Science.gov

Sample records for molecular magnets composed

  1. Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex.

    PubMed

    Katoh, Keiichi; Isshiki, Hironari; Komeda, Tadahiro; Yamashita, Masahiro

    2012-06-01

    Unlike electronics, which is based on the freedom of the charge of an electron whose memory is volatile, spintronics is based on the freedom of the charge, spin, and orbital of an electron whose memory is non-volatile. Although in most GMR, TMR, and CMR systems, bulk or classical magnets that are composed of transition metals are used, this Focus Review considers the growing use of single-molecule magnets (SMMs) that are composed of multinuclear metal complexes and nanosized magnets, which exhibit slow magnetic-relaxation processes and quantum tunneling. Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Using molecules is advantageous because their electronic and magnetic properties can be manipulated under specific conditions. Herein, recent developments in [LnPc]-based multiple-decker SMMs on surfaces for molecular spintronic devices are presented. First, we discuss the strategies for preparing single-molecular-memory devices by using SMMs. Next, we focus on the switching of the Kondo signal of [LnPc]-based multiple-decker SMMs that are adsorbed onto surfaces, their characterization by using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of [TbPc(2)]. Finally, the field-effect-transistor (FET) properties of surface-adsorbed [LnPc(2)] and [Ln(2)Pc(3)] cast films are reported, which is the first step towards controlling SMMs through their spins for applications in single-molecular memory and spintronics devices.

  2. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST =more » 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  3. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    SciTech Connect

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The

  4. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    SciTech Connect

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T1 at very low temperatures is observed in the frustrated ST = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T1 measurements. From the temperature dependence of 1/T1, the fluctuation frequency of the Fe3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The

  5. Active magnetic compensation composed of shielding panels.

    PubMed

    Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M

    2004-11-30

    Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.

  6. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  7. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  8. Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, A.; Mark, M.; Aikawa, K.; Baier, S.; Grimm, R.; Petrov, A.; Kotochigova, S.; Quéméner, G.; Lepers, M.; Dulieu, O.; Ferlaino, F.

    2015-11-01

    In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

  9. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  10. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole-dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient.

  11. Designing magnetic superlattices that are composed of single domain nanomagnets

    PubMed Central

    Kusmartsev, Feodor V; Kovács, Endre

    2014-01-01

    Summary Background: The complex nature of the magnetic interactions between any number of nanosized elements of a magnetic superlattice can be described by the generic behavior that is presented here. The hysteresis characteristics of interacting elliptical nanomagnets are described by a quasi-static method that identifies the critical boundaries between magnetic phases. A full dynamical analysis is conducted in complement to this and the deviations from the quasi-static analysis are highlighted. Each phase is defined by the configuration of the magnetic moments of the chain of single domain nanomagnets and correspondingly the existence of parallel, anti-parallel and canting average magnetization states. Results: We give examples of the phase diagrams in terms of anisotropy and coupling strength for two, three and four magnetic layers. Each phase diagrams character is defined by the shape of the magnetic hysteresis profile for a system in an applied magnetic field. We present the analytical solutions that enable one to define the “phase” boundaries between the emergence of spin-flop, anti-parallel and parallel configurations. The shape of the hysteresis profile is a function of the coupling strength between the nanomagnets and examples are given of how it dictates a systems magnetic response. Many different paths between metastable states can exist and this can lead to instabilities and fluctuations in the magnetization. Conclusion: With these phase diagrams one can find the most stable magnetic configurations against perturbations so as to create magnetic devices. On the other hand, one may require a magnetic system that can easily be switched between phases, and so one can use the information herein to design superlattices of the required shape and character by choosing parameters close to the phase boundaries. This work will be useful when designing future spintronic devices, especially those manipulating the properties of CoFeB compounds. PMID:25161831

  12. Magnetic motion capture system using LC resonant magnetic marker composed of Ni-Zn ferrite core

    SciTech Connect

    Hashi, S.; Toyoda, M.; Ohya, M.; Okazaki, Y.; Yabukami, S.; Ishiyama, K.; Arai, K. I.

    2006-04-15

    We have proposed a magnetic motion capture system using an LC resonant magnetic marker. The proposed system is composed of an exciting coil, an LC marker, and a 5x5-matrix search coil array (25 search coils). The LC marker is small and has a minimal circuit with no battery and can be driven wirelessly by the action of electromagnetic induction. It consists of a Ni-Zn ferrite core (3 mm{phi}x10 mm) with a wound coil and a chip capacitor, forming an LC series circuit with a resonant frequency of 186 kHz. The relative position accuracy of the system is less than 1 mm within the area of 100 mm{sup 3} up to 150 mm from the search coil array. Compared with dc magnetic systems, the proposed system is applicable for precision motion capture in optically isolated spaces without magnetic shielding because the system is not greatly influenced by earth field noise.

  13. Switchable molecular magnets.

    PubMed

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  14. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  15. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh

    NASA Astrophysics Data System (ADS)

    He, Guanghua; Wu, Rui-xin; Poo, Yin; Chen, Ping

    2010-05-01

    We designed and studied a magnetic tunable metamaterial composed of ferrite-dielectric and metallic mesh. The retrieved electromagnetic parameters and the transmission characteristic showed the composite has a double-negative regime in magnetized state. Moreover, this regime is tunable in external magnetic fields. The composite has a lower loss with minimum about -0.3 dB/mm. The simulations of the wave propagation on the interface of the composite clearly display a negative refraction. The negative indexes calculated from Snell's law are in good agreement with the indexes retrieved from S parameters, quantitatively confirms the negative index of the composite.

  16. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  17. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units

    PubMed Central

    Nacci, Christophe; Ample, Francisco; Bleger, David; Hecht, Stefan; Joachim, Christian; Grill, Leonhard

    2015-01-01

    Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single—typically linear—molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible ‘soft' molecular-scale circuitry, for example, on bendable substrates. PMID:26145188

  18. Molecular Magnets for Quantum Computation

    NASA Astrophysics Data System (ADS)

    Kuroda, Takayoshi

    2009-06-01

    We review recent progress in molecular magnets especially in the viewpoint of the application for quantum computing. After a brief introduction to single-molecule magnets (SMMs), a method for qubit manipulation by using non-equidistant spin sublevels of a SMM will be introduced. A weakly-coupled dimer of two SMMs is also a candidate for quantum computing, which shows no quantum tunneling of magnetization (QTM) at zero field. In the AF ring Cr7Ni system, the large tunnel splitting is a great advantage to reduce decoherence during manipulation, which can be a possible candidate to realize quantum computer devices in future.

  19. Magnetic memory in a ceramic YBCO superconductor composed of sub-micron-size grains

    NASA Astrophysics Data System (ADS)

    Deguchi, Hiroyuki; Ashida, Takuya; Syudo, Mitsuhiro; Mito, Masaki; Takagi, Seishi; Hagiwara, Makoto; Koyama, Kuniyuki

    2013-06-01

    The ceramic YBa2Cu4O8 (YBCO) composed of sub-micron-size grains is considered as a random Josephson-coupled network of 0 and π junctions and shows successive phase transitions. The first transition occurs inside each grain at T c1 = 81 K, and the second transition occurs among the grains at T c2 = 47 K. A magnetic glass behavior similar to those of spin-glasses is observed at temperatures below T c2. The memory phenomena are investigated by recording the zero-fieldcooled and thermoremanent magnetizations measured on heating after the cooling process with a halt at T s = 41 K. Memory effects of the halt are imprinted in the system when the sample is re-heated. In the case without a field switch at T s , the influence of the halt is confined to a narrow temperature region near T s whereas the memory effect of the halt employing a field switch is extended over a wide temperature region below T s . The results suggest that chiral-glass ordering occurs at T c2 in the ceramic YBCO.

  20. Size-tunable drug-delivery capsules composed of a magnetic nanoshell

    PubMed Central

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895

  1. Size-tunable drug-delivery capsules composed of a magnetic nanoshell.

    PubMed

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.

  2. Quantum computing in molecular magnets.

    PubMed

    Leuenberger, M N; Loss, D

    2001-04-12

    Shor and Grover demonstrated that a quantum computer can outperform any classical computer in factoring numbers and in searching a database by exploiting the parallelism of quantum mechanics. Whereas Shor's algorithm requires both superposition and entanglement of a many-particle system, the superposition of single-particle quantum states is sufficient for Grover's algorithm. Recently, the latter has been successfully implemented using Rydberg atoms. Here we propose an implementation of Grover's algorithm that uses molecular magnets, which are solid-state systems with a large spin; their spin eigenstates make them natural candidates for single-particle systems. We show theoretically that molecular magnets can be used to build dense and efficient memory devices based on the Grover algorithm. In particular, one single crystal can serve as a storage unit of a dynamic random access memory device. Fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 105, with access times as short as 10-10 seconds. We show that our proposal should be feasible using the molecular magnets Fe8 and Mn12.

  3. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    PubMed Central

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-01-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets. PMID:28205528

  4. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    NASA Astrophysics Data System (ADS)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  5. Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires.

    PubMed

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-27

    We experimentally demonstrate a magnetically tunable left-handed metamaterial by introducing yttrium iron garnet rods into SRRs/wires array. It shows that the left-handed passband of the metamaterial can be continuously and reversibly adjusted by external dc applied magnetic fields. Retrieved effective parameters based on simulated scattering parameters show that tunable effective refraction index can be conveniently realized in a broad frequency range by changing the applied magnetic field. Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability.

  6. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  7. Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; Fabbris, Gilberto; Meyers, D.; Freeland, John W.; Martin, Ivar; Heinonen, Olle G.; Steadman, Paul; Zhou, Hua; Schlepütz, Christian M.; Dean, Mark P. M.; te Velthuis, Suzanne G. E.; Zuo, Jian-Min; Bhattacharya, Anand

    2016-10-01

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2 /3Sr1 /3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2 + states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.

  8. Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides

    DOE PAGES

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...

    2016-11-22

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2/3Sr1/3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structuremore » are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  9. Magnetically Assembled SERS Substrates Composed of Iron-Silver Nanoparticles Obtained by Laser Ablation in Liquid.

    PubMed

    Scaramuzza, Stefano; Badocco, Denis; Pastore, Paolo; Coral, Diego F; Fernández van Raap, Marcela B; Amendola, Vincenzo

    2017-05-05

    The widespread application of surface-enhanced Raman scattering (SERS) would benefit from simple and scalable self-assembly procedures for the realization of plasmonic arrays with a high density of electromagnetic hot-spots. To this aim, the exploitation of iron-doped silver nanoparticles (NPs) synthesized by laser ablation of a bulk bimetallic iron-silver target immersed in ethanol is described. The use of laser ablation in liquid is key to achieving bimetallic NPs in one step with a clean surface available for functionalization with the desired thiolated molecules. These iron-silver NPs show SERS performances, a ready response to external magnetic fields and complete flexibility in surface coating. All these characteristics were used for the magnetic assembly of plasmonic arrays which served as SERS substrates for the identification of molecules of analytical interest. The magnetic assembly of NPs allowed a 28-fold increase in the SERS signal of analytes compared to not-assembled NPs. The versatility of substrate preparation and the SERS performances were investigated as a function of NPs surface coating among different thiolated ligands. These results show a simple procedure to obtain magnetically assembled regenerable plasmonic arrays for repeated SERS investigation of different samples, and it can be of inspiration for the realization of other self-assembled and reconfigurable magnetic-plasmonic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars.

    PubMed

    Dong, Zheng-Gao; Liu, Hui; Xu, Ming-Xiang; Li, Tao; Wang, Shu-Ming; Zhu, Shi-Ning; Zhang, X

    2010-08-16

    We demonstrate that the trapped magnetic resonance mode can be induced in an asymmetric double-bar structure for electromagnetic waves normally incident onto the double-bar plane, which mode otherwise cannot be excited if the double bars are equal in length. By adjusting the structural geometry, the trapped magnetic resonance becomes transparent with little resonance absorption when it happens in the dipolar resonance regime, a phenomenon so-called plasmonic analogue of electromagnetically induced transparency (EIT). This planar EIT-like metamaterial offers a great geometry simplification by combining the radiant and subradiant resonant modes in a single double-bar resonator.

  11. Molecular scale photodiode composed of recombinant ferredoxin/chlorophyll a heterostructure.

    PubMed

    Choi, Jeong-Woo; Lee, Doo-Bong; Oh, Byung-Keun; Min, Junhong; Kim, Kun Soo

    2008-09-01

    Photoelectrical rectifying property of biomolecular heterostructures is investigated in molecular scale. Recombinant ferredoxin and chlorophyll a were used as an electron acceptor and a sensitizer respectively in the molecular layer by mimicking photosynthesis. A self-assembled monolayer of recombinant ferredoxin was formed on Au surface, and then chlorophyll a was deposited onto the recombinant ferredoxin layer by Langmuir-Blodgett method. The formation of recombinant ferredoxin/chlorophyll a hetero-layers was confirmed by the SPR (surface plasmon resonance) spectroscopy, and the surface was observed by the STM (scanning tunneling microscopy). The rectifying property by the STS (scanning-tunneling-spectroscopy) based current-voltage characteristics was achieved in the recombinant ferredoxin/chlorophyll a hetero-layers. Thus, proposed hetero-layers functioned as a rectifier that can be useful property for the development of molecular-scale bioelectronic devices.

  12. Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods.

    PubMed

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-06-09

    We experimentally demonstrate a tunable negative permeability metamaterial (NPM) at microwave frequencies by introducing yttrium iron garnet (YIG) rods into a periodic array of split ring resonators (SRRs). Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability. For magnetic fields from 0 to 2000 Oe and from 3200 to 6000 Oe, the resonance frequencies of the metamaterial can blueshift about 350 MHz and redshift about 315 MHz, respectively. Both shifts are completely continuous and reversible. Correspondingly, the tunable negative permeabilities are widened by about 360 MHz and 200 MHz compared to that without YIG rods.

  13. Lanthanides in the frame of Molecular Magnetism

    NASA Astrophysics Data System (ADS)

    Gatteschi, D.

    2014-07-01

    Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  14. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  15. The fatigue evaluation method for a structural stainless steel using the magnetic sensor composed of three pancake coils

    SciTech Connect

    Oka, M.; Tsuchida, Y.; Enokizono, M.; Yakushiji, T.

    2011-06-23

    May metallic structural materials, such as stainless steels, are currently used in our surroundings. If external force is repeatedly added for many years, it is thought that fatigue damage accumulates in stainless steels. When excessive fatigue damage accumulates in these metals, there is a possibility that they are destroyed by fatigue damage accumulation. Therefore, it is important to know the amount of the fatigue damage they have suffered in order to prevent them from being destroyed. We are developing the fatigue evaluation method for stainless steels with a magnetic sensor composed of three pancake type coils. In this research, the inspection object is ferritic stainless steels such as SUS430. The method of fatigue evaluation for ferritic stainless steels uses the three coil type sensor, and shows a good correlation between the number of stress cycles and the output signal of the sensor, even though the correlation between the output signal and an added stress is not completely accurate. This paper describes the evaluation method of fatigue damage in ferritic stainless steel using a magnetic sensor composed of three pancake-type coils.

  16. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Yuan, Yulin; Zhou, Zhide; Liang, Jintao; Chen, Zhencheng; Li, Guiyin

    2014-02-01

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe3O4/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe3O4/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe3O4/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe3O4/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe3O4/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe3O4/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer-Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe3O4/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  17. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes.

  18. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    PubMed

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  19. Coordination-Cluster-Based Molecular Magnetic Refrigerants.

    PubMed

    Zhang, Shaowei; Cheng, Peng

    2016-08-01

    Coordination polymers serving as molecular magnetic refrigerants have been attracting great interest. In particular, coordination cluster compounds that demonstrate their apparent advantages on cryogenic magnetic refrigerants have attracted more attention in the last five years. Herein, we mainly focus on depicting aspects of syntheses, structures, and magnetothermal properties of coordination clusters that serve as magnetic refrigerants on account of the magnetocaloric effect. The documented molecular magnetic refrigerants are classified into two primary categories according to the types of metal centers, namely, homo- and heterometallic clusters. Every section is further divided into several subgroups based on the metal nuclearity and their dimensionalities, including discrete molecular clusters and those with extended structures constructed from molecular clusters. The objective is to present a rough overview of recent progress in coordination-cluster-based molecular magnetic refrigerants and provide a tutorial for researchers who are interested in the field. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic sensing technology for molecular analyses

    PubMed Central

    Issadore, D.; Park, Y. I.; Shao, H.; Min, C.; Lee, K.; Liong, M.; Weissleder, R.; Lee, H.

    2014-01-01

    Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification, and yet achieves high signal-to-background contrast. Moreover, magnetic sensors are also well-suited for miniaturization to match the size of biological targets, which enables sensitive detection of rare cells and small amounts of molecular markers. We herein summarize recent advances in magnetic sensing technologies, with an emphasis on clinical applications in point-of-care settings. Key components of sensors, including magnetic nanomaterials, labeling strategies and magnetometry, are reviewed. PMID:24887807

  1. Molecular diagnostics using magnetic nanobeads

    NASA Astrophysics Data System (ADS)

    Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2010-01-01

    In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.

  2. Magnetic properties and microstructure of Sm-Co/α-Fe nanocomposite thick film-magnets composed of multi-layers over 700 layers

    SciTech Connect

    Tou, A. Morimura, T.; Nakano, M.; Yamai, T.; Fukunaga, H.

    2014-05-07

    We synthesized Sm-Co/α-Fe nanocomposite film-magnets, approximately 10 μm in thickness, composed of 780 layers by the pulse laser deposition method. Transmission electron microscopic observations revealed that the synthesized film is composed of Sm-Co and α-Fe layers with the well-controlled α-Fe thickness of approximately 10–20 nm, which is suitable one predicted by the micromagnetic simulation. In spite of the enhanced interlayer diffusion of Fe and Co by annealing for crystallization, the (BH){sub max} value of 100 kJ/m{sup 3} was obtained at the averaged compositions of Sm/(Sm + Co) = 0.16 and Fe/(Sm + Co + Fe) = 0.47. The α-Fe fraction for obtaining the highest (BH){sub max} value was smaller than that expected from the micromagnetic simulation. Although the annealing for crystallization lay the easy direction of magnetization in the plane, the film is not expected to have strong crystallographic texture.

  3. Quantum entanglement and coherence in molecular magnets

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis

    Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of

  4. Odd electrons in molecular chemistry, surface science, and solid state magnetism

    NASA Astrophysics Data System (ADS)

    Sheka, E. F.

    A unified theoretical or computational odd-electrons approach is suggested to nanomaterials, making possible their consideration on the same conceptual basis as well as on the same computational footing. The current paper presents the approach application to the chemistry of fullerenes, carbon single-walled nanotubes, surface science of silicon crystal, as well as to the molecular magnetism of both molecular crystals composed of transitional metal complexes and solid polymerized fullerenes.0

  5. Recorder Composer

    ERIC Educational Resources Information Center

    Stephenson, Kimberly

    2012-01-01

    The best moments happen when students begin to realize how much power they have and use that power to create. Composing as they master different instrumental stages helps students make composition and performance a natural step in learning. A step-by-step process (rhythm notation, add pitches, copy to a five-line staff, check work, and play) keeps…

  6. Recorder Composer

    ERIC Educational Resources Information Center

    Stephenson, Kimberly

    2012-01-01

    The best moments happen when students begin to realize how much power they have and use that power to create. Composing as they master different instrumental stages helps students make composition and performance a natural step in learning. A step-by-step process (rhythm notation, add pitches, copy to a five-line staff, check work, and play) keeps…

  7. Molecular systems in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.

    2007-04-01

    Brief overview of one-two electron molecular systems made out of protons and/or α-particles in a strong magnetic field B≤4.414×1013 G is presented. A particular emphasis is given to the one-electron exotic ions H 3 ++ (pppe), He 2 3+ (α α e) and to two-electron ionsH 3 + (pppee), He 2 ++ (α α ee). Quantitative studies in a strong magnetic field are very complicated technically. Novel approach to the few-electron Coulomb systems in magnetic field, which provides accurate results, based on variational calculus with physically relevant trial functions is briefly described.

  8. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  9. Effect of magnetic field on the rotating filamentary molecular clouds

    NASA Astrophysics Data System (ADS)

    Aghili, P.; Kokabi, K.

    2017-04-01

    The Purpose of this work is to study the evolution of magnetized rotating filamentary molecular clouds. We consider cylindrical symmetric filamentary molecular clouds at an early stage of evolution. For the first time we consider the rotation of filamentary molecular in the presence of an axial and azimuthal magnetic field without any assumption of density and magnetic functions. We show that in addition to decreasing the radial collapse velocity, the rotational velocity is also affected by the magnetic field. The existence of rotation yields fragmentation of filaments. Moreover, we show that the magnetic field has a significant effect on the fragmentation of filamentary molecular clouds.

  10. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  11. Quantitative cardiovascular magnetic resonance for molecular imaging.

    PubMed

    Winter, Patrick M; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2010-11-03

    Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects.

  12. Magnetic Support and Fragmentation of Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Pudritz, R. E.

    1990-12-01

    Molecular clouds contain magnetic fields with energies comparable to their gravitational binding energies. In the dynamic environment of the interstellar medium, strong hydromagnetic waves are excited in this field on wavelengths longer than the ion-neutral mean free path. In a typical molecular cloud this length-scale, λmin, is of the order of 10-1 of the cloud size. On shorter length-scales the gas is without wave pressure support, and can flow down field lines. The joint effects of excess gravity and flux leakage causes a local dynamic collapse. We test our ideas with a detailed -body calculation in which we impose MHD waves on an initially uniform isothermal gas cloud. The effect of magnetic fields is included in our calculation by the frictional drag on the dominant, neutral population. In the absence of MHD waves the cloud fragments slightly while collapsing, then merges together at the centre into a single, pressure-supported, flattened object. We impose a spectrum of large amplitude Alfvén waves whose velocity amplitude varies as k-3/2, where k is the wavenumber. The initial background magnetic field is chosen to have an energy density slightly larger than the gravitational energy density. The damping is assumed to be balanced by a continuous external supply of wave energy. The simulation shows that the magnetic field and hydromagnetic waves provide sufficient support against gravity so that the cloud undergoes a global, isotropic contraction at a quarter the free-fall rate. The shortest wave present, λ≍λmin, sets the minimum fragment mass, for small Jeans masses. We follow the evolution of fragments having a minimum overdensity of 30 (corresponding to a mass m ≥ 0.4 × 10-3 Mcloud). The fragments appear quickly, and then agglomerate together, yielding an evolving mass spectrum that remains approximately a power law, dN/dm ∝ m-α, where a is 2.5 ± 0.5. Several specific tests of this theory are proposed: (i) that a short wavelength cut

  13. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-05

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10{sup −4} Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  14. Theoretical design of molecular nanomagnets for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Garlatti, E.; Carretta, S.; Schnack, J.; Amoretti, G.; Santini, P.

    2013-11-01

    Molecular nanomagnets are promising materials for very-low-temperature magnetic refrigeration due to their enhanced magnetocaloric effect. By explicitly considering Carnot refrigeration cycles, we theoretically show that the best molecules for magnetic refrigeration between T ≃10 K and the sub-Kelvin region are those made of strongly ferromagnetically coupled magnetic ions, contrarily to the established belief. This recipe will provide a strong stimulus for designing new magnetic molecules for cryogenic technologies.

  15. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    PubMed

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-05

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  16. Magnetic surfactants as molecular based-magnets with spin glass-like properties

    NASA Astrophysics Data System (ADS)

    Brown, Paul; Smith, Gregory N.; Padrón Hernández, Eduardo; James, Craig; Eastoe, Julian; Nunes, Wallace C.; Settens, Charles M.; Hatton, T. Alan; Baker, Peter J.

    2016-05-01

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  17. Molecular magnetic dichroism in spectra of white dwarfs.

    PubMed

    Berdyugina, S V; Berdyugin, A V; Piirola, V

    2007-08-31

    We present novel calculations of the magnetic dichroism appearing in molecular bands in the presence of a strong magnetic field, which perturbs the internal structure of the molecule and results in net polarization due to the Paschen-Back effect. Based on that, we analyze new spectropolarimetric observations of the cool magnetic helium-rich white dwarf G99-37, which shows strongly polarized molecular bands in its spectrum. In addition to previously known molecular bands of the C2 Swan and CH A-X systems, we find a firm evidence for the violet CH B-X bands at 390 nm and C2 Deslandres-d'Azambuja bands at 360 nm. Combining the polarimetric observations with our model calculations, we deduce a dipole magnetic field of 7.5+/-0.5 MG with the positive pole pointing towards the Earth. We conclude that the developed technique is an excellent tool for studying magnetic fields on cool magnetic stars.

  18. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function.

    PubMed

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-09-08

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  19. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    PubMed Central

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  20. Colloidal amphiphile self-assembly particles composed of gadolinium oleate and myverol: evaluation as contrast agents for magnetic resonance imaging.

    PubMed

    Liu, Guozhen; Conn, Charlotte E; Waddington, Lynne J; Mudie, Stephen T; Drummond, Calum J

    2010-02-16

    Gadolinium oleate has been added at various concentrations to a Myverol inverse bicontinuous cubic phase forming system, and the potential of these systems as magnetic resonance imaging (MRI) contrast agents has been investigated. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM) measurements on the Gd oleate/Myverol systems indicate that Gd oleate is at least partially incorporated within the cubic phase of Myverol. However, at Gd oleate concentrations greater than 1 wt %, partial phase separation of the system may occur with the formation of a Gd-oleate-rich lamellar phase as well as the cubic phase. Bulk Gd oleate/Myverol mixtures can be dispersed into stable colloidal dispersions. SAXS and cryo-TEM measurements on these dispersions indicate that the presence of Gd oleate in the Myverol system prevents the formation of cubosomes from the bulk cubic phase. Instead, the dispersion consists of putative Gd-oleate-rich nonswelling lamellar nanoparticles as well as colloidal particles lacking ordered internal structure. In vitro studies on these dispersions demonstrated that the relaxivity of select Gd oleate/Myverol systems is much higher than that of pure Gd oleate, exemplifying the promise of this system type for magnetic resonance imaging. The highest water proton relaxivities (r(1) = 34.2 mM(-1) s(-1) and r(2) = 27.3 mM(-1) s(-1) at 20 MHz and room temperature) were obtained at a Gd oleate loading concentration of 1 wt %, with a subsequent decrease in relaxivity with increasing Gd oleate concentration. These maximum relaxivities compare favorably with the relaxivities for the commercial contrast agent, Magnevist (r(1) = 4.91 mM(-1) s(-1) and r(2) = 6.26 mM(-1) s(-1) at 20 MHz and room temperature).

  1. Theory of zwitterionic molecular-based organic magnets

    NASA Astrophysics Data System (ADS)

    Shelton, William A.; Aprà, Edoardo; Sumpter, Bobby G.; Saraiva-Souza, Aldilene; Souza Filho, Antonio G.; Nero, Jordan Del; Meunier, Vincent

    2011-08-01

    We describe a class of organic molecular magnets based on zwitterionic molecules (betaine derivatives) possessing donor, π bridge, and acceptor groups. Using extensive electronic structure calculations we show the electronic ground-state in these systems is magnetic. In addition, we show that the large energy differences computed for the various magnetic states indicate a high Neel temperature. The quantum mechanical nature of the magnetic properties originates from the conjugated π bridge (only p electrons) in cooperation with the molecular donor-acceptor character. The exchange interactions between electron spin are strong, local, and independent on the length of the π bridge.

  2. (Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units

    PubMed Central

    2014-01-01

    New symmetrical arylene bisimide derivatives formed by using electron-donating–electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5-aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5-thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69–0.90%. PMID:24966893

  3. Third-order nonlinear optical properties of one-dimensional open-shell molecular aggregates composed of phenalenyl radicals.

    PubMed

    Yoneda, Kyohei; Nakano, Masayoshi; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Hirosaki, Yuta; Kubo, Takashi; Kamada, Kenji; Champagne, Benoît

    2014-08-25

    The impact of intermolecular interactions on the third-order nonlinear optical (NLO) properties of open-shell molecular aggregates has been elucidated by considering one-dimensional aggregates of π-π stacked phenalenyl radicals with different intermolecular distances and the long-range corrected spin-unrestricted density functional theory method. In the phenalenyl dimer, which can be considered as a diradicaloid system, the diradical character strongly depends on the intermolecular distance, and the larger the intermolecular distance is, the larger the diradical character becomes. Then, around the equilibrium stacking distance that corresponds to an intermediate diradical character, its second hyperpolarizability (γ) is maximized and its value per monomer exhibits about a 30-fold enhancement with respect to the isolated phenalenyl monomer. This suggests that equilibrium is an optimal compromise between localization and delocalization of the radical electron pairs in such pancake bonding. No such effect was observed for the closed-shell coronene dimer. Moreover, when going from the dimer (diradical) to the tetramer (tetraradical), the γ-enhancement ratio increases nonlinearly with the aggregate size, whereas switching from the singlet to the highest spin (quintet) state causes a significant reduction of γ. Finally, for the tetramer, another one-order enhancement of γ is achieved for the dicationic singlet relative to its singlet neutral state. These results demonstrate the key role of intermolecular π-π stacking interactions and charge in open-shell (supra)molecular systems to achieve enhanced third-order NLO properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. (Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units.

    PubMed

    Grucela-Zajac, Marzena; Bijak, Katarzyna; Kula, Slawomir; Filapek, Michal; Wiacek, Malgorzata; Janeczek, Henryk; Skorka, Lukasz; Gasiorowski, Jacek; Hingerl, Kurt; Sariciftci, Niyazi Serdar; Nosidlak, Natalia; Lewinska, Gabriela; Sanetra, Jerzy; Schab-Balcerzak, Ewa

    2014-06-19

    New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N'-bis(5-aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5-thiophenedicarboxaldehyde or 2,2'-bithiophene-5,5'-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm(2) were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%.

  5. Magnetization of RFe3 intermetallic compounds: Molecular field theory analysis

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Croat, J. J.

    1982-06-01

    We report magnetization measurements of all RFe3 intermetallic compounds known to form (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm). A two-sublattice molecular field model is employed to analyze the data except in the case of YFe3, for which one magnetic sublattice is assumed. In general, the model adequately describes the temperature dependence of the magnetization. For SmFe3 our results suggest that the samarium and iron moments are ferromagnetically coupled.

  6. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    SciTech Connect

    Franco, G. A. P.; Alves, F. O. E-mail: falves@mpe.mpg.de

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.

  7. Tracing the Magnetic Field Morphology of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Franco, G. A. P.; Alves, F. O.

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales. Based on observations collected at the Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCTI, Brazil).

  8. Composing and Arranging Careers

    ERIC Educational Resources Information Center

    Schwartz, Elliott; And Others

    1977-01-01

    With the inspiration, the originality, the skill and craftsmanship, the business acumen, the patience, and the luck, it's possible to become a classical composer, pop/rock/country composer, jingle composer, or educational composer. Describes these careers. (Editor/RK)

  9. Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of Al/Al2O3 nanodisks with the placement of silicon nanospheres

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-03-01

    In this study, a quadrumer cluster composed of Al nanodisks in both symmetric and antisymmetric orientations has been utilized to generate magnetic hot-spots by using coil-type Fano resonances. Determining the accurate geometrical sizes for the examined cluster, we calculated the spectral response of the structure numerically. Utilizing strong plasmon resonance hybridization between Al/Al2O3 nanodisks that are suited in a close proximity to each other, such a finite and simple nanocluster yields intensified hidden magnetic fields |H| as a dark mode and electric |E| as a bright modes. Using and placement of silicon nanospheres in the unoccupied gap distance between proximal Al nanodisks give rise to significant enhancement in the energy and quality of the induced multiple Fano dips. Appearing of multiple Fano resonant modes in a coil-type regime in the UV and visible spectrum helps us to optimize the energy of generated magnetic hot-spots, significantly. Ultimately, we examined the sensitivity of the proposed final quadrumer by considering the behavior of Fano minima. We plotted the linear figure of merit (FoM) based on the Fano resonance energy differences in various conditions over the refractive index. Quantifying the FoM for the studied nanostructure, then we compared the quality of structure with the analogous nanoclusters. This work paves novel methods toward the utilization of Al/Al2O3 nanoparticles as a potential substance to employ in designing nanoclusters that are able to support strong dark resonances as well as bright modes. Wide-range working region, optimized electric and magnetic fields, multiple and high quality Fano dips, high FoM and low-costs are the superior features of the proposed artificial structure in comparison to analogous configurations.

  10. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4) nanoparticles for induced tumor cell apoptosis.

    PubMed

    Qu, Yang; Li, Jianbo; Ren, Jie; Leng, Junzhao; Lin, Chao; Shi, Donglu

    2014-10-08

    Monodispersed MnxZn1-xFe2O4 magnetic nanoparticles of 8 nm are synthesized and encapsulated in amphiphilic block copolymer for development of the hydrophilic magnetic nanoclusters (MNCs). These MNCs exhibit superparamagnetic characteristics, high specific absorption rate (SAR), large saturation magnetization (Ms), excellent stability, and good biocompatibility. MnFe2O4 and Mn0.6Zn0.4Fe2O4 are selected as optimum compositions for the MNCs (MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC) and employed for magnetic fluid hyperthermia (MFH) in vitro. To ensure biosafety of MFH, the parameters of alternating magnetic field (AMF) and exposure time are optimized with low frequency, f, and strength of applied magnetic field, Happlied. Under optimized conditions, MFH of MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC result in cancer cell death rate up to 90% within 15 min. The pathway of cancer cell death is identified as apoptosis, which occurs in mild hyperthermia near 43 °C. Both MnFe2O4/MNC and Mn0.6Zn0.4Fe2O4/MNC show similar efficiencies on drug-sensitive and drug-resistant cancer cells. On the basis of these findings, those MnxZn1-xFe2O4 nanoclusters can serve as a promising candidate for effective targeting, diagnosis, and therapy of cancers. The multimodal cancer treatment is also possible as amphiphilic block copolymer can encapsulate, in a similar fashion, different nanoparticles, hydrophobic drugs, and other functional molecules.

  11. Lanthanides in molecular magnetism: so fascinating, so challenging.

    PubMed

    Luzon, Javier; Sessoli, Roberta

    2012-11-28

    Due to their usual large magnetic moments and large magnetic anisotropy lanthanide ions are investigated for the search of Single Molecule Magnets with high blocking temperature. However, the low symmetry crystal environment, the complexity of the electronic states or the non-collinearity of the magnetic anisotropy easy-axes in polynuclear systems make the rationalization of the magnetic behaviour of lanthanide based molecular systems difficult. In this perspective article we expose a methodology in which the use of additional characterization techniques, like single crystal magnetic measurements or luminescence experiments, complemented by relativistic ab initio calculations and a suitable choice of spin Hamiltonian models, can be of great help in order to overcome such difficulties, representing an essential step for the rational design of lanthanide based Single Molecule Magnets with enhanced physical properties.

  12. Magnetic Properties of Electrically Contacted Fe4 Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Totti, Frederico; Ninova, Silviya; Yan, Shichao; Choi, Deung-Jang; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-03-01

    Single molecule magnets (SMMs) are often large and fragile molecules. This poses challenges for the construction of SMM based spintronics. Device geometries with two electronic leads contacting a molecule may be explored via scanning tunneling microscopy (STM). The Fe4 molecule stands out as a robust, thermally evaporable SMM, making it ideal for such an experiment. Here we present the first STM investigations of individual Fe4 molecules thermally evaporated onto a monolayer of Cu2N on a Cu (100) crystal. Using inelastic electron tunneling spectroscopy (IETS), spin excitations in single Fe4 molecules can be detected at meV energies. Analysis using a Spin Hamiltonian allows extraction of magnetic properties of individual Fe4 molecules, and investigation of the influence of the electronic leads. The tip and sample induce small changes in the magnetic properties of Fe4 molecules, making Fe4 a promising candidate for the development of spintronics devices based on SMMs.

  13. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium

    NASA Astrophysics Data System (ADS)

    Goodwin, Conrad A. P.; Ortu, Fabrizio; Reta, Daniel; Chilton, Nicholas F.; Mills, David P.

    2017-08-01

    Lanthanides have been investigated extensively for potential applications in quantum information processing and high-density data storage at the molecular and atomic scale. Experimental achievements include reading and manipulating single nuclear spins, exploiting atomic clock transitions for robust qubits and, most recently, magnetic data storage in single atoms. Single-molecule magnets exhibit magnetic hysteresis of molecular origin—a magnetic memory effect and a prerequisite of data storage—and so far lanthanide examples have exhibited this phenomenon at the highest temperatures. However, in the nearly 25 years since the discovery of single-molecule magnets, hysteresis temperatures have increased from 4 kelvin to only about 14 kelvin using a consistent magnetic field sweep rate of about 20 oersted per second, although higher temperatures have been achieved by using very fast sweep rates (for example, 30 kelvin with 200 oersted per second). Here we report a hexa-tert-butyldysprosocenium complex—[Dy(Cpttt)2][B(C6F5)4], with Cpttt = {C5H2tBu3-1,2,4} and tBu = C(CH3)3—which exhibits magnetic hysteresis at temperatures of up to 60 kelvin at a sweep rate of 22 oersted per second. We observe a clear change in the relaxation dynamics at this temperature, which persists in magnetically diluted samples, suggesting that the origin of the hysteresis is the localized metal-ligand vibrational modes that are unique to dysprosocenium. Ab initio calculations of spin dynamics demonstrate that magnetic relaxation at high temperatures is due to local molecular vibrations. These results indicate that, with judicious molecular design, magnetic data storage in single molecules at temperatures above liquid nitrogen should be possible.

  14. Deflagration, fronts of tunneling, and dipolar ordering in molecular magnets

    NASA Astrophysics Data System (ADS)

    Garanin, Dmitry

    2011-03-01

    Although there is no exchange interaction in crystals of molecular magnets characterized by a giant effective spin S (S = 10 for Mn 12 , and Fe 8) , magnetic field B (D) generated by magnetic moments g μ B S of magnetic molecules creates energy bias W (D) = 2 Sg μ BB (D) on a molecule that largely exceeds the tunnelling splitting Δ of matching quantum states on different sides of the anisotropy barrier. Thus the dipolar field has a profound influence on the processes of tunnelling and relaxation in molecular magnets. Both theoretical and experimental works showed a slow non-exponential relaxation of the magnetization in both initially ordered and completely disordered states since most of the spins are off tunneling resonance at any time. Recently a new mode of relaxation via tunneling has been found, the so-called fronts of tunneling, in which (within a 1 d theoretical model) dipolar field adjusts so that spins are on resonance within the broad front core. In this ``laminar'' regime fronts of tunnelling are moving fast at speeds that can exceed that of the temperature-driven magnetic deflagration, if a sufficiently strong transverse field is applied. However, a ``non-laminar'' regime has also been found in which instability causes spins to go off resonance and the front speed drops. In a combination with magnetic deflagration, the laminar regime becomes more stable and exists in the whole dipolar window 0 <= W <=W (D) on the external bias W , where the deflagration speed strongly increases. Another dipolar effect in molecular magnets is dipolar ordering below 1 K that has recently been shown to be non-uniform because of formation of magnetic domains. An object of current research is possible non-uniformity of magnetic deflagration and tunneling fronts via domain instability that could influence their speed.

