinformatics tools able to query and integrate multiple -omes are available, enabling the integration of genomic, epigenomic, transcriptomic, proteomic, metabolomic and microbiome information to build a comprehensive molecular map of IBD. This approach will enable identification of IBD molecular subtypes, correlations with clinical phenotypes and elucidation of the central hubs of the IBD interactome that will aid discovery of compounds that can specifically target the hubs that control the disease.
Exploring Wound-Healing Genomic Machinery with a Network-Based Approach
Vitali, Francesca; Marini, Simone; Balli, Martina; Grosemans, Hanne; Sampaolesi, Maurilio; Lussier, Yves A.; Cusella De Angelis, Maria Gabriella; Bellazzi, Riccardo
2017-01-01
The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets. PMID:28635674
Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs
Yan, Koon-Kiu; Wang, Daifeng; Sethi, Anurag; Muir, Paul; Kitchen, Robert; Cheng, Chao; Gerstein, Mark
2016-01-01
Biological systems are complex. In particular, the interactions between molecular components often form dense networks that, more often than not, are criticized for being inscrutable ‘hairballs’. We argue that one way of untangling these hairballs is through cross-disciplinary network comparison—leveraging advances in other disciplines to obtain new biological insights. In some cases, such comparisons enable the direct transfer of mathematical formalism between disciplines, precisely describing the abstract associations between entities and allowing us to apply a variety of sophisticated formalisms to biology. In cases where the detailed structure of the network does not permit the transfer of complete formalisms between disciplines, comparison of mechanistic interactions in systems for which we have significant day-to-day experience can provide analogies for interpreting relatively more abstruse biological networks. Here, we illustrate how these comparisons benefit the field with a few specific examples related to network growth, organizational hierarchies, and the evolution of adaptive systems. PMID:27047991
Deng, Ye; Zhang, Ping; Qin, Yujia; ...
2015-08-11
When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less
Estimation of the proteomic cancer co-expression sub networks by using association estimators.
Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.
Estimation of the proteomic cancer co-expression sub networks by using association estimators
Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449
CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.
Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J
2015-01-01
CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb © The Author(s) 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-11-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-01-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697
Genetic interaction networks: better understand to better predict
Boucher, Benjamin; Jenna, Sarah
2013-01-01
A genetic interaction (GI) between two genes generally indicates that the phenotype of a double mutant differs from what is expected from each individual mutant. In the last decade, genome scale studies of quantitative GIs were completed using mainly synthetic genetic array technology and RNA interference in yeast and Caenorhabditis elegans. These studies raised questions regarding the functional interpretation of GIs, the relationship of genetic and molecular interaction networks, the usefulness of GI networks to infer gene function and co-functionality, the evolutionary conservation of GI, etc. While GIs have been used for decades to dissect signaling pathways in genetic models, their functional interpretations are still not trivial. The existence of a GI between two genes does not necessarily imply that these two genes code for interacting proteins or that the two genes are even expressed in the same cell. In fact, a GI only implies that the two genes share a functional relationship. These two genes may be involved in the same biological process or pathway; or they may also be involved in compensatory pathways with unrelated apparent function. Considering the powerful opportunity to better understand gene function, genetic relationship, robustness and evolution, provided by a genome-wide mapping of GIs, several in silico approaches have been employed to predict GIs in unicellular and multicellular organisms. Most of these methods used weighted data integration. In this article, we will review the later knowledge acquired on GI networks in metazoans by looking more closely into their relationship with pathways, biological processes and molecular complexes but also into their modularity and organization. We will also review the different in silico methods developed to predict GIs and will discuss how the knowledge acquired on GI networks can be used to design predictive tools with higher performances. PMID:24381582
A Look Inside HIV Resistance through Retroviral Protease Interaction Maps
Kontijevskis, Aleksejs; Prusis, Peteris; Petrovska, Ramona; Yahorava, Sviatlana; Mutulis, Felikss; Mutule, Ilze; Komorowski, Jan; Wikberg, Jarl E. S
2007-01-01
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases. PMID:17352531
2015-01-01
Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313
Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.
Wang, Yan; Li, Yan
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.
Brown, Ashley C.; Baker, Stephen; Douglas, Alison; Keating, Mark; Alvarez-Elizondo, Martha; Botvinick, Elliot; Guthold, Martin; Barker, Thomas H.
2015-01-01
Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular ‘interference’ of fibrin’s native polymerization mechanism. We have previously reported that engagement of fibrin’s polymerization ‘hole b’, also known as ‘b-pockets’, through PEGylated complimentary ‘knob B’ mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics. PMID:25725552
NASA Astrophysics Data System (ADS)
Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.
2016-09-01
Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.
Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team
The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan
2017-04-01
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen
2013-01-23
Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.
NASA Astrophysics Data System (ADS)
Videnova-Adrabinska, V.; Etter, M. C.; Ward, M. D.
1993-04-01
The crystal structure and properties of a number of urea cocrystals are studied with regard to symmetry of the hydrogen-bonded molecular assemblies. The logical consequences of hydrogen bonding interactions are followed step-by-step. The problems of aggregate formation, nucleation, and crystal growth are also elucidated. Endeavor is made to envisage the 2-D and 3-D hydrogen bond network in a manageable way by exploiting graph set short hand. Strategies of how to control the symmetry of molecular packing are still to be elaborated. In our strategy, the programmed self-assembly has been based on the principle of molecular recognition of self- and hetero-complementary functional groups. However, the main focus for pre-organizational control has been put on the two-fold axis estimator of the urea molecule.
Hierarchical modeling of molecular energies using a deep neural network
NASA Astrophysics Data System (ADS)
Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
2018-06-01
We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.
Quality control methodology for high-throughput protein-protein interaction screening.
Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha
2011-01-01
Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.
Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger
2017-06-01
Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu
2015-12-01
Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures
Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao
2013-01-01
Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control. PMID:22642503
Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju
2017-04-27
Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Role of Silicon on Plant–Pathogen Interactions
Wang, Min; Gao, Limin; Dong, Suyue; Sun, Yuming; Shen, Qirong; Guo, Shiwei
2017-01-01
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant–pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant–pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant–microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture. PMID:28529517
Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok
2017-08-01
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Saha, Sudipto; Dazard, Jean-Eudes; Xu, Hua; Ewing, Rob M.
2013-01-01
Large-scale protein–protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific “bait” protein and its associated “prey” proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait–prey and cocomplexed preys (prey–prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein–protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait–prey and prey–prey interactions can be used to refine network topology and extend known protein networks. PMID:22845868
Simultaneous and coordinated rotational switching of all molecular rotors in a network
Zhang, Y.; Kersell, H.; Stefak, R.; ...
2016-05-09
A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less
Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula
2015-05-28
The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger potential for survival benefit. We hope that the use of advanced mathematics in medicine will provide timely information about the best drug combination for patients, and avoid the expense associated with an unsuccessful clinical trial, where drug(s) did not show a survival benefit.
Havugimana, Pierre C; Hu, Pingzhao; Emili, Andrew
2017-10-01
Elucidation of the networks of physical (functional) interactions present in cells and tissues is fundamental for understanding the molecular organization of biological systems, the mechanistic basis of essential and disease-related processes, and for functional annotation of previously uncharacterized proteins (via guilt-by-association or -correlation). After a decade in the field, we felt it timely to document our own experiences in the systematic analysis of protein interaction networks. Areas covered: Researchers worldwide have contributed innovative experimental and computational approaches that have driven the rapidly evolving field of 'functional proteomics'. These include mass spectrometry-based methods to characterize macromolecular complexes on a global-scale and sophisticated data analysis tools - most notably machine learning - that allow for the generation of high-quality protein association maps. Expert commentary: Here, we recount some key lessons learned, with an emphasis on successful workflows, and challenges, arising from our own and other groups' ongoing efforts to generate, interpret and report proteome-scale interaction networks in increasingly diverse biological contexts.
2013-01-01
Background Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps. PMID:24099179
Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2013-10-07
Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.
Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi
2017-09-08
Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background The learning active subnetworks problem involves finding subnetworks of a bio-molecular network that are active in a particular condition. Many approaches integrate observation data (e.g., gene expression) with the network topology to find candidate subnetworks. Increasingly, pathway databases contain additional annotation information that can be mined to improve prediction accuracy, e.g., interaction mechanism (e.g., transcription, microRNA, cleavage) annotations. We introduce a mechanism-based approach to active subnetwork recovery which exploits such annotations. We suggest that neighboring interactions in a network tend to be co-activated in a way that depends on the “correlation” of their mechanism annotations. e.g., neighboring phosphorylation and de-phosphorylation interactions may be more likely to be co-activated than neighboring phosphorylation and covalent bonding interactions. Results Our method iteratively learns the mechanism correlations and finds the most likely active subnetwork. We use a probabilistic graphical model with a Markov Random Field component which creates dependencies between the states (active or non-active) of neighboring interactions, that incorporates a mechanism-based component to the function. We apply a heuristic-based EM-based algorithm suitable for the problem. We validated our method’s performance using simulated data in networks downloaded from GeneGO against the same approach without the mechanism-based component, and two other existing methods. We validated our methods performance in correctly recovering (1) the true interaction states, and (2) global network properties of the original network against these other methods. We applied our method to networks generated from time-course gene expression studies in angiogenesis and lung organogenesis and validated the findings from a biological perspective against current literature. Conclusions The advantage of our mechanism-based approach is best seen in networks composed of connected regions with a large number of interactions annotated with a subset of mechanisms, e.g., a regulatory region of transcription interactions, or a cleavage cascade region. When applied to real datasets, our method recovered novel and biologically meaningful putative interactions, e.g., interactions from an integrin signaling pathway using the angiogenesis dataset, and a group of regulatory microRNA interactions in an organogenesis network. PMID:23432934
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal
2015-09-07
We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions, which leads to non-trivial adsorption behavior that is qualitatively different from what would be predicted from the state of the proteins in the bulk solution.
Disease networks. Uncovering disease-disease relationships through the incomplete interactome.
Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László
2015-02-20
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.
Oh, Min; Ahn, Jaegyoon; Yoon, Youngmi
2014-01-01
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer’s disease. PMID:25356910
Zhou, Chao; Liu, LiJuan; Zhuang, Jing; Wei, JunYu; Zhang, TingTing; Gao, ChunDi; Liu, Cun; Li, HuaYao; Si, HongZong; Sun, ChangGang
2018-06-23
BACKGROUND The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. MATERIAL AND METHODS We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. RESULTS According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. CONCLUSIONS The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.
Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane
2017-09-13
The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.
van Os, Jim; Rutten, Bart PF; Poulton, Richie
2008-01-01
Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170–9). Although findings of epidemiological gene-environment interaction (G × E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables “thrown in”: G × E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G × E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as “sensitization” of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional elucidation of underlying mechanisms using a combination of functional enviromics and functional genomics. PMID:18791076
IAEA activities on atomic, molecular and plasma-material interaction data for fusion
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2013-09-01
The IAEA Atomic and Molecular Data Unit (http://www-amdis.iaea.org/) aims to provide internationally evaluated and recommended data for atomic, molecular and plasma-material interaction (A+M+PMI) processes in fusion research. The Unit organizes technical meetings and coordinates an A+M Data Centre Network (DCN) and a Code Centre Network (CCN). In addition the Unit organizes Coordinated Research Projects (CRPs), for which the objectives are mixed between development of new data and evaluation and recommendation of existing data. In the area of A+M data we are placing new emphasis in our meeting schedule on data evaluation and especially on uncertainties in calculated cross section data and the propagation of uncertainties through structure data and fundamental cross sections to effective rate coefficients. Following a recent meeting of the CCN it is intended to use electron scattering on Be, Ne and N2 as exemplars for study of uncertainties and uncertainty propagation in calculated data; this will be discussed further at the presentation. Please see http://www-amdis.iaea.org/CRP/ for more on our active and planned CRPs, which are concerned with atomic processes in core and edge plasma and with plasma interaction with beryllium-based surfaces and with irradiated tungsten.
Stacking the odds for Golgi cisternal maturation
Mani, Somya; Thattai, Mukund
2016-01-01
What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI: http://dx.doi.org/10.7554/eLife.16231.001 PMID:27542195
Defoort, Jonas; Van de Peer, Yves; Vermeirssen, Vanessa
2018-06-05
Gene regulatory networks (GRNs) consist of different molecular interactions that closely work together to establish proper gene expression in time and space. Especially in higher eukaryotes, many questions remain on how these interactions collectively coordinate gene regulation. We study high quality GRNs consisting of undirected protein-protein, genetic and homologous interactions, and directed protein-DNA, regulatory and miRNA-mRNA interactions in the worm Caenorhabditis elegans and the plant Arabidopsis thaliana. Our data-integration framework integrates interactions in composite network motifs, clusters these in biologically relevant, higher-order topological network motif modules, overlays these with gene expression profiles and discovers novel connections between modules and regulators. Similar modules exist in the integrated GRNs of worm and plant. We show how experimental or computational methodologies underlying a certain data type impact network topology. Through phylogenetic decomposition, we found that proteins of worm and plant tend to functionally interact with proteins of a similar age, while at the regulatory level TFs favor same age, but also older target genes. Despite some influence of the duplication mode difference, we also observe at the motif and module level for both species a preference for age homogeneity for undirected and age heterogeneity for directed interactions. This leads to a model where novel genes are added together to the GRNs in a specific biological functional context, regulated by one or more TFs that also target older genes in the GRNs. Overall, we detected topological, functional and evolutionary properties of GRNs that are potentially universal in all species.
Integration of multi-omics data for integrative gene regulatory network inference.
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.
Integration of multi-omics data for integrative gene regulatory network inference
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189
Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.
Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
Does a network structure exist in molecular liquid SnI4 and GeI4?
NASA Astrophysics Data System (ADS)
Sakagami, Takahiro; Fuchizaki, Kazuhiro
2017-04-01
The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Computational analysis of multimorbidity between asthma, eczema and rhinitis
Aguilar, Daniel; Pinart, Mariona; Koppelman, Gerard H.; Saeys, Yvan; Nawijn, Martijn C.; Postma, Dirkje S.; Akdis, Mübeccel; Auffray, Charles; Ballereau, Stéphane; Benet, Marta; García-Aymerich, Judith; González, Juan Ramón; Guerra, Stefano; Keil, Thomas; Kogevinas, Manolis; Lambrecht, Bart; Lemonnier, Nathanael; Melen, Erik; Sunyer, Jordi; Valenta, Rudolf; Valverde, Sergi; Wickman, Magnus; Bousquet, Jean; Oliva, Baldo; Antó, Josep M.
