Science.gov

Sample records for molecular marker-based estimation

  1. Marker-based estimation of genetic parameters in genomics.

    PubMed

    Hu, Zhiqiu; Yang, Rong-Cai

    2014-01-01

    Linear mixed model (LMM) analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS) as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing 'big' genomic data sets. PMID:25025305

  2. Marker-Based Estimation of Genetic Parameters in Genomics

    PubMed Central

    Hu, Zhiqiu; Yang, Rong-Cai

    2014-01-01

    Linear mixed model (LMM) analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS) as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing ‘big’ genomic data sets. PMID:25025305

  3. The use and abuse of genetic marker-based estimates of relatedness and inbreeding

    PubMed Central

    Taylor, Helen R

    2015-01-01

    Genetic marker-based estimators remain a popular tool for measuring relatedness (rxy) and inbreeding (F) coefficients at both the population and individual level. The performance of these estimators fluctuates with the number and variability of markers available, and the relatedness composition and demographic history of a population. Several methods are available to evaluate the reliability of the estimates of rxy and F, some of which are implemented in the program COANCESTRY. I used the simulation module in COANCESTRY since assess the performance of marker-based estimators of rxy and F in a species with very low genetic diversity, New Zealand’s little spotted kiwi (Apteryx owenii). I also conducted a review of published papers that have used COANCESTRY as its release to assess whether and how the reliability of the estimates of rxy and F produced by genetic markers are being measured and reported in published studies. My simulation results show that even when the correlation between true (simulated) and estimated rxy or F is relatively high (Pearson’s r = 0.66–0.72 and 0.81–0.85, respectively) the imprecision of the estimates renders them highly unreliable on an individual basis. The literature review demonstrates that the majority of studies do not report the reliability of marker-based estimates of rxy and F. There is currently no standard practice for selecting the best estimator for a given data set or reporting an estimator’s performance. This could lead to experimental results being interpreted out of context and render the robustness of conclusions based on measures of rxy and F debatable. PMID:26357542

  4. Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods.

    PubMed

    Wang, J

    2014-03-01

    Inbreeding (F) of and relatedness (r) between individuals are now routinely calculated from marker data in studies in the fields of quantitative genetics, conservation genetics, forensics, evolution and ecology. Although definable in terms of either correlation coefficient or probability of identity by descent (IBD) relative to a reference, they are better interpreted as correlations in marker-based analyses because the reference in practice is frequently the current sample or population whose F and r are being estimated. In such situations, negative estimates have a biological meaning, a substantial proportion of the estimates are expected to be negative, and the average estimates are close to zero for r and equivalent to FIS for F. I show that although current r estimators were developed from the IBD-based concept of relatedness, some of them conform to the correlation-based concept of relatedness and some do not. The latter estimators can be modified, however, so that they estimate r as a correlation coefficient. I also show that F and r estimates can be misleading and become biased and marker dependent when a sample containing a high proportion of highly inbred and/or closely related individuals is used as reference. In analyses depending on the comparison between r (or F) estimates and a priori values expected under ideal conditions (e.g. for identifying genealogical relationship), the estimators should be used with caution.

  5. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats.

    PubMed

    Konovalov, Fedor A; Goncharov, Nikolay P; Goryunova, Svetlana; Shaturova, Aleksandra; Proshlyakova, Tatyana; Kudryavtsev, Alexander

    2010-06-01

    Molecular markers based on retrotransposon insertions are widely used for various applications including phylogenetic analysis. Multiple cases were described where retrotransposon-based markers, namely sequence-specific amplification polymorphism (SSAP), were superior to other marker types in resolving the phylogenetic relationships due to their higher variability and informativeness. However, the patterns of evolutionary relationships revealed by SSAP may be dependent on the underlying retrotransposon activity in different periods of time. Hence, the proper choice of retrotransposon family is essential for obtaining significant results. We compared the phylogenetic trees for a diverse set of diploid A-genome wheat species (Triticum boeoticum, T. urartu and T. monococcum) based on two unrelated retrotransposon families, BARE-1 and Jeli. BARE-1 belongs to Copia class and has a uniform distribution between common wheat (T. aestivum) genomes of different origin (A, B and D), indicating similar activity in the respective diploid genome donors. Gypsy-class family Jeli was found by us to be an A-genome retrotransposon with >70% copies residing in A genome of hexaploid common wheat, suggesting a burst of transposition in the history of A-genome progenitors. The results indicate that a higher Jeli transpositional activity was associated with T. urartu versus T. boeoticum speciation, while BARE-1 produced more polymorphic insertions during subsequent intraspecific diversification; as an outcome, each retrotransposon provides more informative markers at the corresponding level of phylogenetic relationships. We conclude that multiple retroelement families should be analyzed for an image of evolutionary relationships to be solid and comprehensive. PMID:20407790

  6. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    PubMed

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits. PMID:26398819

  7. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich

    PubMed Central

    Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits. PMID:26398819

  8. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    PubMed

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  9. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.

    PubMed

    De Groote, F; De Laet, T; Jonkers, I; De Schutter, J

    2008-12-01

    We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.

  10. Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multiflorum.

    PubMed

    Han, Eun-Heui; Cho, KyeMan; Goo, YoungMin; Kim, ManBae; Shin, Young-Wook; Kim, Yun-Hee; Lee, Shin-Woo

    2016-04-01

    Identification of plant species is important for standardizing herbal medicine. Cynanchum wilfordii (Baekshuoh in Korean) and Polygonum multiflorum (Hashuoh in Korean) are important oriental medicinal herbs in Korea, Japan, and China. Cynanchum auriculatum is a faster growing and more productive plant than C. wilfordii; and, it is not recognized as a medicinal plant in the Korean Pharmacopoeia. C. wilfordii, P. multiflorum, and C. auriculatum are often misidentified in the Korean herbal medicine marketplace due to their morphological similarities and similar names. In this study, we investigated molecular authentication of these three medicinal plants using DNA sequences in the TrnL-F chloroplast intergenic region. Specific species identification was achieved by detecting allelic variations of single nucleotide polymorphisms (SNPs) using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and high resolution melting curve analysis. Our results demonstrate that the intraspecific genetic distance between C. wilfordii and C. auriculatum is relatively low. We also developed a quantitative PCR assay using species-specific TrnL-F primers, which allowed us to estimate the ratio of C. wilfordii and C. auriculatum using varying ratios of mixed genomic DNA template from the two species. Additionally, to identify species in hybrid plants produced by cross-fertilization, we analyzed nuclear ribosomal DNA internal transcribed spacer regions in C. wilfordii and C. auriculatum by ARMS-PCR. Our results indicate that SNP-based molecular markers, usable to barcode tools could provide efficient and rapid authentication of these closely related medicinal plant species, and will be useful for preventing the distribution of products contaminated with adulterants. PMID:26902862

  11. Cryphonectria naterciae: a new species in the Cryphonectria-Endothia complex and diagnostic molecular markers based on microsatellite-primed PCR.

    PubMed

    Bragança, Helena; Rigling, Daniel; Diogo, Eugénio; Capelo, Jorge; Phillips, Alan; Tenreiro, Rogério

    2011-09-01

    In a recent study intended to assess the distribution of Cryphonectria parasitica in Portugal, 22 morphologically atypical orange isolates were collected in the Midwestern regions. Eleven isolates were recovered from Castanea sativa, in areas severely affected by chestnut blight and eleven isolates from Quercus suber in areas with cork oak decline. These isolates were compared with known C. parasitica and Cryphonectria radicalis isolates using an integrated approach comprising morphological and molecular methods. Morphologically the atypical isolates were more similar to C. radicalis than to C. parasitica. Phylogenetic analyses based on internal transcribed spacer (ITS) and β-tubulin sequence data grouped the isolates in a well-supported clade separate from C. radicalis. Combining morphological, cultural, and molecular data Cryphonectria naterciae is newly described in the Cryphonectria-Endothia complex. Microsatellite-primed PCR fingerprinting with (GACA)(4) primer discriminated between C. naterciae, C. radicalis, and C. parasitica.

  12. Development of SCAR Markers Based on Improved RAPD Amplification Fragments and Molecular Cloning for Authentication of Herbal Medicines Angelica sinensis, Angelica acutiloba and Levisticum officinale.

    PubMed

    Zhang, Chun; Mei, Zhiqiang; Cheng, Jingliang; He, Yin; Khan, Md Asaduzzaman; Luo, Peiyi; Imani, Saber; Fu, Junjiang

    2015-10-01

    Molecular cloning from DNA fragments of improved RAPD amplification of Angelica sinensis, Angelica acutiloba and Levisticum officinale, provided novel sequence-characterized amplified region (SCAR) markers A13, A23, A1-34 and A1-0 whose sequences were deposited in the GenBank database with the accession numbers KP641315, KP641316, KP641317 and KP641318, respectively. By optional PCR amplification, the SCAR markers A13 and A23 are Levisticum officinale-specific, whereas the SCAR marker A1-34 is Angelica acutiloba-specific, and the SCAR marker A1-0 is Angelica sinensis-specific. These diagnostic SCAR markers may be useful for genetic authentications, for ecological conservation of all three medicinal plants and as a helpful tool for the genetic authentication of adulterant samples.

  13. Two molecular markers based on mitochondrial genomes for varieties identification of the northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids.

    PubMed

    Xincheng, Zhang; Kunci, Chen; Xinping, Zhu; Jian, Zhao; Qing, Luo; Xiaoyou, Hong; Wei, Li; Fengfang, Xiao

    2015-08-01

    The northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids have played important roles in the Chinese freshwater aquaculture industry, with an annual production in China exceeding 400 thousand tons. While these are popular aquaculture breeds in China, it is not easy to identify northern snakehead, blotched snakehead, and their hybrids. Thus, a method should be developed to identify these varieties. To distinguish between the reciprocal hybrids (C. argus ♀ × C. maculata ♂ and C. maculata ♀ × C. argus ♂), the mitochondrial genome sequences of northern snakehead and blotched snakehead and their reciprocal hybrids were compared. Following the alignment and analysis of mtDNA sequences of northern snakehead, blotched snakehead and their hybrids, two pairs of specific primers were designed based on identified differences ranging from 12S rRNA to 16S rRNA gene. The BY1 primers amplified the same bands in the blotched snakehead and the hybrid (C. maculata ♀ × C. argus ♂), while producing no products in northern snakehead and the hybrid (C. argus ♀ × C. maculata ♂). Amplification with WY1 yielded the opposite results. Then, 30 individuals per fish were randomized to verify the primers, and the results showed that the primers were specific for breeds, as intended. The specific primers can not only simply distinguish between two kinds of hybrids, but also rapidly identify the two parents. This study provides a method of molecular marker identification to identify reciprocal hybrids. PMID:24438305

  14. Two molecular markers based on mitochondrial genomes for varieties identification of the northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids.

    PubMed

    Xincheng, Zhang; Kunci, Chen; Xinping, Zhu; Jian, Zhao; Qing, Luo; Xiaoyou, Hong; Wei, Li; Fengfang, Xiao

    2015-08-01

    The northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids have played important roles in the Chinese freshwater aquaculture industry, with an annual production in China exceeding 400 thousand tons. While these are popular aquaculture breeds in China, it is not easy to identify northern snakehead, blotched snakehead, and their hybrids. Thus, a method should be developed to identify these varieties. To distinguish between the reciprocal hybrids (C. argus ♀ × C. maculata ♂ and C. maculata ♀ × C. argus ♂), the mitochondrial genome sequences of northern snakehead and blotched snakehead and their reciprocal hybrids were compared. Following the alignment and analysis of mtDNA sequences of northern snakehead, blotched snakehead and their hybrids, two pairs of specific primers were designed based on identified differences ranging from 12S rRNA to 16S rRNA gene. The BY1 primers amplified the same bands in the blotched snakehead and the hybrid (C. maculata ♀ × C. argus ♂), while producing no products in northern snakehead and the hybrid (C. argus ♀ × C. maculata ♂). Amplification with WY1 yielded the opposite results. Then, 30 individuals per fish were randomized to verify the primers, and the results showed that the primers were specific for breeds, as intended. The specific primers can not only simply distinguish between two kinds of hybrids, but also rapidly identify the two parents. This study provides a method of molecular marker identification to identify reciprocal hybrids.

  15. Expression Marker-Based Strategy to Improve Beef Quality.

    PubMed

    Cassar-Malek, Isabelle; Picard, Brigitte

    2016-01-01

    For beef cattle research, a main objective is to control concomitantly the development of muscles and the qualities of beef cuts. Beef quality is a complex phenotype that is only detectable after slaughter and is highly variable. The beef industry is in need of tools to estimate beef quality of live cattle or online in abattoirs, with specific attention towards sensory attributes (tenderness, juiciness, flavour, and colour). Identification of relevant genetic and genomic markers is ongoing, especially for tenderness--a top priority quality attribute. In this paper, we describe the steps of an expression marker-based strategy to improve beef sensory quality, from the discovery of biomarkers that identify consistent beef and the biological functions governing beef tenderness to the integration of the knowledge into detection tests for desirable animals. These tools should soon be available for the management of sensory quality in the beef production chain for meeting market's demands and assuring good quality standards. PMID:27066527

  16. Expression Marker-Based Strategy to Improve Beef Quality

    PubMed Central

    Cassar-Malek, Isabelle; Picard, Brigitte

    2016-01-01

    For beef cattle research, a main objective is to control concomitantly the development of muscles and the qualities of beef cuts. Beef quality is a complex phenotype that is only detectable after slaughter and is highly variable. The beef industry is in need of tools to estimate beef quality of live cattle or online in abattoirs, with specific attention towards sensory attributes (tenderness, juiciness, flavour, and colour). Identification of relevant genetic and genomic markers is ongoing, especially for tenderness—a top priority quality attribute. In this paper, we describe the steps of an expression marker-based strategy to improve beef sensory quality, from the discovery of biomarkers that identify consistent beef and the biological functions governing beef tenderness to the integration of the knowledge into detection tests for desirable animals. These tools should soon be available for the management of sensory quality in the beef production chain for meeting market's demands and assuring good quality standards. PMID:27066527

  17. A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia.

    PubMed

    Gupta, Radhey S; Naushad, Sohail; Chokshi, Chirayu; Griffiths, Emma; Adeolu, Mobolaji

    2015-09-01

    The phylum Chlamydiae contains nine ecologically and genetically diverse families all placed within a single order. In this work, we have completed a comprehensive comparative analysis of 36 sequenced Chlamydiae genomes in order to identify shared molecular characteristics, namely conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can serve as distinguishing characteristics of supra-familial clusters within the phylum Chlamydiae. Our analysis has led to the identification of 32 CSIs which are specific to clusters within the phylum Chlamydiae at various phylogenetic depths. Importantly, 17 CSIs and 98 CSPs were found to be specific for the family Chlamydiaceae while another 3 CSI variants and 15 CSPs were specific for a grouping of the families Criblamydiaceae, Parachlamydiaceae, Simkaniaceae and Waddliaceae. These two clusters were also found to be distinguishable in 16S rRNA based phylogenetic trees, concatenated protein based phylogenetic trees, character compatibility based phylogenetic analyses, and on the basis of 16S rRNA gene sequence identity and average amino acid identity values. On the basis of the identified molecular characteristics, branching in phylogenetic trees, and the genetic distance between the two clusters within the phylum Chlamydiae we propose a division of the class Chlamydiia into two orders: an emended order Chlamydiales, containing the family Chlamydiaceae and the closely related Candidatus family Clavichlamydiaceae, and the novel order Parachlamydiales ord. nov. containing the families Parachlamydiaceae, Simkaniaceae and Waddliaceae and the Candidatus families Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae. We also include a brief discussion of the reunification of the genera Chlamydia and Chlamydophila.

  18. Uncertainty estimates for theoretical atomic and molecular data

    NASA Astrophysics Data System (ADS)

    Chung, H.-K.; Braams, B. J.; Bartschat, K.; Császár, A. G.; Drake, G. W. F.; Kirchner, T.; Kokoouline, V.; Tennyson, J.

    2016-09-01

    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structures and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.

  19. Extinction rates can be estimated from molecular phylogenies.

    PubMed

    Nee, S; Holmes, E C; May, R M; Harvey, P H

    1994-04-29

    Molecular phylogenies can be used to reject null models of the way we think evolution occurred, including patterns of lineage extinction. They can also be used to provide maximum likelihood estimates of parameters associated with lineage birth and death rates. We illustrate: (i) how molecular phylogenies provide information about the extent to which particular clades are likely to be under threat from extinction; (ii) how cursory analyses of molecular phylogenies can lead to incorrect conclusions about the evolutionary processes that have been at work; and (iii) how different evolutionary processes leave distinctive marks on the structure of reconstructed phylogenies.

  20. Molecular-clock methods for estimating evolutionary rates and timescales.

    PubMed

    Ho, Simon Y W; Duchêne, Sebastián

    2014-12-01

    The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular-clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular-clock model can be a challenging exercise, but a number of model-selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular-clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock-model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.

  1. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata).

    PubMed

    Smith, Andrew B; Pisani, Davide; Mackenzie-Dodds, Jacqueline A; Stockley, Bruce; Webster, Bonnie L; Littlewood, D Timothy J

    2006-10-01

    The phylogenetic relationships of 46 echinoids, with representatives from 13 of the 14 ordinal-level clades and about 70% of extant families commonly recognized, have been established from 3 genes (3,226 alignable bases) and 119 morphological characters. Morphological and molecular estimates are similar enough to be considered suboptimal estimates of one another, and the combined data provide a tree that, when calibrated against the fossil record, provides paleontological estimates of divergence times and completeness of their fossil record. The order of branching on the cladogram largely agrees with the stratigraphic order of first occurrences and implies that their fossil record is more than 85% complete at family level and at a resolution of 5-Myr time intervals. Molecular estimates of divergence times derived from applying both molecular clock and relaxed molecular clock models are concordant with estimates based on the fossil record in up to 70% of cases, with most concordant results obtained using Sanderson's semiparametric penalized likelihood method and a logarithmic-penalty function. There are 3 regions of the tree where molecular and fossil estimates of divergence time consistently disagree. Comparison with results obtained when molecular divergence dates are estimated from the combined (morphology + gene) tree suggests that errors in phylogenetic reconstruction explain only one of these. In another region the error most likely lies with the paleontological estimates because taxa in this region are demonstrated to have a very poor fossil record. In the third case, morphological and paleontological evidence is much stronger, and the topology for this part of the molecular tree differs from that derived from the combined data. Here the cause of the mismatch is unclear but could be methodological, arising from marked inequality of molecular rates. Overall, the level of agreement reached between these different data and methodological approaches leads us to

  2. Improved estimates of coordinate error for molecular replacement

    SciTech Connect

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-11-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

  3. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  4. Quantitative estimates of precision for molecular isotopic measurements.

    PubMed

    Jasper, J P

    2001-01-01

    At least three methods of calculating the random errors or variance of molecular isotopic data are presently in use. The major components of variance are differentiated and quantified here into least three to four individual components. The measurement of error of the analyte relative to a working (whether an internal or an external) standard is quantified via the statistical pooled estimate of error. A statistical method for calculating the total variance associated with the difference of two individual isotopic compositions from two isotope laboratories is given, including the variances of the laboratory (secondary) and working standards, as well as those of the analytes. An abbreviated method for estimation of of error typical for chromatographic/isotope mass spectrometric methods is also presented.

  5. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  6. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times. PMID:27448871

  7. In situ marker-based assessment of leaf trait evolutionary potential in a marginal European beech population.

    PubMed

    Bontemps, A; Lefèvre, F; Davi, H; Oddou-Muratorio, S

    2016-03-01

    Evolutionary processes are expected to be crucial for the adaptation of natural populations to environmental changes. In particular, the capacity of rear edge populations to evolve in response to the species limiting conditions remains a major issue that requires to address their evolutionary potential. In situ quantitative genetic studies based on molecular markers offer the possibility to estimate evolutionary potentials manipulating neither the environment nor the individuals on which phenotypes are measured. The goal of this study was to estimate heritability and genetic correlations of a suite of leaf functional traits involved in climate adaptation for a natural population of the tree Fagus sylvatica, growing at the rear edge of the species range. Using two marker-based quantitative genetics approaches, we obtained consistent and significant estimates of heritability for leaf phenological (phenology of leaf flush), morphological (mass, area, ratio mass/area) and physiological (δ(13)C, nitrogen content) traits. Moreover, we found only one significant positive genetic correlation between leaf area and leaf mass, which likely reflected mechanical constraints. We conclude first that the studied population has considerable genetic diversity for important ecophysiological traits regarding drought adaptation and, second, that genetic correlations are not likely to impose strong genetic constraints to future population evolution. Our results bring important insights into the question of the capacity of rear edge populations to evolve. PMID:26679342

  8. New estimates of ionization potentials of four DIB molecular carriers.

    PubMed

    Sonnentrucker, P; Foing, B H; Ehrenfreund, P

    1999-01-01

    We present a study of the behaviour and ionization properties of four Diffuse Interstellar Bands (DIBs) at lambda lambda 5780, 5797, 6379 and 6613 angstroms. In the lambda lambda 5797, 6379 and 6613 angstrom DIBs, substructures have recently been detected, indicating large gaseous molecular carriers. Studying DIBs in regions with different physical properties in terms of UV flux and density enables us to monitor the behaviour of the carriers and hence to constrain their nature. As a follow-up of Sonnentrucker et al. (1997), we add new lines of sight and generalize the results for lines of sight with 2 or 3 clouds. This refines the Ionization Potential estimates which are between 10 and 13 eV, hence reminiscent of PAH or fullerene cations for those DIBs.

  9. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation

    PubMed Central

    Roger, Andrew J; Hug, Laura A

    2006-01-01

    Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods

  10. An estimate of star formation efficiency in molecular clouds

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.

    1984-01-01

    From the existing data in the literature it is shown that there is a linear correlation between cloud mass derived from CO observations and the associated luminosity obtained from far-IR observations over a large luminosity range of 10 to the 4th to 10 to the 8th solar luminosities. The mean value of luminosity per unit mass for a giant molecular cloud is 5.6 solar-L/solar-M. The star-forming efficiency of the molecular cloud over its lifetime of 5-10 x 10 to the 7th yr is found to be 0.2-0.3, which yields the present star-forming rate of 6-11 solar masses per year. Furthermore, the integral luminosity distribution is a power-law with an exponent of about -0.5. The correlation between cloud mass and the far-IR luminosity observed for a sample of nuclei of external galaxies corresponds to molecular clouds similar to those in the Galaxy.

  11. Estimation of atomic hydrophobicities using molecular dynamics simulation of peptides

    NASA Astrophysics Data System (ADS)

    Held, Marie; Nicolau, Dan V.