  15. My Career: Composer

    ERIC Educational Resources Information Center

    Morganelli, Patrick

    2013-01-01

    In this article, the author talks about his career as a composer and offers some advice for aspiring composers. The author works as a composer in the movie industry, creating music that supports a film's story. Other composers work on television shows, and some do both television and film. The composer uses music to tell the audience what kind of…

  16. A molecular-based magnet test for malaria.

    PubMed

    Nalbandian, R M; Sammons, D W; Manley, M; Xie, L; Sterling, C R; Egen, N B; Gingras, B A

    1995-01-01

    The molecular-based magnet test for malaria is shown to be more sensitive than the thin blood film test. The globally used thin blood film test is less sensitive because it uses preparation steps that result in the reduction of the absolute number of diagnostically pertinent erythrocytes. Several reports of diagnostic error with the thin film test and the thick film test have appeared in the literature. In marked contrast to the commonly accepted tests, the magnet test concurrently partitions and concentrates the infected erythrocytes present in the initial sample. The magnetic test permits a brief and sensitive microscopic-based enumeration of the malaria-infected erythrocytes in the enriched sample. Diagnostically pertinent hemozoin is simply identified through two of its specific molecular properties: paramagnetism and birefringence. The former property mediates the capture and enrichment of malaria-infected erythrocytes within the magnetic flux and the latter property manifests the characteristic birefringence demonstrated by polarized light.

  17. Molecular magnetic switch for a metallofullerene

    PubMed Central

    Wu, Bo; Wang, Taishan; Feng, Yongqiang; Zhang, Zhuxia; Jiang, Li; Wang, Chunru

    2015-01-01

    The endohedral fullerenes lead to well-protected internal species by the fullerene cages, and even highly reactive radicals can be stabilized. However, the manipulation of the magnetic properties of these radicals from outside remains challenging. Here we report a system of a paramagnetic metallofullerene Sc3C2@C80 connected to a nitroxide radical, to achieve the remote control of the magnetic properties of the metallofullerene. The remote nitroxide group serves as a magnetic switch for the electronic spin resonance (ESR) signals of Sc3C2@C80 via spin–spin interactions. Briefly, the nitroxide radical group can ‘switch off’ the ESR signals of the Sc3C2@C80 moiety. Moreover, the strength of spin–spin interactions between Sc3C2@C80 and the nitroxide group can be manipulated by changing the distance between these two spin centres. In addition, the ESR signals of the Sc3C2@C80 moiety can be switched on at low temperatures through weakened spin–lattice interactions. PMID:25732144

  18. Molecular characterization of rheumatoid arthritis with magnetic resonance imaging.

    PubMed

    Gu, Jeffrey T; Nguyen, Linda; Chaudhari, Abhijit J; MacKenzie, John D

    2011-04-01

    Several recent advances in the field of magnetic resonance imaging (MRI) may transform the detection and monitoring of rheumatoid arthritis (RA). These advances depict both anatomic and molecular alterations from RA. Previous techniques could detect specific end products of metabolism in vitro or were limited to providing anatomic information. This review focuses on the novel molecular imaging techniques of hyperpolarized carbon-13 MRI, MRI with iron-labeled probes, and fusion of MRI with positron emission tomography. These new imaging approaches go beyond the anatomic description of RA and lend new information into the status of this disease by giving molecular information.

  19. Molecular cluster model for magnetic iron

    NASA Astrophysics Data System (ADS)

    Pavo, A. C.; Taft, C. A.; Hammond, B. L.; Lester, W. A., Jr.

    1989-08-01

    Ab initio Hartree-Fock calculations were performed on the quintet spin state of the Fe2 molecule in order to study the electronic, magnetic, and chemical bonding properties as well as the hyperfine interactions. Good agreement is found with band-theoretical and experimental parameters. The calculations support Pauling's model of occupation and bonding of valence orbitals, resonance of covalent bonds, and conduction-band metallic orbitals. A strong charge-polarization effect is found that is not observed in the septet ground state. The participation of s and d electrons in bonding is similar to that found in recent configuration-interaction (CI) calculations on the ground state. The calculated magneton number is in good agreement with experiment.

  20. Spin-orbit coupled molecular quantum magnetism realized in inorganic solid.

    PubMed

    Park, Sang-Youn; Do, S-H; Choi, K-Y; Kang, J-H; Jang, Dongjin; Schmidt, B; Brando, Manuel; Kim, B-H; Kim, D-H; Butch, N P; Lee, Seongsu; Park, J-H; Ji, Sungdae

    2016-09-21

    Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal-organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin-orbit coupled pseudospin-½ Yb(3+) ions. The magnetization represents the magnetic quantum values of an isolated Yb4 tetrahedron with a total (pseudo)spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky-Moriya interaction originating from strong spin-orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky-Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets.

  1. Spin–orbit coupled molecular quantum magnetism realized in inorganic solid

    PubMed Central

    Park, Sang-Youn; Do, S.-H.; Choi, K.-Y.; Kang, J.-H.; Jang, Dongjin; Schmidt, B.; Brando, Manuel; Kim, B.-H.; Kim, D.-H.; Butch, N. P.; Lee, Seongsu; Park, J.-H.; Ji, Sungdae

    2016-01-01

    Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal–organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin–orbit coupled pseudospin-½ Yb3+ ions. The magnetization represents the magnetic quantum values of an isolated Yb4 tetrahedron with a total (pseudo)spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky–Moriya interaction originating from strong spin–orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky–Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets. PMID:27650796

  2. Low fragment polyatomic molecular ion source by using permanent magnets.

    PubMed

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement.

  3. Magnetic Behavior of a Dy8 Molecular Nanomagnet

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis

    2015-03-01

    As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).

  4. Molecular Loops in the Galactic Center: Evidence for Magnetic Flotation

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-01

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the 12CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  5. Molecular loops in the galactic center: evidence for magnetic flotation.

    PubMed

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-06

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the (12)CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  6. Mössbauer spectroscopy studies of molecular magnets (invited)

    NASA Astrophysics Data System (ADS)

    Reiff, William Michael

    1988-04-01

    A variety of new organo-molecular magnets have been characterized in our and colleagues' laboratories in recent years using classic susceptibility measurements. In this effort, iron-57 Mössbauer spectroscopy has proven a particularly useful additional tool in elucidating charge transfer and interesting, unprecedented magnetic behavior for magnets based on electron donation from decamethylferrocene to polycyanide electron acceptors, e.g., tetracyanoethylene, tetracyano-quino-dimethane, hexacyanobutadiene. Examples of Mössbauer spectra of such systems are presented with emphasis on (a) slow paramagnetic relaxation at low spin ferric sites as a probe for spin on the polycyanide electron acceptor units; (b) large orbital contributions to internal hyperfine fields concommitant with highly anisotropic magnetic behavior; and (c) onset of multiple hyperfine pattern spectra signifying complex magnetostructural transformations.

  7. Lanthanides in molecular magnetism: old tools in a new field.

    PubMed

    Sorace, Lorenzo; Benelli, Cristiano; Gatteschi, Dante

    2011-06-01

    In this tutorial review we discuss some basic aspects concerning the magnetic properties of rare-earth ions, which are currently the subject of a renovated interest in the field of molecular magnetism, after the discovery that slow relaxation of the magnetization at liquid nitrogen temperature can occur in mononuclear complexes of these ions. Focusing on Dy(III) derivatives a tutorial discussion is given of the relation of the crystal field parameters, which determine the anisotropy of these systems and consequently their interesting magnetic properties, with the geometry of the coordination sphere around the lanthanide centre and with the pattern of f orbitals. The problem of systems of low point symmetry is also addressed by showing how detailed single crystal investigation, coupled to more sophisticated calculation procedures, is an absolute necessity to obtain meaningful structure-property relationships in these systems.

  8. High-temperature molecular magnets based on cyanovanadate building blocks: spontaneous magnetization at 230 k.

    PubMed

    Entley, W R; Girolami, G S

    1995-04-21

    The molecular-based magnetic materials Cs(2)Mn(||)[V(||)(CN)(6)] (1) and (Et(4)N)(0.5)Mn(l.25)- [V(CN)(5)].2H(2)O (2) (where Et is ethyl) were prepared by the addition of manganese(II) triflate to aqueous solutions of the hexacyanovanadate(II) ion at 0 degrees C. Whereas 1 crystallizes in a face-centered cubic lattice, 2 crystallizes in a noncubic space group. The cesium salt (1) has features characteristic of a three-dimensional ferrimagnet with a Néel transition at 125 kelvin. The tetraethylammonium salt (2) also behaves as a three-dimensional ferrimagnet with a Néel temperature of 230 kelvin; only two other molecular magnets have higher magnetic ordering temperatures. Saturation magnetization measurements indicate that in both compounds the V(II) and high-spin Mn(II) centers are antiferromagnetically coupled. Both 1 and 2 exhibit hysteresis loops characteristic of soft magnets below their magnetic phase-transition temperatures. The high magnetic ordering temperatures of these cyano-bridged solids confirm that the incorporation of early transition elements into the lattice promotes stronger magnetic coupling by enhancing the backbonding into the cyanide pi* orbitals.

  9. Low-temperature magnetization dynamics of magnetic molecular solids in a swept field

    SciTech Connect

    Lenferink, Erik; Vijayaraghavan, Avinash; Garg, Anupam

    2015-05-15

    The swept-field experiments on magnetic molecular solids such as Fe{sub 8} are studied using Monte Carlo simulations, and a kinetic equation developed to understand collective magnetization phenomena in such solids, where the collective aspects arise from dipole–dipole interactions between different molecules. Because of these interactions, the classic Landau–Zener–Stückelberg theory proves inadequate, as does another widely used model constructed by Kayanuma. It is found that the simulations provide a quantitatively accurate account of the experiments. The kinetic equation provides a similarly accurate account except at very low sweep velocities, where it fails modestly. This failure is attributed to the neglect of short-range correlations between the dipolar magnetic fields seen by the molecular spins. The simulations and the kinetic equation both provide a good understanding of the distribution of these dipolar fields, although analytic expressions for the final magnetization remain elusive.

  10. Quantum ignition of deflagration in the Fe8 molecular magnet

    NASA Astrophysics Data System (ADS)

    Leviant, Tom; Keren, Amit; Zeldov, Eli; Myasoedov, Yuri

    2014-10-01

    We report spatially resolved, time-dependent, magnetization reversal measurements of an Fe8 single molecular magnet using a microscopic Hall bar array. We found that a deflagration process, where molecules reverse their spin direction along a moving front, can be ignited quantum mechanically (T →0) at a resonance field, with no phonon pulse. The avalanche front velocity is of the order of 1m/s and is sensitive to field gradients and sweep rates. We also measured the thermal diffusivity κ in Fe8. This allows us to estimate the "flame" temperature.

  11. Muon-fluorine entangled states in molecular magnets.

    PubMed

    Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A

    2007-12-31

    The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.

  12. Magnetic quantum coherence effect in Ni4 molecular transistors.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2014-07-09

    We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances.

  13. Two Models of Magnetic Support for Photoevaporated Molecular Clouds

    SciTech Connect

    Ryutov, D; Kane, J; Mizuta, A; Pound, M; Remington, B

    2004-05-05

    The thermal pressure inside molecular clouds is insufficient for maintaining the pressure balance at an ablation front at the cloud surface illuminated by nearby UV stars. Most probably, the required stiffness is provided by the magnetic pressure. After surveying existing models of this type, we concentrate on two of them: the model of a quasi-homogeneous magnetic field and the recently proposed model of a ''magnetostatic turbulence''. We discuss observational consequences of the two models, in particular, the structure and the strength of the magnetic field inside the cloud and in the ionized outflow. We comment on the possible role of reconnection events and their observational signatures. We mention laboratory experiments where the most significant features of the models can be tested.

  14. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  15. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators.

    PubMed

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main 'symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted 'electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted 'nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and 'continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  16. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  17. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  18. Magnetic Field of the Vela C Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji; Nakamura, Fumitaka; Watanabe, Makoto; Tamura, Motohide; Kwon, Jungmi; Sato, Shuji

    2016-10-01

    We have performed extensive near-infrared (JHK s) imaging polarimetry toward the Vela C molecular cloud, which covers the five high-density sub-regions (North, Centre-Ridge, Centre-Nest, South-Ridge, and South-Nest) with distinct morphological characteristics. The obtained polarization vector map shows that three of these sub-regions have distinct plane-of-the-sky (POS) magnetic-field characteristics according to the morphological characteristics. (1) In the Centre-Ridge sub-region, a dominating ridge, the POS magnetic field is mostly perpendicular to the ridge. (2) In the Centre-Nest sub-region, a structure having a slightly extended nest of filaments, the POS magnetic field is nearly parallel to its global elongation. (3) In the South-Nest sub-region, which has a network of small filaments, the POS magnetic field appears to be chaotic. By applying the Chandrasekhar-Fermi method, we derived the POS magnetic field strength as ˜70-310 μG in the Centre-Ridge, Centre-Nest, and South-Ridge sub-regions. In the South-Nest sub-region, the dispersion of polarization angles is too large to apply the C-F method. Because the velocity dispersion in this sub-region is not greater than those in the other sub-regions, we suggest that the magnetic field in this sub-region is weaker than those in other sub-regions. We also discuss the relationship between the POS magnetic field (configuration and strength) and the cloud structure of each sub-region.

  19. A novel experiment using rotating magnetic fields to study the pumping spin states in molecular magnets

    NASA Astrophysics Data System (ADS)

    Hernandez-Minguez, Alberto; Macia, Ferran; Hernandez, Joan Manel; Carbonell, Carla; Amigó, Roger; Tejada, Javier

    2008-03-01

    We report here a new experimental technique to monitor spin population dynamics in molecular magnets. This deals with a huge rotating magnetic field initially applied along the easy magnetization direction, z--axis, that rotates with components parallel and perpendicular to the z axis. This technique allows us to probe spin relaxation on reasonably fast time scales detecting the inversion of the whole spin states. The population of spin levels depends on the frequency of the rotating magnetic field. This very new technique could help to carry out new experiments in a number of different fields, broadening substantially the scope of their use until now. A Hern'andez-M'inguez et al., Appl. Phys. Lett. 91, 202502 (2007)

  20. Composing in Public

    ERIC Educational Resources Information Center

    Heintz, Anne

    2011-01-01

    The central premise of this project is that researching student communication and composing actions in light of audience will illuminate particular features of student composing processes in 21st century interdisciplinary contexts. Students in this study took part in a six week inquiry unit about their local area. Data generated included student…

  1. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  2. Magnetic and electronic properties of porphyrin-based molecular nanowires

    SciTech Connect

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang; Wang, Wei-Wei

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  3. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  4. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  5. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  6. Molecular Magnetic Resonance Imaging of Tumor Response to Therapy

    PubMed Central

    Shuhendler, Adam J.; Ye, Deju; Brewer, Kimberly D.; Bazalova-Carter, Magdalena; Lee, Kyung-Hyun; Kempen, Paul; Dane Wittrup, K.; Graves, Edward E.; Rutt, Brian; Rao, Jianghong

    2015-01-01

    Personalized cancer medicine requires measurement of therapeutic efficacy as early as possible, which is optimally achieved by three-dimensional imaging given the heterogeneity of cancer. Magnetic resonance imaging (MRI) can obtain images of both anatomy and cellular responses, if acquired with a molecular imaging contrast agent. The poor sensitivity of MRI has limited the development of activatable molecular MR contrast agents. To overcome this limitation of molecular MRI, a novel implementation of our caspase-3-sensitive nanoaggregation MRI (C-SNAM) contrast agent is reported. C-SNAM is triggered to self-assemble into nanoparticles in apoptotic tumor cells, and effectively amplifies molecular level changes through nanoaggregation, enhancing tissue retention and spin-lattice relaxivity. At one-tenth the current clinical dose of contrast agent, and following a single imaging session, C-SNAM MRI accurately measured the response of tumors to either metronomic chemotherapy or radiation therapy, where the degree of signal enhancement is prognostic of long-term therapeutic efficacy. Importantly, C-SNAM is inert to immune activation, permitting radiation therapy monitoring. PMID:26440059

  7. Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, M. J.; Cardona-Serra, S.; Schlegel, C.; Moro, F.; Alonso, P. J.; Prima-García, H.; Clemente-Juan, J. M.; Evangelisti, M.; Gaita-Ariño, A.; Sesé, J.; van Slageren, J.; Coronado, E.; Luis, F.

    2012-06-01

    We report ac susceptibility and continuous wave and pulsed EPR experiments performed on GdW10 and GdW30 polyoxometalate clusters, in which a Gd3+ ion is coordinated to different polyoxometalate moieties. Despite the isotropic character of gadolinium as a free ion, these molecules show slow magnetic relaxation at very low temperatures, characteristic of single molecule magnets. For T≲200mK, the spin-lattice relaxation becomes dominated by pure quantum tunneling events, with rates that agree quantitatively with those predicted by the Prokof’ev and Stamp model [Phys. Rev. Lett. 80, 5794 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.5794]. The sign of the magnetic anisotropy, the energy level splittings, and the tunneling rates strongly depend on the molecular structure. We argue that GdW30 molecules are also promising spin qubits with a coherence figure of merit QM≳50.

  8. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces.

    PubMed

    Kahle, Steffen; Deng, Zhitao; Malinowski, Nikola; Tonnoir, Charlène; Forment-Aliaga, Alicia; Thontasen, Nicha; Rinke, Gordon; Le, Duy; Turkowski, Volodymyr; Rahman, Talat S; Rauschenbach, Stephan; Ternes, Markus; Kern, Klaus

    2012-01-11

    The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.

  9. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    PubMed

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe3O4@SiO2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe3O4@SiO2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%.

  10. [Targeted magnetic nanoparticles used as probe for magnetic resonance molecular imaging of tumor].

    PubMed

    Lu, Jing-Jing; Wang, Fang; Jin, Zheng-Yu; Zhong, Ding-Rong

    2009-04-01

    To investigate the feasibility of in vivo tumor detection using magnetic resonance (MR) molecular imaging with targeted magnetic nanoparticles as imaging probe. Targeted probe was synthesized by covalently linking the recombinant human gonadotropin releasing hormone analog (the targeting portion) with the ultrasmall superparamagnetic iron oxide nanoparticles (the imaging portion). The imaging portion served as the control material. The in vitro tumor cell experiment and the in vivo experiment using nude mice bearing tumors were carried out to test the targeting ability of the probe. In the in vitro experiment, the targeting probe and control materials were incubated separately with A549 cells which had high affinity to gonadotropin releasing hormone. Then the cells were taken out and lysed. The resultant solution was then subjected to MR imaging. The T2 value of the solutions was measured and compared. In the in vivo experiment, the targeting probe was administered into nude mice bearing A549 tumors. Dynamic MR imaging was carried out to measure the signal and T2 value of the tumor. The control material was also administered into control group of nude mice, and dynamic magnetic resonance imaging was performed. The T2 value of the tumor in both groups were recorded and compared. Both the in vitro and in vivo experiments proved the targeting ability of targeted probe. Compared with control material, the targeting probe had higher combining ability with tumor cells. MR molecular imaging of tumor can be realized by using targeting magnetic nanoparticles.

  11. Dynamical magnetic anisotropy in spin--1 molecular systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Cornaglia, Pablo; Balseiro, Carlos; Ulloa, Sergio

    2012-02-01

    We study electronic transport through a deformable spin-1 molecular system in a break junction setup, under the influence of a local vibrational mode. Our study shows that the magnetic anisotropy, which arises due to stretching along the transport axis[Science 328 1370 (2010)], is renormalized by the interactions with vibrations. The coupling induces additional spin--asymmetric hybridizations that contribute to the net molecular anisotropy. We show that the low temperature physics of such device can be described by an anisotropic Kondo model (J> J), with a magnetic anisotropy term, ANetSz^2, negative at zero stretching. A quantum phase transition (QPT) is explored by stretching the molecule, driving ANet into positive values, and changing the character of the device from a non--Fermi--liquid (NFL) to a Fermi liquid (FL) ground state. This transition can be directly observed through the zero--bias conductance, which we find to be finite for negative anisotropy, zero for positive anisotropy, and to reach the unitary limit at ANet 0. At that point, an underscreened spin-1 Kondo ground state appears due to the restitution of the spin-1 triplet degeneracy.

  12. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review.

    PubMed

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M

    2017-04-01

    Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.

  13. Pressure-confined clumps in magnetized molecular clouds

    NASA Technical Reports Server (NTRS)

    Bertoldi, Frank; Mckee, Christopher F.

    1992-01-01

    A substantial fraction of the mass of a giant molecular cloud (GMC) in the Galaxy is confined to clumps which occupy a small fraction of the volume of the cloud. A majority of the clumps in several well-studied GMCs (Ophiuchus, Orion G, Rosette, Cepheus OB3) are not in gravitational virial equilibrium, but instead are confined by the pressure of the surrounding medium. These clumps thus violate one of 'Larson's (1981) laws'. Generalizing the standard virial analysis for spherical clouds to spheroidal clouds, we determine the Jeans mass and the magnetic critical mass for the clumps in these clouds. The Alfven Mach number, which is proportional to the internal velocity dispersion of the clumps divided by the Alfven velocity, is estimated to be of order unity for all the clumps. The more massive clumps, which are in gravitational virial equilibrium, are too massive to be supported by magnetic fields alone (i.e., they are magnetically supercritical). Internally generated turbulence must play a key role in supporting these clumps.

  14. Strong parallel magnetic field effects on the hydrogen molecular ion

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Li, Baiwen; Taylor, K. T.

    2003-09-01

    Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two-dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long-standing discrepancy for the Req value in the 1sigmau state at a field strength of 1.0 × 106 T. The dissociation energies of the antibonding 1pig state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pig potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.

  15. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (i.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  16. Pressure-confined clumps in magnetized molecular clouds

    NASA Technical Reports Server (NTRS)

    Bertoldi, Frank; Mckee, Christopher F.

    1992-01-01

    A substantial fraction of the mass of a giant molecular cloud (GMC) in the Galaxy is confined to clumps which occupy a small fraction of the volume of the cloud. A majority of the clumps in several well-studied GMCs (Ophiuchus, Orion G, Rosette, Cepheus OB3) are not in gravitational virial equilibrium, but instead are confined by the pressure of the surrounding medium. These clumps thus violate one of 'Larson's (1981) laws'. Generalizing the standard virial analysis for spherical clouds to spheroidal clouds, we determine the Jeans mass and the magnetic critical mass for the clumps in these clouds. The Alfven Mach number, which is proportional to the internal velocity dispersion of the clumps divided by the Alfven velocity, is estimated to be of order unity for all the clumps. The more massive clumps, which are in gravitational virial equilibrium, are too massive to be supported by magnetic fields alone (i.e., they are magnetically supercritical). Internally generated turbulence must play a key role in supporting these clumps.

  17. Magnetic order in quasi-two-dimensional molecular magnets investigated with muon-spin relaxation.

    SciTech Connect

    Steele, A. J.; Lancaster, T.; Blundell, S. J.; Baker, P. J.; Pratt, F. L.; Baines, C.; Conner, M. M.; Southerland, H. I.; Manson, J. L.; Schlueter, J. A.

    2011-01-01

    We present the results of a muon-spin relaxation ({mu}+SR) investigation into magnetic ordering in several families of layered quasi-two-dimensional molecular antiferromagnets based on transition-metal ions such as S = 1/2 Cu{sup 2+} bridged with organic ligands such as pyrazine. In many of these materials magnetic ordering is difficult to detect with conventional magnetic probes. In contrast, {mu}{sup +}SR allows us to identify ordering temperatures and study the critical behavior close to TN. Combining this with measurements of in-plane magnetic exchange J and predictions from quantum Monte Carlo simulations we may assess the degree of isolation of the 2D layers through estimates of the effective inter-layer exchange coupling and in-layer correlation lengths at TN. We also identify the likely metal-ion moment sizes and muon stopping sites in these materials, based on probabilistic analysis of the magnetic structures and of muon-fluorine dipole-dipole coupling in fluorinated materials.

  18. Magnetic order in quasi-two-dimensional molecular magnets investigated with muon-spin relaxation

    NASA Astrophysics Data System (ADS)

    Steele, A. J.; Lancaster, T.; Blundell, S. J.; Baker, P. J.; Pratt, F. L.; Baines, C.; Conner, M. M.; Southerland, H. I.; Manson, J. L.; Schlueter, J. A.

    2011-08-01

    We present the results of a muon-spin relaxation (μ+SR) investigation into magnetic ordering in several families of layered quasi-two-dimensional molecular antiferromagnets based on transition-metal ions such as S=(1)/(2) Cu2+ bridged with organic ligands such as pyrazine. In many of these materials magnetic ordering is difficult to detect with conventional magnetic probes. In contrast, μ+SR allows us to identify ordering temperatures and study the critical behavior close to TN. Combining this with measurements of in-plane magnetic exchange J and predictions from quantum Monte Carlo simulations we may assess the degree of isolation of the 2D layers through estimates of the effective inter-layer exchange coupling and in-layer correlation lengths at TN. We also identify the likely metal-ion moment sizes and muon stopping sites in these materials, based on probabilistic analysis of the magnetic structures and of muon-fluorine dipole-dipole coupling in fluorinated materials.

  19. Composability in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Müller-Quade, Jörn; Renner, Renato

    2009-08-01

    If we combine two secure cryptographic systems, is the resulting system still secure? Answering this question is highly nontrivial and has recently sparked a considerable research effort, in particular, in the area of classical cryptography. A central insight was that the answer to the question is yes, but only within a well-specified composability framework and for carefully chosen security definitions. In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution (QKD) protocol must fulfill to allow its safe use within a larger security application (e.g. for secure message transmission); and we demonstrate—by an explicit example—what can go wrong if conventional (non-composable) security definitions are used. Finally, to illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a QKD protocol. In the second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability (UC) framework and state the composition theorem that guarantees that secure protocols can securely be composed to larger applications. We focus on the secure composition of quantum protocols into unconditionally secure classical protocols. However, the resulting security definition is so strict that some tasks become impossible without additional security assumptions. Quantum bit commitment is impossible in the UC framework even with mere computational security. Similar problems arise in the quantum bounded storage model and we observe a trade-off between the UC and the use of the weakest possible security assumptions.

  20. Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: analysis by means of mean field approximation for a simple shear flow.

    PubMed

    Satoh, Akira

    2005-09-01

    We have theoretically investigated the particle orientational distribution and viscosity of a dense colloidal dispersion composed of ferromagnetic spherocylinder particles under an applied magnetic field. The mean field approximation has been applied to take into account the magnetic interactions of the particle of interest with the other ones that belong to the neighboring clusters, besides those that belong to its own cluster. The basic equation of the orientational distribution function, which is an integrodifferential equation, has approximately been solved by Galerkin's method and the method of successive approximation. Some of the main results obtained here are summarized as follows. Even when the magnetic interaction between particles is of the order of the thermal energy, the effect of particle-particle interactions on the orientational distribution comes to appear more significant with increasing volumetric fraction of particles; the orientational distribution function exhibits a sharper peak in the direction nearer to the magnetic field one as the volumetric fraction increases. Such a significant inclination of the particle in the field direction induces the large increase in viscosity in the range of larger values of the volumetric fraction. The above-mentioned characteristics of the orientational distribution and viscosity come to appear more significantly when the influence of the applied magnetic field is not so strong compared with that of magnetic particle-particle interactions.

  1. Element specific electronic states and spin-flip-like behavior of Ce in (Ce0.2Gd0.8)Ni composed of heavy fermion CeNi and ferri-magnet GdNi through XMCD method

    NASA Astrophysics Data System (ADS)

    Yano, K.; Okane, T.; Takeda, Y.; Yamagami, H.; Fujimori, A.; Nishimura, K.; Sato, K.

    2017-06-01

    The electronic states of the three constituent elements in the crystal mixed system between CeNi and GdNi, Ce0.2Gd0.8Ni, were investigated by soft X-ray magnetic circular dichroism (XMCD) with the aid of sum rule analysis. Not only Gd 4f but also Ni 3d and Ce 4f electrons were magnetic and both magnetic moments of Ni and Ce were coupled anti-parallel to the direction of the Gd magnetic moment, which is in accordance with the general rule in rare earth (RE)-transition metal (TM) systems. After saturation, Ce magnetic moment decreased over 2 T and this behavior was explained by a spin-flip behavior of the Ce magnetic moment with keeping their electronic states unchanged. Furthermore, the magnetic field dependence on a part of the XAS at Ce M4,5 absorption edges, which had been observed in the Gd=0.5 disappeared in the present sample in Gd-rich content of 0.8 and this could be explained by the increase of molecular field from Gd on Ce 4f electrons. In addition, sum rule analysis has revealed that the magnetic moments of Gd 4 f and Ni 3d electrons could retain small values of angular (orbital) magnetic moments μL and this was explained consistently.

  2. Molecular magnetic resonance imaging of brain–immune interactions

    PubMed Central

    Gauberti, Maxime; Montagne, Axel; Quenault, Aurélien; Vivien, Denis

    2014-01-01

    Although the blood–brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO). PMID:25505871

  3. Composing decoherence functionals

    NASA Astrophysics Data System (ADS)

    Boës, Paul; Navascués, Miguel

    2017-02-01

    Quantum measure theory (QMT) is a generalization of quantum theory where physical predictions are computed from a matrix known as the decoherence functional (DF). Previous works have noted that, in its original formulation, QMT exhibits a problem with composability, since the composition of two decoherence functionals is, in general, not a valid decoherence functional. This does not occur when the DFs in question happen to be positive semidefinite (a condition known as strong positivity). In this paper, we study the concept of composability of DFs and its consequences for QMT. Firstly, we show that the problem of composability is much deeper than originally envisaged, since, for any n , there exists a DF that can coexist with n -1 copies of itself, but not with n . Secondly, we prove that the set of strongly positive DFs cannot be enlarged while remaining closed under composition. Furthermore, any closed set of DFs containing all quantum DFs can only contain strongly positive DFs.

  4. Thermal or mechanical stimuli-induced photoluminescence color change of a molecular assembly composed of an amphiphilic anthracene derivative in water.

    PubMed

    Sagara, Yoshimitsu; Komatsu, Toru; Terai, Takuya; Ueno, Tasuku; Hanaoka, Kenjiro; Kato, Takashi; Nagano, Tetsuo

    2014-08-11

    Molecular assemblies that change photoluminescence color in response to thermal or mechanical stimulation without dissociation into the monomeric states in water are described herein. A dumbbell-shaped amphiphilic compound forms micellar molecular assemblies in water and exhibits yellow photoluminescence derived from excimer formation of the luminescent core, which contains a 2,6-diethynylanthracene moiety. Annealing of the aqueous solution induces a photoluminescence color change from yellow to green (λem, max =558→525 nm). The same photoluminescence color change is also achieved by rubbing the yellow-photoluminescence-emitting molecular assemblies adsorbed on glass substrates with cotton wool in water. The observed green photoluminescence is ascribed to micelles that are distinct from the yellow-photoluminescence-emitting micelles, on the basis of transmission electron microscopy observations, atomic force microscopy observations, and dynamic light scattering measurements. We examined the relationship between the structure of the molecular assemblies and the photophysical properties of the anthracene derivative in water before and after thermal or mechanical stimulation and concluded that thermal or mechanical stimuli-induced slight changes of the molecular-assembled structures in the micelles result in the change in the photoluminescence color from yellow to green in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Composing and Comprehending.

    ERIC Educational Resources Information Center

    Jensen, Julie M., Ed.

    Intended for elementary school teachers of reading and composition, this book assembles several articles on the reading/writing relationship that have appeared in 1982 and 1983 issues of the journal "Language Arts." The three sections of the book define the relationship between composing and comprehending, explore relevant research, and…

  6. Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle

    PubMed Central

    Bleve, Valentina; Schäfer, Christian; Franchi, Paola; Silvi, Serena; Mezzina, Elisabetta; Credi, Alberto; Lucarini, Marco

    2015-01-01

    Invited for this months cover are the groups of Professors Marco Lucarini and Alberto Credi at the University of Bologna. The cover picture shows coupled and uncoupled states of a [2]rotaxane incorporating stable nitroxide radical units in both the ring and dumbbell components. Interaction between nitroxide radicals could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon deprotonation of the rotaxane NH2+ centers that effects a quantitative displacement of a dibenzocrown macroring to a 4,4’-bipyridinium recognition site. The complete base- and acid-induced switching cycle of the EPR pattern was repeated several times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. For more details, see the Communication on p. 18 ff. PMID:25870780

  7. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    PubMed Central

    Burgess, Jacob A.J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-01-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface. PMID:26359203

  8. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope.

    PubMed

    Burgess, Jacob A J; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-11

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  9. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  10. Synthesis and characterization of low-dimensional molecular magnetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Chen

    This dissertation presents experimental results from the synthesis and structural, magnetic characterization of representative low-dimensional molecule-based magnetic materials. Most of the materials reported in this dissertation, both coordination polymers and cuprate, are obtained as the result of synthesizing and characterizing spin ladder systems; except the material studied in Chapter 2, ferricenyl(III)trisferrocenyl(II)borate, which is not related to the spin ladder project. The interest in spin ladder systems is due to the discovery of high-temperature superconductivity in doped cuprates possessing ladder-like structures, and it is hoped that investigation of the magnetic behavior of ladder-like structures will help us understand the mechanism of high-temperature superconductivity. Chapter 1 reviews fundamental knowledge of molecular magnetism, general synthetic strategies for low-dimensional coordination polymers, and a brief introduction to the current status of research on spin ladder systems. Chapter 2 presents a modified synthetic procedure of a previously known monomeric complex, ferricenyl(III)trisferrocenyl(II)borate, 1. Its magnetic properties were characterized and previous results have been disproved. Chapter 3 investigates the magnetism of [CuCl2(CH3CN)] 2, 2, a cuprate whose structure consists of isolated noninterpenetrating ladders formed by the stacking of Cu(II) dimers. This material presents an unexpected ferromagnetic interaction both within the dimeric units and between the dimers, and this behavior has been rationalized based on the effect of its terminal nonbridging ligands. In Chapter 4, the synthesis and magnetism of two ladder-like coordination polymers, [Co(NO3)2(4,4'-bipyridine) 1.5(MeCN)]n, 3, and Ni2(2,6-pyridinedicarboxylic acid)2(H2O)4(pyrazine), 4, are reported. Compound 3 possesses a covalent one-dimensional ladder structure in which Co(II) ions are bridged through bipyridine molecules. Compared to the materials discussed in

  11. Comparison of contact methods for molecular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ruderman, Brian; Truitt, Patrick

    2014-03-01

    Self-assembled monolayers (SAMs) have potential application in charge and spin transport devices. A variety of techniques have been established for contacting SAMs with normal metal electrodes for charge transport studies. However, many of these techniques limit the types of SAMs that can be used or are incompatible with ferromagnetic (FM) electrode materials needed for spin transport. We discuss two methods that are promising for observing spin transport in SAMs. In the first method, we deposit FM electrodes on various sacrificial layers, and then transfer the electrodes to a PDMS stamp which can then be gently brought into contact with the SAM. In the second method, we float a layer of graphene on an aqueous surface and bring it into contact with the monolayer; the graphene acts as a barrier that protects the SAM during subsequent deposition of the FM electrode. Using the latter method, we have been able to fabricate non-shorting, molecular tunnel junctions with magnetic electrodes and current densities consistent with transport through an alkane SAM. We will present our findings on the yield and quality of both fabrication methods, as well as our progress towards functioning molecular spintronic devices.

  12. Observation of molecular assisted recombination in the magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Tonegawa, Akira; Ogawa, Hironori; Yazawa, Hiroyuki; Ono, Masataka; Kawamura, Kazutaka

    2003-10-01

    Molecular assisted recombination (MAR) with vibrational hydorogen molecular has been observed to enhance the reduction of ion particle flux in a high density magnetized sheet plasma device (TPDSHEET-IV). There are two main paths for MAR: (1) H2(v) + e=> H- + H (dissociated attachment) followed by H- + H+ =>H + H (mutual neutralization), and (2) H2(v) + A+ => (AH)+ + H (ion conversion) followed by (AH)+ + e => A + H (dissociative recombination) , where A+(A) is a hydrogen or an impurity ion (atom) existing in the plasma. The value of H+, H2+ and H3+ are observed in the mid-plane region with hot electron(Te= 10-15 eV) by a mass-analyzer. On the other hand, negative ions of hydrogen atom H- is localized in the circumference of existing cold electrons (Te= 3-5 eV) by a probe assisted laser photodetachment method. A small amount of secondary hydrogen gas puffing into a hydrogen plasma decreased gradually the density of H2+, H3+ and increased rapidly H- in the plasma, while the conventional radiation and three-body recombination (EIR) processes were disappeared. These results can be well explained by taking the MAR in the plasma into account.

  13. Composing Interfering Abstract Protocols

    DTIC Science & Technology

    2016-04-01

    when composing abstract protocols. To evaluate the expres- siveness of our protocol framework for ensuring safe shared memory interference, we show how...progress and preservation theorems that show the ab- sence of unsafe interference in correctly typed programs. Our design ensures memory safety and data...system by discussing how our core shared memory protocol framework is capable of expressing safe, typeful message-passing idioms. Next, we briefly

  14. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  15. Josephson current through a quantum dot coupled to a molecular magnet

    NASA Astrophysics Data System (ADS)

    Stadler, P.; Holmqvist, C.; Belzig, W.

    2013-09-01

    Josephson currents are carried by sharp Andreev states within the superconducting energy gap. We theoretically study the electronic transport of a magnetically tunable nanoscale junction consisting of a quantum dot connected to two superconducting leads and coupled to the spin of a molecular magnet. The exchange interaction between the molecular magnet and the quantum dot modifies the Andreev states due to a spin-dependent renormalization of the quantum dot's energy level and the induction of spin flips. A magnetic field applied to the central region of the quantum dot and the molecular magnet further tunes the Josephson current and starts a precession of the molecular magnet's spin. We use a nonequilibrium Green's function approach to evaluate the transport properties of the junction. Our calculations reveal that the energy level of the dot, the magnetic field, and the exchange interaction between the molecular magnet and the electrons occupying the energy level of the quantum dot can trigger transitions from a 0 to a π state of the Josephson junction. The redistribution of the occupied states induced by the magnetic field strongly modifies the current-phase relation. The critical current exhibits a sharp increase as a function of either the energy level of the dot, the magnetic field, or the exchange interaction.