2017-01-01
Background The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multimorbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity between three main allergic diseases at a molecular level by identifying the proteins and cellular processes that are common to them. Methods An in silico study based on computational analysis of the topology of the protein interaction network was performed in order to characterize the molecular mechanisms of multimorbidity of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were identified using data mining approaches, and their overlap was calculated. Secondly, a functional interaction network was built, allowing to identify cellular pathways involved in allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly predicted multimorbidity-associated proteins. Results Asthma, eczema and rhinitis shared a larger number of associated proteins than expected by chance, and their associated proteins exhibited a significant degree of interconnectedness in the interaction network. There were 15 pathways involved in the multimorbidity of asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A number of proteins potentially associated to these multimorbidity processes were also obtained. Conclusions These results strongly support the existence of an allergic multimorbidity cluster between asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candidates contributing to multimorbidity that may assist in identifying new targets for multimorbid allergic diseases. PMID:28598986
Computational analysis of multimorbidity between asthma, eczema and rhinitis.
Aguilar, Daniel; Pinart, Mariona; Koppelman, Gerard H; Saeys, Yvan; Nawijn, Martijn C; Postma, Dirkje S; Akdis, Mübeccel; Auffray, Charles; Ballereau, Stéphane; Benet, Marta; García-Aymerich, Judith; González, Juan Ramón; Guerra, Stefano; Keil, Thomas; Kogevinas, Manolis; Lambrecht, Bart; Lemonnier, Nathanael; Melen, Erik; Sunyer, Jordi; Valenta, Rudolf; Valverde, Sergi; Wickman, Magnus; Bousquet, Jean; Oliva, Baldo; Antó, Josep M
2017-01-01
The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multimorbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity between three main allergic diseases at a molecular level by identifying the proteins and cellular processes that are common to them. An in silico study based on computational analysis of the topology of the protein interaction network was performed in order to characterize the molecular mechanisms of multimorbidity of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were identified using data mining approaches, and their overlap was calculated. Secondly, a functional interaction network was built, allowing to identify cellular pathways involved in allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly predicted multimorbidity-associated proteins. Asthma, eczema and rhinitis shared a larger number of associated proteins than expected by chance, and their associated proteins exhibited a significant degree of interconnectedness in the interaction network. There were 15 pathways involved in the multimorbidity of asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A number of proteins potentially associated to these multimorbidity processes were also obtained. These results strongly support the existence of an allergic multimorbidity cluster between asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candidates contributing to multimorbidity that may assist in identifying new targets for multimorbid allergic diseases.
Prioritization of Epilepsy Associated Candidate Genes by Convergent Analysis
Jia, Peilin; Ewers, Jeffrey M.; Zhao, Zhongming
2011-01-01
Background Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. Methodology/Principal Findings In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. Conclusions/Significance The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases. PMID:21390307
Prioritization of epilepsy associated candidate genes by convergent analysis.
Jia, Peilin; Ewers, Jeffrey M; Zhao, Zhongming
2011-02-24
Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases.
Signalling maps in cancer research: construction and data analysis
Kondratova, Maria; Sompairac, Nicolas; Barillot, Emmanuel; Zinovyev, Andrei
2018-01-01
Abstract Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented. PMID:29688383
Predicting hepatocellular carcinoma through cross-talk genes identified by risk pathways
Shao, Zhuo; Huo, Diwei; Zhang, Denan; Xie, Hongbo; Yang, Jingbo; Liu, Qiuqi; Chen, Xiujie
2018-01-01
Hepatocellular carcinoma (HCC) is the most frequent type of liver cancer with poor survival rate and high mortality. Despite efforts on the mechanism of HCC, new molecular markers are needed for exact diagnosis, evaluation and treatment. Here, we combined transcriptome of HCC with networks and pathways to identify reliable molecular markers. Through integrating 249 differentially expressed genes with syncretic protein interaction networks, we constructed a HCC-specific network, from which we further extracted 480 pivotal genes. Based on the cross-talk between the enriched pathways of the pivotal genes, we finally identified a HCC signature of 45 genes, which could accurately distinguish HCC patients with normal individuals and reveal the prognosis of HCC patients. Among these 45 genes, 15 showed dysregulated expression patterns and a part have been reported to be associated with HCC and/or other cancers. These findings suggested that our identified 45 gene signature could be potential and valuable molecular markers for diagnosis and evaluation of HCC. PMID:29765536
Virtual Interactomics of Proteins from Biochemical Standpoint
Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel
2012-01-01
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations. PMID:22928109
Multiproteomic and Transcriptomic Analysis of Oncogenic β-Catenin Molecular Networks.
Ewing, Rob M; Song, Jing; Gokulrangan, Giridharan; Bai, Sheldon; Bowler, Emily H; Bolton, Rachel; Skipp, Paul; Wang, Yihua; Wang, Zhenghe
2018-06-01
The dysregulation of Wnt signaling is a frequent occurrence in many different cancers. Oncogenic mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signaling, lead to the accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. Although the transcriptional response to Wnt/β-catenin signaling activation has been widely studied, an integrated understanding of the effects of oncogenic β-catenin on molecular networks is lacking. We used affinity-purification mass spectrometry (AP-MS), label-free liquid chromatography-tandem mass spectrometry, and RNA-Seq to compare protein-protein interactions, protein expression, and gene expression in colorectal cancer cells expressing mutant (oncogenic) or wild-type β-catenin. We generate an integrated molecular network and use it to identify novel protein modules that are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I associated subnetwork that is enriched in cells with mutant β-catenin and a subnetwork enriched in wild-type cells associated with the CDKN2A tumor suppressor, linking these processes to the transformation of colorectal cancer cells through oncogenic β-catenin signaling. In summary, multiomics analysis of a defined colorectal cancer cell model provides a significantly more comprehensive identification of functional molecular networks associated with oncogenic β-catenin signaling.
Brey, Darren M; Erickson, Isaac; Burdick, Jason A
2008-06-01
A library of photocrosslinkable poly(beta-amino ester)s (PBAEs) was recently synthesized to expand the number of degradable polymers that can be screened and developed for a variety of biological applications. In this work, the influence of variations in macromer chemistry and macromer molecular weight (MMW) on network reaction behavior, overall bulk properties, and cell interactions were investigated. The MMW was controlled through alterations in the initial diacrylate to amine ratio (> or =1) during synthesis and decreased with an increase in this ratio. Lower MMWs reacted more quickly and to higher double bond conversions than higher MMWs, potentially due to the higher concentration of reactive groups. Additionally, the lower MMWs led to networks with higher compressive and tensile moduli that degraded slower than networks formed from higher MMWs because of an increase in the crosslinking density and decrease in the number of degradable units per crosslink. The adhesion and spreading of osteoblast-like cells on polymer films was found to be dependent on both the macromer chemistry and the MMW. In general, the number of cells was similar on networks formed from a range of MMWs, but the spreading was dramatically influenced by MMW (higher spreading with lower MMWs). These results illustrate further diversity in photocrosslinkable PBAE properties and that the chemistry and macromer structure must be carefully selected for the desired application. Copyright 2007 Wiley Periodicals, Inc.
Recent coselection in human populations revealed by protein-protein interaction network.
Qian, Wei; Zhou, Hang; Tang, Kun
2014-12-21
Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein-protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Shankar, Chandrashekar
The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory-based network characterizations to correlate between network topology and the simulated mechanical properties. (1) Eigenvector centrality (2) Graph fractal dimension, (3) Fiedler partitioning, and (4) Cross-link fraction (Q3+Q4). Of these quantities, the Fiedler partition is the best characteristic for the prediction of Young's Modulus. The new computational tools developed in this research are of great fundamental and practical interest.
Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A
2018-01-01
Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions : We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.
Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene
2010-01-01
The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645
Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M Teresa; Martinez, Jose C; Luque, Irene
2010-01-22
The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.
Self-Assembly of Molecular Threads into Reversible Gels
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2001-03-01
Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.
Modeling of cell signaling pathways in macrophages by semantic networks
Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem
2004-01-01
Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071
Jeong, Hyeri; Kim, Jongwoon; Kim, Youngjun
2017-09-30
Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer.
Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates
NASA Astrophysics Data System (ADS)
Feng, Xin; Wang, Chen; Ma, Hongjing; Chen, Yuanyuan; Duan, Gaoyan; Zhang, Pengfei; Song, Gang
2018-02-01
Strong coupling-like phenomenon between plasmonic cavities and emitters provides a new way to realize the quantum-like effect controlling at microscale/nanoscale. We investigate the strong coupling-like phenomenon in the structure of single metallic nanoparticle embedded in molecular J-aggregates by the classical simulation method and show that the size of the metallic nanoparticle and the oscillator strength of molecular J-aggregates impact the strong coupling-like phenomenon. The strong coupling-like phenomenon is induced by the interactions between two dipoles formed by the metallic nanoparticle and molecular J-aggregates or the interactions between the dipole generated from molecular J-aggregates and the quadrupole generated from the metallic nanoparticle. The strong coupling-like phenomenon appears evidently with the increase in oscillator strength of molecular J-aggregates. The detuning energy linearly decreases with the increase in radius of the metallic nanoparticle. Our structure has potential applications in quantum networks, quantum key distributions and so on.
Bioinformatic prediction of leader genes in human periodontitis.
Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio
2008-10-01
Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.
BiologicalNetworks 2.0 - an integrative view of genome biology data
2010-01-01
Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org. PMID:21190573
Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks
2011-01-01
Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155
Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan
2017-01-01
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. PMID:28183813
Ferrari, Raffaele; Graziano, Francesca; Novelli, Valeria; Rossi, Giacomina; Galimberti, Daniela; Rainero, Innocenzo; Benussi, Luisa; Nacmias, Benedetta; Bruni, Amalia C.; Cusi, Daniele; Salvi, Erika; Borroni, Barbara; Grassi, Mario
2017-01-01
Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies. PMID:29020091
Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.
Culver, Heidi R; Clegg, John R; Peppas, Nicholas A
2017-02-21
Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.
Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques
2015-02-01
The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Systems-level analysis of risk genes reveals the modular nature of schizophrenia.
Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing
2018-05-19
Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
Genome-wide protein-protein interactions and protein function exploration in cyanobacteria
Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu
2015-01-01
Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033
Van Landeghem, Sofie; Van Parys, Thomas; Dubois, Marieke; Inzé, Dirk; Van de Peer, Yves
2016-01-05
Differential networks have recently been introduced as a powerful way to study the dynamic rewiring capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one condition-specific response or one interaction type at a time. In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set of condition-specific responses against one reference network. To this end, we have implemented novel ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical interactions and regulatory associations, symmetric and directed edges, edge weights and negation. We propose this integrative framework as a standardised methodology that allows a unified view on differential networks and promotes comparability between differential network studies. As an illustrative application, we demonstrate its usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regulator. Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.psb.ugent.be/supplementary_data/solan/diffany/.
Blacklock, Kristin; Verkhivker, Gennady M.
2013-01-01
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90. PMID:23977182
Interplay Between Protein Homeostasis Networks in Protein Aggregation and Proteotoxicity
Douglas, Peter M.; Cyr, Douglas M.
2010-01-01
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self-association of disease proteins and determine whether they elicit a toxic or benign outcome. PMID:19768782
Visualisation and graph-theoretic analysis of a large-scale protein structural interactome
Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael
2003-01-01
Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933
Molecular model of cannabis sensitivity in developing neuronal circuits
Keimpema, Erik; Mackie, Ken; Harkany, Tibor
2011-01-01
Prenatal cannabis exposure can complicate in utero development of the nervous system. Cannabis impacts the formation and functions of neuronal circuitries by targeting cannabinoid receptors. Endocannabinoid signaling emerges as a signaling cassette to orchestrate neuronal differentiation programs through the precisely timed interaction of endocannabinoid ligands with their cognate cannabinoid receptors. By indiscriminately prolonging the ‘switched-on’ period of cannabinoid receptors, cannabis can hijack endocannabinoid signals to evoke molecular rearrangements, leading to the erroneous wiring of neuronal networks. Here, we formulate a hierarchical network design necessary and sufficient to describe molecular underpinnings of cannabis-induced neural growth defects. We integrate signalosome components deduced from genome- and proteome-wide arrays and candidate analyses to propose a mechanistic hypothesis on how cannabis-induced ectopic cannabinoid receptor activity overrides physiological neurodevelopmental endocannabinoid signals, affecting the timely formation of synapses. PMID:21757242
Nickel Superoxide Dismutase: Structural and Functional Roles of His1 and its H-bonding Network
Ryan, Kelly C.; Guce, Abigail I.; Johnson, Olivia E.; Brunold, Thomas C.; Cabelli, Diane E.; Garman, Scott C.; Maroney, Michael J.
2015-01-01
Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the N-H of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intra-subunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network, and compare the results with prior predictions from DFT calculations. H1A-NiSOD, which lacks the apical ligand entirely, was crystallographically characterized and reveals that in the absence of the Glu17-His1 H-bond, the active site is disordered. Subsequent characterization using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N2S2 planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant is an active catalyst with 4% of WT-NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand, but perturb the H-bonding network: R47A-NiSOD, lacks the intra-molecular H-bonding interaction, E17R/R47A-NiSOD, which retains the intra-molecular H-bond, but lacks the inter-molecular Glu17-His1 H-bond, and E17A/R47A-NiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques including XAS characterization of the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and EPR and chemical probes of the redox activity. The results indicate that in addition to the roles in redox tuning suggested by the computational models, the Glu17-His1 H-bond plays an important structural role in the formation of the Ni-hook motif that is a critical feature of the active site. PMID:25580509
Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.
Reiners, Jan; van Wijk, Erwin; Märker, Tina; Zimmermann, Ulrike; Jürgens, Karin; te Brinke, Heleen; Overlack, Nora; Roepman, Ronald; Knipper, Marlies; Kremer, Hannie; Wolfrum, Uwe
2005-12-15
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules and this USH1-protein network. We show a molecular interaction between the scaffold protein harmonin (USH1C) and the USH2A protein, VLGR1 (USH2C) and the candidate for USH2B, NBC3. We pinpoint these interactions to interactions between the PDZ1 domain of harmonin and the PDZ-binding motifs at the C-termini of the USH2 proteins and NBC3. We demonstrate that USH2A, VLGR1 and NBC3 are co-expressed with the USH1-protein harmonin in the synaptic terminals of both retinal photoreceptors and inner ear hair cells. In hair cells, these USH proteins are also localized in the signal uptaking stereocilia. Our data indicate that the USH2 proteins and NBC3 are further partners in the supramolecular USH-protein network in the retina and inner ear which shed new light on the function of USH2 proteins and the entire USH-protein network. These findings provide first evidence for a molecular linkage between the pathophysiology in USH1 and USH2. The organization of USH molecules in a mutual 'interactome' related to the disease can explain the common phenotype in USH.