    2007-12-01

    The hydrophobic force is one of the main driving forces in protein folding and binding. However, its nature is not yet well understood and consequently there are more than 80 different scales published trying to quantify it. Most of the hydrophobicity scales are amino acid-based, but the interaction between the molecular surface of the proteins (and DNA) and surfaces they are immobilized on, e.g., on biomedical micro/nanodevices, occurs on fractions of, rather than whole amino acids. This fragmented structure of the biomolecular surface requires the derivation of atom-level hydrophobicity. Most attempts for the evaluation of atomic hydrophobicities are derived from amino acid-based values, which ignore dynamic and steric factors. This contribution reports on the Molecular Dynamics simulations that aim to overcome this simplification. The calculations examine various tripeptides in an aqueous solution and the analysis focuses on the distance of the nearest water molecules to the individual atoms in the peptides. Different environments result in a variation of average distances for similar atoms in different tripeptides. Comparison with the atomic hydrophobicities derived from the amino acid-based hydrophobicity obtained from peptide partition in water-octanol (Dgoct) and transport through the membrane interface (Dgwif) shows a similar trend to the calculated distances. The variations are likely due to the steric differences of similar types of atoms in different geometric contexts. Therefore, Molecular Dynamics simulations proved convenient for the evaluation of atomic hydrophobicities and open new research avenues. The atomic hydrophobicities can be used to design surfaces that mimic the biomolecular surfaces and therefore elicit an expected biomolecular activity from the immobilized biomolecules.

  12. Relaxation Estimation of RMSD in Molecular Dynamics Immunosimulations

    PubMed Central

    Schreiner, Wolfgang; Karch, Rudolf; Knapp, Bernhard; Ilieva, Nevena

    2012-01-01

    Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. We suggest the method of “lagged RMSD-analysis” as a tool to judge if an MD simulation has not yet run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt. Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged. PMID:23019425

  13. Infrared marker-based tracking in an indoor unknown environment for augmented reality applications

    NASA Astrophysics Data System (ADS)

    Huang, Yetao; Weng, Dongdong; Liu, Yue; Wang, Yongtian

    2009-11-01

    Marker based tracking requires complicated preparation work that impedes its use in augmented reality applications. This paper presents a novel tracking scheme to be used in an indoor unknown scene by adapting simultaneous localization and mapping (SLAM) algorithms. An infrared (IR) marker system is specifically designed to simplify the feature recognition and tracking in SLAM process. With one initial IR marker, the other markers can be projected randomly onto a large-area environment. The pose of camera can be estimated with a monocular IR camera in real time. Experimental result demonstrates that the proposed system meets the requirements of accuracy for large-area tracking. A prototype system is built to show its feasibility in unknown environment and potential use in applications.

  14. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.

    PubMed

    Clarke, Julia A; Boyd, Clint A

    2015-01-01

    Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used

  15. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    PubMed

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers. PMID:27356062

  16. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    PubMed

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers.

  17. New External Calibration Curves (ECCs) for the Estimation of Molecular Weights in Various Common NMR Solvents.

    PubMed

    Bachmann, Sebastian; Neufeld, Roman; Dzemski, Martin; Stalke, Dietmar

    2016-06-13

    New external calibration curves (ECCs) for the estimation of aggregation states of small molecules in solution by DOSY NMR spectroscopy for a range of different common NMR solvents ([D6 ]DMSO, C6 D12 , C6 D6 , CDCl3 , and CD2 Cl2 ) are introduced and applied. ECCs are of avail to estimate molecular weights (MWs) from diffusion coefficients of previously unknown aggregates. This enables a straightforward and elaborate examination of (de)aggregation phenomena in solution.

  18. Time-dependent estimates of molecular evolutionary rates: evidence and causes.

    PubMed

    Ho, Simon Y W; Duchêne, Sebastián; Molak, Martyna; Shapiro, Beth

    2015-12-01

    We are writing in response to a recent critique by Emerson & Hickerson (2015), who challenge the evidence of a time-dependent bias in molecular rate estimates. This bias takes the form of a negative relationship between inferred evolutionary rates and the ages of the calibrations on which these estimates are based. Here, we present a summary of the evidence obtained from a broad range of taxa that supports a time-dependent bias in rate estimates, with a consideration of the potential causes of these observed trends. We also describe recent progress in improving the reliability of evolutionary rate estimation and respond to the concerns raised by Emerson & Hickerson (2015) about the validity of rates estimated from time-structured sequence data. In doing so, we hope to dispel some misconceptions and to highlight several research directions that will improve our understanding of time-dependent biases in rate estimates. PMID:26769402

  19. Ratios of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ratios of regioisomers of 74 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using HPLC and the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lequerella oil. The ratios of relative abundances of the fragment ions fr...

  20. Ratios of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of ...

  1. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex).

    PubMed

    Adeolu, Mobolaji; Gupta, Radhey S

    2014-06-01

    The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing

  2. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models

    PubMed Central

    2014-01-01

    Background Molecular clock methodologies allow for the estimation of divergence times across a variety of organisms; this can be particularly useful for groups lacking robust fossil histories, such as microbial eukaryotes with few distinguishing morphological traits. Here we have used a Bayesian molecular clock method under three distinct clock models to estimate divergence times within oomycetes, a group of fungal-like eukaryotes that are ubiquitous in the environment and include a number of devastating pathogenic species. The earliest fossil evidence for oomycetes comes from the Lower Devonian (~400 Ma), however the taxonomic affinities of these fossils are unclear. Results Complete genome sequences were used to identify orthologous proteins among oomycetes, diatoms, and a brown alga, with a focus on conserved regulators of gene expression such as DNA and histone modifiers and transcription factors. Our molecular clock estimates place the origin of oomycetes by at least the mid-Paleozoic (~430-400 Ma), with the divergence between two major lineages, the peronosporaleans and saprolegnialeans, in the early Mesozoic (~225-190 Ma). Divergence times estimated under the three clock models were similar, although only the strict and random local clock models produced reliable estimates for most parameters. Conclusions Our molecular timescale suggests that modern pathogenic oomycetes diverged well after the origin of their respective hosts, indicating that environmental conditions or perhaps horizontal gene transfer events, rather than host availability, may have driven lineage diversification. Our findings also suggest that the last common ancestor of oomycetes possessed a full complement of eukaryotic regulatory proteins, including those involved in histone modification, RNA interference, and tRNA and rRNA methylation; interestingly no match to canonical DNA methyltransferases could be identified in the oomycete genomes studied here. PMID:24884411

  3. Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C; Crane, Peter; Donoghue, Michael J

    2015-09-01

    Dating analyses based on molecular data imply that crown angiosperms existed in the Triassic, long before their undisputed appearance in the fossil record in the Early Cretaceous. Following a re-analysis of the age of angiosperms using updated sequences and fossil calibrations, we use a series of simulations to explore the possibility that the older age estimates are a consequence of (i) major shifts in the rate of sequence evolution near the base of the angiosperms and/or (ii) the representative taxon sampling strategy employed in such studies. We show that both of these factors do tend to yield substantially older age estimates. These analyses do not prove that younger age estimates based on the fossil record are correct, but they do suggest caution in accepting the older age estimates obtained using current relaxed-clock methods. Although we have focused here on the angiosperms, we suspect that these results will shed light on dating discrepancies in other major clades.

  4. Comparison of mode estimation methods and application in molecular clock analysis

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Shah, Prachi

    2003-01-01

    BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.

  5. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci.

    PubMed

    Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng

    2015-03-01

    Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way

  6. Semiempirical molecular orbital estimation of the relative stability of bianthryls produced by anthracene pyrolysis

    SciTech Connect

    Mulholland, J.A.; Mukherjee, J.; Wornat, M.J.; Sarofim, A.F.; Rutledge, G.C. . Dept. of Chemical Engineering)

    1993-08-01

    The pyrolysis of pure anthracene at temperatures between 1,200 and 1,500 K produced all six bianthryl isomers whose relative yields appear to be related to steric factors. To evaluate the hypothesis that thermodynamic factors govern the product distribution of bianthryls in this system, the relative enthalpies and entropies of biaryl isomers were estimated by molecular orbital modeling, using the semiempirical AM1 (Austin Model 1). Computational analysis of several isomer sets demonstrates that the relative stabilities of a large number of biaryl isomers are determined largely by steric interactions caused by structural features defined as bays, coves, and fjords. These steric factors affect both the degree of biaryl twist in the preferred conformation and the freedom of internal rotation. Molecular orbital modeling supports the hypothesis that a thermodynamic distribution of bianthryl isomers is produced by anthracene pyrolysis.

  7. Estimation of Linear Viscoelasticity of Polymer Melts in Molecular Dynamics Simulations Based on Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Iwaoka, Nobuyuki; Hagita, Katsumi; Takano, Hiroshi

    2014-03-01

    On the basis of relaxation mode analysis (RMA), we present an efficient method to estimate the linear viscoelasticity of polymer melts in a molecular dynamics (MD) simulation. Slow relaxation phenomena appeared in polymer melts cause a problem that a calculation of the stress relaxation function in MD simulations, especially in the terminal time region, requires large computational efforts. Relaxation mode analysis is a method that systematically extracts slow relaxation modes and rates of the polymer chain from the time correlation of its conformations. We show the computational cost may be drastically reduced by combining a direct calculation of the stress relaxation function based on the Green-Kubo formula with the relaxation rates spectra estimated by RMA. N. I. acknowledges the Graduate School Doctoral Student Aid Program from Keio University.

  8. Molecular characterization and marker based chemotaxonomic studies of Podophyllum hexandrum Royle.

    PubMed

    Sultan, Phalisteen; Shawl, A S; Rehman, Suriya; Ahmed, S Fayaz; Ramteke, P W

    2010-06-01

    Detailed chemical studies and RAPD analysis were done in different populations of Podophyllum hexandrum collected from high altitude regions of North Western Himalayas. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity among the 12 collected accessions, attributed to their geographical and climatic conditions. HPLC analysis also revealed variation in the concentration of two major marker compounds which lead to the identification of a chemotype. The study demonstrated that RAPD and chemical markers are very useful tools to compare the genetic relationship and pattern of variation among such prioritized and endangered medicinal plants.

  9. Molecular marker based characterization and genetic diversity of wheat genotypes in relation to boron efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron deficient soils pose a critical problem to wheat production in many areas of the world including Bangladesh and causes significant yield reduction. Therefore, in the present study, 21 diverse wheat (Triticum aestivum L.) genotypes collected from three different countries (Bangladesh, India, a...

  10. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning

    PubMed Central

    Votapka, Lane W.; Amaro, Rommie E.

    2015-01-01

    The kinetic rate constants of binding were estimated for four biochemically relevant molecular systems by a method that uses milestoning theory to combine Brownian dynamics simulations with more detailed molecular dynamics simulations. The rate constants found using this method agreed well with experimentally and theoretically obtained values. We predicted the association rate of a small charged molecule toward both a charged and an uncharged spherical receptor and verified the estimated value with Smoluchowski theory. We also calculated the kon rate constant for superoxide dismutase with its natural substrate, O2 −, in a validation of a previous experiment using similar methods but with a number of important improvements. We also calculated the kon for a new system: the N-terminal domain of Troponin C with its natural substrate Ca2+. The kon calculated for the latter two systems closely resemble experimentally obtained values. This novel multiscale approach is computationally cheaper and more parallelizable when compared to other methods of similar accuracy. We anticipate that this methodology will be useful for predicting kinetic rate constants and for understanding the process of binding between a small molecule and a protein receptor. PMID:26505480

  11. Estimating the timing of early eukaryotic diversification with multigene molecular clocks

    PubMed Central

    Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A.

    2011-01-01

    Although macroscopic plants, animals, and fungi are the most familiar eukaryotes, the bulk of eukaryotic diversity is microbial. Elucidating the timing of diversification among the more than 70 lineages is key to understanding the evolution of eukaryotes. Here, we use taxon-rich multigene data combined with diverse fossils and a relaxed molecular clock framework to estimate the timing of the last common ancestor of extant eukaryotes and the divergence of major clades. Overall, these analyses suggest that the last common ancestor lived between 1866 and 1679 Ma, consistent with the earliest microfossils interpreted with confidence as eukaryotic. During this interval, the Earth's surface differed markedly from today; for example, the oceans were incompletely ventilated, with ferruginous and, after about 1800 Ma, sulfidic water masses commonly lying beneath moderately oxygenated surface waters. Our time estimates also indicate that the major clades of eukaryotes diverged before 1000 Ma, with most or all probably diverging before 1200 Ma. Fossils, however, suggest that diversity within major extant clades expanded later, beginning about 800 Ma, when the oceans began their transition to a more modern chemical state. In combination, paleontological and molecular approaches indicate that long stems preceded diversification in the major eukaryotic lineages. PMID:21810989

  12. Pedigree-Free Estimates of Heritability in the Wild: Promising Prospects for Selfing Populations

    PubMed Central

    Gay, Laurene; Siol, Mathieu; Ronfort, Joelle

    2013-01-01

    Estimating the genetic variance available for traits informs us about a population’s ability to evolve in response to novel selective challenges. In selfing species, theory predicts a loss of genetic diversity that could lead to an evolutionary dead-end, but empirical support remains scarce. Genetic variability in a trait is estimated by correlating the phenotypic resemblance with the proportion of the genome that two relatives share identical by descent (‘realized relatedness’). The latter is traditionally predicted from pedigrees (ΦA: expected value) but can also be estimated using molecular markers (average number of alleles shared). Nevertheless, evolutionary biologists, unlike animal breeders, remain cautious about using marker-based relatedness coefficients to study complex phenotypic traits in populations. In this paper, we review published results comparing five different pedigree-free methods and use simulations to test individual-based models (hereafter called animal models) using marker-based relatedness coefficients, with a special focus on the influence of mating systems. Our literature review confirms that Ritland’s regression method is unreliable, but suggests that animal models with marker-based estimates of relatedness and genomic selection are promising and that more testing is required. Our simulations show that using molecular markers instead of pedigrees in animal models seriously worsens the estimation of heritability in outcrossing populations, unless a very large number of loci is available. In selfing populations the results are less biased. More generally, populations with high identity disequilibrium (consanguineous or bottlenecked populations) could be propitious for using marker-based animal models, but are also more likely to deviate from the standard assumptions of quantitative genetics models (non-additive variance). PMID:23825602

  13. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera.

    PubMed

    Li, Qin-Qin; Zhou, Song-Dong; Huang, De-Qing; He, Xing-Jin; Wei, Xian-Qin

    2016-01-01

    A primary aim of historical biogeography is to identify the causal factors or processes that have shaped the composition and distribution of biotas over time. Another is to infer the evolution of geographic ranges of species and clades in a phylogenetic context. To this end, historical biogeography addresses important questions such as: Where were ancestors distributed? Where did lineages originate? Which processes cause geographic ranges to evolve through time? Allium subgenus Anguinum comprises approximately twelve taxa with a disjunct distribution in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Although both the systematic position and the geographical limits of Anguinum have been identified, to date no molecular systematic study has been performed utilizing a comprehensive sampling of these species. With an emphasis on the Anguinum eastern Asian geographical group, the goals of the present study were: (i) to infer species-level phylogenetic relationships within Anguinum, (ii) to assess molecular divergence and estimated the times of the major splits in Anguinum and (iii) to trace the biogeographic history of the subgenus. Four DNA sequences (ITS, matK, trnH-psbA, rps16) were used to reconstruct the phylogeny of Allium subgen. Anguinum RbcL sequences were used to estimate divergences time for Allium, and sequences of ITS were used to estimate the divergence times for Anguinum and its main lineages and to provide implications for the evolutionary history of the subgenus. Phylogenetic analyses for all Allium corroborate that Anguinum is monophyletic and indicate that Anguinum is composed of two sister groups: one with a Eurasian-American distribution, and the other restricted to eastern Asia. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to

  14. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera

    PubMed Central

    Li, Qin-Qin; Zhou, Song-Dong; Huang, De-Qing; He, Xing-Jin; Wei, Xian-Qin

    2016-01-01

    A primary aim of historical biogeography is to identify the causal factors or processes that have shaped the composition and distribution of biotas over time. Another is to infer the evolution of geographic ranges of species and clades in a phylogenetic context. To this end, historical biogeography addresses important questions such as: Where were ancestors distributed? Where did lineages originate? Which processes cause geographic ranges to evolve through time? Allium subgenus Anguinum comprises approximately twelve taxa with a disjunct distribution in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Although both the systematic position and the geographical limits of Anguinum have been identified, to date no molecular systematic study has been performed utilizing a comprehensive sampling of these species. With an emphasis on the Anguinum eastern Asian geographical group, the goals of the present study were: (i) to infer species-level phylogenetic relationships within Anguinum, (ii) to assess molecular divergence and estimated the times of the major splits in Anguinum and (iii) to trace the biogeographic history of the subgenus. Four DNA sequences (ITS, matK, trnH-psbA, rps16) were used to reconstruct the phylogeny of Allium subgen. Anguinum. RbcL sequences were used to estimate divergences time for Allium, and sequences of ITS were used to estimate the divergence times for Anguinum and its main lineages and to provide implications for the evolutionary history of the subgenus. Phylogenetic analyses for all Allium corroborate that Anguinum is monophyletic and indicate that Anguinum is composed of two sister groups: one with a Eurasian–American distribution, and the other restricted to eastern Asia. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to

  15. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera.

    PubMed

    Li, Qin-Qin; Zhou, Song-Dong; Huang, De-Qing; He, Xing-Jin; Wei, Xian-Qin

    2016-01-01

    A primary aim of historical biogeography is to identify the causal factors or processes that have shaped the composition and distribution of biotas over time. Another is to infer the evolution of geographic ranges of species and clades in a phylogenetic context. To this end, historical biogeography addresses important questions such as: Where were ancestors distributed? Where did lineages originate? Which processes cause geographic ranges to evolve through time? Allium subgenus Anguinum comprises approximately twelve taxa with a disjunct distribution in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Although both the systematic position and the geographical limits of Anguinum have been identified, to date no molecular systematic study has been performed utilizing a comprehensive sampling of these species. With an emphasis on the Anguinum eastern Asian geographical group, the goals of the present study were: (i) to infer species-level phylogenetic relationships within Anguinum, (ii) to assess molecular divergence and estimated the times of the major splits in Anguinum and (iii) to trace the biogeographic history of the subgenus. Four DNA sequences (ITS, matK, trnH-psbA, rps16) were used to reconstruct the phylogeny of Allium subgen. Anguinum RbcL sequences were used to estimate divergences time for Allium, and sequences of ITS were used to estimate the divergence times for Anguinum and its main lineages and to provide implications for the evolutionary history of the subgenus. Phylogenetic analyses for all Allium corroborate that Anguinum is monophyletic and indicate that Anguinum is composed of two sister groups: one with a Eurasian-American distribution, and the other restricted to eastern Asia. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to

  16. The Theoretical Estimation of the Bioluminescent Efficiency of the Firefly via a Nonadiabatic Molecular Dynamics Simulation.

    PubMed

    Yue, Ling; Lan, Zhenggang; Liu, Ya-Jun

    2015-02-01

    The firefly is famous for its high bioluminescent efficiency, which has attracted both scientific and public attention. The chemical origin of firefly bioluminescence is the thermolysis of the firefly dioxetanone anion (FDO(-)). Although considerable theoretical research has been conducted, and several mechanisms were proposed to elucidate the high efficiency of the chemi- and bioluminescence of FDO(-), there is a lack of direct experimental and theoretical evidence. For the first time, we performed a nonadiabatic molecular dynamics simulation on the chemiluminescent decomposition of FDO(-) under the framework of the trajectory surface hopping (TSH) method and theoretically estimated the chemiluminescent quantum yield. The TSH simulation reproduced the gradually reversible charge-transfer initiated luminescence mechanism proposed in our previous study. More importantly, the current study, for the first time, predicted the bioluminescence efficiency of the firefly from a theoretical viewpoint, and the theoretical prediction efficiency is in good agreement with experimental measurements.

  17. Molecular estimation of eulipotyphlan divergence times and the evolution of "Insectivora".

    PubMed

    Douady, Christophe J; Douzery, Emmanuel J P

    2003-08-01

    "Insectivores" are one of the key groups in understanding mammalian origins. For years, systematics of "Lipotyphla" taxa remained extremely unstable and challenged. Today, with the application of molecular techniques, "Lipotyphla" appears to be a paraphyletic assemblage that encompasses hedgehogs, shrews, and moles (i.e., Eulipotyphla-a member of Laurasiatheria), and golden moles and tenrecs (i.e., Afrosoricida-a member of Afrotheria). Based on nuclear genes and on this well-established phylogenetic framework, we estimated Bayesian relaxed molecular clock divergence times among major lineages of "Lipotyphla." Crown placental mammals are shown to diversify 102+/-6 million years ago (Mya; mean+/-one standard-deviation), followed by Boreoeutheria (94+/-6 Mya), Laurasiatheria (85+/-5 Mya), and Eulipotyphla (73+/-5), with moles separating from hedgehogs+shrews just at the K/T boundary (65+/-5 Mya). During the Early and Middle Eocene, all extant eulipotyphlan subfamilies originated: Uropsilinae (52+/-5 Mya), and Desmaninae, Talpinae, Erinaceinae, Hylomyinae, Soricinae, and Crocidurinae (38-42+/-5 Mya). Afrosoricida separated from Macroscelidae 69+/-5 Mya, golden moles from tenrecs 63+/-5 Mya, and the diversification within tenrecs occurred 43+/-5 Mya. Divergence times are shown to be in reasonably good agreement with the fossil record of eulipotyphlans, but not with the one of afrosoricid "insectivores." Eulipotyphlans diversification might have been sculpted by variations in paleoclimates of the cenozoic era.

  18. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications

    NASA Astrophysics Data System (ADS)

    Glaser, Adam K.; Zhang, Rongxiao; Andreozzi, Jacqueline; Gladstone, David; Pogue, Brian

    2016-03-01

    Cherenkov radiation has emerged as a novel source of light with a number of applications in the biomedical sciences. It's unique properties, including its broadband emission spectrum, spectral weighting in the ultraviolet and blue wavebands, and local generation of light within a given tissue have made it an attractive source of light for techniques ranging from widefield imaging to oximetry and phototherapy. To help guide the future development of this field in the context of molecular imaging, quantitative estimates of the light fluence rates of Cherenkov radiation from a number of radionuclide and external radiotherapy beams in tissue was explored for the first time. Using Monte Carlo simulations, these values were found to be on the order of 0.1 - 1 nW/cm2 per MBq/g for radionuclides and 1 - 10 μW/cm2 per Gy/sec for external radiotherapy beams, dependent on the given waveband and optical properties. For phototherapy applications, the total light fluence was found to be on the order of nJ/cm2 for radionuclides, and mJ/cm2 for radiotherapy beams. To validate these findings, experimental validation was completed with an MV x-ray photon beam incident onto a tissue phantom, confirming the magnitudes of the simulation values. The results indicate that diagnostic potential is reasonable for Cherenkov excitation of molecular probes, but phototherapy may remain elusive at these relatively low fluence values.

  19. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints.