  16. Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

    PubMed

    Mon, Marta; Pascual-Álvarez, Alejandro; Grancha, Thais; Cano, Joan; Ferrando-Soria, Jesús; Lloret, Francesc; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2016-01-11

    Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The dynamics of charged dust in magnetized molecular clouds

    NASA Astrophysics Data System (ADS)

    Lee, Hyunseok; Hopkins, Philip F.; Squire, Jonathan

    2017-08-01

    We study the dynamics of large, charged dust grains in turbulent giant molecular clouds (GMCs). Massive dust grains behave as aerodynamic particles in primarily neutral dense gas, and thus are able to produce dramatic small-scale fluctuations in the dust-to-gas ratio. Hopkins & Lee directly simulated the dynamics of neutral dust grains in supersonic magnetohydrodynamic turbulence, typical of GMCs, and showed that the dust-to-gas fluctuations can exceed factor ∼1000 on small scales, with important implications for star formation, stellar abundances and dust behaviour and growth. However, even in primarily neutral gas in GMCs, dust grains are negatively charged and Lorentz forces are non-negligible. Therefore, we extend our previous study by including the effects of Lorentz forces on charged grains (in addition to drag). For small-charged grains (sizes ≪ 0.1 μm), Lorentz forces suppress dust-to-gas ratio fluctuations, while for large grains (sizes ≳ 1 μm), Lorentz forces have essentially no effect, trends that are well explained with a simple theory of dust magnetization. In some special intermediate cases, Lorentz forces can enhance dust-gas segregation. Regardless, for the physically expected scaling of dust charge with grain size, we find the most important effects depend on grain size (via the drag equation) with Lorentz forces/charge as a second-order correction. We show that the dynamics we consider are determined by three dimensionless numbers in the limit of weak background magnetic fields: the turbulent Mach number, a dust drag parameter (proportional to grain size) and a dust Lorentz parameter (proportional to grain charge); these allow us to generalize our simulations to a wide range of conditions.

  18. The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules?

    PubMed Central

    Frost, Jamie M.; Harriman, Katie L. M.

    2016-01-01

    Single-molecule magnets (SMMs) that contain one spin centre (so-called single-ion magnets) theoretically represent the smallest possible unit for spin-based electronic devices. The realisation of this and related technologies, depends on first being able to design systems with sufficiently large energy barriers to magnetisation reversal, U eff, and secondly, on being able to organise these molecules into addressable arrays. In recent years, significant progress has been made towards the former goal – principally as a result of efforts which have been directed towards studying complexes based on highly anisotropic lanthanide ions, such as Tb(iii) and Dy(iii). Since 2013 however, and the remarkable report by Long and co-workers of a linear Fe(i) system exhibiting U eff = 325 K, single-ion systems of transition metals have undergone something of a renaissance in the literature. Not only do they have important lessons to teach us about anisotropy and relaxation dynamics in the quest to enhance U eff, the ability to create strongly coupled spin systems potentially offers access to a whole of host of 1, 2 and 3-dimensional materials with interesting structural and physical properties. This perspective summarises recent progress in this rapidly expanding sub-genre of molecular magnetism from the viewpoint of the synthetic chemist, with a particular focus on the lessons that have so far been learned from single-ion magnets of the d-block, and, the future research directions which we feel are likely to emerge in the coming years. PMID:28660017

  19. Toxoplasma gondii DNA detection with a magnetic molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

  20. Colloidal Suspensions of Rodlike Nanocrystals and Magnetic Spheres under an External Magnetic Stimulus: Experiment and Molecular Dynamics Simulation.

    PubMed

    May, Kathrin; Eremin, Alexey; Stannarius, Ralf; Peroukidis, Stavros D; Klapp, Sabine H L; Klein, Susanne

    2016-05-24

    Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.

  1. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    PubMed Central

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-01-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications. PMID:28176869

  3. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets.

    PubMed

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-02-08

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

  4. Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Ray, Rajyavardhan; Kumar, Sanjeev

    2017-02-01

    We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.

  5. Process of timbral composing

    NASA Astrophysics Data System (ADS)

    Withrow, Sam

    In this paper, I discuss the techniques and processes of timbral organization I developed while writing my chamber work, Afterimage. I compare my techniques with illustrative examples by other composers to place my work in historical context. I examine three elements of my composition process. The first is the process of indexing and cataloging basic sonic materials. The second consists of the techniques and mechanics of manipulating and assembling these collections into larger scale phrases, textures, and overall form in a musical work. The third element is the more elusive, and often extra-musical, source of inspiration and motivation. The evocative power of tone color is both immediately evident yet difficult to explain. What is timbre? This question cannot be answered solely in scientific terms; subjective factors affect our perception of it.

  6. Magnetic proximity effect in ferrimagnetic-ferromagnetic core-shell Prussian blue analogues molecular magnet

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Kumar, Amit; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    A magnetic proximity effect has been observed in core-shell structure of molecular magnet, Mn1.5[Cr(CN)6]·mH2O@Ni1.5[Cr(CN)6]·nH2O, synthesized using a ferrimagnetic core of Mn1.5[Cr(CN)6]·7.5H2O surrounded by a ferromagnetic shell of Ni1.5[Cr(CN)6]·7.5H2O. The values of Curie temperature (TC) are found to be of ∼65 and ∼60 K for the bare-core and bare-shell compounds, respectively. However, an enhanced TC (∼70 K) has been observed for the core-shell structure. The proximity effect (due to presence of interface exchange coupling) between core and shell is responsible for the observed enhancement of TC. A neutron depolarization study also confirms finite depolarization below ∼70 K.

  7. Modulation of circular current and associated magnetic field in a molecular junction: A new approach

    PubMed Central

    Patra, Moumita; Maiti, Santanu K.

    2017-01-01

    A new proposal is given to control local magnetic field in a molecular junction. In presence of finite bias a net circular current is established in the molecular ring which induces a magnetic field at its centre. Allowing a direct coupling between two electrodes, due to their close proximity, and changing its strength we can regulate circular current as well as magnetic field for a wide range, without disturbing any other physical parameters. We strongly believe that our proposal is quite robust compared to existing approaches of controlling local magnetic field and can be verified experimentally. PMID:28256548

  8. Composing Disability: Diagnosis, Interrupted.

    PubMed

    Wilkerson, Abby; Fisher, Joseph; Fletcher, Wade

    2016-12-01

    Writing is central both to the medical diagnostic codification of disability and to disabled people's efforts to interrupt, complicate, or disrupt dominant medical narratives. This Symposium, like the George Washington University conference from which it takes its name, creates space for diverse modes and genres of claiming authority regarding diagnosis and its cultural and material effects. "Queer" and "crip" interrogations of diagnosis illuminate its status as a cultural phenomenon, embracing culturally disavowed embodiments and embodied experiences as tools for diagnosing inegalitarian social relations and opportunities for cultural interventions. This Symposium traces the workings of diagnostic normativity manifested in experiences such as "disruptive deafness," unstable bodily materialities, pathologized grief and other forms of affective distress, and "surgical assemblages." It presents a diverse array of compositions, articulated on each writer's own terms, addressing a range of embodied experiences through multiple genres and voices, ranging from conversation transcript to scholarly essay, poetry, graphic memoir, and personal essay. Here, laypersons interrupt monologic medical diagnosis, claiming space to compose themselves. Together, the authors trace instances of corporeal "correction" back to the noxious agents, both environmental and political, that consistently breach the boundaries of corporeality.

  9. Electronic and magnetic properties of silicon supported organometallic molecular wires: a density functional theory (DFT) study.

    PubMed

    Liu, Xia; Tan, Yingzi; Li, Xiuling; Wu, Xiaojun; Pei, Yong

    2015-08-28

    The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to the well-studied gas phase TM-benzene molecular wires. Si-[Mn(styrene)]∞ and Si-[Cr(styrene)]∞ single molecular wires (SMWs) are a ferromagnetic semiconductor and half metal, respectively. Creation of H-atom defects on the silicon surface can introduce an impurity metallic band, which leads to novel half-metallic magnetism of a Si-[Mn(styrene)]∞ system. Moreover, double molecular wires (DMWs) containing two identical or hetero SMWs are theoretically designed. The [Mn(styrene)]∞-[Cr(styrene)]∞ DMW exhibits half-metallic magnetism where the spin-up and spin-down channels are contributed by two single molecular wires. Finally, we demonstrate that introducing a TM-defect may significantly affect the electronic structure and magnetic properties of molecular wires. These studies provide new insights into the structure and properties of surface supported 1-D sandwiched molecular wires and may inspire the future experimental synthesis of substrate confined organometallic sandwiched molecular wires.

  10. Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.

    2014-01-01

    The molecular concept (paradigm) in magnetobiology seems to be most substantiated and significant for explaining the biomedical effects of electromagnetic fields, for the new medical technology of transcranial magnetic stimulation of cognitive activity, for the nuclear magnetic control of biochemical processes and for the search of new magnetic effects in biology and medicine. The key structural element of the concept is a radical ion pair as the receiver of magnetic fields and the source of magnetic effects. The existence of such pairs was recently detected in the two life-supporting processes of paramount importance — in enzymatic ATP and DNA syntheses. The bibliography includes 80 references.

  11. New aspects of π–d interactions in magnetic molecular conductors

    PubMed Central

    Sugimoto, Toyonari; Fujiwara, Hideki; Noguchi, Satoru; Murata, Keizo

    2009-01-01

    The 2 : 1 cation radical salts of bent donor molecules of ethylenedithio-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDT-TTFVO), ethylenedithio-diselenadithiafulvalenoquinone-1,3-dithiolemethide (EDT-DSDTFVO), ethylenedithio-diselenadithiafulvalenothioquinone-1,3-diselenolemethide (EDT-DSDTFVSDS), ethylenedioxy-tetrathiafulvalenoquinone-1,3-dithiolemethide (EDO-TTFVO) and ethylenedioxy-tetrathiafulvalenoquinone-1,3-diselenolemethide (EDO-TTFVODS) with FeX4− (X = Cl, Br) ions are prepared by electrocrystallization. The crystal structures of these salts are composed of alternately stacked donor molecule and magnetic anion layers. The band structures of the donor molecule layers are calculated using the overlap integrals between neighboring donor molecules and are compared with the observed electronic transport properties. The magnetic ordering of the Fe(III) d spins of FeX4− ions is determined from magnetization and heat capacity measurements. The magnetic ordering temperatures are estimated by considering a combination of a direct d–d interaction between the d spins and an indirect π–d interaction between the conduction π electron and the d spins, whose magnitudes are separately calculated from the crystal structures with an extended Hückel molecular orbital method. The occurrence of a π–d interaction is proved by the negative magnetoresistance, and the magnitude of magnetoresistance reflects the strength of the π–d interaction. The effect of pressure on the magnetoresistance is studied, and the result indicates that the magnitude of magnetoresistance increases, namely, the π–d interaction is enhanced with increasing pressure. From these experimental results it is shown that (EDT-TTFVO)2•FeBr4 is a ferromagnetic semiconductor, (EDT-DSDTFVO)2•FeX4 (X = Cl, Br) and (EDT-DSDTFVSDS)2•FeBr4 are metals exhibiting antiferromagnetic ordering of the d spins, and (EDO-TTFVO)2•FeCl4 and (EDO-TTFVODS)2•FeBr4•(DCE)0.5 (DCE =-dichloroethane) are

  12. Teaching Composing with an Identity as a Teacher-Composer

    ERIC Educational Resources Information Center

    Francis, Jennie

    2012-01-01

    I enjoy composing and feel able to write songs that I like and which feel significant to me. This has not always been the case and the change had nothing to do with my school education or my degree. Composing at secondary school did not move beyond Bach and Handel pastiche. I did not take any composing courses during my degree. What did influence…

  13. Teaching Composing with an Identity as a Teacher-Composer

    ERIC Educational Resources Information Center

    Francis, Jennie

    2012-01-01

    I enjoy composing and feel able to write songs that I like and which feel significant to me. This has not always been the case and the change had nothing to do with my school education or my degree. Composing at secondary school did not move beyond Bach and Handel pastiche. I did not take any composing courses during my degree. What did influence…

  14. Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples.

    PubMed

    Zheng, Hao-Bo; Mo, Jie-Zhen; Zhang, Yu; Gao, Qiang; Ding, Jun; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-02-14

    In this work, we proposed a simple co-mixing method to fabricate magnetic molecularly imprinted polymers (magnetic MIPs). MIPs were commercial products while magnetic nanoparticles (MNPs) were prepared by chemical oxidation and solvothermal methods. When MNPs and MIPs (with mass ratio 1:1) were co-mixed and vortexed evenly in methanol, they could assemble into magnetic composites spontaneously and thus be magnetically separable. To testify the feasibility of the magnetic composites in sample preparation, the resultant magnetic MIPs were applied as sorbents for magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) in milk samples. Under optimized conditions, a rapid, convenient, and efficient method for the determination of three FQs in milk samples was established by magnetic MIPs based MSPE coupling with high performance liquid chromatography with ultraviolet detector (HPLC-UV). The limits of detection (LODs) for three FQs were found to be 1.8-3.2ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 9.5% and 12.5%, respectively. The recoveries of FQs for two spiked milk samples were in the range from 94.0% to 124.4% with the RSDs less than 11.6%. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses.

  16. Fragmentation of Filamentary Molecular Clouds Threaded by Perpendicular Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hanawa, Tomoyuki; Kudoh, Takahiro; Tomisaka, Kohji

    2017-01-01

    Filamentary clouds are ubiquitously seen in the star forming regions and the fragmentation of them are thought to result in star formation. Some of them are threaded by magnetic field parallel to the cloud axis and some others are thread by perpendicular ones. The effects of the parallel magnetic field on fragmentation have been studied well. However we know little about the effects of the perpendicular magnetic field on fragmentation. A strong perpendicular magnetic field is likely to suspend the fragmentation. In order to assess this effect, we have performed a linear stability analysis of an isothermal filamentary cloud while taking account of a uniform magnetic field perpendicular to the cloud axis. We have used the ideal MHD approximation in the stability analysis for simplicity. Then the analysis is formulated to be an eigenvalue problem in which each eigenmode has either a real frequency (stable) or a pure imaginary one (unstable). The growth rate of the instability as well as the eigenmode is obtained numerically as a function of the wavelength and magnetic field strength.The magnetic field suppresses gas motion perpendicular to it. Accordingly, the growth rate of an unstable eigenmode decreases monotonically as the magnetic field is strengthened. The wavelength of the most unstable mode is slightly increased by the magnetic field. When the plasma beta at the cloud center is slightly below 2, the fragmentation instability is completely suppressed. When the unstable mode is excited, only the magnetic field lines that thread the high region near the cloud axis move appreciably. We compare our analysis with those for magnetized sheet-like clouds.

  17. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    SciTech Connect

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G.F.

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  18. Composing the Curriculum: Teacher Identity

    ERIC Educational Resources Information Center

    Lewis, Rebecca

    2012-01-01

    What is composing and how is it valued? What does a good education in composing look like; what constraints hinder it and is it possible to overcome such constraints? Can composing be a personal, creative and valuable activity for the school student? What role does the teacher play in all of this? These are questions that I discuss in this…

  19. Dragging human mesenchymal stem cells with the aid of supramolecular assemblies of single-walled carbon nanotubes, molecular magnets, and peptides in a magnetic field.

    PubMed

    de Paula, Ana Cláudia C; Sáfar, Gustavo A M; Góes, Alfredo M; Bemquerer, Marcelo P; Ribeiro, Marcos A; Stumpf, Humberto O

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy.

  20. Dragging Human Mesenchymal Stem Cells with the Aid of Supramolecular Assemblies of Single-Walled Carbon Nanotubes, Molecular Magnets, and Peptides in a Magnetic Field

    PubMed Central

    de Paula, Ana Cláudia C.; Sáfar, Gustavo A. M.; Góes, Alfredo M.; Bemquerer, Marcelo P.; Ribeiro, Marcos A.; Stumpf, Humberto O.

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy. PMID:25688350

  1. Topology of exchange interactions in copper-nitroxide based molecular magnets studied by EPR

    NASA Astrophysics Data System (ADS)

    Drozdyuk, Irina Yu.; Maryunina, Ksenia Yu.; Sagdeev, Renad Z.; Ovcharenko, Victor I.; Bagryanskaya, Elena G.; Fedin, Matvey V.

    2013-10-01

    Switchable copper-nitroxide based molecular magnets Cu(hfac)2LR ('breathing crystals') have one-dimensional (1D) polymer-chain structure and 1D magnetic motif; however, the directions of polymer and magnetic chains in the crystal do not coincide. In this work we report the detailed electron paramagnetic resonance (EPR) study of the topology of intercluster exchange interactions forming the magnetic chains in a series of breathing crystals. The obtained results provide unambiguous manifestation of 1D magnetic behaviour, which degree correlates with the magnitude of intercluster exchange interaction. Analysis of experimental angular-dependent EPR data allowed us to determine relative orientations of magnetic chains with respect to polymer chains. The obtained angle between them is ≈40-46° for three studied compounds. The comparison of EPR and x-ray diffraction data confirms that 1D magnetic chains are formed by interacting adjacent spin triads of neighbouring polymer chains.

  2. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices

    NASA Astrophysics Data System (ADS)

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  3. Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices

    PubMed Central

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-01-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface. PMID:27929089

  4. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices.

    PubMed

    Campbell, Victoria E; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-08

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  5. Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions

    SciTech Connect

    Wang Wenyong; Richter, Curt A.

    2007-09-26

    In this study, we fabricate molecular magnetic tunnel junctions and demonstrate that inelastic electron tunneling spectroscopy technique can be utilized to inspect such junctions to investigate the existence of desired molecular species in the device area. Tunneling magnetoresistance measurements have been carried out and spin-dependent tunneling transport has been observed. Bias-dependence of the tunneling resistance has also been detected. IETS measurements at different magnetic field suggested that the TMR bias-dependence was likely caused by the inelastic scattering due to the molecular vibrations.

  6. AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION

    SciTech Connect

    Soler, J. D.; Netterfield, C. B.; Fissel, L. M.; Hennebelle, P.; Martin, P. G.; Miville-Deschenes, M.-A.

    2013-09-10

    We describe a morphological imprint of magnetization found when considering the relative orientation of the magnetic field direction with respect to the density structures in simulated turbulent molecular clouds. This imprint was found using the Histogram of Relative Orientations (HRO), a new technique that utilizes the gradient to characterize the directionality of density and column density structures on multiple scales. We present results of the HRO analysis in three models of molecular clouds in which the initial magnetic field strength is varied, but an identical initial turbulent velocity field is introduced, which subsequently decays. The HRO analysis was applied to the simulated data cubes and mock-observations of the simulations produced by integrating the data cube along particular lines of sight. In the three-dimensional analysis we describe the relative orientation of the magnetic field B with respect to the density structures, showing that: (1) the magnetic field shows a preferential orientation parallel to most of the density structures in the three simulated cubes, (2) the relative orientation changes from parallel to perpendicular in regions with density over a critical density n{sub T} in the highest magnetization case, and (3) the change of relative orientation is largest for the highest magnetization and decreases in lower magnetization cases. This change in the relative orientation is also present in the projected maps. In conjunction with simulations, HROs can be used to establish a link between the observed morphology in polarization maps and the physics included in simulations of molecular clouds.

  7. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    SciTech Connect

    Li, J.; Hu, J.; Wang, H.; Wu, R. Q.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  8. Iron Oxide Nanoparticle-Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging and Magnetic Resonance Imaging

    PubMed Central

    Starmans, Lucas W. E.; Burdinski, Dirk; Haex, Nicole P. M.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Background Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. Methods and Results IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. Conclusions The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for

  9. Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment. II. Typical Axisymmetric Solution

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2007-05-01

    We follow the ambipolar-diffusion-driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center. This problem was formulated in Paper I. We determine the density, velocity, and magnetic field as functions of space and time, and the contribution of ambipolar diffusion and Ohmic dissipation to the resolution of the magnetic flux problem of star formation. The issue of whether the magnetic field ever decouples from the (neutral) matter is also addressed. We also find that the electrons do not decouple from the field lines before thermal ionization becomes important and recouples the magnetic field to the neutral matter. Ohmic dissipation becomes more effective than ambipolar diffusion as a flux reduction mechanism only at the highest densities (a few × 1012 cm-3). In the high-density central parts of the core, the magnetic field acquires an almost spatially uniform structure, with a value that, at the end of the calculation (nn~5×1014 cm-3), is found to be in excellent agreement with meteoritic measurements of magnetic fields in the protosolar nebula. Outside the hydrostatic protostellar core, a concentration of magnetic flux (a ``magnetic wall'') forms, which gives rise to a magnetic shock. This magnetic shock is the precursor of the repeated shocks previously found by Tassis & Mouschovias, which cause spasmodic accretion onto the hydrostatic core at later times.

  10. Spin-electric Berry phase shift in triangular molecular magnets

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid; Canali, C. M.; Sjöqvist, Erik

    2016-12-01

    We propose a Berry phase effect on the chiral degrees of freedom of a triangular magnetic molecule. The phase is induced by adiabatically varying an external electric field in the plane of the molecule via a spin-electric coupling mechanism present in these frustrated magnetic molecules. The Berry phase effect depends on spin-orbit interaction splitting and on the electric dipole moment. By varying the amplitude of the applied electric field, the Berry phase difference between the two spin states can take any arbitrary value between zero and π , which can be measured as a phase shift between the two chiral states by using spin-echo techniques. Our result can be used to realize an electric-field-induced geometric phase-shift gate acting on a chiral qubit encoded in the ground-state manifold of the triangular magnetic molecule.

  11. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    PubMed Central

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  12. Ultrasensitive detection and molecular imaging with magnetic nanoparticles.

    PubMed

    Yang, Jian; Gunn, Jonathan; Dave, Shivang R; Zhang, Miqin; Wang, Y Andrew; Gao, Xiaohu

    2008-02-01

    Recent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics. MNPs made from iron oxide, in particular, have attracted extensive interest and have already been used in clinical studies owing to their capability of deep-tissue imaging, non-immunogenesis, and low toxicity. In this Research Highlight article, we attempt to highlight the recent breakthroughs in MNP synthesis based on a non-hydrolytic approach, nanoparticle (NP) surface engineering, their unique structural and magnetic properties, and current applications in ultrasensitive detection and imaging with a special focus on innovative bioassays. We will also discuss our perspectives on future research directions.

  13. Molecularly imprinted magnetic nanoparticles for the micro solid-phase extraction of thiabendazole from citrus samples.

    PubMed

    García-Fernández, Miguel; Díaz-Álvarez, Myriam; Martín-Esteban, Antonio

    2017-06-01

    The preparation of molecularly imprinted core-shell magnetic nanoparticles and their subsequent use in the solid-phase extraction of thiabendazole from citrus sample extracts is described. Molecularly imprinted core-shell magnetic nanoparticles were prepared by the precipitation copolymerization of the imprinting polymerization mixture on the surface of vinyl-modified silica magnetic nanoparticles and were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The obtained molecularly imprinted core-shell magnetic nanoparticles exhibited a high selectivity for thiabendazole and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid-phase extraction method was developed allowing the extraction of thiabendazole from citrus sample extracts and final determination by high-performance liquid chromatography with fluorescence detection. The detection limit was 0.2 mg/kg, far lower than the maximum residue limit established within the European Union for thiabendazole in citrus samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hybrid Molecular and Spin Dynamics Simulations for Ensembles of Magnetic Nanoparticles for Magnetoresistive Systems.

    PubMed

    Teich, Lisa; Schröder, Christian

    2015-11-13

    The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.

  15. How Composers Compose: In Search of the Questions

    ERIC Educational Resources Information Center

    Andrews, Bernard W.

    2004-01-01

    The Genesis Project is a multi-phase research project designed for the purpose of developing an in-depth understanding of the nature of musical creativity by investigating how composers compose. In this first phase of the project, an understanding of the four dimensions of musical creativity: (1) the "person", (2) the compositional…

  16. Electronic and magnetic properties of silicon supported organometallic molecular wires: a density functional theory (DFT) study

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Tan, Yingzi; Li, Xiuling; Wu, Xiaojun; Pei, Yong

    2015-08-01

    The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to the well-studied gas phase TM-benzene molecular wires. Si-[Mn(styrene)]∞ and Si-[Cr(styrene)]∞ single molecular wires (SMWs) are a ferromagnetic semiconductor and half metal, respectively. Creation of H-atom defects on the silicon surface can introduce an impurity metallic band, which leads to novel half-metallic magnetism of a Si-[Mn(styrene)]∞ system. Moreover, double molecular wires (DMWs) containing two identical or hetero SMWs are theoretically designed. The [Mn(styrene)]∞-[Cr(styrene)]∞ DMW exhibits half-metallic magnetism where the spin-up and spin-down channels are contributed by two single molecular wires. Finally, we demonstrate that introducing a TM-defect may significantly affect the electronic structure and magnetic properties of molecular wires. These studies provide new insights into the structure and properties of surface supported 1-D sandwiched molecular wires and may inspire the future experimental synthesis of substrate confined organometallic sandwiched molecular wires.The electronic and magnetic properties of transition metal (TM = Sc, Ti, V, Cr and Mn) atom incorporated single and double one-dimensional (1D) styrene molecular wires confined on the hydrogen-terminated Si(100) surface are explored for the first time by means of spin-polarized density functional theory, denoted as Si-[TM(styrene)]. It is unveiled that TM atoms bind asymmetrically to the adjacent phenyl rings, which leads to novel electronic and magnetic properties in stark contrast to

  17. Studies on magnetic properties of unique molecular magnet {[FeII(pyrazole)4]2[NbIV(CN)8]•4H2O}n

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Wasiutyński, T.; Pinkowicz, D.; Sieklucka, B.

    2013-01-01

    In this paper magnetic properties of hybrid inorganic-organic compound {[FeII(pyrazole)4]2[NbIV(CN)8]•4H2O}n are presented. This is a three dimensional molecular magnet with well localized magnetic moments, which make it a suitable candidate for testing magnetic models. In order to characterize the magnetic properties of the above compound we performed the AC/DC magnetometry in the range 0-5 T. The special attention was paid to the phase transition at 7.9 K. The study in magnetic field supports magnetic ordering below 7.9 K.

  18. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  19. Molecular Dynamics Simulations of Motion of Paramagnetic Oxygen Molecules in Air by Magnetic Force

    NASA Astrophysics Data System (ADS)

    Takezawa, Nobuhisa; Fukushima, Kimichika

    2000-03-01

    Oxygen molecules with integer spin in air move upward to higher magnetic fields along magnetic field gradient. This motion is disturbed by the collisions between oxygen molecules and other diamagnetic molecules. To magnetically separate oxygen molecules in air, it is necessary to suppress the collisions with diamagnetic molecules and enhance the transport by magnetic force. In our study, molecular dynamics calculations were carried out to investigate temperature and pressure dependence of the ratio of oxygen molecules to air transported along magnetic field gradient. At temperature T=300K, pressure P=0.1MPa and magnetic field H=20T, the ratio of oxygen molecules to air transported along magnetic field gradient increased from 20% without magnetic fields to about 22% in magnetic fields; at T=200K and P=0.1MPa, to 25%; at T=300K and P=0.005MPa, to 24%. This indicates that the transport of oxygen molecules in air by magnetic force was promoted at lower temperature and pressure.

  20. Molecular dynamics simulations of proton transverse relaxation times in suspensions of magnetic nanoparticles.

    PubMed

    Panczyk, Tomasz; Konczak, Lukasz; Zapotoczny, Szczepan; Szabelski, Pawel; Nowakowska, Maria

    2015-01-01

    In this work we have analyzed the influence of various factors on the transverse relaxation times T2 of water protons in suspension of magnetic nanoparticles. For that purpose we developed a full molecular dynamics force field which includes the effects of dispersion interactions between magnetic nanoparticles and water molecules, electrostatic interactions between charged nanoparticles and magnetic dipole-dipole and dipole-external field interactions. We also accounted for the magnetization reversal within the nanoparticles body frames due to finite magnetic anisotropy barriers. The force field together with the Langevin dynamics imposed on water molecules and the nanoparticles allowed us to monitor the dephasing of water protons in real time. Thus, we were able to determine the T2 relaxation times including the effects of the adsorption of water on the nanoparticles' surfaces, thermal fluctuations of the orientation of nanoparticles' magnetizations as well as the effects of the core-shell architecture of nanoparticles and their agglomeration into clusters. We found that there exists an optimal cluster size for which T2 is minimized and that the retardation of water molecules motion, due to adsorption on the nanoparticles surfaces, has some effect in the measured T2 times. The typical strengths of the external magnetic fields in MRI are enough to keep the magnetizations fixed along the field direction, however, in the case of low magnetic fields, we observed significant enhancement of T2 due to thermal fluctuations of the orientations of magnetizations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. All-atom molecular dynamics study of a spherical micelle composed of N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) block copolymers: a potential carrier of drug delivery systems for cancer.

    PubMed

    Kuramochi, Hiroshi; Andoh, Yoshimichi; Yoshii, Noriyuki; Okazaki, Susumu

    2009-11-19

    An all-atom molecular dynamics simulation of a spherical micelle composed of amphiphilic N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) (PEG-PBLG-Ac) block copolymers was performed in aqueous solution at 298.15 K and 1 atm. Such copolymers have received considerable attention as carriers in drug delivery systems. In this study, we used copolymers consisting of 11 EG units and 9 BLG units as models. Starting from the copolymers arranged spherically, the calculation predicted an equilibrium state consisting of a slightly elliptical micelle structure with a hydrophobic PBLG inner core and a hydrophilic PEG outer shell. The micelle structure was dynamically stable during the simulation, with the PEG blocks showing a compact helical conformation and the PBLG blocks an alpha-helix form. Multiple hydrogen bonds with solvent water molecules stabilized the helical conformation of the PEG blocks, leading to their hydration as shown by longer residence times of water molecules near the PEG ether oxygen atoms compared with that of bulk water. Some water molecules have also been found distributed within the hydrophobic core; they showed continuous exchange with bulk water during the simulation. Those molecules existed mostly as a cluster in spaces between the copolymers, forming hydrogen bonds among themselves as well as with the hydrophobic core through hydrophilic groups such as esters and amides. The water molecules forming hydrogen bonds with the micelle may play an important role in the stabilization of the micelle structure.

  2. Graphene as a reversible spin manipulator of molecular magnets.

    PubMed

    Bhandary, Sumanta; Ghosh, Saurabh; Herper, Heike; Wende, Heiko; Eriksson, Olle; Sanyal, Biplab

    2011-12-16

    One of the primary objectives in molecular nanospintronics is to manipulate the spin states of organic molecules with a d-electron center, by suitable external means. In this Letter, we demonstrate by first principles density functional calculations, as well as second order perturbation theory, that a strain induced change of the spin state, from S=1→S=2, takes place for an iron porphyrin (FeP) molecule deposited at a divacancy site in a graphene lattice. The process is reversible in the sense that the application of tensile or compressive strains in the graphene lattice can stabilize FeP in different spin states, each with a unique saturation moment and easy axis orientation. The effect is brought about by a change in Fe-N bond length in FeP, which influences the molecular level diagram as well as the interaction between the C atoms of the graphene layer and the molecular orbitals of FeP.

  3. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  4. Magnetic field dissipation and contraction of molecular clouds

    NASA Astrophysics Data System (ADS)

    Nakano, Takenori; Nishi, Ryoichi; Umebayashi, Toyoharu

    The magnetic flux phi of a cloud or a cloud core is 0.1 to one times the critical flux phicr which is proportional to its mass M. The phi/M (or equivalently phi/phicr) ratio for a cloud or a cloud core is several hundred to 105 times greater than the ratio for magnetic stars with mean surface field of one to 30 kG. The dissipation of magnetic fields in clouds is complicated because they contain various kinds of charged particles (electrons, ions, and grains) whose degree of freezing to field lines vary widely and whose relative abundance changes drastically as the cloud contracts. With a quite general formalism applicable to such wide range of physical situation, the field dissipation in clouds containing ice-mantled grains were investigated, and existence of a decoupling density ndec with the flux loss time tB is less than the free-fall time tf only at the cloud density nH less than ndec or tB approximately equals (10 - 500)tf(phicr/phi) 2 at nH much less than ndec at least for phi approximately equal (1 - 0.1) phicr was found. The value of ndec depends rather sensitively on the grain model and the minimum value found is four times 109 cu cm including the cases of grains without ice mantles.

  5. Magnetic field in molecular cloud cores: Limits on field strengths and linewidths

    NASA Technical Reports Server (NTRS)

    Goodman, A. A.

    1986-01-01

    Preliminary observations by others indicate that the magnetic field strength in dense molecular cloud cores is on the order of 30 micro G, much closer to the background field strength than to the flux-freezing prediction for this density. This result implies that some process must exist to decrease the magnetic field strength in these regions to much less than its flux-frozen value, e.g., ambipolar diffusion. At these moderate field strengths, magnetohydrodynamic waves in the cores provide a good explanation of observed supra-thermal molecular linewidths.

  6. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  7. Magnetic Resonance in the Era of Molecular Imaging of Cancer

    PubMed Central

    Gore, John C.; Manning, H. Charles; Quarles, C. Chad; Waddell, Kevin W.; Yankeelov, Thomas E.

    2011-01-01

    MRI has played an important role in the diagnosis and management of cancer since it was first developed, but other modalities also continue to advance and provide complementary information on the status of tumors. In the future there will be a major continuing role for non-invasive imaging in order to obtain information on the location and extent of cancer, as well as assessments of tissue characteristics that can monitor and predict treatment response and guide patient management. Developments are currently being undertaken that aim to provide improved imaging methods for the detection and evaluation of tumors, for identifying important characteristics of tumors such as the expression levels of cell surface receptors that may dictate what types of therapy will be effective, and for evaluating their response to treatments. Molecular imaging techniques based mainly on radionuclide imaging can depict numerous, specific, cellular and molecular markers of disease and have unique potential to address important clinical and research challenges. In this review we consider what continuing and evolving roles will be played by MRI in this era of molecular imaging. We discuss some of the challenges for MRI of detecting imaging agents that report on molecular events, but highlight also the ability of MRI to assess other features such as cell density, blood flow and metabolism which are not specific hallmarks of cancer but which reflect molecular changes. We discuss the future role of MRI in cancer and describe the use of selected quantitative imaging techniques for characterizing tumors that can be translated to clinical applications, particularly in the context of evaluating novel treatments. PMID:21524870

  8. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  9. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Rauwerdink, Adam M.; Weaver, John B.

    2010-01-01

    Molecular binding is important in many venues including antibody binding for diagnostic and therapeutic agents and pharmaceutical function. We demonstrate that a method of measuring nanoparticle Brownian motion, termed magnetic spectroscopy of nanoparticle Brownian motion (MSB), can be used to monitor molecular binding and the bound fraction. It is plausible that MSB can be used to measure binding in vivo because the same signal has been used to image nanoparticles in nanogram quantities in vivo.

  10. Magnetocaloric effect and critical behavior in Mn2-imidazole-[Nb(CN)8] molecular magnetic sponge

    NASA Astrophysics Data System (ADS)

    Fitta, Magdalena; Pełka, Robert; Gajewski, Marcin; Mihalik, Marian; Zentkova, Maria; Pinkowicz, Dawid; Sieklucka, Barbara; Bałanda, Maria

    2015-12-01

    A comprehensive study of magnetocaloric effect (MCE) and critical behavior in the {Mn2(imH)2(H2O)4[Nb(CN)8]·4H2O}n molecular magnet is reported. The compound is an example of a magnetic sponge, where structural changes provoked by dehydration process lead to the increase of Tc critical temperature from 25 K for the as-synthesized sample (1) up to 60 K for the anhydrous one (2). MCE and critical behavior were investigated by magnetization measurements. The maximum value of magnetic entropy change ΔS, determined by the magnetization measurements for 1 is 6.70 J mol-1 K-1 (8.95 J kg-1 K-1) at μ0ΔH=5 T, while for 2 it is equal to 4.02 J mol-1 K-1 (7.73 J kg-1 K-1) at the same magnetic field change. The field dependence of MCE at Tc for 1 and 2 was consistent with critical exponents, which allowed to classify both phases to 3D Heisenberg universality class. The Tc-2/3 dependence of the maximum entropy change has been tested using data of 1 and 2 together with MCE data previously reported for other members of the ferrimagnetic Mn2-L-[Nb(CN)8] (L=imidazole, pyridazine and pyrazole) series. Experimental MCE results have been compared with the spin contribution to the magnetic entropy change estimated using a molecular field approximation.

  11. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  12. Structural, magnetic and optical properties of two concomitant molecular crystals

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Milne, Bruce; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Pereira da Silva, Pedro S.; Martín-Gil, Jesús

    2016-03-01

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Cu(II) ions assemble in alternating chains with Cu … Cu distances of 2.5685(4) and 3.1760(4) Å. The temperature dependence of the magnetic susceptibility reveals an antiferromagnetic interaction between the paddle-wheel copper centers with an exchange of -300 cm-1. The exchange integral was also determined by quantum chemical ab-initio calculations, using polarised and unpolarised basis sets reproducing well the experimental value. The second harmonic generation efficiency of a concomitantly crystallized material was evaluated and was found to be comparable to urea.

  13. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C.

    PubMed

    Türkmen, Deniz; Bereli, Nilay; Çorman, M Emin; Shaikh, Huma; Akgöl, Sinan; Denizli, Adil

    2014-10-01

    Controlled drug delivery system is a technique which has considerable recent potential in the fields of pharmacy and medicine. Mitomycin C is commonly used drug in the treatment of superficial bladder and breast cancers. In the present study, mitomycin C-imprinted magnetic poly(hydroxyethyl methacrylate)-based nanoparticles (MIMNs) were prepared using surfactant free emulsion polymerization for controlled delivery of mitomycin C. The MIMNs were characterized by fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, electron spin resonance, and elemental analysis. The average particle diameter of MIMNs was about 200 nm.

  14. Quantum tunneling of two coupled single-molecular magnets

    NASA Astrophysics Data System (ADS)

    Hu, Jianming; Chen, Zhide; Shen, Shunqing

    2003-03-01

    Jian-Ming Hu, Zhi-De Chen and Shun-Qing Shen Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong December 02, 2002 Very recently a supramolecular dimer of two single-molecule magnets (SMM) was reported to be synthesized successfully. Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by the numerical exact diagonalization method. The sweeping rate effect in the derivatives of hysteresis loops has been quantitatively investigated using the modified Landau-Zener model. In addiction we find that exchange coupling between the two SMMs provides a biased field to expel the tunneling between SMMs to two new resonant points via an intermediate state, and direct tunneling is prohibited. The model parameters are calculated for the dimer based on the tunneling process. The outcome indicates that the coupling effect will not change the parameters of each SMM too much at all. This work is supported by a CRCG grant of The University of Hong Kong.

  15. The quest for rationalizing the magnetism in purely organic semiquinone-bridged bisdithiazolyl molecular magnets.

    PubMed

    Fumanal, Maria; Deumal, Mercè

    2016-07-27

    Semiquinone-bridged bisdithiazolyl-based radicals (XBBO) are appealing purely organic magnetic building blocks for the synthesis of new functional materials. Remarkably, for the phenyl-derivative PhBBO, the rationalization of its magnetism becomes a proof of concept that DFT can dramatically fail to evaluate JAB magnetic interactions between purely organic radical pairs. Instead, wavefunction-based methods are required. Once JAB's are fully characterized, the magnetic topology of PhBBO is disclosed to consist of ferromagnetic FM π-stacks that are very weakly coupled (by FM and AFM JAB interactions). The magnetic susceptibility χT(T) and magnetization M(H) of PhBBO are then calculated using a first-principles bottom-up approach. The study of the unit cell contraction upon cooling from room temperature to zero-Kelvin is relevant to propose a suitable model for the phase transition that occurs at 4.5 K. A simplistic picture tells us that the antiparallel-aligned 1D-FM-chains convert into domains of weakly either FM- or AFM-coupled 1D-FM-chains. Accordingly, the presence of these domains may introduce geometrical spin frustration below 4.5 K.

