Science.gov

Sample records for molecular magnets composed

  1. Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex.

    PubMed

    Katoh, Keiichi; Isshiki, Hironari; Komeda, Tadahiro; Yamashita, Masahiro

    2012-06-01

    Unlike electronics, which is based on the freedom of the charge of an electron whose memory is volatile, spintronics is based on the freedom of the charge, spin, and orbital of an electron whose memory is non-volatile. Although in most GMR, TMR, and CMR systems, bulk or classical magnets that are composed of transition metals are used, this Focus Review considers the growing use of single-molecule magnets (SMMs) that are composed of multinuclear metal complexes and nanosized magnets, which exhibit slow magnetic-relaxation processes and quantum tunneling. Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Using molecules is advantageous because their electronic and magnetic properties can be manipulated under specific conditions. Herein, recent developments in [LnPc]-based multiple-decker SMMs on surfaces for molecular spintronic devices are presented. First, we discuss the strategies for preparing single-molecular-memory devices by using SMMs. Next, we focus on the switching of the Kondo signal of [LnPc]-based multiple-decker SMMs that are adsorbed onto surfaces, their characterization by using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of [TbPc(2)]. Finally, the field-effect-transistor (FET) properties of surface-adsorbed [LnPc(2)] and [Ln(2)Pc(3)] cast films are reported, which is the first step towards controlling SMMs through their spins for applications in single-molecular memory and spintronics devices.

  2. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST =more » 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  3. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    SciTech Connect

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The

  4. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  5. Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, A.; Mark, M.; Aikawa, K.; Baier, S.; Grimm, R.; Petrov, A.; Kotochigova, S.; Quéméner, G.; Lepers, M.; Dulieu, O.; Ferlaino, F.

    2015-11-01

    In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

  6. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  7. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole-dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient.

  8. Designing magnetic superlattices that are composed of single domain nanomagnets

    PubMed Central

    Kusmartsev, Feodor V; Kovács, Endre

    2014-01-01

    Summary Background: The complex nature of the magnetic interactions between any number of nanosized elements of a magnetic superlattice can be described by the generic behavior that is presented here. The hysteresis characteristics of interacting elliptical nanomagnets are described by a quasi-static method that identifies the critical boundaries between magnetic phases. A full dynamical analysis is conducted in complement to this and the deviations from the quasi-static analysis are highlighted. Each phase is defined by the configuration of the magnetic moments of the chain of single domain nanomagnets and correspondingly the existence of parallel, anti-parallel and canting average magnetization states. Results: We give examples of the phase diagrams in terms of anisotropy and coupling strength for two, three and four magnetic layers. Each phase diagrams character is defined by the shape of the magnetic hysteresis profile for a system in an applied magnetic field. We present the analytical solutions that enable one to define the “phase” boundaries between the emergence of spin-flop, anti-parallel and parallel configurations. The shape of the hysteresis profile is a function of the coupling strength between the nanomagnets and examples are given of how it dictates a systems magnetic response. Many different paths between metastable states can exist and this can lead to instabilities and fluctuations in the magnetization. Conclusion: With these phase diagrams one can find the most stable magnetic configurations against perturbations so as to create magnetic devices. On the other hand, one may require a magnetic system that can easily be switched between phases, and so one can use the information herein to design superlattices of the required shape and character by choosing parameters close to the phase boundaries. This work will be useful when designing future spintronic devices, especially those manipulating the properties of CoFeB compounds. PMID:25161831

  9. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  10. Switchable molecular magnets.

    PubMed

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  11. Magnetic motion capture system using LC resonant magnetic marker composed of Ni-Zn ferrite core

    SciTech Connect

    Hashi, S.; Toyoda, M.; Ohya, M.; Okazaki, Y.; Yabukami, S.; Ishiyama, K.; Arai, K. I.

    2006-04-15

    We have proposed a magnetic motion capture system using an LC resonant magnetic marker. The proposed system is composed of an exciting coil, an LC marker, and a 5x5-matrix search coil array (25 search coils). The LC marker is small and has a minimal circuit with no battery and can be driven wirelessly by the action of electromagnetic induction. It consists of a Ni-Zn ferrite core (3 mm{phi}x10 mm) with a wound coil and a chip capacitor, forming an LC series circuit with a resonant frequency of 186 kHz. The relative position accuracy of the system is less than 1 mm within the area of 100 mm{sup 3} up to 150 mm from the search coil array. Compared with dc magnetic systems, the proposed system is applicable for precision motion capture in optically isolated spaces without magnetic shielding because the system is not greatly influenced by earth field noise.

  12. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh

    NASA Astrophysics Data System (ADS)

    He, Guanghua; Wu, Rui-xin; Poo, Yin; Chen, Ping

    2010-05-01

    We designed and studied a magnetic tunable metamaterial composed of ferrite-dielectric and metallic mesh. The retrieved electromagnetic parameters and the transmission characteristic showed the composite has a double-negative regime in magnetized state. Moreover, this regime is tunable in external magnetic fields. The composite has a lower loss with minimum about -0.3 dB/mm. The simulations of the wave propagation on the interface of the composite clearly display a negative refraction. The negative indexes calculated from Snell's law are in good agreement with the indexes retrieved from S parameters, quantitatively confirms the negative index of the composite.

  13. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units

    PubMed Central

    Nacci, Christophe; Ample, Francisco; Bleger, David; Hecht, Stefan; Joachim, Christian; Grill, Leonhard

    2015-01-01

    Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single—typically linear—molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible ‘soft' molecular-scale circuitry, for example, on bendable substrates. PMID:26145188

  14. Magnetic memory in a ceramic YBCO superconductor composed of sub-micron-size grains

    NASA Astrophysics Data System (ADS)

    Deguchi, Hiroyuki; Ashida, Takuya; Syudo, Mitsuhiro; Mito, Masaki; Takagi, Seishi; Hagiwara, Makoto; Koyama, Kuniyuki

    2013-06-01

    The ceramic YBa2Cu4O8 (YBCO) composed of sub-micron-size grains is considered as a random Josephson-coupled network of 0 and π junctions and shows successive phase transitions. The first transition occurs inside each grain at T c1 = 81 K, and the second transition occurs among the grains at T c2 = 47 K. A magnetic glass behavior similar to those of spin-glasses is observed at temperatures below T c2. The memory phenomena are investigated by recording the zero-fieldcooled and thermoremanent magnetizations measured on heating after the cooling process with a halt at T s = 41 K. Memory effects of the halt are imprinted in the system when the sample is re-heated. In the case without a field switch at T s , the influence of the halt is confined to a narrow temperature region near T s whereas the memory effect of the halt employing a field switch is extended over a wide temperature region below T s . The results suggest that chiral-glass ordering occurs at T c2 in the ceramic YBCO.

  15. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    NASA Astrophysics Data System (ADS)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  16. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    PubMed Central

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-01-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets. PMID:28205528

  17. Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires.

    PubMed

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-27

    We experimentally demonstrate a magnetically tunable left-handed metamaterial by introducing yttrium iron garnet rods into SRRs/wires array. It shows that the left-handed passband of the metamaterial can be continuously and reversibly adjusted by external dc applied magnetic fields. Retrieved effective parameters based on simulated scattering parameters show that tunable effective refraction index can be conveniently realized in a broad frequency range by changing the applied magnetic field. Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability.

  18. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  19. Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; Fabbris, Gilberto; Meyers, D.; Freeland, John W.; Martin, Ivar; Heinonen, Olle G.; Steadman, Paul; Zhou, Hua; Schlepütz, Christian M.; Dean, Mark P. M.; te Velthuis, Suzanne G. E.; Zuo, Jian-Min; Bhattacharya, Anand

    2016-10-01

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2 /3Sr1 /3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2 + states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.

  20. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars.

    PubMed

    Dong, Zheng-Gao; Liu, Hui; Xu, Ming-Xiang; Li, Tao; Wang, Shu-Ming; Zhu, Shi-Ning; Zhang, X

    2010-08-16

    We demonstrate that the trapped magnetic resonance mode can be induced in an asymmetric double-bar structure for electromagnetic waves normally incident onto the double-bar plane, which mode otherwise cannot be excited if the double bars are equal in length. By adjusting the structural geometry, the trapped magnetic resonance becomes transparent with little resonance absorption when it happens in the dipolar resonance regime, a phenomenon so-called plasmonic analogue of electromagnetically induced transparency (EIT). This planar EIT-like metamaterial offers a great geometry simplification by combining the radiant and subradiant resonant modes in a single double-bar resonator.

  1. Molecular scale photodiode composed of recombinant ferredoxin/chlorophyll a heterostructure.

    PubMed

    Choi, Jeong-Woo; Lee, Doo-Bong; Oh, Byung-Keun; Min, Junhong; Kim, Kun Soo

    2008-09-01

    Photoelectrical rectifying property of biomolecular heterostructures is investigated in molecular scale. Recombinant ferredoxin and chlorophyll a were used as an electron acceptor and a sensitizer respectively in the molecular layer by mimicking photosynthesis. A self-assembled monolayer of recombinant ferredoxin was formed on Au surface, and then chlorophyll a was deposited onto the recombinant ferredoxin layer by Langmuir-Blodgett method. The formation of recombinant ferredoxin/chlorophyll a hetero-layers was confirmed by the SPR (surface plasmon resonance) spectroscopy, and the surface was observed by the STM (scanning tunneling microscopy). The rectifying property by the STS (scanning-tunneling-spectroscopy) based current-voltage characteristics was achieved in the recombinant ferredoxin/chlorophyll a hetero-layers. Thus, proposed hetero-layers functioned as a rectifier that can be useful property for the development of molecular-scale bioelectronic devices.

  2. Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods.

    PubMed

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-06-09

    We experimentally demonstrate a tunable negative permeability metamaterial (NPM) at microwave frequencies by introducing yttrium iron garnet (YIG) rods into a periodic array of split ring resonators (SRRs). Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability. For magnetic fields from 0 to 2000 Oe and from 3200 to 6000 Oe, the resonance frequencies of the metamaterial can blueshift about 350 MHz and redshift about 315 MHz, respectively. Both shifts are completely continuous and reversible. Correspondingly, the tunable negative permeabilities are widened by about 360 MHz and 200 MHz compared to that without YIG rods.

  3. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  4. The fatigue evaluation method for a structural stainless steel using the magnetic sensor composed of three pancake coils

    SciTech Connect

    Oka, M.; Tsuchida, Y.; Enokizono, M.; Yakushiji, T.

    2011-06-23

    May metallic structural materials, such as stainless steels, are currently used in our surroundings. If external force is repeatedly added for many years, it is thought that fatigue damage accumulates in stainless steels. When excessive fatigue damage accumulates in these metals, there is a possibility that they are destroyed by fatigue damage accumulation. Therefore, it is important to know the amount of the fatigue damage they have suffered in order to prevent them from being destroyed. We are developing the fatigue evaluation method for stainless steels with a magnetic sensor composed of three pancake type coils. In this research, the inspection object is ferritic stainless steels such as SUS430. The method of fatigue evaluation for ferritic stainless steels uses the three coil type sensor, and shows a good correlation between the number of stress cycles and the output signal of the sensor, even though the correlation between the output signal and an added stress is not completely accurate. This paper describes the evaluation method of fatigue damage in ferritic stainless steel using a magnetic sensor composed of three pancake-type coils.

  5. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Yuan, Yulin; Zhou, Zhide; Liang, Jintao; Chen, Zhencheng; Li, Guiyin

    2014-02-01

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe3O4/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe3O4/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe3O4/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe3O4/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe3O4/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe3O4/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer-Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe3O4/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  6. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    PubMed

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  7. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes.

  8. Magnetic sensing technology for molecular analyses

    PubMed Central

    Issadore, D.; Park, Y. I.; Shao, H.; Min, C.; Lee, K.; Liong, M.; Weissleder, R.; Lee, H.

    2014-01-01

    Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification, and yet achieves high signal-to-background contrast. Moreover, magnetic sensors are also well-suited for miniaturization to match the size of biological targets, which enables sensitive detection of rare cells and small amounts of molecular markers. We herein summarize recent advances in magnetic sensing technologies, with an emphasis on clinical applications in point-of-care settings. Key components of sensors, including magnetic nanomaterials, labeling strategies and magnetometry, are reviewed. PMID:24887807

  9. Molecular diagnostics using magnetic nanobeads

    NASA Astrophysics Data System (ADS)

    Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2010-01-01

    In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.

  10. Magnetic properties and microstructure of Sm-Co/α-Fe nanocomposite thick film-magnets composed of multi-layers over 700 layers

    SciTech Connect

    Tou, A. Morimura, T.; Nakano, M.; Yamai, T.; Fukunaga, H.

    2014-05-07

    We synthesized Sm-Co/α-Fe nanocomposite film-magnets, approximately 10 μm in thickness, composed of 780 layers by the pulse laser deposition method. Transmission electron microscopic observations revealed that the synthesized film is composed of Sm-Co and α-Fe layers with the well-controlled α-Fe thickness of approximately 10–20 nm, which is suitable one predicted by the micromagnetic simulation. In spite of the enhanced interlayer diffusion of Fe and Co by annealing for crystallization, the (BH){sub max} value of 100 kJ/m{sup 3} was obtained at the averaged compositions of Sm/(Sm + Co) = 0.16 and Fe/(Sm + Co + Fe) = 0.47. The α-Fe fraction for obtaining the highest (BH){sub max} value was smaller than that expected from the micromagnetic simulation. Although the annealing for crystallization lay the easy direction of magnetization in the plane, the film is not expected to have strong crystallographic texture.

  11. Quantum entanglement and coherence in molecular magnets

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis

    Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of

  12. Recorder Composer

    ERIC Educational Resources Information Center

    Stephenson, Kimberly

    2012-01-01

    The best moments happen when students begin to realize how much power they have and use that power to create. Composing as they master different instrumental stages helps students make composition and performance a natural step in learning. A step-by-step process (rhythm notation, add pitches, copy to a five-line staff, check work, and play) keeps…

  13. Molecular systems in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.

    2007-04-01

    Brief overview of one-two electron molecular systems made out of protons and/or α-particles in a strong magnetic field B≤4.414×1013 G is presented. A particular emphasis is given to the one-electron exotic ions H 3 ++ (pppe), He 2 3+ (α α e) and to two-electron ionsH 3 + (pppee), He 2 ++ (α α ee). Quantitative studies in a strong magnetic field are very complicated technically. Novel approach to the few-electron Coulomb systems in magnetic field, which provides accurate results, based on variational calculus with physically relevant trial functions is briefly described.

  14. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  15. Effect of magnetic field on the rotating filamentary molecular clouds

    NASA Astrophysics Data System (ADS)

    Aghili, P.; Kokabi, K.

    2017-04-01

    The Purpose of this work is to study the evolution of magnetized rotating filamentary molecular clouds. We consider cylindrical symmetric filamentary molecular clouds at an early stage of evolution. For the first time we consider the rotation of filamentary molecular in the presence of an axial and azimuthal magnetic field without any assumption of density and magnetic functions. We show that in addition to decreasing the radial collapse velocity, the rotational velocity is also affected by the magnetic field. The existence of rotation yields fragmentation of filaments. Moreover, we show that the magnetic field has a significant effect on the fragmentation of filamentary molecular clouds.

  16. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  17. Magnetic Support and Fragmentation of Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Pudritz, R. E.

    1990-12-01

    Molecular clouds contain magnetic fields with energies comparable to their gravitational binding energies. In the dynamic environment of the interstellar medium, strong hydromagnetic waves are excited in this field on wavelengths longer than the ion-neutral mean free path. In a typical molecular cloud this length-scale, λmin, is of the order of 10-1 of the cloud size. On shorter length-scales the gas is without wave pressure support, and can flow down field lines. The joint effects of excess gravity and flux leakage causes a local dynamic collapse. We test our ideas with a detailed -body calculation in which we impose MHD waves on an initially uniform isothermal gas cloud. The effect of magnetic fields is included in our calculation by the frictional drag on the dominant, neutral population. In the absence of MHD waves the cloud fragments slightly while collapsing, then merges together at the centre into a single, pressure-supported, flattened object. We impose a spectrum of large amplitude Alfvén waves whose velocity amplitude varies as k-3/2, where k is the wavenumber. The initial background magnetic field is chosen to have an energy density slightly larger than the gravitational energy density. The damping is assumed to be balanced by a continuous external supply of wave energy. The simulation shows that the magnetic field and hydromagnetic waves provide sufficient support against gravity so that the cloud undergoes a global, isotropic contraction at a quarter the free-fall rate. The shortest wave present, λ≍λmin, sets the minimum fragment mass, for small Jeans masses. We follow the evolution of fragments having a minimum overdensity of 30 (corresponding to a mass m ≥ 0.4 × 10-3 Mcloud). The fragments appear quickly, and then agglomerate together, yielding an evolving mass spectrum that remains approximately a power law, dN/dm ∝ m-α, where a is 2.5 ± 0.5. Several specific tests of this theory are proposed: (i) that a short wavelength cut

  18. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-05

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10{sup −4} Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  19. Theoretical design of molecular nanomagnets for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Garlatti, E.; Carretta, S.; Schnack, J.; Amoretti, G.; Santini, P.

    2013-11-01

    Molecular nanomagnets are promising materials for very-low-temperature magnetic refrigeration due to their enhanced magnetocaloric effect. By explicitly considering Carnot refrigeration cycles, we theoretically show that the best molecules for magnetic refrigeration between T ≃10 K and the sub-Kelvin region are those made of strongly ferromagnetically coupled magnetic ions, contrarily to the established belief. This recipe will provide a strong stimulus for designing new magnetic molecules for cryogenic technologies.

  20. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    PubMed

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-05

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  1. Molecular magnetic dichroism in spectra of white dwarfs.

    PubMed

    Berdyugina, S V; Berdyugin, A V; Piirola, V

    2007-08-31

    We present novel calculations of the magnetic dichroism appearing in molecular bands in the presence of a strong magnetic field, which perturbs the internal structure of the molecule and results in net polarization due to the Paschen-Back effect. Based on that, we analyze new spectropolarimetric observations of the cool magnetic helium-rich white dwarf G99-37, which shows strongly polarized molecular bands in its spectrum. In addition to previously known molecular bands of the C2 Swan and CH A-X systems, we find a firm evidence for the violet CH B-X bands at 390 nm and C2 Deslandres-d'Azambuja bands at 360 nm. Combining the polarimetric observations with our model calculations, we deduce a dipole magnetic field of 7.5+/-0.5 MG with the positive pole pointing towards the Earth. We conclude that the developed technique is an excellent tool for studying magnetic fields on cool magnetic stars.

  2. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function.

    PubMed

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-09-08

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  3. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    PubMed Central

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  4. Theory of zwitterionic molecular-based organic magnets

    NASA Astrophysics Data System (ADS)

    Shelton, William A.; Aprà, Edoardo; Sumpter, Bobby G.; Saraiva-Souza, Aldilene; Souza Filho, Antonio G.; Nero, Jordan Del; Meunier, Vincent

    2011-08-01

    We describe a class of organic molecular magnets based on zwitterionic molecules (betaine derivatives) possessing donor, π bridge, and acceptor groups. Using extensive electronic structure calculations we show the electronic ground-state in these systems is magnetic. In addition, we show that the large energy differences computed for the various magnetic states indicate a high Neel temperature. The quantum mechanical nature of the magnetic properties originates from the conjugated π bridge (only p electrons) in cooperation with the molecular donor-acceptor character. The exchange interactions between electron spin are strong, local, and independent on the length of the π bridge.

  5. (Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units

    PubMed Central

    2014-01-01

    New symmetrical arylene bisimide derivatives formed by using electron-donating–electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5-aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5-thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69–0.90%. PMID:24966893

  6. Magnetization of RFe3 intermetallic compounds: Molecular field theory analysis

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Croat, J. J.

    1982-06-01

    We report magnetization measurements of all RFe3 intermetallic compounds known to form (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm). A two-sublattice molecular field model is employed to analyze the data except in the case of YFe3, for which one magnetic sublattice is assumed. In general, the model adequately describes the temperature dependence of the magnetization. For SmFe3 our results suggest that the samarium and iron moments are ferromagnetically coupled.

  7. Tracing the Magnetic Field Morphology of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Franco, G. A. P.; Alves, F. O.

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales. Based on observations collected at the Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCTI, Brazil).

  8. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    SciTech Connect

    Franco, G. A. P.; Alves, F. O. E-mail: falves@mpe.mpg.de

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.

  9. Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of Al/Al2O3 nanodisks with the placement of silicon nanospheres

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-03-01

    In this study, a quadrumer cluster composed of Al nanodisks in both symmetric and antisymmetric orientations has been utilized to generate magnetic hot-spots by using coil-type Fano resonances. Determining the accurate geometrical sizes for the examined cluster, we calculated the spectral response of the structure numerically. Utilizing strong plasmon resonance hybridization between Al/Al2O3 nanodisks that are suited in a close proximity to each other, such a finite and simple nanocluster yields intensified hidden magnetic fields |H| as a dark mode and electric |E| as a bright modes. Using and placement of silicon nanospheres in the unoccupied gap distance between proximal Al nanodisks give rise to significant enhancement in the energy and quality of the induced multiple Fano dips. Appearing of multiple Fano resonant modes in a coil-type regime in the UV and visible spectrum helps us to optimize the energy of generated magnetic hot-spots, significantly. Ultimately, we examined the sensitivity of the proposed final quadrumer by considering the behavior of Fano minima. We plotted the linear figure of merit (FoM) based on the Fano resonance energy differences in various conditions over the refractive index. Quantifying the FoM for the studied nanostructure, then we compared the quality of structure with the analogous nanoclusters. This work paves novel methods toward the utilization of Al/Al2O3 nanoparticles as a potential substance to employ in designing nanoclusters that are able to support strong dark resonances as well as bright modes. Wide-range working region, optimized electric and magnetic fields, multiple and high quality Fano dips, high FoM and low-costs are the superior features of the proposed artificial structure in comparison to analogous configurations.

  10. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4) nanoparticles for induced tumor cell apoptosis.

    PubMed

    Qu, Yang; Li, Jianbo; Ren, Jie; Leng, Junzhao; Lin, Chao; Shi, Donglu

    2014-10-08

    Monodispersed MnxZn1-xFe2O4 magnetic nanoparticles of 8 nm are synthesized and encapsulated in amphiphilic block copolymer for development of the hydrophilic magnetic nanoclusters (MNCs). These MNCs exhibit superparamagnetic characteristics, high specific absorption rate (SAR), large saturation magnetization (Ms), excellent stability, and good biocompatibility. MnFe2O4 and Mn0.6Zn0.4Fe2O4 are selected as optimum compositions for the MNCs (MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC) and employed for magnetic fluid hyperthermia (MFH) in vitro. To ensure biosafety of MFH, the parameters of alternating magnetic field (AMF) and exposure time are optimized with low frequency, f, and strength of applied magnetic field, Happlied. Under optimized conditions, MFH of MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC result in cancer cell death rate up to 90% within 15 min. The pathway of cancer cell death is identified as apoptosis, which occurs in mild hyperthermia near 43 °C. Both MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC show similar efficiencies on drug-sensitive and drug-resistant cancer cells. On the basis of these findings, those MnxZn1-xFe2O4 nanoclusters can serve as a promising candidate for effective targeting, diagnosis, and therapy of cancers. The multimodal cancer treatment is also possible as amphiphilic block copolymer can encapsulate, in a similar fashion, different nanoparticles, hydrophobic drugs, and other functional molecules.

  11. Magnetic Properties of Electrically Contacted Fe4 Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Totti, Frederico; Ninova, Silviya; Yan, Shichao; Choi, Deung-Jang; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-03-01

    Single molecule magnets (SMMs) are often large and fragile molecules. This poses challenges for the construction of SMM based spintronics. Device geometries with two electronic leads contacting a molecule may be explored via scanning tunneling microscopy (STM). The Fe4 molecule stands out as a robust, thermally evaporable SMM, making it ideal for such an experiment. Here we present the first STM investigations of individual Fe4 molecules thermally evaporated onto a monolayer of Cu2N on a Cu (100) crystal. Using inelastic electron tunneling spectroscopy (IETS), spin excitations in single Fe4 molecules can be detected at meV energies. Analysis using a Spin Hamiltonian allows extraction of magnetic properties of individual Fe4 molecules, and investigation of the influence of the electronic leads. The tip and sample induce small changes in the magnetic properties of Fe4 molecules, making Fe4 a promising candidate for the development of spintronics devices based on SMMs.

  12. My Career: Composer

    ERIC Educational Resources Information Center

    Morganelli, Patrick

    2013-01-01

    In this article, the author talks about his career as a composer and offers some advice for aspiring composers. The author works as a composer in the movie industry, creating music that supports a film's story. Other composers work on television shows, and some do both television and film. The composer uses music to tell the audience what kind of…

  13. Molecular magnetic switch for a metallofullerene

    PubMed Central

    Wu, Bo; Wang, Taishan; Feng, Yongqiang; Zhang, Zhuxia; Jiang, Li; Wang, Chunru

    2015-01-01

    The endohedral fullerenes lead to well-protected internal species by the fullerene cages, and even highly reactive radicals can be stabilized. However, the manipulation of the magnetic properties of these radicals from outside remains challenging. Here we report a system of a paramagnetic metallofullerene Sc3C2@C80 connected to a nitroxide radical, to achieve the remote control of the magnetic properties of the metallofullerene. The remote nitroxide group serves as a magnetic switch for the electronic spin resonance (ESR) signals of Sc3C2@C80 via spin–spin interactions. Briefly, the nitroxide radical group can ‘switch off’ the ESR signals of the Sc3C2@C80 moiety. Moreover, the strength of spin–spin interactions between Sc3C2@C80 and the nitroxide group can be manipulated by changing the distance between these two spin centres. In addition, the ESR signals of the Sc3C2@C80 moiety can be switched on at low temperatures through weakened spin–lattice interactions. PMID:25732144

  14. Molecular characterization of rheumatoid arthritis with magnetic resonance imaging.

    PubMed

    Gu, Jeffrey T; Nguyen, Linda; Chaudhari, Abhijit J; MacKenzie, John D

    2011-04-01

    Several recent advances in the field of magnetic resonance imaging (MRI) may transform the detection and monitoring of rheumatoid arthritis (RA). These advances depict both anatomic and molecular alterations from RA. Previous techniques could detect specific end products of metabolism in vitro or were limited to providing anatomic information. This review focuses on the novel molecular imaging techniques of hyperpolarized carbon-13 MRI, MRI with iron-labeled probes, and fusion of MRI with positron emission tomography. These new imaging approaches go beyond the anatomic description of RA and lend new information into the status of this disease by giving molecular information.

  15. Spin–orbit coupled molecular quantum magnetism realized in inorganic solid

    PubMed Central

    Park, Sang-Youn; Do, S.-H.; Choi, K.-Y.; Kang, J.-H.; Jang, Dongjin; Schmidt, B.; Brando, Manuel; Kim, B.-H.; Kim, D.-H.; Butch, N. P.; Lee, Seongsu; Park, J.-H.; Ji, Sungdae

    2016-01-01

    Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal–organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin–orbit coupled pseudospin-½ Yb3+ ions. The magnetization represents the magnetic quantum values of an isolated Yb4 tetrahedron with a total (pseudo)spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky–Moriya interaction originating from strong spin–orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky–Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets. PMID:27650796

  16. Spin-orbit coupled molecular quantum magnetism realized in inorganic solid.

    PubMed

    Park, Sang-Youn; Do, S-H; Choi, K-Y; Kang, J-H; Jang, Dongjin; Schmidt, B; Brando, Manuel; Kim, B-H; Kim, D-H; Butch, N P; Lee, Seongsu; Park, J-H; Ji, Sungdae

    2016-09-21

    Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal-organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin-orbit coupled pseudospin-½ Yb(3+) ions. The magnetization represents the magnetic quantum values of an isolated Yb4 tetrahedron with a total (pseudo)spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky-Moriya interaction originating from strong spin-orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky-Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets.

  17. Molecular cluster model for magnetic iron

    NASA Astrophysics Data System (ADS)

    Pavo, A. C.; Taft, C. A.; Hammond, B. L.; Lester, W. A., Jr.

    1989-08-01

    Ab initio Hartree-Fock calculations were performed on the quintet spin state of the Fe2 molecule in order to study the electronic, magnetic, and chemical bonding properties as well as the hyperfine interactions. Good agreement is found with band-theoretical and experimental parameters. The calculations support Pauling's model of occupation and bonding of valence orbitals, resonance of covalent bonds, and conduction-band metallic orbitals. A strong charge-polarization effect is found that is not observed in the septet ground state. The participation of s and d electrons in bonding is similar to that found in recent configuration-interaction (CI) calculations on the ground state. The calculated magneton number is in good agreement with experiment.

  18. Low fragment polyatomic molecular ion source by using permanent magnets.

    PubMed

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement.

  19. Magnetic Behavior of a Dy8 Molecular Nanomagnet

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis

    2015-03-01

    As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).

  20. Molecular Loops in the Galactic Center: Evidence for Magnetic Flotation

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-01

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the 12CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  1. High-temperature molecular magnets based on cyanovanadate building blocks: spontaneous magnetization at 230 k.

    PubMed

    Entley, W R; Girolami, G S

    1995-04-21

    The molecular-based magnetic materials Cs(2)Mn(||)[V(||)(CN)(6)] (1) and (Et(4)N)(0.5)Mn(l.25)- [V(CN)(5)].2H(2)O (2) (where Et is ethyl) were prepared by the addition of manganese(II) triflate to aqueous solutions of the hexacyanovanadate(II) ion at 0 degrees C. Whereas 1 crystallizes in a face-centered cubic lattice, 2 crystallizes in a noncubic space group. The cesium salt (1) has features characteristic of a three-dimensional ferrimagnet with a Néel transition at 125 kelvin. The tetraethylammonium salt (2) also behaves as a three-dimensional ferrimagnet with a Néel temperature of 230 kelvin; only two other molecular magnets have higher magnetic ordering temperatures. Saturation magnetization measurements indicate that in both compounds the V(II) and high-spin Mn(II) centers are antiferromagnetically coupled. Both 1 and 2 exhibit hysteresis loops characteristic of soft magnets below their magnetic phase-transition temperatures. The high magnetic ordering temperatures of these cyano-bridged solids confirm that the incorporation of early transition elements into the lattice promotes stronger magnetic coupling by enhancing the backbonding into the cyanide pi* orbitals.

  2. Low-temperature magnetization dynamics of magnetic molecular solids in a swept field

    SciTech Connect

    Lenferink, Erik; Vijayaraghavan, Avinash; Garg, Anupam

    2015-05-15

    The swept-field experiments on magnetic molecular solids such as Fe{sub 8} are studied using Monte Carlo simulations, and a kinetic equation developed to understand collective magnetization phenomena in such solids, where the collective aspects arise from dipole–dipole interactions between different molecules. Because of these interactions, the classic Landau–Zener–Stückelberg theory proves inadequate, as does another widely used model constructed by Kayanuma. It is found that the simulations provide a quantitatively accurate account of the experiments. The kinetic equation provides a similarly accurate account except at very low sweep velocities, where it fails modestly. This failure is attributed to the neglect of short-range correlations between the dipolar magnetic fields seen by the molecular spins. The simulations and the kinetic equation both provide a good understanding of the distribution of these dipolar fields, although analytic expressions for the final magnetization remain elusive.

  3. Quantum ignition of deflagration in the Fe8 molecular magnet

    NASA Astrophysics Data System (ADS)

    Leviant, Tom; Keren, Amit; Zeldov, Eli; Myasoedov, Yuri

    2014-10-01

    We report spatially resolved, time-dependent, magnetization reversal measurements of an Fe8 single molecular magnet using a microscopic Hall bar array. We found that a deflagration process, where molecules reverse their spin direction along a moving front, can be ignited quantum mechanically (T →0) at a resonance field, with no phonon pulse. The avalanche front velocity is of the order of 1m/s and is sensitive to field gradients and sweep rates. We also measured the thermal diffusivity κ in Fe8. This allows us to estimate the "flame" temperature.

  4. Muon-fluorine entangled states in molecular magnets.

    PubMed

    Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A

    2007-12-31

    The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.

  5. Two Models of Magnetic Support for Photoevaporated Molecular Clouds

    SciTech Connect

    Ryutov, D; Kane, J; Mizuta, A; Pound, M; Remington, B

    2004-05-05

    The thermal pressure inside molecular clouds is insufficient for maintaining the pressure balance at an ablation front at the cloud surface illuminated by nearby UV stars. Most probably, the required stiffness is provided by the magnetic pressure. After surveying existing models of this type, we concentrate on two of them: the model of a quasi-homogeneous magnetic field and the recently proposed model of a ''magnetostatic turbulence''. We discuss observational consequences of the two models, in particular, the structure and the strength of the magnetic field inside the cloud and in the ionized outflow. We comment on the possible role of reconnection events and their observational signatures. We mention laboratory experiments where the most significant features of the models can be tested.

  6. Magnetic quantum coherence effect in Ni4 molecular transistors.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2014-07-09

    We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances.

  7. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  8. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  9. Magnetic Field of the Vela C Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji; Nakamura, Fumitaka; Watanabe, Makoto; Tamura, Motohide; Kwon, Jungmi; Sato, Shuji

    2016-10-01

    We have performed extensive near-infrared (JHK s) imaging polarimetry toward the Vela C molecular cloud, which covers the five high-density sub-regions (North, Centre-Ridge, Centre-Nest, South-Ridge, and South-Nest) with distinct morphological characteristics. The obtained polarization vector map shows that three of these sub-regions have distinct plane-of-the-sky (POS) magnetic-field characteristics according to the morphological characteristics. (1) In the Centre-Ridge sub-region, a dominating ridge, the POS magnetic field is mostly perpendicular to the ridge. (2) In the Centre-Nest sub-region, a structure having a slightly extended nest of filaments, the POS magnetic field is nearly parallel to its global elongation. (3) In the South-Nest sub-region, which has a network of small filaments, the POS magnetic field appears to be chaotic. By applying the Chandrasekhar-Fermi method, we derived the POS magnetic field strength as ˜70-310 μG in the Centre-Ridge, Centre-Nest, and South-Ridge sub-regions. In the South-Nest sub-region, the dispersion of polarization angles is too large to apply the C-F method. Because the velocity dispersion in this sub-region is not greater than those in the other sub-regions, we suggest that the magnetic field in this sub-region is weaker than those in other sub-regions. We also discuss the relationship between the POS magnetic field (configuration and strength) and the cloud structure of each sub-region.

  10. A novel experiment using rotating magnetic fields to study the pumping spin states in molecular magnets

    NASA Astrophysics Data System (ADS)

    Hernandez-Minguez, Alberto; Macia, Ferran; Hernandez, Joan Manel; Carbonell, Carla; Amigó, Roger; Tejada, Javier

    2008-03-01

    We report here a new experimental technique to monitor spin population dynamics in molecular magnets. This deals with a huge rotating magnetic field initially applied along the easy magnetization direction, z--axis, that rotates with components parallel and perpendicular to the z axis. This technique allows us to probe spin relaxation on reasonably fast time scales detecting the inversion of the whole spin states. The population of spin levels depends on the frequency of the rotating magnetic field. This very new technique could help to carry out new experiments in a number of different fields, broadening substantially the scope of their use until now. A Hern'andez-M'inguez et al., Appl. Phys. Lett. 91, 202502 (2007)

  11. Composing in Public

    ERIC Educational Resources Information Center

    Heintz, Anne

    2011-01-01

    The central premise of this project is that researching student communication and composing actions in light of audience will illuminate particular features of student composing processes in 21st century interdisciplinary contexts. Students in this study took part in a six week inquiry unit about their local area. Data generated included student…

  12. Magnetic and electronic properties of porphyrin-based molecular nanowires

    SciTech Connect

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang; Wang, Wei-Wei

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  13. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  14. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  15. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  16. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  17. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  18. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces.

    PubMed

    Kahle, Steffen; Deng, Zhitao; Malinowski, Nikola; Tonnoir, Charlène; Forment-Aliaga, Alicia; Thontasen, Nicha; Rinke, Gordon; Le, Duy; Turkowski, Volodymyr; Rahman, Talat S; Rauschenbach, Stephan; Ternes, Markus; Kern, Klaus

    2012-01-11

    The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.

  19. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    PubMed

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe3O4@SiO2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe3O4@SiO2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%.

  20. Strong parallel magnetic field effects on the hydrogen molecular ion

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Li, Baiwen; Taylor, K. T.

    2003-09-01

    Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two-dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long-standing discrepancy for the Req value in the 1sigmau state at a field strength of 1.0 × 106 T. The dissociation energies of the antibonding 1pig state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pig potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.

  1. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review.

    PubMed

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M

    2017-04-01

    Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.

  2. Pressure-confined clumps in magnetized molecular clouds

    NASA Technical Reports Server (NTRS)

    Bertoldi, Frank; Mckee, Christopher F.

    1992-01-01

    A substantial fraction of the mass of a giant molecular cloud (GMC) in the Galaxy is confined to clumps which occupy a small fraction of the volume of the cloud. A majority of the clumps in several well-studied GMCs (Ophiuchus, Orion G, Rosette, Cepheus OB3) are not in gravitational virial equilibrium, but instead are confined by the pressure of the surrounding medium. These clumps thus violate one of 'Larson's (1981) laws'. Generalizing the standard virial analysis for spherical clouds to spheroidal clouds, we determine the Jeans mass and the magnetic critical mass for the clumps in these clouds. The Alfven Mach number, which is proportional to the internal velocity dispersion of the clumps divided by the Alfven velocity, is estimated to be of order unity for all the clumps. The more massive clumps, which are in gravitational virial equilibrium, are too massive to be supported by magnetic fields alone (i.e., they are magnetically supercritical). Internally generated turbulence must play a key role in supporting these clumps.

  3. Composability in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Müller-Quade, Jörn; Renner, Renato

    2009-08-01

    If we combine two secure cryptographic systems, is the resulting system still secure? Answering this question is highly nontrivial and has recently sparked a considerable research effort, in particular, in the area of classical cryptography. A central insight was that the answer to the question is yes, but only within a well-specified composability framework and for carefully chosen security definitions. In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution (QKD) protocol must fulfill to allow its safe use within a larger security application (e.g. for secure message transmission); and we demonstrate—by an explicit example—what can go wrong if conventional (non-composable) security definitions are used. Finally, to illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a QKD protocol. In the second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability (UC) framework and state the composition theorem that guarantees that secure protocols can securely be composed to larger applications. We focus on the secure composition of quantum protocols into unconditionally secure classical protocols. However, the resulting security definition is so strict that some tasks become impossible without additional security assumptions. Quantum bit commitment is impossible in the UC framework even with mere computational security. Similar problems arise in the quantum bounded storage model and we observe a trade-off between the UC and the use of the weakest possible security assumptions.