    PubMed

    Ouyang, Xuchang; Zhou, Shuo; Su, Chinh Tran To; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-02-01

    Covalent linkage formation is a very important mechanism for many covalent drugs to work. However, partly due to the limitations of proper computational tools for covalent docking, most covalent drugs are not discovered systematically. In this article, we present a new covalent docking package, the CovalentDock, built on the top of the source code of Autodock. We developed an empirical model of free energy change estimation for covalent linkage formation, which is compatible with existing scoring functions used in docking, while handling the molecular geometry constrains of the covalent linkage with special atom types and directional grid maps. Integrated preparation scripts are also written for the automation of the whole covalent docking workflow. The result tested on existing crystal structures with covalent linkage shows that CovalentDock can reproduce the native covalent complexes with significant improved accuracy when compared with the default covalent docking method in Autodock. Experiments also suggest that CovalentDock is capable of covalent virtual screening with satisfactory enrichment performance. In addition, the investigation on the results also shows that the chirality and target selectivity along with the molecular geometry constrains are well preserved by CovalentDock, showing great capability of this method in the application for covalent drug discovery.

  20. Molecular phylogeny and node time estimation of bioluminescent Lantern Sharks (Elasmobranchii: Etmopteridae).

    PubMed

    Straube, Nicolas; Iglésias, Samuel P; Sellos, Daniel Y; Kriwet, Jürgen; Schliewen, Ulrich K

    2010-09-01

    Deep-sea Lantern Sharks (Etmopteridae) represent the most speciose family within Dogfish Sharks (Squaliformes). We compiled an extensive DNA dataset to estimate the first molecular phylogeny of the family and to provide node age estimates for the origin and diversification for this enigmatic group. Phylogenetic inferences yielded consistent and well supported hypotheses based on 4685bp of both nuclear (RAG1) and mitochondrial genes (COI, 12S-partial 16S, tRNAVal and tRNAPhe). The monophyletic family Etmopteridae originated in the early Paleocene around the C/T boundary, and split further into four morphologically distinct lineages supporting three of the four extant genera. The exception is Etmopterus which is paraphyletic with respect to Miroscyllium. Subsequent rapid radiation within Etmopterus in the Oligocene/early Miocene was accompanied by divergent evolution of bioluminescent flank markings which morphologically characterize the four lineages. Higher squaliform interrelationships could not be satisfactorily identified, but convergent evolution of bioluminescence in Dalatiidae and Etmopteridae is supported.

  1. High Sensitivity Method to Estimate Distribution of Hyaluronan Molecular Sizes in Small Biological Samples Using Gas-Phase Electrophoretic Mobility Molecular Analysis

    PubMed Central

    Do, Lan; Dahl, Christen P.; Kerje, Susanne; Hansell, Peter; Mörner, Stellan; Lindqvist, Ulla; Engström-Laurent, Anna; Larsson, Göran; Hellman, Urban

    2015-01-01

    Hyaluronan is a negatively charged polydisperse polysaccharide where both its size and tissue concentration play an important role in many physiological and pathological processes. The various functions of hyaluronan depend on its molecular size. Up to now, it has been difficult to study the role of hyaluronan in diseases with pathological changes in the extracellular matrix where availability is low or tissue samples are small. Difficulty to obtain large enough biopsies from human diseased tissue or tissue from animal models has also restricted the study of hyaluronan. In this paper, we demonstrate that gas-phase electrophoretic molecular mobility analyzer (GEMMA) can be used to estimate the distribution of hyaluronan molecular sizes in biological samples with a limited amount of hyaluronan. The low detection level of the GEMMA method allows for estimation of hyaluronan molecular sizes from different parts of small organs. Hence, the GEMMA method opens opportunity to attain a profile over the distribution of hyaluronan molecular sizes and estimate changes caused by disease or experimental conditions that has not been possible to obtain before. PMID:26448761

  2. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  3. Estimation of ligand efficacies of metabotropic glutamate receptors from conformational forces obtained from molecular dynamics simulations.

    PubMed

    Lakkaraju, Sirish Kaushik; Xue, Fengtian; Faden, Alan I; MacKerell, Alexander D

    2013-06-24

    Group 1 metabotropic glutamate receptors (mGluR) are G-protein coupled receptors with a large bilobate extracellular ligand binding region (LBR) that resembles a Venus fly trap. Closing of this LBR in the presence of a ligand is associated with the activation of the receptor. From conformational sampling of the LBR-ligand complexes using all-atom molecular dynamics (MD) simulations, we characterized the conformational minima related to the hinge like motion associated with the LBR closing/opening in the presence of known agonists and antagonists. By applying a harmonic restraint on the LBR, we also determined the conformational forces generated by the different ligands. The change in the location of the minima and the conformational forces were used to quantify the efficacies of the ligands. This analysis shows that efficacies can be estimated from the forces of a single conformation of the receptor, indicating the potential of MD simulations as an efficient and useful technique to quantify efficacies, thereby facilitating the rational design of mGluR agonists and antagonists.

  4. Estimates of Collisional Cooling and Quenching Rates for Atomic and Molecular Ion Collisions with Ultracold Atoms.

    NASA Astrophysics Data System (ADS)

    Smith, Winthrop; Wells, James

    2009-05-01

    Translational cross sections and rate coefficients for cold ion-neutral elastic and charge-exchange collisions (either atomic or molecular) are >> larger (˜10^6 a.u.) than neutral-neutral collisions at the same CM energy. This is due to the long range polarization potential V(R) = -C4/R^4, where C4 is proportional to the polarizability of the neutral partner. Thus collisions between ultracold alkali atoms (trapped in a magneto-optic trap or MOT) and low-energy ions can be used for sympathetic cooling experiments. We are building a prototype hybrid-trap apparatus [1] that applies these principles to collisions of Ca^+ ions (which can be laser pre-cooled) with MOT-trapped ultracold Na atoms. Some calculations on this system and other related ion-neutral systems have been published [2] and some initial experiments on other ion-neutral species have begun [3]. Estimates of cooling and quenching rates in the low K-mK CM energy range for Ca+ on Na and other cases will be presented and possible experiments described. [1] Winthrop W. Smith, Oleg P. Makarov and Jian Lin, J. Modern Optics 52, 2253 (2005). [2] R. Côt'e and A. Dalgarno, Phys. Rev. A 62, 012709 (2000); R. Côt'e, Phys. Rev. Lett. 85, 5316 (2000). [3] A. Grier, M. Cetina, F.Orucevic, and V. Vuletic, ArXiv atom-ph/0808.3620.

  5. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data.

    PubMed

    Beimforde, Christina; Feldberg, Kathrin; Nylinder, Stephan; Rikkinen, Jouko; Tuovila, Hanna; Dörfelt, Heinrich; Gube, Matthias; Jackson, Daniel J; Reitner, Joachim; Seyfullah, Leyla J; Schmidt, Alexander R

    2014-09-01

    The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered.

  6. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times.

    PubMed

    Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea

    2016-08-11

    Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times. PMID:27391254

  7. Estimation of minimum electron dose necessary to resolve molecular structure of deoxyribonucleic acid by phase transmission electron microscopy

    SciTech Connect

    Nomaguchi, Tsunenori; Kimura, Yoshihide; Takai, Yoshizo

    2006-12-04

    The minimum electron dose that is necessary to resolve the molecular structure of deoxyribonucleic acid (DNA) was estimated based on experimental measurements of information limits and simulated DNA images, considering conditions of a low electron dose. From these results, a dose of {approx}400 e/A{sup 2} was found to be necessary to achieve observation of DNA on a molecular scale under the present experimental setup. A DNA molecule was observed by a phase reconstruction method using through-focus images under the limited electron dose. In the reconstructed images, the helical structure and the intervals of the base pairs of DNA were partially resolved.

  8. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection.

    PubMed Central

    Near, Thomas J; Sanderson, Michael J

    2004-01-01

    Estimates of species divergence times using DNA sequence data are playing an increasingly important role in studies of evolution, ecology and biogeography. Most work has centred on obtaining appropriate kinds of data and developing optimal estimation procedures, whereas somewhat less attention has focused on the calibration of divergences using fossils. Case studies with multiple fossil calibration points provide important opportunities to examine the divergence time estimation problem in new ways. We discuss two cross-validation procedures that address different aspects of inference in divergence time estimation. 'Fossil cross-validation' is a procedure used to identify the impact of different individual calibrations on overall estimation. This can identify fossils that have an exceptionally large error effect and may warrant further scrutiny. 'Fossil-based model cross-validation' is an entirely different procedure that uses fossils to identify the optimal model of molecular evolution in the context of rate smoothing or other inference methods. Both procedures were applied to two recent studies: an analysis of monocot angiosperms with eight fossil calibrations and an analysis of placental mammals with nine fossil calibrations. In each case, fossil calibrations could be ranked from most to least influential, and in one of the two studies, the fossils provided decisive evidence about the optimal molecular evolutionary model. PMID:15519966

  9. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    PubMed

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction.

  10. Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks.

    PubMed

    van Tuinen, Marcel; Hadly, Elizabeth A

    2004-08-01

    The best reconstructions of the history of life will use both molecular time estimates and fossil data. Errors in molecular rate estimation typically are unaccounted for and no attempts have been made to quantify this uncertainty comprehensively. Here, focus is primarily on fossil calibration error because this error is least well understood and nearly universally disregarded. Our quantification of errors in the synapsid-diapsid calibration illustrates that although some error can derive from geological dating of sedimentary rocks, the absence of good stem fossils makes phylogenetic error the most critical. We therefore propose the use of calibration ages that are based on the first undisputed synapsid and diapsid. This approach yields minimum age estimates and standard errors of 306.1 +/- 8.5 MYR for the divergence leading to birds and mammals. Because this upper bound overlaps with the recent use of 310 MYR, we do not support the notion that several metazoan divergence times are significantly overestimated because of serious miscalibration (sensuLee 1999). However, the propagation of relevant errors reduces the statistical significance of the pre-K-T boundary diversification of many bird lineages despite retaining similar point time estimates. Our results demand renewed investigation into suitable loci and fossil calibrations for constructing evolutionary timescales.

  11. Varations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection.

    PubMed

    Her, Namguk; Amy, Gary; Foss, David; Chow, Jaeweon

    2002-08-01

    High performance size exclusion chromatography (HPSEC) with ultraviolet absorbance (UVA) detection has been widely utilized to estimate the molecular weight (MW) and MW distribution of natural organic matter (NOM). However, the estimation of MW with UVA detection is inherently inaccurate because UVA at 254 nm only detects limited components (mostly pi bonded molecules) of NOM, and the molar absorptivity of these different NOM constituents is not equal. In comparison, a SEC chromatogram obtained with a DOC detector showed significant differences compared to a corresponding UVA chromatogram, resulting in different MW values as well as different estimates of polydispersivity. The MWs of Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and various mixtures thereof were estimated with HPSEC coupled with UVA and DOC detectors. The results show that UVA is not an adequate detector for quantitative analysis of MW estimation but rather can be used only for limited qualitative analysis. The NOM in several natural waters (Irvine Ranch, California groundwater, and Barr Lake, Colorado surface water) were also characterized to demonstrate the different MWs obtained with the two detectors. The results of the SEC-DOC chromatograms revealed NOM constituent peaks that went undetected by UVA. Utilizing online DOC detection, a better representation of NOM MWs was suggested, with NOM displaying higher weight-averaged MW (Mw) and lower number-averaged MW (Mn) as well as higher polydispersivity. A method for estimation of the MWs of NOM fractional components and polydispersivities is presented. PMID:12188370

  12. The lognormal and gamma distribution models for estimating molecular weight distributions of polymers using PGSE NMR

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Nydén, Magnus; Röding, Magnus

    2016-06-01

    We present comprehensive derivations for the statistical models and methods for the use of pulsed gradient spin echo (PGSE) NMR to characterize the molecular weight distribution of polymers via the well-known scaling law relating diffusion coefficients and molecular weights. We cover the lognormal and gamma distribution models and linear combinations of these distributions. Although the focus is on methodology, we illustrate the use experimentally with three polystyrene samples, comparing the NMR results to gel permeation chromatography (GPC) measurements, test the accuracy and noise-sensitivity on simulated data, and provide code for implementation.

  13. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  14. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.

    PubMed

    Jones, Reese E; Mandadapu, Kranthi K

    2012-04-21

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  15. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    SciTech Connect

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-10-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles.

  16. Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

    PubMed

    Schneider, Maximilian P W; Pyle, Lacey A; Clark, Kenneth L; Hockaday, William C; Masiello, Caroline A; Schmidt, Michael W I

    2013-10-15

    The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn.

  17. Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

    PubMed

    Schneider, Maximilian P W; Pyle, Lacey A; Clark, Kenneth L; Hockaday, William C; Masiello, Caroline A; Schmidt, Michael W I

    2013-10-15

    The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn. PMID:24040784

  18. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (suborder mysticeti).

    PubMed

    Jackson, J A; Baker, C S; Vant, M; Steel, D J; Medrano-González, L; Palumbi, S R

    2009-11-01

    Baleen whales are the largest animals that have ever lived. To develop an improved estimation of substitution rate for nuclear and mitochondrial DNA for this taxon, we implemented a relaxed-clock phylogenetic approach using three fossil calibration dates: the divergence between odontocetes and mysticetes approximately 34 million years ago (Ma), between the balaenids and balaenopterids approximately 28 Ma, and the time to most recent common ancestor within the Balaenopteridae approximately 12 Ma. We examined seven mitochondrial genomes, a large number of mitochondrial control region sequences (219 haplotypes for 465 bp) and nine nuclear introns representing five species of whales, within which multiple species-specific alleles were sequenced to account for within-species diversity (1-15 for each locus). The total data set represents >1.65 Mbp of mitogenome and nuclear genomic sequence. The estimated substitution rate for the humpback whale control region (3.9%/million years, My) was higher than previous estimates for baleen whales but slow relative to other mammal species with similar generation times (e.g., human-chimp mean rate > 20%/My). The mitogenomic third codon position rate was also slow relative to other mammals (mean estimate 1%/My compared with a mammalian average of 9.8%/My for the cytochrome b gene). The mean nuclear genomic substitution rate (0.05%/My) was substantially slower than average synonymous estimates for other mammals (0.21-0.37%/My across a range of studies). The nuclear and mitogenome rate estimates for baleen whales were thus roughly consistent with an 8- to 10-fold slowing due to a combination of large body size and long generation times. Surprisingly, despite the large data set of nuclear intron sequences, there was only weak and conflicting support for alternate hypotheses about the phylogeny of balaenopterid whales, suggesting that interspecies introgressions or a rapid radiation has obscured species relationships in the nuclear genome.

  19. Estimation of Henry's Law Constant for a Diverse Set of Organic Compounds from Molecular Structure

    EPA Science Inventory

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) vapor pressure and activity coefficient models were coupled to estimate Henry’s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar organic compounds without modification or additional p...

  20. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  1. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres.

    PubMed

    Du, Shuping; Guo, Zhiyong; Chen, Beibei; Sha, Yuhong; Jiang, Xiaohua; Li, Xing; Gan, Ning; Wang, Sui

    2014-03-15

    A novel sandwich-type electrochemiluminescence (ECL) immunosensor was developed for highly sensitive and selective determination of tumor markers based on biological barcode mode. N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and the second antibody (Ab2) were simultaneously immobilized on conductive nanospheres to construct ABEI/Ab2-CNSs probes, which could form sandwich immunocomplex by Ab2 and emit ECL signals by ABEI. The gold layer coated on the surface of the conductive nanospheres could extend the outer Helmholtz plane (OHP) of the ECL immunosensor effectively. Benefited from it, all ABEI molecules immobilized on conductive nanospheres would act as biological barcode to give in-situ ECL signals without interfering with the activity of the second antibody. In such a case, the sensitivity of the ECL immunosensor would be greatly improved because an antigen molecule would correspond to ECL signals of thousands of ABEI molecules. Using prostate specific antigen (PSA) as a model tumor marker, the ECL intensity was found to increase with the logarithm of PSA concentration with a wide linear range from 0.04 to 10 fg/mL. In addition, specificity, stability, reproducibility, regeneration and application were satisfactory. Therefore, this developed ECL immunosensor has a potential for practical detection of disease-related proteins besides tumor markers in the clinical diagnostics.

  2. Marker-based monitoring of seated spinal posture using a calibrated single-variable threshold model.

    PubMed

    Walsh, Pauline; Dunne, Lucy E; Caulfield, Brian; Smyth, Barry

    2006-01-01

    This work, as part of a larger project developing wearable posture monitors for the work environment, seeks to monitor and model seated posture during computer use. A non-wearable marker-based optoelectronic motion capture system was used to monitor seated posture for ten healthy subjects during a calibration exercise and a typing task. Machine learning techniques were used to select overall spinal sagittal flexion as the best indicator of posture from a set of marker and vector variables. Overall flexion data from the calibration exercise were used to define a threshold model designed to classify posture for each subject, which was then applied to the typing task data. Results of the model were analysed visually by qualified physiotherapists with experience in ergonomics and posture analysis to confirm the accuracy of the calibration. The calibration formula was found to be accurate on 100% subjects. This process will be used as a comparative measure in the evaluation of several wearable posture sensors, and to inform the design of the wearable system. PMID:17946301

  3. Development of universal genetic markers based on single-copy orthologous (COSII) genes in Poaceae.

    PubMed

    Liu, Hailan; Guo, Xiaoqin; Wu, Jiasheng; Chen, Guo-Bo; Ying, Yeqing

    2013-03-01

    KEY MESSAGE : We develop a set of universal genetic markers based on single-copy orthologous (COSII) genes in Poaceae. Being evolutionary conserved, single-copy orthologous (COSII) genes are particularly useful in comparative mapping and phylogenetic investigation among species. In this study, we identified 2,684 COSII genes based on five sequenced Poaceae genomes including rice, maize, sorghum, foxtail millet, and brachypodium, and then developed 1,072 COSII markers whose transferability and polymorphism among five bamboo species were further evaluated with 46 pairs of randomly selected primers. 91.3 % of the 46 primers obtained clear amplification in at least one bamboo species, and 65.2 % of them produced polymorphism in more than one species. We also used 42 of them to construct the phylogeny for the five bamboo species, and it might reflect more precise evolutionary relationship than the one based on the vegetative morphology. The results indicated a promising prospect of applying these markers to the investigation of genetic diversity and the classification of Poaceae. To ease and facilitate access of the information of common interest to readers, a web-based database of the COSII markers is provided ( http://www.sicau.edu.cn/web/yms/PCOSWeb/PCOS.html ).

  4. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses.

    PubMed

    Nowak, Michael D; Smith, Andrew B; Simpson, Carl; Zwickl, Derrick J

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.

  5. Clinical, cytogenetic, and molecular diagnosis of Angelman syndrome: Estimated prevalence rate in a Danish country

    SciTech Connect

    Petersen, M.B.; Brondum-Nielsen, K.; Hansen, L.K.; Wulff, K.

    1995-06-19

    Angelman syndrome (AS) was initially considered a rather rare abnormality, but in later years, with the possibilities for cytogenetic and molecular diagnosis an increasing number of patients have been reported. The incidence is quoted to be around 1:20,000. The etiology of AS is associated with the lack of maternal allele(s) of one or more loci at 15q11-q13, and is considered an effect of parental imprinting of that region, since a similar deficiency of paternal alleles leads to Prader-Willi syndrome. 9 refs., 1 tab.

  6. The use of biochemical and molecular parameters to estimate dose-response relationships at low levels of exposure.

    PubMed Central

    Andersen, M E; Barton, H A

    1998-01-01

    Biomarkers based on alterations in molecular and biochemical parameters may be useful in chemical risk assessment for establishing the presence of an exposure, ranking relative risks among exposed individuals, and estimating risks at low levels of exposure. Because it is unlikely that the relation between toxic responses and the degree of alteration in the biomarker is equivalent at all doses, quantification of risks at low levels is not necessarily more accurate using these biomarkers for extrapolation. The application of response biomarkers for risk evaluation at low levels of exposure is discussed in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a compound that causes induction of cytochromes CYP1A1 and CYP1A2 in liver and other tissues. CYP1A1 induction in liver increases monotonically with TCDD dosage; however, several of the dose-response curves for hepatic effects of TCDD are U-shaped. The U-shaped dose-response curve for hepatic tumor promotion appears to result because the integrated toxicologic response depends on multiple underlying processes--mitosuppression, toxicity, and cell proliferation--each of which has a different dose-response relationship with respect to TCDD. Although dose-response relationships for the biomarkers are not expected to duplicate the complex shapes seen with the integrated responses, measurements and pharmacodynamic modeling of the changes in these molecular and biochemical parameters can still be useful for obtaining an upperbound risk estimate at low levels of exposure. Images Figure 2 PMID:9539029

  7. Residual Seminal Vesicle Displacement in Marker-Based Image-Guided Radiotherapy for Prostate Cancer and the Impact on Margin Design

    SciTech Connect

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob; Catton, Charles N.; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2011-06-01

    Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due to marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into

  8. Molecular Phylogenetic Analysis of Infidum similis, Including Morphological Data and Estimation of its Genome Size.

    PubMed

    Martínez-Salazar, Elizabeth A; Rosas-Valdez, Rogelio; Gregory, T Ryan; Violante-González, Juan

    2016-08-01

    :   Infidum similis Travassos, 1916 (Dicrocoeliidae: Leipertrematinae) was found in the gall bladder of Leptophis diplotropis Günther, 1872 from El Podrido, Acapulco, Guerrero, Mexico. A phylogenetic analysis based on partial sequences of the 28S ribosomal RNA using maximum likelihood (ML) and Bayesian inference (BI) analyses was carried out to assess its phylogenetic position within suborder Xiphidiata, alongside members of the superfamilies Gorgoderoidea and Plagiorchoidea. The phylogenetic trees showed that the genus is most-closely related to the Plagiorchoidea rather than to the Gorgoderoidea, in keeping with previous taxonomic designations. Phylogenies obtained from ML and BI analysis of the 28S rDNA gene revealed a well supported clade in which Choledocystus hepaticus (Lutz, 1928) Sullivan, 1977 is sister to I. similis. On the other hand, a tree obtained using a partial sequence of the cytochrome c oxidase subunit 1 (cox1) mtDNA gene (ML and BI analysis), with species supposed to be closely related to I. similis according to 28S, does not support this relatedness. Based on the independence of Infidum from the subfamily Leipertrematinae Yamaguti, 1958 , our results clearly demonstrated that the genus corresponds to a different family and with species closely related to C. hepaticus within Plagiorchoidea. New data are presented about the tegumental surface of I. similis by scanning electron microscopy as well as the estimation of its haploid genome size using Feulgen Image Analysis Densitometry of sperm nuclei as part of the characterization of this species. This is the first genome size estimated for a member of Plagiorchiida, and these data will provide a new source of knowledge on helminth diversity and evolutionary studies. This constitutes the first host record, and new geographical distribution, for this species in Mexico. PMID:26998629

  9. Estimation of Transition-Metal Empirical Parameters for Molecular Mechanical Force Fields.

    PubMed

    Šebesta, Filip; Sláma, Vladislav; Melcr, Josef; Futera, Zdeněk; Burda, Jaroslav V

    2016-08-01

    Force-field parameters of the first row transition metals together with a few additional common elements such as those from the second (Rh, Ru) and third (Hg, Pt) rows of elements in ligated forms were determined based on the density functional theory calculations. Bonding characteristics were determined by averaging metal-ligand force constants in optimal geometries from several chosen complexes of each metal in the most common oxidation numbers and structural arrangements. Parameters of Lennard-Jones potential were determined based on a supermolecular model. Our determined molecular mechanical parameters are compared with presently available parameters published by other groups. We performed two different kinds of testing in order to demonstrate the reliability of these parameters in the case of ligated metallo complexes. First, the nonbonding potential was constructed for an additional set of 19 larger systems containing common complexes with organic molecules. The second test compares the Pt-O and Pt-H radial distribution functions for cisplatin in a box of TIP3P water with lately published studies. PMID:27337427

  10. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    PubMed

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.