  16. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts.

    PubMed

    Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro; Umebayashi, Yasuhiro

    2011-08-28

    Room temperature ionic liquids (ILs) are stable liquids composed of anions and cations. 1-ethyl-3-methyl-imidazolium (EMIm, EMI) is a popular and important cation that produces thermally stable ILs with various anions. In this study two amide-type anions, bis(trifluoro-methanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [(N(SO(2)F)(2), FSA, or FSI] were investigated by multinuclear NMR spectroscopy. In addition to EMIm-TFSA and EMIm-FSA, lithium-salt-doped binary systems were prepared (EMIm-TFSA-Li and EMIm-FSA-Li). The spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR spectroscopy and the correlation times of (1)H NMR, τ(c)(EMIm) (8 × 10(-10) to 3 × 10(-11) s) for the librational molecular motion of EMIm and those of (7)Li NMR, τ(c)(Li) (5 × 10(-9) to 2 × 10(-10) s) for a lithium jump were evaluated in the temperature range between 253 and 353 K. We found that the bulk viscosity (η) versus τ(c)(EMIm) and cation diffusion coefficient D(EMIm) versus the rate 1/τ(c)(EMIm) have good relationships. Similarly, linear relations were obtained for the η versus τ(c)(Li) and the lithium diffusion coefficient D(Li) versus the rate 1∕τ(c)(Li). The mean one-jump distances of Li were calculated from τ(c)(Li) and D(Li). The experimental values for the diffusion coefficients, ionic conductivity, viscosity, and density in our previous paper were analyzed by the Stokes-Einstein, Nernst-Einstein, and Stokes-Einstein-Debye equations for the neat and binary ILs to clarify the physicochemical properties and mobility of individual ions. The deviations from the classical equations are discussed.

  17. Molecular Imaging in Cardiovascular Magnetic Resonance Imaging: Current Perspective and Future Potential

    PubMed Central

    Sosnovik, David E.

    2008-01-01

    The development of novel imaging agents and techniques is allowing some biological events to be imaged in vivo with magnetic resonance imaging (MRI) at the cellular and subcellular level. In this paper, the use of novel gadolinium chelates and superparamagnetic iron oxide nanoparticles for molecular MRI of the cardiovascular system is extensively reviewed. The physical properties of these imaging agents and the pulse sequences best suited to their visualization are extensively discussed. The application of molecular MRI in diseases of the vasculature and myocardium is then reviewed. The clinical experience to date, as well as the promise and potential impact of molecular MRI, is extensively discussed. PMID:18690161

  18. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.

    PubMed

    Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing

    2007-04-01

    The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.

  19. Rotational energy of the hydrogen molecular ion in a magnetic field

    SciTech Connect

    Maluendes, S.A.; Fernandez, F.M.; Castro, E.A.

    1983-10-01

    A general method which combines hypervirial relations with the Hellmann-Feynman theorem and perturbation theory is applied in order to calculate the rotational eigenvalues of the hydrogen molecular ion in a magnetic field. Analytical expressions as well as numerical results are presented for both low and high field strengths.

  20. Chromophores arranged as "magnetic meta atoms": building blocks for molecular metamaterials.

    PubMed

    Langhals, Heinz; Hofer, Alexander

    2013-06-21

    Benzoperylenetriscarboximides were parallel arranged by stiff spacers where exciton interactions could be controlled by their distance. The most bathochromic electronic transition of the chromophores essentially exhibits only an electric component where an orthogonal magnetic component was established by the distance-controlled interaction of chromophores. Such arrangements were discussed as building blocks for molecular metamaterials.

  1. Microwave-free nuclear magnetic resonance at molecular scales

    NASA Astrophysics Data System (ADS)

    Wood, James D. A.; Tetienne, Jean-Philippe; Broadway, David A.; Hall, Liam T.; Simpson, David A.; Stacey, Alastair; Hollenberg, Lloyd C. L.

    2017-07-01

    The implementation of nuclear magnetic resonance (NMR) at the nanoscale is a major challenge, as the resolution of conventional methods is limited to mesoscopic scales. Approaches based on quantum spin probes, such as the nitrogen-vacancy (NV) centre in diamond, have achieved nano-NMR under ambient conditions. However, the measurement protocols require application of complex microwave pulse sequences of high precision and relatively high power, placing limitations on the design and scalability of these techniques. Here we demonstrate NMR on a nanoscale organic environment of proton spins using the NV centre while eliminating the need for microwave manipulation of either the NV or the environmental spin states. We also show that the sensitivity of our significantly simplified approach matches that of existing techniques using the NV centre. Removing the requirement for coherent manipulation while maintaining measurement sensitivity represents a significant step towards the development of robust, non-invasive nanoscale NMR probes.

  2. Microwave-free nuclear magnetic resonance at molecular scales.

    PubMed

    Wood, James D A; Tetienne, Jean-Philippe; Broadway, David A; Hall, Liam T; Simpson, David A; Stacey, Alastair; Hollenberg, Lloyd C L

    2017-07-03

    The implementation of nuclear magnetic resonance (NMR) at the nanoscale is a major challenge, as the resolution of conventional methods is limited to mesoscopic scales. Approaches based on quantum spin probes, such as the nitrogen-vacancy (NV) centre in diamond, have achieved nano-NMR under ambient conditions. However, the measurement protocols require application of complex microwave pulse sequences of high precision and relatively high power, placing limitations on the design and scalability of these techniques. Here we demonstrate NMR on a nanoscale organic environment of proton spins using the NV centre while eliminating the need for microwave manipulation of either the NV or the environmental spin states. We also show that the sensitivity of our significantly simplified approach matches that of existing techniques using the NV centre. Removing the requirement for coherent manipulation while maintaining measurement sensitivity represents a significant step towards the development of robust, non-invasive nanoscale NMR probes.

  3. Microwave-free nuclear magnetic resonance at molecular scales

    PubMed Central

    Wood, James D. A.; Tetienne, Jean-Philippe; Broadway, David A.; Hall, Liam T.; Simpson, David A.; Stacey, Alastair

    2017-01-01

    The implementation of nuclear magnetic resonance (NMR) at the nanoscale is a major challenge, as the resolution of conventional methods is limited to mesoscopic scales. Approaches based on quantum spin probes, such as the nitrogen-vacancy (NV) centre in diamond, have achieved nano-NMR under ambient conditions. However, the measurement protocols require application of complex microwave pulse sequences of high precision and relatively high power, placing limitations on the design and scalability of these techniques. Here we demonstrate NMR on a nanoscale organic environment of proton spins using the NV centre while eliminating the need for microwave manipulation of either the NV or the environmental spin states. We also show that the sensitivity of our significantly simplified approach matches that of existing techniques using the NV centre. Removing the requirement for coherent manipulation while maintaining measurement sensitivity represents a significant step towards the development of robust, non-invasive nanoscale NMR probes. PMID:28671183

  4. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  5. Suppression of quantum phase interference in the molecular magnet Fe8 with dipolar-dipolar interaction

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-De; Liang, J.-Q.; Shen, Shun-Qing

    2002-09-01

    Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution, which subsequently affects the quantum steps of the hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunneling in the molecular magnet Fe8, which explains why the quenching points of tunnel splitting between odd and even resonant tunneling predicted theoretically were not observed experimentally.

  6. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    NASA Astrophysics Data System (ADS)

    Melenev, Petr

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces.

  7. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    PubMed

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  8. [Experiment and analyse on the effect of magnetic nanoparticles upon relaxation time of proton in molecular recognition by MRI].

    PubMed

    Hu, Lili; Song, Tao; Yang, Wenhui; Wang, Ming; Zhang, Fang; Tao, Chunjing

    2007-06-01

    To research on the effect of three different magnetic nanoparticles upon relaxation time of proton. The detection by magnetic resonance imaging (MRI) indicates that there is the effect of marked difference to right control experiment and to analyze the difference from theory. The result discloses that will be able to perform the experiment of molecular recognition using magnetic nanoparticles later.

  9. Magnetic Properties of a Heisenberg Coupled-Trimer Molecular Magnet: General

    SciTech Connect

    Haraldsen, Jason T; Barnes, Ted {F E }; Sinclair IV, John W; Thompson, James R; Sacci, Robert L.; Turner, John F. C.

    2009-01-01

    We report predictions for the energy eigenstates and inelastic neutron scattering excitations of an isotropic Heisenberg hexamer consisting of general spin S and S′ trimers. Specializing to spin-1/2 ions, we give analytic results for the energy excitations, magnetic susceptibility, and inelastic neutron scattering intensities for this hexamer system. To examine this model further, we compare these calculations to the measured magnetic susceptibility of a vanadium material, which is considered to be well defined magnetically as an isolated S = 1/2 V4+ trimer model. Using our model, we determine the amount of inter-trimer coupling that can be accommodated by the measured susceptibility, and predict the inelastic neutron scattering spectrum for comparison with future measurements.

  10. Transient magnetic tunneling mediated by a molecular bridge in the junction region

    NASA Astrophysics Data System (ADS)

    Kalvová, A.; Špička, V.; Velický, B.

    2014-07-01

    This paper extends our recent theoretical study of transient currents in molecular bridge junctions [1] to magnetic tunneling. Presently, we calculate the excess magnetic tunneling through the molecular bridge shunting the junction. The system is represented by two ferromagnetic electrodes bridged by a molecular size island with one electronic level and a local Hubbard type correlation. The island is linked with the electrodes by tunneling junctions whose coupling strength is assumed to undergo rapid changes affecting the connectivity of the system. We employ the non-equilibrium Green's functions. The numerical solution is obtained solving the real-time Dyson equation in the integro-differential form self-consistently. The switching events controlling the junctions give rise to transient changes of magnetisation of the island. They strongly depend on the static galvanic bias between the electrodes, mutual alignment of their magnetisation and on the time scale of the switching.

  11. A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate.

    PubMed

    Zhang, Zhaohui; Luo, Lijuan; Cai, Rong; Chen, Hongjun

    2013-11-15

    A highly sensitive and selective molecularly imprinted (MIP) sensor combined with magnetic molecularly imprinted solid phase extraction (MMISPE) was developed for the determination of dibutyl phthalate (DBP) in complex matrixes. The magnetic molecularly imprinted polymer (MMIP) was synthesized as solid phase extraction (SPE) sorbet to extract DBP from complex matrixes and as sensing element to improve the selectivity of the imprinted sensor. The morphologies of MMIP and MIP-sensor were characterized by using scanning electron microscope (SEM) and transmission electron microscopy (TEM). The electrochemical performances of MIP-sensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The conditions of preconcentration, elution and electrochemical determination were studied in detail. Under the optimized experimental conditions, the response currents of the MIP-sensor exhibited a linear relationship towards DBP concentrations ranging from 1.0 × 10(-8)g/L to 1.0 × 10(-3)g/L. The limit of detection of the MMIP-sensor coupled with the MMISPE was calculated as 0.052 ng/L. The MMIP-sensor coupled with the MMISPE was applied to detect DBP in complex samples successfully.

  12. Molecular magnetic properties of heteroporphyrins: a theoretical analysis.

    PubMed

    Campomanes, Pablo; Menéndez, María Isabel; Cárdenas-Jirón, Gloria Inés; Sordo, Tomás Luis

    2007-11-14

    B3LYP/6-31G(d) optimization of porphyrin, tetraphenylporphyrin and their 21,23-diheteroatom substituted derivatives with O, S, and Se heteroatoms was performed. A planar macrocycle was found in all cases except 21,23-dioxatetraphenylporphyrin which presents only slight deviations from planarity. A Bader analysis uncovers the presence of S-S and Se-Se interactions in the four corresponding heteroporphyrins, which appreciably distort the original unsubstituted macrocycles. In the minimum energy structures of heterotetraphenylporphyrins the four meso phenyl groups slant alternatively to right or left so that the two pairs of opposite phenyls present a staggered conformation. The pi current induced by a perpendicular magnetic field in porphyrin bifurcates across both types of pyrrole subunits but the presence of O, S and Se heteroatoms in 21,23-diheteroporphyrins causes a diminution of the current density through the inner section of the two heterorings and, consequently, the current path goes then through the outer section of these rings. The NICS values at the ring critical points of the heterorings are much larger (in absolute value) than those at the pyrrole ring critical points but appreciably smaller than that at the ring critical point of a pyrrole molecule. In agreement with experimental data the (1)H NMR present appreciable downfield shifts for the beta H atoms of the heterorings in the 21,23-heterosubstituted molecules.

  13. Mapping Magnetic Fields in Molecular Clouds with the CN Zeeman Effect

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard

    2017-06-01

    The role of magnetic fields in star formation remains controversial. Observations of the Zeeman effect provide the only available technique for directly measuring the strengths of magnetic fields in molecular clouds. We have mapped the Zeeman effect toward the massive star forming complex W3OH in the CN N=2-1 transition at 226 GHz with both the IRAM 30-m telescope and the CARMA array and have combined these data to produce a fully spatially sampled map of the magnetic field along the line of sight, with approximately 4 arcsec resolution. These are both the first CN Zeeman maps and the first detections of the Zeeman effect in the CN N=2-1 transition. We will present this map and discuss the astrophysical implications. This work may be considered to be a pathfinder for future similar ALMA observations, which have the potential to advance considerably our understanding of the role of magnetic fields in the star formation process.

  14. The Hanle Effect in Atomic and Molecular Lines: A New Look at the Sun's Hidden Magnetism

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Asensio Ramos, A.; Shchukina, N.

    2006-12-01

    This paper reviews some of the most recent advances in the application of the Hanle effect to solar physics, and how these developments are allowing us to explore the magnetism of the photospheric regions that look ``empty'' in solar magnetograms--that is, the Sun's ``hidden'' magnetism. In particular, we show how a joint analysis of the Hanle effect in atomic and molecular lines indicates that there is a vast amount of hidden magnetic energy and unsigned magnetic flux localized in the (intergranular) downflowing regions of the quiet solar photosphere, carried mainly by tangled fields at sub-resolution scales with strengths between the equipartition field values and ˜1 kG. This article combines in one contribution Trujillo Bueno's invited keynote paper and the contributed papers by Asensio Ramos & Trujillo Bueno and by Shchukina & Trujillo Bueno.

  15. Magnetic field induced tunneling and relaxation between orthogonal configurations in solids and molecular systems

    NASA Astrophysics Data System (ADS)

    Averkiev, N. S.; Bersuker, I. B.; Gudkov, V. V.; Zhevstovskikh, I. V.; Baryshnikov, K. A.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Korostelin, Yu. V.

    2017-09-01

    We report the effect of magnetic field induced quantum tunneling and relaxation transitions between orthogonal configurations in polyatomic systems where no tunneling is expected. Typical situations of this kind occur in molecular systems and local centers in crystals in ground and excited electronic T states, subject to the T ⊗e problem of the Jahn-Teller effect, where the wave functions of the three tetragonally distorted configurations are orthogonal. A detailed microscopic theory of this effect shows how the magnetic field violates the orthogonality between the latter allowing for tunneling and relaxations, which decrease in strong fields due to the induced decoherence. The novel effect is demonstrated experimentally as a big, sharp peak in ultrasound attenuation by Cr2 + centers in ZnSe:Cr2 + in the magnetic field B =0.15 T at the temperature below 8 K. It may influence a variety of magnetic, electronic, and photonic properties of any system in an electronic T state.

  16. Control and manipulation of quantum spin switching and spin correlations in [Tb2] molecular magnet under a pulse magnetic field

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Bazhanov, Dmitry I.

    2017-10-01

    A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and compared in details with the results obtained by means of conventional quantum mechanics. It is shown that the various expectation values of the spin operators and a study of their corresponding probability distributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2] system. The obtained results reveal that the properties of spin-spin correlators are responsible for the entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum circuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and SWAP gates.

  17. Spectroscopic Investigation of the Origin of Magnetic Bistability in Molecular Nanomagnets

    NASA Astrophysics Data System (ADS)

    van Slageren, Joris

    Molecular nanomagnets (MNMs) are coordination complexes consisting of one of more transition metal and/or f-element ions bridged and surrounded by organic ligands. Some of these can be magnetized in a magnetic field, and remain magnetized after the field is switched off. Because of this, MNMs have been proposed for magnetic data storage applications, where up to 1000 times higher data densities than currently possible can be obtained. Other MNMs were shown to display quantum coherence, and, as a consequence, are suitable as quantum bits. Quantum bits are the building blocks of a quantum computer, which will be able to carry out calculations that will never be possible with a conventional computer. The magnetic bistability of MNMs originates from the magnetic anisotropy of the magnetic ions, which creates an energy barrier between up and down orientations of the magnetic moment. Currently, most work in the area focuses on complexes of either lanthanide ions or low-coordinate transition metal ions. Synthetic chemical efforts have led to a large number of novel materials, but the rate of improvement has been slow. Therefore a better understanding of the origin of the magnetic anisotropy is clearly necessary. To this end we have applied a wide range of advanced spectroscopic techniques, ranging from different electron spin resonance techniques at frequencies up to the terahertz domain to optical techniques, including luminescence and magnetic circular dichroism spectroscopy. We will discuss two examples, one from the area of lanthanide MNMs, one a transition metal MNM (unpublished). This work was financially supported by DFG, DAAD and COST CM1006 EUFEN.

  18. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis

    NASA Astrophysics Data System (ADS)

    Florescu, Octavian; Wang, Kevan; Au, Patrick; Tang, Jimmy; Harris, Eva; Beatty, P. Robert; Boser, Bernhard E.

    2010-03-01

    We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 μm wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in the IC. After sedimentation, the magnetic beads that did not bind strongly to the functionalized surface of the IC through a specific biochemical complex were removed by a magnetic separation force generated by flowing current through another conductor placed laterally to the detection area. As the spherical bead pivoted on the surface of the chip, the lateral magnetic force was further amplified by mechanical leveraging, and 50 mA of current flowing through the separation conductor placed 18 μm away from the bead resulted in 7.5 pN of tensile force on the biomolecular tether immobilizing the bead. This force proved high enough to break nonspecific interactions while leaving specific antibody-antigen bonds intact. A sandwich capture immunoassay on purified human immunoglobulin G showed strong correlation with a control enzyme linked immunosorbent assay and a detection limit of 10 ng/ml or 70 pM. The beads bound to the detection area after on-chip magnetic separation were detected optically. To implement a fully integrated molecular diagnostics platform, the on-chip magnetic separation functionality presented in this work can be readily combine with state-of-the art CMOS-based magnetic bead detection technology.

  19. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging

    PubMed Central

    Heidt, Timo; Ehrismann, Simon; Hövener, Jan-Bernd; Neudorfer, Irene; Hilgendorf, Ingo; Reisert, Marco; Hagemeyer, Christoph E.; Zirlik, Andreas; Reinöhl, Jochen; Bode, Christoph; Peter, Karlheinz; von Elverfeldt, Dominik; von zur Muhlen, Constantin

    2016-01-01

    Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism. PMID:27138487

  1. Composed planar Hall effect sensors with dual-mode operation

    NASA Astrophysics Data System (ADS)

    Mor, Vladislav; Roy, Debangsu; Schultz, Moty; Klein, Lior

    2016-02-01

    We present a composed planar Hall effect sensor with two modes of operation: (a) an ON mode where the composed sensor responds to magnetic field excitations similarly to the response of a regular planar Hall effect sensor, and (b) an OFF mode where the response is negligible. The composed planar Hall effect sensor switches from the OFF mode to the ON mode when it is exposed to a magnetic field which exceeds a certain threshold determined by the sensor design. The features of this sensor make it useful as a switch triggered by magnetic field and as a sensing device with memory, as its mode of operation indicates exposure to a magnetic field larger than a certain threshold without the need to be activated during the exposure itself.

  2. Alternating current magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a micro superconducting quantum interference device

    SciTech Connect

    Martínez-Pérez, M. J.; Luis, F.; Bellido, E.; Ruiz-Molina, D.; Miguel, R. de; Sesé, J.; Lostao, A.; and others

    2011-07-18

    We report the controlled integration, via dip pen nanolithography, of monolayer dots of ferritin-based CoO nanoparticles (12 μ{sub B}) into the most sensitive areas of a microSQUID sensor. The nearly optimum flux coupling between these nanomagnets and the microSQUID improves the achievable sensitivity by a factor 10{sup 2}, enabling us to measure the linear susceptibility of the molecular array down to very low temperatures (13 mK). This method opens the possibility of applying ac susceptibility experiments to characterize two-dimensional arrays of single molecule magnets within a wide range of temperatures and frequencies.

  3. On the valve nature of a monolayer of aligned molecular magnets in tunneling spin-polarized electrons: Towards organic molecular spintronics

    SciTech Connect

    Chakrabarti, Sudipto; Pal, Amlan J.

    2014-01-06

    We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.

  4. Magnetic trapping with simultaneous photoacoustic detection of molecularly targeted rare circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2013-03-01

    Photoacoustic (PA) imaging has been widely used in molecular imaging to detect diseased cells by targeting them with nanoparticle-based contrast agents. However, the sensitivity and specificity are easily degraded because contrast agent signals can be masked by the background. Magnetomotive photoacoustic imaging uses a new type of multifunctional composite particle combining an optically absorptive gold nanorod core and magnetic nanospheres, which can potentially accumulate and concentrate targeted cells while simultaneously enhancing their specific contrast compared to background signals. In this study, HeLa cells molecularly targeted using nanocomposites with folic acid mimicking targeted rare circulating tumor cells (CTCs) were circulated at a 6 ml/min flow rate for trapping and imaging studies. Preliminary results show that the cells accumulate rapidly in the presence of an externally applied magnetic field produced by a dual magnet system. The sensitivity of the current system can reach up to 1 cell/ml in clear water. By manipulating the trapped cells magnetically, the specificity of detecting cells in highly absorptive ink solution can be enhanced with 16.98 dB background suppression by applying motion filtering on PA signals to remove unwanted background signals insensitive to the magnetic field. The results appear promising for future preclinical studies on a small animal model and ultimate clinical detection of rare CTCs in the vasculature.

  5. Magnetism on a Mesoscopic Scale: Molecular Nanomagnets Bridging Quantum and Classical Physics

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Nikolaos P.; Sundt, Alexander; Nehrkorn, Joscha; Machens, Anna; Waldmann, Oliver

    2011-07-01

    In recent years polynuclear transition metal molecules have been synthesized and proposed for example as magnetic storage units or qubits in quantum computers. They are known as molecular nanomagnets and belong in the class of mesoscopic systems, which are large enough to display many-body effects but small enough to be away from the finite-size scaling regime. It is a challenge for physicists to understand their magnetic properties, and for synthetic chemists to efficiently tailor them by assembling fundamental units. They are complementary to artificially engineered spin systems for surface deposition, as they support a wider variety of complex states in their low energy spectrum. Here a few characteristic examples of molecular nanomagnets showcasing unusual many-body effects are presented. Antiferromagnetic wheels and chains can be described in classical terms for small sizes and large spins to a great extent, even though their wavefunctions do not significantly overlap with semiclassical configurations. Hence, surprisingly, for them the transition from the classical to the quantum regime is blurred. A specific example is the Fe18 wheel, which displays quantum phase interference by allowing Néel vector tunneling in a magnetic field. Finally, the Co5Cl single-molecule magnet is shown to have an unusual anisotropic response to a magnetic field.

  6. Self-Assembled DNA Structures for Molecular Force Measurement: A Magnetically Actuated Approach

    NASA Astrophysics Data System (ADS)

    Armstrong, M.; Lauback, S.; Miller, C.; Peace, C.; Castro, C.; Sooryakumar, R.

    2015-03-01

    Understanding molecular forces is important to comprehend many of the underlying properties of molecular machines and biological processes. The relevant forces in these cases often lie in the picoNewton range, and thus experiments on individual biomolecules must integrate techniques capable of measuring such forces. A mechanical system to measure molecular forces associated with interacting DNA strands is being developed by using self-assembled DNA nanostructures and super-paramagnetic beads. The DNA nanostructure consists of single-stranded DNA molecules which can be folded into a precise compact geometry using hundreds of short oligonucleotides, i.e., staples, via programmed molecular self-assembly. These nanostructures can be polymerized into micron-scale filaments. By functionalizing the filament ends with bispecific conjugate staples, the structure can be attached to a surface as well as labeled with magnetic beads in order to apply a force on the system. External magnetic fields provide the means to maneuver and manipulate the magnetically labeled DNA structures. Preliminary findings associated with the DNA constructs and their manipulation lay the groundwork to establish real-time control of DNA nanodevices with micromanipulation.

  7. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  8. The Exploitation of Versatile Building Blocks for the Self-Assembly of Novel Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Pilkington, M.; Gross, M.; Franz, P.; Biner, M.; Decurtins, S.; Stoeckli-Evans, H.; Neels, A.

    2001-07-01

    Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in "Magnetoscience-From Molecules to Materials," Wiley-VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in "Magnetoscience-From Molecules to Materials"). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to

  9. Field-dependent superradiant quantum phase transition of molecular magnets in microwave cavities

    NASA Astrophysics Data System (ADS)

    Stepanenko, Dimitrije; Trif, Mircea; Tsyplyatyev, Oleksandr; Loss, Daniel

    2016-09-01

    We study a superradiant quantum phase transition in the model of triangular molecular magnets coupled to the electric component of a microwave cavity field. The transition occurs when the coupling strength exceeds a critical value, d c, which, in sharp contrast to the standard two-level emitters, can be tuned by an external magnetic field. In addition to emitted radiation, the molecules develop an in-plane electric dipole moment at the transition. We estimate that the transition can be detected in state-of-the-art microwave cavities if their electric field couples to a crystal containing a sufficient number of oriented molecules.

  10. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  11. Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.

    2013-10-01

    The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.

  12. Electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires.

    PubMed

    Gazquez, Jaume; Carretero-Genevrier, Adrián; Gich, Martí; Mestres, Narcís; Varela, María

    2014-06-01

    In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (T c >500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

  13. Mn Porphyrins as Novel Molecular Magnetic Resonance Imaging Contrast Agents

    PubMed Central

    Mouraviev, Vladimir; Venkatraman, Talaignair N.; Tovmasyan, Artak; Kimura, Masaki; Tsivian, Matvey; Mouravieva, Vladimira; Polascik, Tom J.; Wang, Haichen; Amrhein, Timothy J.; Batinic-Haberle, Ines

    2012-01-01

    Abstract Background and Purpose In this study, we investigated the potential of a new class of therapeutic Mn porphyrins as molecular MRI probes for prostate cancer imaging. Two compounds of different bioavailibility were investigated: Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+) and Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP5+). These compounds have previously been shown to have adjunctive antineoplastic activity through their actions as powerful superoxide dismutase mimics, peroxynitrite scavengers, and modulators of cellular redox-based signaling pathways. Strong paramagnetic MRI contrast properties and affinity for cancer cells suggest their potential application as novel diagnostic imaging agents. Materials and Methods MRI experiments were performed at 7.0T on a Bruker Biospec horizontal bore scanner. All in-vivo experiments were performed on 12 C57 black mice implanted with RM-9 prostate cancer cells on the hind limb. Two mg/kg of MnTnHex-2-PyP5+ (n=6) and 8 mg/kg MnTE-2-PyP5+ (n=6) were administered intraperitoneally 90 minutes before imaging. All the images were collected using a volume coil and processed using Paravision 4.0. Results Phantom studies reveal remarkably high T1 relaxivity changes for both metalloporphyrins, which are twofold to threefold higher than commercially available gadolinium chelates. Observable detection limits using conventional T1-weighted MRI are in the low micromolar range for both compounds. In vivo, MR relaxation changes in prostate tumor xenografts were readily observed after a single injection of either MnTE-2-PyP5+or MnTnHex-2-PyP5+, with tumor contrast to background ratio greatest after MnTE-2-PyP5+ administration. Conclusion After a single dose of MnTE-2-PyP5+, contrast changes in prostate tumors are up to sixfold greater than in surrounding, noncancerous tissues, suggesting the potential use of this metalloporphyrin as a novel diagnostic probe for detecting prostate

  14. Mn porphyrins as novel molecular magnetic resonance imaging contrast agents.

    PubMed

    Mouraviev, Vladimir; Venkatraman, Talaignair N; Tovmasyan, Artak; Kimura, Masaki; Tsivian, Matvey; Mouravieva, Vladimira; Polascik, Tom J; Wang, Haichen; Amrhein, Timothy J; Batinic-Haberle, Ines; Lascola, Christopher

    2012-11-01

    In this study, we investigated the potential of a new class of therapeutic Mn porphyrins as molecular MRI probes for prostate cancer imaging. Two compounds of different bioavailibility were investigated: Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) and Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)). These compounds have previously been shown to have adjunctive antineoplastic activity through their actions as powerful superoxide dismutase mimics, peroxynitrite scavengers, and modulators of cellular redox-based signaling pathways. Strong paramagnetic MRI contrast properties and affinity for cancer cells suggest their potential application as novel diagnostic imaging agents. MRI experiments were performed at 7.0T on a Bruker Biospec horizontal bore scanner. All in-vivo experiments were performed on 12 C57 black mice implanted with RM-9 prostate cancer cells on the hind limb. Two mg/kg of MnTnHex-2-PyP(5+) (n=6) and 8 mg/kg MnTE-2-PyP(5+) (n=6) were administered intraperitoneally 90 minutes before imaging. All the images were collected using a volume coil and processed using Paravision 4.0. Phantom studies reveal remarkably high T1 relaxivity changes for both metalloporphyrins, which are twofold to threefold higher than commercially available gadolinium chelates. Observable detection limits using conventional T1-weighted MRI are in the low micromolar range for both compounds. In vivo, MR relaxation changes in prostate tumor xenografts were readily observed after a single injection of either MnTE-2-PyP(5+)or MnTnHex-2-PyP(5+), with tumor contrast to background ratio greatest after MnTE-2-PyP(5+) administration. After a single dose of MnTE-2-PyP(5+), contrast changes in prostate tumors are up to sixfold greater than in surrounding, noncancerous tissues, suggesting the potential use of this metalloporphyrin as a novel diagnostic probe for detecting prostate malignancy using MRI.

  15. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  16. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging

    PubMed Central

    Huang, Ching-Hui; Tsourkas, Andrew

    2013-01-01

    As we move towards an era of personalized medicine, molecular imaging contrast agents are likely to see an increasing presence in routine clinical practice. Magnetic resonance (MR) imaging has garnered particular interest as a platform for molecular imaging applications due its ability to monitor anatomical changes concomitant with physiologic and molecular changes. One promising new direction in the development of MR contrast agents involves the labeling and/or loading of nanoparticles with gadolinium (Gd). These nanoplatforms are capable of carrying large payloads of Gd, thus providing the requisite sensitivity to detect molecular signatures within disease pathologies. In this review, we discuss some of the progress that has recently been made in the development of Gd-based macromolecules and nanoparticles and outline some of the physical and chemical properties that will be important to incorporate into the next generation of contrast agents, including high Gd chelate stability, high “relaxivity per particle” and “relaxivity density”, and biodegradability. PMID:23432004

  17. Guidelines for Coaching Student Composers.

    ERIC Educational Resources Information Center

    Wilson, Dana

    2001-01-01

    Focuses on teaching students how to compose music. Addresses issues, such as how to get the students started and types of questions to ask students about their compositions. Discusses the musical elements involved in composition, such as melody, harmony, rhythm and meter, timbre, texture, and formal design. (CMK)

  18. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    PubMed

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  19. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules.

    PubMed

    Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I

    2017-02-15

    Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets.

  20. [Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin].

    PubMed

    Chen, Langxing; Liu, Yuxing; He, Xiwen; Zhang, Yukui

    2015-05-01

    The uniform core-shell nanostructured magnetic molecularly imprinted polymers (MIPs) were synthesized using antibiotic nafcillin as a template. In this protocol, the magnetite nanoparticles (NPs) were synthesized by the solvothermal reaction firstly. Subsequently, the vinyl groups were grated onto silica-modified Fe3O4 surface by 3-methacryloyloxypropyltrimethoxysilane via sol-gel method. Finally, the nafcillin-MIPs film was formed on the surface of Fe3O4 @ SiO2 by the copolymerization of vinyl end group with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule. The morphological and magnetic characteristics of the MIPs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The obtained spherical magnetic MIPs with diameters of about 320 nm had good monodispersity. The static binding experiment was carried out to evaluate the properties of magnetic MIPs and non imprinted polymers (NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity to template and good selectivity. The imprinting factor and the maximum adsorption capacity of Fe3O4 @ MIPs to nafcillin were 2.46 and 50.7 mg/g, respectively. It is expected that the prepared magnetic MIPs could be used for the enrichment of nafcillin in complex samples.

  1. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  2. Finite-temperature decoherence of spin states in a {Cu3} single molecular magnet

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Wang, Xiaoqun; Liu, Chen; Zhu, Shiqun

    2013-01-01

    We investigate the quantum evolution of spin states of a single molecular magnet in a local electric field. The decoherence of a {Cu3} single molecular magnet weakly coupled to a thermal bosonic environment can be analysed by the spin-boson model. Using the finite-temperature time-convolutionless quantum master equation, we obtain the analytical expression of the reduced density matrix of the system in the secular approximation. The suppressed and revived dynamical behaviour of the spin states are presented by the oscillation of the chirality spin polarization on the time scale of the correlation time of the environment. The quantum decoherence can be effectively restrained with the help of the manipulation of a local electric field and the environment spectral density function. Under the influence of the dissipation, the pointer states measured by the von Neumann entropy are calculated to manifest the entanglement property of the system-environment model.

  3. Evidence for entanglement at high temperatures in an engineered molecular magnet

    SciTech Connect

    Reis, Mario S; Soriano, Stephane; Moreira Dos Santos, Antonio F; Sales, Brian C; Soares-Pinto, D O; Brandao, Paula

    2012-01-01

    The molecular compound [Fe-2(mu(2)-oxo)(C3H4N2)(6)(C2O4)(2)] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing.

  4. Magnetic fields in molecular clouds: Limitations of the analysis of Zeeman observations

    NASA Astrophysics Data System (ADS)

    Brauer, R.; Wolf, S.; Reissl, S.; Ober, F.

    2017-05-01

    Context. Observations of Zeeman split spectral lines represent an important approach to derive the structure and strength of magnetic fields in molecular clouds. In contrast to the uncertainty of the spectral line observation itself, the uncertainty of the analysis method to derive the magnetic field strength from these observations has so far not been well characterized. Aims: We investigate the impact of several physical quantities on the uncertainty of the analysis method, which is used to derive the line-of-sight (LOS) magnetic field strength from Zeeman split spectral lines. These quantities are the density, temperature, velocity, and magnetic field strength. Methods: We simulated the Zeeman splitting of the 1665 MHz OH line with the 3D radiative transfer (RT) extension ZRAD. This extension is based on the line RT code Mol3D and has been developed for the POLArized RadIation Simulator POLARIS. Results: Observations of the OH Zeeman effect in typical molecular clouds are not significantly affected by the uncertainty of the analysis method. However, some observations obtained a magnetic field strength of more than 300 μG, which may result in an uncertainty of the analysis method of > 10%. We derived an approximation to quantify the range of parameters in which the analysis method works accurately enough and provide factors to convert our results to other spectral lines and species as well. We applied these conversion factors to CN and found that observations of the CN Zeeman effect in typical molecular clouds are not significantly affected by the uncertainty of the analysis method. In addition, we found that the density has almost no impact on the uncertainty of the analysis method, unless it reaches values higher than those typically found in molecular clouds (nH ≫ 107 cm-3). Furthermore, the uncertainty of the analysis method increases if both the gas velocity and magnetic field show significant variations along the LOS. However, this increase should be

  5. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields.

    PubMed

    Binhi, V N; Savin, A V

    2002-05-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display "windows" in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 microT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those "windows." It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Gamma(-1) of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 A.

  6. Spin-Parity Behavior in the Exchange-Coupled Lanthanoid-Nitroxide Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Ishida, T.

    2017-05-01

    To develop lanthanoid-based magnetic materials and relevant devices, reliable prescriptions for molecular/crystal design have long been desired. Ln3+-ion dependence on the molecular magnetism was investigated in the isomorphous series [Ln(hfac)3(2pyNO)] (Ln = Tb, Dy, Ho, Er), where 2pyNO stands for tert-butyl 2-pyridyl nitroxide as a paramagnetic ligand, and hfac for 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. The slow magnetization reversal was evaluated as an indication of single-molecule magnets (SMMs) by out-of-phase ac magnetic susceptibility χ”. Whereas the Tb3+ (4f8) and Ho3+ (4f10) derivatives exhibited frequency-dependent χ”, practically null χ” was recorded for the Dy3+(4f9) and Er3+ (4f11) derivatives. As for another series with Ln/radical = 1/2, [Ln(hfac)3(TEMPO)2] complexes were prepared (Ln = Tb, Dy, Ho, Er, Tm; TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl). The Dy3+ and Er3+ derivatives showed appreciable χ”, but the Tb3+, Ho3+, and Tm3+ derivatives did not. Thus, the S = 1/2 paramagnetic ligands play a role of a spin-parity switch to regulate whether the compound behaves as an SMM. In the strongly exchange-coupled regime owing to the direct radical coordination bond, the whole molecular electron counting may provide a useful criterion to predict Kramers molecules and accordingly to explore potential SMM candidates.

  7. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample.

    PubMed

    Zhao, Man; Zhang, Cong; Zhang, Ying; Guo, Xianzhi; Yan, Husheng; Zhang, Huiqi

    2014-02-28

    A facile and highly efficient approach to obtain narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with molecular recognition ability in a real biological sample as good as what they show in the organic solvent-based media is described for the first time.

  8. Molecular Location Sensing Approach by Anisotropic Magnetism of an Endohedral Metallofullerene.

    PubMed

    Takano, Yuta; Tashita, Ryo; Suzuki, Mitsuaki; Nagase, Shigeru; Imahori, Hiroshi; Akasaka, Takeshi

    2016-06-29

    Location recognition at the molecular scale provides valuable information about the nature of functional molecular materials. This study presents a novel location sensing approach based on an endohedral metallofullerene, Ce@C82, using its anisotropic magnetic properties, which lead to temperature-dependent paramagnetic shifts in (1)H NMR spectra. Five site-isomers of Ce@C82CH2-3,5-C6H3Me2 were synthesized to demonstrate the spatial sensing ability of Ce@C82. Single-crystal structures, absorption spectra, and density functional theory calculations were used to select the plausible addition positions in the radical coupling reaction, which preferentially happens on the carbon atoms with high electron density of the singly occupied molecular orbital (SOMO) and positive charge. Temperature-dependent NMR measurements demonstrated unique paramagnetic shifts of the (1)H peaks, which were derived from the anisotropic magnetism of the f-electron in the Ce atom of the isomers. It was found that the magnetic anisotropy axes can be easily predicted by theoretical calculations using the Gaussian 09 package. Further analysis revealed that the temperature-dependent trend in the shifts is clearly predictable from the distance and relative position of the proton from the Ce atom. Hence, the Ce-encapsulated metallofullerene Ce@C82 can provide spatial location information about nearby atoms through the temperature-dependent paramagnetic shifts of its NMR signals. It can act as a molecular probe for location sensing by utilizing the anisotropic magnetism of the encapsulated Ce atom. The potentially low toxicity and stability of the endohedral fullerene would make Ce@C82 suitable for applications in biology and material science.