  4. Molecular magnetic resonance imaging of brain–immune interactions

    PubMed Central

    Gauberti, Maxime; Montagne, Axel; Quenault, Aurélien; Vivien, Denis

    2014-01-01

    Although the blood–brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO). PMID:25505871

  5. Composing decoherence functionals

    NASA Astrophysics Data System (ADS)

    Boës, Paul; Navascués, Miguel

    2017-02-01

    Quantum measure theory (QMT) is a generalization of quantum theory where physical predictions are computed from a matrix known as the decoherence functional (DF). Previous works have noted that, in its original formulation, QMT exhibits a problem with composability, since the composition of two decoherence functionals is, in general, not a valid decoherence functional. This does not occur when the DFs in question happen to be positive semidefinite (a condition known as strong positivity). In this paper, we study the concept of composability of DFs and its consequences for QMT. Firstly, we show that the problem of composability is much deeper than originally envisaged, since, for any n , there exists a DF that can coexist with n -1 copies of itself, but not with n . Secondly, we prove that the set of strongly positive DFs cannot be enlarged while remaining closed under composition. Furthermore, any closed set of DFs containing all quantum DFs can only contain strongly positive DFs.

  6. Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle

    PubMed Central

    Bleve, Valentina; Schäfer, Christian; Franchi, Paola; Silvi, Serena; Mezzina, Elisabetta; Credi, Alberto; Lucarini, Marco

    2015-01-01

    Invited for this months cover are the groups of Professors Marco Lucarini and Alberto Credi at the University of Bologna. The cover picture shows coupled and uncoupled states of a [2]rotaxane incorporating stable nitroxide radical units in both the ring and dumbbell components. Interaction between nitroxide radicals could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon deprotonation of the rotaxane NH2+ centers that effects a quantitative displacement of a dibenzocrown macroring to a 4,4’-bipyridinium recognition site. The complete base- and acid-induced switching cycle of the EPR pattern was repeated several times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. For more details, see the Communication on p. 18 ff. PMID:25870780

  7. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  8. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    PubMed Central

    Burgess, Jacob A.J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-01-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface. PMID:26359203

  9. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope.

    PubMed

    Burgess, Jacob A J; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-11

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  10. Synthesis and characterization of low-dimensional molecular magnetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Chen

    This dissertation presents experimental results from the synthesis and structural, magnetic characterization of representative low-dimensional molecule-based magnetic materials. Most of the materials reported in this dissertation, both coordination polymers and cuprate, are obtained as the result of synthesizing and characterizing spin ladder systems; except the material studied in Chapter 2, ferricenyl(III)trisferrocenyl(II)borate, which is not related to the spin ladder project. The interest in spin ladder systems is due to the discovery of high-temperature superconductivity in doped cuprates possessing ladder-like structures, and it is hoped that investigation of the magnetic behavior of ladder-like structures will help us understand the mechanism of high-temperature superconductivity. Chapter 1 reviews fundamental knowledge of molecular magnetism, general synthetic strategies for low-dimensional coordination polymers, and a brief introduction to the current status of research on spin ladder systems. Chapter 2 presents a modified synthetic procedure of a previously known monomeric complex, ferricenyl(III)trisferrocenyl(II)borate, 1. Its magnetic properties were characterized and previous results have been disproved. Chapter 3 investigates the magnetism of [CuCl2(CH3CN)] 2, 2, a cuprate whose structure consists of isolated noninterpenetrating ladders formed by the stacking of Cu(II) dimers. This material presents an unexpected ferromagnetic interaction both within the dimeric units and between the dimers, and this behavior has been rationalized based on the effect of its terminal nonbridging ligands. In Chapter 4, the synthesis and magnetism of two ladder-like coordination polymers, [Co(NO3)2(4,4'-bipyridine) 1.5(MeCN)]n, 3, and Ni2(2,6-pyridinedicarboxylic acid)2(H2O)4(pyrazine), 4, are reported. Compound 3 possesses a covalent one-dimensional ladder structure in which Co(II) ions are bridged through bipyridine molecules. Compared to the materials discussed in

  11. Decomposing Composing Conventions.

    ERIC Educational Resources Information Center

    Beers, Terry

    Recent research has invited critiques of the authoritative descriptions of composing found in many rhetoric textbooks. The concept of "convention" may be especially useful in rethinking the teleological basis of these textbook descriptions. Conventions found in composition textbooks need to be unmasked as arbitrary concepts which serve…

  12. Composing and Comprehending.

    ERIC Educational Resources Information Center

    Jensen, Julie M., Ed.

    Intended for elementary school teachers of reading and composition, this book assembles several articles on the reading/writing relationship that have appeared in 1982 and 1983 issues of the journal "Language Arts." The three sections of the book define the relationship between composing and comprehending, explore relevant research, and…

  13. Observation of molecular assisted recombination in the magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Tonegawa, Akira; Ogawa, Hironori; Yazawa, Hiroyuki; Ono, Masataka; Kawamura, Kazutaka

    2003-10-01

    Molecular assisted recombination (MAR) with vibrational hydorogen molecular has been observed to enhance the reduction of ion particle flux in a high density magnetized sheet plasma device (TPDSHEET-IV). There are two main paths for MAR: (1) H2(v) + e=> H- + H (dissociated attachment) followed by H- + H+ =>H + H (mutual neutralization), and (2) H2(v) + A+ => (AH)+ + H (ion conversion) followed by (AH)+ + e => A + H (dissociative recombination) , where A+(A) is a hydrogen or an impurity ion (atom) existing in the plasma. The value of H+, H2+ and H3+ are observed in the mid-plane region with hot electron(Te= 10-15 eV) by a mass-analyzer. On the other hand, negative ions of hydrogen atom H- is localized in the circumference of existing cold electrons (Te= 3-5 eV) by a probe assisted laser photodetachment method. A small amount of secondary hydrogen gas puffing into a hydrogen plasma decreased gradually the density of H2+, H3+ and increased rapidly H- in the plasma, while the conventional radiation and three-body recombination (EIR) processes were disappeared. These results can be well explained by taking the MAR in the plasma into account.

  14. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  15. Josephson current through a quantum dot coupled to a molecular magnet

    NASA Astrophysics Data System (ADS)

    Stadler, P.; Holmqvist, C.; Belzig, W.

    2013-09-01

    Josephson currents are carried by sharp Andreev states within the superconducting energy gap. We theoretically study the electronic transport of a magnetically tunable nanoscale junction consisting of a quantum dot connected to two superconducting leads and coupled to the spin of a molecular magnet. The exchange interaction between the molecular magnet and the quantum dot modifies the Andreev states due to a spin-dependent renormalization of the quantum dot's energy level and the induction of spin flips. A magnetic field applied to the central region of the quantum dot and the molecular magnet further tunes the Josephson current and starts a precession of the molecular magnet's spin. We use a nonequilibrium Green's function approach to evaluate the transport properties of the junction. Our calculations reveal that the energy level of the dot, the magnetic field, and the exchange interaction between the molecular magnet and the electrons occupying the energy level of the quantum dot can trigger transitions from a 0 to a π state of the Josephson junction. The redistribution of the occupied states induced by the magnetic field strongly modifies the current-phase relation. The critical current exhibits a sharp increase as a function of either the energy level of the dot, the magnetic field, or the exchange interaction.

  16. Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

    PubMed

    Mon, Marta; Pascual-Álvarez, Alejandro; Grancha, Thais; Cano, Joan; Ferrando-Soria, Jesús; Lloret, Francesc; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2016-01-11

    Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM.

  17. Toxoplasma gondii DNA detection with a magnetic molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

  18. Colloidal Suspensions of Rodlike Nanocrystals and Magnetic Spheres under an External Magnetic Stimulus: Experiment and Molecular Dynamics Simulation.

    PubMed

    May, Kathrin; Eremin, Alexey; Stannarius, Ralf; Peroukidis, Stavros D; Klapp, Sabine H L; Klein, Susanne

    2016-05-24

    Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.

  19. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets.

    PubMed

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-02-08

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

  20. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    PubMed Central

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-01-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications. PMID:28176869

  1. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-02-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

  2. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Process of timbral composing

    NASA Astrophysics Data System (ADS)

    Withrow, Sam

    In this paper, I discuss the techniques and processes of timbral organization I developed while writing my chamber work, Afterimage. I compare my techniques with illustrative examples by other composers to place my work in historical context. I examine three elements of my composition process. The first is the process of indexing and cataloging basic sonic materials. The second consists of the techniques and mechanics of manipulating and assembling these collections into larger scale phrases, textures, and overall form in a musical work. The third element is the more elusive, and often extra-musical, source of inspiration and motivation. The evocative power of tone color is both immediately evident yet difficult to explain. What is timbre? This question cannot be answered solely in scientific terms; subjective factors affect our perception of it.

  4. Modulation of circular current and associated magnetic field in a molecular junction: A new approach

    PubMed Central

    Patra, Moumita; Maiti, Santanu K.

    2017-01-01

    A new proposal is given to control local magnetic field in a molecular junction. In presence of finite bias a net circular current is established in the molecular ring which induces a magnetic field at its centre. Allowing a direct coupling between two electrodes, due to their close proximity, and changing its strength we can regulate circular current as well as magnetic field for a wide range, without disturbing any other physical parameters. We strongly believe that our proposal is quite robust compared to existing approaches of controlling local magnetic field and can be verified experimentally. PMID:28256548

  5. Electronic and magnetic properties of silicon supported organometallic molecular wires: a density functional theory (DFT) study.

    PubMed

    Liu, Xia; Tan, Yingzi; Li, Xiuling; Wu, Xiaojun; Pei, Yong

    2015-08-28

    The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to the well-studied gas phase TM-benzene molecular wires. Si-[Mn(styrene)]∞ and Si-[Cr(styrene)]∞ single molecular wires (SMWs) are a ferromagnetic semiconductor and half metal, respectively. Creation of H-atom defects on the silicon surface can introduce an impurity metallic band, which leads to novel half-metallic magnetism of a Si-[Mn(styrene)]∞ system. Moreover, double molecular wires (DMWs) containing two identical or hetero SMWs are theoretically designed. The [Mn(styrene)]∞-[Cr(styrene)]∞ DMW exhibits half-metallic magnetism where the spin-up and spin-down channels are contributed by two single molecular wires. Finally, we demonstrate that introducing a TM-defect may significantly affect the electronic structure and magnetic properties of molecular wires. These studies provide new insights into the structure and properties of surface supported 1-D sandwiched molecular wires and may inspire the future experimental synthesis of substrate confined organometallic sandwiched molecular wires.

  6. Composing Disability: Diagnosis, Interrupted.

    PubMed

    Wilkerson, Abby; Fisher, Joseph; Fletcher, Wade

    2016-12-01

    Writing is central both to the medical diagnostic codification of disability and to disabled people's efforts to interrupt, complicate, or disrupt dominant medical narratives. This Symposium, like the George Washington University conference from which it takes its name, creates space for diverse modes and genres of claiming authority regarding diagnosis and its cultural and material effects. "Queer" and "crip" interrogations of diagnosis illuminate its status as a cultural phenomenon, embracing culturally disavowed embodiments and embodied experiences as tools for diagnosing inegalitarian social relations and opportunities for cultural interventions. This Symposium traces the workings of diagnostic normativity manifested in experiences such as "disruptive deafness," unstable bodily materialities, pathologized grief and other forms of affective distress, and "surgical assemblages." It presents a diverse array of compositions, articulated on each writer's own terms, addressing a range of embodied experiences through multiple genres and voices, ranging from conversation transcript to scholarly essay, poetry, graphic memoir, and personal essay. Here, laypersons interrupt monologic medical diagnosis, claiming space to compose themselves. Together, the authors trace instances of corporeal "correction" back to the noxious agents, both environmental and political, that consistently breach the boundaries of corporeality.

  7. Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.

    2014-01-01

    The molecular concept (paradigm) in magnetobiology seems to be most substantiated and significant for explaining the biomedical effects of electromagnetic fields, for the new medical technology of transcranial magnetic stimulation of cognitive activity, for the nuclear magnetic control of biochemical processes and for the search of new magnetic effects in biology and medicine. The key structural element of the concept is a radical ion pair as the receiver of magnetic fields and the source of magnetic effects. The existence of such pairs was recently detected in the two life-supporting processes of paramount importance — in enzymatic ATP and DNA syntheses. The bibliography includes 80 references.

  8. New aspects of π–d interactions in magnetic molecular conductors

    PubMed Central

    Sugimoto, Toyonari; Fujiwara, Hideki; Noguchi, Satoru; Murata, Keizo

    2009-01-01

    The 2 : 1 cation radical salts of bent donor molecules of ethylenedithio-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDT-TTFVO), ethylenedithio-diselenadithiafulvalenoquinone-1,3-dithiolemethide (EDT-DSDTFVO), ethylenedithio-diselenadithiafulvalenothioquinone-1,3-diselenolemethide (EDT-DSDTFVSDS), ethylenedioxy-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDO-TTFVO) and ethylenedioxy-tetrathiafulvalenoquinone-1,3-diselenolemethide (EDO-TTFVODS) with FeX4− (X = Cl, Br) ions are prepared by electrocrystallization. The crystal structures of these salts are composed of alternately stacked donor molecule and magnetic anion layers. The band structures of the donor molecule layers are calculated using the overlap integrals between neighboring donor molecules and are compared with the observed electronic transport properties. The magnetic ordering of the Fe(III) d spins of FeX4− ions is determined from magnetization and heat capacity measurements. The magnetic ordering temperatures are estimated by considering a combination of a direct d–d interaction between the d spins and an indirect π–d interaction between the conduction π electron and the d spins, whose magnitudes are separately calculated from the crystal structures with an extended Hückel molecular orbital method. The occurrence of a π–d interaction is proved by the negative magnetoresistance, and the magnitude of magnetoresistance reflects the strength of the π–d interaction. The effect of pressure on the magnetoresistance is studied, and the result indicates that the magnitude of magnetoresistance increases, namely, the π–d interaction is enhanced with increasing pressure. From these experimental results it is shown that (EDT-TTFVO)2•FeBr4 is a ferromagnetic semiconductor, (EDT-DSDTFVO)2•FeX4 (X = Cl, Br) and (EDT-DSDTFVSDS)2•FeBr4 are metals exhibiting antiferromagnetic ordering of the d spins, and (EDO-TTFVO)2•FeCl4 and (EDO-TTFVODS)2•FeBr4•(DCE)0.5 (DCE =-dichloroethane) are

  9. Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples.

    PubMed

    Zheng, Hao-Bo; Mo, Jie-Zhen; Zhang, Yu; Gao, Qiang; Ding, Jun; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-02-14

    In this work, we proposed a simple co-mixing method to fabricate magnetic molecularly imprinted polymers (magnetic MIPs). MIPs were commercial products while magnetic nanoparticles (MNPs) were prepared by chemical oxidation and solvothermal methods. When MNPs and MIPs (with mass ratio 1:1) were co-mixed and vortexed evenly in methanol, they could assemble into magnetic composites spontaneously and thus be magnetically separable. To testify the feasibility of the magnetic composites in sample preparation, the resultant magnetic MIPs were applied as sorbents for magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) in milk samples. Under optimized conditions, a rapid, convenient, and efficient method for the determination of three FQs in milk samples was established by magnetic MIPs based MSPE coupling with high performance liquid chromatography with ultraviolet detector (HPLC-UV). The limits of detection (LODs) for three FQs were found to be 1.8-3.2ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 9.5% and 12.5%, respectively. The recoveries of FQs for two spiked milk samples were in the range from 94.0% to 124.4% with the RSDs less than 11.6%.

  10. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses.

  11. Teaching Composing with an Identity as a Teacher-Composer

    ERIC Educational Resources Information Center

    Francis, Jennie

    2012-01-01

    I enjoy composing and feel able to write songs that I like and which feel significant to me. This has not always been the case and the change had nothing to do with my school education or my degree. Composing at secondary school did not move beyond Bach and Handel pastiche. I did not take any composing courses during my degree. What did influence…

  12. Fragmentation of Filamentary Molecular Clouds Threaded by Perpendicular Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hanawa, Tomoyuki; Kudoh, Takahiro; Tomisaka, Kohji

    2017-01-01

    Filamentary clouds are ubiquitously seen in the star forming regions and the fragmentation of them are thought to result in star formation. Some of them are threaded by magnetic field parallel to the cloud axis and some others are thread by perpendicular ones. The effects of the parallel magnetic field on fragmentation have been studied well. However we know little about the effects of the perpendicular magnetic field on fragmentation. A strong perpendicular magnetic field is likely to suspend the fragmentation. In order to assess this effect, we have performed a linear stability analysis of an isothermal filamentary cloud while taking account of a uniform magnetic field perpendicular to the cloud axis. We have used the ideal MHD approximation in the stability analysis for simplicity. Then the analysis is formulated to be an eigenvalue problem in which each eigenmode has either a real frequency (stable) or a pure imaginary one (unstable). The growth rate of the instability as well as the eigenmode is obtained numerically as a function of the wavelength and magnetic field strength.The magnetic field suppresses gas motion perpendicular to it. Accordingly, the growth rate of an unstable eigenmode decreases monotonically as the magnetic field is strengthened. The wavelength of the most unstable mode is slightly increased by the magnetic field. When the plasma beta at the cloud center is slightly below 2, the fragmentation instability is completely suppressed. When the unstable mode is excited, only the magnetic field lines that thread the high region near the cloud axis move appreciably. We compare our analysis with those for magnetized sheet-like clouds.

  13. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    SciTech Connect

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G.F.

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  14. Dragging human mesenchymal stem cells with the aid of supramolecular assemblies of single-walled carbon nanotubes, molecular magnets, and peptides in a magnetic field.

    PubMed

    de Paula, Ana Cláudia C; Sáfar, Gustavo A M; Góes, Alfredo M; Bemquerer, Marcelo P; Ribeiro, Marcos A; Stumpf, Humberto O

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy.

  15. Composing the Curriculum: Teacher Identity

    ERIC Educational Resources Information Center

    Lewis, Rebecca

    2012-01-01

    What is composing and how is it valued? What does a good education in composing look like; what constraints hinder it and is it possible to overcome such constraints? Can composing be a personal, creative and valuable activity for the school student? What role does the teacher play in all of this? These are questions that I discuss in this…

  16. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices

    NASA Astrophysics Data System (ADS)

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  17. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices.

    PubMed

    Campbell, Victoria E; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-08

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  18. Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions

    SciTech Connect

    Wang Wenyong; Richter, Curt A.

    2007-09-26

    In this study, we fabricate molecular magnetic tunnel junctions and demonstrate that inelastic electron tunneling spectroscopy technique can be utilized to inspect such junctions to investigate the existence of desired molecular species in the device area. Tunneling magnetoresistance measurements have been carried out and spin-dependent tunneling transport has been observed. Bias-dependence of the tunneling resistance has also been detected. IETS measurements at different magnetic field suggested that the TMR bias-dependence was likely caused by the inelastic scattering due to the molecular vibrations.

  19. AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION

    SciTech Connect

    Soler, J. D.; Netterfield, C. B.; Fissel, L. M.; Hennebelle, P.; Martin, P. G.; Miville-Deschenes, M.-A.

    2013-09-10

    We describe a morphological imprint of magnetization found when considering the relative orientation of the magnetic field direction with respect to the density structures in simulated turbulent molecular clouds. This imprint was found using the Histogram of Relative Orientations (HRO), a new technique that utilizes the gradient to characterize the directionality of density and column density structures on multiple scales. We present results of the HRO analysis in three models of molecular clouds in which the initial magnetic field strength is varied, but an identical initial turbulent velocity field is introduced, which subsequently decays. The HRO analysis was applied to the simulated data cubes and mock-observations of the simulations produced by integrating the data cube along particular lines of sight. In the three-dimensional analysis we describe the relative orientation of the magnetic field B with respect to the density structures, showing that: (1) the magnetic field shows a preferential orientation parallel to most of the density structures in the three simulated cubes, (2) the relative orientation changes from parallel to perpendicular in regions with density over a critical density n{sub T} in the highest magnetization case, and (3) the change of relative orientation is largest for the highest magnetization and decreases in lower magnetization cases. This change in the relative orientation is also present in the projected maps. In conjunction with simulations, HROs can be used to establish a link between the observed morphology in polarization maps and the physics included in simulations of molecular clouds.

  20. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    SciTech Connect

    Li, J.; Hu, J.; Wang, H.; Wu, R. Q.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  1. Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment. II. Typical Axisymmetric Solution

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2007-05-01

    We follow the ambipolar-diffusion-driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center. This problem was formulated in Paper I. We determine the density, velocity, and magnetic field as functions of space and time, and the contribution of ambipolar diffusion and Ohmic dissipation to the resolution of the magnetic flux problem of star formation. The issue of whether the magnetic field ever decouples from the (neutral) matter is also addressed. We also find that the electrons do not decouple from the field lines before thermal ionization becomes important and recouples the magnetic field to the neutral matter. Ohmic dissipation becomes more effective than ambipolar diffusion as a flux reduction mechanism only at the highest densities (a few × 1012 cm-3). In the high-density central parts of the core, the magnetic field acquires an almost spatially uniform structure, with a value that, at the end of the calculation (nn~5×1014 cm-3), is found to be in excellent agreement with meteoritic measurements of magnetic fields in the protosolar nebula. Outside the hydrostatic protostellar core, a concentration of magnetic flux (a ``magnetic wall'') forms, which gives rise to a magnetic shock. This magnetic shock is the precursor of the repeated shocks previously found by Tassis & Mouschovias, which cause spasmodic accretion onto the hydrostatic core at later times.

  2. Ultrasensitive detection and molecular imaging with magnetic nanoparticles.

    PubMed

    Yang, Jian; Gunn, Jonathan; Dave, Shivang R; Zhang, Miqin; Wang, Y Andrew; Gao, Xiaohu

    2008-02-01

    Recent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics. MNPs made from iron oxide, in particular, have attracted extensive interest and have already been used in clinical studies owing to their capability of deep-tissue imaging, non-immunogenesis, and low toxicity. In this Research Highlight article, we attempt to highlight the recent breakthroughs in MNP synthesis based on a non-hydrolytic approach, nanoparticle (NP) surface engineering, their unique structural and magnetic properties, and current applications in ultrasensitive detection and imaging with a special focus on innovative bioassays. We will also discuss our perspectives on future research directions.

  3. Spin-electric Berry phase shift in triangular molecular magnets

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid; Canali, C. M.; Sjöqvist, Erik

    2016-12-01

    We propose a Berry phase effect on the chiral degrees of freedom of a triangular magnetic molecule. The phase is induced by adiabatically varying an external electric field in the plane of the molecule via a spin-electric coupling mechanism present in these frustrated magnetic molecules. The Berry phase effect depends on spin-orbit interaction splitting and on the electric dipole moment. By varying the amplitude of the applied electric field, the Berry phase difference between the two spin states can take any arbitrary value between zero and π , which can be measured as a phase shift between the two chiral states by using spin-echo techniques. Our result can be used to realize an electric-field-induced geometric phase-shift gate acting on a chiral qubit encoded in the ground-state manifold of the triangular magnetic molecule.

  4. Electronic and magnetic properties of silicon supported organometallic molecular wires: a density functional theory (DFT) study

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Tan, Yingzi; Li, Xiuling; Wu, Xiaojun; Pei, Yong

    2015-08-01

    The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to the well-studied gas phase TM-benzene molecular wires. Si-[Mn(styrene)]∞ and Si-[Cr(styrene)]∞ single molecular wires (SMWs) are a ferromagnetic semiconductor and half metal, respectively. Creation of H-atom defects on the silicon surface can introduce an impurity metallic band, which leads to novel half-metallic magnetism of a Si-[Mn(styrene)]∞ system. Moreover, double molecular wires (DMWs) containing two identical or hetero SMWs are theoretically designed. The [Mn(styrene)]∞-[Cr(styrene)]∞ DMW exhibits half-metallic magnetism where the spin-up and spin-down channels are contributed by two single molecular wires. Finally, we demonstrate that introducing a TM-defect may significantly affect the electronic structure and magnetic properties of molecular wires. These studies provide new insights into the structure and properties of surface supported 1-D sandwiched molecular wires and may inspire the future experimental synthesis of substrate confined organometallic sandwiched molecular wires.The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to

  5. Studies on magnetic properties of unique molecular magnet {[FeII(pyrazole)4]2[NbIV(CN)8]•4H2O}n

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Wasiutyński, T.; Pinkowicz, D.; Sieklucka, B.

    2013-01-01

    In this paper magnetic properties of hybrid inorganic-organic compound {[FeII(pyrazole)4]2[NbIV(CN)8]•4H2O}n are presented. This is a three dimensional molecular magnet with well localized magnetic moments, which make it a suitable candidate for testing magnetic models. In order to characterize the magnetic properties of the above compound we performed the AC/DC magnetometry in the range 0-5 T. The special attention was paid to the phase transition at 7.9 K. The study in magnetic field supports magnetic ordering below 7.9 K.

  6. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  7. Molecular Dynamics Simulations of Motion of Paramagnetic Oxygen Molecules in Air by Magnetic Force

    NASA Astrophysics Data System (ADS)

    Takezawa, Nobuhisa; Fukushima, Kimichika

    2000-03-01

    Oxygen molecules with integer spin in air move upward to higher magnetic fields along magnetic field gradient. This motion is disturbed by the collisions between oxygen molecules and other diamagnetic molecules. To magnetically separate oxygen molecules in air, it is necessary to suppress the collisions with diamagnetic molecules and enhance the transport by magnetic force. In our study, molecular dynamics calculations were carried out to investigate temperature and pressure dependence of the ratio of oxygen molecules to air transported along magnetic field gradient. At temperature T=300K, pressure P=0.1MPa and magnetic field H=20T, the ratio of oxygen molecules to air transported along magnetic field gradient increased from 20% without magnetic fields to about 22% in magnetic fields; at T=200K and P=0.1MPa, to 25%; at T=300K and P=0.005MPa, to 24%. This indicates that the transport of oxygen molecules in air by magnetic force was promoted at lower temperature and pressure.

  8. Graphene as a reversible spin manipulator of molecular magnets.

    PubMed

    Bhandary, Sumanta; Ghosh, Saurabh; Herper, Heike; Wende, Heiko; Eriksson, Olle; Sanyal, Biplab

    2011-12-16

    One of the primary objectives in molecular nanospintronics is to manipulate the spin states of organic molecules with a d-electron center, by suitable external means. In this Letter, we demonstrate by first principles density functional calculations, as well as second order perturbation theory, that a strain induced change of the spin state, from S=1→S=2, takes place for an iron porphyrin (FeP) molecule deposited at a divacancy site in a graphene lattice. The process is reversible in the sense that the application of tensile or compressive strains in the graphene lattice can stabilize FeP in different spin states, each with a unique saturation moment and easy axis orientation. The effect is brought about by a change in Fe-N bond length in FeP, which influences the molecular level diagram as well as the interaction between the C atoms of the graphene layer and the molecular orbitals of FeP.

  9. All-atom molecular dynamics study of a spherical micelle composed of N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) block copolymers: a potential carrier of drug delivery systems for cancer.

    PubMed

    Kuramochi, Hiroshi; Andoh, Yoshimichi; Yoshii, Noriyuki; Okazaki, Susumu

    2009-11-19

    An all-atom molecular dynamics simulation of a spherical micelle composed of amphiphilic N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) (PEG-PBLG-Ac) block copolymers was performed in aqueous solution at 298.15 K and 1 atm. Such copolymers have received considerable attention as carriers in drug delivery systems. In this study, we used copolymers consisting of 11 EG units and 9 BLG units as models. Starting from the copolymers arranged spherically, the calculation predicted an equilibrium state consisting of a slightly elliptical micelle structure with a hydrophobic PBLG inner core and a hydrophilic PEG outer shell. The micelle structure was dynamically stable during the simulation, with the PEG blocks showing a compact helical conformation and the PBLG blocks an alpha-helix form. Multiple hydrogen bonds with solvent water molecules stabilized the helical conformation of the PEG blocks, leading to their hydration as shown by longer residence times of water molecules near the PEG ether oxygen atoms compared with that of bulk water. Some water molecules have also been found distributed within the hydrophobic core; they showed continuous exchange with bulk water during the simulation. Those molecules existed mostly as a cluster in spaces between the copolymers, forming hydrogen bonds among themselves as well as with the hydrophobic core through hydrophilic groups such as esters and amides. The water molecules forming hydrogen bonds with the micelle may play an important role in the stabilization of the micelle structure.

  10. Magnetic field in molecular cloud cores: Limits on field strengths and linewidths

    NASA Technical Reports Server (NTRS)

    Goodman, A. A.

    1986-01-01

    Preliminary observations by others indicate that the magnetic field strength in dense molecular cloud cores is on the order of 30 micro G, much closer to the background field strength than to the flux-freezing prediction for this density. This result implies that some process must exist to decrease the magnetic field strength in these regions to much less than its flux-frozen value, e.g., ambipolar diffusion. At these moderate field strengths, magnetohydrodynamic waves in the cores provide a good explanation of observed supra-thermal molecular linewidths.

  11. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  12. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  13. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  14. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Rauwerdink, Adam M.; Weaver, John B.

    2010-01-01

    Molecular binding is important in many venues including antibody binding for diagnostic and therapeutic agents and pharmaceutical function. We demonstrate that a method of measuring nanoparticle Brownian motion, termed magnetic spectroscopy of nanoparticle Brownian motion (MSB), can be used to monitor molecular binding and the bound fraction. It is plausible that MSB can be used to measure binding in vivo because the same signal has been used to image nanoparticles in nanogram quantities in vivo.

  15. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  16. Magnetocaloric effect and critical behavior in Mn2-imidazole-[Nb(CN)8] molecular magnetic sponge

    NASA Astrophysics Data System (ADS)

    Fitta, Magdalena; Pełka, Robert; Gajewski, Marcin; Mihalik, Marian; Zentkova, Maria; Pinkowicz, Dawid; Sieklucka, Barbara; Bałanda, Maria

    2015-12-01

    A comprehensive study of magnetocaloric effect (MCE) and critical behavior in the {Mn2(imH)2(H2O)4[Nb(CN)8]·4H2O}n molecular magnet is reported. The compound is an example of a magnetic sponge, where structural changes provoked by dehydration process lead to the increase of Tc critical temperature from 25 K for the as-synthesized sample (1) up to 60 K for the anhydrous one (2). MCE and critical behavior were investigated by magnetization measurements. The maximum value of magnetic entropy change ΔS, determined by the magnetization measurements for 1 is 6.70 J mol-1 K-1 (8.95 J kg-1 K-1) at μ0ΔH=5 T, while for 2 it is equal to 4.02 J mol-1 K-1 (7.73 J kg-1 K-1) at the same magnetic field change. The field dependence of MCE at Tc for 1 and 2 was consistent with critical exponents, which allowed to classify both phases to 3D Heisenberg universality class. The Tc-2/3 dependence of the maximum entropy change has been tested using data of 1 and 2 together with MCE data previously reported for other members of the ferrimagnetic Mn2-L-[Nb(CN)8] (L=imidazole, pyridazine and pyrazole) series. Experimental MCE results have been compared with the spin contribution to the magnetic entropy change estimated using a molecular field approximation.

  17. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C.

    PubMed

    Türkmen, Deniz; Bereli, Nilay; Çorman, M Emin; Shaikh, Huma; Akgöl, Sinan; Denizli, Adil

    2014-10-01

    Controlled drug delivery system is a technique which has considerable recent potential in the fields of pharmacy and medicine. Mitomycin C is commonly used drug in the treatment of superficial bladder and breast cancers. In the present study, mitomycin C-imprinted magnetic poly(hydroxyethyl methacrylate)-based nanoparticles (MIMNs) were prepared using surfactant free emulsion polymerization for controlled delivery of mitomycin C. The MIMNs were characterized by fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, electron spin resonance, and elemental analysis. The average particle diameter of MIMNs was about 200 nm.

  18. Structural, magnetic and optical properties of two concomitant molecular crystals

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Milne, Bruce; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Pereira da Silva, Pedro S.; Martín-Gil, Jesús

    2016-03-01

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Cu(II) ions assemble in alternating chains with Cu … Cu distances of 2.5685(4) and 3.1760(4) Å. The temperature dependence of the magnetic susceptibility reveals an antiferromagnetic interaction between the paddle-wheel copper centers with an exchange of -300 cm-1. The exchange integral was also determined by quantum chemical ab-initio calculations, using polarised and unpolarised basis sets reproducing well the experimental value. The second harmonic generation efficiency of a concomitantly crystallized material was evaluated and was found to be comparable to urea.

  19. Quantum tunneling of two coupled single-molecular magnets

    NASA Astrophysics Data System (ADS)

    Hu, Jianming; Chen, Zhide; Shen, Shunqing

    2003-03-01

    Jian-Ming Hu, Zhi-De Chen and Shun-Qing Shen Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong December 02, 2002 Very recently a supramolecular dimer of two single-molecule magnets (SMM) was reported to be synthesized successfully. Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by the numerical exact diagonalization method. The sweeping rate effect in the derivatives of hysteresis loops has been quantitatively investigated using the modified Landau-Zener model. In addiction we find that exchange coupling between the two SMMs provides a biased field to expel the tunneling between SMMs to two new resonant points via an intermediate state, and direct tunneling is prohibited. The model parameters are calculated for the dimer based on the tunneling process. The outcome indicates that the coupling effect will not change the parameters of each SMM too much at all. This work is supported by a CRCG grant of The University of Hong Kong.

  20. The quest for rationalizing the magnetism in purely organic semiquinone-bridged bisdithiazolyl molecular magnets.

    PubMed

    Fumanal, Maria; Deumal, Mercè

    2016-07-27

    Semiquinone-bridged bisdithiazolyl-based radicals (XBBO) are appealing purely organic magnetic building blocks for the synthesis of new functional materials. Remarkably, for the phenyl-derivative PhBBO, the rationalization of its magnetism becomes a proof of concept that DFT can dramatically fail to evaluate JAB magnetic interactions between purely organic radical pairs. Instead, wavefunction-based methods are required. Once JAB's are fully characterized, the magnetic topology of PhBBO is disclosed to consist of ferromagnetic FM π-stacks that are very weakly coupled (by FM and AFM JAB interactions). The magnetic susceptibility χT(T) and magnetization M(H) of PhBBO are then calculated using a first-principles bottom-up approach. The study of the unit cell contraction upon cooling from room temperature to zero-Kelvin is relevant to propose a suitable model for the phase transition that occurs at 4.5 K. A simplistic picture tells us that the antiparallel-aligned 1D-FM-chains convert into domains of weakly either FM- or AFM-coupled 1D-FM-chains. Accordingly, the presence of these domains may introduce geometrical spin frustration below 4.5 K.

  1. Molecular Imaging in Cardiovascular Magnetic Resonance Imaging: Current Perspective and Future Potential

    PubMed Central

    Sosnovik, David E.

    2008-01-01

    The development of novel imaging agents and techniques is allowing some biological events to be imaged in vivo with magnetic resonance imaging (MRI) at the cellular and subcellular level. In this paper, the use of novel gadolinium chelates and superparamagnetic iron oxide nanoparticles for molecular MRI of the cardiovascular system is extensively reviewed. The physical properties of these imaging agents and the pulse sequences best suited to their visualization are extensively discussed. The application of molecular MRI in diseases of the vasculature and myocardium is then reviewed. The clinical experience to date, as well as the promise and potential impact of molecular MRI, is extensively discussed. PMID:18690161

  2. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.

    PubMed

    Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing

    2007-04-01

    The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.

  3. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  4. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts.

    PubMed

    Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro; Umebayashi, Yasuhiro

    2011-08-28

    Room temperature ionic liquids (ILs) are stable liquids composed of anions and cations. 1-ethyl-3-methyl-imidazolium (EMIm, EMI) is a popular and important cation that produces thermally stable ILs with various anions. In this study two amide-type anions, bis(trifluoro-methanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [(N(SO(2)F)(2), FSA, or FSI] were investigated by multinuclear NMR spectroscopy. In addition to EMIm-TFSA and EMIm-FSA, lithium-salt-doped binary systems were prepared (EMIm-TFSA-Li and EMIm-FSA-Li). The spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR spectroscopy and the correlation times of (1)H NMR, τ(c)(EMIm) (8 × 10(-10) to 3 × 10(-11) s) for the librational molecular motion of EMIm and those of (7)Li NMR, τ(c)(Li) (5 × 10(-9) to 2 × 10(-10) s) for a lithium jump were evaluated in the temperature range between 253 and 353 K. We found that the bulk viscosity (η) versus τ(c)(EMIm) and cation diffusion coefficient D(EMIm) versus the rate 1/τ(c)(EMIm) have good relationships. Similarly, linear relations were obtained for the η versus τ(c)(Li) and the lithium diffusion coefficient D(Li) versus the rate 1∕τ(c)(Li). The mean one-jump distances of Li were calculated from τ(c)(Li) and D(Li). The experimental values for the diffusion coefficients, ionic conductivity, viscosity, and density in our previous paper were analyzed by the Stokes-Einstein, Nernst-Einstein, and Stokes-Einstein-Debye equations for the neat and binary ILs to clarify the physicochemical properties and mobility of individual ions. The deviations from the classical equations are discussed.

  5. Suppression of quantum phase interference in the molecular magnet Fe8 with dipolar-dipolar interaction

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-De; Liang, J.-Q.; Shen, Shun-Qing

    2002-09-01

    Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution, which subsequently affects the quantum steps of the hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunneling in the molecular magnet Fe8, which explains why the quenching points of tunnel splitting between odd and even resonant tunneling predicted theoretically were not observed experimentally.

  6. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    PubMed

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  7. [Experiment and analyse on the effect of magnetic nanoparticles upon relaxation time of proton in molecular recognition by MRI].

    PubMed

    Hu, Lili; Song, Tao; Yang, Wenhui; Wang, Ming; Zhang, Fang; Tao, Chunjing

    2007-06-01

    To research on the effect of three different magnetic nanoparticles upon relaxation time of proton. The detection by magnetic resonance imaging (MRI) indicates that there is the effect of marked difference to right control experiment and to analyze the difference from theory. The result discloses that will be able to perform the experiment of molecular recognition using magnetic nanoparticles later.

  8. Transient magnetic tunneling mediated by a molecular bridge in the junction region

    NASA Astrophysics Data System (ADS)

    Kalvová, A.; Špička, V.; Velický, B.