  11. Mass estimates for very cold (<8 K) gas in molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Steinacker, J.; Linz, H.; Beuther, H.; Henning, Th.; Bacmann, A.

    2016-09-01

    Context. The mass of prestellar cores is an essential ingredient to understand the onset of star formation in the core. The low level of emission from cold dust may keep parts of this dust hidden from observation. Aims: We aim to determine the fraction of core mass in the temperature range <8 K that can be expected for typical low- and high-mass star formation regions. Methods: We calculated the dust temperature within standard spherically symmetric prestellar cores for a grid of density power laws in the outer core regions, core masses, and variations in the external multicomponent radiation field. We assume the dust is composed of amorphous silicate and carbon and we discuss variations of its optical properties. As a measure for the distribution of cores and clumps, we used core mass functions derived for various environments. In view of the high densities in very cold central regions, dust and gas temperatures are assumed to be equal. Results: We find that the fraction of mass with temperatures <8 K in typical low- and high-mass cores is <20%. It is possible to obtain higher fractions of very cold gas by placing intermediate- or high-mass cores in a typical low-mass star formation environment. We show that the mass uncertainty arising from far-infrared to mm modeling of very cold dust emission is smaller than the mass uncertainty owing to the unknown dust opacities. Conclusions: Under typical star formation conditions, dust with temperatures <8 K covers a small mass fraction in molecular cloud cores, but may play a more important role for special cases. The major unknown in determining the total core mass from thermal dust emission is the uncertainty in the dust opacity, not in the underestimated very cold dust mass.

  12. [Estimation of some molecular effects of gaseous nitrogen oxide on human blood in vitro].

    PubMed

    Martusevich, A K; Peretiagin, S P; Solov'eva, A G; Vanin, A F

    2013-01-01

    The aim of this work is complex estimation of the nitric oxide action on whole blood of healthy people. We tested the reaction of whole human blood (n=14) to the processing of it with cold NO-containing plasma. We performed direct sparging of blood samples by gaseous flow with NO in a special plant. Cold NO-containing plasma was generated by apparatus "Plazon" (Russia). We tested lactate dehydrogenase activity in direct and reverse reactions, aldehyde dehydrogenase and superoxide dismutase activity, total protein and lactate level, acid-base balance and the partial pressure of gases in blood. For integral assessment of energy metabolism changes a number of derivative parameters (coefficients of energy reaction balance and substrate provision) were used. Our experiments showed, that the processing of whole human blood with NO-containing gas flow (NO concentration--800 ppm) results in significant changes of its physical and chemical parameters. This exposure leads to inhibition of erythrocytes energy metabolism, decreasing plasma antioxidant reserves, developing moderate ionic disorders and acid-base disbalance in blood samples in vitro.

  13. Development of marker-based tracking methods for augmented reality applied to NPP maintenance work support and its experimental evaluation

    SciTech Connect

    Ishii, H.; Fujino, H.; Bian, Z.; Sekiyama, T.; Shimoda, H.; Yoshikawa, H.

    2006-07-01

    In this study, two types of marker-based tracking methods for Augmented Reality have been developed. One is a method which employs line-shaped markers and the other is a method which employs circular-shaped markers. These two methods recognize the markers by means of image processing and calculate the relative position and orientation between the markers and the camera in real time. The line-shaped markers are suitable to be pasted in the buildings such as NPPs where many pipes and tanks exist. The circular-shaped markers are suitable for the case that there are many obstacles and it is difficult to use line-shaped markers because the obstacles hide the part of the line-shaped markers. Both methods can extend the maximum distance between the markers and the camera compared to the legacy marker-based tracking methods. (authors)

  14. Optical coherence tomography in estimating molecular diffusion of drugs and analytes in ocular tissues

    NASA Astrophysics Data System (ADS)

    Ghosn, Mohamad G.; Tuchin, Valery V.; Larin, Kirill V.

    2009-02-01

    Aside from other ocular drug delivery methods, topical application and follow up drug diffusion through the cornea and sclera of the eye remain the favored method, as they impose the least pain and discomfort to the patient. However, this delivery route suffers from the low permeability of epithelial tissues and drug washout, thus reducing the effectiveness of the drug and ability to reach its target in effective concentrations. In order to better understand the behavioral characteristics of diffusion in ocular tissue, a method for noninvasive imaging of drug diffusion is needed. Due to its high resolution and depth-resolved imaging capabilities, optical coherence tomography (OCT) has been utilized in quantifying the molecular transport of different drugs and analytes in vitro in the sclera and the cornea. Diffusion of Metronidazole (0.5%), Dexamethasone (0.2%), Ciprofloxacin (0.3%), Mannitol (20%), and glucose solution (20%) in rabbit sclera and cornea were examined. Their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods as function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) × 10-6 cm/s in cornea (n=4) and (6.18 +/- 1.08) × 10-6 cm/s in sclera (n=5). We also demonstrate the capability of OCT technique for depth-resolved monitoring and quantifying of glucose diffusion in different layers of the sclera. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately (2.39 +/- 0.73) × 10-6 cm/s at the epithelial side to (8.63 +/- 0.27) × 10-6 cm/s close to the endothelial side of the sclera. In addition, discrepancy in the permeability rates of glucose solutions with different concentrations was observed. Such diffusion studies could enhance our knowledge and potentially pave the way for advancements of therapeutic and diagnostic techniques in the treatment of ocular diseases.

  15. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements.

  16. Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences.

    PubMed

    Arellano, Elizabeth; González-Cozátl, Francisco X; Rogers, Duke S

    2005-11-01

    We estimated phylogenetic relationships among 16 species of harvest mice using sequences from the mitochondrial cytochrome b (cyt b) gene. Gene phylogenies constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) optimality criteria were largely congruent and arranged taxa into two groups corresponding to the two recognized subgenera (Aporodon and Reithrodontomys). All analyses also recovered R. mexicanus and R. microdon as polyphyletic, although greater resolution was obtained using ML and BI approaches. Within R. mexicanus, three clades were identified with high nodal support (MP and ML bootstrap, Bremer decay and Bayesian posterior probabilities). One represented a subspecies of R. mexicanus from Costa Rica (R. m. cherrii) and a second was distributed in the Sierra Madre Oriental of Mexico. The third R. mexicanus clade consisted of mice from southern Mexico southward to South America. Polyphyly between the two moieties of R. microdon corresponded to the Isthmus of Tehuantepec in southern Mexico. Populations of R. microdon microdon to the east of the isthmus (Chiapas, Mexico) grouped with R. tenuirostris, whereas samples of R. m. albilabris to the west in Oaxaca, Mexico, formed a clade with R. bakeri. Within the subgenus Reithrodontomys, all analyses recovered R. montanus and R. raviventris as sister taxa, a finding consistent with earlier studies based on allozymes and cyt b data. There was also strong support (ML and BI criteria) for a clade consisting of ((R. megalotis, R. zacatecae) (R. sumichrasti)). In addition, cytb gene phylogenies (MP, ML, and BI) recovered R. fulvescens and R. hirsutus (ML and BI) as basal taxa within the subgenus Reithrodontomys. Constraint analyses demonstrated that tree topologies treating the two subgenera (Aporodon and Reithrodontomys) as monophyletic (ML criterion) was significantly better (p>0.036) and supported polyphyly of R. mexicanus (both ML and MP criteria - p>0.013) and R. microdon (MP

  17. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units. PMID:26331783

  18. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.

  19. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations.

    PubMed

    Kittel, Rebecca N; Austin, Andrew D; Klopfstein, Seraina

    2016-08-01

    Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov

  20. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations.

    PubMed

    Kittel, Rebecca N; Austin, Andrew D; Klopfstein, Seraina

    2016-08-01

    Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov

  1. NMR-based estimates of the molecular dimensions in wildfire charcoal: Implications for predictions of biochar residence time

    NASA Astrophysics Data System (ADS)

    Hockaday, William; Kane, Evan; Huang, Rixiang; Von Bargen, Justin; Davis, Rebecca; Ohlson, Mikael

    2014-05-01

    The thermochemical conversion of biomass to energy and fuels generates charcoal as a co-product. Charcoals derived from sustainable biomass sources—biochars—are an inherently stable form of carbon, relatively long residence times in the environment. Biochars can have potentially beneficial properties as soil fertility amendments, which has further stimulated research on the use of biochars for soil carbon sequestration as a climate change mitigation strategy. However, it is challenging to assess the long-term stability of biochar carbon using laboratory or field incubations because these are comprised of short-term observations. In this study, we make use of ancient charcoals from the boreal forests of Alaska and Scandanavia. We have deliberately selected charcoals from organic soil horizons, as to investigate the inherent biological and chemical stability of charcoal C without the protective influence of soil minerals. We use 14C radiocarbon dating to determine the age of the charcoals, differential scanning calorimetry to assess thermal stability, and solid-state 13C NMR to assess the chemical structure. Specifically, we employ C-H dipolar-dephasing NMR experiments to estimate the relative abundance and molecular dimensions of condensed aromatic domains and aliphatic structures. We test the hypothesis that the environmental stability, as determined by apparent 14C age and thermal stability, is related to the extent of ring condensation in the charcoal structure. Preliminary results suggest that the dimension of the condensed aromatic ring clusters may be an important molecular parameter to include in algorithms used to model/predict the residence time of charcoal and biochar C in soil.

  2. The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates.

    PubMed

    Arnason, U; Gullberg, A; Gretarsdottir, S; Ursing, B; Janke, A

    2000-06-01

    Extant cetaceans are systematically divided into two suborders: Mysticeti (baleen whales) and Odontoceti (toothed whales). In this study, we have sequenced the complete mitochondrial (mt) genome of an odontocete, the sperm whale (Physeter macrocephalus), and included it in phylogenetic analyses together with the previously sequenced complete mtDNAs of two mysticetes (the fin and blue whales) and a number of other mammals, including five artiodactyls (the hippopotamus, cow, sheep, alpaca, and pig). The most strongly supported cetartiodactyl relationship was: outgroup,((pig, alpaca), ((cow, sheep),(hippopotamus,(sperm whale,(baleen whales))))). As in previous analyses of complete mtDNAs, the sister-group relationship between the hippopotamus and the whales received strong support, making both Artiodactyla and Suiformes (pigs, peccaries, and hippopotamuses) paraphyletic. In addition, the analyses identified a sister-group relationship between Suina (the pig) and Tylopoda (the alpaca), although this relationship was not strongly supported. The paleontological records of both mysticetes and odontocetes extend into the Oligocene, suggesting that the mysticete and odontocete lineages diverged 32-34 million years before present (MYBP). Use of this divergence date and the complete mtDNAs of the sperm whale and the two baleen whales allowed the establishment of a new molecular reference, O/M-33, for dating other eutherian divergences. There was a general consistency between O/M-33 and the two previously established eutherian references, A/C-60 and E/R-50. Cetacean (whale) origin, i.e., the divergence between the hippopotamus and the cetaceans, was dated to approximately 55 MYBP, while basal artiodactyl divergences were dated to >/=65 MYBP. Molecular estimates of Tertiary eutherian divergences were consistent with the fossil record.

  3. Assessing performance of single-sample molecular genetic methods to estimate effective population size: empirical evidence from the endangered Gochu Asturcelta pig breed.

    PubMed

    Menéndez, Juan; Álvarez, Isabel; Fernandez, Iván; Menéndez-Arias, Nuria A; Goyache, Félix

    2016-07-01

    Estimating effective population size (N e ) using linkage disequilibrium (LD) information (N e( LD ) ) has the operational advantage of using a single sample. However, N e( LD ) estimates assume discrete generations and its performance are constrained by demographic issues. However, such concerns have received little empirical attention so far. The pedigree of the endangered Gochu Asturcelta pig breed includes individuals classified into discrete filial generations and individuals with generations overlap. Up to 780 individuals were typed with a set of 17 microsatellites. Performance of N e( LD ) was compared with N e estimates obtained using genealogical information, molecular coancestry (N e(M) ) and a temporal (two-sample) method (N e( JR ) ). Molecular-based estimates of N e exceeded those obtained using pedigree data. Estimates of N e( LD ) for filial generations F3 and F4 (17.0 and 17.3, respectively) were lower and steadier than those obtained using yearly or biannual samplings. N e( LD ) estimated for samples including generations overlap could only be compared with those obtained for the discrete filial generations when sampling span approached a generation interval and demographic correction for bias was applied. Single-sample N e(M) estimates were lower than their N e( LD ) counterparts. N e(M) estimates are likely to partially reflect the number of founders rather than population size. In any case, estimates of LD and molecular coancestry tend to covary and, therefore, N e(M) and N e( LD ) can hardly be considered independent. Demographically adjusted estimates of N e( JR ) and N e( LD ) took comparable values when: (1) the two samples used for the former were separated by one equivalent to discrete generations in the pedigree and (2) sampling span used for the latter approached a generation interval. Overall, the empirical evidence given in this study suggested that the advantage of using single-sample methods to obtain molecular-based estimates of N e

  4. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    SciTech Connect

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. ); Gotchy, R.L. )

    1990-10-01

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.

  5. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.

    PubMed

    Sodt, Alexander J; Mei, Ye; König, Gerhard; Tao, Peng; Steele, Ryan P; Brooks, Bernard R; Shao, Yihan

    2015-03-01

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton-Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin-luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.

  6. Fluorescent marker-based and marker-free discrimination between healthy and cancerous human tissues using hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2015-06-01

    Two problems are addressed in this paper (i) the fluorescent marker-based and the (ii) marker-free discrimination between healthy and cancerous human tissues. For both applications the performance of hyper-spectral methods are quantified. Fluorescent marker-based tissue classification uses a number of fluorescent markers to dye specific parts of a human cell. The challenge is that the emission spectra of the fluorescent dyes overlap considerably. They are, furthermore disturbed by the inherent auto-fluorescence of human tissue. This results in ambiguities and decreased image contrast causing difficulties for the treatment decision. The higher spectral resolution introduced by tunable-filter-based spectral imaging in combination with spectral unmixing techniques results in an improvement of the image contrast and therefore more reliable information for the physician to choose the treatment decision. Marker-free tissue classification is based solely on the subtle spectral features of human tissue without the use of artificial markers. The challenge in this case is that the spectral differences between healthy and cancerous tissues are subtle and embedded in intra- and inter-patient variations of these features. The contributions of this paper are (i) the evaluation of hyper-spectral imaging in combination with spectral unmixing techniques for fluorescence marker-based tissue classification, (ii) the evaluation of spectral imaging for marker-free intra surgery tissue classification. Within this paper, we consider real hyper-spectral fluorescence and endoscopy data sets to emphasize the practical capability of the proposed methods. It is shown that the combination of spectral imaging with multivariate statistical methods can improve the sensitivity and specificity of the detection and the staging of cancerous tissues compared to standard procedures.

  7. SSR and SRAP marker-based linkage map of Vitis vinifera L.

    PubMed Central

    Guo, Yinshan; Lin, Hong; Liu, Zhendong; Zhao, Yuhui; Guo, Xiuwu; Li, Kun

    2014-01-01

    An F1 population was created by the cross ‘87-1’ × ‘9-22’. The female parent ‘87-1’ was an extremely early maturing cultivar with strong flavour. The male parent was an excellent breeding line producing large berries maturing late. The mapping population included 149 randomly chosen individuals. Molecular genetic map for each parent and the consensus map were constructed using simple sequence repeat and sequence-related amplified polymorphism markers by software JoinMap 3.0. The ‘87-1’ map covers a total length of 1272.9 cM distributed in 21 linkage groups and consists of 163 molecular markers with an average distance between adjacent markers of 8.9 cM. The ‘9-22’ map covers a total length of 1267.4 cM distributed in 20 linkage groups and consists of 158 molecular markers with an average distance between adjacent markers of 9.1 cM. The consensus map covers a total length of 1537.1 cM distributed in 21 linkage groups and one doublet and consists of 217 molecular markers with an average distance of 7.8 cM between adjacent markers. The length of the linkage groups is 69.8 cM on average. The map covers the 19 chromosomes of the Vitis genome and can lay a solid foundation for further studies such as quantative trait loci (QTL) mapping of correlated traits and marker-assisted selection. PMID:26019507

  8. Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy

    SciTech Connect

    Wang Zhou; Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B.

    2010-01-01

    In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

  9. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  10. Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular proxies agree with morphological estimates of species richness in Palau

    NASA Astrophysics Data System (ADS)

    McFadden, C. S.; Brown, A. S.; Brayton, C.; Hunt, C. B.; van Ofwegen, L. P.

    2014-06-01

    The application of DNA barcoding to anthozoan cnidarians has been hindered by their slow rates of mitochondrial gene evolution and the failure to identify alternative molecular markers that distinguish species reliably. Among octocorals, however, multilocus barcodes can distinguish up to 70 % of morphospecies, thereby facilitating the identification of species that are ecologically important but still very poorly known taxonomically. We tested the ability of these imperfect DNA barcodes to estimate species richness in a biodiversity survey of the shallow-water octocoral fauna of Palau using multilocus ( COI, mtMutS, 28S rDNA) sequences obtained from 305 specimens representing 38 genera of octocorals. Numbers and identities of species were estimated independently (1) by a taxonomic expert using morphological criteria and (2) by assigning sequences to molecular operational taxonomic units (MOTUs) using predefined genetic distance thresholds. Estimated numbers of MOTUs ranged from 73 to 128 depending on the barcode and distance threshold applied, bracketing the estimated number of 118 morphospecies. Concordance between morphospecies identifications and MOTUs ranged from 71 to 75 % and differed little among barcodes. For the speciose and ecologically dominant genus Sinularia, however, we were able to identify 95 % of specimens correctly simply by comparing mtMutS sequences and in situ photographs of colonies to an existing vouchered database. Because we lack a clear understanding of species boundaries in most of these taxa, numbers of morphospecies and MOTUs are both estimates of the true species diversity, and we cannot currently determine which is more accurate. Our results suggest, however, that the two methods provide comparable estimates of species richness for shallow-water Indo-Pacific octocorals. Use of molecular barcodes in biodiversity surveys will facilitate comparisons of species richness and composition among localities and over time, data that do not

  11. Pleistocene Speciation in North American Lichenized Fungi and the Impact of Alternative Species Circumscriptions and Rates of Molecular Evolution on Divergence Estimates

    PubMed Central

    Leavitt, Steven D.; Lumbsch, H. Thorsten; Stenroos, Soili; Clair, Larry L. St.

    2013-01-01

    Pleistocene climatic fluctuations influenced patterns of genetic variation and promoted speciation across a wide range of species groups. Lichens are commonly found in habitats that were directly impacted by glacial cycles; however, the role of Pleistocene climate in driving speciation in most lichen symbionts remains unclear. This uncertainty is due in part to limitations in our ability to accurately recognize independently evolving lichen-forming fungal lineages and a lack of relevant fossil calibrations. Using a coalescent-based species tree approach, we estimated divergence times for two sister clades in the genus Xanthoparmelia (Parmeliaceae) restricted to western North America. We assessed the influence of two different species circumscription scenarios and various locus-specific rates of molecular evolution on divergence estimates. Species circumscriptions were validated using the program BP&P. although speciation was generally supported in both scenarios, divergence times differed between traditional species circumscriptions and those based on genetic data, with more recent estimates resulting from the former. Similarly, rates of evolution for different loci resulted in variable divergence time estimates. However, our results unambiguously indicate that diversification in the sampled Xanthoparmelia clades occurred during the Pleistocene. Our study highlights the potential impact of ambiguous species circumscriptions and uncertain rates of molecular evolution on estimating divergence times within a multilocus species tree framework. PMID:24386465

  12. Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates.

    PubMed

    Leavitt, Steven D; Lumbsch, H Thorsten; Stenroos, Soili; St Clair, Larry L

    2013-01-01

    Pleistocene climatic fluctuations influenced patterns of genetic variation and promoted speciation across a wide range of species groups. Lichens are commonly found in habitats that were directly impacted by glacial cycles; however, the role of Pleistocene climate in driving speciation in most lichen symbionts remains unclear. This uncertainty is due in part to limitations in our ability to accurately recognize independently evolving lichen-forming fungal lineages and a lack of relevant fossil calibrations. Using a coalescent-based species tree approach, we estimated divergence times for two sister clades in the genus Xanthoparmelia (Parmeliaceae) restricted to western North America. We assessed the influence of two different species circumscription scenarios and various locus-specific rates of molecular evolution on divergence estimates. Species circumscriptions were validated using the program BP&P. although speciation was generally supported in both scenarios, divergence times differed between traditional species circumscriptions and those based on genetic data, with more recent estimates resulting from the former. Similarly, rates of evolution for different loci resulted in variable divergence time estimates. However, our results unambiguously indicate that diversification in the sampled Xanthoparmelia clades occurred during the Pleistocene. Our study highlights the potential impact of ambiguous species circumscriptions and uncertain rates of molecular evolution on estimating divergence times within a multilocus species tree framework.