  9. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  10. Magnetic properties, crystal and molecular stucture of (NBu 4) 2[ReCl 4(ox)

    NASA Astrophysics Data System (ADS)

    Tomkiewicz, A.; Bartczak, T. J.; Kruszyński, R.; Mroziński, J.

    2001-09-01

    The synthesis, structure and magnetic properties of the rhenium(IV) complex (NBu4)2[ReCl4(ox)] is reported. The crystal and molecular structure (NBu4)2[ReCl4(ox)] has been solved by the heavy atom method and refined anisotropically to R1=0.049 for 5636 unique observed reflections. The title compound crystallizes in the monoclinic space group P21/n with Z=4. The Re atom is of six-coordinate distorted octahedral configuration being bonded to one bidentate oxalate group and four chloride anions. The asymmetric unit contains one [ReCl4(ox)]- 2 anion and two [NBu4]+ cations. The magnetic behavior of (NBu4)2[ReCl4(ox)] has been investigated over the temperature range 1.72-300 K. This measurement revealed that examined compound is magnetically diluted with the great value of zero-field splitting parameter D=53 cm-1.

  11. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition.

    PubMed

    Yao, Gui-Hong; Liang, Ru-Ping; Huang, Chun-Fang; Wang, Ying; Qiu, Jian-Ding

    2013-12-17

    We reported here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy integrated with a surface molecular imprinting recognition system and employing magnetic molecular imprinting polymer nanoparticles for amplifying SPR response. The proposed magnetic molecular imprinting polymer was designed by self-polymerization of dopamine on the Fe3O4 NPs surface in weak base aqueous solution in the presence of template chlorpyrifos (CPF). The imprinted Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) were characterized by Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, and transmission electron microscopy. The biosensor showed a good linear relationship between the SPR angle shift and the chlorpyrifos concentration over a range from 0.001 to 10 μM with a detection limit of 0.76 nM. A significant increase in sensitivity was therefore afforded through the use of imprinted Fe3O4@PDA NPs as an amplifier, and meanwhile, the imprinted Fe3O4@PDA NPs had an excellent recognition capacity to chlorpyrifos over other pesticides. The excellent sensitivity and selectivity and high stability of the designed biosensor make this magnetic imprinted Fe3O4@PDA NP an attractive recognition element for various SPR sensors for detecting pesticide residuals and other environmentally deleterious chemicals.

  12. Molecularly imprinted core-shell magnetic nanoparticles for selective extraction of triazines in soils.

    PubMed

    Patiño-Ropero, María José; Díaz-Álvarez, Myriam; Martín-Esteban, Antonio

    2017-04-01

    In this work, a propazine-imprinted polymer was synthesized on the surface of modified magnetic nanoparticles to be used in the solid-phase extraction of triazines in soil samples. The effect of different solvents on the selective extraction of target analytes was assessed to establish the optimum rebinding conditions. The obtained magnetic molecularly imprinted particles exhibited high selectivity for triazines and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid-phase extraction method was developed allowing the extraction of several triazines (desisopropylatrazine, desethylatrazine, simazine, atrazine, and propazine) from soil samples and their subsequent final determination by high-performance liquid chromatography with diode-array detection. Recoveries for the triazines studied were within the range 5.4% to 40.6%, with relative standard deviations lower than 7.0% (n = 3). The detection limits were within 0.1 to 3 ng g(-1) , depending upon the triazine and the type of soil used. Copyright © 2016 John Wiley & Sons, Ltd.

  13. LONG-LIVED MAGNETIC-TENSION-DRIVEN MODES IN A MOLECULAR CLOUD

    SciTech Connect

    Basu, Shantanu; Dapp, Wolf B. E-mail: wdapp@uwo.c

    2010-06-10

    We calculate and analyze the longevity of magnetohydrodynamic (MHD) wave modes that occur in the plane of a magnetic thin sheet. Initial turbulent conditions applied to a magnetically subcritical cloud are shown to lead to relatively rapid energy decay if ambipolar diffusion is introduced at a level corresponding to partial ionization primarily by cosmic rays. However, in the flux-freezing limit, as may be applicable to photoionized molecular cloud envelopes, the turbulence persists at 'nonlinear' levels in comparison with the isothermal sound speed c {sub s}, with one-dimensional rms material motions in the range of {approx} 2 c {sub s}-5 c {sub s} for cloud sizes in the range of {approx} 2 pc-16 pc. These fluctuations persist indefinitely, maintaining a significant portion of the initial turbulent kinetic energy. We find the analytic explanation for these persistent fluctuations. They are magnetic-tension-driven modes associated with the interaction of the sheet with the external magnetic field. The phase speed of such modes is quite large, allowing residual motions to persist without dissipation in the flux-freezing limit, even as they are nonlinear with respect to the sound speed. We speculate that long-lived large-scale MHD modes such as these may provide the key to understanding observed supersonic motions in molecular clouds.

  14. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes.

    PubMed

    Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok

    2017-03-01

    To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T1D values. Both ihMTR and T1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Preparation of magnetic superhydrophilic molecularly imprinted resins for detection of triazines in aqueous samples.

    PubMed

    Zhou, Tianyu; Ding, Jie; Ni, Ling; Yu, Jia; Li, Huiyu; Ding, Hong; Chen, Yanhua; Ding, Lan

    2017-05-12

    In this work, magnetic superhydrophilic molecularly imprinted resins (MMIRs) were prepared for the determination of triazines in aqueous samples combined HPLC-MS/MS. The amino functionalized magnetic nanoparticles were introduced into superhydrophilic molecularly imprinted resins based on one-pot condensation of resorcinol, melamine and formaldehyde. The obtained MMIRs exhibited magnetic responsiveness, superhydrophilic and selective feature. The MMIRs were directly used as adsorbents for selective enrichment and separation of six triazines in juice and lake samples under an applied magnetic field. The detection limits of triazines are in the range of 0.02-0.07μgL(-1) (except for simazine, 0.38μgL(-1)). At the spiked level (5μgL(-1)), the recoveries are in the range of 85-101% with the RSDs ≤7%. This work provided a novel and efficient approach for the detection of triazines in aqueous samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  17. Substituent effect on formation of heterometallic molecular wheels: synthesis, crystal structure, and magnetic properties.

    PubMed

    Ni, Zhong-Hai; Zhang, Li-Fang; Tangoulis, Vassilis; Wernsdorfer, Wolfgang; Cui, Ai-Li; Sato, Osamu; Kou, Hui-Zhong

    2007-07-23

    The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow

  18. Reliability of range-separated hybrid functionals for describing magnetic coupling in molecular systems

    NASA Astrophysics Data System (ADS)

    Rivero, Pablo; Moreira, Ibério de P. R.; Illas, Francesc; Scuseria, Gustavo E.

    2008-11-01

    The performance of the Heyd-Scuseria-Ernzerhorf (HSE) and single parameter long-range corrected Perdew-Burke-Ernzerhorf (LC-ωPBE) range-separated hybrids for predicting magnetic coupling constants has been investigated for a broad set of magnetic molecular systems for which accurate experimental data exist. The set includes the H-He-H model system, two organic diradicals with different magnetic behaviors, and a series of Cu dinuclear complexes with a broad range of magnetic coupling values. Both HSE and LC-ωPBE provide a significant improvement to standard hybrids such as the well-known hybrid Becke-3-parameters exchange with Lee-Yang-Parr correlation (B3LYP) functional. Nevertheless, the performance of these two range-separated hybrid functionals is different: HSE overestimates antiferromagnetic and ferromagnetic interactions in Cu dinuclear complexes (although significantly less than B3LYP), whereas LC-ωPBE treats ferro- and antiferromagnetic couplings on a much more balanced way. The increased accuracy of LC-ωPBE suggests that the inclusion of 100% Hartree-Fock exchange considered in the definition of this long-range corrected hybrid functional has important consequences for an accurate description of exchange and correlation effects on the electronic structure of open shell systems. On the other hand, HSE, which was developed with periodic systems in mind, also performs quite well (and better than B3LYP) thus opening the possibility of magnetic coupling studies in metal oxides and other challenging solids.

  19. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers.

    PubMed

    Li, Lu; Lin, Zheng-Zhong; Peng, Ai-Hong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2016-11-01

    A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using Fe3O4 nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. A high magnetic saturation value of 54.1emug(-1) was obtained, resulting in rapid magnetic separation of MMIPs with an external magnet. The IC50 of the established ELISA method was 20.1μgL(-1) and the detection limit (based on IC85) was 0.1μgL(-1). The MMIPs exhibited high selective binding capacity for MG with cross-reactivities less than 3.9% for MG structural analogues. The MG spiking recoveries were 85.0%-106% with the relative standard deviations less than 4.7%. The results showed that the biomimetic ELISA method by using MMIPs as bionic antibody could be used to detect MG rapidly in fish samples with a high sensitivity and accuracy.

  20. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Martins, Marcel G.; Martins, Daniel O. T. A.; de Carvalho, Beatriz L. C.; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G. F.

    2015-08-01

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide - CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad+) and two binuclear coordination compounds, [Ni(valpn)Ln]3+, where H2valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=GdIII; DyIII. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species.

  1. M S MOLECULARES Rumo aos limites da miniaturiza o - (Molecular Magnets - towards the limits of miniaturization)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-01-01

    Por s culos, acreditou-se que o magnetismo s se manifestava em metais, como aqueles contendo ferro; hoje, a imagem mais comum de um m talvez seja a daquelas plaquinhas flex veis coladas geladeira com propagandas dos mais diversos tipos. O leitor conseguiria imaginar um material puramente org nico daqueles que formam os seres vivos como magn tico? E m s do tamanho de mol culas? fato: ambos existem. Esses novos materiais, conhecidos como magnetos moleculares, descobertos e desenvolvidos em v rios laborat rios do mundo, j re nem longa lista de aplica es, do tratamento do c ncer a refrigeradores ecol gicos, passando pela transmiss o de eletricidade sem perda de calor e a fabrica o de computadores extremamente velozes.

  2. Collapse and Fragmentation of Molecular Cloud Cores. VIII. Magnetically Supported Infinite Sheets

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2005-03-01

    The collapse and fragmentation of initially sheetlike, magnetic molecular clouds is calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes a crude representation of magnetic field effects and ambipolar diffusion through the magnetic pressure and magnetic tension approximations and a simple parameterization based on previous magnetohydrodynamic calculations, respectively. The computational volume is a spherical portion of an initially isothermal, infinite sheet of self-gravitating gas, symmetric about its midplane, with the portion of the cloud exterior to the spherical volume represented through its effect on the gravitational potential inside the spherical volume. The gas layer is initially in hydrostatic equilibrium, but with a mass equal to or greater than the critical mass (~1 Msolar) for the growth of gravitational instability. The magnetic field pressure acts to further stabilize the initial cloud. Over 106 active grid points are employed in the models, sufficient to resolve the Jeans length and so avoid artificial fragmentation. The parameters varied are the ratio of the ambipolar diffusion time to the midplane free fall time (10 or 20), the cloud's reference magnetic field strength (100 or 200 μG, corresponding to initially magnetically supercritical or subcritical clouds, respectively), the ratio of rotational to gravitational energy of the sheet (0.0 or 0.01), and the form of the initial density perturbation applied to the infinite sheet. Three types of outcomes are observed: formation of one or two protostars near the edge of the spherical volume, formation of a protostar near (but not at) the center of the cloud, or formation of a rotating ring near the center of the cloud, which appears likely to fragment into two or more protostars. Flow speeds of ~0.1 km s-1 are generated as the sheet begins to break up into collapsing protostars. The forming protostars are separated by distances approximately equal to

  3. Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen

    2017-02-01

    We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ∼ 2-4 pc and densities of n ∼ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.

  4. Molecular quantum magnetism with strong spin-orbit coupling in inorganic solid Ba3Yb2Zn5O11

    NASA Astrophysics Data System (ADS)

    Park, Sang-Youn; Ji, Sungdae; Park, Jae-Hoon; Do, Seunghwan; Choi, Kwang-Yong; Jang, Dongjin; Schmidt, Burkhard; Brando, Manuel; Butch, Nicholas

    The molecular magnet, assembly of finite number of spins which are isolated from environment, is a model system to study the quantum information process such as the qubit or spintronic devices. In past decades, the molecular magnet has been mostly realized in organic material, however, it has difficulty synthesizing materials or controlling their properties, meanwhile tremendous endeavors to search inorganic molecular magnet are continuing. Here, we propose Ba3Yb2Zn5O11 as a candidate of inorganic molecular magnet. This material consists of an alternating 3D-array of small and large tetrahedron containing antiferromagnetically coupled four pseudospin-1/2 Yb ions, and magnetic properties are described by an isolated tetrahedron without long-range magnetic ordering. Inelastic neutron scattering measurement with external magnetic field reveals that extraordinarily huge Dzyaloshinsky-Moriya (DM) interaction originating from strong spin-orbit coupling in Yb isospin is the key to explain energy level of tetrahedron in addition to Heisenberg exchange interaction and Zeeman effect. Magnetization measurement shows the Landau-Zener transition between avoided crossing levels caused by DM interaction.

  5. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A.

    PubMed

    Zhu, Lili; Cao, Yuhua; Cao, Guangqun

    2014-04-15

    A selective electrochemical sensor based on magnetic molecularly imprinted nanoparticles was developed for determination of bisphenol A (BPA). The particles with regular morphology, high saturation magnetization and good monodispersion were prepared. The hydrophilicity, sensitivity and anti-fouling of the sensor were enhanced by modifying carbon paste electrode with surfactant CTAB in advanced. The results demonstrated that the response of BPA on imprinted electrode was 2.6 times as much as that on non-imprinted sensor. Moreover, the separation factors of BPA to β-estradiol, estriol and diethylstilbestrol were 16.5, 17.3 and 6.6, respectively. Under optimized conditions, the currents were found to be proportional to the BPA concentrations in the range of 6.0×10(-7)-1.0×10(-4) mol/L with a detection limit of 1.0×10(-7) mol/L (S/N=3). A rapid response of the imprinted sensor was obtained within 3 min. The developed sensor was successfully used for determination of BPA in actual samples such as drink bottles and lake water.

  6. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  7. Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes.

    PubMed

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc(2) (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (T(B) ~ 1 K) of isolated TbPc(2) SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs.

  8. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    PubMed Central

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc2 (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K) of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs. PMID:22072910

  9. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    PubMed

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  10. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    PubMed

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.

  11. Magnetic-graphene based molecularly imprinted polymer nanocomposite for the recognition of bovine hemoglobin.

    PubMed

    Guo, Junxia; Wang, Yuzhi; Liu, Yanjin; Zhang, Cenjin; Zhou, Yigang

    2015-11-01

    The protein imprinted technique combining surface imprinting and nanomaterials has been an attractive strategy for recognition and rapid separation of proteins. In this work, magnetic-graphene (MG) was chosen as the supporting substrate for the magnetic nanomaterials, which served to absorb the targeting imprinting molecules, bovine hemoglobin (BHb). Acryl amide (AAm) with a high affinity to BHb and N,N'- methylenebisacrylamide (MBA) were selected as the functional monomer and cross-linking agent, respectively. After in-situ polymerization, the proposed magnetic-graphene based molecularly imprinted polymer (MG-MIP) was obtained with a further extraction step of imprinted BHb. Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), raman spectroscopy(RS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were employed to characterize the resulted MG-MIP. The maximum adsorption capability (Qmax) was determined by Langmuir Isotherm Plots and was 186.73 mg/g for imprinted nanomaterials (MIP) with an imprinting factor of 1.96. The selectivity of MG-MIP was investigated by using several proteins that are different in molecular mass and isoelectric points as the reference. The results showed that the shape memory effect of imprinted cavities, the size of proteins and the charge effect of proteins were the major factors for the selective recognition. The proposed method was also employed to specifically capture BHb from a binary protein mixture.

  12. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  13. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms

    PubMed Central

    Phillips, John B.; Jorge, Paulo E.; Muheim, Rachel

    2010-01-01

    Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes. PMID:20124357

  14. Broad-band polarization in molecular spectra. [Zeeman effect in magnetic stars

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.

    1981-01-01

    The rotational lines of the CN(0,0) red system have been observed to show a strongly asymmetric Zeeman profile. Certain molecules are very susceptible to magnetic perturbation because of the weakness of their spin-rotation coupling; a fairly weak magnetic field can cause a complete Paschen-Back effect. The calculation of transition probabilities incorporating this effect into the Hamiltonian is discussed, and the detailed calculation is then given. The resulting transition probabilities are transformed into synthetic line profiles by using the Unno (1956) model of polarized radiation transfer. The dependence of the net polarized flux on magnetic field and equivalent width is investigated. It is shown that entire band systems may be significantly polarized. Broad-band circular polarization of sunspots may be due, in part, to molecular bands. Analysis of the CH G band indicates a magnetic field of 0.25-0.50 x 10 to the 6th gauss in the white dwarf G99-37, an order of magnitude lower than previous estimates.

  15. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms.

    PubMed

    Phillips, John B; Jorge, Paulo E; Muheim, Rachel

    2010-04-06

    Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes.

  16. Magnetic neutron spectroscopy of a spin-transition Mn3+ molecular complex

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Petit, Sylvain; Gillon, Béatrice; Chaboussant, Grégory; Safin, Damir A.; Garcia, Yann

    2014-09-01

    We have investigated by inelastic neutron scattering (INS), neutron diffraction, and magnetometry the magnetic properties of the mononuclear complex [Mn3+(pyrol)3(tren)] in both high-spin (5E, HS, S =2) and low-spin (3T1, LS, S =1) states. The system presents a spin transition (ST) around 47 K with a small hysteresis width (TST,↑=47.5 K and TST,↓=46 K) characteristic of an efficient collective transition process. In the HS state, the INS spectrum at 56 K and zero magnetic field is accounted for by a zero-field splitting with D =-5.73(3) cm-1 and |E|=+0.47(2) cm-1 which may be the result of a dynamic Jahn-Teller effect reported in the literature. In the LS state, a single magnetic peak at 4.87 meV is observed, still at zero field. Despite the existence of an unquenched orbital moment (L =1) in the ground 3T1 state, we argue that it may be described by a genuine S =1 spin Hamiltonian owing to the existence of a strong trigonal distortion of the Mn3+ coordination octahedron. The observed peak corresponds to a transition ΔM =+1 within the S =1 ground state split by a large single-ion anisotropy term D =+39.3 cm-1. A full spin-Hamiltonian model is proposed based on these first INS results obtained in a thermal ST molecular magnetic system.

  17. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-01-01

    Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.

  18. Broad-band polarization in molecular spectra. [Zeeman effect in magnetic stars

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.

    1981-01-01

    The rotational lines of the CN(0,0) red system have been observed to show a strongly asymmetric Zeeman profile. Certain molecules are very susceptible to magnetic perturbation because of the weakness of their spin-rotation coupling; a fairly weak magnetic field can cause a complete Paschen-Back effect. The calculation of transition probabilities incorporating this effect into the Hamiltonian is discussed, and the detailed calculation is then given. The resulting transition probabilities are transformed into synthetic line profiles by using the Unno (1956) model of polarized radiation transfer. The dependence of the net polarized flux on magnetic field and equivalent width is investigated. It is shown that entire band systems may be significantly polarized. Broad-band circular polarization of sunspots may be due, in part, to molecular bands. Analysis of the CH G band indicates a magnetic field of 0.25-0.50 x 10 to the 6th gauss in the white dwarf G99-37, an order of magnitude lower than previous estimates.

  19. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  20. Organists and organ music composers.

    PubMed

    Foerch, Christian; Hennerici, Michael G

    2015-01-01

    Clinical case reports of patients with exceptional musical talent and education provide clues as to how the brain processes musical ability and aptitude. In this chapter, selected examples from famous and unknown organ players/composers are presented to demonstrate the complexity of modified musical performances as well as the capacities of the brain to preserve artistic abilities: both authors are active organists and academic neurologists with strong clinical experience, practice, and knowledge about the challenges to play such an outstanding instrument and share their interest to explore potentially instrument-related phenomena of brain modulation in specific transient or permanent impairments. We concentrate on the sites of lesions, suggested pathophysiology, separate positive (e.g., seizures, visual or auditory hallucinations, or synesthesia [an involuntary perception produced by stimulation of another sense]) and negative phenomena (e.g., amusia, aphasia, neglect, or sensory-motor deficits) and particularly address aspects of recent concepts of temporary and permanent network disorders.

  1. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  2. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    DOE PAGES

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less

  3. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    SciTech Connect

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  4. Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Wang, Da-wei; Fan, Shanhui

    2017-03-01

    We theoretically demonstrate nontrivial topological effects for a probe field in a Raman medium undergoing molecular modulation processes. The medium is driven by two noncollinear pump beams. We show that the angle between the pumps is related to an effective gauge potential and an effective magnetic field for the probe field in the synthetic space consisting of a synthetic frequency dimension and a spatial dimension. As a result of such an effective magnetic field, the probe field can exhibit a topologically protected one-way edge state in the synthetic space, as well as Landau levels which manifest as suppression of both diffraction and sideband generation. Our work identifies a previously unexplored route towards creating topological photonics effects and highlights an important connection between topological photonics and nonlinear optics.

  5. Combined Molecular Dynamics-Spin Dynamics Simulation of α-Iron in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Landau, David P.

    Using an atomistic model that treats both translational and spin degrees of freedom, combined molecular and spin dynamics simulations have been performed to study dynamic properties of α-iron. Atomic interactions are described by an empirical many-body potential while spin-spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Each of these interactions are parameterized by first-principles calculations. These simulations numerically solve equations of motion using an algorithm based on the second-order Suzuki-Trotter decomposition for the time evolution operator. Through calculation of the Fourier transform of space-displaced time-displaced correlation functions, vibrational and magnetic excitations have been studied. The application of an external magnetic field up to 10-T has now been included and has been shown to increase the characteristic frequencies of the single-spin-wave excitations. Two-spin-wave interactions have also been investigated.

  6. Fragmented molecular complexes: The role of the magnetic field in feeding internal supersonic motions

    NASA Technical Reports Server (NTRS)

    Falgarone, E.; Puget, J. L.; Perault, M.

    1986-01-01

    A hierarchical structure for molecular complexes in their cold phase i.e., preceeding the formation of massive stars, was derived from extensive large scale CO(13)(J=1=0) observations: the mass is found to be distributed into virialized clouds which fill only a very low fraction approx. 01 of the volume of the complex and are supported against gravity by internal supersonic motions. An efficient mechanism was found to transfer kinetic energy from the orbital motions of the clouds to their internal random motions. The large perturbations of the magnetic field induced at the cloud boundaries by their interactions with their neighbors generate systems of hydromagnetic waves trapped inside the clouds. The magnetic field lines being closely coupled to the gas at the densities which prevail in the bulk of the clouds volume, internal velocity dispersion is thus generated. Some conclusions derived from this data are given.

  7. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-02-01

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. In this context, this letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, in addition, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature). These results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  8. Non-equilibrium quantum transport of spin-polarized electrons and back action on molecular magnet tunnel-junction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, J.-Q.

    2016-11-01

    We investigate the non-equilibrium quantum transport through a single-molecule magnet embedded in a tunnel junction with ferromagnetic electrodes, which generate spin-polarized electrons. The lead magnetization direction is non-collinear with the uniaxial anisotropy easy-axis of molecule-magnet. Based on the Pauli rate-equation approach we demonstrate the magnetization reversion of molecule-magnet induced by the back action of spin-polarized current in the sequential tunnel regime. The asymptotic magnetization of molecular magnet and spin-polarization of transport current are obtained as functions of time by means of time-dependent solution of the rate equation. It is found that the antiparallel configuration of the ferromagnetic electrodes and molecular anisotropy easy-axis is an effective structure to reverse both the magnetization of molecule-magnet and spin-polarization of the transport current. Particularly the non-collinear angle dependence provides useful knowledge for the quantum manipulation of molecule-magnet and spin polarized electron-transport.

  9. The ab initio calculation of molecular electric, magnetic and geometric properties.

    PubMed

    Bast, Radovan; Ekström, Ulf; Gao, Bin; Helgaker, Trygve; Ruud, Kenneth; Thorvaldsen, Andreas J

    2011-02-21

    We give an account of some recent advances in the development of ab initio methods for the calculation of molecular response properties, involving electric, magnetic, and geometric perturbations. Particular attention is given to properties in which the basis functions depend explicitly both on time and on the applied perturbations such as perturbations involving nuclear displacements or external magnetic fields when London atomic orbitals are used. We summarize a general framework based on the quasienergy for the calculation of arbitrary-order molecular properties using the elements of the density matrix in the atomic-orbital basis as the basic variables. We demonstrate that the necessary perturbed density matrices of arbitrary order can be determined from a set of linear equations that have the same formal structure as the set of linear equations encountered when determining the linear response equations (or time-dependent self-consistent-field equations). Additional components needed to calculate properties involving perturbation-dependent basis sets are flexible one- and two-electron integral techniques for geometric or magnetic-field differentiated integrals; in Kohn-Sham density-functional theory (KS-DFT), we also need to calculate derivatives of the exchange-correlation functional. We describe a recent proposal for evaluating these contributions based on automatic differentiation. Within this framework, it is now possible to calculate any molecular property for an arbitrary self-consistent-field reference state, including two- and four-component relativistic self-consistent-field wave functions. Examples of calculations that can be performed with this formulation are presented.

  10. Three-dimensional Aquila Rift: magnetized H I arch anchored by molecular complex

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Nakanishi, Hiroyuki

    2017-01-01

    Three-dimensional structure of the Aquila Rift of magnetized neutral gas is investigated by analysing H I and CO line data. The projected distance on the Galactic plane of the H I arch of the Aquila Rift is r⊥ ˜ 250 pc from the Sun. The H I arch emerges at l ˜ 30°, reaches to altitudes as high as ˜500 pc above the plane at l ˜ 350°, and returns to the disc at l ˜ 270°. The extent of arch at positive latitudes is ˜1 kpc and the width is ˜100 pc. The eastern root is associated with the giant molecular cloud complex, which is the main body of the optically defined Aquila Rift. The H I and molecular masses of the Rift are estimated to be M_{H I}˜ 1.4{×} 10^5 M_{⊙} and M_H_2˜ 3{×} 10^5 M_{⊙}. Gravitational energies to lift the gases to their heights are E_{grav: H I}˜ 1.4{×} 10^{51} erg and E_{grav: H_2}˜ 0.3{×} 10^{51} erg, respectively. Magnetic field is aligned along the H I arch of the Rift, and the strength is measured to be B ˜ 10 μG using Faraday rotation measures of extragalactic radio sources. The magnetic energy is estimated to be Emag ˜ 1.2 × 1051 erg. A possible mechanism of formation of the Aquila Rift is proposed in terms of interstellar magnetic inflation by a sinusoidal Parker instability of wavelength of ˜2.5 kpc and amplitude ˜500 pc.

  11. Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Alves, F.; Boulanger, F.; Bracco, A.; Falgarone, E.; Franco, G. A. P.; Guillet, V.; Hennebelle, P.; Levrier, F.; Martin, P. G.; Miville-Deschênes, M.-A.

    2016-12-01

    Within four nearby (d < 160 pc) molecular clouds, we statistically evaluated the structure of the interstellar magnetic field, projected on the plane of the sky and integrated along the line of sight, as inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz and from the optical and near-infrared polarization of background starlight. We compared the dispersion of the field orientation directly in vicinities with an area equivalent to that subtended by the Planck effective beam at 353 GHz (10') and using the second-order structure functions of the field orientation angles. We found that the average dispersion of the starlight-inferred field orientations within 10'-diameter vicinities is less than 20°, and that at these scales the mean field orientation is on average within 5° of that inferred from the submillimetre polarization observations in the considered regions. We also found that the dispersion of starlight polarization orientations and the polarization fractions within these vicinities are well reproduced by a Gaussian model of the turbulent structure of the magnetic field, in agreement with the findings reported by the Planck Collaboration at scales ℓ > 10' and for comparable column densities. At scales ℓ > 10', we found differences of up to 14.̊7 between the second-order structure functions obtained from starlight and submillimetre polarization observations in the same positions in the plane of the sky, but comparison with a Gaussian model of the turbulent structure of the magnetic field indicates that these differences are small and are consistent with the difference in angular resolution between both techniques. The differences between the second-order structure functions calculated with each technique suggests that the increase in the angular resolution obtained with the starlight polarization observations does not introduce significant corrections to the dispersion of polarization orientations used in the

  12. Supersonic Molecular Beam Injection Effects on Tokamak Plasma Applied Non-axisymmetric Magnetic Perturbation

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; in, Y.; Jeon, Y. M.; Hahn, S. H.; Lee, K. D.; Nam, Y. U.; Yoon, S. W.

    2016-10-01

    In KSTAR experiments, the change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying resonant magnetic perturbations(RMP) that could suppress edge localized modes (ELMs). When the SMBI is applied, the symptom representing ELM suppression by RMP is disappeared. The SMBI acts as a cold pulse on the plasma keeping the total confinement engergy constant. However, it makes plasma density increase and change the plasama collisionality which can play a role in the edge-pedestal build-up processing. This work was supported by Project PG1201-2 and the KSTAR research project funded by Korea Ministry of Science, ICT and Future Planning.

  13. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  14. Temperature changes of the Fe8 molecular magnet during its spin reversal process

    NASA Astrophysics Data System (ADS)

    Yaari, Maayan; Keren, Amit

    2017-05-01

    Tunneling of the spins in the Fe8 molecular magnet from a metastable ground state to an excited state is accompanied by a decay of these spins to the global ground state and an increase of the crystal temperature. We measured this temperature using two thermometers, one strongly coupled and the other weakly coupled to the thermal bath. We found that the temperature increases to no greater than 2.2 K. This upper limit agrees with the flame temperature derived from deflagration theory and previous measurements. In light of this temperature increase we re-examine the Landau, Zener, and Stuckelberg (LZS) theory of spin tunneling in large Fe8 crystals.

  15. Supersonic molecular beam injection effects on tokamak plasma applied non-axisymmetric magnetic perturbation

    SciTech Connect

    Han, Hyunsun In, Y.; Jeon, Y. M.; Hahn, S. H.; Lee, K. D.; Nam, Y. U.; Yoon, S. W.; Lee, H. Y.

    2016-08-15

    The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.

  16. Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets.

    PubMed

    Escalera-Moreno, L; Suaud, N; Gaita-Ariño, A; Coronado, E

    2017-04-06

    To design molecular spin qubits and nanomagnets operating at high temperatures, there is an urgent need to understand the relationship between vibrations and spin relaxation processes. Herein we develop a simple first-principles methodology to determine the modulation that vibrations exert on spin energy levels. This methodology is applied to [Cu(mnt)2](2-) (mnt(2-) = 1,2-dicyanoethylene-1,2-dithiolate), a highly coherent complex. By theoretically identifying the most relevant vibrational modes, we are able to offer general strategies to chemically design more resilient magnetic molecules, where the energy of the spin states is not coupled to vibrations.

  17. Supersonic molecular beam injection effects on tokamak plasma applied non-axisymmetric magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; In, Y.; Jeon, Y. M.; Lee, H. Y.; Hahn, S. H.; Lee, K. D.; Nam, Y. U.; Yoon, S. W.

    2016-08-01

    The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.

  18. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Min, Junhong; Choi, Jeong-Woo

    2013-02-15

    We developed a nanoscale memory device consisting of signal-responsive biomaterial, which is capable of switching physical properties (such as electrical/electrochemical, optical, and magnetic) upon application of appropriate electrical signals to perform memory switching. Here, we propose a highly robust surface-confined switch composed of an electroactive cysteine-modified azurin immobilized on an Au hexagonal pattern formed on indium tin oxide (ITO) substrates that can be controlled electrochemically and reversibly converted between its redox states. The memory effect is based on conductance switching, which leads to the occurrence of bistable states and behaves as an extremely robust redox switch in which an electrochemical input is transduced into optical and magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has good stability and excellent reversibility, makes it a promising platform for nonvolatile memory devices.

  19. A robust molecular platform for non-volatile memory devices with optical and magnetic responses.

    PubMed

    Simão, Cláudia; Mas-Torrent, Marta; Crivillers, Núria; Lloveras, Vega; Artés, Juan Manuel; Gorostiza, Pau; Veciana, Jaume; Rovira, Concepció

    2011-05-01

    Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

  20. Molecular Structure of Aggregated Amyloid-β: Insights from Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made on characterization of the molecular structures of Aβ aggregates. Full molecular structural models that are based primarily on data from solid state nuclear magnetic resonance measurements have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  1. Atomic and Molecular Collisional Radiative Modeling for Spectroscopy of Low Temperature and Magnetic Fusion Plasmas

    SciTech Connect

    Fantz, U.; Wuenderlich, D.

    2011-05-11

    The quantitative analysis of spectroscopic data from low temperature plasmas is strongly supported from collisional radiative (CR) modeling. Low pressure plasmas for basic research in the lab and for industrial use have several aspects in common with the cold edge of magnetic fusion plasmas. On the basis of applications of CR modeling for atomic and molecular hydrogen, molecular nitrogen, and diatomic radicals such as CH and C{sub 2}, the relevance of individual processes for data interpretation is demonstrated for ionizing and recombining plasmas. Examples of such processes are opacity, dissociative excitation, dissociative recombination, mutual neutralization, and energy pooling. It is shown that the benchmark of CR modeling with experimental data can be used to identify problems in the ingoing data set of cross sections and rate coefficients. Using the flexible solver Yacora, the capability of CR modeling of low temperature plasmas is highlighted.

  2. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, rearrangement, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.

  3. Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing.

    PubMed

    Gao, Bo; He, Xin-Ping; Jiang, Yang; Wei, Jia-Tong; Suo, Hui; Zhao, Chun

    2014-12-01

    A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template-monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Zeeman-Doppler Imaging of Stellar Magnetic Fields with Atomic and Molecular Lines

    NASA Astrophysics Data System (ADS)

    Sennhauser, C.; Berdyugina, S. V.; Fluri, D. M.

    2009-06-01

    We have developed a new code for Zeeman-Doppler Imaging (ZDI) of stellar magnetic fields using the Occamian approach for solving inverse problems. The inversions are applied to Stokes I and V parameter sets obtained by solving the full set of polarized radiative transfer equations for both atomic and molecular lines. For the first time we demonstrate that molecular polarization strongly constrains the ZDI maps and is crucial for obtaining a realistic solution from Stokes I and V only observed at a few stellar rotational phases. We also present an enhanced LSD technique, which allows analytic separation of blended line profiles. The resulting LSD profiles are free from systematic effects induced by blends, which are typical for other multi-line techniques.

  5. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%.

  6. [Preparation of magnetic resonance molecular probe for breast cancer detection in vitro].

    PubMed

    Li, Xu-bin; DU, Xiang-ke; Huo, Tian-long; Liu, Xia; Zhang, Sen

    2009-04-18

    To prepare magnetic resonance (MR) molecular probe for somatostain receptor expressed on breast cancer cell membranes and investigate its physico-chemical properties and imaging features in vitro. Molecular probe was prepared through superparamagnetic iron oxide (SPIO) conjugated to somatostatin analog-octreotide (OCT) using chemical method. Its features at different Fe(2+) concentrations were tested by MTT assay and Prussian blue staining respectively. Molecular probes at different Fe(2+) concentration and various numbers of cells labeled with the probe at Fe(2+) concentrations of 20 mg/L were scanned with 1.5 Tesla MR. Resovist was used in control group when labeling cells. Various blue-staining particles were found in the cytoplasms of labeled cells with the molecular probes at different concentrations after Prussion blue staining and there were more particles with the increase of Fe(2+) concentration. The label rate of the probe was 96.15% which was higher than that in control group (80.00%). The bioactivity had no difference between labeled and non-labeled cells (P>0.05). There was remarkable low signal intensity on T(2)-weighed imaging and no evident artifacts for molecular probe when the concentration of Fe(2+) was 20 mg/L. The least number of labeled cells detected by MR in vitro was 6 x 10(6) when the concentration of Fe(2+) was 20 mg/L. Molecular probe, SPIO-OCT, can effectively label breast cells which express SSTR. The reasonable Fe(2+) concentration of labeled cells and imaging was 20 mg/L. There is a correlation between MR signal intensity in vitro and the number of labeled cells.

  7. Molecular Quantum Magnetism in LiZn2Mo3O8

    NASA Astrophysics Data System (ADS)

    Mourigal, Martin

    2014-03-01

    Considerable theoretical and experimental efforts are devoted to understanding frustrated two-dimensional antiferromagnets, searching for quantum spin-liquid states hosting deconfined fractional spin excitations. To make quantitative comparisons with theory, the sensitivity to defects and site mixing inherent to magnetic transition metal oxides is a significant challenge. Spin degrees of freedom delocalized on stable organic molecules or inorganic clusters offer an interesting alternative. The layered insulating material LiZn2Mo3O8 is such a compound. It comprises spin-1/2 Mo3O13 molecules organized on the triangular lattice. Its thermo-magnetic properties suggest it hosts collective magnetic phenomena with hints of a possible valence-bond condensation and absence of long-range spin order. Inelastic neutron scattering from powder specimen of LiZn2Mo3O8 reveal the presence of gapless collective magnetic excitations at low-energy that are surprisingly broad in momentum space and involve at most a third of the spins. The corresponding structure factor is consistent with the presence of valence-bonds involving nearest-neighbor and next-nearest-neighbor spins. No magnetic signal is apparent at higher energies, suggesting that the remaining spins contribute as a broad continuum rather than as a well defined resonance. LiZn2Mo3O8 thus offers an example of molecular based spin-liquid material with collective excitations consistent with a disordered or dynamic ground-state. Research was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER46544.

  8. Investigations on nanoconfinement of low-molecular antineoplastic agents into biocompatible magnetic matrices for drug targeting.

    PubMed

    Tomoiaga, Alina Maria; Cioroiu, Bogdan Ionel; Nica, Valentin; Vasile, Aurelia

    2013-11-01

    Magnetic mesoporous silica nanoparticles are employed as biocompatible matrices to host low-molecular antineoplastic drugs. 5-Fluorouracil is a well-known antimetabolite drug used to treat many malignancies: colon, rectal, breast, head and neck, pancreatic, gastric, esophageal, liver and G-U (bladder, penile, vulva, prostate), skin cancers (basal cell and keratosis). Unfortunately severe gastrointestinal, hematological, neural, cardiac and dermatological toxic effects are often registered due to its cytotoxicity. Thus, this work focuses on development of a magnetic silica nanosystem, capable of hosting high amounts of 5-fluorouracil and delivers it in a targeted manner, under the influence of external magnetic field. There are few reports on nanoconfinement of this particular small molecule antimetabolite on mesoporous silica hosts. Therefore we have investigated different ways to confine high amounts of 5-FU within amino-modified and non-modified mesopores of the silica shell, from water and ethanol, under magnetic stirring and ultrasound irradiation. Also, we have studied the adsorption process from water as a function of pH in order to rationalize drug-support interactions. It is shown that nature of the solvent has great influence on diffusion of small molecules into mesopores, which is slower from alcoholic solutions. More importantly, sonication is proven as an excellent alternative to long adsorption tests, since the time necessary to reach equilibrium is drastically reduced to 1h and higher amounts of drug may be immobilized within the mesopores of amino-modified magnetic silica nanoparticles. These results are highly important for optimization of drug immobilization process in order to attain desired release profile. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  10. Gadolinium-labeled quantum dots for molecular magnetic resonance imaging: R1 versus R2 mapping.