    2014-07-01

    This paper extends our recent theoretical study of transient currents in molecular bridge junctions [1] to magnetic tunneling. Presently, we calculate the excess magnetic tunneling through the molecular bridge shunting the junction. The system is represented by two ferromagnetic electrodes bridged by a molecular size island with one electronic level and a local Hubbard type correlation. The island is linked with the electrodes by tunneling junctions whose coupling strength is assumed to undergo rapid changes affecting the connectivity of the system. We employ the non-equilibrium Green's functions. The numerical solution is obtained solving the real-time Dyson equation in the integro-differential form self-consistently. The switching events controlling the junctions give rise to transient changes of magnetisation of the island. They strongly depend on the static galvanic bias between the electrodes, mutual alignment of their magnetisation and on the time scale of the switching.

  9. A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate.

    PubMed

    Zhang, Zhaohui; Luo, Lijuan; Cai, Rong; Chen, Hongjun

    2013-11-15

    A highly sensitive and selective molecularly imprinted (MIP) sensor combined with magnetic molecularly imprinted solid phase extraction (MMISPE) was developed for the determination of dibutyl phthalate (DBP) in complex matrixes. The magnetic molecularly imprinted polymer (MMIP) was synthesized as solid phase extraction (SPE) sorbet to extract DBP from complex matrixes and as sensing element to improve the selectivity of the imprinted sensor. The morphologies of MMIP and MIP-sensor were characterized by using scanning electron microscope (SEM) and transmission electron microscopy (TEM). The electrochemical performances of MIP-sensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The conditions of preconcentration, elution and electrochemical determination were studied in detail. Under the optimized experimental conditions, the response currents of the MIP-sensor exhibited a linear relationship towards DBP concentrations ranging from 1.0 × 10(-8)g/L to 1.0 × 10(-3)g/L. The limit of detection of the MMIP-sensor coupled with the MMISPE was calculated as 0.052 ng/L. The MMIP-sensor coupled with the MMISPE was applied to detect DBP in complex samples successfully.

  10. The Hanle Effect in Atomic and Molecular Lines: A New Look at the Sun's Hidden Magnetism

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Asensio Ramos, A.; Shchukina, N.

    2006-12-01

    This paper reviews some of the most recent advances in the application of the Hanle effect to solar physics, and how these developments are allowing us to explore the magnetism of the photospheric regions that look ``empty'' in solar magnetograms--that is, the Sun's ``hidden'' magnetism. In particular, we show how a joint analysis of the Hanle effect in atomic and molecular lines indicates that there is a vast amount of hidden magnetic energy and unsigned magnetic flux localized in the (intergranular) downflowing regions of the quiet solar photosphere, carried mainly by tangled fields at sub-resolution scales with strengths between the equipartition field values and ˜1 kG. This article combines in one contribution Trujillo Bueno's invited keynote paper and the contributed papers by Asensio Ramos & Trujillo Bueno and by Shchukina & Trujillo Bueno.

  11. Molecular magnetic properties of heteroporphyrins: a theoretical analysis.

    PubMed

    Campomanes, Pablo; Menéndez, María Isabel; Cárdenas-Jirón, Gloria Inés; Sordo, Tomás Luis

    2007-11-14

    B3LYP/6-31G(d) optimization of porphyrin, tetraphenylporphyrin and their 21,23-diheteroatom substituted derivatives with O, S, and Se heteroatoms was performed. A planar macrocycle was found in all cases except 21,23-dioxatetraphenylporphyrin which presents only slight deviations from planarity. A Bader analysis uncovers the presence of S-S and Se-Se interactions in the four corresponding heteroporphyrins, which appreciably distort the original unsubstituted macrocycles. In the minimum energy structures of heterotetraphenylporphyrins the four meso phenyl groups slant alternatively to right or left so that the two pairs of opposite phenyls present a staggered conformation. The pi current induced by a perpendicular magnetic field in porphyrin bifurcates across both types of pyrrole subunits but the presence of O, S and Se heteroatoms in 21,23-diheteroporphyrins causes a diminution of the current density through the inner section of the two heterorings and, consequently, the current path goes then through the outer section of these rings. The NICS values at the ring critical points of the heterorings are much larger (in absolute value) than those at the pyrrole ring critical points but appreciably smaller than that at the ring critical point of a pyrrole molecule. In agreement with experimental data the (1)H NMR present appreciable downfield shifts for the beta H atoms of the heterorings in the 21,23-heterosubstituted molecules.

  12. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis

    NASA Astrophysics Data System (ADS)

    Florescu, Octavian; Wang, Kevan; Au, Patrick; Tang, Jimmy; Harris, Eva; Beatty, P. Robert; Boser, Bernhard E.

    2010-03-01

    We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 μm wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in the IC. After sedimentation, the magnetic beads that did not bind strongly to the functionalized surface of the IC through a specific biochemical complex were removed by a magnetic separation force generated by flowing current through another conductor placed laterally to the detection area. As the spherical bead pivoted on the surface of the chip, the lateral magnetic force was further amplified by mechanical leveraging, and 50 mA of current flowing through the separation conductor placed 18 μm away from the bead resulted in 7.5 pN of tensile force on the biomolecular tether immobilizing the bead. This force proved high enough to break nonspecific interactions while leaving specific antibody-antigen bonds intact. A sandwich capture immunoassay on purified human immunoglobulin G showed strong correlation with a control enzyme linked immunosorbent assay and a detection limit of 10 ng/ml or 70 pM. The beads bound to the detection area after on-chip magnetic separation were detected optically. To implement a fully integrated molecular diagnostics platform, the on-chip magnetic separation functionality presented in this work can be readily combine with state-of-the art CMOS-based magnetic bead detection technology.

  13. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging

    PubMed Central

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E.; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  14. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins.

  15. On the valve nature of a monolayer of aligned molecular magnets in tunneling spin-polarized electrons: Towards organic molecular spintronics

    SciTech Connect

    Chakrabarti, Sudipto; Pal, Amlan J.

    2014-01-06

    We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.

  16. Magnetism on a Mesoscopic Scale: Molecular Nanomagnets Bridging Quantum and Classical Physics

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Nikolaos P.; Sundt, Alexander; Nehrkorn, Joscha; Machens, Anna; Waldmann, Oliver

    2011-07-01

    In recent years polynuclear transition metal molecules have been synthesized and proposed for example as magnetic storage units or qubits in quantum computers. They are known as molecular nanomagnets and belong in the class of mesoscopic systems, which are large enough to display many-body effects but small enough to be away from the finite-size scaling regime. It is a challenge for physicists to understand their magnetic properties, and for synthetic chemists to efficiently tailor them by assembling fundamental units. They are complementary to artificially engineered spin systems for surface deposition, as they support a wider variety of complex states in their low energy spectrum. Here a few characteristic examples of molecular nanomagnets showcasing unusual many-body effects are presented. Antiferromagnetic wheels and chains can be described in classical terms for small sizes and large spins to a great extent, even though their wavefunctions do not significantly overlap with semiclassical configurations. Hence, surprisingly, for them the transition from the classical to the quantum regime is blurred. A specific example is the Fe18 wheel, which displays quantum phase interference by allowing Néel vector tunneling in a magnetic field. Finally, the Co5Cl single-molecule magnet is shown to have an unusual anisotropic response to a magnetic field.

  17. Magnetic trapping with simultaneous photoacoustic detection of molecularly targeted rare circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2013-03-01

    Photoacoustic (PA) imaging has been widely used in molecular imaging to detect diseased cells by targeting them with nanoparticle-based contrast agents. However, the sensitivity and specificity are easily degraded because contrast agent signals can be masked by the background. Magnetomotive photoacoustic imaging uses a new type of multifunctional composite particle combining an optically absorptive gold nanorod core and magnetic nanospheres, which can potentially accumulate and concentrate targeted cells while simultaneously enhancing their specific contrast compared to background signals. In this study, HeLa cells molecularly targeted using nanocomposites with folic acid mimicking targeted rare circulating tumor cells (CTCs) were circulated at a 6 ml/min flow rate for trapping and imaging studies. Preliminary results show that the cells accumulate rapidly in the presence of an externally applied magnetic field produced by a dual magnet system. The sensitivity of the current system can reach up to 1 cell/ml in clear water. By manipulating the trapped cells magnetically, the specificity of detecting cells in highly absorptive ink solution can be enhanced with 16.98 dB background suppression by applying motion filtering on PA signals to remove unwanted background signals insensitive to the magnetic field. The results appear promising for future preclinical studies on a small animal model and ultimate clinical detection of rare CTCs in the vasculature.

  18. Composed planar Hall effect sensors with dual-mode operation

    NASA Astrophysics Data System (ADS)

    Mor, Vladislav; Roy, Debangsu; Schultz, Moty; Klein, Lior

    2016-02-01

    We present a composed planar Hall effect sensor with two modes of operation: (a) an ON mode where the composed sensor responds to magnetic field excitations similarly to the response of a regular planar Hall effect sensor, and (b) an OFF mode where the response is negligible. The composed planar Hall effect sensor switches from the OFF mode to the ON mode when it is exposed to a magnetic field which exceeds a certain threshold determined by the sensor design. The features of this sensor make it useful as a switch triggered by magnetic field and as a sensing device with memory, as its mode of operation indicates exposure to a magnetic field larger than a certain threshold without the need to be activated during the exposure itself.

  19. Field-dependent superradiant quantum phase transition of molecular magnets in microwave cavities

    NASA Astrophysics Data System (ADS)

    Stepanenko, Dimitrije; Trif, Mircea; Tsyplyatyev, Oleksandr; Loss, Daniel

    2016-09-01

    We study a superradiant quantum phase transition in the model of triangular molecular magnets coupled to the electric component of a microwave cavity field. The transition occurs when the coupling strength exceeds a critical value, d c, which, in sharp contrast to the standard two-level emitters, can be tuned by an external magnetic field. In addition to emitted radiation, the molecules develop an in-plane electric dipole moment at the transition. We estimate that the transition can be detected in state-of-the-art microwave cavities if their electric field couples to a crystal containing a sufficient number of oriented molecules.

  20. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  1. Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.

    2013-10-01

    The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.

  2. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  3. Guidelines for Coaching Student Composers.

    ERIC Educational Resources Information Center

    Wilson, Dana

    2001-01-01

    Focuses on teaching students how to compose music. Addresses issues, such as how to get the students started and types of questions to ask students about their compositions. Discusses the musical elements involved in composition, such as melody, harmony, rhythm and meter, timbre, texture, and formal design. (CMK)

  4. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules.

    PubMed

    Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I

    2017-02-15

    Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets.

  5. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    PubMed

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  6. [Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin].

    PubMed

    Chen, Langxing; Liu, Yuxing; He, Xiwen; Zhang, Yukui

    2015-05-01

    The uniform core-shell nanostructured magnetic molecularly imprinted polymers (MIPs) were synthesized using antibiotic nafcillin as a template. In this protocol, the magnetite nanoparticles (NPs) were synthesized by the solvothermal reaction firstly. Subsequently, the vinyl groups were grated onto silica-modified Fe3O4 surface by 3-methacryloyloxypropyltrimethoxysilane via sol-gel method. Finally, the nafcillin-MIPs film was formed on the surface of Fe3O4 @ SiO2 by the copolymerization of vinyl end group with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule. The morphological and magnetic characteristics of the MIPs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The obtained spherical magnetic MIPs with diameters of about 320 nm had good monodispersity. The static binding experiment was carried out to evaluate the properties of magnetic MIPs and non imprinted polymers (NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity to template and good selectivity. The imprinting factor and the maximum adsorption capacity of Fe3O4 @ MIPs to nafcillin were 2.46 and 50.7 mg/g, respectively. It is expected that the prepared magnetic MIPs could be used for the enrichment of nafcillin in complex samples.

  7. Finite-temperature decoherence of spin states in a {Cu3} single molecular magnet

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Wang, Xiaoqun; Liu, Chen; Zhu, Shiqun

    2013-01-01

    We investigate the quantum evolution of spin states of a single molecular magnet in a local electric field. The decoherence of a {Cu3} single molecular magnet weakly coupled to a thermal bosonic environment can be analysed by the spin-boson model. Using the finite-temperature time-convolutionless quantum master equation, we obtain the analytical expression of the reduced density matrix of the system in the secular approximation. The suppressed and revived dynamical behaviour of the spin states are presented by the oscillation of the chirality spin polarization on the time scale of the correlation time of the environment. The quantum decoherence can be effectively restrained with the help of the manipulation of a local electric field and the environment spectral density function. Under the influence of the dissipation, the pointer states measured by the von Neumann entropy are calculated to manifest the entanglement property of the system-environment model.

  8. Evidence for entanglement at high temperatures in an engineered molecular magnet

    SciTech Connect

    Reis, Mario S; Soriano, Stephane; Moreira Dos Santos, Antonio F; Sales, Brian C; Soares-Pinto, D O; Brandao, Paula

    2012-01-01

    The molecular compound [Fe-2(mu(2)-oxo)(C3H4N2)(6)(C2O4)(2)] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing.

  9. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  10. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample.

    PubMed

    Zhao, Man; Zhang, Cong; Zhang, Ying; Guo, Xianzhi; Yan, Husheng; Zhang, Huiqi

    2014-02-28

    A facile and highly efficient approach to obtain narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with molecular recognition ability in a real biological sample as good as what they show in the organic solvent-based media is described for the first time.

  11. Molecular Location Sensing Approach by Anisotropic Magnetism of an Endohedral Metallofullerene.

    PubMed

    Takano, Yuta; Tashita, Ryo; Suzuki, Mitsuaki; Nagase, Shigeru; Imahori, Hiroshi; Akasaka, Takeshi

    2016-06-29

    Location recognition at the molecular scale provides valuable information about the nature of functional molecular materials. This study presents a novel location sensing approach based on an endohedral metallofullerene, Ce@C82, using its anisotropic magnetic properties, which lead to temperature-dependent paramagnetic shifts in (1)H NMR spectra. Five site-isomers of Ce@C82CH2-3,5-C6H3Me2 were synthesized to demonstrate the spatial sensing ability of Ce@C82. Single-crystal structures, absorption spectra, and density functional theory calculations were used to select the plausible addition positions in the radical coupling reaction, which preferentially happens on the carbon atoms with high electron density of the singly occupied molecular orbital (SOMO) and positive charge. Temperature-dependent NMR measurements demonstrated unique paramagnetic shifts of the (1)H peaks, which were derived from the anisotropic magnetism of the f-electron in the Ce atom of the isomers. It was found that the magnetic anisotropy axes can be easily predicted by theoretical calculations using the Gaussian 09 package. Further analysis revealed that the temperature-dependent trend in the shifts is clearly predictable from the distance and relative position of the proton from the Ce atom. Hence, the Ce-encapsulated metallofullerene Ce@C82 can provide spatial location information about nearby atoms through the temperature-dependent paramagnetic shifts of its NMR signals. It can act as a molecular probe for location sensing by utilizing the anisotropic magnetism of the encapsulated Ce atom. The potentially low toxicity and stability of the endohedral fullerene would make Ce@C82 suitable for applications in biology and material science.

  12. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  13. LONG-LIVED MAGNETIC-TENSION-DRIVEN MODES IN A MOLECULAR CLOUD

    SciTech Connect

    Basu, Shantanu; Dapp, Wolf B. E-mail: wdapp@uwo.c

    2010-06-10

    We calculate and analyze the longevity of magnetohydrodynamic (MHD) wave modes that occur in the plane of a magnetic thin sheet. Initial turbulent conditions applied to a magnetically subcritical cloud are shown to lead to relatively rapid energy decay if ambipolar diffusion is introduced at a level corresponding to partial ionization primarily by cosmic rays. However, in the flux-freezing limit, as may be applicable to photoionized molecular cloud envelopes, the turbulence persists at 'nonlinear' levels in comparison with the isothermal sound speed c {sub s}, with one-dimensional rms material motions in the range of {approx} 2 c {sub s}-5 c {sub s} for cloud sizes in the range of {approx} 2 pc-16 pc. These fluctuations persist indefinitely, maintaining a significant portion of the initial turbulent kinetic energy. We find the analytic explanation for these persistent fluctuations. They are magnetic-tension-driven modes associated with the interaction of the sheet with the external magnetic field. The phase speed of such modes is quite large, allowing residual motions to persist without dissipation in the flux-freezing limit, even as they are nonlinear with respect to the sound speed. We speculate that long-lived large-scale MHD modes such as these may provide the key to understanding observed supersonic motions in molecular clouds.

  14. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  15. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Martins, Marcel G.; Martins, Daniel O. T. A.; de Carvalho, Beatriz L. C.; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G. F.

    2015-08-01

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide - CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad+) and two binuclear coordination compounds, [Ni(valpn)Ln]3+, where H2valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=GdIII; DyIII. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species.

  16. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers.

    PubMed

    Li, Lu; Lin, Zheng-Zhong; Peng, Ai-Hong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2016-11-01

    A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using Fe3O4 nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. A high magnetic saturation value of 54.1emug(-1) was obtained, resulting in rapid magnetic separation of MMIPs with an external magnet. The IC50 of the established ELISA method was 20.1μgL(-1) and the detection limit (based on IC85) was 0.1μgL(-1). The MMIPs exhibited high selective binding capacity for MG with cross-reactivities less than 3.9% for MG structural analogues. The MG spiking recoveries were 85.0%-106% with the relative standard deviations less than 4.7%. The results showed that the biomimetic ELISA method by using MMIPs as bionic antibody could be used to detect MG rapidly in fish samples with a high sensitivity and accuracy.

  17. Reliability of range-separated hybrid functionals for describing magnetic coupling in molecular systems

    NASA Astrophysics Data System (ADS)

    Rivero, Pablo; Moreira, Ibério de P. R.; Illas, Francesc; Scuseria, Gustavo E.

    2008-11-01

    The performance of the Heyd-Scuseria-Ernzerhorf (HSE) and single parameter long-range corrected Perdew-Burke-Ernzerhorf (LC-ωPBE) range-separated hybrids for predicting magnetic coupling constants has been investigated for a broad set of magnetic molecular systems for which accurate experimental data exist. The set includes the H-He-H model system, two organic diradicals with different magnetic behaviors, and a series of Cu dinuclear complexes with a broad range of magnetic coupling values. Both HSE and LC-ωPBE provide a significant improvement to standard hybrids such as the well-known hybrid Becke-3-parameters exchange with Lee-Yang-Parr correlation (B3LYP) functional. Nevertheless, the performance of these two range-separated hybrid functionals is different: HSE overestimates antiferromagnetic and ferromagnetic interactions in Cu dinuclear complexes (although significantly less than B3LYP), whereas LC-ωPBE treats ferro- and antiferromagnetic couplings on a much more balanced way. The increased accuracy of LC-ωPBE suggests that the inclusion of 100% Hartree-Fock exchange considered in the definition of this long-range corrected hybrid functional has important consequences for an accurate description of exchange and correlation effects on the electronic structure of open shell systems. On the other hand, HSE, which was developed with periodic systems in mind, also performs quite well (and better than B3LYP) thus opening the possibility of magnetic coupling studies in metal oxides and other challenging solids.

  18. M S MOLECULARES Rumo aos limites da miniaturiza o - (Molecular Magnets - towards the limits of miniaturization)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-01-01

    Por s culos, acreditou-se que o magnetismo s se manifestava em metais, como aqueles contendo ferro; hoje, a imagem mais comum de um m talvez seja a daquelas plaquinhas flex veis coladas geladeira com propagandas dos mais diversos tipos. O leitor conseguiria imaginar um material puramente org nico daqueles que formam os seres vivos como magn tico? E m s do tamanho de mol culas? fato: ambos existem. Esses novos materiais, conhecidos como magnetos moleculares, descobertos e desenvolvidos em v rios laborat rios do mundo, j re nem longa lista de aplica es, do tratamento do c ncer a refrigeradores ecol gicos, passando pela transmiss o de eletricidade sem perda de calor e a fabrica o de computadores extremamente velozes.

  19. Formation of Turbulent and Magnetized Molecular Clouds via Accretion Flows of H I Clouds

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2012-11-01

    Using three-dimensional magnetohydrodynamic simulations, including the effects of radiative cooling/heating, chemical reactions, and thermal conduction, we investigate the formation of molecular clouds in the multi-phase interstellar medium. As suggested by recent observations, we consider the formation of molecular clouds due to accretion of H I clouds. Our simulations show that the initial H I medium is piled up behind the shock waves induced by accretion flows. Since the initial medium is highly inhomogeneous as a consequence of thermal instability, a newly formed molecular cloud becomes very turbulent owing to the development of the Richtmyer-Meshkov instability. The kinetic energy of the turbulence dominates the thermal, magnetic, and gravitational energies throughout the entire 10 Myr evolution. However, the kinetic energy measured using CO-fraction-weighted densities is comparable to the other energies, once the CO molecules are sufficiently formed as a result of UV shielding. This suggests that the true kinetic energy of turbulence in molecular clouds as a whole can be much larger than the kinetic energy of turbulence estimated using line widths of molecular emission. We find that clumps in a molecular cloud show the following statistically homogeneous evolution: the typical plasma β of the clumps is roughly constant langβrang ~= 0.4; the size-velocity dispersion relation is Δv ~= 1.5 km s-1 (l/1 pc)0.5, irrespective of the density; the clumps evolve toward magnetically supercritical, gravitationally unstable cores; and the clumps seem to evolve into cores that satisfy the condition for fragmentation into binaries. These statistical properties may represent the initial conditions of star formation.

  20. Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen

    2017-02-01

    We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ∼ 2-4 pc and densities of n ∼ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.

  1. Molecular quantum magnetism with strong spin-orbit coupling in inorganic solid Ba3Yb2Zn5O11

    NASA Astrophysics Data System (ADS)

    Park, Sang-Youn; Ji, Sungdae; Park, Jae-Hoon; Do, Seunghwan; Choi, Kwang-Yong; Jang, Dongjin; Schmidt, Burkhard; Brando, Manuel; Butch, Nicholas

    The molecular magnet, assembly of finite number of spins which are isolated from environment, is a model system to study the quantum information process such as the qubit or spintronic devices. In past decades, the molecular magnet has been mostly realized in organic material, however, it has difficulty synthesizing materials or controlling their properties, meanwhile tremendous endeavors to search inorganic molecular magnet are continuing. Here, we propose Ba3Yb2Zn5O11 as a candidate of inorganic molecular magnet. This material consists of an alternating 3D-array of small and large tetrahedron containing antiferromagnetically coupled four pseudospin-1/2 Yb ions, and magnetic properties are described by an isolated tetrahedron without long-range magnetic ordering. Inelastic neutron scattering measurement with external magnetic field reveals that extraordinarily huge Dzyaloshinsky-Moriya (DM) interaction originating from strong spin-orbit coupling in Yb isospin is the key to explain energy level of tetrahedron in addition to Heisenberg exchange interaction and Zeeman effect. Magnetization measurement shows the Landau-Zener transition between avoided crossing levels caused by DM interaction.

  2. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A.

    PubMed

    Zhu, Lili; Cao, Yuhua; Cao, Guangqun

    2014-04-15

    A selective electrochemical sensor based on magnetic molecularly imprinted nanoparticles was developed for determination of bisphenol A (BPA). The particles with regular morphology, high saturation magnetization and good monodispersion were prepared. The hydrophilicity, sensitivity and anti-fouling of the sensor were enhanced by modifying carbon paste electrode with surfactant CTAB in advanced. The results demonstrated that the response of BPA on imprinted electrode was 2.6 times as much as that on non-imprinted sensor. Moreover, the separation factors of BPA to β-estradiol, estriol and diethylstilbestrol were 16.5, 17.3 and 6.6, respectively. Under optimized conditions, the currents were found to be proportional to the BPA concentrations in the range of 6.0×10(-7)-1.0×10(-4) mol/L with a detection limit of 1.0×10(-7) mol/L (S/N=3). A rapid response of the imprinted sensor was obtained within 3 min. The developed sensor was successfully used for determination of BPA in actual samples such as drink bottles and lake water.

  3. Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes.

    PubMed

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc(2) (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (T(B) ~ 1 K) of isolated TbPc(2) SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs.

  4. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    PubMed Central

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc2 (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K) of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs. PMID:22072910

  5. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  6. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    PubMed

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.

  7. Magnetic-graphene based molecularly imprinted polymer nanocomposite for the recognition of bovine hemoglobin.

    PubMed

    Guo, Junxia; Wang, Yuzhi; Liu, Yanjin; Zhang, Cenjin; Zhou, Yigang

    2015-11-01

    The protein imprinted technique combining surface imprinting and nanomaterials has been an attractive strategy for recognition and rapid separation of proteins. In this work, magnetic-graphene (MG) was chosen as the supporting substrate for the magnetic nanomaterials, which served to absorb the targeting imprinting molecules, bovine hemoglobin (BHb). Acryl amide (AAm) with a high affinity to BHb and N,N'- methylenebisacrylamide (MBA) were selected as the functional monomer and cross-linking agent, respectively. After in-situ polymerization, the proposed magnetic-graphene based molecularly imprinted polymer (MG-MIP) was obtained with a further extraction step of imprinted BHb. Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), raman spectroscopy(RS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were employed to characterize the resulted MG-MIP. The maximum adsorption capability (Qmax) was determined by Langmuir Isotherm Plots and was 186.73 mg/g for imprinted nanomaterials (MIP) with an imprinting factor of 1.96. The selectivity of MG-MIP was investigated by using several proteins that are different in molecular mass and isoelectric points as the reference. The results showed that the shape memory effect of imprinted cavities, the size of proteins and the charge effect of proteins were the major factors for the selective recognition. The proposed method was also employed to specifically capture BHb from a binary protein mixture.

  8. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  9. Magnetic neutron spectroscopy of a spin-transition Mn3+ molecular complex

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Petit, Sylvain; Gillon, Béatrice; Chaboussant, Grégory; Safin, Damir A.; Garcia, Yann

    2014-09-01

    We have investigated by inelastic neutron scattering (INS), neutron diffraction, and magnetometry the magnetic properties of the mononuclear complex [Mn3+(pyrol)3(tren)] in both high-spin (5E, HS, S =2) and low-spin (3T1, LS, S =1) states. The system presents a spin transition (ST) around 47 K with a small hysteresis width (TST,↑=47.5 K and TST,↓=46 K) characteristic of an efficient collective transition process. In the HS state, the INS spectrum at 56 K and zero magnetic field is accounted for by a zero-field splitting with D =-5.73(3) cm-1 and |E|=+0.47(2) cm-1 which may be the result of a dynamic Jahn-Teller effect reported in the literature. In the LS state, a single magnetic peak at 4.87 meV is observed, still at zero field. Despite the existence of an unquenched orbital moment (L =1) in the ground 3T1 state, we argue that it may be described by a genuine S =1 spin Hamiltonian owing to the existence of a strong trigonal distortion of the Mn3+ coordination octahedron. The observed peak corresponds to a transition ΔM =+1 within the S =1 ground state split by a large single-ion anisotropy term D =+39.3 cm-1. A full spin-Hamiltonian model is proposed based on these first INS results obtained in a thermal ST molecular magnetic system.

  10. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms.

    PubMed

    Phillips, John B; Jorge, Paulo E; Muheim, Rachel

    2010-04-06

    Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes.

  11. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms

    PubMed Central

    Phillips, John B.; Jorge, Paulo E.; Muheim, Rachel

    2010-01-01

    Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes. PMID:20124357

  12. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-01-01

    Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.

  13. Broad-band polarization in molecular spectra. [Zeeman effect in magnetic stars

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.

    1981-01-01

    The rotational lines of the CN(0,0) red system have been observed to show a strongly asymmetric Zeeman profile. Certain molecules are very susceptible to magnetic perturbation because of the weakness of their spin-rotation coupling; a fairly weak magnetic field can cause a complete Paschen-Back effect. The calculation of transition probabilities incorporating this effect into the Hamiltonian is discussed, and the detailed calculation is then given. The resulting transition probabilities are transformed into synthetic line profiles by using the Unno (1956) model of polarized radiation transfer. The dependence of the net polarized flux on magnetic field and equivalent width is investigated. It is shown that entire band systems may be significantly polarized. Broad-band circular polarization of sunspots may be due, in part, to molecular bands. Analysis of the CH G band indicates a magnetic field of 0.25-0.50 x 10 to the 6th gauss in the white dwarf G99-37, an order of magnitude lower than previous estimates.

  14. Non-equilibrium quantum transport of spin-polarized electrons and back action on molecular magnet tunnel-junction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, J.-Q.

    2016-11-01

    We investigate the non-equilibrium quantum transport through a single-molecule magnet embedded in a tunnel junction with ferromagnetic electrodes, which generate spin-polarized electrons. The lead magnetization direction is non-collinear with the uniaxial anisotropy easy-axis of molecule-magnet. Based on the Pauli rate-equation approach we demonstrate the magnetization reversion of molecule-magnet induced by the back action of spin-polarized current in the sequential tunnel regime. The asymptotic magnetization of molecular magnet and spin-polarization of transport current are obtained as functions of time by means of time-dependent solution of the rate equation. It is found that the antiparallel configuration of the ferromagnetic electrodes and molecular anisotropy easy-axis is an effective structure to reverse both the magnetization of molecule-magnet and spin-polarization of the transport current. Particularly the non-collinear angle dependence provides useful knowledge for the quantum manipulation of molecule-magnet and spin polarized electron-transport.

  15. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    SciTech Connect

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  16. Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Wang, Da-wei; Fan, Shanhui

    2017-03-01

    We theoretically demonstrate nontrivial topological effects for a probe field in a Raman medium undergoing molecular modulation processes. The medium is driven by two noncollinear pump beams. We show that the angle between the pumps is related to an effective gauge potential and an effective magnetic field for the probe field in the synthetic space consisting of a synthetic frequency dimension and a spatial dimension. As a result of such an effective magnetic field, the probe field can exhibit a topologically protected one-way edge state in the synthetic space, as well as Landau levels which manifest as suppression of both diffraction and sideband generation. Our work identifies a previously unexplored route towards creating topological photonics effects and highlights an important connection between topological photonics and nonlinear optics.

  17. Fragmented molecular complexes: The role of the magnetic field in feeding internal supersonic motions

    NASA Technical Reports Server (NTRS)

    Falgarone, E.; Puget, J. L.; Perault, M.

    1986-01-01

    A hierarchical structure for molecular complexes in their cold phase i.e., preceeding the formation of massive stars, was derived from extensive large scale CO(13)(J=1=0) observations: the mass is found to be distributed into virialized clouds which fill only a very low fraction approx. 01 of the volume of the complex and are supported against gravity by internal supersonic motions. An efficient mechanism was found to transfer kinetic energy from the orbital motions of the clouds to their internal random motions. The large perturbations of the magnetic field induced at the cloud boundaries by their interactions with their neighbors generate systems of hydromagnetic waves trapped inside the clouds. The magnetic field lines being closely coupled to the gas at the densities which prevail in the bulk of the clouds volume, internal velocity dispersion is thus generated. Some conclusions derived from this data are given.

  18. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  19. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    DOE PAGES

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less

  20. Combined Molecular Dynamics-Spin Dynamics Simulation of α-Iron in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Landau, David P.

    Using an atomistic model that treats both translational and spin degrees of freedom, combined molecular and spin dynamics simulations have been performed to study dynamic properties of α-iron. Atomic interactions are described by an empirical many-body potential while spin-spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Each of these interactions are parameterized by first-principles calculations. These simulations numerically solve equations of motion using an algorithm based on the second-order Suzuki-Trotter decomposition for the time evolution operator. Through calculation of the Fourier transform of space-displaced time-displaced correlation functions, vibrational and magnetic excitations have been studied. The application of an external magnetic field up to 10-T has now been included and has been shown to increase the characteristic frequencies of the single-spin-wave excitations. Two-spin-wave interactions have also been investigated.

  1. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-02-01

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. In this context, this letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, in addition, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature). These results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  2. The ab initio calculation of molecular electric, magnetic and geometric properties.

    PubMed

    Bast, Radovan; Ekström, Ulf; Gao, Bin; Helgaker, Trygve; Ruud, Kenneth; Thorvaldsen, Andreas J

    2011-02-21

    We give an account of some recent advances in the development of ab initio methods for the calculation of molecular response properties, involving electric, magnetic, and geometric perturbations. Particular attention is given to properties in which the basis functions depend explicitly both on time and on the applied perturbations such as perturbations involving nuclear displacements or external magnetic fields when London atomic orbitals are used. We summarize a general framework based on the quasienergy for the calculation of arbitrary-order molecular properties using the elements of the density matrix in the atomic-orbital basis as the basic variables. We demonstrate that the necessary perturbed density matrices of arbitrary order can be determined from a set of linear equations that have the same formal structure as the set of linear equations encountered when determining the linear response equations (or time-dependent self-consistent-field equations). Additional components needed to calculate properties involving perturbation-dependent basis sets are flexible one- and two-electron integral techniques for geometric or magnetic-field differentiated integrals; in Kohn-Sham density-functional theory (KS-DFT), we also need to calculate derivatives of the exchange-correlation functional. We describe a recent proposal for evaluating these contributions based on automatic differentiation. Within this framework, it is now possible to calculate any molecular property for an arbitrary self-consistent-field reference state, including two- and four-component relativistic self-consistent-field wave functions. Examples of calculations that can be performed with this formulation are presented.

  3. Three-dimensional Aquila Rift: magnetized H I arch anchored by molecular complex

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Nakanishi, Hiroyuki

    2017-01-01

    Three-dimensional structure of the Aquila Rift of magnetized neutral gas is investigated by analysing H I and CO line data. The projected distance on the Galactic plane of the H I arch of the Aquila Rift is r⊥ ˜ 250 pc from the Sun. The H I arch emerges at l ˜ 30°, reaches to altitudes as high as ˜500 pc above the plane at l ˜ 350°, and returns to the disc at l ˜ 270°. The extent of arch at positive latitudes is ˜1 kpc and the width is ˜100 pc. The eastern root is associated with the giant molecular cloud complex, which is the main body of the optically defined Aquila Rift. The H I and molecular masses of the Rift are estimated to be M_{H I}˜ 1.4{×} 10^5 M_{⊙} and M_H_2˜ 3{×} 10^5 M_{⊙}. Gravitational energies to lift the gases to their heights are E_{grav: H I}˜ 1.4{×} 10^{51} erg and E_{grav: H_2}˜ 0.3{×} 10^{51} erg, respectively. Magnetic field is aligned along the H I arch of the Rift, and the strength is measured to be B ˜ 10 μG using Faraday rotation measures of extragalactic radio sources. The magnetic energy is estimated to be Emag ˜ 1.2 × 1051 erg. A possible mechanism of formation of the Aquila Rift is proposed in terms of interstellar magnetic inflation by a sinusoidal Parker instability of wavelength of ˜2.5 kpc and amplitude ˜500 pc.

  4. Organists and organ music composers.

    PubMed

    Foerch, Christian; Hennerici, Michael G

    2015-01-01

    Clinical case reports of patients with exceptional musical talent and education provide clues as to how the brain processes musical ability and aptitude. In this chapter, selected examples from famous and unknown organ players/composers are presented to demonstrate the complexity of modified musical performances as well as the capacities of the brain to preserve artistic abilities: both authors are active organists and academic neurologists with strong clinical experience, practice, and knowledge about the challenges to play such an outstanding instrument and share their interest to explore potentially instrument-related phenomena of brain modulation in specific transient or permanent impairments. We concentrate on the sites of lesions, suggested pathophysiology, separate positive (e.g., seizures, visual or auditory hallucinations, or synesthesia [an involuntary perception produced by stimulation of another sense]) and negative phenomena (e.g., amusia, aphasia, neglect, or sensory-motor deficits) and particularly address aspects of recent concepts of temporary and permanent network disorders.

  5. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  6. Supersonic Molecular Beam Injection Effects on Tokamak Plasma Applied Non-axisymmetric Magnetic Perturbation

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; in, Y.; Jeon, Y. M.; Hahn, S. H.; Lee, K. D.; Nam, Y. U.; Yoon, S. W.

    2016-10-01

    In KSTAR experiments, the change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying resonant magnetic perturbations(RMP) that could suppress edge localized modes (ELMs). When the SMBI is applied, the symptom representing ELM suppression by RMP is disappeared. The SMBI acts as a cold pulse on the plasma keeping the total confinement engergy constant. However, it makes plasma density increase and change the plasama collisionality which can play a role in the edge-pedestal build-up processing. This work was supported by Project PG1201-2 and the KSTAR research project funded by Korea Ministry of Science, ICT and Future Planning.

  7. Supersonic molecular beam injection effects on tokamak plasma applied non-axisymmetric magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; In, Y.; Jeon, Y. M.; Lee, H. Y.; Hahn, S. H.; Lee, K. D.; Nam, Y. U.; Yoon, S. W.

    2016-08-01

    The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.

  8. Molecular Structure of Aggregated Amyloid-β: Insights from Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made on characterization of the molecular structures of Aβ aggregates. Full molecular structural models that are based primarily on data from solid state nuclear magnetic resonance measurements have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  9. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, rearrangement, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.

  10. Atomic and Molecular Collisional Radiative Modeling for Spectroscopy of Low Temperature and Magnetic Fusion Plasmas

    SciTech Connect

    Fantz, U.; Wuenderlich, D.

    2011-05-11

    The quantitative analysis of spectroscopic data from low temperature plasmas is strongly supported from collisional radiative (CR) modeling. Low pressure plasmas for basic research in the lab and for industrial use have several aspects in common with the cold edge of magnetic fusion plasmas. On the basis of applications of CR modeling for atomic and molecular hydrogen, molecular nitrogen, and diatomic radicals such as CH and C{sub 2}, the relevance of individual processes for data interpretation is demonstrated for ionizing and recombining plasmas. Examples of such processes are opacity, dissociative excitation, dissociative recombination, mutual neutralization, and energy pooling. It is shown that the benchmark of CR modeling with experimental data can be used to identify problems in the ingoing data set of cross sections and rate coefficients. Using the flexible solver Yacora, the capability of CR modeling of low temperature plasmas is highlighted.

  11. Zeeman-Doppler Imaging of Stellar Magnetic Fields with Atomic and Molecular Lines

    NASA Astrophysics Data System (ADS)

    Sennhauser, C.; Berdyugina, S. V.; Fluri, D. M.

    2009-06-01

    We have developed a new code for Zeeman-Doppler Imaging (ZDI) of stellar magnetic fields using the Occamian approach for solving inverse problems. The inversions are applied to Stokes I and V parameter sets obtained by solving the full set of polarized radiative transfer equations for both atomic and molecular lines. For the first time we demonstrate that molecular polarization strongly constrains the ZDI maps and is crucial for obtaining a realistic solution from Stokes I and V only observed at a few stellar rotational phases. We also present an enhanced LSD technique, which allows analytic separation of blended line profiles. The resulting LSD profiles are free from systematic effects induced by blends, which are typical for other multi-line techniques.