Protein-protein interaction network of gene expression in the hydrocortisone-treated keloid.
Chen, Rui; Zhang, Zhiliang; Xue, Zhujia; Wang, Lin; Fu, Mingang; Lu, Yi; Bai, Ling; Zhang, Ping; Fan, Zhihong
2015-01-01
In order to explore the molecular mechanism of hydrocortisone in keloid tissue, the gene expression profiles of keloid samples treated with hydrocortisone were subjected to bioinformatics analysis. Firstly, the gene expression profiles (GSE7890) of five samples of keloid treated with hydrocortisone and five untreated keloid samples were downloaded from the Gene Expression Omnibus (GEO) database. Secondly, data were preprocessed using packages in R language and differentially expressed genes (DEGs) were screened using a significance analysis of microarrays (SAM) protocol. Thirdly, the DEGs were subjected to gene ontology (GO) function and KEGG pathway enrichment analysis. Finally, the interactions of DEGs in samples of keloid treated with hydrocortisone were explored in a human protein-protein interaction (PPI) network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software. Based on the analysis, 572 DEGs in the hydrocortisone-treated samples were screened; most of these were involved in the signal transduction and cell cycle. Furthermore, three critical genes in the module, including COL1A1, NID1, and PRELP, were screened in the PPI network analysis. These findings enhance understanding of the pathogenesis of the keloid and provide references for keloid therapy. © 2015 The International Society of Dermatology.
Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks.
Zhang, Ling; Bailey, Jake B; Subramanian, Rohit H; Tezcan, F Akif
2018-05-01
The formation of condensed matter typically involves a trade-off between structural order and flexibility. As the extent and directionality of interactions between atomic or molecular components increase, materials generally become more ordered but less compliant, and vice versa. Nevertheless, high levels of structural order and flexibility are not necessarily mutually exclusive; there are many biological (such as microtubules 1,2 , flagella 3 , viruses 4,5 ) and synthetic assemblies (for example, dynamic molecular crystals 6-9 and frameworks 10-13 ) that can undergo considerable structural transformations without losing their crystalline order and that have remarkable mechanical properties 8,14,15 that are useful in diverse applications, such as selective sorption 16 , separation 17 , sensing 18 and mechanoactuation 19 . However, the extent of structural changes and the elasticity of such flexible crystals are constrained by the necessity to maintain a continuous network of bonding interactions between the constituents of the lattice. Consequently, even the most dynamic porous materials tend to be brittle and isolated as microcrystalline powders 14 , whereas flexible organic or inorganic molecular crystals cannot expand without fracturing. Owing to their rigidity, crystalline materials rarely display self-healing behaviour 20 . Here we report that macromolecular ferritin crystals with integrated hydrogel polymers can isotropically expand to 180 per cent of their original dimensions and more than 500 per cent of their original volume while retaining periodic order and faceted Wulff morphologies. Even after the separation of neighbouring ferritin molecules by 50 ångströms upon lattice expansion, specific molecular contacts between them can be reformed upon lattice contraction, resulting in the recovery of atomic-level periodicity and the highest-resolution ferritin structure reported so far. Dynamic bonding interactions between the hydrogel network and the ferritin molecules endow the crystals with the ability to resist fragmentation and self-heal efficiently, whereas the chemical tailorability of the ferritin molecules enables the creation of chemically and mechanically differentiated domains within single crystals.
Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle
2010-11-01
In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Network pharmacology: reigning in drug attrition?
Alian, Osama M; Shah, Minjel; Mohammad, Momin; Mohammad, Ramzi M
2013-06-01
In the process of drug development, there has been an exceptionally high attrition rate in oncological compounds entering late phases of testing. This has seen a concurrent reduction in approved NCEs (new chemical entities) reaching patients. Network pharmacology has become a valuable tool in understanding the fine details of drug-target interactions as well as painting a more practical picture of phenotype relationships to patients and drugs. By utilizing all the tools achieved through molecular medicine and combining it with high throughput data analysis, interactions and mechanisms can be elucidated and treatments reasonably tailored to patients expressing specific phenotypes (or genotypes) of disease, essentially reigning in the phenomenon of drug attrition.
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks.
Xia, Kai; Dong, Dong; Han, Jing-Dong J
2006-01-01
Background Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer. PMID:17112386
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Engin, H. Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila
2013-01-01
Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis. PMID:24278371
MoCha: Molecular Characterization of Unknown Pathways.
Lobo, Daniel; Hammelman, Jennifer; Levin, Michael
2016-04-01
Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.
What Can Interfacial Water Molecules Tell Us About Solute Structure?
NASA Astrophysics Data System (ADS)
Willard, Adam
The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.
Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A
2016-01-01
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.
Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S
2016-03-01
Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
Network approach towards understanding the crazing in glassy amorphous polymers
NASA Astrophysics Data System (ADS)
Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit
2018-04-01
We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.
Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.
Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping
2018-01-01
In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.
Capturing cooperative interactions with the PSI-MI format
Van Roey, Kim; Orchard, Sandra; Kerrien, Samuel; Dumousseau, Marine; Ricard-Blum, Sylvie; Hermjakob, Henning; Gibson, Toby J.
2013-01-01
The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI–based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology. Database URL: http://psi-mi-cooperativeinteractions.embl.de/ PMID:24067240
Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai
2012-07-01
Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.
Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario
2017-12-01
The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.
Computational Analyses of Synergism in Small Molecular Network Motifs
Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.
2014-01-01
Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically) to alter the responses of the motifs to stimuli. Synergism (or antagonism) was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions. PMID:24651495
NASA Astrophysics Data System (ADS)
Li, Guangming; Akitsu, Takashiro; Sato, Osamu; Einaga, Yasuaki
2004-12-01
Photoinduced magnetization of the cyano-bridged 3d 4f hetero-bimetallic assembly Nd (DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (1) (DMF=N,N-dimethylformamide) is described in this paper. The χM T values are enhanced by about 45% after UV light illumination in the temperature range of 5 50 K. We propose that UV light illumination induces a structural distortion in 1. This small structural change is propagated by molecular interactions in the inorganic network. Furthermore, the cooperativity resulting from the molecular interaction functions to increase the activation energy of the relaxation processes, which makes observation of the photoexcited state possible. The flexible network structure through the hydrogen bonds in 1 plays an essential role for the photoinduced phenomenon. This finding may open up a new domain for developing molecule-based magnetic materials.
Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations
NASA Astrophysics Data System (ADS)
Niida, Haruki; Uchino, Takashi; Jin, Jisun; Kim, Sae-Hoon; Fukunaga, Toshiharu; Yoko, Toshinobu
2001-01-01
The structure of pure TeO2 and alkali tellurite glasses has been examined by neutron diffraction and ab initio molecular orbital methods. The experimental radial distribution functions along with the calculated results have demonstrated that the basic structural units in tellurite glasses change from highly strained TeO4 trigonal bipyramids to more regular TeO3 trigonal pyramids with increasing alkali content. It has also been shown that the TeO3 trigonal pyramids do not exist in the form of isolated units in the glass network but interact with each other to form intertrigonal Te⋯O linkages. The present results suggest that nonbridging oxygen (NBO) atoms in tellurite glasses do not exist in their "pure" form; that is, all the NBO atoms in TeO3 trigonal bipyramids will interact with the first- and/or second-neighbor Te atoms, resulting in the three-dimensional continuous random network even in tellurite glasses with over 30 mol % of alkali oxides.
Molecular insights into the origin of the Hox-TALE patterning system
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-01-01
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410
Molecular insights into the origin of the Hox-TALE patterning system.
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-03-18
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.
2011-01-01
Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393
de Luis Balaguer, Maria Angels; Fisher, Adam P.; Clark, Natalie M.; Fernandez-Espinosa, Maria Guadalupe; Möller, Barbara K.; Weijers, Dolf; Williams, Cranos; Lorenzo, Oscar; Sozzani, Rosangela
2017-01-01
Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells. PMID:28827319
Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud
2011-03-01
The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weighill, Deborah; Jones, Piet; Shah, Manesh
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
Weighill, Deborah; Jones, Piet; Shah, Manesh; ...
2018-05-11
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Han, Nanyu; Liu, Xuewei; Mu, Yuguang
2012-01-01
It is critical to understand the molecular basis of the drug resistance of influenza viruses to efficiently treat this infectious disease. Recently, H1N1 strains of influenza A carrying a mutation of Q136K in neuraminidase were found. The new strain showed a strong Zanamivir neutralization effect. In this study, normal molecular dynamics simulations and metadynamics simulations were employed to explore the mechanism of Zanamivir resistance. The wild-type neuraminidase contained a 310 helix before the 150 loop, and there was interaction between the 150 and 430 loops. However, the helix and the interaction between the two loops were disturbed in the mutant protein due to interaction between K136 and nearby residues. Hydrogen-bond network analysis showed weakened interaction between the Zanamivir drug and E276/D151 on account of the electrostatic interaction between K136 and D151. Metadynamics simulations showed that the free energy landscape was different in the mutant than in the wild-type neuraminidase. Conformation with the global minimum of free energy for the mutant protein was different from the wild-type conformation. While the drug fit completely into the active site of the wild-type neuraminidase, it did not match the active site of the mutant variant. This study indicates that the altered hydrogen-bond network and the deformation of the 150 loop are the key factors in development of Zanamivir resistance. Furthermore, the Q136K mutation has a variable effect on conformation of different N1 variants, with conformation of the 1918 N1 variant being more profoundly affected than that of the other N1 variants studied in this paper. This observation warrants further experimental investigation. PMID:22970161
Han, Nanyu; Liu, Xuewei; Mu, Yuguang
2012-01-01
It is critical to understand the molecular basis of the drug resistance of influenza viruses to efficiently treat this infectious disease. Recently, H1N1 strains of influenza A carrying a mutation of Q136K in neuraminidase were found. The new strain showed a strong Zanamivir neutralization effect. In this study, normal molecular dynamics simulations and metadynamics simulations were employed to explore the mechanism of Zanamivir resistance. The wild-type neuraminidase contained a 3(10) helix before the 150 loop, and there was interaction between the 150 and 430 loops. However, the helix and the interaction between the two loops were disturbed in the mutant protein due to interaction between K136 and nearby residues. Hydrogen-bond network analysis showed weakened interaction between the Zanamivir drug and E276/D151 on account of the electrostatic interaction between K136 and D151. Metadynamics simulations showed that the free energy landscape was different in the mutant than in the wild-type neuraminidase. Conformation with the global minimum of free energy for the mutant protein was different from the wild-type conformation. While the drug fit completely into the active site of the wild-type neuraminidase, it did not match the active site of the mutant variant. This study indicates that the altered hydrogen-bond network and the deformation of the 150 loop are the key factors in development of Zanamivir resistance. Furthermore, the Q136K mutation has a variable effect on conformation of different N1 variants, with conformation of the 1918 N1 variant being more profoundly affected than that of the other N1 variants studied in this paper. This observation warrants further experimental investigation.
Jong, KwangHyok; Grisanti, Luca; Hassanali, Ali
2017-07-24
We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ 30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.
Network Analyses in Plant Pathogens.
Botero, David; Alvarado, Camilo; Bernal, Adriana; Danies, Giovanna; Restrepo, Silvia
2018-01-01
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.
Zhang, Chenwang; Gao, Liuze; Xu, Eugene Yujun
2016-11-01
Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimising low molecular weight hydrogels for automated 3D printing.
Nolan, Michael C; Fuentes Caparrós, Ana M; Dietrich, Bart; Barrow, Michael; Cross, Emily R; Bleuel, Markus; King, Stephen M; Adams, Dave J
2017-11-22
Hydrogels prepared from low molecular weight gelators (LMWGs) are formed as a result of hierarchical intermolecular interactions between gelators to form fibres, and then further interactions between the self-assembled fibres via physical entanglements, as well as potential branching points. These interactions can allow hydrogels to recover quickly after a high shear rate has been applied. There are currently limited design rules describing which types of morphology or rheological properties are required for a LMWG hydrogel to be used as an effective, printable gel. By preparing hydrogels with different types of fibrous network structures, we have been able to understand in more detail the morphological type which gives rise to a 3D-printable hydrogel using a range of techniques, including rheology, small angle scattering and microscopy.
Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter
2014-05-01
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.
Kim, Jongwoon
2017-01-01
Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer. PMID:28973975
NASA Astrophysics Data System (ADS)
Makoudi, Younes; Jeannoutot, Judicaël; Palmino, Frank; Chérioux, Frédéric; Copie, Guillaume; Krzeminski, Christophe; Cleri, Fabrizio; Grandidier, Bruno
2017-09-01
Understanding the physical and chemical processes in which local interactions lead to ordered structures is of particular relevance to the realization of supramolecular architectures on surfaces. While spectacular patterns have been demonstrated on metal surfaces, there have been fewer studies of the spontaneous organization of supramolecular networks on semiconductor surfaces, where the formation of covalent bonds between organics and adatoms usually hamper the diffusion of molecules and their subsequent interactions with each other. However, the saturation of the dangling bonds at a semiconductor surface is known to make them inert and offers a unique way for the engineering of molecular patterns on these surfaces. This review describes the physicochemical properties of the passivated B-Si(111)-(√3x√3) R30° surface, that enable the self-assembly of molecules into a rich variety of extended and regular structures on silicon. Particular attention is given to computational methods based on multi-scale simulations that allow to rationalize the relative contribution of the dispersion forces involved in the self-assembled networks observed with scanning tunneling microscopy. A summary of state of the art studies, where a fine tuning of the molecular network topology has been achieved, sheds light on new frontiers for exploiting the construction of supramolecular structures on semiconductor surfaces.
Molecular model of cannabis sensitivity in developing neuronal circuits.