    PubMed

    Oostendorp, Marlies; Douma, Kim; Hackeng, Tilman M; Post, Mark J; van Zandvoort, Marc A M J; Backes, Walter H

    2010-07-01

    Quantum dots labeled with paramagnetic gadolinium chelates can be applied as contrast agent for preclinical molecular MRI combined with fluorescence microscopy. Besides increasing the longitudinal relaxation rate, gadolinium-labeled quantum dots may increase the transverse relaxation rate, which might be related to their magnetic properties. Furthermore, molecular MRI experiments are primarily conducted at high magnetic fields, where longitudinal relaxation rate becomes less effective, and the use of transverse relaxation rate as a source of contrast may become attractive. Consequently, the optimal method of contrast enhancement using gadolinium-labeled quantum dots is a priori unknown. The objective of this study was to compare longitudinal relaxation rate- and transverse relaxation rate-based contrast enhancement, proton visibility, and changes thereof induced by gadolinium-labeled quantum dots targeted to the angiogenic vasculature of murine tumors, using in vivo longitudinal and transverse relaxation rate mapping. At a field strength of 7 T, longitudinal relaxation rate-based measures were superior to transverse relaxation rate-based measures in detecting both the level and spatial extent of contrast agent-induced relaxation rate changes. (c) 2010 Wiley-Liss, Inc.

  11. Magnetocaloric effect in Mn2-pyrazole-[Nb(CN)8] molecular magnet by relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Pełka, R.; Gajewski, M.; Miyazaki, Y.; Yamashita, S.; Nakazawa, Y.; Fitta, M.; Pinkowicz, D.; Sieklucka, B.

    2016-12-01

    Magnetocaloric effect in {[Mn(pyrazole)4]2[Nb(CN)8]·4 H2O}n molecular magnet is reported. It crystallizes in tetragonal I41/a space group. The compound exhibits a phase transition to a long range magnetically ordered state at TN ≈ 22.8 K. Temperature dependences of the magnetic entropy change ΔSM as well as the adiabatic temperature change ΔTad due to applied field change μ0 ΔH in the range of 0.1-9 T have been inferred from the relaxation calorimetry measurements. A systematic approximate approach has been used to determine the lattice contribution to the heat capacity. The maximum value of ΔSM for μ0 ΔH = 5 T is 6.83 J mol-1 K-1 (6.65 J kg-1 K-1) at 24.3 K. The corresponding maximum value of ΔTad is 1.4 K at 23.8 K. The temperature dependence of the exponent n characterizing the field dependence of ΔSM has been estimated. It attains the value of 0.64 at the transition temperature, which is consistent with the 3D Heisenberg universality class. A hitherto unobserved two-peak structure has been revealed in the temperature dependence of ΔTad.

  12. Preparation and Characterization of a Magnetic and Optical Dual-Modality Molecular Probe

    PubMed Central

    Bumb, A; Regino, C A S; Perkins, M R; Bernardo, M; Ogawa, M; Fugger, L; Choyke, P L; Dobson, P J; Brechbiel, M W

    2010-01-01

    Multi-modality imaging probes combine the advantages of individual imaging techniques to yield highly detailed anatomic and molecular information in living organisms. Herein, we report the synthesis and characterization of a dual-modality nanoprobe that couples the magnetic properties of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with the near infrared fluorescence of Cy5.5. The fluorophore is encapsulated in a biocompatible shell of silica surrounding the iron oxide core for a final diameter of ~17 nm. This silica-coated iron oxide nanoparticle (SCION) has been analyzed by transmission electron microscopy, dynamic light scattering, and superconducting quantum interference device (SQUID). The particle demonstrates a strong negative surface charge and maintains colloidal stability in the physiological pH range. Magnetic hysteresis analysis confirms superparamagnetic properties that could be manipulated for thermotherapy. The viability of primary human monocytes, T cells, and B cells incubated with particle has been examined in vitro. In vivo analysis of agent leakage into subcutaneous A431 tumors in mice was also conducted. This particle has been designed for diagnostic application with magnetic resonance and fluorescence imaging, and has future potential to serve as a heat-sensitive targeted drug delivery platform. PMID:20368682

  13. Extraction of melamine from milk using a magnetic molecularly imprinted polymer.

    PubMed

    Anirudhan, T S; Christa, J; Deepa, J R

    2017-07-15

    A novel magnetic molecularly imprinted polymer (MMIP) for the preconcentration of melamine, a non-protein nitrogen food additive from complex matrices was synthesized and characterized using FT-IR, XRD, SEM and VSM techniques. Surface imprinting was done on vinyltrimethoxysilane coated Fe3O4 (Fe3O4-VTMS) using 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) as functional monomer, crosslinker and initiator respectively. Saturation magnetization value obtained for MMIP was 1.72emug(-1). Binding studies showed that MMIP exhibits good recognition to melamine compared to magnetic non imprinted polymer (MNIP). The optimum pH for the binding of melamine was found to be 4.5. Binding process was very fast and pseudo-second-order model fitted well with the kinetic data. Binding isotherm followed Langmuir isotherm model of monolayer adsorption with a maximum melamine binding efficiency of 62.25mgg(-1). The HPLC-UV analysis results revealed the applicability of MMIP in solid phase extraction and determination of melamine from milk samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    PubMed

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products.

  15. Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack.

    PubMed

    Quenault, Aurélien; Martinez de Lizarrondo, Sara; Etard, Olivier; Gauberti, Maxime; Orset, Cyrille; Haelewyn, Benoît; Segal, Helen C; Rothwell, Peter M; Vivien, Denis; Touzé, Emmanuel; Ali, Carine

    2017-01-01

    SEE SUN ET AL DOI101093/AWW306 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: About 20% of patients with ischaemic stroke have a preceding transient ischaemic attack, which is clinically defined as focal neurological symptoms of ischaemic origin resolving spontaneously. Failure to diagnose transient ischaemic attack is a wasted opportunity to prevent recurrent disabling stroke. Unfortunately, diagnosis can be difficult, due to numerous mimics, and to the absence of a specific test. New diagnostic tools are thus needed, in particular for radiologically silent cases, which correspond to the recommended tissue-based definition of transient ischaemic attack. As endothelial activation is a hallmark of cerebrovascular events, we postulated that this may also be true for transient ischaemic attack, and that it would be clinically relevant to develop non-invasive in vivo imaging to detect this endothelial activation. Using transcriptional and immunohistological analyses for adhesion molecules in a mouse model, we identified brain endothelial P-selectin as a potential biomarker for transient ischaemic attack. We thus developed ultra-sensitive molecular magnetic resonance imaging using antibody-based microparticles of iron oxide targeting P-selectin. This highly sensitive imaging strategy unmasked activated endothelial cells after experimental transient ischaemic attack and allowed discriminating transient ischaemic attack from epilepsy and migraine, two important transient ischaemic attack mimics. We provide preclinical evidence that combining conventional magnetic resonance imaging with molecular magnetic resonance imaging targeting P-selectin might aid in the diagnosis of transient ischaemic attack. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging.

    PubMed

    Zhang, Chunfu; Xie, Xuan; Liang, Sheng; Li, Mingli; Liu, Yajie; Gu, Hongchen

    2012-08-01

    Sensitive molecular imaging and detection of tumors or their supporting neovascularity require high-avidity, target-specific probes, which produce robust signal amplification compatible with a sensitive high-resolution imaging modality. In this context, we fabricated a high magnetic resonance (MR)-sensitive magnetite nanocluster (MNC) probe specific for tumor angiogenesis by assembly of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with (Mal)mPEG-PLA copolymer into cluster and subsequent encoding c(RGDyC) peptide on the cluster (RGD-MNC) for detection of nascent tumors. We found that RGD-MNC is highly sensitive (r(2) = 464.94 s(-1)mM(-1)) and specific for αvβ3-positive cells. Both nascent (35 ± 6.6 mm(3)) and large tumors (256 ± 22.3 mm(3)) can be registered by RGD-MNC and detected by MR imaging (MRI), with the nascent tumors demonstrating more pronounced MR contrast. Immunohistochemical studies revealed that MR signal decrease was closely correlated with histological characteristics of tumors (microvessel density and αvβ3 expression levels) at different growth stages.

  17. Copper ion implanted aluminum nitride dilute magnetic semiconductors (DMS) prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shah, A.; Ahmad, Jamil; Ahmad, Ishaq; Mehmood, Mazhar; Mahmood, Arshad; Rasheed, Muhammad Asim

    2014-10-01

    Diluted magnetic semiconductor (DMS) AlN:Cu films were fabricated by implanting Cu+ ions into AlN thin films at various ion fluxes. AlN films were deposited on c-plane sapphire by molecular beam epitaxy followed by Cu+ ion implantation. The structural and magnetic characterization of the samples was performed through Rutherford backscattering and channeling spectrometry (RBS/C), X-ray diffraction (XRD), Raman spectroscopy, vibrating sample magnetometer (VSM) and SQUID. Incorporation of copper into the AlN lattice was confirmed by RBS, while XRD revealed that no new phase was formed as a result of ion implantation. RBS also indicated formation of defects as a result of implantation process and the depth and degree of damage increased with an increase in ion fluence. Raman spectra showed only E2 (high) and A1 (LO) modes of wurtzite AlN crystal structure and confirmed that no secondary phases were formed. It was found that both Raman modes shift with Cu+ fluences, indicating that Cu ion may go to interstitial or substitutional sites resulting in distortion or damage of lattice. Although as implanted samples showed no magnetization, annealing of the samples resulted in appearance of room temperature ferromagnetism. The saturation magnetization increased with both the annealing temperature as well as with ion fluence. FC/ZFC measurements indicated that the ferromagnetic effect was not related with superparamagnetic phase formation. In spite, it was due to the formation of AlN based DMS material. The Curie temperature (TC) of the sample prepared at an ion fluence of 5 × 1015 cm-2 and an annealing temperature of 950 °C was found to lie above 340 K.

  18. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  19. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  20. Light absorption and plasmon – exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    SciTech Connect

    Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D; Lebedev, V S

    2015-12-31

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on the type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)

  1. Tailoring magnetic properties of electrodeposited thin films of the molecule-based magnet Cr5.5(CN)12 11.5H2O

    PubMed Central

    2012-01-01

    This paper reports on molecular-based magnetic thin films of Prussian blue analogues (PBA) with high critical temperatures composed of mixed-valence chromium cyanides. The thin films of PBA were synthesized by means of electrodeposition technique. Morphology and magnetic study are presented in a function of electrochemical deposition conditions. We present the electrochemical methods as a promising and effective tool for preparing molecular-based magnetic thin films of Prussian blue analogue. PMID:22531148

  2. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin.

    PubMed

    Jia, Xiaoping; Xu, Minli; Wang, Yuzhi; Ran, Dan; Yang, Shan; Zhang, Min

    2013-01-21

    Surface molecular imprinting, especially on the surface of silica-modified magnetic nanoparticles, has been proposed as a promising strategy for protein recognition and separation. Inspired by the self-polymerization of dopamine, we synthesized a polydopamine-based molecular imprinted film coating on silica-Fe(3)O(4) nanoparticles for recognition and separation of bovine hemoglobin (BHb). Magnetic molecularly imprinted nanoparticles (about 860 nm) possess a core-shell structure. Magnetic molecularly imprinted nanoparticles (MMIP) show a relatively high adsorption capacity (4.65 ± 0.38 mg g(-1)) and excellent selectivity towards BHb with a separation factor of 2.19. MMIP with high saturation magnetization (10.33 emu g(-1)) makes it easy to separate the target protein from solution by an external magnetic field. After three continuous adsorption and elution processes, the adsorption capacity of MMIP remained at 4.30 mg g(-1). Our results suggest that MMIPs are suitable for the removal of high abundance of protein and the enrichment of low abundance of protein in proteomics.

  3. Nurturing the Careers of Australia's Future Composers

    ERIC Educational Resources Information Center

    Watson, Amanda; Forrest, David

    2008-01-01

    In 1994, the Australian Society for Music Education (ASME) initiated two related projects supporting and acknowledging composition in schools and offering the opportunity for secondary school-aged students to work with prominent Australian composers. These were the Young Composers' Project and the Composer-in-Residence Project. Both projects were…

  4. Preparing Students to Compose on a Computer.

    ERIC Educational Resources Information Center

    Gadomski, Kenneth E.

    In the proliferation of articles about using computers in the composition classroom published in the last five or ten years, few mention anything about preparing students to compose on a computer while all assert that computers do indeed help the composing process. Preparing students to compose on a computer involves three major processes:…

  5. Sing the Songs of Women Composers.

    ERIC Educational Resources Information Center

    Allen, Sue Fay; Keenan-Takagi, Kathleen

    1992-01-01

    Presents an annotated listing of choral works by women composers. Suggests sources of information about women composers and their music. Discusses some contemporary women whose compositions are particularly appropriate for student voices. Concludes that the listed works will help place women composers in perspective for student choral groups. (SG)

  6. Magnetic molecularly imprinted polymers synthesized by surface-initiated reversible addition-fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution.

    PubMed

    Chen, Fangfang; Zhang, Jingjing; Wang, Minjun; Kong, Jie

    2015-08-01

    Magnetic molecularly imprinted polymers have attracted significant interest because of their multifunctionality of selective recognition of target molecules and rapid magnetic response. In this contribution, magnetic molecularly imprinted polymers were synthesized via surface-initiated reversible addition addition-fragmentation chain transfer polymerization using diethylstilbestrol as the template for the enrichment of synthetic estrogens. The uniform imprinted surface layer and the magnetic property of the magnetic molecularly imprinted polymers favored a fast binding kinetics and rapid analysis of target molecules. The static and selective binding experiments demonstrated a desirable adsorption capacity and good selectivity of the magnetic molecularly imprinted polymers in comparison to magnetic non-molecularly imprinted polymers. Accordingly, a corresponding analytical method was developed in which magnetic molecularly imprinted polymers were employed as magnetic solid-phase extraction materials for the concentration and determination of four synthetic estrogens (diethylstilbestrol, hexestrol, dienestrol, and bisphenol A) in fish pond water. The recoveries of these synthetic estrogens in spiked fish pond water samples ranged from 61.2 to 99.1% with a relative standard deviation of lower than 6.3%. This study provides a versatile approach to prepare well-defined magnetic molecularly imprinted polymers sorbents for the analysis of synthetic estrogens in water solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  8. 1-[(Anthracen-9-yl)carbon-yl]-2,7-di-meth-oxy-naphthalene: a chain-like structure composed of face-to-face type dimeric mol-ecular aggregates.

    PubMed

    Siqingaowa; Tsumuki, Takehiro; Ogata, Kazuki; Yonezawa, Noriyuki; Okamoto, Akiko

    2016-12-01

    The asymmetric unit of the title compound, C27H20O3, contains two independent mol-ecules (A and B). The anthracene ring system is connected to the 2,7-di-meth-oxy-naphthalene core in a twisted manner, with dihedral angles of 86.38 (5) and 79.36 (8)°, respectively, for conformers A and B. In the crystal, face-to-face type dimeric mol-ecular aggregates of each conformer are observed. The dimer of conformer A is formed by two pairs of C-H⋯π inter-actions, and that of conformer B by a pair of (sp(2))C-H⋯O hydrogen bonds. The dimers of conformer A are linked to each other via a π-π stacking inter-action between the anthracene rings to form a chain along the b axis and the chains are aligned along the c axis, forming a sheet structure. The dimers of conformer B are connected to each other via a couple of C-H⋯π inter-actions to form a chain along the b axis. The chains are aligned along the c axis through (sp(2))C-H⋯O=C hydrogen bonds, forming a sheet parallel to the bc plane. The sheets of conformers A and B are alternately stacked along the a axis via two kinds of inter-molecular (sp(2))C-H⋯O=C hydrogen bonds.

  9. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  10. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  11. Highly Efficient Microwave Absorption of Magnetic Nanospindle-Conductive Polymer Hybrids by Molecular Layer Deposition.

    PubMed

    Yan, Lili; Wang, Xixi; Zhao, Shichao; Li, Yunqin; Gao, Zhe; Zhang, Bin; Cao, Maosheng; Qin, Yong

    2017-03-16

    Oxidative molecular layer deposition (oMLD) was applied to fabricate conductive polymer-magnetic material core-shell microwave absorbers in this work. One dimensional Fe3O4-poly(3,4-ethylenedioxythiophene) (PEDOT) nanospindles with controllable PEDOT thickness were successfully synthesized. Their absorption performance was evaluated in the 2-18 GHz frequency range. With the advantage of oMLD, PEDOT shell thicknesses can be controlled precisely. Because the permittivity of Fe3O4-PEDOT nanospindles obviously increases while their permeability decreases slightly with the PEDOT cycles, the properties can be tuned effectively by only adjusting the PEDOT cycle number. With a proper PEDOT shell thickness, excellent reflection characteristics can be obtained. Remarkably high absorption strength (-55.0 dB at 16.2 GHz) and good absorption bandwidth (4.34 GHz less than -10 dB) were realized. Such excellent performance is better than that reported previously for most magnetic material-based absorbers. Considering the precise controllability and excellent absorption performance of the prepared microwave absorbers, we believe that oMLD is a facile synthetic route for microwave absorbers.

  12. Testing for Helical Magnetic Fields in the Orion Molecular Cloud Integral-Shaped Filament

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren; Clemens, Dan P.

    2014-06-01

    The Orion Molecular Cloud (OMC) is one of the closest and most well-studied regions of ongoing star formation. Within the OMC, the Integral-Shaped Filament (ISF) is a long, filamentary structure of gas and dust that stretches over 7 pc and is itself comprised of many smaller filaments. Radial density profiles of the ISF indicate that these filamentary structures may be supported by helical magnetic fields (Johnstone & Bally 1999). To test for the presence of helical fields, we have collected deep near-infrared (NIR) H-band (1.6 μm) and K-band (2.2 μm) linear polarimetry of background starlight for a grid of six 10x10 arcmin fields of view fully spanning the ISF. NIR polarizations from scattered light and young stellar objects, which do not trace the magnetic field, are identified by examining the ratio of percent polarization in H-band to K-band. The data were collected using the Mimir NIR instrument on the 1.8m Perkins Telescope located outside of Flagstaff, AZ. This work is partially supported by NSF grant AST 09-07790.

  13. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence.

    PubMed

    Huang, Baomei; Zhou, Xibin; Chen, Jing; Wu, Guofan; Lu, Xiaoquan

    2015-09-01

    A novel procedure for selective extraction of malachite green (MG) from fish samples was set up by using magnetic molecularly imprinted polymers (MMIP) as the solid phase extraction material followed by electrochemiluminescence (ECL) determination. MMIP was prepared by using Fe3O4 magnetite as magnetic component, MG as template molecule, methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. MMIP was characterized by SEM, TEM, FT-IR, VSM and XRD. Leucomalachite green (LMG) was oxidized in situ to MG by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). And then MMIP was successfully used to selectively enrich MG from fish samples. Adsorbed MG was desorbed and determined by ECL. Under the optimal conditions, calibration curve was good linear in the range of 0.29-290 μg/kg and the limit of detection (LOD) was 7.3 ng/kg (S/N=3). The recoveries of MMIP extraction were 77.1-101.2%. In addition, MMIP could be regenerated. To the best of our knowledge, MMIP coupling with ECL quenching of Ru(bpy)3(2+)/TPA for the determination of MG has not yet been developed.

  14. Spin-state-correlated optical properties of copper(ii)-nitroxide based molecular magnets.

    PubMed

    Barskaya, Irina Yu; Veber, Sergey L; Suturina, Elizaveta A; Sherin, Peter S; Maryunina, Kseniya Yu; Artiukhova, Natalia A; Tretyakov, Evgeny V; Sagdeev, Renad Z; Ovcharenko, Victor I; Gritsan, Nina P; Fedin, Matvey V

    2017-10-03

    Molecular magnets based on copper(ii) ions and stable nitroxide radicals exhibit promising switchable behavior triggered by a number of external stimuli; however, their spin-state-correlated optical properties vital for photoinduced switching have not been profoundly investigated to date. Herein, the electronic absorption spectra of single crystals of three representatives of this unique family are studied experimentally and theoretically in the visible and near-IR regions. We established that the color of the complexes is mainly determined by optical properties of the nitroxide radicals, whereas the Cu(hfac)2 fragment contributes to the near-IR range with the intensity smaller by an order of magnitude. The thermochromism of these complexes evident upon thermal spin state switching is mainly caused by a spectral shift of the absorption bands of the nitroxides. The vibrational progression observed in the visible range for single crystals as well as for solutions of pure nitroxides is well reproduced by DFT calculations, where the C-C stretching mode governs the observed progression. The analysis of the spectra of single crystals in the near-IR region reveals changes in the energy and in the intensity of the copper(ii) d-d transitions, which are well reproduced by SOC-NEVPT2 calculations and owe to the flip of the Jahn-Teller axis in the coordination environment of copper. Further strategies for designing bidirectional magnetic photoswitches using these appealing compounds are discussed.

  15. Selective determination of sulfonamides from environmental water based on magnetic surface molecularly imprinting technology.

    PubMed

    Xu, Yang; Zhao, Qi; Jiang, Liyan; Li, Zhengqiang; Chen, Yanhua; Ding, Lan

    2017-02-18

    In the study, a simple and selective method based on magnetic separation technology is presented for the extraction of sulfonamides (SAs) from environmental water, followed by liquid chromatography-tandem mass spectrometry. In this method, magnetic surface molecularly imprinted polymers (Fe3O4@SiO2@MIPs) with super-paramagnetic property and high selectivity toward SAs were developed as magnetic adsorbents. The Fe3O4@SiO2@MIPs were then applied to the selective extraction of SAs from environmental water. The extraction and enrichment were accomplished simultaneously in a single step by simply stirring the mixture of adsorbents and water samples. The Fe3O4@SiO2@MIPs were characterized by scanning electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometry. The adsorption thermodynamics and kinetics were employed to study the adsorption mechanism of the Fe3O4@SiO2@MIPs. And the matrix effect of the method was evaluated. Calibration curves obtained by analyzing matrix-matched standards show excellent linear relationship (R = 0.9994-0.9999) in the concentration range of 10-1000 ng L(-1), and the limits of detection are in the range of 1.4-2.8 ng L(-1). The relative standard deviations of intra- and inter-day obtained are in the range of 2.8 to 7.8 and 3.1 to 7.9%, respectively. The proposed method was successfully applied to determine SAs in six environmental water samples, and SAs were detectable in four of them with the concentration from 10.5 to 120.2 ng L(-1).

  16. Toward Molecular Magnets of Organic Origin via Anion-π Interaction Involving m-Aminyl Diradical: A Theoretical Study.

    PubMed

    Bhattacharya, Debojit; Shil, Suranjan; Misra, Anirban; Bytautas, Laimutis; Klein, Douglas J

    2016-11-17

    Here we study a set of novel magnetic organic molecular species with different halide ions (fluoride, chloride, bromide) absorbed ∼2 Å above or below the center of an aromatic π-ring in an m-aminyl diradical. Focus is on the nature of anion-π interaction and its impact on magnetic properties, specifically on magnetic anisotropy and on intramolecular magnetic exchange coupling. In the development of single molecule magnets, magnetic anisotropy is considered to be the most influential factor. A new insight regarding the magnetic anisotropy that determines the barrier height for relaxation of magnetization of m-aminyl diradical-derived anionic complexes is obtained from calculations of the axial zero-field-splitting (ZFS) parameter D. The noncovalent anion-π interaction strongly influences magnetic anisotropy in m-aminyl-halide diradical complexes. In particular, the change of D values from positive (for the m-aminyl diradical, m-aminyl diradical/fluoride, and m-aminyl diradical/chloride complexes) to negative D-values in m-aminyl diradical complexes containing bromide signals a change from oblate to prolate type of spin-density distribution. Furthermore, the noncovalent halide-π interactions lead to large values of intramolecular magnetic exchange coupling coefficients J exhibiting a ferromagnetic sign. The magnitude of J steadily increases going from anionic complexes containing fluoride to chloride and then to bromide. Relations are sought between the magnetic exchange coupling coefficients J and aromaticity, namely structural HOMA (harmonic oscillator model of aromaticity) and magnetic NICS (nucleus independent chemical shift) aromaticity indices, in particular, the NICSzz(+1) component. Finally, possible numerical checks on the conditions relating to validity of the well-known Yamaguchi's formula for calculating the exchange coupling coefficient J in diradical systems are discussed.

  17. Surface-Bound Molecular Film Structure Effects on Electronic and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Pronschinske, Alex M.

    This thesis dissertation will discuss the importance of understanding the driving forces of molecular assembly on surfaces and the need to characterize the electronic and magnetic properties of the resulting organic films. Furthermore, experimental results on model organic molecular assemblies, benzoate on Cu(110) and Fe[(H2BPz2)2bpy] ("Fe-bpy") on Au(111), and their novel film properties will be presented. The primary experimental techniques used in this work are scanning tunneling microscopy and spectroscopy (STM, STS), and so a theoretical characterization of constant current distance-voltage STS (z(V)-STS) will also be developed. Deposition of benzoic acid (C6H5COOH) on to Cu(110) will be used to create a diverse molecular environment of benzoate molecules (C6H5COO+). In this film we will utilize structural phases consisting of co-existing orientation (alpha-phase) and uniform molecular orientation (c(8x2) phase) to probe electric potential variation across the surface of the film. Using z( V)-STS find that the electron affinity level of a molecule's near-neighbor will exert a substrate-mediated influence on the energy of the molecule's image potential state; which we describe using a 1-D dielectric continuum model. Motivated by the unique utility of z(V)-STS for gentle probing of molecular electronic structure and electric potential we perform a thorough theoretical characterize of z( V)-STS. We derive a differential equation for simulating z(V)-STS spectra under the standard approximation of a square tunneling barrier. Moreover, we derive an equation for sample density of states (DOS) that is applicable for all modes of STS. The central result of this work for interpretation of z(V)-STS results is a characterization of systematic error between state energy and z(V)-STS peak location, as well we show that empirical normalization procedure for removing background distortion from constant height current-voltage STS, (V/I)dI/dV, is also applicable to z(V)-STS is

  18. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions

    NASA Astrophysics Data System (ADS)

    Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bée, A.; Ménager, C.

    2015-11-01

    An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium.An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06133d

  19. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A low molecular weight folate receptor targeted contrast agent for magnetic resonance tumor imaging.

    PubMed

    Kalber, Tammy L; Kamaly, Nazila; So, Po-Wah; Pugh, John A; Bunch, Josephine; McLeod, Cameron W; Jorgensen, Michael R; Miller, Andrew D; Bell, Jimmy D

    2011-08-01

    This study aims to develop a low molecular weight folate receptor (FR) contrast agent for MR tumor imaging. Gadolinium-tetraazacyclododecane tetraacetic acid (Gd.DOTA) was conjugated to folic acid to create Gd.DOTA.Folate. The efficacy of Gd.DOTA.Folate to bind FR was evaluated in vitro by inductively coupled mass spectrometry (ICP-MS) and in vivo by magnetic resonance imaging (MRI) tumor enhancement over 14 h, utilizing an overexpressing α-FR cell line (IGROV-1), compared to an α-FR-negative cell line (OVCAR-3). Gd.DOTA.Folate localization ex vivo was verified by laser ablation ICP-MS. ICP-MS confirmed Gd.DOTA.Folate uptake by IGROV-1 cells and competitive binding with free folic acid inhibited binding. IGROV-1 tumors showed an increase in R (1) at 2 h, which increased significantly over 14 h post-Gd.DOTA.Folate with clear enhancement on MR images. This was not observed in controls. These data support the use of FR-targeted small molecular weight MRI contrast agents for tumor imaging in vivo.

  1. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples.

    PubMed

    Xu, Xing; Duhoranimana, Emmanuel; Zhang, Xiaoming

    2017-01-15

    Magnetic molecularly imprinted polymers (M-MIPs) were synthesized as the sorbents for extracting hexamethylenetetramine (HMT) from milk samples. Molecular simulations were used to calculate the interaction energies of the template monomers. The physical properties of M-MIPs were characterized. The adsorption isotherms and kinetics were investigated. Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was applied to determine the amount of HMT residue in milk samples. In the optimized method, a linear calibration curve was obtained using a matrix-matched standard in the range of 1.0-50.0μgL(-1). The limit of detection (LOD) and limit of quantification (LOQ) was 0.3μgkg(-1) and 1.0μgkg(-1), respectively. The relative standard deviation (RSD) of the intra-day assay ranged from 2.6% to 5.2%, while that of the inter-day assay ranged from 3.6% to 11.5%. The recovery of HMT in milk samples ranged from 88.7% to 111.4%.

  2. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Zuo, Hai Gen; Jiang, Chen; Jin, She Feng; Lu, Yi Chen; Yang, Hong

    2015-04-15

    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe3O4@SiO2 nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g(-1). Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C18 SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues.

  3. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids.

    PubMed

    Coffey, Aaron M; Kovtunov, Kirill V; Barskiy, Danila A; Koptyug, Igor V; Shchepin, Roman V; Waddell, Kevin W; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-09-16

    We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations.

  4. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our

  5. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: Towards category theory-like systematization of molecular/genetic biology

    PubMed Central

    2014-01-01

    Background Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. Results We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation ‘Dj’ corresponding to a DNA sequence but based on the five-letter base set; also, ‘Dj’s are expressed graphically. Insertions and deletions of a series of letters ‘E’ are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by ‘Dj◦B(j→k) = Dk’ (or ‘Rj◦B(j→k) = Rk’). Based on the operations of this group, two types of groups—a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases—are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical “central dogma” via a category theory-like way is presented for future

  6. Synthesis and Magnetism of High Curie Temperature Prussian Blue Analogue Molecular Nanomagnet-Chromium Cyanide Molecule Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Zhou, Pingheng; Xue, Desheng; Yao, Jinli

    2009-03-01

    The goal to synthesize molecular nanomagnets that exhibit spontaneous magnetic ordering close to room temperature might enable one to apply them in the fields of magnetic memory devices and microelectronics. Chromium cyanide molecule nanowire arrays with diameters of about 50 nm and lengths up to 4μm have been synthesized by an electrodepositing technology based on anodizing anodic aluminum oxide films. Characterization measurements show that the oxidation state of the chromium ions in the chromium cyanide nanowires can be expressed as Cr^3+--CN--Cr^3+. Magnetic properties measurements indicate that the Curie temperature of chromium cyanide nanowire is 200 K, which is closer room temperature compared with current molecular nanomagnet systems.

  7. Color of postponed magnetic noise in K0.4[Cr (CN) 6 ] [Mn (R /S )-pn ] (R /S ) -pn H0.6 molecular ferrimagnet

    NASA Astrophysics Data System (ADS)

    Morgunov, R. B.; Talantsev, A. D.

    2016-10-01

    Exotic conditions for the existence and evolution of nonlinear spin ensembles (domain walls, spin solitons, skyrmions) in molecular-based magnets are incarnated in the macroscopic response of magnetization corresponding to collective stochastic behavior. The molecular ferrimagnet K0.4[Cr (CN) 6 ] [Mn (R /S )-pn ] (R /S ) -pn H0.6 manifests three types of magnetic relaxation: (a) continuous decay of magnetic moment, (b) stepwise relaxation by stochastic magnetization jumps, and (c) a single jump of magnetization in threshold magnetic field. Continuous relaxation at 20-50 K is provided by domain wall movement described in the frames of a strong pinning model, while a low-temperature continuous component of relaxation does not follow this model. Stepwise stochastic relaxation was observed below 8 K in both a sweeping reverse magnetic field and a stationary reverse magnetic field. Statistical treatment of the postponed magnetization jumps revealed a multimodal amplitude distribution of stochastic magnetization jumps corresponding to magnetic moment transitions between few clear distinguishable levels. Spectral density of magnetization jumps in a stationary magnetic field corresponds to white noise, while spectral density in a sweeping magnetic field manifests pink noise ˜1 /f provided by self-organized criticality. Postponed emission of magnetic noise in the 10-6-5 ×10-1Hz frequency range was observed in stationary conditions in contrast to Barkhausen noise.

  8. Light-Induced Spin State Switching and Relaxation in Spin Pairs of Copper(II)-Nitroxide Based Molecular Magnets.

    PubMed

    Tumanov, Sergey V; Veber, Sergey L; Tolstikov, Svyatoslav E; Artiukhova, Natalia A; Romanenko, Galina V; Ovcharenko, Victor I; Fedin, Matvey V

    2017-10-02

    Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.

  9. The composing process in technical communication

    NASA Technical Reports Server (NTRS)

    Masse, R. E.

    1981-01-01

    The theory and application of the composing process in technical communications is addressed. The composing process of engineers, some implications for composing research for the teaching and research of technical communication, and an interpretation of the processes as creative experience are also discussed. Two areas of technical communications summarized concern: the rhetorical features of technical communications, and the theoretical background for a process-based view, a problem-solving approach to technical writing.

  10. Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma.

    PubMed

    Meng, Jiawei; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-06-01

    In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3 O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross-linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid-phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1-150 ng/mL for berberine and 0.1-100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33-102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22-111.15% with relative standard deviation less than 4.59% in plasma.

  11. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  12. Comparison of spin dynamics and magnetic properties in antiferromagnetic closed and open molecular Cr-based rings.

    PubMed

    Adelnia, Fatemeh; Bordonali, Lorenzo; Mariani, Manuel; Bordignon, Sara; Timco, Grigore; Winpenny, Richard; Borsa, Ferdinando; Lascialfari, Alessandro

    2015-12-23

    We present magnetization and (1)H nuclear magnetic resonance (NMR) measurements performed in both closed Cr8 and open Cr8Zn antiferromagnetic molecular rings in the temperature range 1.65  <  T  <  300 K at different external magnetic fields. The magnetization measurements on Cr8Zn are consistent with a small decrease of the exchange constant J(Cr-Cr) and a much smaller gap between the singlet ground state and the first magnetic excited state when compared with the same properties of the closed ring Cr8, in agreement with previous inelastic neutron scattering results. The temperature dependence of the (1)H NMR nuclear spin lattice relaxation rate (NSLR), 1/T1(T), was found to be similar in both open and closed rings with a magnetic field dependent peak centered at a temperature of the order of the corresponding exchange constant J(Cr-Cr). Such main peak in the NSLR could be fitted with a single correlation frequency ω(c1) as in most molecular magnets. At low temperature T  <  4 K, a new feature not observed in previous NMR measurements on antiferromagnetic rings and consisting in a smaller peak of 1/T1(T) which is well resolved only in Cr8Zn, was singled out. This low-T peak indicates the presence of a second correlation frequency ω(c2) of the magnetization, found to be quite different between the two rings and thus possibly reflecting the different low temperature level structure associated with the different spin topology. The presence of ω(c2) is confirmed by the NMR spin-spin relaxation rate enhancement, which generates a two-steps wipe-out effect of the NMR signal intensity.

  13. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    PubMed

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa.

  14. Low Virial Parameters in Molecular Clouds: Implications for High-mass Star Formation and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Pillai, Thushara; Goldsmith, Paul F.

    2013-12-01

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only "supercritical" cloud fragments are able to collapse and form stars. The virial parameter α = M vir/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by α <~ 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters α >~ 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters Lt2 and compile a catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable "competitive accretion" in HMSF, constrain some models of "monolithic collapse," and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ~1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  15. Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound

    PubMed Central

    Alberto Rodríguez-Velamazán, José; Fabelo, Óscar; Millán, Ángel; Campo, Javier; Johnson, Roger D.; Chapon, Laurent

    2015-01-01

    The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2 K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism. PMID:26417890

  16. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  17. The Frontier of Molecular Spintronics Based on Multiple-Decker Phthalocyaninato Tb(III) Single-Molecule Magnets.

    PubMed

    Katoh, Keiichi; Komeda, Tadahiro; Yamashita, Masahiro

    2016-04-01

    Ever since the first example of a double-decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single-molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in Ln(III)-Pc-based multiple-decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear Tb(III)-Pc multiple-decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular Tb(III)-Tb(III) distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of Tb(III)-Pc-based multiple-decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of Tb(III)-Pc multiple-decker complexes.

  18. A Virtual Composer in Every Classroom

    ERIC Educational Resources Information Center

    Hoffman, Adria R.; Carter, Bruce A.

    2013-01-01

    Previous generations applauded grant-funded programs that brought living composers into the lives of K-12 music students. The current economic climate, however, limits opportunities similar to those enjoyed in the past. We designed a virtual composer-in-residence experience that uses technology to overcome the barriers of funding limitations and…

  19. Children Composing and the Tonal Idiom

    ERIC Educational Resources Information Center

    Roels, Johanna Maria; Van Petegem, Peter

    2016-01-01

    Existing studies have demonstrated how children compose, experiment and use their imagination within the conventions of the tonal idiom with functional harmony. However, one area of research that has hardly been explored is how tonality emerges in the compositions of children who compose by transforming their own non-musical ideas, such as their…

  20. Adolescents' Dialogic Composing with Mobile Phones

    ERIC Educational Resources Information Center

    Warner, Julie

    2016-01-01

    This 14-month study examined the phone-based composing practice of three adolescents. Given the centrality of mobile phones to youth culture, the researcher sought to create a description of the participants' composing practices with these devices. Focal participants were users of Twitter and Instagram, two social media platforms that are usually…

  1. A Virtual Composer in Every Classroom

    ERIC Educational Resources Information Center

    Hoffman, Adria R.; Carter, Bruce A.

    2013-01-01

    Previous generations applauded grant-funded programs that brought living composers into the lives of K-12 music students. The current economic climate, however, limits opportunities similar to those enjoyed in the past. We designed a virtual composer-in-residence experience that uses technology to overcome the barriers of funding limitations and…

  2. Adolescents' Dialogic Composing with Mobile Phones

    ERIC Educational Resources Information Center

    Warner, Julie

    2016-01-01

    This 14-month study examined the phone-based composing practice of three adolescents. Given the centrality of mobile phones to youth culture, the researcher sought to create a description of the participants' composing practices with these devices. Focal participants were users of Twitter and Instagram, two social media platforms that are usually…

  3. Dave Brubeck on Music Education and Composing.

    ERIC Educational Resources Information Center

    Ponick, F. S.