  13. Methods for Locating the Tibio-Femoral Contact Pathway in Total Knee Replacements Using Marker-Based Gait Analysis and Standard Radiography

    PubMed Central

    Lundberg, Hannah J; Swanson, Andrea; Knowlton, Christopher; Inoue, Nozomu; Wimmer, Markus A

    2014-01-01

    Introduction The purpose of this study was to develop and test techniques for tracking the path of contact between the tibial and femoral total knee replacement components during level over-ground walking. The tibio-femoral path of contact could be an indicator of the in vivo performance of a total knee replacement as an estimator of areas of contact between the implant components. A longer contact path, indicative of more sliding between the implant components during walking, could indicate an implant at risk for increased wear. In addition, the tibio-femoral contact path determines the position and length of the muscle and ligament lever arms about the knee, and can subsequently influence knee contact force calculations. Methods Two methods were developed to predict the tibio-femoral contact pathways for total knee replacement devices. Both methods used patient-specific knee kinematics obtained during gait analysis, standard radiographs obtained during clinical follow-ups, and point-clouds of the tibial and femoral bearing surfaces. The validity of the techniques was evaluated with knee wear simulator tests and comparisons to wear scars on postmortem retrieved tibial components. Results The average total anterior-posterior distance covered by the contact path for ten patients implanted with a total knee replacement was 29.01 mm on the lateral side, and 21.80 mm on the medial side. Both methods for predicting the tibiofemoral contact pathways yielded similar results, and fell within the wear scars of simulator-tested and postmortem retrieved implants. Conclusions The methods for predicting the tibio-femoral contact pathway using marker-based gait analysis and standard clinical radiographs are computationally simple, and reliably predict contact path characteristics as evaluated against wear scars from knee wear simulator tests and postmortem retrieved implants. PMID:25328466

  14. Effective one step-iterative fiducial marker-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Maier, Andreas; Berger, Martin; Fahrig, Rebecca

    2014-03-01

    We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients' involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D warping method applies different rotational and translational movement to the reconstructed image for each projection frame, distance-related weightings were slightly twisted and thus result in overlaying background noise over the entire image. In order to suppress background noise and artifacts (e.g. metallic marker-caused streaks), the 3D warping method has been improved by incorporating bilateral filtering and a Landwebertype iteration in one step. A series of projection images of five healthy volunteers standing at various flexion angles were acquired using a C-arm cone-beam CT system with a flat panel. A horizontal scanning trajectory of the C-arm was calibrated to generate projection matrices. Using the projection matrices, the static reference marker coordinates in 3D were estimated and used for the improved 3D warping method. The improved 3D warping method effectively reduced background noise down below the noise level of 2D methods and also eliminated metal-generated streaks. Thus, improved visibility of soft tissue structures (e.g. fat and muscle) was achieved while maintaining sharp edges at bone-tissue interfaces. Any high resolution weight-bearing cone-beam CT system can apply this method for motion compensation.

  15. Estimate of Top-of-Atmosphere Albedo for a Molecular Atmosphere over Ocean using Clouds and the Earth's Radiant Energy System (CERES) Measurements

    NASA Technical Reports Server (NTRS)

    Kato, S.; Loeb, N. G.; Rutledge, C. K.

    2002-01-01

    The shortwave broadband albedo at the top of a molecular atmosphere over ocean between 40deg N and 40deg S is estimated using radiance measurements from the Clouds and the Earth's Radiant Energy System (CERES) instrument and the Visible Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The albedo monotonically increases from 0.059 at a solar zenith angle of 10deg to 0.107 at a solar zenith angle of 60deg. The estimated uncertainty in the albedo is 3.5 x 10(exp -3) caused by the uncertainty in CERES-derived irradiances, uncertainty in VIRS-derived aerosol optical thicknesses, variations in ozone and water vapor, and variations in surface wind speed. The estimated uncertainty is similar in magnitude to the standard deviation of 0.003 that is derived from 72 areas divided by 20deg latitude by 20deg longitude grid boxes. The empirically estimated albedo is compared with the modeled albedo using a radiative transfer model combined with an ocean surface bidirectional reflectivity model. The modeled albedo with standard tropical atmosphere is 0.061 and 0.111 at the solar zenith angles of 10deg and 60deg, respectively. This empirically estimated albedo can be used to estimate the direct radiative effect of aerosols at the top of the atmosphere over oceans.

  16. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R.

    2016-03-01

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H2O)n (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculation MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%-65% saving of computational time. The methodology has a potential for application to molecular clusters containing ˜100 atoms.

  17. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    PubMed

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  18. Dense Molecular Gas in the First Galactic Quadrant: A New Distance Estimation Technique and the Molecular Cloud Clump Mass Function, Physical Properties, and Galactic Distribution from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Ellsworth-Bowers, Timothy; Bolocam Galactic Plane Survey

    2015-01-01

    Large submillimeter and millimeter Galactic dust continuum surveys of the Milky Way, such as the Bolocam Galactic Plane Survey (BGPS), Hi-GAL, ATLAS-GAL, and JCMT-JPS cumulatively have discovered 105 cores, clumps, and other structures in Galactic molecular clouds. Robust distance measurements to these structures are needed to enable the large range of quantitative astrophysics that these surveys promise, such as physical properties of clumps, the clump mass function, and the three-dimensional distribution of dense gas and star formation in the Milky Way. We have developed a technique for deriving distances to continuum-identified molecular cloud clumps employing kinematic distances and a suite of distance estimators for breaking kinematic distance ambiguities. Application to the BGPS has yielded 3,700 distance probability density functions (DPDFs) and 1,800 well-constrained distances (typical σdist ≈ 0.5 kpc). These have been used to determine sizes and masses of molecular cloud clumps, derive the clump mass function, and map the three-dimensional distribution of dense gas in the first Galactic quadrant. Among the interesting results are a mass function intermediate between molecular clouds and the stellar initial mass function and inter-arm star formation. Next, we plan to apply the technique to Hi-GAL, which covers the entire Galactic plane and whose submilllimeter maps provide for temperature and bolometric luminosity measurements of cloud structures.

  19. Quality Assurance and Commissioning of an Infrared Marker-Based Patient Positioning System for Frameless Extracranial Stereotactic Radiotherapy

    PubMed Central

    Gupta, Tejpal; Phurailatpam, Reena; Ajay, Mishra; Rajeshri, Pai; Pranshu, Mohindra; Supriya, Chopra

    2007-01-01

    Rapid advancements in imaging technology have led to remarkable improvements in identification and localization of tumors, ushering the era of high-precision techniques in contemporary radiotherapy practice. However, uncertainties in patient set-up and organ motion during a course of fractionated radiotherapy can compromise precision of radiation therapy. Excellent accuracy has been achieved with invasive and non-invasive fixation systems for stereotactic radiotherapy. This report describes the commissioning procedure and Quality Assurance studies done to evaluate the accuracy of isocenter localization by an infrared marker-based positioning system (ExacTrac). The ExacTrac has two infrared cameras that emit and detect infrared rays from reflective markers and construct three-dimensional coordinates of each marker. It detects the difference of the actual isocenter position from the planned isocenter coordinates in three translational (lateral, longitudinal, vertical, or x,y,z axes) and three rotational axes (six degree of freedom). This study performed on a flat and static phantom shows excellent accuracy achieved by the ExacTrac system. The positioning accuracy of ExacTrac (± 1 mm translational displacement and ± 1° rotational errors) can be a valuable tool in implementing frameless extracranial stereotactic radiotherapy. Nevertheless, it needs to be further evaluated on patients with inherent motion and greater positional uncertainty before being adopted in clinical practice. PMID:23675057

  20. Revision of the scolopendrid centipede Digitipes Attems, 1930, from India (Chilopoda: Scolopendromorpha): reconciling molecular and morphological estimates of species diversity.

    PubMed

    Joshi, Jahnavi; Edgecombe, Gregory D

    2013-01-01

    Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipesjonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n

  1. Estimating the Gibbs energy of hydration from molecular dynamics trajectories obtained by integral equations of the theory of liquids in the RISM approximation

    NASA Astrophysics Data System (ADS)

    Tikhonov, D. A.; Sobolev, E. V.

    2011-04-01

    A method of integral equations of the theory of liquids in the reference interaction site model (RISM) approximation is used to estimate the Gibbs energy averaged over equilibrium trajectories computed by molecular mechanics. Peptide oxytocin is selected as the object of interest. The Gibbs energy is calculated using all chemical potential formulas introduced in the RISM approach for the excess chemical potential of solvation and is compared with estimates by the generalized Born model. Some formulas are shown to give the wrong sign of Gibbs energy changes when peptide passes from the gas phase into water environment; the other formulas give overestimated Gibbs energy changes with the right sign. Note that allowance for the repulsive correction in the approximate analytical expressions for the Gibbs energy derived by thermodynamic perturbation theory is not a remedy.

  2. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    EPA Science Inventory

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  3. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families

    PubMed Central

    van Tuinen, Marcel; Torres, Christopher R.

    2015-01-01

    Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer

  4. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-03-01

    Estimation of the dissociation constant, or pKa, of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pKa values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pKa, the acid dissociation constant. We show that the method predicts the pKa value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pKa values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data. PMID:25652329

  5. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-03-01

    Estimation of the dissociation constant, or pKa, of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pKa values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pKa, the acid dissociation constant. We show that the method predicts the pKa value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pKa values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.

  6. Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches.

    PubMed

    Bradbury, I R; Campana, S E; Bentzen, P

    2008-03-01

    Dispersal during the early life history of the anadromous rainbow smelt, Osmerus mordax, was examined using assignment testing and mixture analysis of multilocus genotypes and otolith elemental composition. Six spawning areas and associated estuarine nurseries were sampled throughout southeastern Newfoundland. Samples of adults and juveniles isolated by > 25 km displayed moderate genetic differentiation (F(ST) ~ 0.05), whereas nearby (< 25 km) spawning and nursery samples displayed low differentiation (F(ST) < 0.01). Self-assignment and mixture analysis of adult spawning samples supported the hypothesis of independence of isolated spawning locations (> 80% self-assignment) with nearby runs self-assigning at rates between 50 % and 70%. Assignment and mixture analysis of juveniles using adult baselines indicated high local recruitment at several locations (70-90%). Nearby (< 25 km) estuaries at the head of St Mary's Bay showed mixtures of individuals (i.e. 20-40% assignment to adjacent spawning location). Laser ablation inductively coupled mass spectrometry transects across otoliths of spawning adults of unknown dispersal history were used to estimate dispersal among estuaries across the first year of life. Single-element trends and multivariate discriminant function analysis (Sr:Ca and Ba:Ca) classified the majority of samples as estuarine suggesting limited movement between estuaries (< 0.5%). The mixtures of juveniles evident in the genetic data at nearby sites and a lack of evidence of straying in the otolith data support a hypothesis of selective mortality of immigrants. If indeed selective mortality of immigrants reduces the survivorship of dispersers, estimates of dispersal in marine environments that neglect survival may significantly overestimate gene flow.

  7. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide.

    PubMed

    Guan, Yihong; Zhu, Qinfang; Huang, Delai; Zhao, Shuyi; Jan Lo, Li; Peng, Jinrong

    2015-01-01

    The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x - 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins. PMID:26311515

  8. Estimation of interaction between oriented immobilized green fluorescent protein and its antibody by high performance affinity chromatography and molecular docking.

    PubMed

    Li, Qian; Wang, Jing; Yang, Lingjian; Gao, Xiaokang; Chen, Hongwei; Zhao, Xinfeng; Bian, Liujiao; Zheng, Xiaohui

    2015-07-01

    Although green fluorescence protein (GFP) and its antibody are widely used to track a protein or a cell in life sciences, the binding behavior between them remains unclear. In this work, diazo coupling method that synthesized a new stationary GFP was oriented immobilized on the surface of macro-porous silica gel by a phase. The stationary phase was utilized to confirm the validation of injection amount-dependent analysis in exploring protein-protein interaction that use GFP antibody as a probe. GFP antibody was proved to have one type of binding site on immobilized GFP. The number of binding site and association constant were calculated to be (6.41 ± 0.76) × 10(-10) M and (1.39 ± 0.12) × 10(9) M(-1). Further analysis by molecular docking showed that the binding of GFP to its antibody is mainly driven by hydrogen bonds and salt bridges. These results indicated that injection amount-dependent analysis is capable of exploring the protein-protein interactions with the advantages of ligand and time saving. It is a valuable methodology for the ligands, which are expensive or difficult to obtain. PMID:25727342

  9. Genetic distances between popcorn populations based on molecular markers and correlations with heterosis estimates made by diallel analysis of hybrids.

    PubMed

    Munhoz, R E F; Prioli, A J; Amaral, A T; Scapim, C A; Simon, G A

    2009-01-01

    Diallel analysis was used to obtain information on combining ability, heterosis, estimates of genetic distances by random amplified polymorphic DNA (RAPD) and on their correlations with heterosis, for the popcorn varieties RS 20, UNB2, CMS 43, CMS 42, Zélia, UEM J1, UEM M2, Beija-Flor, and Viçosa, which were crossed to obtain all possible combinations, without reciprocals. The genitors and the 36 F(1) hybrids were evaluated in field trials in Maringá during two growing seasons in a randomized complete block design with three replications. Based on the results, strategies for further studies were developed, including the construction of composites by joining varieties with high general combining ability for grain yield (UNB2 and CMS 42) with those with high general combining ability for popping expansion (Zélia, RS 20 and UEM M2). Based on the RAPD markers, UEM J1 and Zélia were the most genetically distant and RS 20 and UNB2 were the most similar. The low correlation between heterosis and genetic distances may be explained by the random dispersion of the RAPD markers, which were insufficient for the exploitation of the popcorn genome. We concluded that an association between genetic dissimilarity and heterosis based only on genetic distance is not expected without considering the effect of dominant loci. PMID:19731196

  10. The equilibrium molecular structures of 2-deoxyribose and fructose by the semiexperimental mixed estimation method and coupled-cluster computations.

    PubMed

    Vogt, Natalja; Demaison, Jean; Cocinero, Emilio J; Écija, Patricia; Lesarri, Alberto; Rudolph, Heinz Dieter; Vogt, Jürgen

    2016-06-21

    Fructose and deoxyribose (24 and 19 atoms, respectively) are too large for determining accurate equilibrium structures, either by high-level ab initio methods or by experiments alone. We show in this work that the semiexperimental (SE) mixed estimation (ME) method offers a valuable alternative for equilibrium structure determinations in moderate-sized molecules such as these monosaccharides or other biochemical building blocks. The SE/ME method proceeds by fitting experimental rotational data for a number of isotopologues, which have been corrected with theoretical vibration-rotation interaction parameters (αi), and predicate observations for the structure. The derived SE constants are later supplemented by carefully chosen structural parameters from medium level ab initio calculations, including those for hydrogen atoms. The combined data are then used in a weighted least-squares fit to determine an equilibrium structure (r). We applied the ME method here to fructose and 2-deoxyribose and checked the accuracy of the calculations for 2-deoxyribose against the high level ab initio r structure fully optimized at the CCSD(T) level. We show that the ME method allows determining a complete and reliable equilibrium structure for relatively large molecules, even when experimental rotational information includes a limited number of isotopologues. With a moderate computational cost the ME method could be applied to larger molecules, thereby improving the structural evidence for subtle orbital interactions such as the anomeric effect.

  11. A fast tree-based method for estimating column densities in adaptive mesh refinement codes. Influence of UV radiation field on the structure of molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick

    2014-11-01

    Context. Ultraviolet radiation plays a crucial role in molecular clouds. Radiation and matter are tightly coupled and their interplay influences the physical and chemical properties of gas. In particular, modeling the radiation propagation requires calculating column densities, which can be numerically expensive in high-resolution multidimensional simulations. Aims: Developing fast methods for estimating column densities is mandatory if we are interested in the dynamical influence of the radiative transfer. In particular, we focus on the effect of the UV screening on the dynamics and on the statistical properties of molecular clouds. Methods: We have developed a tree-based method for a fast estimate of column densities, implemented in the adaptive mesh refinement code RAMSES. We performed numerical simulations using this method in order to analyze the influence of the screening on the clump formation. Results: We find that the accuracy for the extinction of the tree-based method is better than 10%, while the relative error for the column density can be much more. We describe the implementation of a method based on precalculating the geometrical terms that noticeably reduces the calculation time. To study the influence of the screening on the statistical properties of molecular clouds we present the probability distribution function of gas and the associated temperature per density bin and the mass spectra for different density thresholds. Conclusions: The tree-based method is fast and accurate enough to be used during numerical simulations since no communication is needed between CPUs when using a fully threaded tree. It is then suitable to parallel computing. We show that the screening for far UV radiation mainly affects the dense gas, thereby favoring low temperatures and affecting the fragmentation. We show that when we include the screening, more structures are formed with higher densities in comparison to the case that does not include this effect. We

  12. Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches.

    PubMed

    Pérez-Losada, Marcos; Høeg, Jens T; Crandall, Keith A

    2004-04-01

    The Thoracica includes the ordinary barnacles found along the sea shore and is the most diverse and well-studied superorder of Cirripedia. However, although the literature abounds with scenarios explaining the evolution of these barnacles, very few studies have attempted to test these hypotheses in a phylogenetic context. The few attempts at phylogenetic analyses have suffered from a lack of phylogenetic signal and small numbers of taxa. We collected DNA sequences from the nuclear 18S, 28S, and histone H3 genes and the mitochondrial 12S and 16S genes (4,871 bp total) and data for 37 adult and 53 larval morphological characters from 43 taxa representing all the extant thoracican suborders (except the monospecific Brachylepadomorpha). Four Rhizocephala (highly modified parasitic barnacles) taxa and a Rhizocephala + Acrothoracica (burrowing barnacles) hypothetical ancestor were used as the outgroup for the molecular and morphological analyses, respectively. We analyzed these data separately and combined using maximum likelihood (ML) under "hill-climbing" and genetic algorithm heuristic searches, maximum parsimony procedures, and Bayesian inference coupled with Markov chain Monte Carlo techniques under mixed and homogeneous models of nucleotide substitution. The resulting phylogenetic trees answered key questions in barnacle evolution. The four-plated Iblomorpha were shown as the most primitive thoracican, and the plateless Heteralepadomorpha were placed as the sister group of the Lepadomorpha. These relationships suggest for the first time in an invertebrate that exoskeleton biomineralization may have evolved from phosphatic to calcitic. Sessilia (nonpedunculate) barnacles were depicted as monophyletic and appear to have evolved from a stalked (pedunculate) multiplated (5+) scalpelloidlike ancestor rather than a five-plated lepadomorphan ancestor. The Balanomorpha (symmetric sessile barnacles) appear to have the following relationship: (Chthamaloidea

  13. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates.

    PubMed

    Fleischer, R C; McIntosh, C E; Tarr, C L

    1998-04-01

    The Hawaiian Islands form as the Pacific Plate moves over a 'hot spot' in the earth's mantle where magma extrudes through the crust to build huge shield volcanos. The islands subside and erode as the plate carries them to the north-west, eventually to become coral atolls and seamounts. Thus islands are ordered linearly by age, with the oldest islands in the north-west (e.g. Kauai at 5.1 Ma) and the youngest in the south-east (e.g. Hawaii at 0.43 Ma). K-Ar estimates of the date of an island's formation provide a maximum age for the taxa inhabiting the island. These ages can be used to calibrate rates of molecular change under the following assumptions: (i) K-Ar dates are accurate; (ii) tree topologies show that derivation of taxa parallels the timing of island formation; (iii) populations do not colonize long after island emergence; (iv) the coalescent point for sister taxa does not greatly predate the formation of the colonized younger island; (v) saturation effects and (vi) among-lineage rate variation are minimal or correctable; and (vii) unbiased standard errors of distances and regressions can be estimated from multiple pairwise comparisons. We use the approach to obtain overall corrected rate calibrations for: (i) part of the mitochondrial cytochrome b gene in Hawaiian drepanidines (0.016 sequence divergence/Myr); (ii) the Yp1 gene in Hawaiian Drosophila (0.019/Myr Kambysellis et al. 1995); and (iii) parts of the mitochondrial 12S and 16S rRNA and tRNAval in Laupala crickets (0.024-0.102/Myr, Shaw 1996). We discuss the reliability of the estimates given the assumptions (i-vii) above and contrast the results with previous calibrations of Adh in Hawaiian Drosophila and chloroplast DNA in lobeliods. PMID:9628004

  14. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates.

    PubMed

    Fleischer, R C; McIntosh, C E; Tarr, C L

    1998-04-01

    The Hawaiian Islands form as the Pacific Plate moves over a 'hot spot' in the earth's mantle where magma extrudes through the crust to build huge shield volcanos. The islands subside and erode as the plate carries them to the north-west, eventually to become coral atolls and seamounts. Thus islands are ordered linearly by age, with the oldest islands in the north-west (e.g. Kauai at 5.1 Ma) and the youngest in the south-east (e.g. Hawaii at 0.43 Ma). K-Ar estimates of the date of an island's formation provide a maximum age for the taxa inhabiting the island. These ages can be used to calibrate rates of molecular change under the following assumptions: (i) K-Ar dates are accurate; (ii) tree topologies show that derivation of taxa parallels the timing of island formation; (iii) populations do not colonize long after island emergence; (iv) the coalescent point for sister taxa does not greatly predate the formation of the colonized younger island; (v) saturation effects and (vi) among-lineage rate variation are minimal or correctable; and (vii) unbiased standard errors of distances and regressions can be estimated from multiple pairwise comparisons. We use the approach to obtain overall corrected rate calibrations for: (i) part of the mitochondrial cytochrome b gene in Hawaiian drepanidines (0.016 sequence divergence/Myr); (ii) the Yp1 gene in Hawaiian Drosophila (0.019/Myr Kambysellis et al. 1995); and (iii) parts of the mitochondrial 12S and 16S rRNA and tRNAval in Laupala crickets (0.024-0.102/Myr, Shaw 1996). We discuss the reliability of the estimates given the assumptions (i-vii) above and contrast the results with previous calibrations of Adh in Hawaiian Drosophila and chloroplast DNA in lobeliods.

  15. The molecular marker-based comparison of Azotobacter spp. populations isolated from industrial soils of Cracow-Nowa Huta steelworks (southern Poland) and the adjacent agricultural soils.

    PubMed

    Lenart-Boroń, Anna M; Wolny-Koładka, Katarzyna A; Boroń, Piotr M; Mitka, Józef R

    2014-01-01

    The occurrence of Azotobacter spp., which has beneficial effects on plant development, is related to various soil properties, such as pH and fertility. This study evaluated the prevalence of Azotobacter spp. in industrial (H) and agricultural soils (P) in Nowa Huta, Cracow and determined the phenotypic and genetic diversity of these bacteria. The examined bacteria were present in 40% of H and in 50% of P soils. Taxonomic identification of the bacterial isolates indicated the presence of three species--A. salinestris, A. chroococcum and A. vinelandii. The genetic diversity, determined using two fingerprinting methods--Random Analysis of Polymorphic DNA (RAPD) and Rep-PCR (BOX) revealed high level of population diversity. In AMOVA analysis most of diversity was attributed to within-population variation (76-85%), and only 3.78-6.18% was associated with among-group H and P variation. Global test of differences revealed distinct population structure within bacterial strains isolated from H and P areas only for BOX markers (Fst = 0.05732, P = 0.00275). Phenetic analyses: UPGMA and DCA better discriminated H and P groups based on RAPD data. Both BOX and RAPD methods provided an insight into the genetic complexity of Azotobacter spp. variation in soils of different land-use types. PMID:24798904

  16. The molecular marker-based comparison of Azotobacter spp. populations isolated from industrial soils of Cracow-Nowa Huta steelworks (southern Poland) and the adjacent agricultural soils.

    PubMed

    Lenart-Boroń, Anna M; Wolny-Koładka, Katarzyna A; Boroń, Piotr M; Mitka, Józef R

    2014-01-01

    The occurrence of Azotobacter spp., which has beneficial effects on plant development, is related to various soil properties, such as pH and fertility. This study evaluated the prevalence of Azotobacter spp. in industrial (H) and agricultural soils (P) in Nowa Huta, Cracow and determined the phenotypic and genetic diversity of these bacteria. The examined bacteria were present in 40% of H and in 50% of P soils. Taxonomic identification of the bacterial isolates indicated the presence of three species--A. salinestris, A. chroococcum and A. vinelandii. The genetic diversity, determined using two fingerprinting methods--Random Analysis of Polymorphic DNA (RAPD) and Rep-PCR (BOX) revealed high level of population diversity. In AMOVA analysis most of diversity was attributed to within-population variation (76-85%), and only 3.78-6.18% was associated with among-group H and P variation. Global test of differences revealed distinct population structure within bacterial strains isolated from H and P areas only for BOX markers (Fst = 0.05732, P = 0.00275). Phenetic analyses: UPGMA and DCA better discriminated H and P groups based on RAPD data. Both BOX and RAPD methods provided an insight into the genetic complexity of Azotobacter spp. variation in soils of different land-use types.