Keimpema, Erik; Mackie, Ken; Harkany, Tibor
2011-09-01
Prenatal cannabis exposure can complicate in utero development of the nervous system. Cannabis impacts the formation and functions of neuronal circuitries by targeting cannabinoid receptors. Endocannabinoid signaling emerges as a signaling cassette that orchestrates neuronal differentiation programs through the precisely timed interaction of endocannabinoid ligands with their cognate cannabinoid receptors. By indiscriminately prolonging the 'switched-on' period of cannabinoid receptors, cannabis can hijack endocannabinoid signals to evoke molecular rearrangements, leading to the erroneous wiring of neuronal networks. Here, we formulate a hierarchical network design necessary and sufficient to describe the molecular underpinnings of cannabis-induced neural growth defects. We integrate signalosome components, deduced from genome- and proteome-wide arrays and candidate analyses, to propose a mechanistic hypothesis of how cannabis-induced ectopic cannabinoid receptor activity overrides physiological neurodevelopmental endocannabinoid signals, affecting the timely formation of synapses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enzyme-free nucleic acid dynamical systems.
Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David
2017-12-15
Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecker, Joseph Robert; Trigg, Shelly; Garza, Renee
Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible tomore » distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.« less
Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A
2012-01-01
Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention strategies for disease control.
Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng
2018-01-01
Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951
Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
Du, Lei; Qian, Xiaolei; Dai, Chenyang; Wang, Lihua; Huang, Ding; Wang, Shuying; Shen, Xiaowei
2015-01-01
Ovarian cancer (OC) is the most lethal gynecologic malignancy. This study aims to explore the molecular mechanisms of OC and identify potential molecular targets for OC treatment. Microarray gene expression data (GSE14407) including 12 normal ovarian surface epithelia samples and 12 OC epithelia samples were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between 2 kinds of ovarian tissue were identified by using limma package in R language (|log2 fold change| gt;1 and false discovery rate [FDR] lt;0.05). Protein-protein interactions (PPIs) and known OC-related genes were screened from COXPRESdb and GenBank database, respectively. Furthermore, PPI network of top 10 upregulated DEGs and top 10 downregulated DEGs was constructed and visualized through Cytoscape software. Finally, for the genes involved in PPI network, functional enrichment analysis was performed by using DAVID (FDR lt;0.05). In total, 1136 DEGs were identified, including 544 downregulated and 592 upregulated DEGs. Then, PPI network was constructed, and DEGs CDKN2A, MUC1, OGN, ZIC1, SOX17, and TFAP2A interacted with known OC-related genes CDK4, EGFR/JUN, SRC, CLI1, CTNNB1, and TP53, respectively. Moreover, functions about oxygen transport and embryonic development were enriched by the genes involved in the network of downregulated DEGs. We propose that 4 DEGs (OGN, ZIC1, SOX17, and TFAP2A) and 2 functions (oxygen transport and embryonic development) might play a role in the development of OC. These 4 DEGs and known OC-related genes might serve as therapeutic targets for OC. Further studies are required to validate these predictions.
Kumar, Anurag; Saha, Bhaskar; Singh, Shailza
2017-12-01
Leishmaniasis is the second largest parasitic killer disease caused by the protozoan parasite Leishmania , transmitted by the bite of sand flies. It's endemic in the eastern India with 165.4 million populations at risk with the current drug regimen. Three forms of leishmaniasis exist in which cutaneous is the most common form caused by Leishmania major . Trypanothione Reductase (TryR), a flavoprotein oxidoreductase, unique to thiol redox system, is considered as a potential target for chemotherapy for trypanosomatids infection. It is involved in the NADPH dependent reduction of Trypanothione disulphide to Trypanothione. Similarly, is Tryparedoxin Peroxidase (Txnpx), for detoxification of peroxides, an event pivotal for survival of Leishmania in two disparate biological environment. Fe-S plays a major role in regulating redox balance. To check for the closeness between human homologs of these proteins, we have carried the molecular clock analysis followed by molecular modeling of 3D structure of this protein, enabling us to design and test the novel drug like molecules. Molecular clock analysis suggests that human homologs of TryR i.e. Glutathione Reductase and Txnpx respectively are highly diverged in phylogenetic tree, thus, they serve as good candidates for chemotherapy of leishmaniasis. Furthermore, we have done the homology modeling of TryR using template of same protein from Leishmania infantum (PDB ID: 2JK6). This was done using Modeller 9.18 and the resultant models were validated. To inhibit this target, molecular docking was done with various screened inhibitors in which we found Taxifolin acts as common inhibitors for both TryR and Txnpx. We constructed the protein-protein interaction network for the proteins that are involved in the redox metabolism from various Interaction databases and the network was statistically analysed.
Adverse outcome pathways (AOPs) describe linkages between a specific molecular perturbation resulting from interaction of a chemical with a biomolecule in an organism and one possible adverse outcome of regulatory significance. While individual AOPs have utility, it is recognized...
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.
2014-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L
2015-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Tabei, Yasuo; Pauwels, Edouard; Stoven, Véronique; Takemoto, Kazuhiro; Yamanishi, Yoshihiro
2012-01-01
Motivation: Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug–target interactions is crucial in the drug design process. Results: We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug–target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L1 regularized classifiers over the tensor product space of possible drug–target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug–target interactions and the extracted features are biologically meaningful. The extracted substructure–domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families. Availability: Softwares are available at the supplemental website. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ . PMID:22962471
Wang, Fei; Wen, Ying; Bai, Tongchun
2016-12-01
The composite hydrogels of polyvinyl alcohol (PVA) and gellan gum (GG) are of interesting in the biomaterials application. To improve the structure and mechanical property, in this work, Ca(2+) ion was introduced to crosslink the polymer chain, and the PVA-GG-Ca(2+) hydrogel was formed. By analyzing its structure, mechanical properties, swelling and dehydration kinetics, the effect of molecular interaction on hydrogel structure and properties have been observed. Our result indicates that, as GG is added to hydrogel network, the role of Ca(2+) ion is stand out, it reorganizes the network structure, enhances the mechanical properties, and strengthens the electrolytic and hydrogen bonding interactions in PVA-GG-Ca(2+) hydrogels. These observations will benefit the development of hydrogels in biomaterials application. Copyright © 2016. Published by Elsevier B.V.
Srivastava, Isha; Khurana, Pooja; Yadav, Mohini; Hasija, Yasha
2017-12-01
Aging, though an inevitable part of life, is becoming a worldwide social and economic problem. Healthy aging is usually marked by low probability of age related disorders. Good therapeutic approaches are still in need to cure age related disorders. Occurrence of more than one ARD in an individual, expresses the need of discovery of such target proteins, which can affect multiple ARDs. Advanced scientific and medical research technologies throughout last three decades have arrived to the point where lots of key molecular determinants affect human disorders can be examined thoroughly. In this study, we designed and executed an approach to prioritize drugs that may target multiple age related disorders. Our methodology, focused on the analysis of biological pathways and protein protein interaction networks that may contribute to the pharmacology of age related disorders, included various steps such as retrieval and analysis of data, protein-protein interaction network analysis, and statistical and comparative analysis of topological coefficients, pathway, and functional enrichment analysis, and identification of drug-target proteins. We assume that the identified molecular determinants may be prioritized for further screening as novel drug targets to cure multiple ARDs. Based on the analysis, an online tool named as 'ARDnet' has been developed to construct and demonstrate ARD interactions at the level of PPI, ARDs and ARDs protein interaction, ARDs pathway interaction and drug-target interaction. The tool is freely made available at http://genomeinformatics.dtu.ac.in/ARDNet/Index.html. Copyright © 2017 Elsevier B.V. All rights reserved.
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
GATE: software for the analysis and visualization of high-dimensional time series expression data.
MacArthur, Ben D; Lachmann, Alexander; Lemischka, Ihor R; Ma'ayan, Avi
2010-01-01
We present Grid Analysis of Time series Expression (GATE), an integrated computational software platform for the analysis and visualization of high-dimensional biomolecular time series. GATE uses a correlation-based clustering algorithm to arrange molecular time series on a two-dimensional hexagonal array and dynamically colors individual hexagons according to the expression level of the molecular component to which they are assigned, to create animated movies of systems-level molecular regulatory dynamics. In order to infer potential regulatory control mechanisms from patterns of correlation, GATE also allows interactive interroga-tion of movies against a wide variety of prior knowledge datasets. GATE movies can be paused and are interactive, allowing users to reconstruct networks and perform functional enrichment analyses. Movies created with GATE can be saved in Flash format and can be inserted directly into PDF manuscript files as interactive figures. GATE is available for download and is free for academic use from http://amp.pharm.mssm.edu/maayan-lab/gate.htm
Reddy, Vijay S
2017-09-01
Adenoviruses are respiratory, ocular and enteric pathogens that form complex capsids, which are assembled from seven different structural proteins and composed of several core proteins that closely interact with the packaged dsDNA genome. The recent near-atomic resolution structures revealed that the interlacing continuous hexagonal network formed by the protein IX molecules is conserved among different human adenoviruses (HAdVs), but not in non-HAdVs. In this report, we propose a distinct role for the hexon protein as a "molecular mold" in enabling the formation of such hexagonal protein IX network that has been shown to preserve the stability and infectivity of HAdVs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ji, Jiadong; He, Di; Feng, Yang; He, Yong; Xue, Fuzhong; Xie, Lei
2017-10-01
A complex disease is usually driven by a number of genes interwoven into networks, rather than a single gene product. Network comparison or differential network analysis has become an important means of revealing the underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. We propose a new Joint density based non-parametric Differential Interaction Network Analysis and Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a general framework for feature selection and classification using high-dimensional sparse omics data. R scripts available at https://github.com/jijiadong/JDINAC. lxie@iscb.org. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer
Ruffalo, Matthew
2015-01-01
Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA) generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these “silent players”. For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation. PMID:26683094
Digital and analog chemical evolution.
Goodwin, Jay T; Mehta, Anil K; Lynn, David G
2012-12-18
Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.
NASA Astrophysics Data System (ADS)
Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo
2015-01-01
We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.
Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology
Sun, Xiaolin; Rikkerink, Erik H.A.; Jones, William T.; Uversky, Vladimir N.
2013-01-01
Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein–protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein–protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways. PMID:23362206
Kulasiri, Don
2011-01-01
We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.
Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.
Tam, Lik-Ho; Wu, Chao
2017-10-13
The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.
Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites
2017-01-01
The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect. PMID:29027979
Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V
2016-01-01
Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular biological pathways and functions. PMID:27023170
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Romero-Durán, Francisco J; Alonso, Nerea; Yañez, Matilde; Caamaño, Olga; García-Mera, Xerardo; González-Díaz, Humberto
2016-04-01
The use of Cheminformatics tools is gaining importance in the field of translational research from Medicinal Chemistry to Neuropharmacology. In particular, we need it for the analysis of chemical information on large datasets of bioactive compounds. These compounds form large multi-target complex networks (drug-target interactome network) resulting in a very challenging data analysis problem. Artificial Neural Network (ANN) algorithms may help us predict the interactions of drugs and targets in CNS interactome. In this work, we trained different ANN models able to predict a large number of drug-target interactions. These models predict a dataset of thousands of interactions of central nervous system (CNS) drugs characterized by > 30 different experimental measures in >400 different experimental protocols for >150 molecular and cellular targets present in 11 different organisms (including human). The model was able to classify cases of non-interacting vs. interacting drug-target pairs with satisfactory performance. A second aim focus on two main directions: the synthesis and assay of new derivatives of TVP1022 (S-analogues of rasagiline) and the comparison with other rasagiline derivatives recently reported. Finally, we used the best of our models to predict drug-target interactions for the best new synthesized compound against a large number of CNS protein targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur
2016-11-01
A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.
Noh, Hyun Ji; Ponting, Chris P; Boulding, Hannah C; Meader, Stephen; Betancur, Catalina; Buxbaum, Joseph D; Pinto, Dalila; Marshall, Christian R; Lionel, Anath C; Scherer, Stephen W; Webber, Caleb
2013-06-01
Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10(-5)), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.
Li, Jun; Roebuck, Paul; Grünewald, Stefan; Liang, Han
2012-07-01
An important task in biomedical research is identifying biomarkers that correlate with patient clinical data, and these biomarkers then provide a critical foundation for the diagnosis and treatment of disease. Conventionally, such an analysis is based on individual genes, but the results are often noisy and difficult to interpret. Using a biological network as the searching platform, network-based biomarkers are expected to be more robust and provide deep insights into the molecular mechanisms of disease. We have developed a novel bioinformatics web server for identifying network-based biomarkers that most correlate with patient survival data, SurvNet. The web server takes three input files: one biological network file, representing a gene regulatory or protein interaction network; one molecular profiling file, containing any type of gene- or protein-centred high-throughput biological data (e.g. microarray expression data or DNA methylation data); and one patient survival data file (e.g. patients' progression-free survival data). Given user-defined parameters, SurvNet will automatically search for subnetworks that most correlate with the observed patient survival data. As the output, SurvNet will generate a list of network biomarkers and display them through a user-friendly interface. SurvNet can be accessed at http://bioinformatics.mdanderson.org/main/SurvNet.
Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L.; Coba, Marcelo P.; Levitt, Pat
2016-01-01
Background Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Methods Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays (PLA) in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Results Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1 and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism, but not schizophrenia, bipolar disorder, major depressive disorder or attentional deficit hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices, but not with highly expressed genes that are not in the interactome. PLA and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. Conclusions The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. PMID:27086544
Yousef, A F; Fonseca, G J; Pelka, P; Ablack, J N G; Walsh, C; Dick, F A; Bazett-Jones, D P; Shaw, G S; Mymryk, J S
2010-08-19
Hub proteins have central roles in regulating cellular processes. By targeting a single cellular hub, a viral oncogene may gain control over an entire module in the cellular interaction network that is potentially comprised of hundreds of proteins. The adenovirus E1A oncoprotein is a viral hub that interacts with many cellular hub proteins by short linear motifs/molecular recognition features (MoRFs). These interactions transform the architecture of the cellular protein interaction network and virtually reprogram the cell. To identify additional MoRFs within E1A, we screened portions of E1A for their ability to activate yeast pseudohyphal growth or differentiation. This identified a novel functional region within E1A conserved region 2 comprised of the sequence EVIDLT. This MoRF is necessary and sufficient to bind the N-terminal region of the SUMO conjugase UBC9, which also interacts with SUMO noncovalently and is involved in polySUMOylation. Our results suggest that E1A interferes with polySUMOylation, but not with monoSUMOylation. These data provide the first insight into the consequences of the interaction of E1A with UBC9, which was initially described in 1996. We further demonstrate that polySUMOylation regulates pseudohyphal growth and promyelocytic leukemia body reorganization by E1A. In conclusion, the interaction of the E1A oncogene with UBC9 mimics the normal binding between SUMO and UBC9 and represents a novel mechanism to modulate polySUMOylation.
Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses.
Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing
2018-02-16
New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.
Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses
NASA Astrophysics Data System (ADS)
Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing
2018-02-01
New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.
Systems biology impact on antiepileptic drug discovery.
Margineanu, Doru Georg
2012-02-01
Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
Weßling, Ralf; Epple, Petra; Altmann, Stefan; He, Yijian; Yang, Li; Henz, Stefan R.; McDonald, Nathan; Wiley, Kristin; Bader, Kai Christian; Gläßer, Christine; Mukhtar, M. Shahid; Haigis, Sabine; Ghamsari, Lila; Stephens, Amber E.; Ecker, Joseph R.; Vidal, Marc; Jones, Jonathan D. G.; Mayer, Klaus F. X.; van Themaat, Emiel Ver Loren; Weigel, Detlef; Schulze-Lefert, Paul; Dangl, Jeffery L.; Panstruga, Ralph; Braun, Pascal
2014-01-01
SUMMARY While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this dataset with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intra- and interspecies convergence and several altered immune response phenotypes. The effectors and most heavily targeted host protein co-localized in sub-nuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets. PMID:25211078
Analysis of the dynamic co-expression network of heart regeneration in the zebrafish
Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco
2016-01-01
The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320
Analysis of the dynamic co-expression network of heart regeneration in the zebrafish
NASA Astrophysics Data System (ADS)
Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco
2016-05-01
The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins. PMID:24466147
Blacklock, Kristin; Verkhivker, Gennady M
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo
2015-01-01
Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P < 0.05) increased the gene alpha-diversity in terms of richness and Shannon – Simpson’s indexes for all three types of soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning. PMID:26396042
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yitan; Xu, Yanxun; Helseth, Donald L.
Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood modelmore » derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → Posterior interaction map.” Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.« less
Mathematical inference and control of molecular networks from perturbation experiments
NASA Astrophysics Data System (ADS)
Mohammed-Rasheed, Mohammed
One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five melanoma cell lines, who exhibit different motility/invasion behavior under the same perturbation experiment of gene Wnt5a. The results of the simulations validate both the steady state levels and the experimental data of the perturbation experiments of all five cell lines. The goal of this study is to answer important questions that link the response of the network to perturbations, as measured by the experiments, to its structure, i.e., connectivity. Answers to these questions shed novel insights on the structure of networks and how they react to perturbations.
Using neighborhood cohesiveness to infer interactions between protein domains.
Segura, Joan; Sorzano, C O S; Cuenca-Alba, Jesus; Aloy, Patrick; Carazo, J M
2015-08-01
In recent years, large-scale studies have been undertaken to describe, at least partially, protein-protein interaction maps, or interactomes, for a number of relevant organisms, including human. However, current interactomes provide a somehow limited picture of the molecular details involving protein interactions, mostly because essential experimental information, especially structural data, is lacking. Indeed, the gap between structural and interactomics information is enlarging and thus, for most interactions, key experimental information is missing. We elaborate on the observation that many interactions between proteins involve a pair of their constituent domains and, thus, the knowledge of how protein domains interact adds very significant information to any interactomic analysis. In this work, we describe a novel use of the neighborhood cohesiveness property to infer interactions between protein domains given a protein interaction network. We have shown that some clustering coefficients can be extended to measure a degree of cohesiveness between two sets of nodes within a network. Specifically, we used the meet/min coefficient to measure the proportion of interacting nodes between two sets of nodes and the fraction of common neighbors. This approach extends previous works where homolog coefficients were first defined around network nodes and later around edges. The proposed approach substantially increases both the number of predicted domain-domain interactions as well as its accuracy as compared with current methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Luo, X; Wang, J Y; Zhang, F L; Xia, Y
2018-01-07
Objective: To explore the regulation and mechanism of Prestin protein by identifying the proteins interacted with Prestin in cochlear outer hair cell(OHC) and analyzing their biological function. Methods: Co-immunoprecipitation combined mass spectrometry technology was used to isolate and identify the proteins interacted with Prestin protein of OHC, bioinformatics was used to construct Prestin protein interaction network. The proteins interacted with Prestin in OHC of guinea pig were determined by matching primary interaction mass spectrometry with protein interaction network, and annotated their functions. Results: The results of co-immunoprecipitation combined with mass spectrometry showed that 116 kinds of credible proteins could interact with Prestin. By constructing Prestin protein interaction network, matching the results of mass spectrometry and analyzing of sub-cellular localization, eight kinds of proteins were confirmed that they interacted with Prestin directly, namely EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1, and ERH, respectively, which were mainly involved in the synthesis and transportation, transmembrane folding and localization, structural stability and signal transduction of Prestin protein. Conclusion: EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1 and ERH provide molecular basis for sensory amplification function of OHCs by participating in biotransformation, transmembrane folding and localization, signal transduction and other biological processes of Prestin protein.
Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique
2015-11-01
The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi
2014-01-01
Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481
Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A.
2016-01-01
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789
NASA Astrophysics Data System (ADS)
Anwar, Muhammad Ayaz; Choi, Sangdun
2017-03-01
Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.
How Can We Treat Cancer Disease Not Cancer Cells?
Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young
2017-01-01
Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.
Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich
2018-04-01
Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Zhang, Liyuan; Yu, Zhenlong; Wang, Yan; Wang, Xiaobo; Zhang, Lianru; Wang, Chao; Yue, Qingxi; Wang, Xun; Deng, Sa; Huo, Xiaokui; Tian, Xiangge; Huang, Shanshan; Zhang, Baojing; Ma, Xiaochi
2016-11-22
Gamabufotalin (CS-6) is a major bufadienolide of Chansu, which shows desirable metabolic stability and less adverse effect in cancer therapy. CS-6 treatment inhibited the proliferation of NSCLC in a nanomolar range. And CS-6 could induce G2/M cell cycle arrest and apoptosis in A549 cells. However, its molecular mechanism in antitumor activity remains poorly understood. We employed a quantitative proteomics approach to identify the potential cellular targets of CS-6, and found 38 possible target-related proteins. Among them, 31 proteins were closely related in the protein-protein interaction network. One of the regulatory nodes in key pathways was occupied by Hsp90. Molecular docking revealed that CS-6 interacted with the ATP-binding sites of Hsp90. In addition, CS-6 inhibited the chaperone function of Hsp90 and reduced expression of Hsp90-dependent client proteins. Moreover, CS-6 markedly down-regulated the protein level of Hsp90 in tumor tissues of the xenograft mice. Taken together, our results suggest that CS-6 might be a novel inhibitor of Hsp90, and the possible network associated with CS-6 target-related proteins was constructed, which provided experimental evidence for the preclinical value of using CS-6 as an effective antitumor agent in treatment of NSCLC.
Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun
2014-04-01
Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Network Analyses in Plant Pathogens
Botero, David; Alvarado, Camilo; Bernal, Adriana; Danies, Giovanna; Restrepo, Silvia
2018-01-01
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data. PMID:29441045
Stetz, Gabrielle; Tse, Amanda
2017-01-01
The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies. PMID:29095844
Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex
2010-01-01
Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062
Ficklin, Stephen P; Luo, Feng; Feltus, F Alex
2010-09-01
Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.
Measuring the Evolutionary Rewiring of Biological Networks
Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y. K.; Yan, Koon-Kiu; Kim, Philip M.; Snyder, Michael; Gerstein, Mark B.
2011-01-01
We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or “rewire”, at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of “commonplace” networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555
Ucisik, Melek N; Bevilacqua, Philip C; Hammes-Schiffer, Sharon
2016-07-12
The recently discovered twister ribozyme is thought to utilize general acid-base catalysis in its self-cleavage mechanism, but the roles of nucleobases and metal ions in the mechanism are unclear. Herein, molecular dynamics simulations of the env22 twister ribozyme are performed to elucidate the structural and equilibrium dynamical properties, as well as to examine the role of Mg(2+) ions and possible candidates for the general base and acid in the self-cleavage mechanism. The active site region and the ends of the pseudoknots were found to be less mobile than other regions of the ribozyme, most likely providing structural stability and possibly facilitating catalysis. A purported catalytic Mg(2+) ion and the closest neighboring Mg(2+) ion remained chelated and relatively immobile throughout the microsecond trajectories, although removal of these Mg(2+) ions did not lead to any significant changes in the structure or equilibrium motions of the ribozyme on the microsecond time scale. In addition, a third metal ion, a Na(+) ion remained close to A1(O5'), the leaving group atom, during the majority of the microsecond trajectories, suggesting that it might stabilize the negative charge on A1(O5') during self-cleavage. The locations of these cations and their interactions with key nucleotides in the active site suggest that they may be catalytically relevant. The P1 stem is partially melted at its top and bottom in the crystal structure and further unwinds in the trajectories. The simulations also revealed an interconnected network comprised of hydrogen-bonding and π-stacking interactions that create a relatively rigid network around the self-cleavage site. The nucleotides involved in this network are among the highly conserved nucleotides in twister ribozymes, suggesting that this interaction network may be important to structure and function.
Differential proteome profiling in the hippocampus of amnesic mice.
Baghel, Meghraj Singh; Thakur, Mahendra Kumar
2017-08-01
Amnesia or memory loss is associated with brain aging and several neurodegenerative pathologies including Alzheimer's disease (AD). This can be induced by a cholinergic antagonist scopolamine but the underlying molecular mechanism is poorly understood. This study of proteome profiling in the hippocampus could provide conceptual insights into the molecular mechanisms involved in amnesia. To reveal this, mice were administered scopolamine to induce amnesia and memory impairment was validated by novel object recognition test. Using two-dimensional gel electrophoresis coupled with MALDI-MS/MS, we have analyzed the hippocampal proteome and identified 18 proteins which were differentially expressed. Out of these proteins, 11 were downregulated and 7 were upregulated in scopolamine-treated mice as compared to control. In silico analysis showed that the majority of identified proteins are involved in metabolism, catalytic activity, and cytoskeleton architectural functions. STRING interaction network analysis revealed that majority of identified proteins exhibit common association with Actg1 cytoskeleton and Vdac1 energy transporter protein. Furthermore, interaction map analysis showed that Fascin1 and Coronin 1b individually interact with Actg1 and regulate the actin filament dynamics. Vdac1 was significantly downregulated in amnesic mice and showed interaction with other proteins in interaction network. Therefore, we silenced Vdac1 in the hippocampus of normal young mice and found similar impairment in recognition memory of Vdac1 silenced and scopolamine-treated mice. Thus, these findings suggest that Vdac1-mediated disruption of energy metabolism and cytoskeleton architecture might be involved in scopolamine-induced amnesia. © 2017 Wiley Periodicals, Inc.
2013-01-01
Background While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. Methods Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on ‘serendipitous off-target effects’. Results Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. Conclusions The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer’s disease. PMID:23885764
Disease gene classification with metagraph representations.
Kircali Ata, Sezin; Fang, Yuan; Wu, Min; Li, Xiao-Li; Xiao, Xiaokui
2017-12-01
Protein-protein interaction (PPI) networks play an important role in studying the functional roles of proteins, including their association with diseases. However, protein interaction networks are not sufficient without the support of additional biological knowledge for proteins such as their molecular functions and biological processes. To complement and enrich PPI networks, we propose to exploit biological properties of individual proteins. More specifically, we integrate keywords describing protein properties into the PPI network, and construct a novel PPI-Keywords (PPIK) network consisting of both proteins and keywords as two different types of nodes. As disease proteins tend to have a similar topological characteristics on the PPIK network, we further propose to represent proteins with metagraphs. Different from a traditional network motif or subgraph, a metagraph can capture a particular topological arrangement involving the interactions/associations between both proteins and keywords. Based on the novel metagraph representations for proteins, we further build classifiers for disease protein classification through supervised learning. Our experiments on three different PPI databases demonstrate that the proposed method consistently improves disease protein prediction across various classifiers, by 15.3% in AUC on average. It outperforms the baselines including the diffusion-based methods (e.g., RWR) and the module-based methods by 13.8-32.9% for overall disease protein prediction. For predicting breast cancer genes, it outperforms RWR, PRINCE and the module-based baselines by 6.6-14.2%. Finally, our predictions also turn out to have better correlations with literature findings from PubMed. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-01-01
Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503
Cheng, Feixiong; Liu, Chuang; Shen, Bairong; Zhao, Zhongming
2016-08-26
Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture. Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy. In this study, we developed a network-based framework to quantitatively examine cellular network heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas (TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In addition, we provided potential network-level evidence that smoking might increase cancer cellular network heterogeneity and further contribute to tyrosine kinase inhibitor (e.g., gefitinib) resistance. In summary, we demonstrated that network properties such as network entropy and unbalanced motifs associated with tumor initiation, progression, and anticancer drug responses, suggesting new potential network-based prognostic and predictive measure in cancer.
The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer
Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey
2017-01-01
Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852
The cancer cell map initiative: defining the hallmark networks of cancer.
Krogan, Nevan J; Lippman, Scott; Agard, David A; Ashworth, Alan; Ideker, Trey
2015-05-21
Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.
Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B
2013-11-05
We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.
The role of CH/π interactions in the high affinity binding of streptavidin and biotin.
Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi
2017-08-01
The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.
Hesketh, Geoffrey G; Youn, Ji-Young; Samavarchi-Tehrani, Payman; Raught, Brian; Gingras, Anne-Claude
2017-01-01
Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.
Mahita, Jarjapu; Sowdhamini, Ramanathan
2018-04-01
The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lps d mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways. © 2018 Wiley Periodicals, Inc.
Cutting the Wires: Modularization of Cellular Networks for Experimental Design
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-01
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264
DeDaL: Cytoscape 3 app for producing and morphing data-driven and structure-driven network layouts.
Czerwinska, Urszula; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2015-08-14
Visualization and analysis of molecular profiling data together with biological networks are able to provide new mechanistic insights into biological functions. Currently, it is possible to visualize high-throughput data on top of pre-defined network layouts, but they are not always adapted to a given data analysis task. A network layout based simultaneously on the network structure and the associated multidimensional data might be advantageous for data visualization and analysis in some cases. We developed a Cytoscape app, which allows constructing biological network layouts based on the data from molecular profiles imported as values of node attributes. DeDaL is a Cytoscape 3 app, which uses linear and non-linear algorithms of dimension reduction to produce data-driven network layouts based on multidimensional data (typically gene expression). DeDaL implements several data pre-processing and layout post-processing steps such as continuous morphing between two arbitrary network layouts and aligning one network layout with respect to another one by rotating and mirroring. The combination of all these functionalities facilitates the creation of insightful network layouts representing both structural network features and correlation patterns in multivariate data. We demonstrate the added value of applying DeDaL in several practical applications, including an example of a large protein-protein interaction network. DeDaL is a convenient tool for applying data dimensionality reduction methods and for designing insightful data displays based on data-driven layouts of biological networks, built within Cytoscape environment. DeDaL is freely available for downloading at http://bioinfo-out.curie.fr/projects/dedal/.