    2001-01-01

    Presents an interview with Dave Brubeck, a composer and performer in contemporary jazz. Covers topics such as how Brubeck introduced his sons to music, whether he differentiates between "popular" and "serious" music, suggestions for helping music teachers develop relationships with composers, and the role music education should have in schools.…

  4. Children Composing and the Tonal Idiom

    ERIC Educational Resources Information Center

    Roels, Johanna Maria; Van Petegem, Peter

    2016-01-01

    Existing studies have demonstrated how children compose, experiment and use their imagination within the conventions of the tonal idiom with functional harmony. However, one area of research that has hardly been explored is how tonality emerges in the compositions of children who compose by transforming their own non-musical ideas, such as their…

  5. A Composer Succeeds with Beginning Band.

    ERIC Educational Resources Information Center

    Hargis, Katherine

    1984-01-01

    Described is a "Composer in Residence" project in which a local choral songwriter participated in a semester-long music course for fourth and fifth graders. He visited the schools and composed an instrumental work which the students performed at a spring concert. (RM)

  6. America's Women Composers: Up from the Footnotes.

    ERIC Educational Resources Information Center

    Pool, Jeannie G.

    1979-01-01

    This article presents an overview on women composers in the United States from the eighteenth century to the present. It also lists women's musical organizations, selected references on women in music, and available recordings of works by American women composers. (SJL)

  7. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    PubMed Central

    Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847

  8. Research on BOM based composable modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxin; He, Qiang; Gong, Jianxing

    2013-03-01

    Composable modeling method has been a research hotpot in the area of Modeling and Simulation for a long time. In order to increase the reuse and interoperability of BOM based model, this paper put forward a composable modeling method based on BOM, studied on the basic theory of composable modeling method based on BOM, designed a general structure of the coupled model based on BOM, and traversed the structure of atomic and coupled model based on BOM. At last, the paper introduced the process of BOM based composable modeling and made a conclusion on composable modeling method based on BOM. From the prototype we developed and accumulative model stocks, we found this method could increase the reuse and interoperability of models.

  9. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of triazines from environmental soil samples.

    PubMed

    Díaz-Álvarez, Myriam; Turiel, Esther; Martín-Esteban, Antonio

    2016-10-21

    In this work, novel molecularly imprinted stir-bars based upon the entrapment of modified magnetic nanoparticles within an imprinted polymer monolith is developed for stir-bar sorptive extraction (SBSE). Firstly, magnetic nanoparticles were surface modified with oleic acid followed by encapsulation inside a silica network. Then, vinyl-groups were grafted onto the particles surface for the subsequent copolymerization with the imprinting polymerization mixture using a glass vial insert as a mold. As a result, the obtained imprinted monolith presented magnetic properties allowing its use as magnetic stir-bar. Variables affecting both polymer morphology (i.e., amount of magnetic nanoparticles, polymerization time) and binding-elution conditions of target analytes (i.e., solvents, time) was carefully optimized. Optimum imprinted stir-bars were evaluated for the SBSE of triazines in soil sample extracts. Recoveries, at 16ngg(-1) concentration level, ranged from 2.4 to 8.7% with relative standard deviations lower than 15% (n=3). Although low recoveries were obtained, the high selectivity provided by the new molecularly imprinted stir-bars allowed reaching detection limits below 7.5ngg(-1) by liquid chromatography coupled to UV detection.

  10. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  11. Spintronic transport of a non-magnetic molecule between magnetic electrodes

    NASA Astrophysics Data System (ADS)

    Kondo, Hisashi; Ohno, Takahisa

    2013-12-01

    The spintronic transport properties of a junction system composed of a non-magnetic molecule sandwiched between ferromagnetic metal electrodes are investigated theoretically using a non-equilibrium Green's function method based on density functional theory. It is revealed that in such a system, the molecular magnetic properties induced by hybridization with the magnetic electrodes play a crucial role. Alignment of the induced molecular spin-split levels is strongly related to the spin injection and tunneling magneto-resistance effects. It is found that in the system with weaker molecule-electrode interaction, stronger spintronic effects of the spin injection and tunneling magneto-resistance are observed.

  12. Single-component molecular conductor [Cu(dmdt)2] with three-dimensionally arranged magnetic moments exhibiting a coupled electric and magnetic transition.

    PubMed

    Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko; Cui, HengBo; Kato, Reizo; Takagi, Rina; Miyagawa, Kazuya; Kanoda, Kazushi; Kobayashi, Hayao

    2012-08-01

    Crystals of the single-component molecular conductor [Cu(dmdt)(2)] (dmdt = dimethyltetrathiafulvalenedithiolate) were prepared as a molecular system, with three-dimensionally arranged magnetic moments embedded in "sea" of π conduction electrons. [Cu(dmdt)(2)] had fairly large room-temperature conductivity (110 S cm(-1)) and exhibited weakly metallic behavior near room temperature. Below 265 K, the resistivity (R) increased very slowly with decreasing temperature and then increased rapidly, indicating a transition from a highly conducting state to an insulating state near 95 K. The magnetic susceptibility showed Curie-Weiss behavior at 100-300 K (C = 0.375 emu/mol, Θ = 180 K). The Curie constant and the high-temperature resistivity behavior indicate that conduction electrons and three-dimensionally arranged magnetic moments coexist in the crystal. The ESR intensity increased down to about 95 K. The ESR signal was broadened and decreased abruptly near 95 K, suggesting that electric and antiferromagnetic transitions occurred simultaneously near 95 K. The crystal structure was determined down to 13 K. To examine the stability of the twisted conformation of Cu complex with dithiolate ligands, the dihedral angle dependence of the conformational energy of an isolated M(L)(2)(n-) molecule was calculated, which revealed the dihedral angle dependence on the ligand (L) and the oxidation state of the molecule (n). High-pressure four-probe resistivity measurements were performed at 3.3-9.3 GPa using a diamond anvil cell. The small resistivity increase observed at 3.3 GPa below 60 K suggested that the insulating transition observed at ambient pressure near 95 K was essentially suppressed at 3.3 GPa. The intermolecular magnetic interactions were examined on the basis of simple mean field theory of antiferromagnetic transition and the calculated intermolecular overlap integrals of the singly occupied molecular orbital (SOMO) of Cu(dmdt)(2).

  13. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  14. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson's Disease?

    PubMed Central

    Ciurleo, Rosella; Di Lorenzo, Giuseppe; Marino, Silvia

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions. PMID:25302300

  15. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging

    PubMed Central

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785

  16. Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging.

    PubMed

    Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime

    2015-01-01

    Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.

  17. Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease

    PubMed Central

    Knight, Michael J.; McCann, Bryony; Kauppinen, Risto A.; Coulthard, Elizabeth J.

    2016-01-01

    Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying “health” at the cellular (and even molecular) scales, makes it very well suited to this task. PMID:27378911

  18. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    NASA Astrophysics Data System (ADS)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  19. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  20. Boundary effects of molecular diffusion in nanoporous materials: A pulsed field gradient nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Geier, Oliver; Snurr, Randall Q.; Stallmach, Frank; Kärger, Jörg

    2004-01-01

    The boundary conditions of intraparticle diffusion in nanoporous materials may be chosen to approach the limiting cases of either absorbing or reflecting boundaries, depending on the host-guest system under study and the temperature of measurement. Pulsed field gradient nuclear magnetic resonance is applied to monitor molecular diffusion of n-hexane and of an n-hexane-tetrafluoromethane mixture adsorbed in zeolite crystallites of type NaX under either of these limiting conditions. Taking advantage of the thus-established peculiarities of mass transfer at the interface between the zeolite bulk phase and the surrounding atmosphere, three independent routes for probing the crystal size are compared. These techniques are based on (i) the measurement of the effective diffusivity under complete confinement, (ii) the application of the so-called NMR tracer desorption technique, and (iii) an analysis of the time dependence of the effective diffusivity in the short-time limit where, by an appropriate variation of the adsorbate and the measuring conditions, the limiting cases of reflecting and adsorbing boundaries could be considered. All these techniques are found to yield coinciding results, which are in excellent agreement with the crystal sizes determined by microscopy.

  1. Comparing implementations of magnetic-resonance-guided fluorescence molecular tomography for diagnostic classification of brain tumors

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Samkoe, Kimberley S.; O'Hara, Julia A.; Gibbs-Strauss, Summer L.; Paulsen, Keith D.; Pogue, Brian W.

    2010-09-01

    Fluorescence molecular tomography (FMT) systems coupled to conventional imaging modalities such as magnetic resonance imaging (MRI) and computed tomography provide unique opportunities to combine data sets and improve image quality and content. Yet, the ideal approach to combine these complementary data is still not obvious. This preclinical study compares several methods for incorporating MRI spatial prior information into FMT imaging algorithms in the context of in vivo tissue diagnosis. Populations of mice inoculated with brain tumors that expressed either high or low levels of epidermal growth factor receptor (EGFR) were imaged using an EGF-bound near-infrared dye and a spectrometer-based MRI-FMT scanner. All data were spectrally unmixed to extract the dye fluorescence from the tissue autofluorescence. Methods to combine the two data sets were compared using student's t-tests and receiver operating characteristic analysis. Bulk fluorescence measurements that made up the optical imaging data set were also considered in the comparison. While most techniques were able to distinguish EGFR(+) tumors from EGFR(-) tumors and control animals, with area-under-the-curve values=1, only a handful were able to distinguish EGFR(-) tumors from controls. Bulk fluorescence spectroscopy techniques performed as well as most imaging techniques, suggesting that complex imaging algorithms may be unnecessary to diagnose EGFR status in these tissue volumes.

  2. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  3. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    NASA Astrophysics Data System (ADS)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-11-01

    A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97-81.88% and 75.56-79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L-1, respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples.

  4. Magnetic molecularly imprinted polymer for the selective extraction of sildenafil, vardenafil and their analogs from herbal medicines.

    PubMed

    Chen, Fang-Fang; Xie, Xiao-Yu; Shi, Yan-Ping

    2013-10-15

    The successfully developed magnetic molecularly imprinted polymers (MMIPs) toward six synthetic phosphodiesterase type-5 (PDE-5) inhibitors were described. Sildenafil was used as template for the preparation of MMIPs using superparamagnetic core-shell nanoparticle as supporter. The obtained MMIPs were characterized using transmission electron microscope, Fourier transform infrared, X-ray diffraction, and vibrating sample magnetometer. High performance liquid chromatography (HPLC) with diode array detector (DAD) was used for the analysis of target analytes. The application of MMIPs as selective sorbent in the cleanup of herbal medicine samples prior to HPLC offered simple sample preparation. The adsorption capacity and selectivity of prepared MMIPs and magnetic non-molecularly imprinted polymers were investigated. The binding isotherms were obtained for sildenafil and fitted by Freundlich isotherm model. Structurally similar compound of sildenafil and a reference compound protocatechuic acid were used for investing the selective recognition of MMIPs. © 2013 Elsevier B.V. All rights reserved.

  5. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  6. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  7. Planck intermediate results: XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-02-09

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range frommore » NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.« less

  8. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  9. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-02-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 106%. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents.

  10. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yao, Su; Zhang, Jiali; Huang, Huichang

    2016-01-01

    A sensitive and selective method for separating fluoroquinolones (FQs) from bovine milk samples was successfully developed using montmorillonite magnetic molecularly imprinted polymers (MMMIPs) as adsorbents. MMMIPs were prepared using montmorillonite as carrier, fleroxacin (FLE) as template molecule, and Fe3O4 magnetite as magnetic component. MMMIPs possessed high adsorption capacity of 46.3 mg g(-1) for FLE. A rapid and convenient magnetic solid-phase extraction procedure coupled with capillary electrophoresis was established with MMMIPs as adsorbents for simultaneous and selective extraction of four FQs in bovine milk samples. Limits of detection ranged between 12.9 and 18.8 μg L(-1), and the RSDs were between 1.8% and 8.6%. The proposed method was successfully applied to spike bovine milk samples with recoveries of 92.7%-108.6%.

  11. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2 CoGa thin films grown by molecular beam epitaxy

    DOE PAGES

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV.more » These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less

  12. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  13. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe{sub 1.5}[Cr(CN){sub 6}]·mH{sub 2}O

    SciTech Connect

    Bhatt, Pramod Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-23

    Molecular magnets, based on Prussian blue analogues, Fe{sub 1.5}[Cr(CN){sub 6}]·mH{sub 2}O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (T{sub C}) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (Cr{sup III}–C≡N–Fe{sup II}) to low spin (LS) Fe{sup II} ions (Cr{sup III}–N≡C–Fe{sup II}). Moreover, the T{sub C} and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  14. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition.

    PubMed

    Gao, Lin; Wang, Jixiang; Li, Xiuying; Yan, Yongsheng; Li, Chunxiang; Pan, Jianming

    2014-11-01

    In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0-50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food.

  15. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of tetrabromobisphenol S.

    PubMed

    Wang, Xuemei; Huang, Pengfei; Ma, Xiaomin; Wang, Huan; Lu, Xiaoquan; Du, Xinzhen

    2017-05-01

    Novel magnetic mesoporous molecularly imprinted polymers (MMIPs) with core-shell structure were prepared by simple surface molecular imprinting polymerization using tetrabromobisphenol-S (TBBPS) as the template. The MMIPs-TBBPS were characterized by fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption transmission, and vibrating sample magnetometry. The resultant MMIPs-TBBPS were successfully applied magnetic solid-phase extraction (MSPE) coupled with HPLC determination of TBBPS in spiked real water samples with recoveries of 77.8-88.9%. The adsorption experiments showed that the binding capacity of MMIPs-TBBPS to TBBPS and six structural analogs were significantly higher than that of the magnetic nonimprinted polymers (MNIPs). Meanwhile, the MMIPs-TBBPS possessed rapid binding affinity, excellent magnetic response, specific selectivity and high adsorption capacity toward TBBPS with a maximum adsorption capacity of 1626.8µgg(-1). The analytical results indicate that the MMIPs-TBBPS are promising materials for selective separation and fast enrichment of TBBPS from complicated enviromental samples.

  16. Magnetic fields in molecular clouds: The BLASTPol and BLAST-TNG experiments

    NASA Astrophysics Data System (ADS)

    Galitzki, Nicholas

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flight from Antarctica in 2012. The data reduction and analysis efforts over the three years following the flight have produced a number of important scientific results. The next-generation BLAST instrument (BLAST-TNG) will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and more than 3000 polarization sensitive detectors. BLAST-TNG will observe in the same three bands as BLASTpol at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid helium cooled cryostat will have a 28-day hold time and will utilize a closed-cycle 3He refrigerator to cool the detector arrays to 270 mK. This will enable a detailed mapping of more targets with higher polarization resolution than any other submillimeter experiment to date. My thesis describes the 2012 instrument and results while also outlining the motivation for BLAST-TNG and the instrumental design and initial testing.

  17. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles.

    PubMed

    Tasca, Giorgio; Pescatori, Mario; Monforte, Mauro; Mirabella, Massimiliano; Iannaccone, Elisabetta; Frusciante, Roberto; Cubeddu, Tiziana; Laschena, Francesco; Ottaviani, Pierfrancesco; Ricci, Enzo

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI) we observed that T2-short tau inversion recovery (T2-STIR) sequences identify two different conditions in which each muscle can be found before the irreversible dystrophic alteration, marked as T1-weighted sequence hyperintensity, takes place. We studied these conditions in order to obtain further information on the molecular mechanisms involved in the selective wasting of single muscles or muscle groups in this disease. Histopathology, gene expression profiling and real time PCR were performed on biopsies from FSHD muscles with different MRI pattern (T1-weighted normal/T2-STIR normal and T1-weighted normal/T2-STIR hyperintense). Data were compared with those from inflammatory myopathies, dysferlinopathies and normal controls. In order to validate obtained results, two additional FSHD samples with different MRI pattern were analyzed. Myopathic and inflammatory changes characterized T2-STIR hyperintense FSHD muscles, at variance with T2-STIR normal muscles. These two states could be easily distinguished from each other by their transcriptional profile. The comparison between T2-STIR hyperintense FSHD muscles and inflammatory myopathy muscles showed peculiar changes, although many alterations were shared among these conditions. At the single muscle level, different stages of the disease correspond to the two MRI patterns. T2-STIR hyperintense FSHD muscles are more similar to inflammatory myopathies than to T2-STIR normal FSHD muscles or other muscular dystrophies, and share with them upregulation of genes involved in innate and adaptive immunity. Our data suggest that selective inflammation, together with perturbation in biological processes such as neoangiogenesis, lipid metabolism and adipokine production, may contribute

  18. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    SciTech Connect

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-11-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096{sup 3} grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH{sub 3} (J - K) = (1,1) transition and the N{sub 2}H{sup +} (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t{sub ff,cl}), whereas in the mildly supercritical simulations this value goes down to {approx}6 per unit t{sub ff,cl}. A comparison of the intrinsic specific angular momentum (j{sub 3D}) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j{sub 2D}) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of {approx}8-10. We find that the distribution of the ratio j{sub 3D}/j{sub 2D} of the cores peaks at around {approx}0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our

  19. Unravelling the molecular structure and packing of a planar molecule by combining nuclear magnetic resonance and scanning tunneling microscopy.

    PubMed

    Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M

    2013-12-21

    The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.

  20. Preparation of mixed molecularly imprinted polymer magnetic nanoparticles and its application in separation of Chinese traditional medicine

    NASA Astrophysics Data System (ADS)

    Xie, Yihui; Ma, Yajuan; Bai, Wenting; Zhu, Xiaofang; Liu, Min; Huang, Liping

    2017-08-01

    A mixed imprinted polymer which can rapidly adsorb all flavonoids from raspberry extract was prepared and recycled. The hybrid molecular surface imprinted polymers were prepared by using quercetin as the template molecule and Fe3O4 magnetic nanospheres as the carrier. The molecular imprinting polymer was prepared by using the "initial template molecule, molecularly imprinted polymer, mixed template molecule, molecularly imprint ted polymers (MIPS)". The adsorption performance and durability of the hybrid molecularly imprinted polymers were investigated by using the fingerprints of the ethyl acetate fraction of raspberry as an index. The adsorption of flavonoids from raspberry extract, lindenoside, cis-lindenin, quercetin, kaempferol and other flavonoids was completely adsorbed by mixed molecular-imprinted polymer, and the other components were basically adsorbed. When Mix-IMPs were repeatedly used 10 times, the fingerprints showed that the content and content of flavonoids were basically the same. The experimental results show that Mix-IMPs has good adsorption performance, can be recycled and used for rapid enrichment of flavonoids in raspberry.

  1. Lyapunov instability of fluids composed of rigid diatomic molecules

    NASA Astrophysics Data System (ADS)

    Borzsák, István; Posch, H. A.; Baranyai, András

    1996-04-01

    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a Weeks-Chandler-Anderson site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom, such as rotation and translation, affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.

  2. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings

    PubMed Central

    Baker, Michael L.; Timco, Grigore A.; Piligkos, Stergios; Mathieson, Jennifer S.; Mutka, Hannu; Tuna, Floriana; Kozłowski, Piotr; Antkowiak, Michał; Guidi, Tatiana; Gupta, Tulika; Rath, Harapriya; Woolfson, Robert J.; Kamieniarz, Grzegorz; Pritchard, Robin G.; Weihe, Høgni; Cronin, Leroy; Rajaraman, Gopalan; Collison, David; McInnes, Eric J. L.; Winpenny, Richard E. P.

    2012-01-01

    The term “frustration” in the context of magnetism was originally used by P. W. Anderson and quickly adopted for application to the description of spin glasses and later to very special lattice types, such as the kagomé. The original use of the term was to describe systems with competing antiferromagnetic interactions and is important in current condensed matter physics in areas such as the description of emergent magnetic monopoles in spin ice. Within molecular magnetism, at least two very different definitions of frustration are used. Here we report the synthesis and characterization of unusual nine-metal rings, using magnetic measurements and inelastic neutron scattering, supported by density functional theory calculations. These compounds show different electronic/magnetic structures caused by frustration, and the findings lead us to propose a classification for frustration within molecular magnets that encompasses and clarifies all previous definitions. PMID:23132941

  3. The Brain Functional State of Music Creation: an fMRI Study of Composers.

    PubMed

    Lu, Jing; Yang, Hua; Zhang, Xingxing; He, Hui; Luo, Cheng; Yao, Dezhong

    2015-07-23

    In this study, we used functional magnetic resonance imaging (fMRI) to explore the functional networks in professional composers during the creation of music. We compared the composing state and resting state imagery of 17 composers and found that the functional connectivity of primary networks in the bilateral occipital lobe and bilateral postcentral cortex decreased during the composing period. However, significantly stronger functional connectivity appeared between the anterior cingulate cortex (ACC), the right angular gyrus and the bilateral superior frontal gyrus during composition. These findings indicate that a specific brain state of musical creation is formed when professional composers are composing, in which the integration of the primary visual and motor areas is not necessary. Instead, the neurons of these areas are recruited to enhance the functional connectivity between the ACC and the default mode network (DMN) to plan the integration of musical notes with emotion.

  4. Music and emotion—a composer's perspective

    PubMed Central

    Douek, Joel

    2013-01-01

    This article takes an experiential and anecdotal look at the daily lives and work of film composers as creators of music. It endeavors to work backwards from what practitioners of the art and craft of music do instinctively or unconsciously, and try to shine a light on it as a conscious process. It examines the role of the film composer in his task to convey an often complex set of emotions, and communicate with an immediacy and universality that often sit outside of common language. Through the experiences of the author, as well as interviews with composer colleagues, this explores both concrete and abstract ways in which music can bring meaning and magic to words and images, and as an underscore to our daily lives. PMID:24348344

  5. Second-order planar gradiometer composed of concentric superconductive loops

    SciTech Connect

    Kuriki, S.; Isobe, Y.; Mizutani, Y.

    1987-01-15

    A planar gradiometer composed of three concentric superconductive loops is analyzed. The gradiometer performs the second derivative with a rotational symmetry in a form of partial/sup 2/B/sub z//partialr/sup 2/, where r/sup 2/ = x/sup 2/+y/sup 2/. In response to the biomagnetic field generated by a current dipole, an isoflux line distribution which resembles well the magnetic field distribution is obtained. The location and the strength of the current-dipole source can readily be estimated from the isoflux pattern. Reduction of the magnetic field noise from distant sources with respect to the signal of a near source is calculated to be comparable with that of conventional axial gradiometers.

  6. Experimental cell for molecular beam deposition and magnetic resonance studies of matrix isolated radicals at temperatures below 1 K

    SciTech Connect

    Sheludiakov, S. Ahokas, J.; Vainio, O.; Järvinen, J.; Zvezdov, D.; Vasiliev, S.; Khmelenko, V. V.; Mao, S.; Lee, D. M.

    2014-05-15

    We present the design and performance of an experimental cell constructed for matrix isolation studies of H and D atoms in solid H{sub 2}/D{sub 2} films, which are created by molecular beam deposition at temperatures below 1 K. The sample cell allows sensitive weighing of the films by a quartz microbalance (QM) and their studies by magnetic resonance techniques in a strong magnetic field of 4.6 T. We are able to regulate the deposition rate in the range from 0.01 to 10 molecular layers/s, and measure the thickness with ≈0.2 monolayer resolution. The upper QM electrode serves as a mirror for a 128 GHz Fabry-Perot resonator connected to an electron spin resonance (ESR) spectrometer. H and D atoms were created by RF discharge in situ in the sample cell, and characterized by ESR and electron-nuclear double resonance. From the magnetic resonance measurements we conclude that the films are smooth and provide homogeneous trapping conditions for embedded atoms. The current sample cell design also makes it possible to calibrate the ESR signal and estimate the average and local concentrations of H and D radicals in the film.

  7. Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning

    2013-03-20

    Magnetic multi-core-shell molecularly imprinted microspheres (Fe3O4@MIMs) based on multi-Fe3O4 nanoparticles as core structures and dummy imprinted materials as shell structures have been synthesized by a surface-imprinted technique using dichlorodiphenyltrichloroethane as the dummy template and were successfully used as a specific adsorbent for rapid isolation of trace levels of dicofol from teas. The resulting Fe3O4@MIMs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermogravimetric analysis. In comparison to the imprinted polymers prepared by the traditional polymerizations, the obtained Fe3O4@MIMs showed regularly spherical shape, porous morphologies, high saturation magnetization [56.8 electromagnetic units (emu)/g], and rapid response time (15 s). The as-synthesized Fe3O4@MIMs, which incorporated the excellent molecular recognition and magnetic separation properties, were successfully used as special adsorbents for rapid isolation and extraction of trace levels of dicofol and its analogues from a complicated tea matrix.

  8. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    PubMed Central

    Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; del Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; Ruben, M.; Kummer, K.; Brookes, N. B.; Huang, H.; Soncini, A.; Wende, H.; Affronte, M.

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  9. Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Disseler, Steven M.; Ratcliff, William D.; Borchers, Julie A.; Ponce-Pérez, Rodrigo; Cocoletzi, Gregorio H.; Takeuchi, Noboru; Foley, Andrew; Richard, Andrea; Ingram, David C.; Smith, Arthur R.

    2017-09-01

    A magnetostructural phase transition is investigated in single-crystal chromium nitride (CrN) thin films grown by rf plasma molecular beam epitaxy on MgO(001) substrates. While still within the vacuum environment following molecular beam epitaxy growth, in situ low-temperature scanning tunneling microscopy, and in situ variable low-temperature reflection high-energy electron diffraction are applied, revealing an atomically smooth and metallic CrN(001) surface, and an in-plane structural transition from 1 ×1 (primitive CrN unit cell) to √{2 }×√{2 }-R 45∘ with a transition temperature of (278 ±3 ) K, respectively. Ex situ temperature-dependent measurements using neutron diffraction are also performed, looking at the structural peaks and likewise revealing a first-order structural transition along the [111] out-of-plane direction, with transition temperatures of (268 ± 3) K. Turning to the magnetic peaks, neutron diffraction confirms a clear magnetic transition from paramagnetic at room temperature to antiferromagnetic at low temperatures with a sharp, first-order phase transition and a Néel temperature of (270 ±2 ) K or (280 ±2 ) K for two different films. In addition to the experimental measurements of structural and magnetic ordering, we also discuss results from first-principles theoretical calculations which explore various possible magnetostructural models.

  10. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping.

    PubMed

    Nair, R R; Tsai, I-L; Sepioni, M; Lehtinen, O; Keinonen, J; Krasheninnikov, A V; Castro Neto, A H; Katsnelson, M I; Geim, A K; Grigorieva, I V

    2013-01-01

    Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres such as vacancies and adatoms. Here we show that the magnetism of adatoms in graphene is itinerant and can be controlled by doping, so that magnetic moments are switched on and off. The much-discussed vacancy magnetism is found to have a dual origin, with two approximately equal contributions; one from itinerant magnetism and the other from dangling bonds. Our work suggests that graphene's spin transport can be controlled by the field effect, similar to its electronic and optical properties, and that spin diffusion can be significantly enhanced above a certain carrier density.

  11. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing

    2015-11-01

    A novel, facile and low cost process for imprinting protein on the surface of magnetic multiwalled carbon nanotubes (MMWNTs) was developed using human serum albumin (HSA) as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized with transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) in detail. The maximum adsorption capacity of the magnetic imprinted polymers toward HSA was 66.23 mg g(-1) and it took 20 min to achieve the adsorption equilibrium. The magnetic imprinted polymers exhibited the specific selective adsorption toward HSA. Coupled with high performance liquid chromatography (HPLC) analysis, the magnetic imprinted polymers were used to solid-phase extract and detect HSA in urine samples successfully with the recoveries of 91.95-97.8%.

  12. Helping Students Understand the Composer's Job.

    ERIC Educational Resources Information Center

    Townsend, Karen

    1999-01-01

    Describes how the string orchestra students of Natchitoches Central High School in Natchitoches (Louisiana) and their director commissioned the composer Jody Nagel to write a composition dedicated to their ensemble in order to increase the students' understanding of composition. Discusses student reaction to the project and use of discipline-based…

  13. The Composer in the Liberal Arts College

    ERIC Educational Resources Information Center

    Schwartz, Elliott

    2011-01-01

    This essay explores the role of music composition within the curriculum of a typical small liberal arts college and the faculty composer's role(s) in facilitating the study of composition. The relationship between composition and campus performance is discussed, particularly in light of the increased emphasis on performance in formerly all-male…

  14. Discourse Theory: Implications for Research in Composing.

    ERIC Educational Resources Information Center

    Odell, Lee; And Others

    Although current theories concerning the composing process overlap in useful and interesting ways, a paradigm is emerging. This article discusses two of the major assumptions of this emerging paradigm: that there are distinct purposes for each kind of discourse (for example, expressive, literary, persuasive, and referential) and that the relation…

  15. Take a Change with Aleatory Composing.

    ERIC Educational Resources Information Center

    Stambaugh, Laura

    2003-01-01

    Discusses how teachers can incorporate musical composition into their classrooms by teaching students about aleatory, or chance, music. Provides a definition of aleatory music and provides various composing techniques, focusing on aleatory music. Includes lesson plans using aleatory music, such as the "Mozart Model" for grades 4-12. (CMK)

  16. Enhancing Memory in Your Students: COMPOSE Yourself!

    ERIC Educational Resources Information Center

    Rotter, Kathleen M.

    2009-01-01

    The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…

  17. Composing Networks: Writing Practices on Mobile Devices

    ERIC Educational Resources Information Center

    Swarts, Jason

    2016-01-01

    This article is an investigation of composing practices through which people create networks with mobile phones. By looking through the lens of actor-network theory, the author portrays the networking activity of mobile phone users as translation, what Latour describes as an infralanguage to which different disciplinary perspectives can be…

  18. Composing Networks: Writing Practices on Mobile Devices

    ERIC Educational Resources Information Center

    Swarts, Jason

    2016-01-01

    This article is an investigation of composing practices through which people create networks with mobile phones. By looking through the lens of actor-network theory, the author portrays the networking activity of mobile phone users as translation, what Latour describes as an infralanguage to which different disciplinary perspectives can be…

  19. Factors Important in Composing Legal Written Communication.

    ERIC Educational Resources Information Center

    West, Judy Ferguson

    To determine which factors were considered important in composing legal written documents, personal interviews were conducted with 111 Middle Tennessee Bar Association members, and questionnaires were mailed to 211 legal secretaries/paralegals. The self-administered questionnaires were completed and returned by 133 persons. Of those, 108 indicated…

  20. Composing Zen Haiku: Training to Make Sense.

    ERIC Educational Resources Information Center

    Holmes, Stewart W.

    1996-01-01

    Suggests that composing "haiku" requires a discipline in a person's thinking and emoting patterns similar to that of a general semantics system for training people to make sense. Describes how such haiku are written and gives some guidelines to help individuals create their own. (PA)

  1. The Composer's Blueprint: A Teacher's Guide.

    ERIC Educational Resources Information Center

    Trzcinski, Louis C.; Nelhybel, Vaclav

    This teacher's guide is designed to accompany two 15-minute color television programs dealing with the creative process involved in conceiving a composition. The programs are appropriate for junior high school string students and instrumental students in string methods courses at teacher training institutions. In the program, the composer explains…

  2. The Composer in the Liberal Arts College

    ERIC Educational Resources Information Center

    Schwartz, Elliott

    2011-01-01

    This essay explores the role of music composition within the curriculum of a typical small liberal arts college and the faculty composer's role(s) in facilitating the study of composition. The relationship between composition and campus performance is discussed, particularly in light of the increased emphasis on performance in formerly all-male…

  3. The Composing Processes of Mature Adults.

    ERIC Educational Resources Information Center

    Crabbe, Katharyn

    The study examined 41 students (24 male, 17 female) in a beginning writing course for adults. Data were collected by (1) taping four workshop sessions in which all students participated in small groups, (2) interviewing all the students, and (3) observing four students writing in the classroom. The adult writers composed in two models: the…

  4. Research on Composing: Points of Departure.

    ERIC Educational Resources Information Center

    Cooper, Charles R., Ed.; Odell, Lee, Ed.

    While the chapters of this book present a variety of perspectives, they share the common goal of redirecting and revitalizing research on written composition. The authors review research on written discourse and the composing process and raise questions regarding information and skills that teachers and researchers need to consider. The chapters…

  5. The Influence of Conceptions of Molecular Structure and Patterns of Problem-Solving on the Process of Learning To Interpret Nuclear Magnetic Resonance Spectra.

    ERIC Educational Resources Information Center

    Gonzalez, Barbara L.

    The purpose of this study was to characterize the prior conceptions of molecular structure that organic chemistry students expressed as they learned to interpret nuclear magnetic resonance spectra, and to describe the problem-solving strategies that students employ as they determine molecular structure. The two questions that frame this study…

  6. The effects of pseudo magnetic fields in molecular spectra and scattering

    SciTech Connect

    Kendrick, B.

    1996-12-31

    Pseudo magnetic fields appear in the Born-Oppenheimer method for molecules when conical intersections or electronic angular momenta are taken into account. These fields are not real magnetic fields but they have the same mathematical properties and can lead to real observable effects in the dynamics of molecules. A general vector potential (gauge theory) approach for including these field effects in the Born-Oppenheimer method is introduced and applied to H + O{sub 2} scattering and the vibrational spectrum of Na{sub 3}(X) for zero total angular momentum (J = 0). The scattering results for HO{sub 2} show significant shifts in the resonance energies and lifetimes due to a magnetic solenoid type field originating from the C{sub 2v} conical intersection in HO{sub 2}. Significant changes in the state-to-state transition probabilities are also observed. The non-degenerate A{sub 1} and A{sub 2} vibrational spectra of Na{sub 3}(X) show significant shifts in the energy levels due to a magnetic solenoid type field originating from the D{sub 3h} conical intersection in Na{sub 3}. These two examples show that the effects of pseudo magnetic fields can be significant and in many cases they must be included in order to obtain agreement between theory and experiment. The newly developed gauge theory techniques for treating pseudo magnetic fields are also relevant for including the effects of real magnetic fields.

  7. Visualizing the radical-pair mechanism of molecular magnetic field effects by magnetic resonance induced electrofluorescence to electrophosphorescence interconversion

    NASA Astrophysics Data System (ADS)

    Kraus, Hermann; Bange, Sebastian; Frunder, Felix; Scherf, Ullrich; Boehme, Christoph; Lupton, John M.

    2017-06-01

    We probe the interconversion of spin permutation symmetry of weakly bound electron-hole carrier pairs in an organic light-emitting diode by monitoring the changes in yield of recombinant species—singlet and triplet excitons—through fluorescence and phosphorescence, respectively. Spin mixing occurs by spin precession in local hyperfine fields and is suppressed by an external magnetic field, leading to an anticorrelation of fluorescence and phosphorescence yield, which follows the same functionality as magnetoresistance. A resonant radio-frequency field reverses this effect, enhancing spin mixing to raise the phosphorescence and lower the fluorescence. The experiment offers a direct simultaneous optical probe of the two interconverting spin states in the radical-pair mechanism, which features prominently in models of biological magnetoception.

  8. Liquid state DNP at high magnetic fields: Instrumentation, experimental results and atomistic modelling by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Prisner, Thomas; Denysenkov, Vasyl; Sezer, Deniz

    2016-03-01

    Dynamic nuclear polarization (DNP) at high magnetic fields has recently become one of the major research areas in magnetic resonance spectroscopy and imaging. Whereas much work has been devoted to experiments where the polarization transfer from the electron spin to the nuclear spin is performed in the solid state, only a few examples exist of experiments where the polarization transfer is performed in the liquid state. Here we describe such experiments at a magnetic field of 9.2 T, corresponding to a nuclear Larmor frequency of 400 MHz for proton spins and an excitation frequency of 263 GHz for the electron spins. The technical requirements to perform such experiments are discussed in the context of the double resonance structures that we have implemented. The experimental steps that allowed access to the enhancement factors for proton spins of several organic solvents with nitroxide radicals as polarizing agents are described. A computational scheme for calculating the coupling factors from molecular dynamics (MD) simulations is outlined and used to highlight the limitations of the classical models based on translational and rotational motion that are typically employed to quantify the observed coupling factors. The ability of MD simulations to predict enhancements for a variety of radicals and solvent molecules at any magnetic field strength should prove useful in optimizing experimental conditions for DNP in the liquid state.

  9. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.

  10. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  11. Cryogenfree superconducting magnets

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuo; Awaji, Satoshi; Motokawa, Mitsuhiro

    2003-05-01

    Various kinds of cryogenfree superconducting magnets such as a wide bore 8 T, a split-pair 5 T, and a high magnetic field 15 T magnet have been developed successfully at Tohoku University. A cryogenfree 23 T hybrid magnet composed of a cryocooled outer superconducting magnet and a water-cooled inner resistive magnet is being tested for the first time. Further, new construction projects of a cryogenfree 30 T hybrid magnet and a cryogenfree 19 T superconducting magnet have just started.

  12. The molecular beam epitaxy growth, structure, and magnetism of Si{sub 1-x}Mn{sub x} films

    SciTech Connect

    Chiu, S. H.; Hsu, H. S.; Huang, J. C. A.

    2008-04-01

    The type-IV diluted magnetic semiconductor (DMS) [Si(20 A)/Mn(x)]{sub 30} multilayers (MLs) with nominal thickness x=1, 1.5, and 2.0 A have been prepared by molecular beam epitaxy. The structure, magnetism, and electrical property of these MLs were investigated. Above room temperature ferromagnetism has been observed and structure probed by x-ray absorption spectroscopy. The Mn local structure is similar to Si simulation and the Mn chemical valences of the MLs are in the range from zero (Mn foil) to Mn{sup +2}. The relative carrier concentration is sensitive to the formation of room temperature ferromagnetism, suggesting that hole mediated mechanism play an important role in Si:Mn DMSs.

  13. Magnetic susceptibility of Dirac electrons in single-component molecular conductor [Pd(dddt)2] under pressure

    NASA Astrophysics Data System (ADS)

    Suzumura, Yoshikazu; Kato, Reizo

    2017-05-01

    Using a tight-binding model with four lattice sites per unit cell, we examine a three-dimensional Dirac electron in a single-component molecular conductor [Pd(dddt)2], which consists of HOMO and LUMO orbitals. The Dirac cone, which originates from the interplay of the intralayer and interlayer transfer energies, gives a semimetallic state owing to a slight variation in energy along the line of the Dirac point. Electronic states of the Dirac electron are examined by calculating the temperature (T) dependence of magnetic (spin) susceptibility. It is shown that magnetic susceptibility remains finite at zero temperature and the variation with increasing temperature exhibits a T-linear dependence. The role of the HOMO and LUMO orbitals is discussed in terms of local susceptibility.

  14. Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A.