  17. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining

    PubMed Central

    2014-01-01

    Background Apparent Amylose Content (AAC), regulated by the Waxy gene, represents the key determinant of rice cooking properties. In occidental countries high AAC rice represents the most requested market class but the availability of molecular markers allowing specific selection of high AAC varieties is limited. Results In this study, the effectiveness of available molecular markers in predicting AAC was evaluated in a collection of 127 rice accessions (125 japonica ssp. and 2 indica ssp.) characterized by AAC values from glutinous to 26%. The analyses highlighted the presence of several different allelic patterns identifiable by a few molecular markers, and two of them, i.e., the SNPs at intron1 and exon 6, were able to explain a maximum of 79.5% of AAC variation. However, the available molecular markers haplotypes did not provide tools for predicting accessions with AAC higher than 24.5%. To identify additional polymorphisms, the re-sequencing of the Waxy gene and 1kbp of the putative upstream regulatory region was performed in 21 genotypes representing all the AAC classes identified. Several previously un-characterized SNPs were identified and four of them were used to develop dCAPS markers. Conclusions The addition of the SNPs newly identified slightly increased the AAC explained variation and allowed the identification of a haplotype almost unequivocally associated to AAC higher than 24.5%. Haplotypes at the waxy locus were also associated to grain length and length/width (L/W) ratio. In particular, the SNP at the first intron, which identifies the Wx a and Wx b alleles, was associated with differences in the width of the grain, the L/W ratio and the length of the kernel, most likely as a result of human selection. PMID:24383761

  18. SU-E-J-24: Can Fiducial Marker-Based Setup Using ExacTrac Be An Alternative to Soft Tissue-Based Setup Using Cone-Beam CT for Prostate IMRT?

    SciTech Connect

    Tanabe, S; Utsunomiya, S; Abe, E; Aoyama, H; Satou, H; Sakai, H; Yamada, T

    2015-06-15

    Purpose: To assess an accuracy of fiducial maker-based setup using ExacTrac (ExT-based setup) as compared with soft tissue-based setup using Cone-beam CT (CBCT-based setup) for patients with prostate cancer receiving intensity-modulated radiation therapy (IMRT) for the purpose of investigating whether ExT-based setup can be an alternative to CBCT-based setup. Methods: The setup accuracy was analyzed prospectively for 7 prostate cancer patients with implanted three fiducial markers received IMRT. All patients were treated after CBCT-based setup was performed and corresponding shifts were recorded. ExacTrac images were obtained before and after CBCT-based setup. The fiducial marker-based shifts were calculated based on those two images and recorded on the assumption that the setup correction was carried out by fiducial marker-based auto correction. Mean and standard deviation of absolute differences and the correlation between CBCT and ExT shifts were estimated. Results: A total of 178 image dataset were analyzed. On the differences between CBCT and ExT shifts, 133 (75%) of 178 image dataset resulted in smaller differences than 3 mm in all dimensions. Mean differences in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were 1.8 ± 1.9 mm, 0.7 ± 1.9 mm, and 0.6 ± 0.8 mm, respectively. The percentages of shift agreements within ±3 mm were 76% for AP, 90% for SI, and 100% for LR. The Pearson coefficient of correlation for CBCT and ExT shifts were 0.80 for AP, 0.80 for SI, and 0.65 for LR. Conclusion: This work showed that the accuracy of ExT-based setup was correlated with that of CBCT-based setup, implying that ExT-based setup has a potential ability to be an alternative to CBCT-based setup. The further work is to specify the conditions that ExT-based setup can provide the accuracy comparable to CBCT-based setup.

  19. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.

    PubMed

    Majhi, Amit Kumar; Kanchi, Subbarao; Venkataraman, V; Ayappa, K G; Maiti, Prabal K

    2015-11-28

    Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (Lα) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the Lα phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the Lα phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.

  20. Alternative methods for estimating common descriptors for QSAR studies of dyes and fluorescent probes using molecular modeling software. 2. Correlations between log P and the hydrophilic/lipophilic index, and new methods for estimating degrees of amphiphilicity.

    PubMed

    Dapson, Richard W; Horobin, Richard W

    2013-11-01

    The log P descriptor, despite its usefulness, can be difficult to use, especially for researchers lacking skills in physical chemistry. Moreover this classic measure has been determined in numerous ways, which can result in inconsistant estimates of log P values, especially for relatively complex molecules such as fluorescent probes. Novel measures of hydrophilicity/lipophilicity (the Hydrophilic/Lipophilic Index, HLI) and amphiphilicity (hydrophilic/lipophilic indices for the head group and tail, HLIT and HLIHG, respectively) therefore have been devised. We compare these descriptors with measures based on log P, the standard method for quantitative structure activity relationships (QSAR) studies. HLI can be determined using widely available molecular modeling software, coupled with simple arithmetic calculations. It is based on partial atomic charges and is intended to be a stand-alone measure of hydrophilicity/lipophilicity. Given the wide application of log P, however, we investigated the correlation between HLI and log P using a test set of 56 fluorescent probes of widely different physicochemical character. Overall correlation was poor; however, correlation of HLI and log P for probes of narrowly specified charge types, i.e., non-ionic compounds, anions, conjugated cations, or zwitterions, was excellent. Values for probes with additional nonconjugated quaternary cations, however, were less well correlated. The newly devised HLI can be divided into domain-specific descriptors, HLIT and HLIHG in amphiphilic probes. Determinations of amphiphilicity, made independently by the authors using their respective methods, showed excellent agreement. Quantifying amphiphilicity from partial log P values of the head group (head group hydrophilicity; HGH) and tail (amphiphilicity index; AI) has proved useful for understanding fluorescent probe action. The same limitations of log P apply to HGH and AI, however. The novel descriptors, HLIT and HLIHG, offer analogous advantages

  1. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics.

    PubMed

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo

    2016-01-01

    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  2. No Gold Standard Estimation of the Sensitivity and Specificity of Two Molecular Diagnostic Protocols for Trypanosoma brucei spp. in Western Kenya

    PubMed Central

    de Clare Bronsvoort, Barend Mark; von Wissmann, Beatrix; Fèvre, Eric Maurice; Handel, Ian Graham; Picozzi, Kim; Welburn, Sue Christina

    2010-01-01

    African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR) have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS) regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1 = 0.760) had a higher sensitivity than the ITS-PCR (Se2 = 0.640); both have high specificity (Sp1 = 0.998; Sp2 = 0.997). The true prevalences for livestock populations were estimated (pcattle = 0.091, ppigs = 0.066, pgoats = 0.005, psheep = 0.006), taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes

  3. A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers

    PubMed Central

    Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.

    2007-01-01

    Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112

  4. Molecular sizes of amino acid transporters in the luminal membrane from the kidney cortex, estimated by the radiation-inactivation method.

    PubMed Central

    Béliveau, R; Demeule, M; Jetté, M; Potier, M

    1990-01-01

    Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa. PMID:1971509

  5. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.).

    PubMed

    Han, Bin; Wang, Changbiao; Tang, Zhaohui; Ren, Yongkang; Li, Yali; Zhang, Dayong; Dong, Yanhui; Zhao, Xinghua

    2015-01-01

    Microsatellites or simple sequence repeats (SSRs) are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW) genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR); 70,564 (23.9%) were found to be monomorphic and 224,703 (76.1%) were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3%) amplified one locus, 8 (17.8%) amplified multiple identical loci, and 13 (28.9%) did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising source to

  6. Simultaneous time course analysis of multiple markers based on DNA microarray in incised wound in skeletal muscle for wound aging.

    PubMed

    Hassan Gaballah, Mohammed; Fukuta, Mamiko; Maeno, Yoshitaka; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun; Shibata, Yuka; Kato, Hideaki; Aoki, Yasuhiro; Takamiya, Masataka

    2016-09-01

    Assessment of incised wound age in skeletal muscles is important because fatal injuries are often complicated with muscle involvement. Transcriptome of injured skeletal muscle along with histopathological and immunohistochemistry staining, were analyzed to explore the biological effect of incised injuries using a mouse incised injury model. An incisional wound was made at the biceps femoris muscle of anesthetized mice, and the muscles were sampled at 6, 12, 24, 36 and 48h post-injury. DNA microarray analysis using RNA extracted from the muscle samples of 12h post-injury identified 3,655 upregulated and 3,583 downregulated genes. Referring to the results of the gene ontology and gene expression pathway analysis, time course expression of five cytokines, namely chemokine (C-C motif) ligand 4 (CCL4), chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin-1 beta (IL-1β), interleukin- 6 (IL-6) and interleukin-7 (IL-7), were analyzed by quantative reverse transcription PCR (qRT-PCR). CXCL5 was the most upregulated gene throughout the post-injury period with higher expression from 6 through 36h post injury. Upregulation of CCL4 and IL-1β was also persisted until 36h post injury. IL-6 mRNA was highly and rapidly expressed at 6h post-injury followed by significant decrease at 12h. Unlike other four cytokines, IL-7 showed slow and steady increasing over time until 48h post-injury. Immunohistochemical staining of post-injury samples showed gradual mild increase of staining intensity proportional to increasing time points especially around the wound edges. The present study highlights the unique dynamics of each cytokine and reflects their roles in the process of muscle wound healing, and suggests the potential of them as a tool for forensic wound age estimation.

  7. SU-E-J-39: Dosimetric Benefit of Implanted Marker-Based CBCT Setup for Definitive Prostatic Radiotherapy

    SciTech Connect

    Zhen, H; Wu, Z; Bluemenfeld, P; Chu, J; Wang, D

    2015-06-15

    Purpose Daily setup for definitive prostatic radiotherapy is challenged by suboptimal visibility of the prostate boundary and daily variation of rectum shape and position. For patients with improved bowel preparation, we conducted a dosimetric comparison between prostate implanted marker (IM)-based daily setup and anterior rectal wall (ARW)-based setup, with the hypothesis that the former leads to adequate target coverage with better rectal sparing. Methods Five IMRT/VMAT prostate cases with implanted markers were selected for analysis. Daily CBCT showed improvement of the rectal volume compared to planning CT. For each patient, the prostate and rectum were contoured on three CBCT images (fraction 5/15/25) with subsequent physician review. The CBCTs were then registered to a planning CT using IM-based registration. The deviation of ARW positions from planning CT to CBCT were analyzed at various sup-inf levels (−1.8 cm to 1.8 cm from level of prostate center). To estimate the potential dosimetric impact from ARW-based setup, the treatment plans were recalculated using A-P shifts ranging from −1mm to +6mm. Clinically important rectum DVH values including Dmax, D3cc and Dmean were computed. Results For the studied patients, we observed on average 32% rectum volume reduction from planning CT to CBCT. As a Results, the ARW on average shifts posteriorly by −1mm to +5mm, depending on the sup-inf level of observation, with larger shifts observed at more superior levels. Recalculation shows that when ARW shifts 1mm posteriorly, ARW-based CBCT setup leads to a 1.0%, 4.2%, and 3.2% increase in rectum Dmax, D3cc, and Dmean, respectively, compared to IM-based setup. The dosimetric deviations increase to 4.7%, 25.8% and 24.7% when ARW shifts 6mm posteriorly. No significant prostate-only dose difference was observed. Conclusion For patients with improved bowel preparation, IM-based CBCT setup leads to accurate prostate coverage along with significantly lower rectal dose

  8. Molecular dynamics estimates for the thermodynamic properties of the Fe-S liquid cores of the Moon, Io, Europa, and Ganymede

    NASA Astrophysics Data System (ADS)

    Kuskov, O. L.; Belashchenko, D. K.

    2016-05-01

    A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe-S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron-sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe-S solutions at sulfur concentrations of 0-18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon's outer Fe-S core (~5 GPa/2000 K), which contains 6-16 at % (3.5-10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3-7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon's liquid core whereas the thermodynamic density of the Fe-S core is not consistent with the seismic models with ρ = 5.1-5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5-10 wt %, the density of the Fe-S melt is 20-30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon's outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon's mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter's Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of

  9. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.

    PubMed

    Fukuda, Ikuo; Kamiya, Narutoshi; Nakamura, Haruki

    2014-05-21

    In the preceding paper [I. Fukuda, J. Chem. Phys. 139, 174107 (2013)], the zero-multipole (ZM) summation method was proposed for efficiently evaluating the electrostatic Coulombic interactions of a classical point charge system. The summation takes a simple pairwise form, but prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large energetic noises and significant artifacts. The purpose of this paper is to judge the ability of the ZM method by investigating the accuracy, parameter dependencies, and stability in applications to liquid systems. To conduct this, first, the energy-functional error was divided into three terms and each term was analyzed by a theoretical error-bound estimation. This estimation gave us a clear basis of the discussions on the numerical investigations. It also gave a new viewpoint between the excess energy error and the damping effect by the damping parameter. Second, with the aid of these analyses, the ZM method was evaluated based on molecular dynamics (MD) simulations of two fundamental liquid systems, a molten sodium-chlorine ion system and a pure water molecule system. In the ion system, the energy accuracy, compared with the Ewald summation, was better for a larger value of multipole moment l currently induced until l ≲ 3 on average. This accuracy improvement with increasing l is due to the enhancement of the excess-energy accuracy. However, this improvement is wholly effective in the total accuracy if the theoretical moment l is smaller than or equal to a system intrinsic moment L. The simulation results thus indicate L ∼ 3 in this system, and we observed less accuracy in l = 4. We demonstrated the origins of parameter dependencies appearing in the crossing behavior and the oscillations of the energy error curves. With raising the moment l we observed, smaller values of the damping parameter provided more accurate results and smoother

  10. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  11. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    SciTech Connect

    Yan, Guanghua Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  12. Minimum Cost Estimation of a Baseline Survey for a Molecular Epidemiology Cohort Study: Collecting Participants in a Model Region in Japan

    PubMed Central

    Sawada, Norie; Iwasaki, Motoki; Ohashi, Kayo; Tsugane, Shoichiro

    2016-01-01

    Background Some recent molecular epidemiology studies of the effects of genetic and environmental factors on human health have required the enrollment of more than 100 000 participants and the involvement of regional study offices across the country. Although regional study office investigators play a critical role in these studies, including the acquisition of funds, this role is rarely discussed. Methods We first differentiated the functions of the regional and central study offices. We then investigated the minimum number of items required and approximate cost of a molecular epidemiology study enrolling 7400 participants from a model region with a population of 100 000 for a 4-year baseline survey using a standard protocol developed based on the protocol of Japan Public Health Center-based Prospective Study for the Next Generation. Results The functions of the regional study office were identified, and individual expenses were itemized. The total cost of the 4-year baseline survey was 153 million yen, excluding consumption tax. Accounting difficulties in conducting the survey were clarified. Conclusions We investigated a standardized example of the tasks and total actual costs of a regional study office. Our approach is easy to utilize and will help improve the management of regional study offices in future molecular epidemiology studies. PMID:27001116

  13. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  14. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  15. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France.

    PubMed

    Robuchon, Marine; Valero, Myriam; Gey, Delphine; Le Gall, Line

    2015-04-01

    Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m(2) at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

  16. The enhancement of diazepam and muscimol binding by pentobarbital and (+)-etomidate: size of the molecular arrangement estimated by electron irradiation inactivation of rat cortex.

    PubMed

    Maksay, G; Nielsen, M; Simonyi, M

    1986-09-25

    Synaptosomal membranes were prepared from frozen rat cortices irradiated by 10 MeV electrons and the enhancement of [3H]diazepam and [3H]muscimol binding by pentobarbital (PB) and (+)-etomidate was studied. The target sizes of the corresponding parts of the receptor complex were estimated from the decrease in the enhancement as a function of irradiation dose. Different radiation inactivation constants suggest different regulatory units for the enhancement by PB and (+)-etomidate. Target sizes for PB and (+)-etomidate enhancement of [3H]diazepam binding were 127 +/- 14 and 360 + 124 kDa, respectively.

  17. Spectral analysis of mixing in chaotic flows via the mapping matrix formalism: Inclusion of molecular diffusion and quantitative eigenvalue estimate in the purely convective limit

    NASA Astrophysics Data System (ADS)

    Gorodetskyi, O.; Giona, M.; Anderson, P. D.

    2012-07-01

    This paper extends the mapping matrix formalism to include the effects of molecular diffusion in the analysis of mixing processes in chaotic flows. The approach followed is Lagrangian, by considering the stochastic formulation of advection-diffusion processes via the Langevin equation for passive fluid particle motion. In addition, the inclusion of diffusional effects in the mapping matrix formalism permits to frame the spectral properties of mapping matrices in the purely convective limit in a quantitative way. Specifically, the effects of coarse graining can be quantified by means of an effective Péclet number that scales as the second power of the linear lattice size. This simple result is sufficient to predict the scaling exponents characterizing the behavior of the eigenvalue spectrum of the advection-diffusion operator in chaotic flows as a function of the Péclet number, exclusively from purely kinematic data, by varying the grid resolution. Simple but representative model systems and realistic physically realizable flows are considered under a wealth of different kinematic conditions-from the presence of large quasi-periodic islands intertwined by chaotic regions, to almost globally chaotic conditions, to flows possessing "sticky islands"-providing a fairly comprehensive characterization of the different numerical phenomenologies that may occur in the quantitative analysis of mapping matrices, and ultimately of chaotic mixing processes.

  18. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  19. Genome-Wide Identification of SSR and SNP Markers Based on Whole-Genome Re-Sequencing of a Thailand Wild Sacred Lotus (Nelumbo nucifera)

    PubMed Central

    Zhu, Zhixuan; Wang, Xiaolei; Ke, Weidong; Ding, Yi

    2015-01-01

    Genomic resources such as single nucleotide polymorphism (SNPs), insertions and deletions (InDels) and SSRs (simple sequence repeats) are essential for crop improvement and better utilization in genetic breeding. However, the resources for the sacred lotus (Nelumbo nucifera Gaertn.) are still limited. In the present study, to dissect large-scale genomic molecular marker resources for sacred lotus, we re-sequenced a Thailand sacred lotus cultivar ‘Chiang Mai wild lotus’ and compared with the reported lotus genome ‘Middle lake wild lotus’. A total of 3,180,059 SNPs, 328, 251 InDels and 14,191 SVs were found between the two genomes. The functional impact analyses of these SNPs indicated that they may be involved in metabolic processes, binding, catalytic activity, etc. Mining the genome sequences for SSRs showed that 191,657 SSRs were identified with a frequency of one SSR per 4.23 kb and 103,656 SSR primer pairs were designed. Furthermore, 14, 502 EST-SSRs were also indentified using the available RNA-seq data in the NCBI. A subset of 150 SSRs (genomic and EST-SSRs) was randomly selected for validation and genetic diversity analysis. The genotypes could be easily distinguished using these SSR markers and the ‘Chiang Mai wild lotus’ was obviously differentiated from the other Chinese accessions. This study provides considerable amounts of genomic resources and markers for the quantitative trait locus (QTL) identification and molecular selection of the species, which could have a potential role in various applications in sacred lotus breeding. PMID:26606530

  20. Nearby Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Lebrun, F.

    1984-01-01

    If the gas-to-dust ratio is sufficiently uniform throughout the local interstellar medium, galaxy counts may provide a useful probe of the large scale structure of the interstellar gas. This idea substantiated by gamma ray observations led to the discovery of nearby molecular cloud complexes. The reddening studies indicate that one of them lies between 80 and 140 pc from the Sun. From CO observations, its molecular mass is estimated to be a few 1000 stellar mass units.

  1. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    PubMed

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop.

  2. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    PubMed

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop. PMID:17546067

  3. Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Scutellaria baicalensis.

    PubMed

    Yuan, Yuan; Long, Ping; Jiang, Chao; Li, Minhui; Huang, Luqi

    2015-01-01

    Scutellaria baicalensis Georgi is an herbaceous perennial plant used as one of the staple Chinese herbal medicines in China with a long officinal history. However, research on S. baicalensis is currently limited due to the lack of genome and gene expression information. A full-length cDNA library from leaves and roots of S. baicalensis subjected to water deficit and heat, conditions that have been shown to affect baicalein accumulation, was constructed. There were 6491 expressed sequence tags (ESTs) obtained. UniGenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 78 simple sequence repeats (SSRs) were identified and SSR markers associated with the active ingredients of S. baicalensis were selected. EST-SSR transferability was determined from 5 populations from different areas. This study is the first to produce a large volume of gene expression data from S. baicalensis to facilitate gene discovery in S. baicalensis and provide an important resource for molecular genetic and functional genomic studies in this species.

  4. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum.

    PubMed

    Yeam, Inhwa; Kang, Byoung-Cheorl; Lindeman, Wouter; Frantz, James D; Faber, Nanne; Jahn, Molly M

    2005-12-01

    Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 (1), and pvr1 (2). These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.

  5. Development and Characterization of Simple Sequence Repeat (SSR) Markers Based on RNA-Sequencing of Medicago sativa and In silico Mapping onto the M. truncatula Genome

    PubMed Central

    Wang, Zan; Yu, Guohui; Shi, Binbin; Wang, Xuemin; Qiang, Haiping; Gao, Hongwen

    2014-01-01

    Sufficient codominant genetic markers are needed for various genetic investigations in alfalfa since the species is an outcrossing autotetraploid. With the newly developed next generation sequencing technology, a large amount of transcribed sequences of alfalfa have been generated and are available for identifying SSR markers by data mining. A total of 54,278 alfalfa non-redundant unigenes were assembled through the Illumina HiSeqTM 2000 sequencing technology. Based on 3,903 unigene sequences, 4,493 SSRs were identified. Tri-nucleotide repeats (56.71%) were the most abundant motif class while AG/CT (21.7%), AGG/CCT (19.8%), AAC/GTT (10.3%), ATC/ATG (8.8%), and ACC/GGT (6.3%) were the subsequent top five nucleotide repeat motifs. Eight hundred and thirty- seven EST-SSR primer pairs were successfully designed. Of these, 527 (63%) primer pairs yielded clear and scored PCR products and 372 (70.6%) exhibited polymorphisms. High transferability was observed for ssp falcata at 99.2% (523) and 71.7% (378) in M. truncatula. In addition, 313 of 527 SSR marker sequences were in silico mapped onto the eight M. truncatula chromosomes. Thirty-six polymorphic SSR primer pairs were used in the genetic relatedness analysis of 30 Chinese alfalfa cultivated accessions generating a total of 199 scored alleles. The mean observed heterozygosity and polymorphic information content were 0.767 and 0.635, respectively. The codominant markers not only enriched the current resources of molecular markers in alfalfa, but also would facilitate targeted investigations in marker-trait association, QTL mapping, and genetic diversity analysis in alfalfa. PMID:24642969

  6. Estimating Eggs

    ERIC Educational Resources Information Center

    Lindsay, Margaret; Scott, Amanda

    2005-01-01

    The authors discuss mass as one of the three fundamental measurements (the others being length and time), noting that estimation of mass is little taught and assessed in primary schools. This article briefly explores the reasons for this in terms of culture, practice, and the difficulty of assessing estimation of mass. An activity using the…

  7. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  8. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    SciTech Connect

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; McWalter, Emily J.; Gold, Garry E.; Fahrig, Rebecca; Pal, Saikat; Beaupré, Gary S.