Guided molecular self-assembly: a review of recent efforts
NASA Astrophysics Data System (ADS)
Huie, Jiyun C.
2003-04-01
This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.
Metal adatoms generated by the co-play of melamine assembly and subsequent CO adsorption.
Wang, Li; Chen, Qiwei; Shi, Hong; Liu, Huihui; Ren, Xinguo; Wang, Bing; Wu, Kai; Shao, Xiang
2016-01-28
Molecular self-assembly films are expected to tailor the surface process by the periodic nanostructures and add-on functional groups. In this work, a molecular network of melamine with featured pores of subnanometer size is prepared on the Au(111) surface, and is found to be able to trap the gold adatoms and concomitant single vacancies generated under the impingement of CO molecules at room temperature. DFT calculations suggest that the strong CO-Au adatom interaction as well as the high adhesion of the Au adatom inside the melamine pore could well be the driving force behind such process. This study not only sheds light onto the interactions between gasses and the metal surface that is covered by molecular self-assembly films, but also provides a novel route to manipulate the monoatomic surface species which is of catalytic interest.
Ishiwata, Ryosuke R; Morioka, Masaki S; Ogishima, Soichi; Tanaka, Hiroshi
2009-02-15
BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides animation of time-course gene expression data on the genetic network layer. Transcriptional regulations are represented to bridge the physical network (transcription factors) and genetic network (regulated genes) layers, thus integrating promoter analysis into the pathway mapping. BioCichlid enhances the interpretation of microarray data and allows for revealing the underlying mechanisms causing differential gene expressions. BioCichlid is freely available and can be accessed at http://newton.tmd.ac.jp/. Source codes for both biocichlid server and client are also available.
Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel J.
2016-01-01
Background Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. Scope and Conclusions This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied. PMID:26473020
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.
Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D
2015-01-01
The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.
How pathogens use linear motifs to perturb host cell networks.
Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas
2015-01-01
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Conserved molecular interactions in centriole-to-centrosome conversion.
Fu, Jingyan; Lipinszki, Zoltan; Rangone, Hélène; Min, Mingwei; Mykura, Charlotte; Chao-Chu, Jennifer; Schneider, Sandra; Dzhindzhev, Nikola S; Gottardo, Marco; Riparbelli, Maria Giovanna; Callaini, Giuliano; Glover, David M
2016-01-01
Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.
NASA Astrophysics Data System (ADS)
Yakovenko, Oleksandr; Jones, Steven J. M.
2018-01-01
We report the implementation of molecular modeling approaches developed as a part of the 2016 Grand Challenge 2, the blinded competition of computer aided drug design technologies held by the D3R Drug Design Data Resource (https://drugdesigndata.org/). The challenge was focused on the ligands of the farnesoid X receptor (FXR), a highly flexible nuclear receptor of the cholesterol derivative chenodeoxycholic acid. FXR is considered an important therapeutic target for metabolic, inflammatory, bowel and obesity related diseases (Expert Opin Drug Metab Toxicol 4:523-532, 2015), but in the context of this competition it is also interesting due to the significant ligand-induced conformational changes displayed by the protein. To deal with these conformational changes we employed multiple simulations of molecular dynamics (MD). Our MD-based protocols were top-ranked in estimating the free energy of binding of the ligands and FXR protein. Our approach was ranked second in the prediction of the binding poses where we also combined MD with molecular docking and artificial neural networks. Our approach showed mediocre results for high-throughput scoring of interactions.
Protein intrinsic disorder in plants.
Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto
2013-09-12
To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.
Protein intrinsic disorder in plants
Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A.; Solano, Roberto
2013-01-01
To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks. PMID:24062761
A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity.
Dasen, Jeremy S; Tice, Bonnie C; Brenner-Morton, Susan; Jessell, Thomas M
2005-11-04
Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.
Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster
ERIC Educational Resources Information Center
Costello, James Christopher
2009-01-01
Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…
ERIC Educational Resources Information Center
Kopec, Ashley M.; Carew, Thomas J.
2013-01-01
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…
Torres, Viviana I; Inestrosa, Nibaldo C
2018-06-01
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.
Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang
2016-03-02
For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.
Cascading network failure across the Alzheimer’s disease spectrum
Knopman, David S.; Gunter, Jeffrey L.; Graff-Radford, Jonathan; Vemuri, Prashanthi; Boeve, Bradley F.; Petersen, Ronald C.; Weiner, Michael W.; Jack, Clifford R.
2016-01-01
Abstract Complex biological systems are organized across various spatiotemporal scales with particular scientific disciplines dedicated to the study of each scale (e.g. genetics, molecular biology and cognitive neuroscience). When considering disease pathophysiology, one must contemplate the scale at which the disease process is being observed and how these processes impact other levels of organization. Historically Alzheimer’s disease has been viewed as a disease of abnormally aggregated proteins by pathologists and molecular biologists and a disease of clinical symptoms by neurologists and psychologists. Bridging the divide between these scales has been elusive, but the study of brain networks appears to be a pivotal inroad to accomplish this task. In this study, we were guided by an emerging systems-based conceptualization of Alzheimer’s disease and investigated changes in brain networks across the disease spectrum. The default mode network has distinct subsystems with unique functional-anatomic connectivity, cognitive associations, and responses to Alzheimer’s pathophysiology. These distinctions provide a window into the systems-level pathophysiology of Alzheimer’s disease. Using clinical phenotyping, metadata, and multimodal neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative, we characterized the pattern of default mode network subsystem connectivity changes across the entire disease spectrum (n = 128). The two main findings of this paper are (i) the posterior default mode network fails before measurable amyloid plaques and appears to initiate a connectivity cascade that continues throughout the disease spectrum; and (ii) high connectivity between the posterior default mode network and hubs of high connectivity (many located in the frontal lobe) is associated with amyloid accumulation. These findings support a system model best characterized by a cascading network failure—analogous to cascading failures seen in power grids triggered by local overloads proliferating to downstream nodes eventually leading to widespread power outages, or systems failures. The failure begins in the posterior default mode network, which then shifts processing burden to other systems containing prominent connectivity hubs. This model predicts a connectivity ‘overload’ that precedes structural and functional declines and recasts the interpretation of high connectivity from that of a positive compensatory phenomenon to that of a load-shifting process transiently serving a compensatory role. It is unknown whether this systems-level pathophysiology is the inciting event driving downstream molecular events related to synaptic activity embedded in these systems. Possible interpretations include that the molecular-level events drive the network failure, a pathological interaction between the network-level and the molecular-level, or other upstream factors are driving both. PMID:26586695
Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai
2017-01-01
Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
A hybrid network-based method for the detection of disease-related genes
NASA Astrophysics Data System (ADS)
Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene
2018-02-01
Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.
Molecular codes for neuronal individuality and cell assembly in the brain
Yagi, Takeshi
2012-01-01
The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporation into “cell assemblies” and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The clustered protocadherins (Pcdh) is a large subfamily within the diverse cadherin superfamily. The clustered Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of clustered Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric clustered Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of clustered Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, clustered Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features induce a hypothesis that the diverse clustered Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain. PMID:22518100
Martínez-Romero, Marcos; Vázquez-Naya, José M; Rabuñal, Juan R; Pita-Fernández, Salvador; Macenlle, Ramiro; Castro-Alvariño, Javier; López-Roses, Leopoldo; Ulla, José L; Martínez-Calvo, Antonio V; Vázquez, Santiago; Pereira, Javier; Porto-Pazos, Ana B; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R
2010-05-01
Colorectal cancer is one of the most frequent types of cancer in the world and generates important social impact. The understanding of the specific metabolism of this disease and the transformations of the specific drugs will allow finding effective prevention, diagnosis and treatment of the colorectal cancer. All the terms that describe the drug metabolism contribute to the construction of ontology in order to help scientists to link the correlated information and to find the most useful data about this topic. The molecular components involved in this metabolism are included in complex network such as metabolic pathways in order to describe all the molecular interactions in the colorectal cancer. The graphical method of processing biological information such as graphs and complex networks leads to the numerical characterization of the colorectal cancer drug metabolic network by using invariant values named topological indices. Thus, this method can help scientists to study the most important elements in the metabolic pathways and the dynamics of the networks during mutations, denaturation or evolution for any type of disease. This review presents the last studies regarding ontology and complex networks of the colorectal cancer drug metabolism and a basic topology characterization of the drug metabolic process sub-ontology from the Gene Ontology.
Insights into plant plasma membrane aquaporin trafficking.
Hachez, Charles; Besserer, Arnaud; Chevalier, Adrien S; Chaumont, François
2013-06-01
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.
SPV: a JavaScript Signaling Pathway Visualizer.
Calderone, Alberto; Cesareni, Gianni
2018-03-24
The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.
DiME: A Scalable Disease Module Identification Algorithm with Application to Glioma Progression
Liu, Yunpeng; Tennant, Daniel A.; Zhu, Zexuan; Heath, John K.; Yao, Xin; He, Shan
2014-01-01
Disease module is a group of molecular components that interact intensively in the disease specific biological network. Since the connectivity and activity of disease modules may shed light on the molecular mechanisms of pathogenesis and disease progression, their identification becomes one of the most important challenges in network medicine, an emerging paradigm to study complex human disease. This paper proposes a novel algorithm, DiME (Disease Module Extraction), to identify putative disease modules from biological networks. We have developed novel heuristics to optimise Community Extraction, a module criterion originally proposed for social network analysis, to extract topological core modules from biological networks as putative disease modules. In addition, we have incorporated a statistical significance measure, B-score, to evaluate the quality of extracted modules. As an application to complex diseases, we have employed DiME to investigate the molecular mechanisms that underpin the progression of glioma, the most common type of brain tumour. We have built low (grade II) - and high (GBM) - grade glioma co-expression networks from three independent datasets and then applied DiME to extract potential disease modules from both networks for comparison. Examination of the interconnectivity of the identified modules have revealed changes in topology and module activity (expression) between low- and high- grade tumours, which are characteristic of the major shifts in the constitution and physiology of tumour cells during glioma progression. Our results suggest that transcription factors E2F4, AR and ETS1 are potential key regulators in tumour progression. Our DiME compiled software, R/C++ source code, sample data and a tutorial are available at http://www.cs.bham.ac.uk/~szh/DiME. PMID:24523864
Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong
2015-01-01
Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.
The paradox of caffeine-zolpidem interaction: a network analysis.
Myslobodsky, Michael
2009-10-01
A widely prescribed and potent short-acting hypnotic, zolpidem has become the mainstay for the treatment of middle-of-the-night sleeplessness. It is expected to be antagonized by caffeine. Paradoxically, in some cases caffeine appears to slightly enhance zolpidem sedation. The pharmacokinetic and pharmacodynamic nature of this odd effect remains unexplored. The purpose of this study is to reproduce a hypothetical molecular network recruited by caffeine when co-administered with zolpidem using Ingenuity Pathway Analysis. Thus generated, network drew attention to several possible contributors to caffeine sedation, such as tachykinin precursor 1, cannabinoid, and GABA receptors. The present overview is centered on the possibility that caffeine potentiation of zolpidem sedation does not involve a centralized interaction of specific neurotransmitters, but rather is contributed by its antioxidant capacity. It is proposed that by modifying the cellular redox state, caffeine ultimately reduces the pool of reactive oxygen species, thereby increasing the bioavailability of endogenous melatonin for interaction with zolpidem. This side effect of caffeine encourages further studies of multiple antioxidants as an attractive way to potentially increasing somnolence.
Deciphering microbial interactions in synthetic human gut microbiome communities.
Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P
2018-06-21
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
NASA Astrophysics Data System (ADS)
Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.
2014-07-01
Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar
2017-02-01
The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.
Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks
Pechmann, Sebastian; Frydman, Judith
2014-01-01
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution. PMID:24968255
NASA Astrophysics Data System (ADS)
Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo
2010-03-01
Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.
NASA Astrophysics Data System (ADS)
Adams, J.; Fantner, G. E.; Fisher, L. W.; Hansma, P. K.
2008-09-01
The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.
NASA Astrophysics Data System (ADS)
Pickering, William; Lim, Chjan
2017-07-01
We investigate a family of urn models that correspond to one-dimensional random walks with quadratic transition probabilities that have highly diverse applications. Well-known instances of these two-urn models are the Ehrenfest model of molecular diffusion, the voter model of social influence, and the Moran model of population genetics. We also provide a generating function method for diagonalizing the corresponding transition matrix that is valid if and only if the underlying mean density satisfies a linear differential equation and express the eigenvector components as terms of ordinary hypergeometric functions. The nature of the models lead to a natural extension to interaction between agents in a general network topology. We analyze the dynamics on uncorrelated heterogeneous degree sequence networks and relate the convergence times to the moments of the degree sequences for various pairwise interaction mechanisms.
Single-Molecule Studies of Actin Assembly and Disassembly Factors
Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.
2014-01-01
The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103
Hashemifar, Somaye; Xu, Jinbo
2014-09-01
High-throughput experimental techniques have produced a large amount of protein-protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Li, S; Zhang, Z Q; Wu, L J; Zhang, X G; Li, Y D; Wang, Y Y
2007-01-01
Traditional Chinese medicine uses ZHENG as the key pathological principle to understand the human homeostasis and guide the applications of Chinese herbs. Here, a systems biology approach with the combination of computational analysis and animal experiment is used to investigate this complex issue, ZHENG, in the context of the neuro-endocrine-immune (NEI) system. By using the methods of literature mining, network analysis and topological comparison, it is found that hormones are predominant in the Cold ZHENG network, immune factors are predominant in the Hot ZHENG network, and these two networks are connected by neuro-transmitters. In addition, genes related to Hot ZHENG-related diseases are mainly present in the cytokine-cytokine receptor interaction pathway, whereas genes related to both the Cold-related and Hot-related diseases are linked to the neuroactive ligand-receptor interaction pathway. These computational findings were subsequently verified by experiments on a rat model of collagen-induced arthritis, which indicate that the Cold ZHENG-oriented herbs tend to affect the hub nodes in the Cold ZHENG network, and the Hot ZHENG-oriented herbs tend to affect the hub nodes in the Hot ZHENG network. These investigations demonstrate that the thousand-year-old concept of ZHENG may have a molecular basis with NEI as background.