  12. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%.

  13. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Min, Junhong; Choi, Jeong-Woo

    2013-02-15

    We developed a nanoscale memory device consisting of signal-responsive biomaterial, which is capable of switching physical properties (such as electrical/electrochemical, optical, and magnetic) upon application of appropriate electrical signals to perform memory switching. Here, we propose a highly robust surface-confined switch composed of an electroactive cysteine-modified azurin immobilized on an Au hexagonal pattern formed on indium tin oxide (ITO) substrates that can be controlled electrochemically and reversibly converted between its redox states. The memory effect is based on conductance switching, which leads to the occurrence of bistable states and behaves as an extremely robust redox switch in which an electrochemical input is transduced into optical and magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has good stability and excellent reversibility, makes it a promising platform for nonvolatile memory devices.

  14. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  15. Magnetocaloric effect in Mn2-pyrazole-[Nb(CN)8] molecular magnet by relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Pełka, R.; Gajewski, M.; Miyazaki, Y.; Yamashita, S.; Nakazawa, Y.; Fitta, M.; Pinkowicz, D.; Sieklucka, B.

    2016-12-01

    Magnetocaloric effect in {[Mn(pyrazole)4]2[Nb(CN)8]·4 H2O}n molecular magnet is reported. It crystallizes in tetragonal I41/a space group. The compound exhibits a phase transition to a long range magnetically ordered state at TN ≈ 22.8 K. Temperature dependences of the magnetic entropy change ΔSM as well as the adiabatic temperature change ΔTad due to applied field change μ0 ΔH in the range of 0.1-9 T have been inferred from the relaxation calorimetry measurements. A systematic approximate approach has been used to determine the lattice contribution to the heat capacity. The maximum value of ΔSM for μ0 ΔH = 5 T is 6.83 J mol-1 K-1 (6.65 J kg-1 K-1) at 24.3 K. The corresponding maximum value of ΔTad is 1.4 K at 23.8 K. The temperature dependence of the exponent n characterizing the field dependence of ΔSM has been estimated. It attains the value of 0.64 at the transition temperature, which is consistent with the 3D Heisenberg universality class. A hitherto unobserved two-peak structure has been revealed in the temperature dependence of ΔTad.

  16. Preparation and Characterization of a Magnetic and Optical Dual-Modality Molecular Probe

    PubMed Central

    Bumb, A; Regino, C A S; Perkins, M R; Bernardo, M; Ogawa, M; Fugger, L; Choyke, P L; Dobson, P J; Brechbiel, M W

    2010-01-01

    Multi-modality imaging probes combine the advantages of individual imaging techniques to yield highly detailed anatomic and molecular information in living organisms. Herein, we report the synthesis and characterization of a dual-modality nanoprobe that couples the magnetic properties of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with the near infrared fluorescence of Cy5.5. The fluorophore is encapsulated in a biocompatible shell of silica surrounding the iron oxide core for a final diameter of ~17 nm. This silica-coated iron oxide nanoparticle (SCION) has been analyzed by transmission electron microscopy, dynamic light scattering, and superconducting quantum interference device (SQUID). The particle demonstrates a strong negative surface charge and maintains colloidal stability in the physiological pH range. Magnetic hysteresis analysis confirms superparamagnetic properties that could be manipulated for thermotherapy. The viability of primary human monocytes, T cells, and B cells incubated with particle has been examined in vitro. In vivo analysis of agent leakage into subcutaneous A431 tumors in mice was also conducted. This particle has been designed for diagnostic application with magnetic resonance and fluorescence imaging, and has future potential to serve as a heat-sensitive targeted drug delivery platform. PMID:20368682

  17. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    PubMed

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products.

  18. Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging.

    PubMed

    Zhang, Chunfu; Xie, Xuan; Liang, Sheng; Li, Mingli; Liu, Yajie; Gu, Hongchen

    2012-08-01

    Sensitive molecular imaging and detection of tumors or their supporting neovascularity require high-avidity, target-specific probes, which produce robust signal amplification compatible with a sensitive high-resolution imaging modality. In this context, we fabricated a high magnetic resonance (MR)-sensitive magnetite nanocluster (MNC) probe specific for tumor angiogenesis by assembly of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with (Mal)mPEG-PLA copolymer into cluster and subsequent encoding c(RGDyC) peptide on the cluster (RGD-MNC) for detection of nascent tumors. We found that RGD-MNC is highly sensitive (r(2) = 464.94 s(-1)mM(-1)) and specific for αvβ3-positive cells. Both nascent (35 ± 6.6 mm(3)) and large tumors (256 ± 22.3 mm(3)) can be registered by RGD-MNC and detected by MR imaging (MRI), with the nascent tumors demonstrating more pronounced MR contrast. Immunohistochemical studies revealed that MR signal decrease was closely correlated with histological characteristics of tumors (microvessel density and αvβ3 expression levels) at different growth stages.

  19. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  20. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  1. Light absorption and plasmon – exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    SciTech Connect

    Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D; Lebedev, V S

    2015-12-31

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on the type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)

  2. Tailoring magnetic properties of electrodeposited thin films of the molecule-based magnet Cr5.5(CN)12 11.5H2O

    PubMed Central

    2012-01-01

    This paper reports on molecular-based magnetic thin films of Prussian blue analogues (PBA) with high critical temperatures composed of mixed-valence chromium cyanides. The thin films of PBA were synthesized by means of electrodeposition technique. Morphology and magnetic study are presented in a function of electrochemical deposition conditions. We present the electrochemical methods as a promising and effective tool for preparing molecular-based magnetic thin films of Prussian blue analogue. PMID:22531148

  3. Nurturing the Careers of Australia's Future Composers

    ERIC Educational Resources Information Center

    Watson, Amanda; Forrest, David

    2008-01-01

    In 1994, the Australian Society for Music Education (ASME) initiated two related projects supporting and acknowledging composition in schools and offering the opportunity for secondary school-aged students to work with prominent Australian composers. These were the Young Composers' Project and the Composer-in-Residence Project. Both projects were…

  4. Sing the Songs of Women Composers.

    ERIC Educational Resources Information Center

    Allen, Sue Fay; Keenan-Takagi, Kathleen

    1992-01-01

    Presents an annotated listing of choral works by women composers. Suggests sources of information about women composers and their music. Discusses some contemporary women whose compositions are particularly appropriate for student voices. Concludes that the listed works will help place women composers in perspective for student choral groups. (SG)

  5. Preparing Students to Compose on a Computer.

    ERIC Educational Resources Information Center

    Gadomski, Kenneth E.

    In the proliferation of articles about using computers in the composition classroom published in the last five or ten years, few mention anything about preparing students to compose on a computer while all assert that computers do indeed help the composing process. Preparing students to compose on a computer involves three major processes:…

  6. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  7. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  8. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  9. 1-[(Anthracen-9-yl)carbon-yl]-2,7-di-meth-oxy-naphthalene: a chain-like structure composed of face-to-face type dimeric mol-ecular aggregates.

    PubMed

    Siqingaowa; Tsumuki, Takehiro; Ogata, Kazuki; Yonezawa, Noriyuki; Okamoto, Akiko

    2016-12-01

    The asymmetric unit of the title compound, C27H20O3, contains two independent mol-ecules (A and B). The anthracene ring system is connected to the 2,7-di-meth-oxy-naphthalene core in a twisted manner, with dihedral angles of 86.38 (5) and 79.36 (8)°, respectively, for conformers A and B. In the crystal, face-to-face type dimeric mol-ecular aggregates of each conformer are observed. The dimer of conformer A is formed by two pairs of C-H⋯π inter-actions, and that of conformer B by a pair of (sp(2))C-H⋯O hydrogen bonds. The dimers of conformer A are linked to each other via a π-π stacking inter-action between the anthracene rings to form a chain along the b axis and the chains are aligned along the c axis, forming a sheet structure. The dimers of conformer B are connected to each other via a couple of C-H⋯π inter-actions to form a chain along the b axis. The chains are aligned along the c axis through (sp(2))C-H⋯O=C hydrogen bonds, forming a sheet parallel to the bc plane. The sheets of conformers A and B are alternately stacked along the a axis via two kinds of inter-molecular (sp(2))C-H⋯O=C hydrogen bonds.

  10. Testing for Helical Magnetic Fields in the Orion Molecular Cloud Integral-Shaped Filament

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren; Clemens, Dan P.

    2014-06-01

    The Orion Molecular Cloud (OMC) is one of the closest and most well-studied regions of ongoing star formation. Within the OMC, the Integral-Shaped Filament (ISF) is a long, filamentary structure of gas and dust that stretches over 7 pc and is itself comprised of many smaller filaments. Radial density profiles of the ISF indicate that these filamentary structures may be supported by helical magnetic fields (Johnstone & Bally 1999). To test for the presence of helical fields, we have collected deep near-infrared (NIR) H-band (1.6 μm) and K-band (2.2 μm) linear polarimetry of background starlight for a grid of six 10x10 arcmin fields of view fully spanning the ISF. NIR polarizations from scattered light and young stellar objects, which do not trace the magnetic field, are identified by examining the ratio of percent polarization in H-band to K-band. The data were collected using the Mimir NIR instrument on the 1.8m Perkins Telescope located outside of Flagstaff, AZ. This work is partially supported by NSF grant AST 09-07790.

  11. Highly Efficient Microwave Absorption of Magnetic Nanospindle-Conductive Polymer Hybrids by Molecular Layer Deposition.

    PubMed

    Yan, Lili; Wang, Xixi; Zhao, Shichao; Li, Yunqin; Gao, Zhe; Zhang, Bin; Cao, Maosheng; Qin, Yong

    2017-03-16

    Oxidative molecular layer deposition (oMLD) was applied to fabricate conductive polymer-magnetic material core-shell microwave absorbers in this work. One dimensional Fe3O4-poly(3,4-ethylenedioxythiophene) (PEDOT) nanospindles with controllable PEDOT thickness were successfully synthesized. Their absorption performance was evaluated in the 2-18 GHz frequency range. With the advantage of oMLD, PEDOT shell thicknesses can be controlled precisely. Because the permittivity of Fe3O4-PEDOT nanospindles obviously increases while their permeability decreases slightly with the PEDOT cycles, the properties can be tuned effectively by only adjusting the PEDOT cycle number. With a proper PEDOT shell thickness, excellent reflection characteristics can be obtained. Remarkably high absorption strength (-55.0 dB at 16.2 GHz) and good absorption bandwidth (4.34 GHz less than -10 dB) were realized. Such excellent performance is better than that reported previously for most magnetic material-based absorbers. Considering the precise controllability and excellent absorption performance of the prepared microwave absorbers, we believe that oMLD is a facile synthetic route for microwave absorbers.

  12. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence.

    PubMed

    Huang, Baomei; Zhou, Xibin; Chen, Jing; Wu, Guofan; Lu, Xiaoquan

    2015-09-01

    A novel procedure for selective extraction of malachite green (MG) from fish samples was set up by using magnetic molecularly imprinted polymers (MMIP) as the solid phase extraction material followed by electrochemiluminescence (ECL) determination. MMIP was prepared by using Fe3O4 magnetite as magnetic component, MG as template molecule, methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. MMIP was characterized by SEM, TEM, FT-IR, VSM and XRD. Leucomalachite green (LMG) was oxidized in situ to MG by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). And then MMIP was successfully used to selectively enrich MG from fish samples. Adsorbed MG was desorbed and determined by ECL. Under the optimal conditions, calibration curve was good linear in the range of 0.29-290 μg/kg and the limit of detection (LOD) was 7.3 ng/kg (S/N=3). The recoveries of MMIP extraction were 77.1-101.2%. In addition, MMIP could be regenerated. To the best of our knowledge, MMIP coupling with ECL quenching of Ru(bpy)3(2+)/TPA for the determination of MG has not yet been developed.

  13. Selective determination of sulfonamides from environmental water based on magnetic surface molecularly imprinting technology.

    PubMed

    Xu, Yang; Zhao, Qi; Jiang, Liyan; Li, Zhengqiang; Chen, Yanhua; Ding, Lan

    2017-02-18

    In the study, a simple and selective method based on magnetic separation technology is presented for the extraction of sulfonamides (SAs) from environmental water, followed by liquid chromatography-tandem mass spectrometry. In this method, magnetic surface molecularly imprinted polymers (Fe3O4@SiO2@MIPs) with super-paramagnetic property and high selectivity toward SAs were developed as magnetic adsorbents. The Fe3O4@SiO2@MIPs were then applied to the selective extraction of SAs from environmental water. The extraction and enrichment were accomplished simultaneously in a single step by simply stirring the mixture of adsorbents and water samples. The Fe3O4@SiO2@MIPs were characterized by scanning electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometry. The adsorption thermodynamics and kinetics were employed to study the adsorption mechanism of the Fe3O4@SiO2@MIPs. And the matrix effect of the method was evaluated. Calibration curves obtained by analyzing matrix-matched standards show excellent linear relationship (R = 0.9994-0.9999) in the concentration range of 10-1000 ng L(-1), and the limits of detection are in the range of 1.4-2.8 ng L(-1). The relative standard deviations of intra- and inter-day obtained are in the range of 2.8 to 7.8 and 3.1 to 7.9%, respectively. The proposed method was successfully applied to determine SAs in six environmental water samples, and SAs were detectable in four of them with the concentration from 10.5 to 120.2 ng L(-1).

  14. Toward Molecular Magnets of Organic Origin via Anion-π Interaction Involving m-Aminyl Diradical: A Theoretical Study.

    PubMed

    Bhattacharya, Debojit; Shil, Suranjan; Misra, Anirban; Bytautas, Laimutis; Klein, Douglas J

    2016-11-17

    Here we study a set of novel magnetic organic molecular species with different halide ions (fluoride, chloride, bromide) absorbed ∼2 Å above or below the center of an aromatic π-ring in an m-aminyl diradical. Focus is on the nature of anion-π interaction and its impact on magnetic properties, specifically on magnetic anisotropy and on intramolecular magnetic exchange coupling. In the development of single molecule magnets, magnetic anisotropy is considered to be the most influential factor. A new insight regarding the magnetic anisotropy that determines the barrier height for relaxation of magnetization of m-aminyl diradical-derived anionic complexes is obtained from calculations of the axial zero-field-splitting (ZFS) parameter D. The noncovalent anion-π interaction strongly influences magnetic anisotropy in m-aminyl-halide diradical complexes. In particular, the change of D values from positive (for the m-aminyl diradical, m-aminyl diradical/fluoride, and m-aminyl diradical/chloride complexes) to negative D-values in m-aminyl diradical complexes containing bromide signals a change from oblate to prolate type of spin-density distribution. Furthermore, the noncovalent halide-π interactions lead to large values of intramolecular magnetic exchange coupling coefficients J exhibiting a ferromagnetic sign. The magnitude of J steadily increases going from anionic complexes containing fluoride to chloride and then to bromide. Relations are sought between the magnetic exchange coupling coefficients J and aromaticity, namely structural HOMA (harmonic oscillator model of aromaticity) and magnetic NICS (nucleus independent chemical shift) aromaticity indices, in particular, the NICSzz(+1) component. Finally, possible numerical checks on the conditions relating to validity of the well-known Yamaguchi's formula for calculating the exchange coupling coefficient J in diradical systems are discussed.

  15. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions

    NASA Astrophysics Data System (ADS)

    Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bée, A.; Ménager, C.

    2015-11-01

    An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium.An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06133d

  16. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract.

  17. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples.

    PubMed

    Xu, Xing; Duhoranimana, Emmanuel; Zhang, Xiaoming

    2017-01-15

    Magnetic molecularly imprinted polymers (M-MIPs) were synthesized as the sorbents for extracting hexamethylenetetramine (HMT) from milk samples. Molecular simulations were used to calculate the interaction energies of the template monomers. The physical properties of M-MIPs were characterized. The adsorption isotherms and kinetics were investigated. Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was applied to determine the amount of HMT residue in milk samples. In the optimized method, a linear calibration curve was obtained using a matrix-matched standard in the range of 1.0-50.0μgL(-1). The limit of detection (LOD) and limit of quantification (LOQ) was 0.3μgkg(-1) and 1.0μgkg(-1), respectively. The relative standard deviation (RSD) of the intra-day assay ranged from 2.6% to 5.2%, while that of the inter-day assay ranged from 3.6% to 11.5%. The recovery of HMT in milk samples ranged from 88.7% to 111.4%.

  18. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Zuo, Hai Gen; Jiang, Chen; Jin, She Feng; Lu, Yi Chen; Yang, Hong

    2015-04-15

    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe3O4@SiO2 nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g(-1). Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C18 SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues.

  19. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids.

    PubMed

    Coffey, Aaron M; Kovtunov, Kirill V; Barskiy, Danila A; Koptyug, Igor V; Shchepin, Roman V; Waddell, Kevin W; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-09-16

    We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations.

  20. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: Towards category theory-like systematization of molecular/genetic biology

    PubMed Central

    2014-01-01

    Background Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. Results We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation ‘Dj’ corresponding to a DNA sequence but based on the five-letter base set; also, ‘Dj’s are expressed graphically. Insertions and deletions of a series of letters ‘E’ are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by ‘Dj◦B(j→k) = Dk’ (or ‘Rj◦B(j→k) = Rk’). Based on the operations of this group, two types of groups—a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases—are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical “central dogma” via a category theory-like way is presented for future

  1. Color of postponed magnetic noise in K0.4[Cr (CN) 6 ] [Mn (R /S )-pn ] (R /S ) -pn H0.6 molecular ferrimagnet

    NASA Astrophysics Data System (ADS)

    Morgunov, R. B.; Talantsev, A. D.

    2016-10-01

    Exotic conditions for the existence and evolution of nonlinear spin ensembles (domain walls, spin solitons, skyrmions) in molecular-based magnets are incarnated in the macroscopic response of magnetization corresponding to collective stochastic behavior. The molecular ferrimagnet K0.4[Cr (CN) 6 ] [Mn (R /S )-pn ] (R /S ) -pn H0.6 manifests three types of magnetic relaxation: (a) continuous decay of magnetic moment, (b) stepwise relaxation by stochastic magnetization jumps, and (c) a single jump of magnetization in threshold magnetic field. Continuous relaxation at 20-50 K is provided by domain wall movement described in the frames of a strong pinning model, while a low-temperature continuous component of relaxation does not follow this model. Stepwise stochastic relaxation was observed below 8 K in both a sweeping reverse magnetic field and a stationary reverse magnetic field. Statistical treatment of the postponed magnetization jumps revealed a multimodal amplitude distribution of stochastic magnetization jumps corresponding to magnetic moment transitions between few clear distinguishable levels. Spectral density of magnetization jumps in a stationary magnetic field corresponds to white noise, while spectral density in a sweeping magnetic field manifests pink noise ˜1 /f provided by self-organized criticality. Postponed emission of magnetic noise in the 10-6-5 ×10-1Hz frequency range was observed in stationary conditions in contrast to Barkhausen noise.

  2. Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma.

    PubMed

    Meng, Jiawei; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-06-01

    In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3 O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross-linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid-phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1-150 ng/mL for berberine and 0.1-100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33-102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22-111.15% with relative standard deviation less than 4.59% in plasma.

  3. The composing process in technical communication

    NASA Technical Reports Server (NTRS)

    Masse, R. E.

    1981-01-01

    The theory and application of the composing process in technical communications is addressed. The composing process of engineers, some implications for composing research for the teaching and research of technical communication, and an interpretation of the processes as creative experience are also discussed. Two areas of technical communications summarized concern: the rhetorical features of technical communications, and the theoretical background for a process-based view, a problem-solving approach to technical writing.

  4. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  5. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    PubMed

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa.

  6. Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound

    PubMed Central

    Alberto Rodríguez-Velamazán, José; Fabelo, Óscar; Millán, Ángel; Campo, Javier; Johnson, Roger D.; Chapon, Laurent

    2015-01-01

    The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2 K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism. PMID:26417890

  7. The Frontier of Molecular Spintronics Based on Multiple-Decker Phthalocyaninato Tb(III) Single-Molecule Magnets.

    PubMed

    Katoh, Keiichi; Komeda, Tadahiro; Yamashita, Masahiro

    2016-04-01

    Ever since the first example of a double-decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single-molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in Ln(III)-Pc-based multiple-decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear Tb(III)-Pc multiple-decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular Tb(III)-Tb(III) distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of Tb(III)-Pc-based multiple-decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of Tb(III)-Pc multiple-decker complexes.

  8. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  9. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of triazines from environmental soil samples.

    PubMed

    Díaz-Álvarez, Myriam; Turiel, Esther; Martín-Esteban, Antonio

    2016-10-21

    In this work, novel molecularly imprinted stir-bars based upon the entrapment of modified magnetic nanoparticles within an imprinted polymer monolith is developed for stir-bar sorptive extraction (SBSE). Firstly, magnetic nanoparticles were surface modified with oleic acid followed by encapsulation inside a silica network. Then, vinyl-groups were grafted onto the particles surface for the subsequent copolymerization with the imprinting polymerization mixture using a glass vial insert as a mold. As a result, the obtained imprinted monolith presented magnetic properties allowing its use as magnetic stir-bar. Variables affecting both polymer morphology (i.e., amount of magnetic nanoparticles, polymerization time) and binding-elution conditions of target analytes (i.e., solvents, time) was carefully optimized. Optimum imprinted stir-bars were evaluated for the SBSE of triazines in soil sample extracts. Recoveries, at 16ngg(-1) concentration level, ranged from 2.4 to 8.7% with relative standard deviations lower than 15% (n=3). Although low recoveries were obtained, the high selectivity provided by the new molecularly imprinted stir-bars allowed reaching detection limits below 7.5ngg(-1) by liquid chromatography coupled to UV detection.

  10. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  11. America's Women Composers: Up from the Footnotes.

    ERIC Educational Resources Information Center

    Pool, Jeannie G.

    1979-01-01

    This article presents an overview on women composers in the United States from the eighteenth century to the present. It also lists women's musical organizations, selected references on women in music, and available recordings of works by American women composers. (SJL)

  12. Adolescents' Dialogic Composing with Mobile Phones

    ERIC Educational Resources Information Center

    Warner, Julie

    2016-01-01

    This 14-month study examined the phone-based composing practice of three adolescents. Given the centrality of mobile phones to youth culture, the researcher sought to create a description of the participants' composing practices with these devices. Focal participants were users of Twitter and Instagram, two social media platforms that are usually…

  13. A Virtual Composer in Every Classroom

    ERIC Educational Resources Information Center

    Hoffman, Adria R.; Carter, Bruce A.

    2013-01-01

    Previous generations applauded grant-funded programs that brought living composers into the lives of K-12 music students. The current economic climate, however, limits opportunities similar to those enjoyed in the past. We designed a virtual composer-in-residence experience that uses technology to overcome the barriers of funding limitations and…

  14. Children Composing and the Tonal Idiom

    ERIC Educational Resources Information Center

    Roels, Johanna Maria; Van Petegem, Peter

    2016-01-01

    Existing studies have demonstrated how children compose, experiment and use their imagination within the conventions of the tonal idiom with functional harmony. However, one area of research that has hardly been explored is how tonality emerges in the compositions of children who compose by transforming their own non-musical ideas, such as their…

  15. Spintronic transport of a non-magnetic molecule between magnetic electrodes

    NASA Astrophysics Data System (ADS)

    Kondo, Hisashi; Ohno, Takahisa

    2013-12-01

    The spintronic transport properties of a junction system composed of a non-magnetic molecule sandwiched between ferromagnetic metal electrodes are investigated theoretically using a non-equilibrium Green's function method based on density functional theory. It is revealed that in such a system, the molecular magnetic properties induced by hybridization with the magnetic electrodes play a crucial role. Alignment of the induced molecular spin-split levels is strongly related to the spin injection and tunneling magneto-resistance effects. It is found that in the system with weaker molecule-electrode interaction, stronger spintronic effects of the spin injection and tunneling magneto-resistance are observed.

  16. Single-component molecular conductor [Cu(dmdt)2] with three-dimensionally arranged magnetic moments exhibiting a coupled electric and magnetic transition.

    PubMed

    Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko; Cui, HengBo; Kato, Reizo; Takagi, Rina; Miyagawa, Kazuya; Kanoda, Kazushi; Kobayashi, Hayao

    2012-08-01

    Crystals of the single-component molecular conductor [Cu(dmdt)(2)] (dmdt = dimethyltetrathiafulvalenedithiolate) were prepared as a molecular system, with three-dimensionally arranged magnetic moments embedded in "sea" of π conduction electrons. [Cu(dmdt)(2)] had fairly large room-temperature conductivity (110 S cm(-1)) and exhibited weakly metallic behavior near room temperature. Below 265 K, the resistivity (R) increased very slowly with decreasing temperature and then increased rapidly, indicating a transition from a highly conducting state to an insulating state near 95 K. The magnetic susceptibility showed Curie-Weiss behavior at 100-300 K (C = 0.375 emu/mol, Θ = 180 K). The Curie constant and the high-temperature resistivity behavior indicate that conduction electrons and three-dimensionally arranged magnetic moments coexist in the crystal. The ESR intensity increased down to about 95 K. The ESR signal was broadened and decreased abruptly near 95 K, suggesting that electric and antiferromagnetic transitions occurred simultaneously near 95 K. The crystal structure was determined down to 13 K. To examine the stability of the twisted conformation of Cu complex with dithiolate ligands, the dihedral angle dependence of the conformational energy of an isolated M(L)(2)(n-) molecule was calculated, which revealed the dihedral angle dependence on the ligand (L) and the oxidation state of the molecule (n). High-pressure four-probe resistivity measurements were performed at 3.3-9.3 GPa using a diamond anvil cell. The small resistivity increase observed at 3.3 GPa below 60 K suggested that the insulating transition observed at ambient pressure near 95 K was essentially suppressed at 3.3 GPa. The intermolecular magnetic interactions were examined on the basis of simple mean field theory of antiferromagnetic transition and the calculated intermolecular overlap integrals of the singly occupied molecular orbital (SOMO) of Cu(dmdt)(2).

  17. Research on BOM based composable modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxin; He, Qiang; Gong, Jianxing

    2013-03-01

    Composable modeling method has been a research hotpot in the area of Modeling and Simulation for a long time. In order to increase the reuse and interoperability of BOM based model, this paper put forward a composable modeling method based on BOM, studied on the basic theory of composable modeling method based on BOM, designed a general structure of the coupled model based on BOM, and traversed the structure of atomic and coupled model based on BOM. At last, the paper introduced the process of BOM based composable modeling and made a conclusion on composable modeling method based on BOM. From the prototype we developed and accumulative model stocks, we found this method could increase the reuse and interoperability of models.

  18. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  19. Boundary effects of molecular diffusion in nanoporous materials: A pulsed field gradient nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Geier, Oliver; Snurr, Randall Q.; Stallmach, Frank; Kärger, Jörg

    2004-01-01

    The boundary conditions of intraparticle diffusion in nanoporous materials may be chosen to approach the limiting cases of either absorbing or reflecting boundaries, depending on the host-guest system under study and the temperature of measurement. Pulsed field gradient nuclear magnetic resonance is applied to monitor molecular diffusion of n-hexane and of an n-hexane-tetrafluoromethane mixture adsorbed in zeolite crystallites of type NaX under either of these limiting conditions. Taking advantage of the thus-established peculiarities of mass transfer at the interface between the zeolite bulk phase and the surrounding atmosphere, three independent routes for probing the crystal size are compared. These techniques are based on (i) the measurement of the effective diffusivity under complete confinement, (ii) the application of the so-called NMR tracer desorption technique, and (iii) an analysis of the time dependence of the effective diffusivity in the short-time limit where, by an appropriate variation of the adsorbate and the measuring conditions, the limiting cases of reflecting and adsorbing boundaries could be considered. All these techniques are found to yield coinciding results, which are in excellent agreement with the crystal sizes determined by microscopy.

  20. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  1. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    NASA Astrophysics Data System (ADS)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  2. Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease

    PubMed Central

    Knight, Michael J.; McCann, Bryony; Kauppinen, Risto A.; Coulthard, Elizabeth J.

    2016-01-01

    Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying “health” at the cellular (and even molecular) scales, makes it very well suited to this task. PMID:27378911

  3. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson's Disease?

    PubMed Central

    Ciurleo, Rosella; Di Lorenzo, Giuseppe; Marino, Silvia

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions. PMID:25302300

  4. Comparing implementations of magnetic-resonance-guided fluorescence molecular tomography for diagnostic classification of brain tumors

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Samkoe, Kimberley S.; O'Hara, Julia A.; Gibbs-Strauss, Summer L.; Paulsen, Keith D.; Pogue, Brian W.

    2010-09-01

    Fluorescence molecular tomography (FMT) systems coupled to conventional imaging modalities such as magnetic resonance imaging (MRI) and computed tomography provide unique opportunities to combine data sets and improve image quality and content. Yet, the ideal approach to combine these complementary data is still not obvious. This preclinical study compares several methods for incorporating MRI spatial prior information into FMT imaging algorithms in the context of in vivo tissue diagnosis. Populations of mice inoculated with brain tumors that expressed either high or low levels of epidermal growth factor receptor (EGFR) were imaged using an EGF-bound near-infrared dye and a spectrometer-based MRI-FMT scanner. All data were spectrally unmixed to extract the dye fluorescence from the tissue autofluorescence. Methods to combine the two data sets were compared using student's t-tests and receiver operating characteristic analysis. Bulk fluorescence measurements that made up the optical imaging data set were also considered in the comparison. While most techniques were able to distinguish EGFR(+) tumors from EGFR(-) tumors and control animals, with area-under-the-curve values=1, only a handful were able to distinguish EGFR(-) tumors from controls. Bulk fluorescence spectroscopy techniques performed as well as most imaging techniques, suggesting that complex imaging algorithms may be unnecessary to diagnose EGFR status in these tissue volumes.

  5. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  6. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    NASA Astrophysics Data System (ADS)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-11-01

    A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97-81.88% and 75.56-79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L-1, respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples.

  7. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  8. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  9. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-02-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 106%. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents.

  10. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  11. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yao, Su; Zhang, Jiali; Huang, Huichang

    2016-01-01

    A sensitive and selective method for separating fluoroquinolones (FQs) from bovine milk samples was successfully developed using montmorillonite magnetic molecularly imprinted polymers (MMMIPs) as adsorbents. MMMIPs were prepared using montmorillonite as carrier, fleroxacin (FLE) as template molecule, and Fe3O4 magnetite as magnetic component. MMMIPs possessed high adsorption capacity of 46.3 mg g(-1) for FLE. A rapid and convenient magnetic solid-phase extraction procedure coupled with capillary electrophoresis was established with MMMIPs as adsorbents for simultaneous and selective extraction of four FQs in bovine milk samples. Limits of detection ranged between 12.9 and 18.8 μg L(-1), and the RSDs were between 1.8% and 8.6%. The proposed method was successfully applied to spike bovine milk samples with recoveries of 92.7%-108.6%.

  12. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  13. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition.

    PubMed

    Gao, Lin; Wang, Jixiang; Li, Xiuying; Yan, Yongsheng; Li, Chunxiang; Pan, Jianming

    2014-11-01

    In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0-50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food.

  14. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of tetrabromobisphenol S.

    PubMed

    Wang, Xuemei; Huang, Pengfei; Ma, Xiaomin; Wang, Huan; Lu, Xiaoquan; Du, Xinzhen

    2017-05-01

    Novel magnetic mesoporous molecularly imprinted polymers (MMIPs) with core-shell structure were prepared by simple surface molecular imprinting polymerization using tetrabromobisphenol-S (TBBPS) as the template. The MMIPs-TBBPS were characterized by fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption transmission, and vibrating sample magnetometry. The resultant MMIPs-TBBPS were successfully applied magnetic solid-phase extraction (MSPE) coupled with HPLC determination of TBBPS in spiked real water samples with recoveries of 77.8-88.9%. The adsorption experiments showed that the binding capacity of MMIPs-TBBPS to TBBPS and six structural analogs were significantly higher than that of the magnetic nonimprinted polymers (MNIPs). Meanwhile, the MMIPs-TBBPS possessed rapid binding affinity, excellent magnetic response, specific selectivity and high adsorption capacity toward TBBPS with a maximum adsorption capacity of 1626.8µgg(-1). The analytical results indicate that the MMIPs-TBBPS are promising materials for selective separation and fast enrichment of TBBPS from complicated enviromental samples.

  15. Magnetic fields in molecular clouds: The BLASTPol and BLAST-TNG experiments

    NASA Astrophysics Data System (ADS)

    Galitzki, Nicholas

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flight from Antarctica in 2012. The data reduction and analysis efforts over the three years following the flight have produced a number of important scientific results. The next-generation BLAST instrument (BLAST-TNG) will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and more than 3000 polarization sensitive detectors. BLAST-TNG will observe in the same three bands as BLASTpol at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid helium cooled cryostat will have a 28-day hold time and will utilize a closed-cycle 3He refrigerator to cool the detector arrays to 270 mK. This will enable a detailed mapping of more targets with higher polarization resolution than any other submillimeter experiment to date. My thesis describes the 2012 instrument and results while also outlining the motivation for BLAST-TNG and the instrumental design and initial testing.

  16. Unravelling the molecular structure and packing of a planar molecule by combining nuclear magnetic resonance and scanning tunneling microscopy.

    PubMed

    Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M

    2013-12-21

    The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.

  17. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Rashidinejad, Ali; Birch, Edward J; Hindmarsh, Jason; Everett, David W

    2017-01-15

    Molecular integrations between green tea catechins and milk fat globules in a cheese matrix were investigated using solid-state magic angle spinning nuclear magnetic resonance spectroscopy. Full-fat cheeses were manufactured containing free catechin or free green tea extract (GTE), and liposomal encapsulated catechin or liposomal encapsulated GTE. Molecular mobility of the carbon species in the cheeses was measured by a wide-line separation technique. The (1)H evolution frequency profile of the (13)C peak at 16ppm obtained for the control cheese and cheeses containing encapsulated polyphenols (catechin or GTE) were similar, however, the spectrum was narrower for cheeses containing free polyphenols. Differences in spectral width indicates changes in the molecular mobility of --CH3- or -C-C-PO4- species through hydrophobic and/or cation-π associations between green tea catechins and cheese fat components. However, the similar spectral profile suggests that encapsulation protects cheese fat from interaction with catechins.

  18. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings

    PubMed Central

    Baker, Michael L.; Timco, Grigore A.; Piligkos, Stergios; Mathieson, Jennifer S.; Mutka, Hannu; Tuna, Floriana; Kozłowski, Piotr; Antkowiak, Michał; Guidi, Tatiana; Gupta, Tulika; Rath, Harapriya; Woolfson, Robert J.; Kamieniarz, Grzegorz; Pritchard, Robin G.; Weihe, Høgni; Cronin, Leroy; Rajaraman, Gopalan; Collison, David; McInnes, Eric J. L.; Winpenny, Richard E. P.

    2012-01-01

    The term “frustration” in the context of magnetism was originally used by P. W. Anderson and quickly adopted for application to the description of spin glasses and later to very special lattice types, such as the kagomé. The original use of the term was to describe systems with competing antiferromagnetic interactions and is important in current condensed matter physics in areas such as the description of emergent magnetic monopoles in spin ice. Within molecular magnetism, at least two very different definitions of frustration are used. Here we report the synthesis and characterization of unusual nine-metal rings, using magnetic measurements and inelastic neutron scattering, supported by density functional theory calculations. These compounds show different electronic/magnetic structures caused by frustration, and the findings lead us to propose a classification for frustration within molecular magnets that encompasses and clarifies all previous definitions. PMID:23132941

  19. Lyapunov instability of fluids composed of rigid diatomic molecules

    NASA Astrophysics Data System (ADS)

    Borzsák, István; Posch, H. A.; Baranyai, András

    1996-04-01

    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a Weeks-Chandler-Anderson site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom, such as rotation and translation, affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.

  20. The Brain Functional State of Music Creation: an fMRI Study of Composers.

    PubMed

    Lu, Jing; Yang, Hua; Zhang, Xingxing; He, Hui; Luo, Cheng; Yao, Dezhong

    2015-07-23

    In this study, we used functional magnetic resonance imaging (fMRI) to explore the functional networks in professional composers during the creation of music. We compared the composing state and resting state imagery of 17 composers and found that the functional connectivity of primary networks in the bilateral occipital lobe and bilateral postcentral cortex decreased during the composing period. However, significantly stronger functional connectivity appeared between the anterior cingulate cortex (ACC), the right angular gyrus and the bilateral superior frontal gyrus during composition. These findings indicate that a specific brain state of musical creation is formed when professional composers are composing, in which the integration of the primary visual and motor areas is not necessary. Instead, the neurons of these areas are recruited to enhance the functional connectivity between the ACC and the default mode network (DMN) to plan the integration of musical notes with emotion.

  1. Music and emotion—a composer's perspective

    PubMed Central

    Douek, Joel

    2013-01-01

    This article takes an experiential and anecdotal look at the daily lives and work of film composers as creators of music. It endeavors to work backwards from what practitioners of the art and craft of music do instinctively or unconsciously, and try to shine a light on it as a conscious process. It examines the role of the film composer in his task to convey an often complex set of emotions, and communicate with an immediacy and universality that often sit outside of common language. Through the experiences of the author, as well as interviews with composer colleagues, this explores both concrete and abstract ways in which music can bring meaning and magic to words and images, and as an underscore to our daily lives. PMID:24348344

  2. Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning

    2013-03-20

    Magnetic multi-core-shell molecularly imprinted microspheres (Fe3O4@MIMs) based on multi-Fe3O4 nanoparticles as core structures and dummy imprinted materials as shell structures have been synthesized by a surface-imprinted technique using dichlorodiphenyltrichloroethane as the dummy template and were successfully used as a specific adsorbent for rapid isolation of trace levels of dicofol from teas. The resulting Fe3O4@MIMs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermogravimetric analysis. In comparison to the imprinted polymers prepared by the traditional polymerizations, the obtained Fe3O4@MIMs showed regularly spherical shape, porous morphologies, high saturation magnetization [56.8 electromagnetic units (emu)/g], and rapid response time (15 s). The as-synthesized Fe3O4@MIMs, which incorporated the excellent molecular recognition and magnetic separation properties, were successfully used as special adsorbents for rapid isolation and extraction of trace levels of dicofol and its analogues from a complicated tea matrix.

  3. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    PubMed Central

    Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; del Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; Ruben, M.; Kummer, K.; Brookes, N. B.; Huang, H.; Soncini, A.; Wende, H.; Affronte, M.