    PubMed

    Wu, Xiaqing; Wang, Xiaoyan; Lu, Wenhui; Wang, Xinran; Li, Jinhua; You, Huiyan; Xiong, Hua; Chen, Lingxin

    2016-02-26

    Versatile molecularly imprinted polymers (MIPs) have been widely applied to various sample matrices, however, molecular recognition in aqueous media is still difficult. Stimuli-responsive MIPs have received increasing attentions due to their unique feature that the molecular recognition is regulated by specific external stimuli. Herein, water-compatible temperature and magnetic dual-responsive MIPs (WC-TMMIPs) with hydrophilic brushes were prepared via reversible addition-fragmentation chain transfer precipitation polymerization for reversible and selective recognition and extraction of bisphenol A (BPA). Transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometry (VSM) as characterization methods were used to examine the successful synthesis of polymers, and the resultant WC-TMMIPs showed excellent thermosensitivity and simple rapid magnetic separation. Controlled adsorption and release of BPA by temperature regulation were investigated systematically, and the maximum adsorption and removal efficiency toward BPA in aqueous solutions were attained at 35 °C and 45 °C, respectively, as well as a good recoverability was exhibited with the precision less than 5% through five adsorption-desorption cycles. Phenolic structural analogs were tested and good recognition specificity for BPA was displayed. Accordingly, the WC-TMMIPs were employed as adsorbents for magnetic solid-phase extraction (MSPE) and packed SPE of BPA from seawater samples. Using the two modes followed by HPLC-UV determination, excellent linearity was attained in the range of 0.1-14.5 μM and 1.3-125 nM, with low detection limits of 0.02 μM and 0.18 nM, respectively. Satisfactory recoveries for spiked seawater samples were achieved ranging from 86.3-103.5% and 96.2-104.3% with RSD within 2.12-4.33%. The intelligent WC-TMMIPs combining water-compatibility, molecular recognition, magnetic separation, and temperature regulation proved

  15. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  16. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  17. Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis

    PubMed Central

    Yarmola, Elena G.; Shah, Yash; Arnold, David P.; Dobson, Jon; Allen, Kyle D.

    2015-01-01

    Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker - the c-terminus telopeptide of type II collagen (CTXII) - magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 µL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed 10 fold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062

  18. Magnetic ordering of defects in a molecular spin-Peierls system

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Cottrell, Stephen; Pratt, Francis L.; Szablewski, Marek

    2017-01-01

    With interest in charge transfer compounds growing steadily, it is important to understand all aspects of the underlying physics of these systems, including the properties of the defects and interfaces that are universally present in actual experimental systems. For the study of these defects and their interactions a spin-Peierls (SP) system provides a useful testing ground. This work presents an investigation within the SP phase of potassium TCNQF4 where anomalous features are observed in both the magnetic susceptibility and ESR spectra for temperatures between 60 K and 100 K. Muon spin spectroscopy measurements confirm the presence of these anomalous magnetic features, with low temperature zero-field data exhibiting the damped oscillatory form that is a characteristic signature of static magnetic order. This ordering is most likely due to the interaction between structurally correlated magnetic defects in the system. The critical behaviour of the temperature dependent muon spin rotation frequency indicates that a 2D Ising model is applicable to the magnetic ordering of these defects. We show that these observations can be explained by a simple model in which the magnetic defects are located at stacking faults, which provide them with a 2D structural framework to constrain their interactions.

  19. Selective separation and enrichment of glibenclamide in health foods using surface molecularly imprinted polymers prepared via dendritic grafting of magnetic nanoparticles.

    PubMed

    Wang, Ruoyu; Wang, Yang; Xue, Cheng; Wen, Tingting; Wu, Jinhua; Hong, Junli; Zhou, Xuemin

    2013-03-01

    In this paper, the novel surface molecularly imprinted polymers based on dendritic-grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46-93.53% with the RSD < 4.07%.

  20. Molecular and Integrative Physiological Effects of Isoflurane Anesthesia: The Paradigm of Cardiovascular Studies in Rodents using Magnetic Resonance Imaging

    PubMed Central

    Constantinides, Christakis; Murphy, Kathy

    2016-01-01

    To-this-date, the exact molecular, cellular, and integrative physiological mechanisms of anesthesia remain largely unknown. Published evidence indicates that anesthetic effects are multifocal and occur in a time-dependent and coordinated manner, mediated via central, local, and peripheral pathways. Their effects can be modulated by a range of variables, and their elicited end-effect on the integrative physiological response is highly variable. This review summarizes the major cellular and molecular sites of anesthetic action with a focus on the paradigm of isoflurane (ISO) – the most commonly used anesthetic nowadays – and its use in prolonged in vivo rodent studies using imaging modalities, such as magnetic resonance imaging (MRI). It also presents established evidence for normal ranges of global and regional physiological cardiac function under ISO, proposes optimal, practical methodologies relevant to the use of anesthetic protocols for MRI and outlines the beneficial effects of nitrous oxide supplementation. PMID:27525256

  1. Highly-oriented molecular arrangements and enhanced magnetic interactions in thin films of CoTTDPz using PTCDA templates.

    PubMed

    Eguchi, Keitaro; Nanjo, Chihiro; Awaga, Kunio; Tseng, Hsiang-Han; Robaschik, Peter; Heutz, Sandrine

    2016-07-14

    In the present work, the templating effect of thin layers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the growth of cobalt tetrakis(thiadiazole)porphyrazine (CoTTDPz) thin films was examined. X-ray diffraction and optical absorption spectra indicate that while CoTTDPz forms amorphous thin films on the bare substrates, it forms crystalline thin films on the PTCDA templates, in which the molecular planes of CoTTDPz are considered to be parallel to the substrates. Magnetic measurements reveal a significantly enhanced antiferromagnetic interaction of CoTTDPz in the templated thin films, with values reaching over 13 K. The ability to generate crystalline films and to control their orientation using molecular templates is an important strategy in the fields of organic electronics and spintronics in order to tailor the physical properties of organic thin films to suit their intended application.

  2. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  3. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  4. Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer.

    PubMed

    Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo

    2017-05-01

    The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe3O4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.

  5. In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion.

    PubMed

    Bertin, Annabelle; Michou-Gallani, Anne-Isabelle; Gallani, Jean-Louis; Felder-Flesch, Delphine

    2010-08-01

    Interest in contrast agent's (CA) neurotoxicity has greatly increased due to the growing need of new compounds dedicated to brain imaging. Magnetic resonance imaging (MRI) CA have been evaluated by means of different toxicological assays with cultured rat primary neurons (evaluation of neurite specific parameters via immunostaining of the cells and LDH leakage). To determine the potential neurotoxicity of a precise paramagnetic ion in a defined structure (architecture and molecular weight), novel hydrosoluble dendritic Manganese (II) and Gadolinium (III) complexes derived from diethylenetriamine pentaacetic acid (DTPA) have been studied and compared to a linear homologue (same molecular weight) and commercially available low molecular weight MRI CA like Mn-DPDP (Teslascan, GE Healthcare) and Gd-DTPA (Magnevist, Schering). The range of CA concentrations studied was 0.1-10mM, suitable for MRI examinations. This set of experiments allows a toxicity ranking of these reagents as a function of molecular structure and nature of the paramagnetic ion. We could determine that the architecture (linear vs. dendritic) does not play an important role in the in vitro neurotoxicity, whereas the structure of the chelating cage is of greater importance. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Collapse and fragmentation of magnetic molecular cloud cores with the Enzo AMR MHD code. II. Prolate and oblate cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-10-10

    We present the results of a large suite of three-dimensional models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement code Enzo2.2 in the ideal magnetohydrodynamics approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 M {sub ☉}, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density isothermal phases, to high density optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 μG, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from 10{sup –4} to 0.1. Two significantly different outcomes for collapse result: (1) formation of single protostars with spiral arms, and (2) fragmentation into multiple protostar systems. The transition between these two outcomes depends primarily on the initial magnetic field strength, with fragmentation occurring for mass to flux ratios greater than about 14 times the critical ratio for prolate clouds. Oblate clouds typically fragment into several times more clumps than prolate clouds. Multiple, rather than binary, system formation is the general rule in either case, suggesting that binary stars are primarily the result of the orbital dissolution of multiple protostar systems.

  7. Is the Higgs boson composed of neutrinos?

    DOE PAGES

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  8. Concepts and Applications of Composable FORCEnet

    DTIC Science & Technology

    2005-12-01

    2080 WSEAS TRANS. on INFORMATION SCIENCE & APPLICATIONS Issue 12. Volume 2. December 2005 ISSN: 1790-0832 Concepts and Applications of Composable...STATEMENT A Approved for Public Release Distribution Unlimited 20060926075 WSEAS TRANS. on INFORMATION SCIENCE & APPLICATIONS Issue 12. Volume 2, December...information from one system or network to an- automatic insertion of content. The project team connects these data sources, views, and agents 2082 WSEAS

  9. Is the Higgs boson composed of neutrinos?

    SciTech Connect

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  10. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes.

    PubMed

    Liu, Yajie; Yang, Yi; Zhang, Chunfu

    2013-01-01

    Angiogenesis is an essential step for the growth and spread of malignant tumors. Accurate detection and quantification of tumor angiogenesis is important for early diagnosis of cancers as well as post therapy assessment of antiangiogenic drugs. The cell adhesion molecule integrin αvβ3 is a specific marker of angiogenesis, which is highly expressed on activated and proliferating endothelial cells, but generally not on quiescent endothelial cells. Therefore, in recent years, many different approaches have been developed for imaging αvβ3 expression, for the detection and characterization of tumor angiogenesis. The present review provides an overview of the current status of magnetic resonance molecular imaging of integrin αvβ3, including the new development of high sensitive contrast agents and strategies for improving the specificity of targeting probes and the biological effects of imaging probes on αvβ3 positive cells.

  11. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors.

    PubMed

    Mao, Hanping; Liu, Zhongshou

    2017-08-15

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017. Published by Elsevier B.V.

  12. VELOCITY ANISOTROPY AS A DIAGNOSTIC OF THE MAGNETIZATION OF THE INTERSTELLAR MEDIUM AND MOLECULAR CLOUDS

    SciTech Connect

    Esquivel, A.; Lazarian, A. E-mail: lazarian@astro.wisc.edu

    2011-10-20

    We use a set of magnetohydrodynamic simulations of fully developed (driven) turbulence to study the anisotropy in the velocity field that is induced by the presence of the magnetic field. In our models, we study turbulence characterized by sonic Mach numbers M{sub s} from 0.7 to 7.5 and Alfven Mach numbers from 0.4 to 7.7. These are used to produce synthetic observations (centroid maps) that are then analyzed. To study the effect of large-scale density fluctuations and of white noise, we have modified the density fields and obtained new centroid maps, which are analyzed. We show that restricting the range of scales at which the anisotropy is measured makes the method robust against such fluctuations. We show that the anisotropy in the structure function of the maps reveals the direction of the magnetic field for M{sub A} {approx}< 1.5, regardless of the sonic Mach number. We find that the degree of anisotropy can be used to determine the degree of magnetization (i.e., M{sub A} ) for M{sub A} {approx}< 1.5. To do this, one needs an additional measure of the sonic Mach number and an estimate of the line of sight magnetic field, both feasible by other techniques, offering a new opportunity to study the magnetization state of the interstellar medium.

  13. Synthesis of core-shell magnetic molecularly imprinted polymers and detection of sildenafil and vardenafil in herbal dietary supplements.

    PubMed

    Ding, Meijuan; Wu, Xiaoli; Yuan, Lihua; Wang, Shu; Li, Yun; Wang, Ruoyu; Wen, Tingting; Du, Shuhu; Zhou, Xuemin

    2011-07-15

    An analytical procedure for selective extraction of sildenafil and vardenafil in herbal dietary supplements (HDSs) has been set up by using the magnetic molecularly imprinted polymers (MMIPs) as the extraction and clean-up materials, followed by high performance liquid chromatography-ultraviolet (HPLC-UV). The MMIPs were prepared by a surface molecular imprinting technique, using Fe(3)O(4) magnetite as a magnetically susceptible component, sildenafil as template molecule, 2-(trifluoromethyl) acrylic acid (TFMAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as polymeric matrix components. The MMIPs were characterized by transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively. The heterogeneity of the MMIPs was modeled with the Freundlich isotherm equation. The resulting MMIPs had high recognition ability and fast binding kinetics for sildenafil. The MMIPs were used as dispersive solid-phase extraction (DSPE) materials to selectively extract sildenafil and vardenafil from HDSs, the contents of sildenafil and vardenafil were found to be 8.05 and 3.86 μg g(-1), respectively, and the average recoveries in spiked HDSs were 70.91-91.75% with a relative standard deviation (R.S.D.) below 7%. The MMIPs were successfully used to selectively enrich and determine sildenafil and vardenafil from HDSs. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Preparation of a multi-hollow magnetic molecularly imprinted polymer for the selective enrichment of indolebutyric acid.

    PubMed

    Li, Shanshan; Yin, Chao; Ren, Shuiying; Yang, Tao; Wang, Jide; Feng, Shun

    2015-08-01

    A simple strategy was developed for the preparation of multi-hollow magnetic molecularly imprinted polymers by incorporating 3-indolebutyric acid and ferroferric oxide nanoparticles simultaneously into a poly(styrene-co-methacrylic acid) copolymer matrix. The as prepared absorbents were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy and mercury porosimetry. The adsorption isotherms of indolebutyric acid revealed that there are two types of affinity binding sites in the absorbents. The apparent maximum binding capacity and dissociation constant were 17.88 mg/g and 158.7 μg/mL for high-affinity binding sites and 9.310 mg/g and 35.04 μg/mL for low-affinity binding sites, respectively. The results testified that multi-hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules due to the high specific surface area as large as 511.3 m(2) /g. Recoveries of 75.5-86.8% were obtained for the indolebutyric acid spiked at three concentration levels in blank and pear samples.

  15. Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine.

    PubMed

    Lu, Fuguang; Li, Huaijiang; Sun, Min; Fan, Lulu; Qiu, Huamin; Li, Xiangjun; Luo, Chuannan

    2012-03-09

    A novel flow injection chemiluminescence (FI-CL) sensor for determination of sulfadiazine (SDZ) using core-shell magnetic molecularly imprinted polymers (MMIPs) as recognition element is developed. Briefly, a hydrophilic MMIPs layer was produced at the surface of Fe(3)O(4)@SiO(2) magnetic nanoparticles (MNPs) via combination of molecular imprinting and reversible stimuli responsive hydrogel. And it provided the MMIPs with excellent adsorption capacity and rapid adsorption rate due to the imprinted sites mostly situated on the surface of MMIPs. Then the prepared SDZ-MMIPs were packed into flow cell to establish a novel FI-CL sensor. The sensor provided a wide linear range for SDZ of 4.0×10(-7) to 1.0×10(-4) mol L(-1) with a detection limit of 1.54×10(-7) mol L(-1). And the relative standard deviation (RSD) for the determination of 1.0×10(-6) mol L(-1) SDZ was 2.56% (n=11). The proposed method was applied to determine SDZ in urine samples and satisfactory results were obtained.

  16. Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads

    PubMed Central

    Gu, Luo; Park, Ji-Ho; Duong, Kim H.; Ruoslahti, Erkki; Sailor, Michael J.

    2011-01-01

    Magnetic manipulation, fluorescent tracking, and localized delivery of a drug payload to cancer cells in vitro is demonstrated, using nanostructured porous silicon microparticles as a carrier. The multifunctional microparticles are prepared by electrochemical porosification of a silicon wafer in a hydrofluoric acid-containing electrolyte, followed by removal and fracture of the porous layer into particles using ultrasound. The intrinsically luminescent particles are loaded with superparamagnetic iron oxide nanoparticles and the anti-cancer drug doxorubicin. The drug-containing particles are delivered to human cervical cancer (HeLa) cells in vitro, under the guidance of a magnetic field. The high concentration of particles in the proximity of the magnetic field results in a high concentration of drug being released in that region of the Petri dish, and localized cell death is confirmed by cellular viability assay (Calcein AM). PMID:20814923

  17. Design of Low Temperature AC Susceptibility Measurement Scheme for Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Korenblit, Simcha; Moon, Byoung; Lee, Yoonseok; Sultan, Reza

    2006-03-01

    AC susceptibility is one of the most important physical properties in many materials such as magnetic materials and superconductors. Although there are many commercial AC susceptibility measurement systems which cover a broad range of temperatures, it is still a daunting task to extend their measurement range into the low millikelvins. We are currently developing a low temperature AC susceptometer for the mK range. As a part of this effort, we have developed a versatile low-cost computer controlled coil-winder to make various types of coils. We have designed primary and secondary coils and wound them using the machine, and performed characterization of the AC susceptometer. In this presentation, I will explain the basics of magnetic susceptibility, its measurement, design considerations for building an AC magnetic susceptometer, and discuss the details of an actual apparatus designed and realized by the authors.

  18. First Spectropolarimetric Measurement of a Brown Dwarf Magnetic Field in Molecular Bands

    NASA Astrophysics Data System (ADS)

    Kuzmychov, Oleksii; Berdyugina, Svetlana V.; Harrington, David M.

    2017-09-01

    We present the first measurements of the surface magnetic field of a late-M dwarf, LSR J1835+3259, with the help of the full-Stokes spectropolarimetry in the bands of diatomic molecules. Our measurements at different rotational phases of a dwarf yielded one 5σ and two 3σ magnetic field detections. The observational data have been obtained with the LRISp polarimeter at the Keck observatory on 2012 August 22 and 23. These data have been compared against synthetic full-Stokes spectra in the bands of the molecules CrH, FeH, and TiO, which have been calculated for a range of the stellar parameters and magnetic field strengths. Making use of χ 2-minimization and maximum likelihood estimation, we determine the net magnetic field strength B (and not flux Bf) of LSR J1835+3259 to ∼5 kG with the help of the Paschen–Back effect in the CrH lines. Our measurements at different rotational phases suggest that the dwarf’s surface might be covered with strong small-scale magnetic fields. In addition, recent findings of the dwarf’s hydrogen emission and the Stokes V signal from the lower chromosphere indicate that its surface magnetic field might be changing rapidly giving rise to flare activity, similar to young dMe dwarfs. We substantiate the substellar origin of LSR J1835+3259 by making use of our own data as well as the photometric data from the all-sky surveys 2MASS and WISE.

  19. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    SciTech Connect

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  20. Molecular quantum magnetism in LiZn2Mo3O8

    SciTech Connect

    Mourigal, Martin; Fuhrman, W. T.; Sheckelton, J. P.; Wartelle, A.; Rodriguez-Rivera, J A; Abernathy, Douglas L; McQueen, T. M.; Broholm, Collin L

    2014-01-01

    Inelastic neutron scattering for temperatures below 30 K from a powder of LiZn2Mo3O8 demonstrates this triangular-lattice antiferromagnet hosts collective magnetic excitations from spin 1/2 Mo3O13 molecules. Apparently gapless ( \\Delta < 0.2 meV) and extending at least up to 2.5 meV, the low energy magnetic scattering cross section is surprisingly broad in momentum space and involves one third of the spins present above 100 K. The data are compatible with the presence of valencebonds involving nearest-neighbor and next-nearest-neighbor spins forming a disordered or dynamic state.

  1. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  2. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  3. The nearby 2-solar mass Bok globule LBN 11 - Sub-sonic molecular clumps in a magnetic environment

    NASA Technical Reports Server (NTRS)

    Clemens, Dan P.; Dickman, Robert L.; Ciardi, David R.

    1992-01-01

    A multiwavelength study of the nearby small Bok globule LBN 11 is performed in order to investigate the relationship between embedded magnetic fields, cloud structure, and star formation. Optical polarimetry of background stars is used to characterize and trace the embedded magnetic field direction. High-dispersion CO isotopic mapping is employed to determine the radial density distribution of the gas, measure cloud rotation, and identify individual gas clumps. CS and SO mapping revealed dense cores within the (C-13)O clumps. Analysis of coadded IRAS images reveal the cloud to be free of current or recent star formation: there are no IR point sources of sufficient flux or proper colors to signify young stars associated with the cloud. The molecular line maps show the cloud to be extremely clumpy. Clumps are found to range in size from 0.2 pc for the largest CO clump to about 0.04 pc for the smallest CS feature. It is concluded that, at least in the envelope of the cloud, the magnetic field and the CO clumps are coupled.

  4. Preparation and application of magnetic molecularly imprinted nanoparticles for the selective extraction of osthole in Libanotis Buchtomensis herbal extract.

    PubMed

    He, Gaiyan; Tang, Yuhai; Hao, Yi; Shi, Juan; Gao, Ruixia

    2016-06-01

    In this work, novel magnetic molecularly imprinted polymers were prepared for the selective extraction of osthole from Libanotis Buchtomensis herbal extract. During the synthesis process, double bonds grafted on the surface of Fe3 O4 nanoparticles could not only drive the temple molecules to locate onto the surface of vinyl-functionalized magnetic nanoparticles by π-π conjugation, which makes the distribution of binding sites ordered, but also direct the occurrence of imprinting polymerization at the surface of magnetic nanoparticles by the copolymerization of vinyl terminal groups with functional monomers and cross-linking agent. The characteristics of the resulting polymers were evaluated by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and vibrating sample magnetometry. Adsorption kinetics, isotherms, selectivity, reproducibility, and reusability were discussed, which suggest that the obtained nanomaterials possess rapid binding kinetics, high adsorption capacity of 17.65 mg/g, and favorable selectivity for the target molecule. Satisfactory reproducibility and reusability were verified as well. Meanwhile, the resultant imprinted nanoparticles were successfully applied to selectively separate osthole from the herbal extract, which show great potential in extracting active ingredients from traditional Chinese medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density

  6. He 2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.

    PubMed

    Vikas

    2011-08-01

    The He 2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He 2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He 2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD. Copyright © 2011 Wiley Periodicals, Inc.

  7. Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC.

    PubMed

    Liu, Min; Li, Xiaoyan; Li, Junjie; Wu, Zongyuan; Wang, Fang; Liu, Li; Tan, Xuecai; Lei, Fuhou

    2017-10-15

    Molecularly imprinting polymers (MIPs) are typically prepared using a single template molecule, which allows selective separation and enrichment of only one target analyte. It is not suitable for determination of complex real samples containing multiple analytes. In order to expand the practical application of imprinted polymers, novel dual-template magnetic molecularly imprinted polymers (MMIPs) were synthesized by surface polymerization using hydrocortisone and dexamethasone as the dual-template molecules in this study. The dual-template MMIPs were prepared by copolymerization on the surface of Fe3O4@ SiO2-NH2, the template molecules, the functional monomer acrylamide (AM), the cross-linking agent ethylene glycol dimethacrylate (EGDMA), and the initiator 2,2-azobisisobutyronitrile. The morphology, magnetic properties and adsorption characteristics of the obtained dual-template MMIPs were studied by field emission scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometry, and re-binding experiments. The results indicated that dual-template MMIPs had uniform particle size, strong magnetic properties, high thermal stability, and good mass transfer rate. To investigate the selectivity of dual-template MMIPs, the template molecules were mixed along with their structural analogs. The dual-template MMIPs revealed a significantly higher adsorption amount for the template molecule than its structure analog. The dual-template MMIPs can be used for the enrichment and determination of hydrocortisone and dexamethasone in cosmetic products with the recoveries of spiked cosmetic samples ranging from 86.8-107.5% and 91.2-104.3%, respectively. The relative standard deviation (RSD) for hydrocortisone was <2.89%, and RSD for dexamethasone was <2.62%. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular analysis of elastic properties of the stratum corneum by solid-state 13C-nuclear magnetic resonance spectroscopy.

    PubMed

    Jokura, Y; Ishikawa, S; Tokuda, H; Imokawa, G

    1995-05-01

    To elucidate the precise molecular mechanisms underlying stratum corneum (SC) elasticity, we investigated the molecular dynamics of chemical residues within keratin fibers of human plantar SC under various conditions by cross polarization/magic angle spinning 13C-nuclear magnetic resonance. The intensities of nuclear magnetic resonance spectra responsible for amide carbonyl, C alpha methine, and side-chain aliphatic carbons in the intact SC decreased markedly with increasing water content of up to 30% in dry SC, and then remained constant at greater than 30%. Lipid extraction of intact SC with acetone/ether (1:1) did not induce any significant change in the nuclear magnetic resonance spectrum, whereas additional treatment with water, which released natural moisturizing factors (mainly amino acids), caused the SC to lose elasticity. The observed decrease in elasticity of the SC recovered after treatment with basic and neutral amino acids, but not after treatment with acidic amino acid. With the latter treatment, movement of amino acid molecules was significantly disturbed, suggesting a strong interaction with keratin fibers. Parallel studies of the complex elastic modulus of a pig SC sheet with a rheovibron also demonstrated that removal of natural moisturizing factor reduced the elasticity of the SC; this effect was also reversed by the application of basic and neutral amino acids, but not by the application of acidic amino acid. These findings suggest that structural keratin proteins, mainly consisting of 10-nm filaments, acquire their elasticity with the help of hydrated natural moisturizing factor via the reduction of intermolecular forces, probably through nonhelical regions between keratin fibers.

  9. Molecular recognition of the Thomsen-Friedenreich antigen-threonine conjugate by adhesion/growth regulatory galectin-3: nuclear magnetic resonance studies and molecular dynamics simulations.

    PubMed

    Yongye, Austin B; Calle, Luis; Ardá, Ana; Jiménez-Barbero, Jesús; André, Sabine; Gabius, Hans-Joachim; Martínez-Mayorga, Karina; Cudic, Mare

    2012-09-18

    Nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods have been strategically combined to elucidate the molecular recognition features of the binding of threonine O-linked Thomsen-Friedenreich (TF) antigen to chimera-type avian galectin-3 (CG-3). Saturation transfer difference (STD) NMR experiments revealed the highest intensities for the H4 protons of both the β-D-Galp and α-D-GalpNAc moieties, with 100 and 71% of relative STD, respectively. The methyl protons of the threonine residue exhibited a small STD effect, <15%, indicating that the interaction of the amino acid with the protein is rather transient. Two-dimensional transferred nuclear Overhauser effect spectroscopy NMR experiments and molecular modeling suggested some differences in conformer populations between the free and bound states. A dynamic binding mode for the TF antigen-CG-3 complex consisting of two poses has been deduced. In one pose, intermolecular interactions were formed between the terminal threonine residue and the receptor. In the second pose, intermolecular interactions involved the internal GalpNAc. The difference in the trend of some shifts in the heteronuclear single-quantum coherence titration spectra indicates some disparities in the binding interactions of CG-3 with lactose and TF antigen. The results obtained from this model of the avian orthologue of human galectin-3 will allow detailed interspecies comparison to give sequence deviations in phylogeny a structural and functional meaning. Moreover, the results indicate that the peptide scaffold presenting TF antigen could be relevant for binding and thus provides a possible route for the design of galectin-3 inhibitors with improved affinity and selectivity.

  10. Q&A: The AI composer

    NASA Astrophysics Data System (ADS)

    Spinney, Laura

    2017-09-01

    Computer scientist Luc Steels uses artificial intelligence to explore the origins and evolution of language. He is best known for his 1999-2001 Talking Heads Experiment, in which robots had to construct a language from scratch to communicate with each other. Now Steels, who works at the Free University of Brussels (VUB), has composed an opera based on the legend of Faust, with a twenty-first-century twist. He talks about Mozart as a nascent computer programmer, how music maps onto language, and the blurred boundaries of a digitized world.

  11. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Rashidinejad, Ali; Birch, Edward J; Hindmarsh, Jason; Everett, David W

    2017-01-15

    Molecular integrations between green tea catechins and milk fat globules in a cheese matrix were investigated using solid-state magic angle spinning nuclear magnetic resonance spectroscopy. Full-fat cheeses were manufactured containing free catechin or free green tea extract (GTE), and liposomal encapsulated catechin or liposomal encapsulated GTE. Molecular mobility of the carbon species in the cheeses was measured by a wide-line separation technique. The (1)H evolution frequency profile of the (13)C peak at 16ppm obtained for the control cheese and cheeses containing encapsulated polyphenols (catechin or GTE) were similar, however, the spectrum was narrower for cheeses containing free polyphenols. Differences in spectral width indicates changes in the molecular mobility of --CH3- or -C-C-PO4- species through hydrophobic and/or cation-π associations between green tea catechins and cheese fat components. However, the similar spectral profile suggests that encapsulation protects cheese fat from interaction with catechins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Magnetic resonance contrast media sensing in vivo molecular imaging agents: an overview.

    PubMed

    Amanlou, Massoud; Siadat, Seyed Davar; Norouzian, Dariush; Ebrahimi, Seyed Esmaeil Sadat; Aghasadeghi, Mohammad Reza; Ghorbani, Masoud; Alavidjeh, Mohammad Shafiee; Inanlou, Davoud Nouri; Arabzadeh, Ali Jabbari; Ardestani, Mehdi Shafiee

    2011-01-01

    Metabolic imaging is commonly performed by nuclear medicine facilities such as PET or SPECT, etc. The production and biomedical applications of bio-molecular sensing in vivo MRI metabolic contrast agents has recently become of great universal research interest, which follows its great success as a potential cost effective, less radioactive, nuclear medicine alternative. Temperature, redox potential, enzyme activity, free radial/metal ion responsive and/or pH sensitive molecular metabolic MR contrast agents are among the famous instances exemplified, which basically promote MR image contrast enhancement ability to distinguish molecular metabolic/gene expression features. Overall, these MRI contrast agents provide a framework to achieve a greater degree of accuracy from MRI as a low cost, more available facility, non radioactive radiation producing and highly sensitive biomedical tool to propound as a new suggesting opponent for PET nuclear medicine imaging. In the present review, the design, development, examination and future of the above agents will be discussed in detail.

  13. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  14. Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials.

    PubMed

    Yang, Zhen; Deng, Liangzi; Lan, Yucheng; Zhang, Xiaoliu; Gao, Zhonghong; Chu, Ching-Wu; Cai, Dong; Ren, Zhifeng

    2014-07-29

    Extraction of intracellular molecules is crucial to the study of cellular signal pathways. Disruption of the cellular membrane remains the established method to release intracellular contents, which inevitably terminates the time course of biological processes. Also, conventional laboratory extractions mostly use bulky materials that ignore the heterogeneity of each cell. In this work, we developed magnetized carbon nanotubes that can be sneaked into and out of cell bodies under a magnetic force. Using a testing model with overexpression of GFP, the nanotubes successfully transported the intracellular GFP out at the single-cell level. The confined nanoscale invasiveness did not change cell viability or proliferation. This study presents the proof of concept of a previously unidentified real-time and single-cell approach to investigate cellular biology, signal messengers, and therapeutic effects with nanomaterials.

  15. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  16. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  17. Chip Based Magnetic Imager for Molecular Profiling of Ovarian Cancer Cells

    DTIC Science & Technology

    2016-12-01

    combination with these detection systems. 8.1. Infection Several different approaches to bacterial detection have been explored, including antibody or...approach is particularly robust and enables rapid bacterial analyses of 16S rRNA inminimally processed samples50 as well as bacterial DNA.52,176,345...instrument and provides results within 15 min using 0.04 mL of blood with minimal sample handling. Figure 19. Magnetic barcode assay for bacterial detection

  18. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    PubMed

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  19. Development of a High Resolution Analyzing Magnet System for Heavy Molecular Ions

    NASA Astrophysics Data System (ADS)

    Ghazaly, Mohamed O. A. El; Dehnel, Morgan; Defrance, Pierre

    At the King Abdulaziz City for Science and Technology (KACST, Saudi Arabia), a versatile ion-beam injector was constructed to provide the electrostatic storage ring with the required high-quality ion beams. In order to remove the ambiguity over the ion mass due to the exclusive application of electric fields in the set-up, the injector is being equipped with a high resolution mass analyzing magnet. A high resolution Analyzing Magnet System has been designed to provide a singly-charged ion beam of kinetic energy up to 50 keV, mass up to 1500 Amu, and with the mass resolution fixed to Δm/m =1:1500. The system includes specific entrance and exit slits, designed to sustain the required mass resolution. Furthermore, specific focusing and shaping optics have been added upstream and downstream the system, in order to monitor and adapt the shape of the ion beam at the entrance and exit of the system, respectively. The present paper gives an overview on the design of this mass analyzing magnet system together with the upstream/downstream adapting optics.

  20. Magnetic properties of Fe-Cu alloys grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Grigorov, I. L.; Freeland, J. W.; Walker, J. C.

    1996-03-01

    Magnetic properties of Fe_xCu_1-x alloys are difficult to study due to the low mutual solid solubility of the components. These alloys can be formed by co-sputtering onto a cold substrate, however, they retain fcc phase only for x < 0.6footnote[1]C.L. Chien et. al. Phys.Rev. B 33, 3247 (1986). In this work Fe_xCu_1-x alloys were grown epitaxially by co-deposition onto the Cu(100) substrate. Using this technique we can stabilize the alloy in fcc phase across the entire Fe concentration range. During growth, the substrate was maintained at 0^0C to prevent clustering. Crystal structure was monitored by in-situ RHEED and ex-situ X-ray diffraction. The correlation between structural and magnetic properties of the alloys as well as their dependence on the film thickness were studied by SQUID magnetometry and Mössbauer spectroscopy. Initial results showed a non-zero quadrupole splitting of the room temperature Mössbauer absorption line indicating the random distribution of iron in the Cu matrix. Both low temperature Mössbauer and SQUID measurements on the alloys with low iron concentration showed significant reduction of the average magnetic moment and T_c.

  1. Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water.

    PubMed

    Rovedo, Philipp; Knecht, Stephan; Bäumlisberger, Tim; Cremer, Anna Lena; Duckett, Simon B; Mewis, Ryan E; Green, Gary G R; Burns, Michael; Rayner, Peter J; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; Pütz, Gerhard; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2016-06-30

    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effects of Transverse Field on Internal Energy and Specific Heat of a Molecular-Based Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Yu, Gui-Hong; Zhang, Fan; Wang, Wei; Jiang, Yuan

    2009-11-01

    The molecular-based magnetic materials AFeIIFeIII (C2O4)3 have a honeycomb structure in which FeII (S = 2) and FeIII (S = 5/2) occupy sites alternately. They can be described as mixed spin-2 and spin-5/2 Ising model with ferrimagnetic interlayer coupling. The influences of the transverse field on the internal energy and the specific heat of the molecular-based magnetic system have been studied numerically by using the effective-field theory with self-spin correlations and the differential operator technique.

  3. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities

    PubMed Central

    Itakura, Haruka; Achrol, Achal S.; Mitchell, Lex A.; Loya, Joshua J.; Liu, Tiffany; Westbroek, Erick M.; Feroze, Abdullah H.; Rodriguez, Scott; Echegaray, Sebastian; Azad, Tej D.; Yeom, Kristen W.; Napel, Sandy; Rubin, Daniel L.; Chang, Steven D.; Harsh, Griffith R.; Gevaert, Olivier

    2015-01-01

    Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative MR imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 patients with de novo, solitary, unilateral GBM. Three distinct phenotypic “clusters” emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters—pre-multifocal, spherical, and rim-enhancing, names reflecting their image features—were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from analysis of TCGA tumor copy number and gene expression data with the PARADIGM algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM. PMID:26333934

  4. [Mental disease in two classical music composers].

    PubMed

    Rempelakos, L; Poulakou-Rebelakou, E; Ploumpidis, D

    2012-01-01

    A study οn two neglected classical music composers suffering a not syphilitic mental disease, is attempted here, syphilis of the central nervous system being frequent in that time. A brief overview on the psychiatric ailments of many great composers reveals suicide attempts and more or less severe depression following external events. The issue of a possible relationship between mental disease and (musical) creativity can be discussed, as mood swings and a certain tendency to melancholia are frequent features of a talented brain (a fact that can also be detected in their works). The first case presented here is Hans Rott from Austria, the beloved student of Anton Bruckner, who was considered to be at least equal to his famous classmate Gustav Mahler. The great expectations of his teacher and his friends suddenly came to an end, when he suffered a crisis of schizophrenia and was hospitalized in an insane asylum in Lower Austria. The tragic psychiatric adventure of the young musician lasted almost four years. He was diagnosed as a case of "hallucinatory insanity" and "persecution mania" by the medical staff, before dying of tuberculosis, aged only 26, and having completed only one symphony and several smaller works. His name came again on surface only a century after his death, when in 1989 his Symphony in E Major was discovered and premiered with great success, permitting to its creator a posthumous recognition, among Bruckner and Mahler. The second case of mental illness is that of the Armenian Komitas Vardapet. He was an orphan who grew up in theological schools and became a monk and later a priest, though he spent some years in Berlin in order to develop his musical skills. He is considered to be an authority of Armenian ecclesiastic music, introducing polyphony in the Armenian Church's music and collecting numerous traditional songs from all parts of Armenia. In 1915, during the Armenian genocide he was deported, tortured but finally saved, due to interventions

  5. Composing Models of Geographic Physical Processes

    NASA Astrophysics Data System (ADS)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  6. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen**

    PubMed Central

    Ngen, Ethel J.; Rotz, Matthew W.; Kakkad, Samata; Lisok, Ala; Pracitto, Richard; Pullambhatla, Mrudula; Chen, Zhengping; Shah, Tariq; Artemov, Dmitri; Meade, Thomas J.; Bhujwalla, Zaver M.; Pomper, Martin G.

    2016-01-01

    Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight GdIII-based PSMA-targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging. PMID:26212031

  7. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  8. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  9. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Light emission and magnetic properties of aluminum films grown on SrTiO{sub 3} by molecular beam epitaxy

    SciTech Connect

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-15

    Aluminum films were grown on SrTiO{sub 3} (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO{sub 3}. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO{sub 3} matrix. This work is valuable in developing SrTiO{sub 3} which is a promising material used in optical and magnetic related application.

  11. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  12. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin

    PubMed Central

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu

    2017-01-01

    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC. PMID:28401145

  13. Light emission and magnetic properties of aluminum films grown on SrTiO3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-01

    Aluminum films were grown on SrTiO3 (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO3. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO3 matrix. This work is valuable in developing SrTiO3 which is a promising material used in optical and magnetic related application.

  14. Formation of nonradiative defects in molecular beam epitaxial GaNxAs1-x studied by optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Thinh, N. Q.; Buyanova, I. A.; Chen, W. M.; Xin, H. P.; Tu, C. W.

    2001-11-01

    The formation of two nonradiative defects (i.e., an AsGa-related complex and an unknown deep-level defect with g=2.03) in GaNxAs1-x epilayers and GaAs/GaNxAs1-x multiple-quantum-well structures, grown by molecular beam epitaxy, is studied by the optically detected magnetic resonance technique. It is shown that contributions by these defects in competing carrier recombination strongly vary with the nitrogen composition. An increase in the growth temperature or postgrowth rapid thermal annealing significantly reduces the influence of the nonradiative defects studied, and is accompanied by a remarkable improvement in the optical properties of the structures.

  15. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Friebe, Edward; Baker, Collin

    2015-11-01

    Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes' susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond 90 °C. The NiFe surfaces, aged for several months or heated for several minutes below 90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

  16. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    PubMed

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-03

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.

  17. Influence of the external pressure on the quantum correlations of molecular magnets

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Alves, Á. S.; dos Santos, R. N.; Soares-Pinto, D. O.; de Jesus, J. C. O.; de Almeida, J. S.; Reis, M. S.

    2017-01-01

    The study of quantum correlations in solid-state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4O10 that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results pave the way for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science.

  18. The protective effect of a constant magnetic field. [reduction of molecular cell pathology

    NASA Technical Reports Server (NTRS)

    Sosunov, A. V.; Tripuzov, A. N.

    1974-01-01

    The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).

  19. The protective effect of a constant magnetic field. [reduction of molecular cell pathology

    NASA Technical Reports Server (NTRS)

    Sosunov, A. V.; Tripuzov, A. N.

    1974-01-01

    The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).

  20. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.