    2014-06-15

    Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D

  9. Attitude Estimation or Quaternion Estimation?

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2003-01-01

    The attitude of spacecraft is represented by a 3x3 orthogonal matrix with unity determinant, which belongs to the three-dimensional special orthogonal group SO(3). The fact that all three-parameter representations of SO(3) are singular or discontinuous for certain attitudes has led to the use of higher-dimensional nonsingular parameterizations, especially the four-component quaternion. In attitude estimation, we are faced with the alternatives of using an attitude representation that is either singular or redundant. Estimation procedures fall into three broad classes. The first estimates a three-dimensional representation of attitude deviations from a reference attitude parameterized by a higher-dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. The second class, which estimates a higher-dimensional representation subject to enough constraints to leave only three degrees of freedom, is difficult to formulate and apply consistently. The third class estimates a representation of SO(3) with more than three dimensions, treating the parameters as independent. We refer to the most common member of this class as quaternion estimation, to contrast it with attitude estimation. We analyze the first and third of these approaches in the context of an extended Kalman filter with simplified kinematics and measurement models.

  10. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles.

    PubMed

    Cortés, Camilo; Unzueta, Luis; de Los Reyes-Guzmán, Ana; Ruiz, Oscar E; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  11. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  12. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles.

    PubMed

    Cortés, Camilo; Unzueta, Luis; de Los Reyes-Guzmán, Ana; Ruiz, Oscar E; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR.

  13. Turbulence in molecular clouds

    NASA Astrophysics Data System (ADS)

    Dickman, R. L.

    The basic aim of this paper is to offer a primer of basic concepts and methods of analysis for observationally-oriented individuals who wish to work in the rapidly developing area of molecular cloud turbulence. First the difficulties which beset early attempts to determine the nature of gas motions within molecular clouds are reviewed. Some aspects of turbulence as a hydrodynamic phenomenon are considered next along with an introduction to the statistical vocabulary of the subject which is required to understand the methods for analyzing observational data. A simple and useful approximation for estimating the velocity correlation length of a molecular cloud is also described. The paper concludes with a final perspective, which considers the extent to which size-velocity dispersion correlations can serve as a probe of chaotic velocity fields in molecular clouds.

  14. Estimating risk.

    PubMed

    2016-07-01

    A free mobile phone app has been launched providing nurses and other hospital clinicians with a simple way to identify high-risk surgical patients. The app is a phone version of the Surgical Outcome Risk Tool (SORT), originally developed for online use with computers by researchers from the National Confidential Enquiry into Patient Outcome and Death and the University College London Hospital Surgical Outcomes Research Centre. SORT uses information about patients' health and planned surgical procedures to estimate the risk of death within 30 days of an operation. The percentages are only estimates, taking into account the general risks of the procedures and some information about patients, and should not be confused with patient-specific estimates in individual cases. PMID:27369709

  15. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  16. Molecular Plasmonics

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  17. Computational Estimation

    ERIC Educational Resources Information Center

    Fung, Maria G.; Latulippe, Christine L.

    2010-01-01

    Elementary school teachers are responsible for constructing the foundation of number sense in youngsters, and so it is recommended that teacher-training programs include an emphasis on number sense to ensure the development of dynamic, productive computation and estimation skills in students. To better prepare preservice elementary school teachers…

  18. Molecular beacons.

    PubMed

    Tan, Weihong; Wang, Kemim; Drake, Timothy J

    2004-10-01

    This opinion covers the field of molecular beacons (MBs), in which nucleic acids are molecularly engineered to have unique functions for the investigation of biomolecules. Molecular beacons have been used in a variety of formats, and this review discusses four: first, in vitro RNA and DNA monitoring; second, biosensors and biochips based on MBs; third, real-time monitoring of genes and gene expression in living systems; and finally, the next generation of molecular beacons that will be highly useful for studies with proteins, molecular beacon aptamers. These unique applications have shown that MBs holds great potential in genomics and proteomics where real-time molecular recognition with high sensitivity and excellent specificity is critical.

  19. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  20. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  1. An empirical estimate of the correlation energy

    NASA Astrophysics Data System (ADS)

    Spackman, M. A.; Maslen, E. N.

    1986-04-01

    The difference between experimental and accurate Hartree-Fock binding energies is strongly correlated with the classical electrostatic interaction between spherical atoms for a large number of diatomic and polyatomic molecules. The results lead to a useful estimate of the molecular extra correlation energy and indicate that one quarter of the electrostatic energy is an approximate lower bound to the molecular extra correlation energy.

  2. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  3. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  4. Correspondence estimation from non-rigid motion information

    NASA Astrophysics Data System (ADS)

    Wulff, Jonas; Lotz, Thomas; Stehle, Thomas; Aach, Til; Chase, J. Geoffrey

    2011-03-01

    The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

  5. Molecular Haeckel.

    PubMed

    Elinson, Richard P; Kezmoh, Lorren

    2010-07-01

    More than a century ago, Ernst Haeckel created embryo drawings to illustrate the morphological similarity of vertebrate early embryos. These drawings have been both widely presented and frequently criticized. At the same time that the idea of morphological similarity was recently attacked, there has been a growing realization of molecular similarities in the development of tissues and organs. We have surveyed genes expressed in vertebrate embryos, and we have used them to construct drawings that we call Molecular Haeckels. The Molecular Haeckels emphasize that, based on gene expression, there is a greater similarity among vertebrate embryos than even Haeckel might have imagined. PMID:20549737

  6. Molecular Diagnostics

    PubMed Central

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid, polymerase chain reaction–based detection of bacterial genes, and metabolomic determination of responses to orthopaedic infection. PMID:25808967

  7. Molecular fountain.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  8. Exploring the diploid wheat ancestral A genome through sequence comparison at the high-molecular-weight glutenin locus region.

    PubMed

    Dong, Lingli; Huo, Naxin; Wang, Yi; Deal, Karin; Luo, Ming-Cheng; Wang, Daowen; Anderson, Olin D; Gu, Yong Qiang

    2012-12-01

    The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (A(u)A(u)) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (A(m)A(m)), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the A(u) genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid A(u) genome. The difference in the compared region between A(u) and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to A(u) than to A(m). The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the A(u) sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.

  9. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between

  10. WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation

    NASA Astrophysics Data System (ADS)

    Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco

    2016-06-01

    Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.

  11. Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Petty, Michael

    The prospects of using organic materials in electronics and optoelectronics applications have attracted scientists and technologists since the 1970s. This field has become known as molecular electronics. Some successes have already been achieved, for example the liquid-crystal display. Other products such as organic light-emitting displays, chemical sensors and plastic transistors are developing fast. There is also a keen interest in exploiting technologies at the molecular scale that might eventually replace silicon devices. This chapter provides some of the background physics and chemistry to the interdisciplinary subject of molecular electronics. A review of some of the possible application areas for organic materials is presented and some speculation is provided regarding future directions.

  12. Evaluation of three pose estimation algorithms for model-based roentgen stereophotogrammetric analysis.

    PubMed

    Kaptein, B L; Valstar, E R; Stoel, B C; Rozing, P M; Reiber, J H C

    2004-01-01

    Model-based roentgen stereophotogrammetric analysis (RSA) uses a three-dimensional surface model of an implant in order to estimate accurately the pose of that implant from a stereo pair of roentgen images. The technique is based on minimization of the difference between the actually projected contour of an implant and the virtually projected contour of a model of that same implant. The advantage of model-based RSA over conventional marker-based RSA is that it is not necessary to attach markers to the implant. In this paper, three pose estimation algorithms for model-based RSA are evaluated. The algorithms were assessed on the basis of their sensitivities to noise in the actual contour, to the amount of drop-outs in the actual contour, to the number of points in the actual contour and to shrinkage or expansion of the actual contour. The algorithms that were studied are the iterative inverse perspective matching (IIPM) algorithm, an algorithm based on minimization of the difference (DIF) between the actual contour and the virtual contour, and an algorithm based on minimization of the non-overlapping area (NOA) between the actual and virtual contour. The results of the simulation and phantom experiments show that the NOA algorithm does not fulfil the high accuracy that is necessary for model-based RSA. The IIPM and DIF algorithms are robust to the different distortions, making model-based RSA a possible replacement for marker-based RSA.

  13. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs).

    PubMed

    Maestri, E; Malcevschi, A; Massari, A; Marmiroli, N

    2002-04-01

    Three types of molecular markers have been compared for their utility in evaluating genetic diversity among cultivars of Hordeum vulgare. Restriction fragment length polymorphisms at 71 sites were scored with the aid of probes corresponding to stress-responsive genes from barley and wheat, coding for a low-molecular-weight heat shock protein, a dehydrin, an aldose reductase homolog, and a 18.9-kDa drought-induced protein of unknown function. Indexes of genetic diversity computed in the total sample and within groups of cultivars (two-rowed and six-rowed, winter and spring varieties) indicated high values of genetic differentiation ( F (ST) >15%). A second assessment of genetic diversity was performed by PCR amplification of genomic DNA using as primers 13 arbitrary oligonucleotides derived from sequences of the same stress-responsive genes. A high degree of polymorphism was uncovered using these markers also, but they yielded low values for F (ST) (<7%) among groups of cultivars. Finally, 15 different simple-sequence repeats (AC or AG) were amplified with primers based on unique flanking sequences. Levels of polymorphism and differentiation between groups of cultivars revealed by these markers were quite high. Ordination techniques applied to measures of genetic distance among cultivars demonstrated a remarkable ability of the RFLPs associated with stress-responsive genes to discriminate on the basis of growth habit. The correlation with production data for the cultivars in different environments was also significant. This "functional genomics" strategy was therefore as informative as the "structural genomics" (SSR-based) approach, but requires the analysis of fewer probes. PMID:11976962

  14. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  15. Molecular gastronomy

    NASA Astrophysics Data System (ADS)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  16. Molecular thermometry.

    PubMed

    McCabe, Kevin M; Hernandez, Mark

    2010-05-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients' temperatures could be measured, recorded, and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review, the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nanoscale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even subcellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic, this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia-based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry rapidly moved into the clinic, so too will these molecular thermometers.

  17. Molecular Imprinting

    NASA Astrophysics Data System (ADS)

    Dufaud, V.; Bonneviot, L.

    Our senses of smell and taste are able to recognise molecules selectively, to the point where they can even discriminate between different chiral states. This property, called molecular recognition, is essential to all forms of life [1]. It is based on the principle of a specific interaction between a receptor or host and a target molecule, which will be identified among a multitude of others, then selectively adsorbed. If the host is endowed with reactive functions, the attached molecule may be transported or transformed. Enzymes are the archetypal host molecules exploiting the idea of molecular recognition. Their complexation sites comprise a hydrophobic pocket with definite shape within which amino acid residues are located in a precisely defined way. The combined effect of these different characteristics underlies not only the affinity for some specific substrate, but also the transformation of this substrate into the desired product [2]. In fact, the phenomena actually brought into play are much more involved, being made up of an ensemble of physicochemical events that act together in a cooperative way, either simultaneously or sequentially, and in which the molecular processes are difficult to follow in detail.

  18. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  19. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations. PMID:26338097

  20. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations.

  1. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    PubMed Central

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (−)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π–π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood–brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited

  2. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    PubMed

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  3. Ensemble estimators for multivariate entropy estimation

    PubMed Central

    Sricharan, Kumar; Wei, Dennis; Hero, Alfred O.

    2015-01-01

    The problem of estimation of density functionals like entropy and mutual information has received much attention in the statistics and information theory communities. A large class of estimators of functionals of the probability density suffer from the curse of dimensionality, wherein the mean squared error (MSE) decays increasingly slowly as a function of the sample size T as the dimension d of the samples increases. In particular, the rate is often glacially slow of order O(T−γ/d), where γ > 0 is a rate parameter. Examples of such estimators include kernel density estimators, k-nearest neighbor (k-NN) density estimators, k-NN entropy estimators, intrinsic dimension estimators and other examples. In this paper, we propose a weighted affine combination of an ensemble of such estimators, where optimal weights can be chosen such that the weighted estimator converges at a much faster dimension invariant rate of O(T−1). Furthermore, we show that these optimal weights can be determined by solving a convex optimization problem which can be performed offline and does not require training data. We illustrate the superior performance of our weighted estimator for two important applications: (i) estimating the Panter-Dite distortion-rate factor and (ii) estimating the Shannon entropy for testing the probability distribution of a random sample. PMID:25897177

  4. Molecular spintronics.

    PubMed

    Sanvito, Stefano

    2011-06-01

    The electron spin made its debut in the device world only two decades ago but today our ability of detecting the spin state of a moving electron underpins the entire magnetic data storage industry. This technological revolution has been driven by a constant improvement in our understanding on how spins can be injected, manipulated and detected in the solid state, a field which is collectively named Spintronics. Recently a number of pioneering experiments and theoretical works suggest that organic materials can offer similar and perhaps superior performances in making spin-devices than the more conventional inorganic metals and semiconductors. Furthermore they can pave the way for radically new device concepts. This is Molecular Spintronics, a blossoming research area aimed at exploring how the unique properties of the organic world can marry the requirements of spin-devices. Importantly, after a first phase, where most of the research was focussed on exporting the concepts of inorganic spintronics to organic materials, the field has moved to a more mature age, where the exploitation of the unique properties of molecules has begun to emerge. Molecular spintronics now collects a diverse and interdisciplinary community ranging from device physicists to synthetic chemists to surface scientists. In this critical review, I will survey this fascinating, rapidly evolving, field with a particular eye on new directions and opportunities. The main differences and challenges with respect to standard spintronics will be discussed and so will be the potential cross-fertilization with other fields (177 references).

  5. Molecular paleontology.

    PubMed

    Marota, I; Rollo, F

    2002-01-01

    Molecular paleontology, i.e., the recovery of DNA from ancient human, animal, and plant remains is an innovative research field that has received progressively more attention from the scientific community since the 1980s. In the last decade, the field was punctuated by claims which aroused great interest but eventually turned out to be fakes--the most famous being the sequence of dinosaur DNA later shown to be of human origin. At present, the discipline is characterized by some certainties and many doubts. We know, for example, that we have reasonable chances to recover authentic DNA from a mammoth carcass, while our chances are negligible (or nonexistent) in the case of a dynastic mummy from Egypt. On the other hand, though we are developing convincing models of DNA decay in bone, we are not yet able to predict whether a certain paleontological or archeological site will yield material amenable to DNA analysis. This article reviews some of the most important and promising investigations using molecular paleontology approaches, such as studies on the conservation of DNA in human bone, the quest for ancient DNA in permafrost-frozen fauna, the Tyrolean iceman, and the Neandertals.

  6. Molecular Plasmonics.

    PubMed

    Lauchner, Adam; Schlather, Andrea E; Manjavacas, Alejandro; Cui, Yao; McClain, Michael J; Stec, Grant J; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2015-09-01

    Graphene supports surface plasmons that have been observed to be both electrically and geometrically tunable in the mid- to far-infrared spectral regions. In particular, it has been demonstrated that graphene plasmons can be tuned across a wide spectral range spanning from the mid-infrared to the terahertz. The identification of a general class of plasmonic excitations in systems containing only a few dozen atoms permits us to extend this versatility into the visible and ultraviolet. As appealing as this extension might be for active nanoscale manipulation of visible light, its realization constitutes a formidable technical challenge. We experimentally demonstrate the existence of molecular plasmon resonances in the visible for ionized polycyclic aromatic hydrocarbons (PAHs), which we reversibly switch by adding, then removing, a single electron from the molecule. The charged PAHs display intense absorption in the visible regime with electrical and geometrical tunability analogous to the plasmonic resonances of much larger nanographene systems. Finally, we also use the switchable molecular plasmon in anthracene to demonstrate a proof-of-concept low-voltage electrochromic device.

  7. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  8. Ovarian cancer: emerging molecular-targeted therapies

    PubMed Central

    Sourbier, Carole

    2012-01-01

    With about 22,000 new cases estimated in 2012 in the US and 15,500 related deaths, ovarian cancer is a heterogeneous and aggressive disease. Even though most of patients are sensitive to chemotherapy treatment following surgery, recurring disease is almost always lethal, and only about 30% of the women affected will be cured. Thanks to a better understanding of the molecular mechanisms underlying ovarian cancer malignancy, new therapeutic options with molecular-targeted agents have become available. This review discusses the rationale behind molecular-targeted therapies and examines how newly identified molecular targets may enhance personalized therapies for ovarian cancer patients. PMID:22807625

  9. Price and cost estimation

    NASA Technical Reports Server (NTRS)

    Stewart, R. D.

    1979-01-01

    Price and Cost Estimating Program (PACE II) was developed to prepare man-hour and material cost estimates. Versatile and flexible tool significantly reduces computation time and errors and reduces typing and reproduction time involved in preparation of cost estimates.

  10. Body mass-corrected molecular rate for bird mitochondrial DNA.

    PubMed

    Nabholz, Benoit; Lanfear, Robert; Fuchs, Jérome

    2016-09-01

    Mitochondrial DNA remains one of the most widely used molecular markers to reconstruct the phylogeny and phylogeography of closely related birds. It has been proposed that bird mitochondrial genomes evolve at a constant rate of ~0.01 substitution per site per million years, that is that they evolve according to a strict molecular clock. This molecular clock is often used in studies of bird mitochondrial phylogeny and molecular dating. However, rates of mitochondrial genome evolution vary among bird species and correlate with life history traits such as body mass and generation time. These correlations could cause systematic biases in molecular dating studies that assume a strict molecular clock. In this study, we overcome this issue by estimating corrected molecular rates for birds. Using complete or nearly complete mitochondrial genomes of 475 species, we show that there are strong relationships between body mass and substitution rates across birds. We use this information to build models that use bird species' body mass to estimate their substitution rates across a wide range of common mitochondrial markers. We demonstrate the use of these corrected molecular rates on two recently published data sets. In one case, we obtained molecular dates that are twice as old as the estimates obtained using the strict molecular clock. We hope that this method to estimate molecular rates will increase the accuracy of future molecular dating studies in birds.

  11. Molecular dynamics.

    PubMed

    Cheng, Xiaolin; Ivanov, Ivaylo

    2012-01-01

    Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).

  12. Estimation of intermolecular interactions in polymer networks

    SciTech Connect

    Subrananian, P.R.; Galiatsatos, V.

    1993-12-31

    Strain-birefringence measurements have been used to estimate intermolecular interactions in polymer networks. The intensity of the interaction has been quantified through a theoretical scheme recently proposed by Erman. The results show that these interactions diminish with decreasing molecular weight between cross-links and decreasing cross-link functionality.

  13. MOLECULAR TRACERS OF TURBULENT SHOCKS IN GIANT MOLECULAR CLOUDS

    SciTech Connect

    Pon, A.; Johnstone, D.; Kaufman, M. J. E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca

    2012-03-20

    Giant molecular clouds contain supersonic turbulence and simulations of magnetohydrodynamic turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C-type shocks propagating into gas with densities around 10{sup 3} cm{sup -3} at velocities of a few km s{sup -1}, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre-existing magnetic fields. We present model spectra for these shocks, and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J > 5) of CO. We also find that the turbulent energy dissipation rate is roughly equivalent to the cosmic-ray heating rate and that the ambipolar diffusion heating rate may be significant, especially in shocked gas.

  14. Estimating avian population size using Bowden's estimator

    USGS Publications Warehouse

    Diefenbach, D.R.

    2009-01-01

    Avian researchers often uniquely mark birds, and multiple estimators could be used to estimate population size using individually identified birds. However, most estimators of population size require that all sightings of marked birds be uniquely identified, and many assume homogeneous detection probabilities. Bowden's estimator can incorporate sightings of marked birds that are not uniquely identified and relax assumptions required of other estimators. I used computer simulation to evaluate the performance of Bowden's estimator for situations likely to be encountered in bird studies. When the assumptions of the estimator were met, abundance and variance estimates and confidence-interval coverage were accurate. However, precision was poor for small population sizes (N ??? 50) unless a large percentage of the population was marked (>75%) and multiple (???8) sighting surveys were conducted. If additional birds are marked after sighting surveys begin, it is important to initially mark a large proportion of the population (pm ??? 0.5 if N ??? 100 or pm > 0.1 if N ??? 250) and minimize sightings in which birds are not uniquely identified; otherwise, most population estimates will be overestimated by >10%. Bowden's estimator can be useful for avian studies because birds can be resighted multiple times during a single survey, not all sightings of marked birds have to uniquely identify individuals, detection probabilities among birds can vary, and the complete study area does not have to be surveyed. I provide computer code for use with pilot data to design mark-resight surveys to meet desired precision for abundance estimates. ?? 2009 by The American Ornithologists' Union. All rights reserved.

  15. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    PubMed Central

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  16. Implicit solvent methods for free energy estimation

    PubMed Central

    Decherchi, Sergio; Masetti, Matteo; Vyalov, Ivan; Rocchia, Walter

    2014-01-01

    Solvation is a fundamental contribution in many biological processes and especially in molecular binding. Its estimation can be performed by means of several computational approaches. The aim of this review is to give an overview of existing theories and methods to estimate solvent effects giving a specific focus on the category of implicit solvent models and their use in Molecular Dynamics. In many of these models, the solvent is considered as a continuum homogenous medium, while the solute can be represented at the atomic detail and at different levels of theory. Despite their degree of approximation, implicit methods are still widely employed due to their trade-off between accuracy and efficiency. Their derivation is rooted in the statistical mechanics and integral equations disciplines, some of the related details being provided here. Finally, methods that combine implicit solvent models and molecular dynamics simulation, are briefly described. PMID:25193298

  17. Molecular morphology of cyanobacterial phycobilisomes

    SciTech Connect

    Siegelman, H.W.; Kycia, J.H.

    1982-09-01

    Phycobilisomes were isolated from several cyanobacteria following cell lysis with Triton X-100. They were purified by phosphate precipitation and hydrophobic-interaction chromatography. Their phycobiliprotein compositions were quantitatively determined by application of sets of simultaneous absorbance equations to gel chromatographic separations of the chromoproteins. Phycobilisomes purified from several cyanobacteria had characteristic elution times on agarose gel chromatography. Combining electron microscope observations of phycobilisome structure, phycobiliprotein composition, and agarose gel chromatography estimates of molecular weight permitted the calculation of many details of phycobilisome molecular structure. Complementary chromatic adaptation resulted in a change of phycobilisome composition and structure. The polypeptide compositions of phycobilisomes were examined by sodium dodecyl sulfate-agarose gel chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The phycobilisomes were composed of phycobilipeptides derived from the constituent phycobiliproteins. Higher molecular-weight phycobilipeptide aggregates were also observed. The dominant forces responsible for the maintenance of phycobilisome structure are concluded to be hydropohobic interactions.