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  4. Experimental cell for molecular beam deposition and magnetic resonance studies of matrix isolated radicals at temperatures below 1 K

    SciTech Connect

    Sheludiakov, S. Ahokas, J.; Vainio, O.; Järvinen, J.; Zvezdov, D.; Vasiliev, S.; Khmelenko, V. V.; Mao, S.; Lee, D. M.

    2014-05-15

    We present the design and performance of an experimental cell constructed for matrix isolation studies of H and D atoms in solid H{sub 2}/D{sub 2} films, which are created by molecular beam deposition at temperatures below 1 K. The sample cell allows sensitive weighing of the films by a quartz microbalance (QM) and their studies by magnetic resonance techniques in a strong magnetic field of 4.6 T. We are able to regulate the deposition rate in the range from 0.01 to 10 molecular layers/s, and measure the thickness with ≈0.2 monolayer resolution. The upper QM electrode serves as a mirror for a 128 GHz Fabry-Perot resonator connected to an electron spin resonance (ESR) spectrometer. H and D atoms were created by RF discharge in situ in the sample cell, and characterized by ESR and electron-nuclear double resonance. From the magnetic resonance measurements we conclude that the films are smooth and provide homogeneous trapping conditions for embedded atoms. The current sample cell design also makes it possible to calibrate the ESR signal and estimate the average and local concentrations of H and D radicals in the film.

  5. Second-order planar gradiometer composed of concentric superconductive loops

    SciTech Connect

    Kuriki, S.; Isobe, Y.; Mizutani, Y.

    1987-01-15

    A planar gradiometer composed of three concentric superconductive loops is analyzed. The gradiometer performs the second derivative with a rotational symmetry in a form of partial/sup 2/B/sub z//partialr/sup 2/, where r/sup 2/ = x/sup 2/+y/sup 2/. In response to the biomagnetic field generated by a current dipole, an isoflux line distribution which resembles well the magnetic field distribution is obtained. The location and the strength of the current-dipole source can readily be estimated from the isoflux pattern. Reduction of the magnetic field noise from distant sources with respect to the signal of a near source is calculated to be comparable with that of conventional axial gradiometers.

  6. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping.

    PubMed

    Nair, R R; Tsai, I-L; Sepioni, M; Lehtinen, O; Keinonen, J; Krasheninnikov, A V; Castro Neto, A H; Katsnelson, M I; Geim, A K; Grigorieva, I V

    2013-01-01

    Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres such as vacancies and adatoms. Here we show that the magnetism of adatoms in graphene is itinerant and can be controlled by doping, so that magnetic moments are switched on and off. The much-discussed vacancy magnetism is found to have a dual origin, with two approximately equal contributions; one from itinerant magnetism and the other from dangling bonds. Our work suggests that graphene's spin transport can be controlled by the field effect, similar to its electronic and optical properties, and that spin diffusion can be significantly enhanced above a certain carrier density.

  7. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing

    2015-11-01

    A novel, facile and low cost process for imprinting protein on the surface of magnetic multiwalled carbon nanotubes (MMWNTs) was developed using human serum albumin (HSA) as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized with transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) in detail. The maximum adsorption capacity of the magnetic imprinted polymers toward HSA was 66.23 mg g(-1) and it took 20 min to achieve the adsorption equilibrium. The magnetic imprinted polymers exhibited the specific selective adsorption toward HSA. Coupled with high performance liquid chromatography (HPLC) analysis, the magnetic imprinted polymers were used to solid-phase extract and detect HSA in urine samples successfully with the recoveries of 91.95-97.8%.

  8. The Influence of Conceptions of Molecular Structure and Patterns of Problem-Solving on the Process of Learning To Interpret Nuclear Magnetic Resonance Spectra.

    ERIC Educational Resources Information Center

    Gonzalez, Barbara L.

    The purpose of this study was to characterize the prior conceptions of molecular structure that organic chemistry students expressed as they learned to interpret nuclear magnetic resonance spectra, and to describe the problem-solving strategies that students employ as they determine molecular structure. The two questions that frame this study…

  9. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  10. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.

  11. The effects of pseudo magnetic fields in molecular spectra and scattering

    SciTech Connect

    Kendrick, B.

    1996-12-31

    Pseudo magnetic fields appear in the Born-Oppenheimer method for molecules when conical intersections or electronic angular momenta are taken into account. These fields are not real magnetic fields but they have the same mathematical properties and can lead to real observable effects in the dynamics of molecules. A general vector potential (gauge theory) approach for including these field effects in the Born-Oppenheimer method is introduced and applied to H + O{sub 2} scattering and the vibrational spectrum of Na{sub 3}(X) for zero total angular momentum (J = 0). The scattering results for HO{sub 2} show significant shifts in the resonance energies and lifetimes due to a magnetic solenoid type field originating from the C{sub 2v} conical intersection in HO{sub 2}. Significant changes in the state-to-state transition probabilities are also observed. The non-degenerate A{sub 1} and A{sub 2} vibrational spectra of Na{sub 3}(X) show significant shifts in the energy levels due to a magnetic solenoid type field originating from the D{sub 3h} conical intersection in Na{sub 3}. These two examples show that the effects of pseudo magnetic fields can be significant and in many cases they must be included in order to obtain agreement between theory and experiment. The newly developed gauge theory techniques for treating pseudo magnetic fields are also relevant for including the effects of real magnetic fields.

  12. Research on Composing: Points of Departure.

    ERIC Educational Resources Information Center

    Cooper, Charles R., Ed.; Odell, Lee, Ed.

    While the chapters of this book present a variety of perspectives, they share the common goal of redirecting and revitalizing research on written composition. The authors review research on written discourse and the composing process and raise questions regarding information and skills that teachers and researchers need to consider. The chapters…

  13. The Composing Processes of Mature Adults.

    ERIC Educational Resources Information Center

    Crabbe, Katharyn

    The study examined 41 students (24 male, 17 female) in a beginning writing course for adults. Data were collected by (1) taping four workshop sessions in which all students participated in small groups, (2) interviewing all the students, and (3) observing four students writing in the classroom. The adult writers composed in two models: the…

  14. The Composer in the Liberal Arts College

    ERIC Educational Resources Information Center

    Schwartz, Elliott

    2011-01-01

    This essay explores the role of music composition within the curriculum of a typical small liberal arts college and the faculty composer's role(s) in facilitating the study of composition. The relationship between composition and campus performance is discussed, particularly in light of the increased emphasis on performance in formerly all-male…

  15. Composing Networks: Writing Practices on Mobile Devices

    ERIC Educational Resources Information Center

    Swarts, Jason

    2016-01-01

    This article is an investigation of composing practices through which people create networks with mobile phones. By looking through the lens of actor-network theory, the author portrays the networking activity of mobile phone users as translation, what Latour describes as an infralanguage to which different disciplinary perspectives can be…

  16. Composing Zen Haiku: Training to Make Sense.

    ERIC Educational Resources Information Center

    Holmes, Stewart W.

    1996-01-01

    Suggests that composing "haiku" requires a discipline in a person's thinking and emoting patterns similar to that of a general semantics system for training people to make sense. Describes how such haiku are written and gives some guidelines to help individuals create their own. (PA)

  17. The Composer's Blueprint: A Teacher's Guide.

    ERIC Educational Resources Information Center

    Trzcinski, Louis C.; Nelhybel, Vaclav

    This teacher's guide is designed to accompany two 15-minute color television programs dealing with the creative process involved in conceiving a composition. The programs are appropriate for junior high school string students and instrumental students in string methods courses at teacher training institutions. In the program, the composer explains…

  18. Enhancing Memory in Your Students: COMPOSE Yourself!

    ERIC Educational Resources Information Center

    Rotter, Kathleen M.

    2009-01-01

    The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…

  19. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A.

    PubMed

    Wu, Xiaqing; Wang, Xiaoyan; Lu, Wenhui; Wang, Xinran; Li, Jinhua; You, Huiyan; Xiong, Hua; Chen, Lingxin

    2016-02-26

    Versatile molecularly imprinted polymers (MIPs) have been widely applied to various sample matrices, however, molecular recognition in aqueous media is still difficult. Stimuli-responsive MIPs have received increasing attentions due to their unique feature that the molecular recognition is regulated by specific external stimuli. Herein, water-compatible temperature and magnetic dual-responsive MIPs (WC-TMMIPs) with hydrophilic brushes were prepared via reversible addition-fragmentation chain transfer precipitation polymerization for reversible and selective recognition and extraction of bisphenol A (BPA). Transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometry (VSM) as characterization methods were used to examine the successful synthesis of polymers, and the resultant WC-TMMIPs showed excellent thermosensitivity and simple rapid magnetic separation. Controlled adsorption and release of BPA by temperature regulation were investigated systematically, and the maximum adsorption and removal efficiency toward BPA in aqueous solutions were attained at 35 °C and 45 °C, respectively, as well as a good recoverability was exhibited with the precision less than 5% through five adsorption-desorption cycles. Phenolic structural analogs were tested and good recognition specificity for BPA was displayed. Accordingly, the WC-TMMIPs were employed as adsorbents for magnetic solid-phase extraction (MSPE) and packed SPE of BPA from seawater samples. Using the two modes followed by HPLC-UV determination, excellent linearity was attained in the range of 0.1-14.5 μM and 1.3-125 nM, with low detection limits of 0.02 μM and 0.18 nM, respectively. Satisfactory recoveries for spiked seawater samples were achieved ranging from 86.3-103.5% and 96.2-104.3% with RSD within 2.12-4.33%. The intelligent WC-TMMIPs combining water-compatibility, molecular recognition, magnetic separation, and temperature regulation proved

  20. Selective separation and enrichment of glibenclamide in health foods using surface molecularly imprinted polymers prepared via dendritic grafting of magnetic nanoparticles.

    PubMed

    Wang, Ruoyu; Wang, Yang; Xue, Cheng; Wen, Tingting; Wu, Jinhua; Hong, Junli; Zhou, Xuemin

    2013-03-01

    In this paper, the novel surface molecularly imprinted polymers based on dendritic-grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46-93.53% with the RSD < 4.07%.

  1. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  2. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  3. Highly-oriented molecular arrangements and enhanced magnetic interactions in thin films of CoTTDPz using PTCDA templates.

    PubMed

    Eguchi, Keitaro; Nanjo, Chihiro; Awaga, Kunio; Tseng, Hsiang-Han; Robaschik, Peter; Heutz, Sandrine

    2016-07-14

    In the present work, the templating effect of thin layers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the growth of cobalt tetrakis(thiadiazole)porphyrazine (CoTTDPz) thin films was examined. X-ray diffraction and optical absorption spectra indicate that while CoTTDPz forms amorphous thin films on the bare substrates, it forms crystalline thin films on the PTCDA templates, in which the molecular planes of CoTTDPz are considered to be parallel to the substrates. Magnetic measurements reveal a significantly enhanced antiferromagnetic interaction of CoTTDPz in the templated thin films, with values reaching over 13 K. The ability to generate crystalline films and to control their orientation using molecular templates is an important strategy in the fields of organic electronics and spintronics in order to tailor the physical properties of organic thin films to suit their intended application.

  4. Molecular and Integrative Physiological Effects of Isoflurane Anesthesia: The Paradigm of Cardiovascular Studies in Rodents using Magnetic Resonance Imaging

    PubMed Central

    Constantinides, Christakis; Murphy, Kathy

    2016-01-01

    To-this-date, the exact molecular, cellular, and integrative physiological mechanisms of anesthesia remain largely unknown. Published evidence indicates that anesthetic effects are multifocal and occur in a time-dependent and coordinated manner, mediated via central, local, and peripheral pathways. Their effects can be modulated by a range of variables, and their elicited end-effect on the integrative physiological response is highly variable. This review summarizes the major cellular and molecular sites of anesthetic action with a focus on the paradigm of isoflurane (ISO) – the most commonly used anesthetic nowadays – and its use in prolonged in vivo rodent studies using imaging modalities, such as magnetic resonance imaging (MRI). It also presents established evidence for normal ranges of global and regional physiological cardiac function under ISO, proposes optimal, practical methodologies relevant to the use of anesthetic protocols for MRI and outlines the beneficial effects of nitrous oxide supplementation. PMID:27525256

  5. Magnetic ordering of defects in a molecular spin-Peierls system

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Cottrell, Stephen; Pratt, Francis L.; Szablewski, Marek

    2017-01-01

    With interest in charge transfer compounds growing steadily, it is important to understand all aspects of the underlying physics of these systems, including the properties of the defects and interfaces that are universally present in actual experimental systems. For the study of these defects and their interactions a spin-Peierls (SP) system provides a useful testing ground. This work presents an investigation within the SP phase of potassium TCNQF4 where anomalous features are observed in both the magnetic susceptibility and ESR spectra for temperatures between 60 K and 100 K. Muon spin spectroscopy measurements confirm the presence of these anomalous magnetic features, with low temperature zero-field data exhibiting the damped oscillatory form that is a characteristic signature of static magnetic order. This ordering is most likely due to the interaction between structurally correlated magnetic defects in the system. The critical behaviour of the temperature dependent muon spin rotation frequency indicates that a 2D Ising model is applicable to the magnetic ordering of these defects. We show that these observations can be explained by a simple model in which the magnetic defects are located at stacking faults, which provide them with a 2D structural framework to constrain their interactions.

  6. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  7. In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion.

    PubMed

    Bertin, Annabelle; Michou-Gallani, Anne-Isabelle; Gallani, Jean-Louis; Felder-Flesch, Delphine

    2010-08-01

    Interest in contrast agent's (CA) neurotoxicity has greatly increased due to the growing need of new compounds dedicated to brain imaging. Magnetic resonance imaging (MRI) CA have been evaluated by means of different toxicological assays with cultured rat primary neurons (evaluation of neurite specific parameters via immunostaining of the cells and LDH leakage). To determine the potential neurotoxicity of a precise paramagnetic ion in a defined structure (architecture and molecular weight), novel hydrosoluble dendritic Manganese (II) and Gadolinium (III) complexes derived from diethylenetriamine pentaacetic acid (DTPA) have been studied and compared to a linear homologue (same molecular weight) and commercially available low molecular weight MRI CA like Mn-DPDP (Teslascan, GE Healthcare) and Gd-DTPA (Magnevist, Schering). The range of CA concentrations studied was 0.1-10mM, suitable for MRI examinations. This set of experiments allows a toxicity ranking of these reagents as a function of molecular structure and nature of the paramagnetic ion. We could determine that the architecture (linear vs. dendritic) does not play an important role in the in vitro neurotoxicity, whereas the structure of the chelating cage is of greater importance.

  8. Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer.

    PubMed

    Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo

    2017-05-01

    The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe3O4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.

  9. Collapse and fragmentation of magnetic molecular cloud cores with the Enzo AMR MHD code. II. Prolate and oblate cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-10-10

    We present the results of a large suite of three-dimensional models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement code Enzo2.2 in the ideal magnetohydrodynamics approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 M {sub ☉}, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density isothermal phases, to high density optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 μG, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from 10{sup –4} to 0.1. Two significantly different outcomes for collapse result: (1) formation of single protostars with spiral arms, and (2) fragmentation into multiple protostar systems. The transition between these two outcomes depends primarily on the initial magnetic field strength, with fragmentation occurring for mass to flux ratios greater than about 14 times the critical ratio for prolate clouds. Oblate clouds typically fragment into several times more clumps than prolate clouds. Multiple, rather than binary, system formation is the general rule in either case, suggesting that binary stars are primarily the result of the orbital dissolution of multiple protostar systems.

  10. Synthesis and properties of magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes for magnetic extraction of bisphenol A from water.

    PubMed

    Zhang, Zhaohui; Chen, Xing; Rao, Wei; Chen, Hongjun; Cai, Rong

    2014-08-15

    Novel magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes (MWNTs@MMIPs) with specific selectivity toward bisphenol A were synthesized using bisphenol A as the template molecule, methacrylic acid, and β-cyclodextrin as binary functional monomers and ethylene glycol dimethacrylate as the cross-linker. The MWNTs@MMIPs were characterized by Fourier transform infrared, vibrating sample magnetometer, and transmission electron microscopy. Batch mode adsorption experiment was carried out to investigate the specific adsorption equilibrium and kinetics of the MWNTs@MMIPs. The MWNTs@MMIPs exhibited good affinity with a maximum adsorption capacity of 49.26 μmol g(-1) and excellent selectivity toward bisphenol A. Combined with high-performance liquid chromatography analysis, the MWNTs@MMIPs were employed to extract bisphenol A in tap water, rain water, and lake water successfully with the recoveries of 89.8-95.4, 89.9-93.4, and 87.3-94.1%, respectively.

  11. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes.

    PubMed

    Liu, Yajie; Yang, Yi; Zhang, Chunfu

    2013-01-01

    Angiogenesis is an essential step for the growth and spread of malignant tumors. Accurate detection and quantification of tumor angiogenesis is important for early diagnosis of cancers as well as post therapy assessment of antiangiogenic drugs. The cell adhesion molecule integrin αvβ3 is a specific marker of angiogenesis, which is highly expressed on activated and proliferating endothelial cells, but generally not on quiescent endothelial cells. Therefore, in recent years, many different approaches have been developed for imaging αvβ3 expression, for the detection and characterization of tumor angiogenesis. The present review provides an overview of the current status of magnetic resonance molecular imaging of integrin αvβ3, including the new development of high sensitive contrast agents and strategies for improving the specificity of targeting probes and the biological effects of imaging probes on αvβ3 positive cells.

  12. Concepts and Applications of Composable FORCEnet

    DTIC Science & Technology

    2005-12-01

    2080 WSEAS TRANS. on INFORMATION SCIENCE & APPLICATIONS Issue 12. Volume 2. December 2005 ISSN: 1790-0832 Concepts and Applications of Composable...STATEMENT A Approved for Public Release Distribution Unlimited 20060926075 WSEAS TRANS. on INFORMATION SCIENCE & APPLICATIONS Issue 12. Volume 2, December...information from one system or network to an- automatic insertion of content. The project team connects these data sources, views, and agents 2082 WSEAS

  13. Is the Higgs boson composed of neutrinos?

    DOE PAGES

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  14. Is the Higgs boson composed of neutrinos?

    SciTech Connect

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  15. VELOCITY ANISOTROPY AS A DIAGNOSTIC OF THE MAGNETIZATION OF THE INTERSTELLAR MEDIUM AND MOLECULAR CLOUDS

    SciTech Connect

    Esquivel, A.; Lazarian, A. E-mail: lazarian@astro.wisc.edu

    2011-10-20

    We use a set of magnetohydrodynamic simulations of fully developed (driven) turbulence to study the anisotropy in the velocity field that is induced by the presence of the magnetic field. In our models, we study turbulence characterized by sonic Mach numbers M{sub s} from 0.7 to 7.5 and Alfven Mach numbers from 0.4 to 7.7. These are used to produce synthetic observations (centroid maps) that are then analyzed. To study the effect of large-scale density fluctuations and of white noise, we have modified the density fields and obtained new centroid maps, which are analyzed. We show that restricting the range of scales at which the anisotropy is measured makes the method robust against such fluctuations. We show that the anisotropy in the structure function of the maps reveals the direction of the magnetic field for M{sub A} {approx}< 1.5, regardless of the sonic Mach number. We find that the degree of anisotropy can be used to determine the degree of magnetization (i.e., M{sub A} ) for M{sub A} {approx}< 1.5. To do this, one needs an additional measure of the sonic Mach number and an estimate of the line of sight magnetic field, both feasible by other techniques, offering a new opportunity to study the magnetization state of the interstellar medium.

  16. Preparation of a multi-hollow magnetic molecularly imprinted polymer for the selective enrichment of indolebutyric acid.

    PubMed

    Li, Shanshan; Yin, Chao; Ren, Shuiying; Yang, Tao; Wang, Jide; Feng, Shun

    2015-08-01

    A simple strategy was developed for the preparation of multi-hollow magnetic molecularly imprinted polymers by incorporating 3-indolebutyric acid and ferroferric oxide nanoparticles simultaneously into a poly(styrene-co-methacrylic acid) copolymer matrix. The as prepared absorbents were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy and mercury porosimetry. The adsorption isotherms of indolebutyric acid revealed that there are two types of affinity binding sites in the absorbents. The apparent maximum binding capacity and dissociation constant were 17.88 mg/g and 158.7 μg/mL for high-affinity binding sites and 9.310 mg/g and 35.04 μg/mL for low-affinity binding sites, respectively. The results testified that multi-hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules due to the high specific surface area as large as 511.3 m(2) /g. Recoveries of 75.5-86.8% were obtained for the indolebutyric acid spiked at three concentration levels in blank and pear samples.

  17. Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine.

    PubMed

    Lu, Fuguang; Li, Huaijiang; Sun, Min; Fan, Lulu; Qiu, Huamin; Li, Xiangjun; Luo, Chuannan

    2012-03-09

    A novel flow injection chemiluminescence (FI-CL) sensor for determination of sulfadiazine (SDZ) using core-shell magnetic molecularly imprinted polymers (MMIPs) as recognition element is developed. Briefly, a hydrophilic MMIPs layer was produced at the surface of Fe(3)O(4)@SiO(2) magnetic nanoparticles (MNPs) via combination of molecular imprinting and reversible stimuli responsive hydrogel. And it provided the MMIPs with excellent adsorption capacity and rapid adsorption rate due to the imprinted sites mostly situated on the surface of MMIPs. Then the prepared SDZ-MMIPs were packed into flow cell to establish a novel FI-CL sensor. The sensor provided a wide linear range for SDZ of 4.0×10(-7) to 1.0×10(-4) mol L(-1) with a detection limit of 1.54×10(-7) mol L(-1). And the relative standard deviation (RSD) for the determination of 1.0×10(-6) mol L(-1) SDZ was 2.56% (n=11). The proposed method was applied to determine SDZ in urine samples and satisfactory results were obtained.

  18. Design of Low Temperature AC Susceptibility Measurement Scheme for Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Korenblit, Simcha; Moon, Byoung; Lee, Yoonseok; Sultan, Reza

    2006-03-01

    AC susceptibility is one of the most important physical properties in many materials such as magnetic materials and superconductors. Although there are many commercial AC susceptibility measurement systems which cover a broad range of temperatures, it is still a daunting task to extend their measurement range into the low millikelvins. We are currently developing a low temperature AC susceptometer for the mK range. As a part of this effort, we have developed a versatile low-cost computer controlled coil-winder to make various types of coils. We have designed primary and secondary coils and wound them using the machine, and performed characterization of the AC susceptometer. In this presentation, I will explain the basics of magnetic susceptibility, its measurement, design considerations for building an AC magnetic susceptometer, and discuss the details of an actual apparatus designed and realized by the authors.

  19. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    SciTech Connect

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  20. Molecular quantum magnetism in LiZn2Mo3O8

    SciTech Connect

    Mourigal, Martin; Fuhrman, W. T.; Sheckelton, J. P.; Wartelle, A.; Rodriguez-Rivera, J A; Abernathy, Douglas L; McQueen, T. M.; Broholm, Collin L

    2014-01-01

    Inelastic neutron scattering for temperatures below 30 K from a powder of LiZn2Mo3O8 demonstrates this triangular-lattice antiferromagnet hosts collective magnetic excitations from spin 1/2 Mo3O13 molecules. Apparently gapless ( \\Delta < 0.2 meV) and extending at least up to 2.5 meV, the low energy magnetic scattering cross section is surprisingly broad in momentum space and involves one third of the spins present above 100 K. The data are compatible with the presence of valencebonds involving nearest-neighbor and next-nearest-neighbor spins forming a disordered or dynamic state.

  1. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  2. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  3. Molecular recognition of the Thomsen-Friedenreich antigen-threonine conjugate by adhesion/growth regulatory galectin-3: nuclear magnetic resonance studies and molecular dynamics simulations.

    PubMed

    Yongye, Austin B; Calle, Luis; Ardá, Ana; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Martínez-Mayorga, Karina; Cudic, Mare

    2012-09-18

    Nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods have been strategically combined to elucidate the molecular recognition features of the binding of threonine O-linked Thomsen-Friedenreich (TF) antigen to chimera-type avian galectin-3 (CG-3). Saturation transfer difference (STD) NMR experiments revealed the highest intensities for the H4 protons of both the β-D-Galp and α-D-GalpNAc moieties, with 100 and 71% of relative STD, respectively. The methyl protons of the threonine residue exhibited a small STD effect, <15%, indicating that the interaction of the amino acid with the protein is rather transient. Two-dimensional transferred nuclear Overhauser effect spectroscopy NMR experiments and molecular modeling suggested some differences in conformer populations between the free and bound states. A dynamic binding mode for the TF antigen-CG-3 complex consisting of two poses has been deduced. In one pose, intermolecular interactions were formed between the terminal threonine residue and the receptor. In the second pose, intermolecular interactions involved the internal GalpNAc. The difference in the trend of some shifts in the heteronuclear single-quantum coherence titration spectra indicates some disparities in the binding interactions of CG-3 with lactose and TF antigen. The results obtained from this model of the avian orthologue of human galectin-3 will allow detailed interspecies comparison to give sequence deviations in phylogeny a structural and functional meaning. Moreover, the results indicate that the peptide scaffold presenting TF antigen could be relevant for binding and thus provides a possible route for the design of galectin-3 inhibitors with improved affinity and selectivity.

  4. Magnetic resonance contrast media sensing in vivo molecular imaging agents: an overview.

    PubMed

    Amanlou, Massoud; Siadat, Seyed Davar; Norouzian, Dariush; Ebrahimi, Seyed Esmaeil Sadat; Aghasadeghi, Mohammad Reza; Ghorbani, Masoud; Alavidjeh, Mohammad Shafiee; Inanlou, Davoud Nouri; Arabzadeh, Ali Jabbari; Ardestani, Mehdi Shafiee

    2011-01-01

    Metabolic imaging is commonly performed by nuclear medicine facilities such as PET or SPECT, etc. The production and biomedical applications of bio-molecular sensing in vivo MRI metabolic contrast agents has recently become of great universal research interest, which follows its great success as a potential cost effective, less radioactive, nuclear medicine alternative. Temperature, redox potential, enzyme activity, free radial/metal ion responsive and/or pH sensitive molecular metabolic MR contrast agents are among the famous instances exemplified, which basically promote MR image contrast enhancement ability to distinguish molecular metabolic/gene expression features. Overall, these MRI contrast agents provide a framework to achieve a greater degree of accuracy from MRI as a low cost, more available facility, non radioactive radiation producing and highly sensitive biomedical tool to propound as a new suggesting opponent for PET nuclear medicine imaging. In the present review, the design, development, examination and future of the above agents will be discussed in detail.

  5. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  6. Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials.

    PubMed

    Yang, Zhen; Deng, Liangzi; Lan, Yucheng; Zhang, Xiaoliu; Gao, Zhonghong; Chu, Ching-Wu; Cai, Dong; Ren, Zhifeng

    2014-07-29

    Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials.

  7. Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials

    PubMed Central

    Yang, Zhen; Deng, Liangzi; Lan, Yucheng; Zhang, Xiaoliu; Gao, Zhonghong; Chu, Ching-Wu; Cai, Dong; Ren, Zhifeng

    2014-01-01

    Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials. PMID:25030447

  8. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effects of Transverse Field on Internal Energy and Specific Heat of a Molecular-Based Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Yu, Gui-Hong; Zhang, Fan; Wang, Wei; Jiang, Yuan

    2009-11-01

    The molecular-based magnetic materials AFeIIFeIII (C2O4)3 have a honeycomb structure in which FeII (S = 2) and FeIII (S = 5/2) occupy sites alternately. They can be described as mixed spin-2 and spin-5/2 Ising model with ferrimagnetic interlayer coupling. The influences of the transverse field on the internal energy and the specific heat of the molecular-based magnetic system have been studied numerically by using the effective-field theory with self-spin correlations and the differential operator technique.

  9. Magnetic properties of Fe-Cu alloys grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Grigorov, I. L.; Freeland, J. W.; Walker, J. C.

    1996-03-01

    Magnetic properties of Fe_xCu_1-x alloys are difficult to study due to the low mutual solid solubility of the components. These alloys can be formed by co-sputtering onto a cold substrate, however, they retain fcc phase only for x < 0.6footnote[1]C.L. Chien et. al. Phys.Rev. B 33, 3247 (1986). In this work Fe_xCu_1-x alloys were grown epitaxially by co-deposition onto the Cu(100) substrate. Using this technique we can stabilize the alloy in fcc phase across the entire Fe concentration range. During growth, the substrate was maintained at 0^0C to prevent clustering. Crystal structure was monitored by in-situ RHEED and ex-situ X-ray diffraction. The correlation between structural and magnetic properties of the alloys as well as their dependence on the film thickness were studied by SQUID magnetometry and Mössbauer spectroscopy. Initial results showed a non-zero quadrupole splitting of the room temperature Mössbauer absorption line indicating the random distribution of iron in the Cu matrix. Both low temperature Mössbauer and SQUID measurements on the alloys with low iron concentration showed significant reduction of the average magnetic moment and T_c.

  10. Development of a High Resolution Analyzing Magnet System for Heavy Molecular Ions

    NASA Astrophysics Data System (ADS)

    Ghazaly, Mohamed O. A. El; Dehnel, Morgan; Defrance, Pierre

    At the King Abdulaziz City for Science and Technology (KACST, Saudi Arabia), a versatile ion-beam injector was constructed to provide the electrostatic storage ring with the required high-quality ion beams. In order to remove the ambiguity over the ion mass due to the exclusive application of electric fields in the set-up, the injector is being equipped with a high resolution mass analyzing magnet. A high resolution Analyzing Magnet System has been designed to provide a singly-charged ion beam of kinetic energy up to 50 keV, mass up to 1500 Amu, and with the mass resolution fixed to Δm/m =1:1500. The system includes specific entrance and exit slits, designed to sustain the required mass resolution. Furthermore, specific focusing and shaping optics have been added upstream and downstream the system, in order to monitor and adapt the shape of the ion beam at the entrance and exit of the system, respectively. The present paper gives an overview on the design of this mass analyzing magnet system together with the upstream/downstream adapting optics.

  11. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    PubMed

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  12. Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water.

    PubMed

    Rovedo, Philipp; Knecht, Stephan; Bäumlisberger, Tim; Cremer, Anna Lena; Duckett, Simon B; Mewis, Ryan E; Green, Gary G R; Burns, Michael; Rayner, Peter J; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; Pütz, Gerhard; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2016-06-30

    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.

  13. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities

    PubMed Central

    Itakura, Haruka; Achrol, Achal S.; Mitchell, Lex A.; Loya, Joshua J.; Liu, Tiffany; Westbroek, Erick M.; Feroze, Abdullah H.; Rodriguez, Scott; Echegaray, Sebastian; Azad, Tej D.; Yeom, Kristen W.; Napel, Sandy; Rubin, Daniel L.; Chang, Steven D.; Harsh, Griffith R.; Gevaert, Olivier

    2015-01-01

    Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative MR imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 patients with de novo, solitary, unilateral GBM. Three distinct phenotypic “clusters” emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters—pre-multifocal, spherical, and rim-enhancing, names reflecting their image features—were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from analysis of TCGA tumor copy number and gene expression data with the PARADIGM algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM. PMID:26333934

  14. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen**

    PubMed Central

    Ngen, Ethel J.; Rotz, Matthew W.; Kakkad, Samata; Lisok, Ala; Pracitto, Richard; Pullambhatla, Mrudula; Chen, Zhengping; Shah, Tariq; Artemov, Dmitri; Meade, Thomas J.; Bhujwalla, Zaver M.; Pomper, Martin G.

    2016-01-01

    Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight GdIII-based PSMA-targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging. PMID:26212031

  15. [Mental disease in two classical music composers].

    PubMed

    Rempelakos, L; Poulakou-Rebelakou, E; Ploumpidis, D

    2012-01-01

    A study οn two neglected classical music composers suffering a not syphilitic mental disease, is attempted here, syphilis of the central nervous system being frequent in that time. A brief overview on the psychiatric ailments of many great composers reveals suicide attempts and more or less severe depression following external events. The issue of a possible relationship between mental disease and (musical) creativity can be discussed, as mood swings and a certain tendency to melancholia are frequent features of a talented brain (a fact that can also be detected in their works). The first case presented here is Hans Rott from Austria, the beloved student of Anton Bruckner, who was considered to be at least equal to his famous classmate Gustav Mahler. The great expectations of his teacher and his friends suddenly came to an end, when he suffered a crisis of schizophrenia and was hospitalized in an insane asylum in Lower Austria. The tragic psychiatric adventure of the young musician lasted almost four years. He was diagnosed as a case of "hallucinatory insanity" and "persecution mania" by the medical staff, before dying of tuberculosis, aged only 26, and having completed only one symphony and several smaller works. His name came again on surface only a century after his death, when in 1989 his Symphony in E Major was discovered and premiered with great success, permitting to its creator a posthumous recognition, among Bruckner and Mahler. The second case of mental illness is that of the Armenian Komitas Vardapet. He was an orphan who grew up in theological schools and became a monk and later a priest, though he spent some years in Berlin in order to develop his musical skills. He is considered to be an authority of Armenian ecclesiastic music, introducing polyphony in the Armenian Church's music and collecting numerous traditional songs from all parts of Armenia. In 1915, during the Armenian genocide he was deported, tortured but finally saved, due to interventions

  16. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  17. Light emission and magnetic properties of aluminum films grown on SrTiO3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-01

    Aluminum films were grown on SrTiO3 (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO3. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO3 matrix. This work is valuable in developing SrTiO3 which is a promising material used in optical and magnetic related application.

  18. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin

    PubMed Central

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu

    2017-01-01

    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.

  19. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  20. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples.

  1. Composing Models of Geographic Physical Processes

    NASA Astrophysics Data System (ADS)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  2. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Friebe, Edward; Baker, Collin

    2015-11-01

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes' susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond 90 °C. The NiFe surfaces, aged for several months or heated for several minutes below 90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

  3. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  4. The protective effect of a constant magnetic field. [reduction of molecular cell pathology

    NASA Technical Reports Server (NTRS)

    Sosunov, A. V.; Tripuzov, A. N.

    1974-01-01

    The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).

  5. Influence of the external pressure on the quantum correlations of molecular magnets

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Alves, Á. S.; dos Santos, R. N.; Soares-Pinto, D. O.; de Jesus, J. C. O.; de Almeida, J. S.; Reis, M. S.

    2017-01-01

    The study of quantum correlations in solid-state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4O10 that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results pave the way for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science.

  6. Preparation of magnetic dummy molecularly imprinted polymers for selective extraction and analysis of salicylic acid in Actinidia chinensis.

    PubMed

    You, Qing-Ping; Peng, Mi-Jun; Zhang, Yu-Ping; Guo, Jun-Fang; Shi, Shu-Yun

    2014-01-01

    Compounds with strong intramolecular hydrogen bonds (e.g., salicylic acid) have weak intermolecular hydrogen bonding interactions between them and functional monomers in the imprinting process. Consequently, the corresponding molecularly imprinted polymers (MIPs) have no specific adsorption ability. Here, the first magnetic dummy MIPs (MDMIPs) based on benzonic acid as dummy template are successfully developed and evaluated with respect to the applications in selective enrichment and analysis of salicylic acid from complex mixtures. Various parameters affecting absorption/desorption were evaluated for achieving optimal recovery and reducing nonspecific interactions. The prepared MDMIPs showed high adsorption capacity, good selectivity, rapid kinetic binding (40 min) and magnetic separation (5 s), high reproducibility (RSD< 4 % for batch-to-batch evaluation), and stability (only 4 % decrease after 6 cycles). Owing to the efficacy in specific binding and removal of interference, trace level salicylic acid was quantified (0.2 μg/g of fresh mass) in Actinidia chinensis by high-performance liquid chromatography.

  7. Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum.

    PubMed

    Xie, Lianwu; Guo, Junfang; Zhang, Yuping; Hu, Yunchu; You, Qingping; Shi, Shuyun

    2015-07-01

    Improving sites accessibility can increase the binding efficiency of molecular imprinted polymers (MIPs). In this work, we firstly synthesized MIPs over magnetic mesoporous silica microspheres (Fe3O4@mSiO2@MIPs) for the selective recognition of protocatechuic acid (PCA). The resulting Fe3O4@mSiO2@MIPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), thermo-gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and vibration sample magnetometer (VSM), and evaluated by adsorption isotherms/kinetics and competitive adsorption. The maximum adsorption capacity of PCA on Fe3O4@mSiO2@MIPs was 17.2mg/g (2.3 times that on Fe3O4@SiO2@MIPs). In addition, Fe3O4@mSiO2@MIPs showed a short equilibrium time (140min), rapid magnetic separation (5s) and high stability (retained 94.4% after six cycles). Subsequently, Fe3O4@mSiO2@MIPs were successfully applied for the selective and efficient determination of PCA (29.3μg/g) from Syzygium aromaticum. Conclusively, we combined three advantages into Fe3O4@mSiO2@MIPs, namely, Fe3O4 core for quick separation, mSiO2 layer for enough accessible sites, and surface imprinting MIPs for fast binding and excellent selectivity, to extract PCA from complex systems.

  8. Hydrophilic gallic acid-imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices.

    PubMed

    Hu, Xin; Xie, Lianwu; Guo, Junfang; Li, Hui; Jiang, Xinyu; Zhang, Yuping; Shi, Shuyun

    2015-07-15

    Hydrophilic molecularly imprinted polymers (MIPs) for gallic acid (GA) were prepared with excellent recognition ability in an aqueous solution. The proposed MIPs were designed by self-polymerization of dopamine (DA) on magnetic mesoporous silica (Fe3O4@SiO2@mSiO2, MMS) using GA as template. Resulting Fe3O4@SiO2@mSiO2@MIPs (MMS-MIPs) were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM), and evaluated by adsorption isotherms/kinetics and competitive adsorption. The adsorption behavior between GA and MMS-MIPs followed Langmuir and Sips adsorption isotherms with a maximum adsorption capacity at 88.7 mg/g and pseudo-second-order reaction kinetics with fast binding (equilibrium time at 100 min). In addition, MMS-MIPs showed rapid magnetic separation (10 s) and stability (retained 95.2% after six cycles). Subsequently, MMS-MIPs were applied for the selective extraction and determination of GA from grape, apple, peach and orange juices (4.02, 3.91, 5.97, and 0.67 μg/g, respectively). Generally, the described method may pave the way towards rationally designing more advanced hydrophilic MIPs.

  9. Influences of magnetized hydroxyapatite on the growth behaviors of osteoblasts and the mechanism from molecular dynamics simulation.