Next generation of network medicine: interdisciplinary signaling approaches.
Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio
2017-02-20
In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.
Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations
Tamamis, Phanourios; Adler-Abramovich, Lihi; Reches, Meital; Marshall, Karen; Sikorski, Pawel; Serpell, Louise; Gazit, Ehud; Archontis, Georgios
2009-01-01
Abstract Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with β-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-μs, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with β-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form “T-shaped” contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically. PMID:19527662
Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L; Coba, Marcelo P; Levitt, Pat
2016-12-15
Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
KEGG Bioinformatics Resource for Plant Genomics and Metabolomics.
Kanehisa, Minoru
2016-01-01
In the era of high-throughput biology it is necessary to develop not only elaborate computational methods but also well-curated databases that can be used as reference for data interpretation. KEGG ( http://www.kegg.jp/ ) is such a reference knowledge base with two specific aims. One is to compile knowledge on high-level functions of the cell and the organism in terms of the molecular interaction and reaction networks, which is implemented in KEGG pathway maps, BRITE functional hierarchies, and KEGG modules. The other is to expand knowledge on genes and proteins involved in the molecular networks from experimentally observed organisms to other organisms using the concept of orthologs, which is implemented in the KEGG Orthology (KO) system. Thus, KEGG is a generic resource applicable to all organisms and enables interpretation of high-level functions from genomic and molecular data. Here we first present a brief overview of the entire KEGG resource, and then give an introduction of how to use KEGG in plant genomics and metabolomics research.
Structural and spectroscopic investigation of glycinium oxalurate
NASA Astrophysics Data System (ADS)
Kavitha, T.; Pasupathi, G.; Marchewka, M. K.; Anbalagan, G.; Kanagathara, N.
2017-09-01
Glycinium oxalurate (GO) single crystals has been synthesized and grown by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction study confirms that GO crystal crystallizes in the monoclinic system with centrosymmetric space group P121/c1. The grown crystals are built up from single protonated glycinium residues and single dissociated oxalurate anions. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the glycine and oxaluric acid residues forms a three-dimensional network. Hydrogen bonded network present in the crystal gives notable vibrational effect. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on HF and density functional theory B3LYP methods with 6-311++G(d,p) basis set. Frontier molecular orbital energies and other related electronic properties are calculated. The natural bonding orbital (NBO) charges have been calculated and interpreted. The molecular electrostatic potential map has been constructed and discussed in detail.
Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P
2009-10-06
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Exploring drug-target interaction networks of illicit drugs.
Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming
2013-01-01
Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network characteristics of illicit drugs, their targets, and other drugs that share the targets of these illicit drugs. The results, though preliminary, provide some novel insights into the molecular mechanisms of drug addiction. The observation of illicit-related drugs, with partial verification from previous studies, demonstrated that the network-assisted approach is promising for the identification of drug repositioning.
Exploring drug-target interaction networks of illicit drugs
2013-01-01
Background Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. Results In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. Conclusions This study presents the first systematic review of the network characteristics of illicit drugs, their targets, and other drugs that share the targets of these illicit drugs. The results, though preliminary, provide some novel insights into the molecular mechanisms of drug addiction. The observation of illicit-related drugs, with partial verification from previous studies, demonstrated that the network-assisted approach is promising for the identification of drug repositioning. PMID:24268016
3D modeling of cancer stem cell niche
He, Jun; Xiong, Li; Li, Qinglong; Lin, Liangwu; Miao, Xiongying; Yan, Shichao; Hong, Zhangyong; Yang, Leping; Wen, Yu; Deng, Xiyun
2018-01-01
Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites. PMID:29416698
Kumar, Narendra; Kishore, Nand
2013-01-01
Sarcosine is one of the most important protecting osmolytes which is also known to counteract the denaturing effect of urea. We used molecular dynamics simulation methods to investigate the mechanism of protein stabilization and counteraction of urea by sarcosine. We found that sarcosine enhanced the tetrahedral structure of water and strengthened its hydrogen bonding network. We also found that sarcosine did not form clusters unlike glycine. Our results show strong interaction between sarcosine and urea molecules. Addition of sarcosine enhanced the urea-water structure and urea-water lifetime indicated an increase in the solvation of urea. These findings suggest that sarcosine indirectly stabilizes protein by enhancing water-water structure thus decreasing the hydrophobic effect and counteracts the effect of urea by increasing the solvation of urea and directly interacting with it leaving urea less available to interact with protein. Copyright © 2012 Elsevier B.V. All rights reserved.
Spin interactions in Graphene-Single Molecule Magnets Hybrids
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2014-03-01
Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
Molecular interactions in gelatin/chitosan composite films.
Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui
2017-11-15
Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.
Challenges and dreams: physics of weak interactions essential to life
Chien, Peter; Gierasch, Lila M.
2014-01-01
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424
Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity
Bhattacharyya, Sanchari; Bershtein, Shimon; Yan, Jin; Argun, Tijda; Gilson, Amy I; Trauger, Sunia A; Shakhnovich, Eugene I
2016-01-01
Gene dosage toxicity (GDT) is an important factor that determines optimal levels of protein abundances, yet its molecular underpinnings remain unknown. Here, we demonstrate that overexpression of DHFR in E. coli causes a toxic metabolic imbalance triggered by interactions with several functionally related enzymes. Though deleterious in the overexpression regime, surprisingly, these interactions are beneficial at physiological concentrations, implying their functional significance in vivo. Moreover, we found that overexpression of orthologous DHFR proteins had minimal effect on all levels of cellular organization – molecular, systems, and phenotypic, in sharp contrast to E. coli DHFR. Dramatic difference of GDT between ‘E. coli’s self’ and ‘foreign’ proteins suggests the crucial role of evolutionary selection in shaping protein-protein interaction (PPI) networks at the whole proteome level. This study shows how protein overexpression perturbs a dynamic metabolon of weak yet potentially functional PPI, with consequences for the metabolic state of cells and their fitness. DOI: http://dx.doi.org/10.7554/eLife.20309.001 PMID:27938662
Guo, Leilei; Song, Chunhua; Wang, Peng; Dai, Liping; Zhang, Jianying; Wang, Kaijuan
2015-11-01
The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.
Shoshi, Alban; Hoppe, Tobias; Kormeier, Benjamin; Ogultarhan, Venus; Hofestädt, Ralf
2015-02-28
Adverse drug reactions are one of the most common causes of death in industrialized Western countries. Nowadays, empirical data from clinical studies for the approval and monitoring of drugs and molecular databases is available. The integration of database information is a promising method for providing well-based knowledge to avoid adverse drug reactions. This paper presents our web-based decision support system GraphSAW which analyzes and evaluates drug interactions and side effects based on data from two commercial and two freely available molecular databases. The system is able to analyze single and combined drug-drug interactions, drug-molecule interactions as well as single and cumulative side effects. In addition, it allows exploring associative networks of drugs, molecules, metabolic pathways, and diseases in an intuitive way. The molecular medication analysis includes the capabilities of the upper features. A statistical evaluation of the integrated data and top 20 drugs concerning drug interactions and side effects is performed. The results of the data analysis give an overview of all theoretically possible drug interactions and side effects. The evaluation shows a mismatch between pharmaceutical and molecular databases. The concordance of drug interactions was about 12% and 9% of drug side effects. An application case with prescribed data of 11 patients is presented in order to demonstrate the functionality of the system under real conditions. For each patient at least two interactions occured in every medication and about 8% of total diseases were possibly induced by drug therapy. GraphSAW (http://tunicata.techfak.uni-bielefeld.de/graphsaw/) is meant to be a web-based system for health professionals and researchers. GraphSAW provides comprehensive drug-related knowledge and an improved medication analysis which may support efforts to reduce the risk of medication errors and numerous drastic side effects.
Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou
2016-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future. PMID:27669518
Molecular modelling of protein-protein/protein-solvent interactions
NASA Astrophysics Data System (ADS)
Luchko, Tyler
The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule destabilization. No conformational change was observed but a nucleotide dependent 'softening' of the interaction was found instead, suggesting that an entropic force in a microtubule configuration could be the mechanism of microtubule collapse. Finally, to overcome much of the computational costs associated with explicit soIvent calculations, a new combination of molecular dynamics with the 3D-reference interaction site model (3D-RISM) of solvation was integrated into the Amber molecular dynamics package. Our implementation of 3D-RISM shows excellent agreement with explicit solvent free energy calculations. Several optimisation techniques, including a new multiple time step method, provide a nearly 100 fold performance increase, giving similar computational performance to explicit solvent.
deepNF: Deep network fusion for protein function prediction.
Gligorijevic, Vladimir; Barot, Meet; Bonneau, Richard
2018-06-01
The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity. deepNF is freely available at: https://github.com/VGligorijevic/deepNF. vgligorijevic@flatironinstitute.org, rb133@nyu.edu. Supplementary data are available at Bioinformatics online.
Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci
Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia
2017-01-01
Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275
Exploring of the molecular mechanism of rhinitis via bioinformatics methods
Song, Yufen; Yan, Zhaohui
2018-01-01
The aim of this study was to analyze gene expression profiles for exploring the function and regulatory network of differentially expressed genes (DEGs) in pathogenesis of rhinitis by a bioinformatics method. The gene expression profile of GSE43523 was downloaded from the Gene Expression Omnibus database. The dataset contained 7 seasonal allergic rhinitis samples and 5 non-allergic normal samples. DEGs between rhinitis samples and normal samples were identified via the limma package of R. The webGestal database was used to identify enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs. The differentially co-expressed pairs of the DEGs were identified via the DCGL package in R, and the differential co-expression network was constructed based on these pairs. A protein-protein interaction (PPI) network of the DEGs was constructed based on the Search Tool for the Retrieval of Interacting Genes database. A total of 263 DEGs were identified in rhinitis samples compared with normal samples, including 125 downregulated ones and 138 upregulated ones. The DEGs were enriched in 7 KEGG pathways. 308 differential co-expression gene pairs were obtained. A differential co-expression network was constructed, containing 212 nodes. In total, 148 PPI pairs of the DEGs were identified, and a PPI network was constructed based on these pairs. Bioinformatics methods could help us identify significant genes and pathways related to the pathogenesis of rhinitis. Steroid biosynthesis pathway and metabolic pathways might play important roles in the development of allergic rhinitis (AR). Genes such as CDC42 effector protein 5, solute carrier family 39 member A11 and PR/SET domain 10 might be also associated with the pathogenesis of AR, which provided references for the molecular mechanisms of AR. PMID:29257233
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-01-01
Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-04-01
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.
A systems biology approach toward understanding seed composition in soybean.
Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin
2015-01-01
The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.
Cellular and molecular specificity of pituitary gland physiology.
Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo
2012-01-01
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leivo, Kimmo T.; Hahma, Arno P.
2008-07-07
Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.
Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators
NASA Astrophysics Data System (ADS)
Leivo, Kimmo T.; Hahma, Arno P.
2008-07-01
Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.
Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites
NASA Astrophysics Data System (ADS)
Zhou, Yang; Hou, Dongshuai; Jiang, Jinyang; She, Wei; Yu, Jiao
2017-11-01
Calcium silicate hydrates (C-S-H) may potentially exhibit extraordinary performance when modified by polymers, in which way the properties of cement-based materials can be improved from the genetic level. In this molecular dynamics simulation of the interaction between C-S-H and polyethylene glycol, apart from the H bond network connection in the interface, another chemical adsorption was observed. Calcium of C-S-H broke the Csbnd O bond of PEG and formed a new Casbnd C connection, which created a stronger link between the organic and inorganic phases.
(Z)-3-(1-Chloro-prop-1-en-yl)-2-methyl-1-phenyl-sulfonyl-1H-indole.
Umadevi, M; Saravanan, V; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G
2013-11-16
In the title compound, C18H16ClNO2S, the indole ring system forms a dihedral angle of 75.07 (8)° with the phenyl ring. The mol-ecular structure is stabilized by a weak intra-molecular C-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming a chain along [10-1]. C-H⋯π inter-actions are also observed, leading to a three-dimensional network.
Waliszewski, P; Molski, M; Konarski, J
1998-06-01
A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.
Role of Network Science in the Study of Anesthetic State Transitions.
Lee, UnCheol; Mashour, George A
2018-04-23
The heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic effects of general anesthetics makes it difficult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identified as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially and temporally distributed brain functions. The goal of this review article is to introduce the basic concepts of networks and explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism of anesthetic-induced unconsciousness. This article reviews data suggesting that reduced network efficiency, constrained network repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead to unconsciousness. This review proposes that network science is not just a useful tool but a necessary theoretical framework and method to uncover common principles of anesthetic-induced unconsciousness.
Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto
2012-01-21
Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
A tensegrity model for hydrogen bond networks in proteins.
Bywater, Robert P
2017-05-01
Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.
Cross-platform method for identifying candidate network biomarkers for prostate cancer.
Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C
2009-11-01
Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.
NASA Astrophysics Data System (ADS)
Usabiaga, Imanol; Camiruaga, Ander; Insausti, Aran; Çarçabal, Pierre; Cocinero, Emilio J.; León, Iker; Fernández, José A.