    PubMed

    Yang, Weihu; Xi, Xingfeng; Fang, Jiajia; Liu, Peng; Cai, Kaiyong

    2013-10-01

    To investigate the influence of magnetized hydroxyapatite on the growth and differentiation of osteoblasts, hydroxyapatite (HA) and magnetized hydroxyapatite (mHA) were synthesized and characterized. The cell viability, differentiation, and morphologies of osteoblasts were investigated in vitro, respectively. The results showed that compared to HA, cells cultured with mHA had better cell viability, and both HA and mHA were beneficial to the early differentiation of osteoblasts. Furthermore, the interaction mechanism between mHA and osteoblasts was elucidated using a molecular dynamics simulation. The simulation results indicated that when cultured with osteoblasts, HA adsorbed bovine serum protein onto its surface from the medium immediately, which was beneficial to the adhesion and proliferation of osteoblasts. The main driving force for the adsorption of bovine serum was the electronic properties of HA crystal faces. The (211) crystal face of HA had the highest electron density among its all crystal faces, thus mainly contributing to the protein adsorption of HA. Nevertheless, the (211) crystal face of mHA still had a relatively higher electron density than that of HA, thus possessing better protein adsorption than that of HA, and in turn promoting the biological functions of osteoblasts.

  10. Low temperature magnetic properties and spin dynamics in single crystals of Cr{sub 8}Zn antiferromagnetic molecular rings

    SciTech Connect

    Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; and others

    2015-12-28

    A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr{sub 8}Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ{sub 0}H{sub c1} = 2.15 T is found to be an almost true LC while the second LC at μ{sub 0}H{sub c2} = 6.95 T has an anti-crossing gap of Δ{sub 12} = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ{sub 0}H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10{sup 10} rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.

  11. Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings

    NASA Astrophysics Data System (ADS)

    Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; Lascialfari, Alessandro

    2015-12-01

    A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr8Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ0Hc1 = 2.15 T is found to be an almost true LC while the second LC at μ0Hc2 = 6.95 T has an anti-crossing gap of Δ12 = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ0H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ˜ 1010 rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.

  12. Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis.

    PubMed

    Safdarian, Mehdi; Ramezani, Zahra; Ghadiri, Ata A

    2016-07-15

    Synthesis of magnetic iron oxide nanoparticles and its surface modification with methacrylic acid (MAA) was performed simultaneously by adding Fe(2+)/Fe(3+) to an alkaline MAA solution under nitrogen atmosphere. MAA coated magnetite (Fe3O4@MAA) has abundant reactive double bonds on the surface that can initiate polymerization. Magnetic molecularly imprinted polymers (MMIPs) were synthesized through distillation-precipitation polymerization of MAA as monomer, perphenazine (PPZ) as template, and ethylene glycol di-methacrylate (EGDMA) as cross linker on Fe3O4@MAA, with concise control of experimental conditions in about 90min. The produced super paramagnetic MMIPs can be separated from the solution in the presence of external magnetic field in less than 1min. Characterizations of the synthesized particles were performed by electron microscopes, thermo-gravimetric analysis (TGA), vibrating sample magnetometer (VSM), Fourier transform infrared (FT-IR) spectroscopy, and BET. The data showed that Fe3O4@MAA was well encapsulated in the polymer shell. The MMIPs showed high porosity. Moreover, MMIPs were used for rapid pre-concentration and separation of PPZ in human plasma and urine without any dilution and pretreatments using high performance liquid chromatography equipped with a photo diode array detector (HPLC-PDA). The calibration curve in urine and plasma has shown the same slope as the external calibration curve. Linear range of 20-5000ngmL(-1), and a detection limit of 5.3ngmL(-1) was obtained. The results showed 97.92% recovery along with the relative standard deviation of 6.07% (n=6) for 1μgmL(-1) PPZ. Pre-concentration factor was 13. The MMIPs adsorbed PPZ in 1min and then desorbed it by MeOH:HOAc in 2min.

  13. Triangular Monometallic Cyanide Cluster Entrapped in Carbon Cage with Geometry-Dependent Molecular Magnetism

    PubMed Central

    Liu, Fupin; Gao, Cong-Li; Deng, Qingming; Zhu, Xianjun; Kostanyan, Aram; Westerström, Rasmus; Wang, Song; Tan, Yuan-Zhi; Tao, Jun; Xie, Su-Yuan; Popov, Alexey A.; Greber, Thomas; Yang, Shangfeng

    2016-01-01

    Clusterfullerenes are capable of entrapping a variety of metal clusters within carbon cage, for which the entrapped metal cluster generally keeps its geometric structure (e.g., bond distance and angle) upon changing the isomeric structure of fullerene cage, and whether the properties of the entrapped metal cluster is geometry-dependent remains unclear. Herein we report an unusual triangular monometallic cluster entrapped in fullerene cage by isolating several novel terbium cyanide clusterfullerenes (TbNC@C82) with different cage isomeric structures. Upon varying the isomeric structure of C82 cage from C2(5) to Cs(6) and to C2v(9), the entrapped triangular TbNC cluster exhibits significant distortions as evidenced by the changes of Tb–C(N) and C–N bond distances and variation of the Tb–C(N)–N(C) angle by up to 20°, revealing that the geometric structure of the entrapped triangular TbNC cluster is variable. All three TbNC@C82 molecules are found to be single-ion magnets, and the change of the geometric structure of TbNC cluster directly leads to the alternation of the magnetic relaxation time of the corresponding TbNC@C82 clusterfullerene. PMID:27755875

  14. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rasaneh, Samira; Rajabi, Hossein; Babaei, Mohammad Hossein; Akhlaghpoor, Shahram

    2011-06-01

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 ± 2.5 and 41 ± 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 μg (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  15. Combined three-dimensional magnetic resonance guided optical spectroscopy for functional and molecular imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2011-07-01

    Dynamic contrast enhanced magnetic resonance is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors than mammography. We focus on Near Infrared Spectroscopy (NIRS) imaging and Fluorescence Molecular Tomography (FMT), emerging imaging techniques that non-invasively quantify optical properties of total hemoglobin, oxygen saturation, water content, scattering, lipid concentration and endogenous Protoporphyrin IX (PpIX) emission. We present methods on combining the synergistic attributes of DCE-MR, NIRS, and FMT for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present example results from a breast cancer patient. Preliminary results show elevated hemoglobin values and water fraction. Fluorescence values in the tumor region, however, were not always elevated above the surrounding tissue as we had expected. The additional information gained from NIRS and FMT may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.

  16. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate.

    PubMed

    Li, Xiangjun; Wang, Xiaojiao; Li, Leilei; Duan, Huimin; Luo, Chuannan

    2015-01-01

    A novel composite of magnetic graphene oxide @ gold nanoparticles-molecular imprinted polymers (MGO@AuNPs-MIPs) was synthesized and applied as a molecular recognition element to construct dibutyl phthalate (DBP) electrochemical sensor. The composite of MGO@AuNPs was first synthesized using coprecipitation and self-assembly technique. Then the template molecules (DBP) were absorbed at the MGO@AuNPs surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid and ethylene glycol dimethacrylate was further achieved at the MGO@AuNPs surface. Potential scanning was presented to extract DBP molecules from the imprinted polymers film rapidly and completely. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DBP was successfully constructed as demonstration based on the synthesized MGO@AuNPs-MIPs composite. Under optimal experimental conditions, selective detection of DBP in a linear concentration range of 2.5 × 10(-9)-5.0 × 10(-6)mol/L was obtained. The new DBP electrochemical sensor also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 2.0 × 10(-6)mol/L DBP.

  17. Referencing strategy for the direct comparison of nuclear magnetic resonance and molecular dynamics motional parameters in RNA.

    PubMed

    Musselman, Catherine; Zhang, Qi; Al-Hashimi, Hashim; Andricioaei, Ioan

    2010-01-21

    Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations are both techniques that can be used to characterize the structural dynamics of biomolecules and their underlying time scales. Comparison of relaxation parameters obtained through each methodology allows for cross validation of techniques and for complementarity in the analysis of dynamics. Here we present a combined NMR/MD study of the dynamics of HIV-1 transactivation response (TAR) RNA. We compute relaxation constants (R(1), R(2), and NOE) and model-free parameters (S(2) and tau) from a 65 ns molecular dynamics (MD) trajectory and compare them with the respective parameters measured in a domain-elongation NMR experiment. Using the elongated domain as the frame of reference for all computed parameters allows for a direct comparison between experiment and simulation. We see good agreement for many parameters and gain further insight into the nature of the local and global dynamics of TAR, which are found to be quite complex, spanning multiple time scales. For the few cases where agreement is poor, comparison of the dynamical parameters provides insight into the limits of each technique. We suggest a frequency-matching procedure that yields an upper bound for the time scale of dynamics to which the NMR relaxation experiment is sensitive.

  18. Stationary microfluidics: molecular diagnostic assays by moving magnetic beads through non-moving liquids

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Carstens, Cornelia; Kuhlmeier, Dirk; Sandetskaya, Natalia; Schröter, Nicole; Zilch, Christian; Gärtner, Claudia

    2013-03-01

    Commonly, microfluidic devices are based on the movement of fluids. For molecular diagnostics assays which often include steps like PCR, this practically always involves a more or less complicated set of external pumps, valves and liquid controls. In the presented paper, we follow a different approach in which the fluid after sample introduction remains stationary and the main bioactive sample molecules are moved through a chain of reaction compartments which contain the different reagents necessary for the assay. The big advantage of this concept is the lack of any external fluid actuation/control. Results on sample carry-over experiments and complete assays will be given.

  19. Interface effects on perpendicular magnetic anisotropy for molecular-capped cobalt ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Xianmin; Mizukami, Shigemi; Kubota, Takahide; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo; Miyazaki, Terunobu

    2011-10-01

    The perpendicular magnetic anisotropy (PMA) of cobalt (0.5-1.8 nm) films capped separately by pentacene (Pc), fullerene (C60), and 8-hydroxyquinoline-aluminum (Alq3) are investigated. For all three series, the thickness of Co is around 0.7 nm for maximum out-of-plane coercivity. It is found that the coercivity of C60-capped films is nearly equal to that for Alq3-capped samples, although both are smaller than for Pc-capped films. The different interface effects of Co/molecules are discussed to explain this observation. This work highlights the PMA of ferromagnetic metal, which can be markedly infected depending on the nature of organic molecule.

  20. Molecular dynamics simulations as a complement to nuclear magnetic resonance and X-ray diffraction measurements.

    PubMed

    Feller, Scott E

    2007-01-01

    Advances in the field of atomic-level membrane simulations are being driven by continued growth in computing power, improvements in the available potential energy functions for lipids, and new algorithms that implement advanced sampling techniques. These developments are allowing simulations to assess time- and length scales wherein meaningful comparisons with experimental measurements on macroscopic systems can be made. Such comparisons provide stringent tests of the simulation methodologies and force fields, and thus, advance the simulation field by pointing out shortcomings of the models. Extensive testing against available experimental data suggests that for many properties modern simulations have achieved a level of accuracy that provides substantial predictive power and can aid in the interpretation of experimental data. This combination of closely coupled laboratory experiments and molecular dynamics simulations holds great promise for the understanding of membrane systems. In the following, the molecular dynamics method is described with particular attention to those aspects critical for simulating membrane systems and to the calculation of experimental observables from the simulation trajectory.

  1. Collision Tumor Composed of Meningioma and Cavernoma.

    PubMed

    Weigel, Jens; Neher, Markus; Schrey, Michael; Wünsch, Peter H; Steiner, Hans-Herbert

    2017-01-01

    A true collision tumor is a rare entity composed of two histologically distinct neoplasms coinciding in the same organ. This paper reports a unique case of cerebral collision tumor consisting of two benign components. On the first hand, meningioma which is usually a benign lesion arising from the meningothelial cell in the arachnoidal membrane. On the other, cerebral cavernoma which is a well-circumscribed, benign vascular hamartoma within the brain. To our knowledge, there is no previously documented case of cerebral collision tumor consisting of two benign components. A 56-year-old Caucasian male suffered in 2002 from an atypical meningioma WHO II° located in the left lateral ventricle. Three years after the tumor extirpation, the patient suffered from a hematoma in the fourth ventricle due to a recurrently haemorrhaged cavernoma. In 2008, a recurrence of the tumor in the left lateral ventricle was discovered. Additionally, another tumor located in the quadrigeminal lamina was detected. After surgical resection of the tumor in the left lateral ventricle, the pathological examination confirmed the diagnosis of a collision tumor consisting of components of a meningioma WHO II° and a cavernoma. Postoperatively, no adjuvant treatment was needed and no tumor recurrence is discovered up to the present. A possible explanation for the collision of those two different tumors may be migration of tumor cells mediated by the cerebrospinal fluid. After 5-years of follow-up, there is no sign of any tumor recurrence; therefore, surgical tumor removal without adjuvant therapy seems to be the treatment of choice.

  2. Unusual spin gap transition observed in two new molecular magnets based on [Ni(mnt){sub 2}]{sup -} monoanion (mnt{sup 2-}=maleonitriledithiolate)

    SciTech Connect

    Zuo Hongrong; Huang Qian; Huang Chunyan; Huang Donghai; Hou Yong; Yang Lemin; Ni Chunlin Meng Qingjin

    2009-01-15

    Two new molecular magnets, [RBzPyN(CH{sub 3}){sub 2}][Ni(mnt){sub 2}] [mnt{sup 2-}=maleonitriledithiolate; [RBzPyN(CH{sub 3}){sub 2}]{sup +}=1-(4'-R-benzyl)-4-dimethylaminopyridinium; R=CN(1), F(2)], with unusual magnetic properties have been prepared and characterized. Both 1 and 2 form a 3D network structure in which the [Ni(mnt){sub 2}]{sup -} anions form a 1D magnetic chain for 1 and a stepwise stack for 2via weak {pi}...{pi} stacking interactions, C...C or C...N short interactions between the neighboring anions. Magnetic susceptibility measurements in the temperature range 1.8-300 K indicated that 1 and 2 show unusual spin gap transition around 30 K and 110 K, respectively. The transition for 1 and 2 is the second-order phase transition as determined by the capacity measurement. - Graphical Abstract: Two new molecular magnets based on [Ni(mnt){sub 2}]{sup -} monoanion form a 1D magnetic chain for 1 and a stepwise stack for 2, and exhibit unusual spin gap transition.

  3. Oscillating Magnet Array−Based Nanomagnetic Gene Transfection: A Valuable Tool for Molecular Neurobiology Studies

    PubMed Central

    Subramanian, Mahendran; Tyler, Aimee-Jayne; Luther, Eva Maria; Daniel, Elena Di; Lim, Jenson; Dobson, Jon

    2017-01-01

    To develop treatments for neurodegenerative disorders, it is critical to understand the biology and function of neurons in both normal and diseased states. Molecular studies of neurons involve the delivery of small biomolecules into cultured neurons via transfection to study genetic variants. However, as cultured primary neurons are sensitive to temperature change, stress, and shifts in pH, these factors make biomolecule delivery difficult, particularly non-viral delivery. Herein we used oscillating nanomagnetic gene transfection to successfully transfect SH-SY5Y cells as well as primary hippocampal and cortical neurons on different days in vitro. This novel technique has been used to effectively deliver genetic material into various cell types, resulting in high transfection efficiency and viability. From these observations and other related studies, we suggest that oscillating nanomagnetic gene transfection is an effective method for gene delivery into hard-to-transfect neuronal cell types. PMID:28336862

  4. Collision Tumor Composed of Meningioma and Cavernoma

    PubMed Central

    Weigel, Jens; Neher, Markus; Schrey, Michael; Wünsch, Peter H.; Steiner, Hans-Herbert

    2017-01-01

    A true collision tumor is a rare entity composed of two histologically distinct neoplasms coinciding in the same organ. This paper reports a unique case of cerebral collision tumor consisting of two benign components. On the first hand, meningioma which is usually a benign lesion arising from the meningothelial cell in the arachnoidal membrane. On the other, cerebral cavernoma which is a well-circumscribed, benign vascular hamartoma within the brain. To our knowledge, there is no previously documented case of cerebral collision tumor consisting of two benign components. A 56-year-old Caucasian male suffered in 2002 from an atypical meningioma WHO II° located in the left lateral ventricle. Three years after the tumor extirpation, the patient suffered from a hematoma in the fourth ventricle due to a recurrently haemorrhaged cavernoma. In 2008, a recurrence of the tumor in the left lateral ventricle was discovered. Additionally, another tumor located in the quadrigeminal lamina was detected. After surgical resection of the tumor in the left lateral ventricle, the pathological examination confirmed the diagnosis of a collision tumor consisting of components of a meningioma WHO II° and a cavernoma. Postoperatively, no adjuvant treatment was needed and no tumor recurrence is discovered up to the present. A possible explanation for the collision of those two different tumors may be migration of tumor cells mediated by the cerebrospinal fluid. After 5-years of follow-up, there is no sign of any tumor recurrence; therefore, surgical tumor removal without adjuvant therapy seems to be the treatment of choice. PMID:28061500

  5. Joint Composable Object Model and LVC Methodology

    NASA Technical Reports Server (NTRS)

    Rheinsmith, Richard; Wallace, Jeffrey; Bizub, Warren; Ceranowicz, Andy; Cutts, Dannie; Powell, Edward T.; Gustavson, Paul; Lutz, Robert; McCloud, Terrell

    2010-01-01

    Within the Department of Defense, multiple architectures are created to serve and fulfill one or several specific service or mission related LVC training goals. Multiple Object Models exist across and within those architectures and it is there that those disparate object models are a major source of interoperability problems when developing and constructing the training scenarios. The two most commonly used architectures are; HLA and TENA, with DIS and CTIA following close behind in terms of the number of users. Although these multiple architectures can share and exchange data the underlying meta-models for runtime data exchange are quite different, requiring gateways/translators to bridge between the different object model representations; while the Department of Defense's use of gateways are generally effective in performing these functions, as the LVC environment increases so too does the cost and complexity of these gateways. Coupled with the wide range of different object models across the various user communities we increase the propensity for run time errors, increased programmer stop gap measures during coordinated exercises, or failure of the system as a whole due to unknown or unforeseen incompatibilities. The Joint Composable Object Model (JCOM) project was established under an M&S Steering Committee (MSSC)-sponsored effort with oversight and control placed under the Joint Forces Command J7 Advanced Concepts Program Directorate. The purpose of this paper is to address the initial and the current progress that has been made in the following areas; the Conceptual Model Development Format, the Common Object Model, the Architecture Neutral Data Exchange Model (ANDEM), and the association methodology to allow the re-use of multiple architecture object models and the development of the prototype persistent reusable library.

  6. Decoherence window and electron-nuclear cross relaxation in the molecular magnet V15.

    PubMed

    Shim, J H; Bertaina, S; Gambarelli, S; Mitra, T; Müller, A; Baibekov, E I; Malkin, B Z; Tsukerblat, B; Barbara, B

    2012-08-03

    Rabi oscillations in the V(15) single molecule magnet embedded in the surfactant (CH(3))(2)[CH(3)(CH(2))(16)CH(2)](2)N(+) have been studied at different microwave powers. An intense damping peak is observed when the Rabi frequency Ω(R) falls in the vicinity of the Larmor frequency of protons ω(N). The experiments are interpreted by a model showing that the damping (or Rabi) time τ(R) is directly associated with decoherence caused by electron-nuclear cross relaxation in the rotating reference frame. This decoherence induces energy dissipation in the range ω(N) - σ(e) < Ω(R) < ω(N), where σ(e) is the mean superhyperfine field induced by protons at V(15). Weaker decoherence without dissipation takes place outside this window. Specific estimations suggest that this rapid cross relaxation in a resonant microwave field, observed for the first time in V(15), should also take place, e.g., in Fe(8) and Mn(12).

  7. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents.

    PubMed

    Xi, Lei; Grobmyer, Stephen R; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2014-06-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.

  8. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging.

    PubMed

    Schlorf, Thomas; Meincke, Manuela; Kossel, Elke; Glüer, Claus-Christian; Jansen, Olav; Mentlein, Rolf

    2010-12-23

    Superparamagnetic iron-oxide particles (SPIO) are used in different ways as contrast agents for magnetic resonance imaging (MRI): Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite), different coatings (none, dextran, carboxydextran, polystyrene) and different hydrodynamic diameters (20-850 nm) for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC), which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe(3)O(4) particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  9. On the variation of magnetic susceptibility of a molecular crystal with temperature: The 2,4,6-triphenylverdazyl system

    NASA Astrophysics Data System (ADS)

    Datta, Sambhu N.; Navada, Geetha K.

    2004-02-01

    Magnetic susceptibilities of spin-1/2 systems of orthorhombic and higher crystal symmetries have been numerically investigated while taking possible anisotropy in the coupling constants along different crystal axes into account. The work relies on the magnon-based theory of ferromagnetic (FM) and antiferromagnetic (AFM) crystal systems of types FFF, AFF, AAF, and AAA [J. Chem. Phys. 111, 9009 (1999)]. The AAF crystal, in particular, shows interesting changes in the temperature dependence of magnetic susceptibility when the ferromagnetic exchange coupling constant is varied. We especially show that the susceptibility anomalies of molecular crystals fit naturally within the framework of the extended magnon-theoretical formalism, and do not necessarily imply a FM→AFM or a reverse phase transition. A real system, molecular crystal of 2,4,6-triphenylverdazyl (2,4,6-TPV), has been investigated here. It was previously interpreted as an AAF system from observed susceptibility data [Tomiyoshi et al., Phys. Rev. B 49, 16031 (1994)]. The trend of the temperature dependence of magnetic susceptibility studied in the present work also indicates that the crystal belongs to the AAF category with a less prominent FM exchange coupling constant. To reinforce our conclusions, we have adopted a two-pronged strategy. First, the geometry of the 2,4,6-TPV monomer has been optimized here by ab initio unrestricted Hartree-Fock (UHF) calculations using the STO-3G basis set. The optimized geometry is almost planar. A subsequent calculation has been carried out with the phenyl rings twisted out of the plane of the nitrogen atoms. The STO-3G optimized geometry, and the same geometry except for the twisted phenyl rings, have been used to perform ab initio coupled-cluster (UCCSD-T) calculations with the same basis, and UHF as well as density-functional (UB3LYP) calculations using the 6-31G basis set. The calculated data can easily rationalize the twists while the species remains in crystal. The

  10. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    PubMed

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 μg/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%.

  11. Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism

    SciTech Connect

    Huang, Jingsong; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a two-electron multicenter (2e/mc) - bonding between two -stacked phenalenyl units. The 2e/mc bonded -dimers are close in energy to the -dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart -functional materials. Here, we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair and boat conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair conformation involves a 2e/4c - bonded structure, whereas the boat conformation involves a 2e/12c - bonded structure on their potential energy surfaces. The global minimum for the chair conformation is the -bonded structure, whereas it is the - bonded structure for the boat conformation. The chair conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat conformation should be observable by SQUID and ESR. According to the energy differences of the respective - and -dimers of the two conformations and the UV-vis calculations, the color of the chair conformation is expected to become darker, whereas that of the boat conformation should become lighter with increasing temperature.

  12. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1.

    PubMed

    Shimoshige, Hirokazu; Nakajima, Yoshikata; Kobayashi, Hideki; Yanagisawa, Keiichi; Nagaoka, Yutaka; Shimamura, Shigeru; Mizuki, Toru; Inoue, Akira; Maekawa, Toru

    2017-01-01

    Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB.

  13. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1

    PubMed Central

    Shimoshige, Hirokazu; Nakajima, Yoshikata; Kobayashi, Hideki; Yanagisawa, Keiichi; Nagaoka, Yutaka; Shimamura, Shigeru; Mizuki, Toru; Inoue, Akira; Maekawa, Toru

    2017-01-01

    Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB. PMID:28125741

  14. Performance of plane-wave-based LDA+U and GGA+U approaches to describe magnetic coupling in molecular systems.

    PubMed

    Rivero, Pablo; Loschen, Christoph; Moreira, Ibério De P R; Illas, Francesc

    2009-11-15

    This work explores the performance of periodic plane wave density functional theory calculations with an on-site Coulomb correction to the standard LDA and GGA exchange-correlation potential--commonly used to describe strongly correlated solids--in describing the magnetic coupling constant of a series of molecular compounds representative of dinuclear Cu complexes and of organic diradicals. The resulting LDA+U or GGA+U formalisms, lead to results comparable to experiment and to those obtained by means of standard hybrid functionals provided that the value of the U parameter is adequately chosen. Hence, these methods offer an alternative efficient computational scheme to correct LDA and GGA approaches to adequately describe the electronic structure and magnetic coupling in large molecular magnetic systems, although at the expenses of introducing an empirical (U) parameter. For all investigated copper dinuclear systems, the LDA+U and GGA+U approaches lead to an improvement in the description of magnetic properties over the original LDA and GGA schemes with an accuracy similar to that arising from the hybrid B3LYP functional, by increasing the on-site Coulomb repulsion with a moderate U value. Nevertheless, the introduction of an arbitrary U value in the 0-10 eV range most often provides the correct ground-state spin distribution and the correct sign of the magnetic coupling constant.

  15. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging.

    PubMed

    Li, Jingjing; You, Jia; Dai, Yue; Shi, Meilin; Han, Cuiping; Xu, Kai

    2014-11-18

    Multimodal molecular imaging has attracted more and more interest from researchers due to its combination of the strengths of each imaging modality. The development of specific and multifunctional molecular imaging probes is the key for this method. In this study, we fabricated an optical/magnetic resonance (MR) dual-modality molecular imaging nanoprobe, polyethylene glycol-coated ultrasmall gadolinium oxide (PEG-Gd2O3)/aptamer-Ag nanoclusters (NCs), for tracking cancer cells. To achieve this aim, PEG-Gd2O3 nanoparticles (NPs) as magnetic resonance imaging (MRI) contrast agent and aptamer functionalized silver nanoclusters (aptamer-Ag NCs) as fluorescence reporter were first synthesized by a one-pot approach, respectively. They were then conjugated by the covalent coupling reaction between the carboxyl group on the surface of PEG-Gd2O3 NPs and amino group modified on the 5'-end of AS1411 aptamer. With a suitable ratio, the fluorescence intensity of aptamer-Ag NCs and MR signal of PEG-Gd2O3 nanoparticles could both be enhanced after the formation of PEG-Gd2O3/aptamer-Ag NCs nanoprobe, which favored their application for multimodal molecular imaging. With this nanoprobe, MCF-7 tumor cells could be specifically tracked by both fluorescence imaging and magnetic resonance imaging in vitro.

  16. A novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples.

    PubMed

    Lin, Saichai; Gan, Ning; Zhang, Jiabin; Chen, Xidong; Cao, Yuting; Li, Tianhua

    2015-06-01

    The novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers (rGO@m-MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m-MIPs was prepared by surface molecular imprinting technique. Besides, Fe3 O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3 O4 was in situ synthesis. Different from functional monomer and cross-linker in traditional molecularly imprinted polymer, here, 3,4-dichlorobenzidine was employed as dummy molecular and poly(ethylene-co-vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography-mass spectrometry (GC-MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035-0.0070 µg l(-1) and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples.

  17. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice.

    PubMed

    Towner, R A; Smith, N; Saunders, D; Carrizales, J; Lupu, F; Silasi-Mansat, R; Ehrenshaft, M; Mason, R P

    2015-01-01

    Free radicals contribute to the pathogenesis of diabetic cardiomyopathy. We present a method for in vivo observation of free radical events within murine diabetic cardiomyopathy. This study reports on in vivo imaging of protein/lipid radicals using molecular MRI (mMRI) and immuno-spin trapping (IST) in diabetic cardiac muscle. To detect free radicals in diabetic cardiomyopathy, streptozotocin (STZ)-exposed mice were given 5,5-dimethyl-pyrroline-N-oxide (DMPO) and administered an anti-DMPO probe (biotin-anti-DMPO antibody-albumin-Gd-DTPA). For controls, non-diabetic mice were given DMPO (non-disease control), and administered an anti-DMPO probe; or diabetic mice were given DMPO but administered a non-specific IgG contrast agent instead of the anti-DMPO probe. DMPO administration started at 7 weeks following STZ treatment for 5 days, and the anti-DMPO probe was administered at 8 weeks for MRI detection. MRI was used to detect a significant increase (p < 0.001) in MRI signal intensity (SI) from anti-DMPO nitrone adducts in diabetic murine left-ventricular (LV) cardiac tissue, compared to controls. Regional increases in MR SI in the LV were found in the apical and upper-left areas (p < 0.01 for both), compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised cardiac tissues, which indicated elevated fluorescence only in cardiac muscle of mice administered the anti-DMPO probe. Oxidized lipids and proteins were also found to be significantly elevated (p < 0.05 for both) in diabetic cardiac muscle compared to controls. It can be concluded that diabetic mice have more heterogeneously distributed radicals in cardiac tissue than non-diabetic mice.

  18. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, tautomerization, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2011-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a 2-electron multicenter (2e/mc) covalent pi-pi bonding between two pi-stacked phenalenyl units. The 2e/mc bonded pi-dimers are close in energy to the sigma-dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart pi-functional materials. Here we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair-conformation involves a 2e/4c pi-pi bonded structure while the boat-conformation involves a 2e/12c pi-pi bonded structure on their potential energy surfaces. The global minimum for the chair-conformation is the sigma-bonded structure while it is the pi-pi bonded structure for the boat-conformation. The chair-conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat-conformation should be observable by SQUID and/or ESR. According to the difference of the global minima of the two conformations and the parameterized UV-Vis calculations, the color of the chair-conformation is expected to become darker while that of the boat-conformation become lighter with increasing temperature.

  19. Lipidic Carbo-benzenes: Molecular Probes of Magnetic Anisotropy and Stacking Properties of α-Graphyne.

    PubMed

    Zhu, Chongwei; Rives, Arnaud; Duhayon, Carine; Maraval, Valérie; Chauvin, Remi

    2017-01-20

    Solubilization of the C18 fundamental circuit of α-graphyne has been envisaged by decoration with aliphatic chains R = n-CnH2n+1. The synthesis and characterization of p-dialkyl-tetraphenyl-carbo-benzenes (n = 2, 8, 14, 20) are thus presented and compared to the monoalkyl series produced concomitantly. In both series, a dramatic enhancement of solubility in organic solvents (CH2Cl2, CHCl3) is observed for n ≥ 8, and in the dialkyl series, the melting-decomposition temperature of the solid products is shown to decrease linearly from 208 °C for n = 2 to 149 °C for n = 20. Fluoroalkyl analogues with R = n-C8H4F13 are also described. The products display classical UV-vis electronic spectra of carbo-benzenes in solution (λmax = 445.5 ± 1 nm, ε ≈ 200 000 L·mol(-1)·cm(-1)). They are also characterized by UV-vis absorption in the solid state, which is found to be correlated with the color and crystal packing. The methylene groups of R provide an experimental probe of the magnetic anisotropy and aromaticity of the C18 ring through the progressive NMR shielding of the (1)H nuclei from ca. 4.70 to 1.25 ppm going away from the border of the ring (as far as 8 Å away). All alkyl-carbo-benzenes were also found to be highly crystalline. Seven of them have been characterized by X-ray diffraction analysis and the C18 columnar packing compared in a systematic manner. Crystals of the diethyl and bistetradecyl derivatives, containing no solvent molecule, provided the first examples of direct π-stacking of carbo-benzene rings, with inter-ring distances very close to calculated interlayer distances in AB and ABC α-graphityne (3.255 and 3.206 Å vs 3.266 and 3.201 Å, respectively).

  20. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet.

    PubMed

    Ding, You-Song; Chilton, Nicholas F; Winpenny, Richard E P; Zheng, Yan-Zhen

    2016-12-23

    We report a monometallic dysprosium complex, [Dy(O(t) Bu)2 (py)5 ][BPh4 ] (5), that shows the largest effective energy barrier to magnetic relaxation of Ueff =1815(1) K. The massive magnetic anisotropy is due to bis-trans-disposed tert-butoxide ligands with weak equatorial pyridine donors, approaching proposed schemes for high-temperature single-molecule magnets (SMMs). The blocking temperature, TB  , is 14 K, defined by zero-field-cooled magnetization experiments, and is the largest for any monometallic complex and equal with the current record for [Tb2 N2 {N(SiMe3 )2 }4 (THF)2 ].

  1. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  2. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  3. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  4. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  5. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Fur products composed of pieces. 301.20... RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats and plates, are composed in whole or in substantial part...

  6. Sequoias, Mavericks, Open Doors...Composing Joan Tower

    ERIC Educational Resources Information Center

    Allsup, Randall Everett

    2011-01-01

    This essay interview with Joan Tower is a meditation on the importance of composing, understood as a process larger than the making of new sound combinations or musical scores, suggesting that the compositional act is self-educative and self-forming. Tower's musical life, one of teaching and learning, one of composing and self-composing, is an…

  7. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE PAGES

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  8. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    SciTech Connect

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; Valdez, Carlos A.

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated by water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.

  9. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  10. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

    PubMed

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors.

  11. Quantum theory of molecular collisions in a magnetic field: efficient calculations based on the total angular momentum representation.

    PubMed

    Tscherbul, T V; Dalgarno, A

    2010-11-14

    An efficient method is presented for rigorous quantum calculations of atom-molecule and molecule-molecule collisions in a magnetic field. The method is based on the expansion of the wave function of the collision complex in basis functions with well-defined total angular momentum in the body-fixed coordinate frame. We outline the general theory of the method for collisions of diatomic molecules in the (2)Σ and (3)Σ electronic states with structureless atoms and with unlike (2)Σ and (3)Σ molecules. The cross sections for elastic scattering and Zeeman relaxation in low-temperature collisions of CaH((2)Σ(+)) and NH((3)Σ(-)) molecules with (3)He atoms converge quickly with respect to the number of total angular momentum states included in the basis set, leading to a dramatic (>10-fold) enhancement in computational efficiency compared to the previously used methods [A. Volpi and J. L. Bohn, Phys. Rev. A 65, 052712 (2002); R. V. Krems and A. Dalgarno, J. Chem. Phys. 120, 2296 (2004)]. Our approach is thus well suited for theoretical studies of strongly anisotropic molecular collisions in the presence of external electromagnetic fields.

  12. Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data.

    PubMed

    Huynh, Tru; Smith, Jeremy C; Sanson, Alain

    2002-08-01

    Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.

  13. A programming language for composable DNA circuits.

    PubMed

    Phillips, Andrew; Cardelli, Luca

    2009-08-06

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.

  14. Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: insights into their liquid–liquid demixing mechanisms†

    PubMed Central

    Lemus, Jesus; Pereira, Jorge F. B.; Freire, Mara G.; Coutinho, João A. P.

    2016-01-01

    Novel ternary phase diagrams of aqueous biphasic systems (ABSs) composed of polypropylene glycol with an average molecular weight of 400 g mol−1 (PPG-400) and a vast number of ionic liquids (ILs) were determined. The large array of selected ILs allowed us to evaluate their tuneable structural features, namely the effect of the anion nature, cation core and cation alkyl side chain length on the phase behaviour. Additional evidence on the molecular-level mechanisms which rule the phase splitting was obtained by 1H NMR (Nuclear Magnetic Resonance) spectroscopy and by COSMO-RS (Conductor-like Screening Model for Real Solvents). Some systems, for which the IL–PPG-400 pairs are completely miscible, revealed to be of type “0”. All data collected suggest that the formation of PPG–IL-based ABSs is controlled by the interactions established between the IL and PPG, contrarily to previous reports where a “salting-out” phenomenon exerted by the IL over the polymer in aqueous media was proposed as the dominant effect in ABS formation. The influence of temperature on the liquid–liquid demixing was also evaluated. In general, an increase in temperature favours the formation of an ABS in agreement with the lower critical solution temperature (LCST) phase behaviour usually observed in polymer–IL binary mixtures. Partition results of a dye (chloroanilic acid, in its neutral form) further confirm the possibility of tailoring the phases’ polarities of IL–PPG-based ABSs. PMID:27405841

  15. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    PubMed

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  16. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

    PubMed Central

    Daryaei, Iman; Pagel, Mark D

    2016-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191

  17. Room temperature ferroelectricity in one-dimensional single chain molecular magnets [{M(Δ)M(Λ)}(ox)2(phen)2]n (M = Fe and Mn)

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.

    2017-03-01

    The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.

  18. The thickness-dependent dynamic magnetic property of Co{sub 2}FeAl films grown by molecular beam epitaxy

    SciTech Connect

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2014-10-27

    Co{sub 2}FeAl films with different thickness were prepared at different temperature by molecular beam epitaxy. Their dynamic magnetic property was studied by the time-resolved magneto-optical Kerr effect measurements. It is observed that the intrinsic damping factor of Co{sub 2}FeAl for [100] orientation is not related to the film's thickness and magnetic anisotropy as well as temperature at high-field regime, but increases with structural disorder of Co{sub 2}FeAl. The dominant contribution from the inhomogeneous magnetic anisotropy is revealed to be responsible for the observed extremely nonlinear and drastic field-dependent damping factors at low-field regime.

  19. Magnetically Hard Fe3Se4 Embedded in Bi2Se3 Topological Insulator Thin Films Grown by Molecular Beam Epitaxy.

    PubMed

    Vasconcelos, Hugo Menezes do Nascimento; Eddrief, Mahmoud; Zheng, Yunlin; Demaille, Dominique; Hidki, Sarah; Fonda, Emiliano; Novikova, Anastasiia; Fujii, Jun; Torelli, Piero; Salles, Benjamin Rache; Vobornik, Ivana; Panaccione, Giancarlo; de Oliveira, Adilson Jesus Aparecido; Marangolo, Massimiliano; Vidal, Franck

    2016-01-26

    We investigated the structural, magnetic, and electronic properties of Bi2Se3 epilayers containing Fe grown on GaAs(111) by molecular beam epitaxy. It is shown that, in the window of growth parameters leading to Bi2Se3 epilayers with optimized quality, Fe atom clustering leads to the formation of FexSey inclusions. These objects have platelet shape and are embedded within Bi2Se3. Monoclinic Fe3Se4 is identified as the main secondary phase through detailed structural measurements. Due to the presence of the hard ferrimagnetic Fe3Se4 inclusions, the system exhibits a very large coercive field at low temperature and room temperature magnetic ordering. Despite this composite structure and the proximity of a magnetic phase, the surface electronic structure of Bi2Se3 is preserved, as shown by the persistence of a gapless Dirac cone at Γ.

  20. Preparation of a magnetic molecularly imprinted polymer with pseudo template for rapid simultaneous determination of cyromazine and melamine in bio-matrix samples.

    PubMed

    Wang, Xianhua; Fang, Qiuxue; Liu, Shipeng; Chen, Lei

    2012-09-01

    A magnetic molecularly imprinted polymer (M-MIP) for cyromazine and melamine was prepared by simple suspension polymerization using a pseudo template, 2-(4,6-diamino-1,3,5-triazin-2-ylamino)ethanethiol disulfide. The M-MIP was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and vibrating sample magnetometry. Molecular recognition properties and binding capability to cyromazine and melamine were evaluated by adsorption testing, which showed the M-MIP had better affinity and selectivity than the magnetic non-imprinted polymer (M-NIP) for cyromazine and melamine. A method based on molecularly imprinted solid-phase extraction assisted by magnetic separation was developed for extraction of cyromazine and melamine from bio-matrix samples. Various conditions, for example desorption conditions, amount of M-MIP, extraction time, and sample pH were optimized. High-performance liquid chromatography with UV detection was used to determine cyromazine and melamine after extraction. The proposed method was successfully applied to determination of cyromazine and melamine in egg and milk samples. Recovery of standard spiked cyromazine and melamine from these samples was between 71.86 and 80.57%, with intraday and interday relative standard deviation ranging from 3.45 to 6.39% and from 3.95 to 7.84%, respectively. The results indicate that the pseudo template M-MIP can be used for preconcentration, purification, and analysis of cyromazine and melamine in bio-matrix samples.

  1. Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles.

    PubMed

    Mehdinia, Ali; Dadkhah, Sahar; Baradaran Kayyal, Tohid; Jabbari, Ali

    2014-10-17

    In order to resolve the low adsorption capacity of the surface molecularly imprinting methods, an approach was developed for the preparation of magnetic imprinted polymers by pre-grafting the amino functional material, 3-aminopropyltriethoxysilane (APTES), on the surface of the silica coated magnetic substrate. APTES was used for amino functionalization of the silica coated Fe3O4 nanoparticles. Amino groups were used for immobilization of the template molecules on the magnetic surface and additionally to react with the terminal vinyl groups of cross-linker, ethylene glycol dimethacrylate (EGDMA), by the Michael addition reaction. In this way, the imprinting sites of the analytes formed on the substrate were increased. The sorbent was synthesized in the presence of 4-nitrophenol (4-NP) and EGDMA as the template and cross-linker, respectively. Different parameters affecting the adsorption, such as pH, desorption solvent type and adsorption time were evaluated and optimized. The prepared magnetic molecularly imprinted polymer (MMIP) showed high adsorption capacity and proper selectivity for the template molecule. The kinetic adsorption curve indicated that 90 min was sufficient to achieve the adsorption equilibrium for MMIP. The maximum adsorption capacity was 129.1 mg g(-1). The experiments exhibited a linear range of 10-3000 μg L(-1) for 4-NP with the correlation coefficient (R(2)) of 0.997. The results of the real sample analysis confirmed the applicability of the proposed MMIP for quantitative analysis of 4-NP in the aqueous samples.

  2. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  3. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  4. Fe₃O₄@rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth.

    PubMed

    Han, Qing; Wang, Xi; Yang, Zaiyue; Zhu, Wanying; Zhou, Xuemin; Jiang, Huijun

    2014-06-01

    Based on magnetic field directed self-assembly (MDSA) of Fe3O4@rGO composites, a novel magnetic molecularly imprinted electrochemical sensor (MIES) was fabricated and developed for the determination of the azo dye amaranth. Fe3O4@rGO composites were obtained by a one-step approach involving the initial intercalating of iron ions between the graphene oxide layers via the electrostatic interaction, followed by the reduction with hydrazine hydrate to deposit Fe3O4 nanoparticles onto the reduced oxide graphene nanosheets. In molecular imprinting, the complex including the function monomer of aniline, the template of amaranth and Fe3O4@rGO was pre-assembled through π-π stacking and hydrogen bonding interactions, and then was self-assembled on the surface of magnetic glassy carbon electrode (MGCE) with the help of magnetic field induction before electropolymerization. The structures and morphologies of Fe3O4@rGO and the doped molecularly imprinted polymers (MIPs) were investigated by Fourier transform infrared spectrometer (FT-IR), Raman spectra and scanning electron microscope (SEM). Besides, the characterization by differential pulse voltammetry (DPV) showed that Fe3O4@rGO composites promoted the electrical conductivity of the imprinted sensors when doped into the MIPs. The adsorption isotherms and adsorption kinetics were employed to evaluate the performances of MIES. The detection of amaranth was achieved via the redox probe K3[Fe(CN)6] by blocking the imprinted cavities, which avoided the interferences of oxidation products and analogs of amaranth. Furthermore, the prepared MIES exhibited good sensitivity, selectivity, reproducibility and efficiency for detecting amaranth in fruit drinks. The average recoveries were 93.15-100.81% with the RSD <3.0%.

  5. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando

    2014-02-03

    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.

  6. Low temperature, high magnetic field investigations of the nature of magnetism in the molecular semiconductor β- cobalt phthalocyanine (C32H16CoN8)

    NASA Astrophysics Data System (ADS)

    Wang (王正君), Zhengjun; Lee, M.; Choi, E. S.; Poston, J.; Seehra, M. S.

    2016-06-01

    Results from detailed investigations of the magnetic properties of a powder sample of β-CoPc for the temperatures T=0.4 K to 300 K and in magnetic fields H up to 90 kOe are reported. X-ray diffraction confirmed the β-phase and scanning electron microscopy showed plate-like morphology of the sample. For T>3 K, the data of magnetic susceptibility χ vs. T fit the Curie-Weiss (CW) law yielding θ=-2.5 K, μ=2.16 μB per Co2+ and g=2.49 for spin S=1/2 of the low spin-state of Co2+. However for T<3 K, the χ vs. T data deviates from the CW law yielding a peak in χ at Tmax=1.9 K. It is shown that the χ vs. T data from 0.4 K to 300 K fits well with the predictions of the Bonner-Fisher (BF) model for S=1/2 Heisenberg linear chain antiferromagnet with the Co2+-Co2+ exchange J/kB = -1.5 K (Ĥ=-2J Σ Si•Si+1). The data of magnetization M vs. H at T=1 K agrees with the predictions of the BF model with J/kB=-1.5 K, yielding saturation magnetization MS=12.16 emu/g above 60 kOe corresponding to complete alignment of the spins.

  7. Quantum molecular master equations

    NASA Astrophysics Data System (ADS)

    Brechet, Sylvain D.; Reuse, Francois A.; Maschke, Klaus; Ansermet, Jean-Philippe

    2016-10-01

    We present the quantum master equations for midsize molecules in the presence of an external magnetic field. The Hamiltonian describing the dynamics of a molecule accounts for the molecular deformation and orientation properties, as well as for the electronic properties. In order to establish the master equations governing the relaxation of free-standing molecules, we have to split the molecule into two weakly interacting parts, a bath and a bathed system. The adequate choice of these systems depends on the specific physical system under consideration. Here we consider a first system consisting of the molecular deformation and orientation properties and the electronic spin properties and a second system composed of the remaining electronic spatial properties. If the characteristic time scale associated with the second system is small with respect to that of the first, the second may be considered as a bath for the first. Assuming that both systems are weakly coupled and initially weakly correlated, we obtain the corresponding master equations. They describe notably the relaxation of magnetic properties of midsize molecules, where the change of the statistical properties of the electronic orbitals is expected to be slow with respect to the evolution time scale of the bathed system.

  8. Multi-walled carbon nanotube modified dummy-template magnetic molecularly imprinted microspheres as solid-phase extraction material for the determination of polychlorinated biphenyls in fish.

    PubMed

    Du, Xiaowen; Lin, Saichai; Gan, Ning; Chen, Xidong; Cao, Yuting; Li, Tianhua; Zhan, Pan

    2014-07-01

    Novel multi-walled carbon nanotube modified dummy-template molecularly imprinted microspheres (MWCNTs@DMMIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs). MWCNTs@DMMIPs were prepared by a surface molecular imprinting technique. Core-shell Fe3 O4 @SiO2 nanoparticles were employed as magnetic support. 3,4-Dichlorobenzene acetic acid was used as a dummy template instead of PCBs, methacrylic acid was used as functional monomer and ethylene glycol dimethacrylate was used as the cross-linker. The resulting absorbent was characterized by various methods. The adsorbent was employed for extracting PCBs and exhibited good selectivity and high adsorption efficiency. Furthermore, it was reusable and capable of magnetic separation. Adsorption kinetics fit well with a pseudo-second-order kinetic equation and also exhibited a three-stage intra-particle diffusion model. The Freundlich model was used to describe the adsorption isotherms. The materials were successfully applied to the magnetic dispersive solid-phase extraction of six kinds of PCBs followed by gas chromatography with mass spectrometry determination in fish samples, the limit of detection of six kinds of PCBs were 0.0028-0.0068 μg/L and spiked recoveries ranged between 73.41 and 114.21%. The prepared adsorbent was expected to be a new material for the removal and recovery of PCBs from contaminated foods.

  9. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.

  10. Temperature-dependent exchange interaction in molecular magnets Cu(hfac)2L(R) studied by EPR: methodology and interpretations.

    PubMed

    Veber, Sergey L; Fedin, Matvey V; Maryunina, Ksenia Yu; Potapov, Alexey; Goldfarb, Daniella; Reijerse, Edward; Lubitz, Wolfgang; Sagdeev, Renad Z; Ovcharenko, Victor I; Bagryanskaya, Elena G

    2011-10-17

    Exchange-coupled spin triads nitroxide-copper(II)-nitroxide are the key building blocks of molecular magnets Cu(hfac)(2)L(R). These compounds exhibit thermally induced structural rearrangements and spin transitions, where the exchange interaction between spins of copper(II) ion and nitroxide radicals changes typically by 1 order of magnitude. We have shown previously that electron paramagnetic resonance (EPR) spectroscopy is sensitive to the observed magnetic anomalies and provides information on both inter- and intracluster exchange interactions. The value of intracluster exchange interaction is temperature-dependent (J(T)), that can be accessed by monitoring the effective g-factor of the spin triad as a function of temperature (g(eff)(T)). This paper describes approaches for studying the g(eff)(T) and J(T) dependences and establishes correlations between them. The experimentally obtained g(eff)(T) dependences are interpreted using three different models for the mechanism of structural rearrangements on the molecular level leading to different meanings of the J(T) function. The contributions from these mechanisms and their manifestations in X-ray, magnetic susceptibility and EPR data are discussed.

  11. Syllabus for a Women Studies Course on Women Composers.

    ERIC Educational Resources Information Center

    Hayes, Deborah

    An upper division college-level course dealing with women composers for both music majors and nonmusic majors is outlined. The course provides an historical and analytical survey of western music through works composed by women, with emphasis on the 19th and 20th centuries. Students listen to music, participate in class discussions, and listen to…

  12. A Taxonomy for Composing Effective Naval Teams. Final Report.

    ERIC Educational Resources Information Center

    Driskell, James E.; And Others

    Since teams perform a majority of mission-critical Navy tasks, a significant applied research problem is how to compose maximally effective task teams. Two problems have traditionally hindered the attainment of this goal: how to compose teams on bases other than ability or technical skill and how to classify team tasks, so that predictions can be…

  13. Grammar for College Writing: A Sentence-Composing Approach

    ERIC Educational Resources Information Center

    Killgallon, Don; Killgallon, Jenny

    2010-01-01

    Across America, in thousands of classrooms, from elementary school to high school, the time-tested sentence-composing approach has given students tools to become better writers. Now the authors present a much anticipated sentence-composing grammar worktext for college writing. This book presents a new and easier way to understand grammar: (1) Noun…

  14. Collaborative Composing in High School String Chamber Music Ensembles

    ERIC Educational Resources Information Center

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…

  15. How Composers Approach Teaching Composition: Strategies for Music Teachers

    ERIC Educational Resources Information Center

    Randles, Clint; Sullivan, Mark

    2013-01-01

    Composition pedagogy is explored from the perspective of a composer and a music teacher educator in this article. The primary goal is to help practicing music teachers develop strategies that will encourage students to create original music. The authors provide reflection about the process of helping students compose on the basis of personal…

  16. Composing in Public: The Ambient Audiences of a Writing Lab

    ERIC Educational Resources Information Center

    Hall, Matthew

    2015-01-01

    Although scholars have investigated the ways youths individually enact composing practices and the impact of audience on these practices, this study examines the impact of an audience physically present while composing in a shared, public space--an ambient audience. Blurring the line between traditional notions of audience and collaborator through…

  17. The Links between Handwriting and Composing for Y6 Children

    ERIC Educational Resources Information Center

    Medwell, Jane; Strand, Steve; Wray, David

    2009-01-01

    Although handwriting is often considered a matter of presentation, a substantial body of international research suggests that the role of handwriting in children's composing has been neglected. Automaticity in handwriting is now seen as of key importance in composing but this proposition is relatively untested in the UK and the assumption has been…

  18. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  19. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  20. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    PubMed

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  1. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  2. The composing process of technical writers: A preliminary study

    NASA Technical Reports Server (NTRS)

    Mair, D.; Roundy, N.

    1981-01-01

    The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included.

  3. Study of Gd-doped Bi{sub 2}Te{sub 3} thin films: Molecular beam epitaxy growth and magnetic properties

    SciTech Connect

    Harrison, S. E.; Huo, Y.; Harris, J. S.; Collins-McIntyre, L. J.; Hesjedal, T.; Li, S.; Baker, A. A.; Shelford, L. R.; Laan, G. van der; Pushp, A.; Parkin, S. S. P.; Arenholz, E.

    2014-01-14

    Incorporation of magnetic dopants into topological insulators to break time-reversal symmetry is a prerequisite for observing the quantum anomalous Hall (QAHE) effect and other novel magnetoelectric phenomena. GdBiTe{sub 3} with a Gd:Bi ratio of 1:1 is a proposed QAHE system, however, the reported solubility limit for Gd doping into Bi{sub 2}Te{sub 3} bulk crystals is between ∼0.01 and 0.05. We present a magnetic study of molecular beam epitaxy grown (Gd{sub x}Bi{sub 1–x}){sub 2}Te{sub 3} thin films with a high Gd concentration, up to x ≈ 0.3. Magnetometry reveals that the films are paramagnetic down to 1.5 K. X-ray magnetic circular dichroism at the Gd M{sub 4,5} edge at 1.5 K reveals a saturation field of ∼6 T, and a slow decay of the magnetic moment with temperature up to 200 K. The Gd{sup 3+} ions, which are substitutional on Bi sites in the Bi{sub 2}Te{sub 3} lattice, exhibit a large atomic moment of ∼7 μ{sub B}, as determined by bulk-sensitive superconducting quantum interference device magnetometry. Surface oxidation and the formation of Gd{sub 2}O{sub 3} lead to a reduced moment of ∼4 μ{sub B} as determined by surface-sensitive x-ray magnetic circular dichroism. Their large atomic moment makes these films suitable for incorporation into heterostructures, where interface polarization effects can lead to the formation of magnetic order within the topological insulators.

  4. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste.

    PubMed

    Yuan, Bo; Yang, Xù-Qin; Xue, Ling-Wei; Feng, Yan-Nan; Jiang, Ji-Hong

    2016-12-01

    Fruit and vegetable waste (FVW) is become a serious problem in developing countries. Enzymolysis is a potentially useful method for the treatment of FVW. In the present study, novel recycled magnetic molecular imprinting immobilised cellulases were prepared based on magnetic modified chitosan (MCTS) and Fe3O4. The properties of obtained were characterised by IR and grain-size measurements. Evaluation of a single factor affecting the loading efficiency of supports and the mixed immobilised enzymes showed better capacity than single immobilised, or free, enzymes. The immobilisation process could improve cellulase stability and repeatability of the method. Meanwhile, the kinetic parameters were also verified. The immobilised enzymes retained most of their capacity after 60days' storage while free enzymes lost it within 30days. Tests showed that the immobilised enzymes developed excellent capacity and five anthocyanins were collected.

  5. Influence of zeolite water on paramagnetic and ferromagnetic resonances in the Co2[Nb(CN)8] · 8H2O molecular magnet

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. I.; Koplak, O. V.; Kirman, M. V.; Tokoro, H.; Ohkoshi, S.; Morgunov, R. B.

    2013-08-01

    The contributions of Co2+ and Nb4+ ions to the high-frequency dynamic magnetic susceptibility of the Co2[Nb(CN)8] · 8H2O molecular magnet in the paramagnetic state at T > 12 K are separated. It is found that the ferromagnetic ordering, which leads to the reconstruction of the electron paramagnetic resonance spectrum into the ferromagnetic resonance spectrum, occurs at T < 12 K. The influence of zeolite water on the spectra of the paramagnetic and ferromagnetic resonances is found. Dehydration leads to a decrease in the time of the spin relaxation of the ferromagnetic system from 50 ps to 17 ps at T = 4 K and to the variation in the temperature dependences of the widths of the lines and g factors in the electron spin resonance spectra.

  6. Cold collisions of polyatomic molecular radicals with S-state atoms in a magnetic field: An ab initio study of He + CH2(X~) collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, T. V.; Grinev, T. A.; Yu, H.-G.; Dalgarno, A.; Kłos, Jacek; Ma, Lifang; Alexander, Millard H.

    2012-09-01

    We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wave function. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH_2(tilde{X}^3B_1)] with He atoms. To this end, two accurate three-dimensional potential energy surfaces (PESs) of the He-CH_2(tilde{X}^3B_1) complex are developed using the state-of-the-art coupled-cluster method including single and double excitations along with a perturbative correction for triple excitations and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH2, CHD, and CD2 molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 μK-1 K) and magnetic fields (0.01-1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH_2(tilde{X}^3B_1) molecules in a magnetic trap. Furthermore, we find that ortho-CH2 undergoes collision-induced spin relaxation much more slowly than para-CH2, which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.

  7. Cold collisions of polyatomic molecular radicals with S-state atoms in a magnetic field: an ab initio study of He + CH2(X) collisions.

    PubMed

    Tscherbul, T V; Grinev, T A; Yu, H-G; Dalgarno, A; Kłos, Jacek; Ma, Lifang; Alexander, Millard H

    2012-09-14

    We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wave function. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH(2)(X(3)B(1))] with He atoms. To this end, two accurate three-dimensional potential energy surfaces (PESs) of the He-CH(2)(X(3)B(1)) complex are developed using the state-of-the-art coupled-cluster method including single and double excitations along with a perturbative correction for triple excitations and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH(2), CHD, and CD(2) molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 μK-1 K) and magnetic fields (0.01-1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH(2)(X(3)B(1)) molecules in a magnetic trap. Furthermore, we find that ortho-CH(2) undergoes collision-induced spin relaxation much more slowly than para-CH(2), which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.

  8. Wave spectra of a strongly coupled magnetized one-component plasma: quasilocalized charge approximation versus harmonic lattice theory and molecular dynamics.

    PubMed

    Ott, T; Baiko, D A; Kählert, H; Bonitz, M

    2013-04-01

    Two different approaches to the calculation of the wave spectra of magnetized strongly coupled liquid one-component plasmas are analzyed: the semianalytical quasilocalized charge approximation (QLCA) and the angle-averaged harmonic lattice (AAHL) theory. Both theories are benchmarked against the numerical evidence obtained from molecular dynamics simulations. It is found that not too far from the melting transition (Γ≳100), the AAHL theory is superior to the QLCA, while further away from the transition, the QLCA performs comparably to or better than the AAHL theory.

  9. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).

    PubMed

    Villar-Navarro, Mercedes; Martín-Valero, María Jesús; Fernández-Torres, Rut Maria; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2017-02-15

    An easy and environmental friendly method, based on the use of magnetic molecular imprinted polymers (mag-MIPs) is proposed for the simultaneous extraction of the 16 U.S. EPA polycyclic aromatic hydrocarbons (PAHs) priority pollutants. The mag-MIPs based extraction protocol is simple, more sensitive and low organic solvent consuming compared to official methods and also adequate for those PAHs more retained in the particulate matter. The new proposed extraction method followed by HPLC determination has been validated and applied to different types of water samples: tap water, river water, lake water and mineral water.

  10. Stroke, music, and creative output: Alfred Schnittke and other composers.

    PubMed

    Zagvazdin, Yuri

    2015-01-01

    Alfred Schnittke (1934-1998), a celebrated Russian composer of the twentieth century, suffered from several strokes which affected his left cerebral hemisphere. The disease, however, did not diminish his musical talent. Moreover, he stated that his illness in a way facilitated his work. The composer showed amazingly high productivity after his first and second injuries of the central nervous system. The main topic of this chapter is the effect of strokes on Schnittke's output, creativity, and style of music. A brief biography of the composer with the chronology of his brain hemorrhages is included. In addition, the influence of cerebrovascular lesions on creative potential of other prominent composers such as Benjamin Britten, Jean Langlais, Vissarion Shebalin, Igor Stravinsky, and Ira Randall Thompson is discussed.

  11. Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ouyang, Min; Tang, Bin; Wang, Zhibing; He, Jun

    2017-02-01

    We in this study investigated numerically the plasmon-induced transparency (PIT) effect on the plasmonic nanostructures composed of C-shaped and U-shaped resonators by using finite difference time domain (FDTD) method. The PIT effect in the nanosystem stemmed from the near field coupling between the bright and dark modes. The nanostructure composed of three resonators exhibited double PIT effect. And the PIT spectral response of the proposed nanostructures was demonstrated having a dependence on the parameters of the compound plasmonic system such as the widths of C-shaped resonator and U-shaped resonator, the resonators spatial arrangement and the edge-to-edge distance between the adjacent resonators. The electric and magnetic field distributions of certain resonance wavelengths were also given to discuss the underlying physics. The resonator design strategy opens up a rich pathway to develop the building block of systems for all optical switching, plasmonic sensing applications.

  12. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation.

    PubMed

    Wang, Xiao-Ni; Liang, Ru-Ping; Meng, Xiang-Ying; Qiu, Jian-Ding

    2014-10-03

    A facile approach for preparation of molecularly imprinted polymers was developed and successfully used as chiral stationary phase for rapid enantioseparation by open tubular capillary electrochromatography (OT-CEC). In this work, molecularly imprinted polymers were one-step prepared employing Fe3O4 nanoparticles (NPs) as the supporting substrate and dopamine as the functional monomer. By simply mixing Fe3O4 NPs with template molecules in a weak alkaline solution of dopamine, a thin adherent polydopamine (PDA) film imprinted with template molecules was formed by the self-polymerization of dopamine on the surface of Fe3O4 NPs. After extracting the embedded template molecules, the produced imprinted Fe3O4@PDA NPs are of three dimensional shape of template molecules favoring high binding capacity and magnetism property for easy manipulation. The imprinted Fe3O4@PDA NPs prepared with l-tryptophan, l-tyrosine, Gly-l-Phe or s-ofloxacin as template molecules were packed in the PDMS microchannel via magnetic field as novel stationary phase for the successful enantioseparation of corresponding target analysts. In addition, the imprinted Fe3O4@PDA NPs-based OT-CEC system exhibited excellent reproducibility, stability and repeatability, which provides a powerful protocol for separation enantiomers within a short analytical time and opens up a promising avenue for high-throughput screening of chiral compounds.

  13. Molecular design of one dimensional magnetic FeNi3 nanochains and their application in oil removal

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Gogoi, Monika; Deb, Pritam

    2016-05-01

    One dimensional magnetic nanochains (MNCs) of FeNi3 alloy is developed by reducing iron and nickel salts in ethylene glycol in a hydrothermal environment without the use of any external magnetic field or template. The as prepared nanochains, comprised of nanospheres of diameter 350 nm, exhibit an extraordinary length of around 2 µm. The he self assembly of the FeNi3 nanospheres is attributed to strong dipolar interaction. Hydrophilic to hydrophobic surface transformation achieved by using trimethoxysilane and stearic acid, also introduces oleophilicity to the MNCs. After surface modification, the hydrophobic and oleophilic MNCs shows quick and selective absorption of oils from water surface under the influence of magnetic field.

  14. Electronic structures and magnetic moments of Co{sub 3}FeN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Ueda, Shigenori; Takeda, Yukiharu; Saitoh, Yuji; Imai, Yoji

    2013-12-02

    We evaluated electronic structures and magnetic moments in Co{sub 3}FeN epitaxial films on SrTiO{sub 3}(001). The experimentally obtained hard x-ray photoemission spectra of the Co{sub 3}FeN film have a good agreement with those calculated. Site averaged spin magnetic moments deduced by x-ray magnetic circular dichroism were 1.52 μ{sub B} per Co atom and 2.08 μ{sub B} per Fe atom at 100 K. They are close to those of Co{sub 4}N and Fe{sub 4}N, respectively, implying that the Co and Fe atoms randomly occupy the corner and face-centered sites in the Co{sub 3}FeN unit cell.

  15. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples.

    PubMed

    Wei, Shoulian; Li, Jianwen; Liu, Yong; Ma, Jinkui

    2016-11-18

    A magnetic mesoporous dual-template molecularly imprinted polymer (Fe3O4@mSiO2 @DMIP) with a specific recognition capability for chloramphenicol (CAP) and florfenicol (FF) was synthesised. CAP and FF were used as dual-template molecules, α-methacrylic acid and Fe3O4@mSiO2@-CHCH2 as dual functional monomers, and ethylene glycol dimethyl methacrylate as a crosslinking agent. For comparison, a magnetic mesoporous non-molecularly imprinted polymer (Fe3O4@mSiO2@NIP) was also prepared using the same synthesis procedure, but without the dual templates. The prepared polymers were characterised using scanning electron microscopy, Fourier-transform infrared spectroscopy and adsorption experiments. Results indicated that both the Fe3O4@mSiO2@DMIP and the Fe3O4@mSiO2 @NIP were microspherical nanoparticles, and the surface of the Fe3O4@mSiO2@DMIP was rougher than that of the Fe3O4@mSiO2@NIP. In addition, the prepared Fe3O4@mSiO2@DMIP possessed a higher adsorption capacity and better selectivity for CAP and FF than the Fe3O4@mSiO2@NIP. The maximum static adsorption capacities of the Fe3O4@mSiO2@ DMIP for CAP and FF were 146.5 and 190.1mgg(-1), respectively, whereas those of the Fe3O4@mSiO2 @NIP were 50.0 and 44.0mgg(-1), respectively. The obtained Fe3O4@mSiO2@DMIP particles were applied as a magnetic solid-phase extraction sorbent for the rapid and selective extraction of CAP, FF, and thiamphenicol (TAP) in water, chicken blood and egg samples. The method of magnetic molecularly imprinted solid-phase extraction (M-MISPE) coupled to high-performance liquid chromatography with UV detection (HPLC-UV) was conducted to detect CAP, FF, and TAP. The limits of detection for CAP, FF, and TAP were 0.16, 0.08, and 0.08μgkg(-1), respectively. The average recovery and precision values for the spiked water, chicken blood, and egg samples ranged from 88.3% to 99.1% and 2.7% to 7.9%, respectively. Given its rapidity, selectivity, and sensitivity, the developed method of M-MISPE coupled to

  16. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water.

    PubMed

    Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan

    2014-07-15

    A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3mg/g and 35.2mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85-94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water.

  17. Structure and magnetism in strained Ge1-x-ySnxMny films grown on Ge(001) by low temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Prestat, E.; Barski, A.; Bellet-Amalric, E.; Jacquot, J.-F.; Morel, R.; Tainoff, D.; Jain, A.; Porret, C.; Bayle-Guillemaud, P.; Jamet, M.

    2013-07-01

    In this letter, we study the structural and magnetic properties of Ge1-x-ySnxMny films grown on Ge(001) by low temperature molecular beam epitaxy using X-ray diffraction, high resolution transmission electron microscopy, and superconducting quantum interference device. Like in Mn doped Ge films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich nanocolumns of a few nanometers in diameter. Transmission electron microscopy observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical nanocolumns lower than the detection limit of electron energy loss spectroscopy. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn nanocolumns. The magnetization in Ge1-x-ySnxMny layers is higher than in Ge1-xMnx films. This magnetic moment enhancement in Ge1-x-ySnxMny is probably related to the modification of the electronic structure of Mn atoms in the nanocolumns by the Sn-rich shell, which is formed around the nanocolumns.

  18. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

    PubMed

    Liu, Chunyan; Gao, Zhenyu; Zeng, Jianfeng; Hou, Yi; Fang, Fang; Li, Yilin; Qiao, Ruirui; Shen, Lin; Lei, Hao; Yang, Wensheng; Gao, Mingyuan

    2013-08-27

    Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.

  19. Spatial Habitat Features Derived from Multiparametric Magnetic Resonance Imaging Data Are Associated with Molecular Subtype and 12-Month Survival Status in Glioblastoma Multiforme

    PubMed Central

    Lee, Joonsang; Narang, Shivali; Martinez, Juan; Rao, Ganesh; Rao, Arvind

    2015-01-01

    One of the most common and aggressive malignant brain tumors is Glioblastoma multiforme. Despite the multimodality treatment such as radiation therapy and chemotherapy (temozolomide: TMZ), the median survival rate of glioblastoma patient is less than 15 months. In this study, we investigated the association between measures of spatial diversity derived from spatial point pattern analysis of multiparametric magnetic resonance imaging (MRI) data with molecular status as well as 12-month survival in glioblastoma. We obtained 27 measures of spatial proximity (diversity) via spatial point pattern analysis of multiparametric T1 post-contrast and T2 fluid-attenuated inversion recovery MRI data. These measures were used to predict 12-month survival status (≤12 or >12 months) in 74 glioblastoma patients. Kaplan-Meier with receiver operating characteristic analyses was used to assess the relationship between derived spatial features and 12-month survival status as well as molecular subtype status in patients with glioblastoma. Kaplan-Meier survival analysis revealed that 14 spatial features were capable of stratifying overall survival in a statistically significant manner. For prediction of 12-month survival status based on these diversity indices, sensitivity and specificity were 0.86 and 0.64, respectively. The area under the receiver operating characteristic curve and the accuracy were 0.76 and 0.75, respectively. For prediction of molecular subtype status, proneural subtype shows highest accuracy of 0.93 among all molecular subtypes based on receiver operating characteristic analysis. We find that measures of spatial diversity from point pattern analysis of intensity habitats from T1 post-contrast and T2 fluid-attenuated inversion recovery images are associated with both tumor subtype status and 12-month survival status and may therefore be useful indicators of patient prognosis, in addition to providing potential guidance for molecularly-targeted therapies in

  20. A neutral molecular-based layered magnet [Fe(C2O4)(CH3OH)]n exhibiting magnetic ordering at TN approximately 23 K.

    PubMed

    Zhang, Bin; Zhang, Yan; Zhang, Jinbiao; Li, Junchao; Zhu, Daoben

    2008-10-07

    Solvothermal synthesis of FeCl(2).4H2O and H2C2O(4).2H2O in methanol at 120 degrees C yielded yellow plate-like crystals of [Fe(C2O4)(CH3OH)]n. Each iron atom is in a distorted octahedral environment, being bonded to four oxygen atoms from two bisbidentate oxalate anions, one O atom of a chelating oxalate anion and one O atom from a methanol molecule as an oxalate group bridging ligand in a five-coordination mode. The neutral layer of [Fe(C2O4)(CH3OH)]n with a [4,4] net along the ac plane. There is no interaction between layers. A long range magnetic ordering with spin canting at TN approximately 23 K was observed and confirmed by AC susceptibility measurements.

  1. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  2. Particle alignment and clustering in sheared granular materials composed of platy particles.

    PubMed

    Boton, Mauricio; Estrada, Nicolas; Azéma, Emilien; Radjaï, Farhang

    2014-11-01

    By means of molecular dynamics simulations, we investigate the texture and local ordering in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and anisotropic orientations of contacts between particles. We find that particle alignment is strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of exponentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon emerges even in systems composed of particles of very low platyness differing only slightly from spherical shape. The number of clusters is an increasing function of platyness. However, at high platyness the proportion of face-face interactions is too low to allow for their percolation throughout the system.

  3. A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods.

    PubMed

    Díaz-Bao, Mónica; Regal, Patricia; Barreiro, Rocío; Fente, Cristina A; Cepeda, Alberto

    2016-11-04

    A fast and facile method for the fabrication of magnetic molecularly imprinted stir-bars (MMIP-SB) has been developed, using a combination of imprinting technology and magnetite. Magnetite was prepared in the laboratory from the raw and embedded into molecularly imprinted polymers through a process of bulk polymerization. This novel design was applied to the analysis of aflatoxins, one of the most important groups of mycotoxins in terms of occurrence and toxicity. In the context of food safety, molecularly imprinted polymers are a promising tool to achieve selective and accessible methods of extraction for different residues and contaminants. Considering the toxicity of aflatoxins, a dummy template was preferred for the synthesis of the imprinted polymers. A rapid and affordable extraction method for isolating five different aflatoxins that may be present in food was developed. The MMIP-SB was used as a conventional stir-bar and combined with high performance liquid chromatography and mass spectrometry for the determination of aflatoxin M1 in milk powder (infant formulas) and aflatoxins B1, B2, G1 and G2 in cereal-based baby foods. The results showed an average recovery of 60%, 43, 40, 44 and 39%, respectively, and RSD below 10%. These in-house prepared stir-bars featured good stirring and extraction performance, and recognition abilities, offering a good alternative to more complicated.

  4. Layout modification for library cell Alt-PSM composability

    NASA Astrophysics Data System (ADS)

    Cao, Ke; Hu, Jiang; Cheng, Mosong

    2004-05-01

    In sub-wavelength lithography, light field Alt-PSM (Alternating Phase Shifting Mask) is an essential technology for poly layer printability. In a standard cell based design, the problem of obtaining Alt-PSM compliance for an individual cell layout has been solved well [3]. However, placing Alt-PSM compliant cells together can not guarantee Alt-PSM compliance of the entire chip/block layout due to phase interactions among adjacent cells. A simple solution to this Alt-PSM composability problem is to wrap blank area around each cell, which is very inefficient on chip area usage. In this paper, we formulate the composability problem as a graph model and propose a polynomial time optimal algorithm to achieve Alt-PSM composability with the least impact on cell layout.

  5. Molecular weight dependence of segmental alignment in a sheared polymer melt: A deuterium nuclear magnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Cormier, Ryan J.; Callaghan, Paul T.

    2002-06-01

    2H NMR quadrupole interaction spectroscopy has been used to measure the molecular weight dependence of poly(dimethylsiloxane) chain deformation under shear in a cylindrical Couette cell while NMR velocimetry has been used to directly measure shear rates. The signals were acquired from a perdeuterated benzene probe molecule, which provides a motionally averaged sampling of the entire segmental ensemble. We have measured the dependence on shear rate of the SXX (velocity), SYY (velocity gradient), and SZZ (vorticity) elements of the segmented alignment tensor, fitting the data using the standard Doi-Edwards theory and modified to allow for convected constraint release. Our results suggest that the tube disengagement times scale as molecular weight to the power 3.5±0.1, consistent with the usual 3.4 power law. Our velocimetry measurements indicate a reproducible and consistent slip occurring at high molecular weights (>1 M Dalton), a phenomenon which is independently observed in a lower than expected chain deformation.

  6. Environmental influence on the single-molecule magnet behavior of [Mn(III)6Cr(III)]3+: molecular symmetry versus solid-state effects.

    PubMed

    Hoeke, Veronika; Heidemeier, Maik; Krickemeyer, Erich; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Postnikov, Andrei; Glaser, Thorsten

    2012-10-15

    The structural, spectroscopic, and magnetic properties of a series of [Mn(III)(6)Cr(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+)) compounds have been investigated by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and electronic absorption spectroscopy, elemental analysis, electro spray ionization-mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), cyclic voltammetry, AC and DC magnetic measurements, as well as theoretical analysis. The crystal structures obtained with [Cr(III)(CN)(6)](3-) as a counterion exhibit (quasi-)one-dimensional (1D) chains formed by hydrogen-bonded (1) or covalently linked (2) trications and trianions. The rod-shaped anion lactate enforces a rod packing of the [Mn(III)(6)Cr(III)](3+) complexes in the highly symmetric space group R3[overline] (3) with a collinear arrangement of the molecular S(6) axes. Incorporation of the spherical anion BPh(4)(-) leads to less-symmetric crystal structures (4-6) with noncollinear orientations of the [Mn(III)(6)Cr(III)](3+) complexes, as evidenced by the angle between the approximate molecular C(3) axes taking no specific values in the range of 2°-69°. AC magnetic measurements on freshly isolated crystals (1a and 3a-6a), air-dried crystals (3b-6b), and vacuum-dried powder samples (3c-6c) indicate single-molecule magnet (SMM) behavior for all samples with U(eff) values up to 28 K. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting, and Zeeman interaction, taking into account the relative orientation of the D-tensors. Simulations for 3a-6a and 3c-6c indicate a weak antiferromagnetic exchange between the Mn(III) ions in the trinuclear subunits (J(Mn-Mn) = -0.70 to -0.85 cm(-1), Ĥ(ex) = -2∑(i

  7. The Link between Turbulence, Magnetic Fields, Filaments, and Star Formation in the Central Molecular Zone Cloud G0.253+0.016

    NASA Astrophysics Data System (ADS)

    Federrath, C.; Rathborne, J. M.; Longmore, S. N.; Kruijssen, J. M. D.; Bally, J.; Contreras, Y.; Crocker, R. M.; Garay, G.; Jackson, J. M.; Testi, L.; Walsh, A. J.

    2016-12-01

    Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic center may differ substantially compared to spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field, and filamentary structure. Using column density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width {W}{fil}=0.17+/- 0.08 {pc} and the sonic scale {λ }{sonic}=0.15+/- 0.11 {pc} of the turbulence, and find {W}{fil}≈ {λ }{sonic}. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra. The gradient is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity probability distribution function (PDF). After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8+/- 0.2 {km} {{{s}}}-1 and 3.9+/- 0.1 {km} {{{s}}}-1, respectively. Using magnetohydrodynamical turbulence simulations, we find that G0.253+0.016's turbulent magnetic field {B}{turb}=130+/- 50 μ {{G}} is only ≲ 1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter of b=0.22+/- 0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b\\gt 0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star-formation rate by a factor of 6.9 compared to typical nearby

  8. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  9. Magnetic studies reveal near-perfect paramagnetism in the molecular semiconductor vanadyl phthalocyanine (C32H16N8VO)

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pi, Li; Seehra, Mohindar S.; Bindra, Jasleen; van Tol, Hans; Dalal, Naresh S.