2018-02-01
We report a combination of laser spectroscopy in molecular jets and quantum mechanical calculations to characterize the aggregation preferences of phenyl-β-D-glucopyranoside (β-PhGlc) and phenyl-β-D-galactopyranoside (β-PhGal) homodimers. At least two structures of β-PhGlc dimer were found maintaining the same intramolecular interactions of the monomers, but with additional intermolecular interactions between the hydroxyl groups. Several isomers were also found for the dimer of β-PhGal forming extensive hydrogen bond networks between the interacting molecules, of very different shape. All the species found present several CH•••Pi and OH•••Pi interactions that add stability to the aggregates. The results show how even the smallest change in a substituent, from axial to equatorial position, plays a decisive role in the formation of the dimers. These conclusions reinforce the idea that the small structural changes between sugar units are amplified by formation of intra and intermolecular hydrogen bond networks, helping other molecules (proteins, receptors) to easily read the sugar code of glycans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acquaah-Mensah, George; Malhotra, Deepti; Vulimiri, Madhulika
2012-06-19
Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD,more » as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs.« less
Buck, Patrick M; Chaudhri, Anuj; Kumar, Sandeep; Singh, Satish K
2015-01-05
Therapeutic monoclonal antibody (mAb) candidates that form highly viscous solutions at concentrations above 100 mg/mL can lead to challenges in bioprocessing, formulation development, and subcutaneous drug delivery. Earlier studies of mAbs with concentration-dependent high viscosity have indicated that mAbs with negatively charged Fv regions have a dipole-like quality that increases the likelihood of reversible self-association. This suggests that weak electrostatic intermolecular interactions can form transient antibody networks that participate in resistance to solution deformation under shear stress. Here this hypothesis is explored by parametrizing a coarse-grained (CG) model of an antibody using the domain charges from four different mAbs that have had their concentration-dependent viscosity behaviors previously determined. Multicopy molecular dynamics simulations were performed for these four CG mAbs at several concentrations to understand the effect of surface charge on mass diffusivity, pairwise interactions, and electrostatic network formation. Diffusion coefficients computed from simulations were in qualitative agreement with experimentally determined viscosities for all four mAbs. Contact analysis revealed an overall greater number of pairwise interactions for the two mAbs in this study with high concentration viscosity issues. Further, using equilibrated solution trajectories, the two mAbs with high concentration viscosity issues quantitatively formed more features of an electrostatic network than the other mAbs. The change in the number of these network features as a function of concentration is related to the number of pairwise interactions formed by electrostatic complementarities between antibody domains. Thus, transient antibody network formation caused by domain-domain electrostatic complementarities is the most probable origin of high concentration viscosity for mAbs in this study.
Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming
2015-04-01
This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.
Large-scale De Novo Prediction of Physical Protein-Protein Association*
Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas
2011-01-01
Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163
Heiser, Diane; Tan, Yee Sun; Kaplan, Ian; Godsey, Brian; Morisot, Sebastien; Cheng, Wen-Chih; Small, Donald; Civin, Curt I
2014-01-01
Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (∼100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach implicates several interaction networks comprising a "stemness" signature in the most primitive hematopoietic stem cell (HSC) populations, as well as "myeloid" patterns associated with two branches of myeloid development.
Analyzing and interpreting genome data at the network level with ConsensusPathDB.
Herwig, Ralf; Hardt, Christopher; Lienhard, Matthias; Kamburov, Atanas
2016-10-01
ConsensusPathDB consists of a comprehensive collection of human (as well as mouse and yeast) molecular interaction data integrated from 32 different public repositories and a web interface featuring a set of computational methods and visualization tools to explore these data. This protocol describes the use of ConsensusPathDB (http://consensuspathdb.org) with respect to the functional and network-based characterization of biomolecules (genes, proteins and metabolites) that are submitted to the system either as a priority list or together with associated experimental data such as RNA-seq. The tool reports interaction network modules, biochemical pathways and functional information that are significantly enriched by the user's input, applying computational methods for statistical over-representation, enrichment and graph analysis. The results of this protocol can be observed within a few minutes, even with genome-wide data. The resulting network associations can be used to interpret high-throughput data mechanistically, to characterize and prioritize biomarkers, to integrate different omics levels, to design follow-up functional assay experiments and to generate topology for kinetic models at different scales.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Recent Coselection in Human Populations Revealed by Protein–Protein Interaction Network
Qian, Wei; Zhou, Hang; Tang, Kun
2015-01-01
Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein–protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. PMID:25532814
Amoebae, Giant Viruses, and Virophages Make Up a Complex, Multilayered Threesome
Diesend, Jan; Kruse, Janis; Hagedorn, Monica; Hammann, Christian
2018-01-01
Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories. PMID:29376032
Coverage Dependent Assembly of Anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel
A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.
Tritt-Goc, Jadwiga; Bielejewski, Michał; Luboradzki, Roman; Lapiński, Andrzej
2008-01-15
The studies of the gel-to-sol phase transition by the Raman, FT-IR, and 1H NMR methods of the gel made by low molecular weight organogelator 1,2-O-(1-ethylpropylidene)-alpha-D-glucofuranose with toluene as the solvent are reported. The FT-IR spectra revealed the existence of a hydrogen bond network formed by gelator molecules in the crystalline and gel phase. In both phases, the network formation is dominated by the gelator self-interaction. Upon gelation, only one stretching band of infrared absorption modes nualpha, assigned to the O(6)H hydroxyl protons of gelator, is shifted by Deltaupsilonalpha = 25 cm-1, which indicates the involvement of this proton in the interaction with the solvent molecules. The phase transition measurements performed as a function of gelator concentration allowed the calculation of the energy correlated with the transition from gel to solution phase. The obtained value of 72 kJ/mol is the largest one reported up until now for monosaccharide-based gels. The analysis of the temperature measurements of the toluene 1H NMR spectra provides evidence for a different chemical environment of toluene molecules in the gel. The toluene spin-lattice relaxation in bulk and gel indicate that the viscosity is most likely the main factor that influences the dynamics of toluene.
Pascual, Jesús; Cañal, María Jesús; Escandón, Mónica; Meijón, Mónica; Weckwerth, Wolfram
2017-01-01
Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine. PMID:28096192
Characterizing and controlling the inflammatory network during influenza A virus infection
NASA Astrophysics Data System (ADS)
Jin, Suoqin; Li, Yuanyuan; Pan, Ruangang; Zou, Xiufen
2014-01-01
To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better discrimination between normal and inflammatory networks by network entropy than by other topological metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1β, IL10 and NFκB between normal and inflammatory networks using optimization algorithm. In particular, good robustness and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex, TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and demonstrated that changes in network entropy of this complex negatively correlated to those of three proteins: TNFα, NFκB and COX-2. These findings provide significant hypotheses for further exploring the molecular mechanisms of infectious diseases and developing control strategies.
Still searching for the engram.
Eichenbaum, Howard
2016-09-01
For nearly a century, neurobiologists have searched for the engram-the neural representation of a memory. Early studies showed that the engram is widely distributed both within and across brain areas and is supported by interactions among large networks of neurons. Subsequent research has identified engrams that support memory within dedicated functional systems for habit learning and emotional memory, but the engram for declarative memories has been elusive. Nevertheless, recent years have brought progress from molecular biological approaches that identify neurons and networks that are necessary and sufficient to support memory, and from recording approaches and population analyses that characterize the information coded by large neural networks. These new directions offer the promise of revealing the engrams for episodic and semantic memories.
Investigation of candidate genes for osteoarthritis based on gene expression profiles.
Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei
2016-12-01
To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor interaction pathway. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Ren, Weibo; Xie, Jihong; Hou, Xiangyang; Li, Xiliang; Guo, Huiqin; Hu, Ningning; Kong, Lingqi; Zhang, Jize; Chang, Chun; Wu, Zinian
2018-05-08
This study was designed to reveal potential molecular mechanisms of long-term overgrazing-induced dwarfism in sheepgrass (Leymus chinensis). An electrospray ionisation mass spectrometry system was used to generate proteomic data of dwarf sheepgrass from a long-term overgrazed rangeland and normal sheepgrass from a long-term enclosed rangeland. Differentially expressed proteins (DEPs) between dwarf and normal sheepgrass were identified, after which their potential functions and interactions with each other were predicted. The expression of key DEPs was confirmed by high-performance liquid chromatography mass spectrometry (HPLC-MS) using a multiple reaction monitoring method. Compared with normal sheepgrass, a total of 51 upregulated and 53 downregulated proteins were identified in dwarf sheepgrass. The amino acids biosynthesis pathway was differentially enriched between the two conditions presenting DEPs, such as SAT5_ARATH and DAPA_MAIZE. The protein-protein interaction (PPI) network revealed a possible interaction between RPOB2_LEPTE, A0A023H9M8_9STRA, ATPB_DIOEL, RBL_AMOTI and DNAK_GRATL. Four modules were also extracted from the PPI network. The HPLC-MS analysis confirmed the upregulation and downregulation of ATPB_DIOEL and DNAK_GRATL, respectively in dwarf samples compared with in the controls. The upregulated ATPB_DIOEL and downregulated DNAK_GRATL as well as proteins that interact with them, such as RPOB2_LEPTE, A0A023H9M8_9STRA and RBL_AMOTI, may be associated with the long-term overgrazing-induced dwarfism in sheepgrass.
Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.
Anitha, P; Anbarasu, Anand; Ramaiah, Sudha
2014-05-01
Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification of the Kelch Family Protein Nd1-L as a Novel Molecular Interactor of KRIT1
Cutano, Valentina; Martino, Chiara
2012-01-01
Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease. PMID:22970292
Caberlotto, Laura; Lauria, Mario; Nguyen, Thanh-Phuong; Scotti, Marco
2013-01-01
Alzheimer's disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer's disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer's disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer's disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy.
Zhang, Yan-qiong; Wang, Song-song; Zhu, Wei-liang; Ma, Yan; Zhang, Fang-bo; Liang, Ri-xin; Xu, Hai-yu; Yang, Hong-jun
2015-01-01
Aim: Huanglian-Jie-Du decoction (HLJDD) is an important multiherb remedy in TCM, which is recently demonstrated to be effective to treat ischemic stroke. Here, we aimed to investigate the pharmacological mechanisms of HLJDD in the treatment of ischemic stroke using systems biology approaches. Methods: Putative targets of HLJDD were predicted using MetaDrug. An interaction network of putative HLJDD targets and known therapeutic targets for the treatment of ischemic stroke was then constructed, and candidate HLJDD targets were identified by calculating topological features, including 'Degree', 'Node-betweenness', 'Closeness', and 'K-coreness'. The binding efficiencies of the candidate HLJDD targets with the corresponding compositive compounds were further validated by a molecular docking simulation. Results: A total of 809 putative targets were obtained for 168 compositive compounds in HLJDD. Additionally, 39 putative targets were common to all four herbs of HLJDD. Next, 49 major nodes were identified as candidate HLJDD targets due to their network topological importance. The enrichment analysis based on the Gene Ontology (GO) annotation system and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that candidate HLJDD targets were more frequently involved in G-protein-coupled receptor signaling pathways, neuroactive ligand-receptor interactions and gap junctions, which all played important roles in the progression of ischemic stroke. Finally, the molecular docking simulation showed that 170 pairs of chemical components and candidate HLJDD targets had strong binding efficiencies. Conclusion: This study has developed for the first time a comprehensive systems approach integrating drug target prediction, network analysis and molecular docking simulation to reveal the relationships between the herbs contained in HLJDD and their putative targets and ischemic stroke-related pathways. PMID:25937634
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
Genome-nuclear lamina interactions and gene regulation.
Kind, Jop; van Steensel, Bas
2010-06-01
The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.
Lee, Chi-Heon; Moon, Suk-Hee; Park, Ki-Min; Kang, Youngjin
2016-12-01
In the title compound, [Ir(C 11 H 8 N) 2 (C 18 H 14 N)], the Ir III ion adopts a distorted octa-hedral coordination environment defined by three C , N -chelating ligands, one stemming from a 2-(4-phenyl-5-methyl-pyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, inter-molecular π-π stacking inter-actions, as well as inter-molecular C-H⋯π inter-actions, are present, leading to a three-dimensional network.
Gene regulatory networks in lactation: identification of global principles using bioinformatics.
Lemay, Danielle G; Neville, Margaret C; Rudolph, Michael C; Pollard, Katherine S; German, J Bruce
2007-11-27
The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood. Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution. Several key principles were derived: (1) nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2) genes encoding the secretory machinery are transcribed prior to lactation; (3) the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4) while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5) the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6) the involution switch is primarily transcriptionally mediated; and (7) during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested - milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.
Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J.; Shin, Seungjin; Jeruss, Jacqueline S.; Shea, Lonnie D.
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy. PMID:23593114
Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.
Mathematical approach to nonlocal interactions using a reaction-diffusion system.
Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu
2017-06-01
In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.
Perturbation Biology: Inferring Signaling Networks in Cellular Systems
Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2013-01-01
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245
Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter
2014-06-01
Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua
2017-01-01
How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.
Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc
2015-01-29
We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.
Cutting the wires: modularization of cellular networks for experimental design.
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-07
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee
1999-02-01
The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.
Integrative network alignment reveals large regions of global network similarity in yeast and human.
Kuchaiev, Oleksii; Przulj, Natasa
2011-05-15
High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.
Advanced Polymer Network Structures
2016-02-01
double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Penalized differential pathway analysis of integrative oncogenomics studies.
van Wieringen, Wessel N; van de Wiel, Mark A
2014-04-01
Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.
Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis.
Lim, Sang Hyun; Legere, Elizabeth-Ann; Snider, Jamie; Stagljar, Igor
2017-01-01
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
NASA Astrophysics Data System (ADS)
Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi
2011-01-01
Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.
Personalized anticancer therapy selection using molecular landscape topology and thermodynamics.
Rietman, Edward A; Scott, Jacob G; Tuszynski, Jack A; Klement, Giannoula Lakka
2017-03-21
Personalized anticancer therapy requires continuous consolidation of emerging bioinformatics data into meaningful and accurate information streams. The use of novel mathematical and physical approaches, namely topology and thermodynamics can enable merging differing data types for improved accuracy in selecting therapeutic targets. We describe a method that uses chemical thermodynamics and two topology measures to link RNA-seq data from individual patients with academically curated protein-protein interaction networks to select clinically relevant targets for treatment of low-grade glioma (LGG). We show that while these three histologically distinct tumor types (astrocytoma, oligoastrocytoma, and oligodendroglioma) may share potential therapeutic targets, the majority of patients would benefit from more individualized therapies. The method involves computing Gibbs free energy of the protein-protein interaction network and applying a topological filtration on the energy landscape to produce a subnetwork known as persistent homology. We then determine the most likely best target for therapeutic intervention using a topological measure of the network known as Betti number. We describe the algorithm and discuss its application to several patients.
Boase, Natasha A; Lockington, Robin A; Adams, Julian R J; Rodbourn, Louise; Kelly, Joan M
2003-01-01
Mutations in the acrB gene, which were originally selected through their resistance to acriflavine, also result in reduced growth on a range of sole carbon sources, including fructose, cellobiose, raffinose, and starch, and reduced utilization of omega-amino acids, including GABA and beta-alanine, as sole carbon and nitrogen sources. The acrB2 mutation suppresses the phenotypic effects of mutations in the creB gene that encodes a regulatory deubiquitinating enzyme, and in the creC gene that encodes a WD40-repeat-containing protein. Thus AcrB interacts with a regulatory network controlling carbon source utilization that involves ubiquitination and deubiquitination. The acrB gene was cloned and physically analyzed, and it encodes a novel protein that contains three putative transmembrane domains and a coiled-coil region. AcrB may play a role in the ubiquitination aspect of this regulatory network. PMID:12750323