    2017-01-01

    Temperature (0.5-300 K) and magnetic field (H up to 90 kOe) dependences of the magnetization (M) of a powder sample of vanadyl phthalocyanine (VOPc) having the Phase II-triclinic structure are measured and analyzed. The data of χ = M/H vs. T measured in H = 1 kOe fit the modified Curie-Weiss (CW) law, χ = χo+C/(T-θ), with C = 6.266×10-4 emuK/gOe, θ = -0.1 K and χo = -9.3×10-7 emu/gOe. The Curie constant C yields magnetic moment μ = 1.704 μB, S = 1/2, and g = 1.967 characteristic of VO2+. The magnitude of θ = -0.1 K signifying very weak inter-ion antiferromagnetic exchange coupling is supported by the analysis of the variable frequency (9.8-336 GHz) electron paramagnetic resonance data. The isothermal data of M vs. H at ten temperatures between 0.5 K and 300 K when plotted as M vs. H/(T+0.1) collapses on to a single curve given by M = Motanh {gμBH/[2kB(T+0.1)]} with Mo = NgμBS = 9.48 emu/g expected for S = 1/2 system, thus signifying near perfect paramagnetism in VOPc.

  10. Charge transport in superionic and melted AgI under a magnetic field studied via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gagliardi, Luca; Bonella, Sara

    2016-10-01

    Charge transport in AgI subject to an external magnetic field is studied via computer simulations. We demonstrate that a recently developed algorithm can effectively complement problematic experiments to detect the ionic Hall effect, and identify previously unreported effects such as ionic magnetoresistance. We focus first on the charge transport properties of superionic AgI, showing that the magnetic field induces a considerable reduction in the diagonal elements of the conductivity tensor (magnetoresistance). Within the limits of the signal-to-noise ratio, calculation of the off-diagonal elements of this tensor also shows the onset of the Hall effect in this material. We then present numerical evidence supporting the use of the Nerst-Einstein approximation to obtain the Hall mobility of the system. This approximation enables very efficient detection of the Hall signal, with values of the mobility and of the migration activation energy in very good agreement with experiments. Having validated our simulation approach, we consider melted AgI to investigate if the Hall signal persists in this nonsuperionic case, finding a detectable signal. Comparison of the diffusion tensor of this system with that of molten NaCl also indicates why the Hall signal is absent in the latter. This work paves the way for the routine use of simulations to study transport, and in particular the ionic Hall effect, in ionic systems under external magnetic field.

  11. Anisotropic Field Dependence of the Superconducting Transition in the Magnetic Molecular Superconductor κ-(BETS)2FeBr4

    NASA Astrophysics Data System (ADS)

    Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki

    2017-01-01

    Angle-resolved heat capacity measurements of a π-d interacting system of κ-(BETS)2FeBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene] with in-plane magnetic fields are performed. We observed a thermal anomaly in association with the superconducting transition of the π electrons in the π-d compound for the first time. By pursuing a systematic change in the thermal anomaly, we found that the thermodynamic feature of the superconducting state shows large anisotropy against in-plane magnetic fields. When the field is applied parallel to the c-axis, the thermal anomaly remains up to 2.6 T with a distinct peak structure. On the other hand, it is suppressed in synchrony with the decrease of the antiferromagnetic transition temperature, when the field is applied parallel to the a-axis. Our thermodynamic results indicate that the effect of the π-d interaction appears even when the π electrons are itinerant and that the anisotropic field-direction dependence of the superconducting transition originates from the correlation between superconductivity and magnetism.

  12. "Convince Me!" Valuing Multimodal Literacies and Composing Public Service Announcements

    ERIC Educational Resources Information Center

    Selfe, Richard J.; Selfe, Cynthia L.

    2008-01-01

    For some teachers, the increasing attention to digital and multimodal composing in English and Language Arts classrooms has brought into sharp relief the profession's investment in print as the primary means of expression. Although new forms of communication that combine words, still and moving images, and animation have begun to dominate digital…

  13. "Composing Visual History: Using Powerpoint Slideshows to Explore Historical Narrative"

    ERIC Educational Resources Information Center

    Fehn, Bruce

    2007-01-01

    This article explores PowerPoint slideshow's capacities for introducing history teachers and students to the pictorial and digital turns for representing and narrating the past. Based upon this research, the author argues that image-dominated PowerPoint slideshow provides teachers and students with a unique and powerful tool for composing and…

  14. Beyond the Enthymeme: Sorites, Critical Thinking, and the Composing Process.

    ERIC Educational Resources Information Center

    Hill, Carolyn

    A teacher presents a writing exercise designed to facilitate audience-directed, critical thinking during the process of composing, that starts students thinking in terms of sorites and enthymemes. Students first read a CIA manual, "Psychological Operations in Guerrilla Warfare," that instructs the Contra guerrillas in illegal acts and…

  15. Composing Cinquain Poems with Basic Parts of Speech.

    ERIC Educational Resources Information Center

    Gardner, Traci

    The writing program described in this lesson plan guides students in grades 3 through 8 in composing cinquain poems, a five-line form that uses the syllable count of two-four-six-eight-two. During the two 50-minute lessons, students will: describe the basic conventions of cinquain; interpret examples of cinquain; characterize the relationship…

  16. Composing the Career Portfolio and the Classed Subject

    ERIC Educational Resources Information Center

    Collin, Ross

    2012-01-01

    In this article, I consider how subjectivities are composed and assessed within the boundaries of a career-focused portfolio program. First, by examining how portfolio composition is taught in senior English courses, I identify the qualities of the subject position students are called to occupy. Next, I present discourse analyses of portfolio…

  17. Preparing Performers and Composers for Effective Educational Work with Children

    ERIC Educational Resources Information Center

    Myers, David E.

    2005-01-01

    Music education programs stand to gain important benefits from the collaborative work of performing musicians with specialist music teachers and classroom teachers. To be effective, performers and composers must have their knowledge and skills for education cultivated within the context of their essential identities as musicians. Given…

  18. When Did Classic Composers Make Their Best Work?

    ERIC Educational Resources Information Center

    Franses, Philip Hans

    2016-01-01

    This Research Note shows that classic composers created their best works when they were at a similar age when creators in other domains did their best work, namely when they were at an age that represented around 60% of their life span. This finding is very similar to earlier results for painters and authors.

  19. Composing Songs for Teaching Science to College Students

    ERIC Educational Resources Information Center

    Yee Pinn Tsin, Isabel

    2015-01-01

    Recent studies have shown that songs may enhance learning as they function as mnemonic devices to increase memorability. In this research, songs based on the more difficult subtopics in Chemistry were composed, encompassing many formulas, equations and facts to be remembered. This technique of song composition can be used in any subject, any point…

  20. Teaching Effective Communication Skills with ACE: Analyzing, Composing, & Evaluating

    ERIC Educational Resources Information Center

    Snyder, Lisa Gueldenzoph; Shwom, Barbara

    2011-01-01

    Most business communication classes teach students to use a writing process to compose effective documents. Students practice the process by applying it to various types of writing with various purposes-reports, presentations, bad news letters, persuasive memos, etc. However, unless students practice that process in other contexts outside of the…

  1. Magnetic properties of Fe{sub 0.4}Mn{sub 0.6}/Co{sub 2}FeAl bilayers grown on GaAs by molecular-beam epitaxy

    SciTech Connect

    Meng, K. K.; Nie, S. H.; Yu, X. Z.; Wang, S. L.; Zhao, J. H.; Yan, W. S.

    2011-11-01

    Polycrystalline Fe{sub 0.4}Mn{sub 0.6} layers with the different thickness are deposited on 4-nm-thick single-crystalline Co{sub 2}FeAl layers, which are grown on GaAs (001) substrates at room temperature by molecular-beam epitaxy. Both the exchange bias and the in-plane magnetic anisotropies of the bilayers are strongly dependent on the thickness of the Fe{sub 0.4}Mn{sub 0.6} layer. The former is described using a granular level model. A modified Stoner-Wohlfarth model is used to explain the in-plane magnetic anisotropies observed at 5 K, while one possible reason for the magnetic anisotropies measured at 300 K is the complex interfacial magnetic properties proved by x-ray magnetic circular dichroism measurements.

  2. Influence of uniaxial single-ion anisotropy on the magnetic and thermal properties of Heisenberg antiferromagnets within unified molecular field theory

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2017-03-01

    The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high

  3. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes.

    PubMed

    Zhou, Jing; Gan, Ning; Li, Tianhua; Hu, Futao; Li, Xing; Wang, Lihong; Zheng, Lei

    2014-04-15

    In this report, a rapid and cost-effective sandwich electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of human immunodeficiency virus type 1 antibody (anti-HIV-1) using magnetic molecularly imprinted polymers (MMIPs) as capture probes by combining surface and epitope imprinting techniques and antigen conjugated with horseradish peroxidase (HRP-HIV-1) as labels. First, 3-aminobenzeneboronic acid (APBA) was used as the functional monomer and cross-linking reagent, which was polymerized on the surface of silicate-coated magnetic iron oxide nanoparticles (Fe3O4@SiO2 NPs) in the presence of human immunoglobulin G (HIgG), as the template exhibiting the same Fc region but different Fab region to anti-HIV-1 after the addition of the initiator, ammonium persulfate. This process resulted in grafting a hydrophilic molecularly imprinted polymer (MIP) film on the Fe3O4@SiO2 NPs. Thus, MMIPs, which could be reused after eluting the template, were used to recognize and enrich ultra-trace levels of anti-HIV-1. Subsequently, a novel sandwich ECL immunosensor was formed through the immunoreaction between MMIPs conjugated with varied concentrations of anti-HIV-1 and HRP-HIV-1. By the catalysis of HRP immobilized onto HRP-HIV-1 on the ECL system of Luminol-H2O2, a linear response range of the anti-HIV-1 dilution ratio (standard positive serum) was achieved from 1:20,000 to 1:50, with a detection limit of 1:60,000 (S/N=3). The developed method provides a low-cost, simple, and sensitive way for the early diagnosis of HIV infected patients.

  4. Molecularly imprinted polymer on magnetic graphene oxide for fast and selective extraction of 17β-estradiol.

    PubMed

    Ning, Fangjian; Peng, Hailong; Li, Jinhua; Chen, Lingxin; Xiong, Hua

    2014-07-30

    A novel nanosized substrate imprinted polymer (MIPs-GO-Fe3O4) was developed on a magnetic graphene oxide (GO-Fe3O4) surface for selective recognition and fast removal of 17β-estradiol (17β-E2). The characteristics of MIPs-GO-Fe3O4 were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy. and vibrating sample magnetometer (VSM). Results suggested that GO had a thin single-layer structure anchoring Fe3O4 nanoparticles and that the imprinted film was coated on the GO-Fe3O4 surface. MIPs-GO-Fe3O4 was sensitive to the magnetic field and could be easily separated using an external magnet. The adsorption results indicated that the kinetic value and binding capacity of MIPs-GO-Fe3O4 were 0.0062 g (mg·min)(-1) and 4.378 μmol g(-1), respectively. The Langmuir-Freundlich isotherm and pseudo-second-order kinetic models were the main adsorption mechanisms for MIPs-GO-Fe3O4. MIPs-GO-Fe3O4 showed excellent recognition selectivity, as well as enrichment and separation abilities for 17β-E2 in complex matrices. MIPs-GO-Fe3O4 was also used to analyze 17β-E2 in real food samples, and satisfactory recoveries such as 84.20% with relative standard deviation (RSD) of 4.67% at a spike of 0.5 μmol L(-1) were obtained. Thus, the MIPs-GO-Fe3O4-based method provided a convenient and practical platform for the separation, enrichment, and removal of 17β-E2 in food samples.

  5. Trinuclear Mo3S7 clusters coordinated to dithiolate or diselenolate ligands and their use in the preparation of magnetic single component molecular conductors.

    PubMed

    Llusar, Rosa; Triguero, Sonia; Polo, Victor; Vicent, Cristian; Gómez-García, Carlos J; Jeannin, Olivier; Fourmigué, Marc

    2008-10-20

    A general route for the preparation of a series of dianionic Mo3S7 cluster complexes bearing dithiolate or diselenolate ligands, namely, [Mo3S7L3](2-) (where L = tfd (bis(trifluoromethyl)-1,2-dithiolate) (4(2-)), bdt (1,2-benzenedithiolate) (5(2-)), dmid (1,3-dithia-2-one-4,5-dithiolate) (6(2-)), and dsit (1,3-dithia-2-thione-4,5-diselenolate) (7(2-))) is reported by direct reaction of [Mo3S7Br6](2-) and (n-Bu)2Sn(dithiolate). The redox properties, molecular structure, and electronic structure (BP86/VTZP) of the 4(2-) to 7(2-) clusters have also been investigated. The HOMO orbital in all complexes is delocalized over the ligand and the Mo3S7 cluster core. Ligand contributions to the HOMO range from 61.67% for 4(2-) to 82.07% for 7(2-), which would allow fine-tuning of the electronic and magnetic properties. These dianionic clusters present small energy gaps between the HOMO and HOMO-1 orbitals (0.277-0.104 eV). Complexes 6(2-) and 7(2-) are oxidized to the neutral state to afford microcrystalline or amorphous fine powders that exhibit semiconducting behavior and present antiferromagnetic exchange interactions. These compounds are new examples of the still rare single-component conductors based on cluster magnetic units.

  6. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    PubMed

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50 nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53 mg/g at 25 °C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24 kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU.

  7. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater.

  8. An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder.

    PubMed

    Lan, Hangzhen; Gan, Ning; Pan, Daodong; Hu, Futao; Li, Tianhua; Long, Nengbing; Qiao, Li

    2014-02-28

    A new automated solid-phase micro extraction (SPME) sampling method was developed for quantitative enrichment of estrogens (ES) from milk powder, using magnetic molecularly imprinted polymer (MMIP) as fiber coating. The method (MMIP-SPME) was built with several electromagnetic stainless steel fibers, placed in parallel for simultaneously extraction. The MMIP was synthesized using core-shell Fe3O4@SiO2 nanoparticles (NPs) as magnetic support. Estradiol (E2) was employed as the template molecule, acrylamide (AA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. MMIP can be easily absorbed or desorbed from fibers when the current is turned on or off, creating magnetism. Compared to traditional MIP-SPME, the prepared procedure of MMIP-SPME is time-saving and organic solvent-free. The proposed device significantly improved the efficiency of separation and enrichment of estrogens from complex matrices thereby and facilitating the pretreatment steps by electromagnetically controlled extraction fibers to achieve full automation. Several experimental parameters were studied, including extraction and desorption kinetics, solution pH, desorption solution, ratio, and shuttle rate. The newly developed MMIP-SPME showed good sensitivity and high binding capacity, fast adsorption kinetics and desorption kinetics for estrone (E1), estradiol (E2), estriol (E3) and diethylstilbestrol (DES) under optimized conditions. The detection limits for the four estrogens were 1.5-5.5ngg(-1) with excellent reproducibility (RSD values less than 7.1%) when milk powder samples spiked with analytes at 20, 100 and 250ngg(-1) were studied.

  9. Composing Texts, Composing Lives.

    ERIC Educational Resources Information Center

    Perl, Sondra

    1994-01-01

    Using composition, reader response, critical, and feminist theories, a teacher demonstrates how adult students respond critically to literary texts and how teachers must critically analyze the texts of their teaching practice. Both students and teachers can use writing to bring their experiences to interpretation. (SK)

  10. Single-Ion Anisotropy Estimates for the Rhenium(IV-Based) Molecular Magnets: Modeling and Simulations Studies

    NASA Astrophysics Data System (ADS)

    Kucharski, Łukasz; Kamieniarz, Grzegorz; Antkowiak, Michał; Drzewiński, Andrzej

    2014-06-01

    We prove that the tetranuclear oxalato-bridged complex Re3(IV)Ni(II) demonstrating the single molecule magnet behavior is a good anisotropic spin Heisenberg model. Our comprehensive analysis, based on an exact diagonalisation technique, genetic algorithm ideas, and EPR resonances, leads to a unique set of the single-ion anisotropy parameters (DRe/kB = -8.8 K, DNi/kB = 9.9 K, E = 0). The parameters determine the model that quantitatively describes the zero-field splitting as well as the temperature dependence of magnetic susceptibility and the field dependence of single-crystal magnetisation isotherms, they also reveal pronounced maxima in the field dependence of the differences between the transverse magnetisation components, which are directly related to the rhombicity factor E/D. They are noticeable enough to be detected experimentally and also occur for mononuclear complexes. Finally, we propose the rationale for the unusual reduction in the energy barrier with respect to the zero-field splitting.

  11. The rainbow effect on composing chaotic algorithmic music

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Vaggelis D.

    The effect of rainbow color sequence on composing chaotic algorithmic music is examined. The mathematical range of the chaotic algorithm is mapped onto musical notes whose sequence follows the sequence of the seven main rainbow colors and their in-between five auxiliary colors. Each musical note is identified with the frequency of a color by a frequency shift. As a result, for a single rainbow, the scale of the chaotic music comprises an ascending chromatic F major scale without the thirteenth note, followed by its corresponding descending chromatic scale, for a total of twenty four notes. For aesthetic purposes, a note can be placed in any octave at the composer's will. The effect of a double rainbow on composing chaotic music is also studied. It is known from nature that the outer bow has its color sequence reversed. Thus, in this case, the double rainbow musical scale comprises forty eight notes on a repeated reversed full chromatic F major scale without the thirteenth note in the ascent or the first note in the descent, resembling in shape the letter w. Colorless regions in the rainbow or dark (Alexander's bands) regions in a supernumerary rainbow are included in the musical range as rests. With the musical scale based on the described rainbow mapping, chaotic music is composed from an algorithm defined by a semi-elliptical first order iterative map. The minor axis of the ellipse is defined by the range of the mathematical pitch from 0 to 1 while the semi-major axis by that of the succeeding pitch from 0 to r/2; r is a free parameter that varies from 1 to 2 to be chosen by the composer. The lower limiting value of the free parameter r corresponds to a circle of radius 1/2 yielding steady state music whereas all the other values of r correspond to ellipses. Chaotic compositions result from r values between 1.95 and 2, the latter value yielding full chaos from an ellipse with its major axis double its minor axis. Fixed notes are obtained for all r's, i.e., notes

  12. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  13. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-01

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory.

  14. Gd (III) complex conjugate of low-molecular-weight chitosan as a contrast agent for magnetic resonance/fluorescence dual-modal imaging.

    PubMed

    Huang, Yan; Boamah, Peter Osei; Gong, Jianbo; Zhang, Qi; Hua, Mingqing; Ye, Yuzhen

    2016-06-05

    The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection in clinic. In this work, we prepared gadolinium (III) complex Gd-DTPA-FITC-CS11 with magnetic resonance (MR) and fluorescence dual-modal imaging modalities. Gd-DTPA-FITC-CS11 consisted of fluorescein isothiocyanate and low-molecular-weight chitosan (CS11) units conjugated with gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Gd-DTPA-FITC-CS11 exhibited a higher longitudinal relaxivity (14.09 mM(-1)s(-1)) than the clinical Gd-DTPA (3.85 mM(-1)s(-1)). T1-weighted MR contrast enhancement was also demonstrated the comparability to Gd-DTPA at lower dosage. The binding with bovine serum albumin (BSA) was investigated. The fluorescence of BSA in the presence of Gd-DTPA-FITC-CS11 was weakened due to static quenching mechanism. The conformation of BSA was slightly changed but α-helix was dominant. The binding was entropy-driven and spontaneous and the main contribution was hydrophobic interaction. Our results suggested the potential of Gd-DTPA-FITC-CS11 as an MR/fluorescence dual-modal imaging contrast agent in improving the diagnostic sensitivity and accuracy.

  15. Molecular weight distributions of irradiated siloxane-based elastomers: A complementary study by statistical modeling and multiple quantum nuclear magnetic resonance

    SciTech Connect

    Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S.

    2011-05-01

    The statistical methodology of population balance (PB) has been applied in order to predict the effects of cross-linking and chain-scissioning induced by ionizing radiation on the distribution of molecular weight between cross-links (MWBC) of a siloxane-based elastomer. Effective molecular weight distributions were extracted from the quantification of residual dipolar couplings via multiple quantum nuclear magnetic resonance (MQ-NMR) measurements and are taken to reflect actual MWBC distributions. The PB methodology is then applied to the unirradiated MWBC distribution and considers both chain-scissioning and the possibility of the formation of three types of cross-links: random recombination of scissioned-chain ends (end-linking), random covalent bonds of free radicals on scissioned-chain ends (Y-cross-linking), and the formation of random cross-links from free radicals on side groups (H-cross-linking). The qualitative agreement between the statistical modeling approach and the NMR data confirms that it is possible to predict trends for the evolution of the distribution of MWBC of polymers under irradiation. The approach described herein can also discern heterogeneities in radiation effects in different structural motifs in the polymer network.

  16. Single-component molecular material hosting antiferromagnetic and spin-gapped Mott subsystems

    NASA Astrophysics Data System (ADS)

    Takagi, Rina; Hamai, Takamasa; Gangi, Hiro; Miyagawa, Kazuya; Zhou, Biao; Kobayashi, Akiko; Kanoda, Kazushi

    2017-03-01

    We investigated a system based solely on a single molecular species, Cu(tmdt) 2, accommodating d and π orbitals within the molecule. 13C nuclear magnetic resonance measurements captured singlet-triplet excitations of π spins indicating the existence of a π -electron-based spin-gapped Mott insulating subsystem, which has been hidden by the large magnetic susceptibility exhibited by the d spins forming antiferromagnetic chains. The present results demonstrate a unique hybrid Mott insulator composed of antiferromagnetic and spin-singlet Mott subsystems with distinctive dimensionalities.

  17. Modeling and Composing Scenario-Based Requirements with Aspects

    NASA Technical Reports Server (NTRS)

    Araujo, Joao; Whittle, Jon; Ki, Dae-Kyoo

    2004-01-01

    There has been significant recent interest, within the Aspect-Oriented Software Development (AOSD) community, in representing crosscutting concerns at various stages of the software lifecycle. However, most of these efforts have concentrated on the design and implementation phases. We focus in this paper on representing aspects during use case modeling. In particular, we focus on scenario-based requirements and show how to compose aspectual and non-aspectual scenarios so that they can be simulated as a whole. Non-aspectual scenarios are modeled as UML sequence diagram. Aspectual scenarios are modeled as Interaction Pattern Specifications (IPS). In order to simulate them, the scenarios are transformed into a set of executable state machines using an existing state machine synthesis algorithm. Previous work composed aspectual and non-aspectual scenarios at the sequence diagram level. In this paper, the composition is done at the state machine level.

  18. A Design for Composing and Extending Vehicle Models

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Neuhaus, Jason R.

    2003-01-01

    The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").

  19. Analysis of Molecular Interaction of Drugs Within β-Cyclodextrin Cavity by Solution State Nuclear Magnetic Resonance (NMR) Relaxation.

    PubMed

    Kumar, Deepak; Krishnan, Yogeshwaran; Paranjothy, Manikandan; Pal, Samanwita

    2017-03-09

    The prime focus of the present study is to employ NMR relaxation measurement to address the intermolecular interactions as well as motional dynamics of drugs viz., paracetamol and aspirin encapsulated within β-cyclodextrin (β-CD) cavity. In this report we have attempted to demonstrate the applicability of nonselective (R1(ns) ), selective (R1(se)) and bi-selective (R1(bs)) spin-lattice relaxation rates to infer dynamical parameters e.g., molecular rotational correlation times (τc) and cross-relaxation rates (σij) of the encapsulated drugs. Molecular rotational correlation times of the free drugs were calculated using selective relaxation rate in the fast molecular motion time regime ( ωH(2)τc(2)<1 and R1(ns)/R1(se)≈ 1.500), whereas that of the 1:1 complexed drugs were found from the ratio of R1(ns)/R1(se) in the intermediate motion time regime ( ωH(2)τc(2)≈ 1 and R1(ns)/R1(se) ≈ 1.054) and compared with each other to confirm the formation of inclusion complexes. Furthermore the cross-relaxation rates have been used to evaluate the intermolecular proton distances. Also, density functional theory (DFT) calculations were performed to determine the minimum energy geometry of the inclusion complexes and the results compared with experiments. The report thus presents the possibility of utilizing NMR relaxation data, a more cost effective experiments to calculate internuclear distances in case of drug-supramolecule complexes that are generally addressed by extremely time consuming 2D Nuclear Overhauser Enhancement (NOE) based methods. Plausible mode of insertion of drug molecules into the β-CD cavity has also been described based on experimental NMR relaxation data analysis.

  20. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  1. GAS KINEMATICS AND THE DRAGGED MAGNETIC FIELD IN THE HIGH-MASS MOLECULAR OUTFLOW SOURCE G192.16-3.84: AN SMA VIEW

    SciTech Connect

    Liu Hauyu Baobab; Ho, Paul T. P.; Qiu Keping; Zhang Qizhou; Girart, Josep M.

    2013-07-01

    We report Submillimeter Array (SMA) observations of polarized 0.88 mm thermal dust emission and various molecular line transitions toward the early B-type (L{sub *} {approx} 2 Multiplication-Sign 10{sup 3} L{sub Sun }) star-forming region G192.16-3.84 (IRAS 05553+1631). The peak of the continuum Stokes-I emission coincides with a hot rotating disk/envelope (SO{sub 2} rotational temperature T{sub rot}{sup SO{sub 2}}{approx}84{sup +18}{sub -13} K), with a north-south velocity gradient. Joint analysis of the rotation curve traced by HCO{sup +} 4-3 and SO{sub 2} 19{sub 1,19}-18{sub 0,18} suggests that the dense molecular gas is undergoing a spinning-up rotation, marginally bound by the gravitational force of an enclosed mass M{sub *+gas+dust} {approx} 11.2-25.2 M{sub Sun }. Perpendicular to the rotational plane, a {approx}>100/cos (i) km s{sup -1} (i {approx} 63 Degree-Sign ) high velocity molecular jet and a {approx}15-20 km s{sup -1} expanding biconical cavity were revealed in the CO 3-2 emission. The polarization percentage of the 0.88 mm continuum emission decreases toward the central rotating disk/envelope. The polarization angle in the inner {approx}2'' (0.015 pc) disk/envelope is perpendicular to the plane of the rotation. The magnetic field lines, which are predominantly in the toroidal direction along the disk plane, are likely to be dragged by the gravitationally accelerated rotation.

  2. 1. General view, outbuildings. The seed house composed of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view, outbuildings. The seed house composed of the greenhouse, a storeroom (shed), a classroom (over a former ice pit), and a kitchen (over a cellar)-stands on the right. The barn roof is visible at center and the gift shop (former stable) stands on the left (Note the carved stone posts framing the gateway). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  3. PLZT block data composers operated in differential phase mode

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of a PLTZ block data composer as a matrix type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system was investigated. The system has readout contrast ratios of between 10 and 15 to 1. The differential phase mode has the advantage that strain bias is not required and thickness and strain variations in the PLZT are cancelled out.

  4. Preparation and characterization of the pH and thermosensitive magnetic molecular imprinted nanoparticle polymer for the cancer drug delivery.

    PubMed

    Kaamyabi, Sharif; Habibi, Davood; Amini, Mostafa M

    2016-05-01

    A novel pH and thermosensitive magnetic nanoparticle polymer composite [poly(NIPAAM@Fe3O4 MNPs/TMSPMC/DOX)] was synthesized by radical polymerization of N-isopropylacrylamide (NIPAAM) and the methacrylate functionalized Fe3O4 nanoparticles/DOX complex using AIBN and EGDMA, and used as a drug carrier for the DOX drug delivery. Formation of poly(NIPAAM@Fe3O4 MNPs/TMSPMC/DOX) was confirmed by FTIR, XRD, UV-Vis, VSM, TGA-DTA and SEM. The results showed the high DOX loading controls release. Moreover, it showed the lower critical solution temperature of 40°C which can be beneficial in cancer drug delivery, since the temperature of cancer cells is higher than normal ones, and DOX can be released selectively in cancer cells.

  5. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol.

    PubMed

    Peng, Hailong; Luo, Mei; Xiong, Hua; Yu, Ningxiang; Ning, Fangjian; Fan, Jieping; Zeng, Zheling; Li, Jinhua; Chen, Lingxin

    2016-04-15

    Photonic-magnetic responsive molecularly imprinted microspheres (PM-MIMs) were prepared by seed polymerization, through suitable functionalization of magnetic nanoparticles for further coating with photoresponsive functional monomer and imprinted layers, and then were successfully applied to the fast and selective extraction of 17β-estradiol (17β-E2) from real samples. The PM-MIMs possessed a sandwich micro-spherical structure containing Fe3O4 core, SiO2 middle layer, and MIPs shell with thickness of 25 nm. The PM-MIMs displayed excellent photoresponsive properties and could be rapidly separated from solutions under an external magnet. The PM-MIMs had specific affinity towards 17β-E2 with high adsorption capacity (Qmax=0.84 mg g(-1)) and fast binding kinetics (Kd=26.08 mg L(-1)). The PM-MIMs proved to be an ideal photoswitch with the ability of reversible uptake and release of 17β-E2 upon alternate 365 and 440 nm irradiation: 45.0% of 17β-E2 released from the PM-MIMs upon 365 nm irradiation, and 94.0% of the released 17β-E2 was rebound to the PM-MIMs at 440 nm. Accordingly, the PM-MIMs were applied for fast separation and extraction of 17β-E2 followed by HPLC-UV determination, presenting the low limit of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) of 0.18 and 0.62 μmol L(-1), respectively. The high recoveries for spiked milk powder and drinking water samples were in the range of 97.5-113.0% with relative standard deviations less than 4.4%. This study reasonably combined photonic response, magnetic separation and surface imprinting, which endowed the PM-MIMs with significant advantages of high adsorption capacity and fast binding kinetics, convenient separation and recycled use, and simple rapid eco-benign adsorption/elution processes for template molecules. Thus, the PM-MIMs based method may be a simple, rapid, convenient, cost-effective and environmentally-friendly way for simultaneous separation, enrichment and detection of trace 17β-E2 in

  6. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.

    PubMed

    Sánchez-González, Juan; Jesús Tabernero, María; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-01-15

    A magnetic molecularly imprinted polymer (MMIP) has been synthesized and applied for cocaine (COC) and metabolites (benzoylecgonine, BZE; cocaethylene, CE; and ecgonine methyl ester, EME) recognition/pre-concentration in urine samples. The MMIP has been prepared using COC as a template molecule, ethylene dimethacrylate (EDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, Fe3O4 magnetite as a magnetic component, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator. The best results (MIP layer on the surface of the magnetic nanoparticles) and physical properties of the prepared MMIP were obtained when assisting the synthesis procedure with ultrasounds (325W, 37kHz, 30°C, 4h). After solid phase extraction (SPE) with the prepared adsorbent material, analytes were determined by high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). Variables affecting the SPE process (batch mode) were fully evaluated. Optimum retention of analytes (1.8mL of urine and 50mg of MMIP) was achieved by fixing the urine pH at 5.5 (use of a KH2PO4/NaOH, pH 5.5 buffer solution), and magnetic stirring (25°C, 700rpm) for 10min. Elution was performed by using 2mL of a dichloromethane/2-propanol/ammonium hydroxide (75:20:5) mixture under ultrasounds (325W, 35kHz, room temperature) for 5min. The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The detection limits were in the range of 0.39-1.4ngL(-1). The relative standard deviations of intra- and inter-day tests ranged from 5 to 11% and from 3 to 11%, respectively. Analytical recoveries were in the range of 79-106% when spiking drug-free urine samples at three concentration levels. Good results were also obtained after analyzing an FDT +25% control material. The applicability of the method was proved for screening/quantifying COC, BZE, CE and EME in several samples from poly-drug abusers.

  7. Nanochemistry and magnetism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.

    2009-10-01

    An analysis of magnetism of nanochemical systems opens up new ways to creating ferromagnets from diamagnetic substances and new principles for constructing molecular ferromagnets, hybrid magnetic materials, and monomolecular magnets on the basis of high-spin molecules and complexes. Their use in spin computing is considered.

  8. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  9. Structural and magnetic properties of {eta}-phase manganese nitride films grown by molecular-beam epitaxy

    SciTech Connect

    Yang, Haiqiang; Al-Brithen, Hamad; Smith, Arthur R.; Borchers, J. A.; Cappelletti, R. L.; Vaudin, M. D.

    2001-06-11

    Face-centered tetragonal (fct) {eta}-phase manganese nitride films have been grown on magnesium oxide (001) substrates by molecular-beam epitaxy. For growth conditions described here, reflection high energy electron diffraction and neutron scattering show primarily two types of domains rotated by 90{degree} to each other with their c axes in the surface plane. Scanning tunneling microscopy images reveal surface domains consisting of row structures which correspond directly to the bulk domains. Neutron diffraction data confirm that the Mn moments are aligned in a layered antiferromagnetic structure. The data are consistent with the fct model of G. Kreiner and H. Jacobs for bulk Mn{sub 3}N{sub 2} [J. Alloys Compd. 183, 345 (1992)]. {copyright} 2001 American Institute of Physics.

  10. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    The depletion of terrestrial global oil reserves has shifted oil exploration into offshore and ultra-deep water (> 5000 ft) oil reserves to meet global energy demands. Deep water reservoirs are currently in production in many parts of the world, including the Gulf of Mexico, but production is complicated by the water depth and thick salt caps that challenge reservoir characterization / production. The explosion aboard the Deepwater Horizon in April 2010 resulted in an estimated total release of ~5 million barrels (BP claims that they collected ~1M barrels, for a net release of 4 M) of light, sweet crude oil into the Gulf of Mexico and shifted attention toward the environmental risks associated with offshore oil production. The growing emphasis on deep water and ultra-deep water oil production poses a significant environmental threat, and increased regulations require that oil companies minimize environmental impact to prevent oil spills, and mitigate environmental damage when spills occur. Every oil spill is unique. The molecular transformations that occur to petroleum after contact with seawater depend on the physical and chemical properties of the spilled oil, environmental conditions, and deposition environment. Molecular-level knowledge of the composition, distribution, and total mass of released hydrocarbons is essential to disentangle photo- and bio-degradation, source identification, and long-term environmental impact of hydrocarbons released into the environment. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is unsurpassed in its ability to characterize complex mixtures at the level of elemental composition assignment. Only FT-ICR mass spectrometry can routinely achieve the required minimum resolving power necessary to elucidate molecular-level characterization of crude oil. Conversely, the spectral complexity of petroleum facilitates identification of systematic errors in the accumulation, transfer, excitation, and detection

  11. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.

    PubMed

    Manzoni, Vinícius; Lyra, Marcelo L; Coutinho, Kaline; Canuto, Sylvio

    2011-10-14

    A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(∗) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(∗) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4 ± 1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM

  12. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  13. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    PubMed Central

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-01-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule. PMID:27026506

  14. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex.

    PubMed

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; Abu El-Reash, Gaber; Breedlove, Brian K; Yamashita, Masahiro

    2016-03-30

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  15. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  16. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells.

    PubMed

    Sulpizio, Marilisa; Falone, Stefano; Amicarelli, Fernanda; Marchisio, Marco; Di Giuseppe, Fabrizio; Eleuterio, Enrica; Di Ilio, Carmine; Angelucci, Stefania

    2011-12-01

    Extremely low-frequency magnetic fields (ELF-MFs) may affect human health because of the possible associations with leukemia but also with cancer, cardiovascular, and neurological disorders. In the present work, human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 1 mT sinusoidal ELF-MF at three different times, that is, 5 days (T5), 10 days (T10), and 15 days (T15) and then the effects of ELF-MF on proteome expression and biological behavior were investigated. Through comparative analysis between treated and control samples, we analyzed the proteome changes induced by ELF-MF exposure. Nine new proteins resolved in sample after a 15-day treatment were involved in a cellular defense mechanism and/or in cellular organization and proliferation such as peroxiredoxin isoenzymes (2, 3, and 6), 3-mercaptopyruvate sulfurtransferase, actin cytoplasmatic 2, t-complex protein subunit beta, ropporin-1A, and profilin-2 and spindlin-1. Our results indicated that ELF-MFs exposure altered the proliferative status and other important cell biology-related parameters, such as cell growth pattern, and cytoskeletal organization. These findings support our hypothesis that ELF radiation could trigger a shift toward a more invasive phenotype.

  17. In vitro molecular magnetic resonance imaging detection and measurement of apoptosis using superparamagnetic iron oxide + antibody as ligands for nucleosomes

    NASA Astrophysics Data System (ADS)

    Rapley, P. L.; Witiw, C.; Rich, K.; Niccoli, S.; Tassotto, M. L.; Th'ng, J.

    2012-11-01

    Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T2 relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T2 effects. The T2 clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.

  18. [Preparation of and study on magnetic resonance imaging performance of metal porphyrin modified by low molecular weight chitosan].

    PubMed

    Yu, Dong-Jun; Li, Min-Zhi; Huang, Xian-Zhu; Zhu, Wei-Hua; Huang, Yan; Zhang, Qi; Liu, Qing

    2013-10-01

    The functional complex Mn-TCPP-CS20 as a potential magnetic resonance imaging (MRI) contrast agent was synthesized through tetra(4-carboxyphenyl) Mn(II)-porphyrin (Mn-TCPP) modified by CS20, which was low degree of polymerization and narrow distribution. The results showed that Mn-TCPP-CS20 had good water-solubility and structural stability. The chemical structures of the products were characterized with Fourier transform infrared spectra (FTIR), UV-Vis spectra, mass spectrum (MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results showed that Mn-TCPP was successfully linked to CS20 by an amide function. The relaxation properties in vitro of the functional complex Mn-TCPP-CS20 as the potential MRI contrast agent were preliminarily studied. It was found that the longitudinal relaxivity (r1) of the synthesized Mn-TCPP-CS20 (6.11 mmol(-1) x L x s(-1)) was higher than that of the commercial contrast agent Gd-DTPA (r1 = 3.59 mmol(-1) x L x s(-1)). Besides, the imaging effect of Mn-TCPP-CS20 was superior to that of Gd-DTPA in the same condition. These studies suggested that Mn-TCPP-CS20 has the advantage of becoming a potential tissue-targeting contrast agent.

  19. The Effect of Crystal Packing and ReIV Ions on the Magnetisation Relaxation of [Mn6]-Based Molecular Magnets

    PubMed Central

    Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K

    2015-01-01

    The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical properties of the complex. Herein we demonstrate initial experiments to show that this is indeed possible. By replacing the diamagnetic ClO4− anions with the highly anisotropic ReIV ion in the form of [ReIVCl6]2−, the energy barrier to magnetisation relaxation is increased by up to 30 %. PMID:25951415

  20. Photonic quantum well composed of photonic crystal and quasicrystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2014-02-01

    A photonic quantum well structure composed of photonic crystal and Fibonacci quasicrystal is investigated by analyzing the transmission spectra and electric field distributions. The defect band in the photonic well can form confined quantized photonic states that can change in the band-gap of the photonic barriers by varying the thickness ratio of the two stacking layers. The number of confined states can be tuned by adjusting the period of the photonic well. The photons traverse the photonic quantum well by resonance tunneling and the coupling effect leads to the high transmission intensity of the confined photonic states.