  18. Can extinction rates be estimated without fossils?

    PubMed

    Paradis, Emmanuel

    2004-07-01

    There is considerable interest in the possibility of using molecular phylogenies to estimate extinction rates. The present study aims at assessing the statistical performance of the birth-death model fitting approach to estimate speciation and extinction rates by comparison to the approach considering fossil data. A simulation-based approach was used. The diversification of a large number of lineages was simulated under a wide range of speciation and extinction rate values. The estimators obtained with fossils performed better than those without fossils. In the absence of fossils (e.g. with a molecular phylogeny), the speciation rate was correctly estimated in a wide range of situations; the bias of the corresponding estimator was close to zero for the largest trees. However, this estimator was substantially biased when the simulated extinction rate was high. On the other hand the estimator of extinction rate was biased in a wide range of situations. Surprisingly, this bias was lesser with medium-sized trees. Some recommendations for interpreting results from a diversification analysis are given.

  19. Direct Density Derivative Estimation.

    PubMed

    Sasaki, Hiroaki; Noh, Yung-Kyun; Niu, Gang; Sugiyama, Masashi

    2016-06-01

    Estimating the derivatives of probability density functions is an essential step in statistical data analysis. A naive approach to estimate the derivatives is to first perform density estimation and then compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To cope with this problem, in this letter, we propose a novel method that directly estimates density derivatives without going through density estimation. The proposed method provides computationally efficient estimation for the derivatives of any order on multidimensional data with a hyperparameter tuning method and achieves the optimal parametric convergence rate. We further discuss an extension of the proposed method by applying regularized multitask learning and a general framework for density derivative estimation based on Bregman divergences. Applications of the proposed method to nonparametric Kullback-Leibler divergence approximation and bandwidth matrix selection in kernel density estimation are also explored. PMID:27140943

  20. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  1. Dating Tips for Divergence-Time Estimation.

    PubMed

    O'Reilly, Joseph E; dos Reis, Mario; Donoghue, Philip C J

    2015-11-01

    The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales.

  2. Molecular Electronic Terms and Molecular Orbital Configurations.

    ERIC Educational Resources Information Center

    Mazo, R. M.

    1990-01-01

    Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)

  3. Biogeographic calibrations for the molecular clock

    PubMed Central

    Ho, Simon Y. W.; Tong, K. Jun; Foster, Charles S. P.; Ritchie, Andrew M.; Lo, Nathan; Crisp, Michael D.

    2015-01-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses. PMID:26333662

  4. Biogeographic calibrations for the molecular clock.

    PubMed

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  5. The molecular matching problem

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1993-01-01

    Molecular chemistry contains many difficult optimization problems that have begun to attract the attention of optimizers in the Operations Research community. Problems including protein folding, molecular conformation, molecular similarity, and molecular matching have been addressed. Minimum energy conformations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we focus here on a molecular structure matching (MSM) problem.

  6. Estimating Local Child Abuse.

    ERIC Educational Resources Information Center

    Ards, Sheila

    1989-01-01

    Three conceptual approaches to estimating local child abuse rates using the National Incidence Study of Child Abuse and Neglect data set are evaluated. All three approaches yield estimates of actual abuse cases that exceed the number of reported cases. (SLD)

  7. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  8. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times

    PubMed Central

    2014-01-01

    Background Discordance among individual molecular age estimates, or between molecular age estimates and the fossil record, is observed in many clades across the Tree of Life. This discordance is attributed to a variety of variables including calibration age uncertainty, calibration placement, nucleotide substitution rate heterogeneity, or the specified molecular clock model. However, the impact of changes in phylogenetic informativeness of individual genes over time on phylogenetic inferences is rarely analyzed. Using nuclear and mitochondrial sequence data for ray-finned fishes (Actinopterygii) as an example, we extend the utility of phylogenetic informativeness profiles to predict the time intervals when nucleotide substitution saturation results in discordance among molecular ages estimated. Results We demonstrate that even with identical calibration regimes and molecular clock methods, mitochondrial based molecular age estimates are systematically older than those estimated from nuclear sequences. This discordance is most severe for highly nested nodes corresponding to more recent (i.e., Jurassic-Recent) divergences. By removing data deemed saturated, we reconcile the competing age estimates and highlight that the older mtDNA based ages were driven by nucleotide saturation. Conclusions Homoplasious site patterns in a DNA sequence alignment can systematically bias molecular divergence time estimates. Our study demonstrates that PI profiles can provide a non-arbitrary criterion for data exclusion to mitigate the influence of homoplasy on time calibrated branch length estimates. Analyses of actinopterygian molecular clocks demonstrate that scrutiny of the time scale on which sequence data is informative is a fundamental, but generally overlooked, step in molecular divergence time estimation. PMID:25103329

  9. Price Estimation Guidelines

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Aster, R. W.; Firnett, P. J.; Miller, M. A.

    1985-01-01

    Improved Price Estimation Guidelines, IPEG4, program provides comparatively simple, yet relatively accurate estimate of price of manufactured product. IPEG4 processes user supplied input data to determine estimate of price per unit of production. Input data include equipment cost, space required, labor cost, materials and supplies cost, utility expenses, and production volume on industry wide or process wide basis.

  10. Inertial Estimator Learning Automata

    NASA Astrophysics Data System (ADS)

    Zhang, Junqi; Ni, Lina; Xie, Chen; Gao, Shangce; Tang, Zheng

    This paper presents an inertial estimator learning automata scheme by which both the short-term and long-term perspectives of the environment can be incorporated in the stochastic estimator — the long term information crystallized in terms of the running reward-probability estimates, and the short term information used by considering whether the most recent response was a reward or a penalty. Thus, when the short-term perspective is considered, the stochastic estimator becomes pertinent in the context of the estimator algorithms. The proposed automata employ an inertial weight estimator as the short-term perspective to achieve a rapid and accurate convergence when operating in stationary random environments. According to the proposed inertial estimator scheme, the estimates of the reward probabilities of actions are affected by the last response from environment. In this way, actions that have gotten the positive response from environment in the short time, have the opportunity to be estimated as “optimal”, to increase their choice probability and consequently, to be selected. The estimates become more reliable and consequently, the automaton rapidly and accurately converges to the optimal action. The asymptotic behavior of the proposed scheme is analyzed and it is proved to be ε-optimal in every stationary random environment. Extensive simulation results indicate that the proposed algorithm converges faster than the traditional stochastic-estimator-based SERI scheme, and the deterministic-estimator-based DGPA and DPRI schemes when operating in stationary random environments.

  11. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  12. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    PubMed

    Luo, Huaiyong; Wang, Xiaojie; Zhan, Gangming; Wei, Guorong; Zhou, Xinli; Zhao, Jing; Huang, Lili; Kang, Zhensheng

    2015-01-01

    The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus. PMID:26068192

  13. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    PubMed

    Luo, Huaiyong; Wang, Xiaojie; Zhan, Gangming; Wei, Guorong; Zhou, Xinli; Zhao, Jing; Huang, Lili; Kang, Zhensheng

    2015-01-01

    The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.

  14. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus

    PubMed Central

    Luo, Huaiyong; Wang, Xiaojie; Zhan, Gangming; Wei, Guorong; Zhou, Xinli; Zhao, Jing; Huang, Lili; Kang, Zhensheng

    2015-01-01

    The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus. PMID:26068192

  15. Prediction and estimation of effective population size.

    PubMed

    Wang, J; Santiago, E; Caballero, A

    2016-10-01

    Effective population size (Ne) is a key parameter in population genetics. It has important applications in evolutionary biology, conservation genetics and plant and animal breeding, because it measures the rates of genetic drift and inbreeding and affects the efficacy of systematic evolutionary forces, such as mutation, selection and migration. We review the developments in predictive equations and estimation methodologies of effective size. In the prediction part, we focus on the equations for populations with different modes of reproduction, for populations under selection for unlinked or linked loci and for the specific applications to conservation genetics. In the estimation part, we focus on methods developed for estimating the current or recent effective size from molecular marker or sequence data. We discuss some underdeveloped areas in predicting and estimating Ne for future research. PMID:27353047

  16. Prediction and estimation of effective population size.

    PubMed

    Wang, J; Santiago, E; Caballero, A

    2016-10-01

    Effective population size (Ne) is a key parameter in population genetics. It has important applications in evolutionary biology, conservation genetics and plant and animal breeding, because it measures the rates of genetic drift and inbreeding and affects the efficacy of systematic evolutionary forces, such as mutation, selection and migration. We review the developments in predictive equations and estimation methodologies of effective size. In the prediction part, we focus on the equations for populations with different modes of reproduction, for populations under selection for unlinked or linked loci and for the specific applications to conservation genetics. In the estimation part, we focus on methods developed for estimating the current or recent effective size from molecular marker or sequence data. We discuss some underdeveloped areas in predicting and estimating Ne for future research.

  17. Indirect Estimation of the Comparative Treatment Effect in Pharmacogenomic Subgroups

    PubMed Central

    Sorich, Michael J.; Coory, Michael; Pekarsky, Brita A. K.

    2013-01-01

    Evidence of clinical utility is a key issue in translating pharmacogenomics into clinical practice. Appropriately designed randomized controlled trials generally provide the most robust evidence of the clinical utility, but often only data from a pharmacogenomic association study are available. This paper details a method for reframing the results of pharmacogenomic association studies in terms of the comparative treatment effect for a pharmacogenomic subgroup to provide greater insight into the likely clinical utility of a pharmacogenomic marker, its’ likely cost effectiveness, and the value of undertaking the further (often expensive) research required for translation into clinical practice. The method is based on the law of total probability, which relates marginal and conditional probability. It takes as inputs: the prevalence of the pharmacogenomic marker in the patient group of interest, prognostic effect of the pharmacogenomic marker based on observational association studies, and the unstratified comparative treatment effect based on one or more conventional randomized controlled trials. The critical assumption is that of exchangeability across the included studies. The method is demonstrated using a case study of cytochrome P450 (CYP) 2C19 genotype and the anti-platelet agent clopidogrel. Indirect subgroup analysis provided insight into relationship between the clinical utility of genotyping CYP2C19 and the risk ratio of cardiovascular outcomes between CYP2C19 genotypes for individuals using clopidogrel. In this case study the indirect and direct estimates of the treatment effect for the cytochrome P450 2C19 subgroups were similar. In general, however, indirect estimates are likely to have substantially greater risk of bias than an equivalent direct estimate. PMID:24015225

  18. [Molecular karyotyping of eukaryotic microorganisms].

    PubMed

    Nasonova, E S

    2012-01-01

    In many fungi and protists small size and weak morphological differentiation of chromosomes embarrass the study of karyotypes using microscopical tools. Molecular karyotyping based on the fractionation of intact chromosomal DNAs by pulsed field gel electrophoresis (PFGE) provides an alternative approach to the analysis of chromosomal sets in such organisms. To assign the bands observed in PFGE gel to the individual chromosomes the following methods of chromosome identification are applied: densitometric analysis of the bands; Southern hybridization with chromosome- and telomere-specific probes, which often is combined with comparative karyotyping of a series of strains with pronounced size polymorphism of chromosomes; comparison of the patterns of restriction fragments of chromosomal DNAs fractioned by KARD 2-D PFGE; comparison with the strains with well-studied interchromosomal rearrangements. Besides estimation of the number and the size of chromosomes, molecular karyotyping allows assessment of haploid genome size and ploidy level, study of genome dynamics, identification of chromosomal rearrangements and associated chromosomal polymorphism. The analysis of karyotype and dynamics of the genomes is important for the study of intra- and interspecial variability, investigation of the chromosome evolution in closely related species and elaboration of the models of speciation. The comparison of molecular karyotypes among isolates of different origin is of great practical importance for clinical diagnostics and for agricultural microbiology. In this review we discuss: 1) the methods of karyotyping and their application to the analysis of chromosomal sets in eukaryotic microorganisms; 2) the specificity of the methods used for extraction and fractionation of intact chromosomal DNAs; 3) the reasons for difficulties in interpretation of molecular karyotypes and the ways of their overcoming; 4) fields of application of molecular karyotyping; 5) the definition of

  19. Understanding molecular structure from molecular mechanics.

    PubMed

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  20. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  1. Thermoelectric efficiency of molecular junctions

    NASA Astrophysics Data System (ADS)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron–vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  2. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions. PMID:27420149

  3. Thermoelectric efficiency of molecular junctions

    NASA Astrophysics Data System (ADS)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  4. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  5. Estimating Airline Operating Costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    The factors affecting commercial aircraft operating and delay costs were used to develop an airline operating cost model which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model permits estimates of aircraft related costs, i.e., aircraft service, landing fees, flight attendants, and control fees. A method for estimating the costs of certain types of airline delay is also described.

  6. Estimating Prices of Products

    NASA Technical Reports Server (NTRS)

    Aster, R. W.; Chamberlain, R. G.; Zendejas, S. C.; Lee, T. S.; Malhotra, S.

    1986-01-01

    Company-wide or process-wide production simulated. Price Estimation Guidelines (IPEG) program provides simple, accurate estimates of prices of manufactured products. Simplification of SAMIS allows analyst with limited time and computing resources to perform greater number of sensitivity studies. Although developed for photovoltaic industry, readily adaptable to standard assembly-line type of manufacturing industry. IPEG program estimates annual production price per unit. IPEG/PC program written in TURBO PASCAL.

  7. Updated Conceptual Cost Estimating

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1987-01-01

    16-page report discusses development and use of NASA TR-1508, the Kennedy Space Center Aerospace Construction Price Book for preparing conceptual, budget, funding, cost-estimating, and preliminary cost-engineering reports. Updated annually from 1974 through 1985 with actual bid prices and government estimates. Includes labor and material quantities and prices with contractor and subcontractor markups for buildings, facilities, and systems at Kennedy Space Center. While data pertains to aerospace facilities, format and cost-estimating techniques guide estimation of costs in other construction applications.

  8. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  9. Statistics of Sxy estimates

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.; Pawka, S. S.

    1987-01-01

    The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.

  10. Reservoir Temperature Estimator

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  11. Ligand Affinities Estimated by Quantum Chemical Calculations.

    PubMed

    Söderhjelm, Pär; Kongsted, Jacob; Ryde, Ulf

    2010-05-11

    We present quantum chemical estimates of ligand-binding affinities performed, for the first time, at a level of theory for which there is a hope that dispersion and polarization effects are properly accounted for (MP2/cc-pVTZ) and at the same time effects of solvation, entropy, and sampling are included. We have studied the binding of seven biotin analogues to the avidin tetramer. The calculations have been performed by the recently developed PMISP approach (polarizable multipole interactions with supermolecular pairs), which treats electrostatic interactions by multipoles up to quadrupoles, induction by anisotropic polarizabilities, and nonclassical interactions (dispersion, exchange repulsion, etc.) by explicit quantum chemical calculations, using a fragmentation approach, except for long-range interactions that are treated by standard molecular-mechanics Lennard-Jones terms. In order to include effects of sampling, 10 snapshots from a molecular dynamics simulation are studied for each biotin analogue. Solvation energies are estimated by the polarized continuum model (PCM), coupled to the multipole-polarizability model. Entropy effects are estimated from vibrational frequencies, calculated at the molecular mechanics level. We encounter several problems, not previously discussed, illustrating that we are first to apply such a method. For example, the PCM model is, in the present implementation, questionable for large molecules, owing to the use of a surface definition that gives numerous small cavities in a protein. PMID:26615702

  12. [Molecular aspects of renal desease].

    PubMed

    Nichik, T E; Lin'kova, N S; Kraskovskaia, N A; Dudkov, A V; Khavinson, V Kh

    2014-01-01

    The review considers molecular mechanisms of chronic renal failure and cancer kidney disease. The most important molecules inducing inflammation are cytokines (MCP-1, TNFalpha, IFN-gamma, IL-1,6,8,18), matrix metalloproteinases MMP-2,3,9,14, tissue inhibitors of metalloproteinases (TIMPs) and grow factors (VEGF PDGE FGF). This signal molecules regulate the activity of immune cells and remodeling extracellular matrix (ECM) components taken place in inflammatory reactions, proliferation, apoptosis and also in the differentiation of kidney cells. On the basis of these data nowadays developed new highly selective approaches to diagnosis, prediction, estimation of efficiency of treatment of renal disease and creating of target drugs. PMID:25707263

  13. Estimating Health Services Requirements

    NASA Technical Reports Server (NTRS)

    Alexander, H. M.

    1985-01-01

    In computer program NOROCA populations statistics from National Center for Health Statistics used with computational procedure to estimate health service utilization rates, physician demands (by specialty) and hospital bed demands (by type of service). Computational procedure applicable to health service area of any size and even used to estimate statewide demands for health services.

  14. Estimating synchronization signal phase

    NASA Astrophysics Data System (ADS)

    Lyons, Robert G.; Lord, John D.

    2015-03-01

    To read a watermark from printed images requires that the watermarking system read correctly after affine distortions. One way to recover from affine distortions is to add a synchronization signal in the Fourier frequency domain and use this synchronization signal to estimate the applied affine distortion. Using the Fourier Magnitudes one can estimate the linear portion of the affine distortion. To estimate the translation one must first estimate the phase of the synchronization signal and then use phase correlation to estimate the translation. In this paper we provide a new method to measure the phase of the synchronization signal using only the data from the complex Fourier domain. This data is used to compute the linear portion, so it is quite convenient to estimate the phase without further data manipulation. The phase estimation proposed in this paper is computationally simple and provides a significant computational advantage over previous methods while maintaining similar accuracy. In addition, the phase estimation formula gives a general way to interpolate images in the complex frequency domain.

  15. Molecular Electronics - Current Challenges

    SciTech Connect

    Vilan, Ayelet; Cahen, David

    2010-12-01

    Molecular electronics is a flourishing area of nano-science and -technology, with a promise for cheap electronics of novel functionality. Here we outline the major challenges for molecular electronics becoming an established scientific discipline, including models with predictive power.

  16. Molecular imaging in oncology

    PubMed Central

    Dzik-Jurasz, A S K

    2004-01-01

    Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular therapies. The discipline of molecular imaging therefore aims to image these important molecular processes in vivo. Molecular processes, however, operate at short length scales and concentrations typically beyond the resolution of clinical imaging. Solving these issues will be a challenge to imaging research. The successful implementations of molecular imaging in man will only be realised by the close co-operation amongst molecular biologists, chemists and the imaging scientists. PMID:18250026

  17. Automated Estimating System (AES)

    SciTech Connect

    Holder, D.A.

    1989-09-01

    This document describes Version 3.1 of the Automated Estimating System, a personal computer-based software package designed to aid in the creation, updating, and reporting of project cost estimates for the Estimating and Scheduling Department of the Martin Marietta Energy Systems Engineering Division. Version 3.1 of the Automated Estimating System is capable of running in a multiuser environment across a token ring network. The token ring network makes possible services and applications that will more fully integrate all aspects of information processing, provides a central area for large data bases to reside, and allows access to the data base by multiple users. Version 3.1 of the Automated Estimating System also has been enhanced to include an Assembly pricing data base that may be used to retrieve cost data into an estimate. A WBS Title File program has also been included in Version 3.1. The WBS Title File program allows for the creation of a WBS title file that has been integrated with the Automated Estimating System to provide WBS titles in update mode and in reports. This provides for consistency in WBS titles and provides the capability to display WBS titles on reports generated at a higher WBS level.

  18. Optimizing qubit phase estimation

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François

    2016-08-01

    The theory of quantum state estimation is exploited here to investigate the most efficient strategies for this task, especially targeting a complete picture identifying optimal conditions in terms of Fisher information, quantum measurement, and associated estimator. The approach is specified to estimation of the phase of a qubit in a rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate, both in noise-free and then in noisy conditions. In noise-free conditions, we establish the possibility of defining an optimal quantum probe, optimal quantum measurement, and optimal estimator together capable of achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we show that in general the optimal solutions are phase dependent and require adaptive techniques for practical implementation. However, for the important case of the depolarizing noise, we again establish the possibility of a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way, for qubit phase estimation, without and then with quantum noise, we characterize the phase-independent optimal solutions when they generally exist, and also identify the complementary conditions where the optimal solutions are phase dependent and only adaptively implementable.

  19. Estimation and uncertainty of reversible Markov models.

    PubMed

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-01

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0. PMID:26547152

  20. Estimation and uncertainty of reversible Markov models

    NASA Astrophysics Data System (ADS)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-01

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software — http://pyemma.org — as of version 2.0.

  1. Molecular electronics: Observation of molecular rectification

    SciTech Connect

    Waldeck, D.H.; Beratan, D.N. )

    1993-07-30

    The authors review some experiments in molecular rectification and their implication for commercial uses of molecular electronic devices. Two of the cases involve rectification by single molecules which consist of an electron donor on one side, an electron acceptor on the other side, and a bridge in between, coupled to electrodes. The third case involves rectification at a graphite electrode derivatized with a Cu phthalocyanine derivative, and probed with a Pt/Ir scanning tunneling microscope tip. Some potential applications of molecular devices are in high-density memory storage of holographic memory devices, neural networks, cellular automata, and chemical and biochemical sensors.

  2. Estimating airline operating costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    A review was made of the factors affecting commercial aircraft operating and delay costs. From this work, an airline operating cost model was developed which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model, similar in some respects to the standard Air Transport Association of America (ATA) Direct Operating Cost Model, permits estimates of aircraft-related costs not now included in the standard ATA model (e.g., aircraft service, landing fees, flight attendants, and control fees). A study of the cost of aircraft delay was also made and a method for estimating the cost of certain types of airline delay is described.

  3. Estimating cell populations

    NASA Technical Reports Server (NTRS)

    White, B. S.; Castleman, K. R.

    1981-01-01

    An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.

  4. [Molecular dating in the genomic era].

    PubMed

    Douzery, Emmanuel J P; Delsuc, Frédéric; Philippe, Hervé

    2006-04-01

    The comparison of DNA and protein sequences of extant species might be informative for reconstructing the chronology of evolutionary events on Earth. A phylogenetic tree inferred from molecular data directly depicts the evolutionary affinities of species and indirectly allows estimating the age of their origin and diversification. Molecular dating is achieved by assuming the molecular clock hypothesis, i.e., that the rate of change of nucleotide and amino acid sequences is on average constant over geological time. If paleontological calibrations are available, then absolute divergence times of species can be estimated. However, three major difficulties potentially hamper molecular dating : (1) a limited sample of genes and organisms, (2) a limited number of fossil references, and (3) pervasive variations of molecular evolutionary rates among genomes and species. To circumvent these problems, different solutions have been recently proposed. Larger data sets are built with more genes and more species sampled through the mining of an increasing number of genomes. Moreover, independent key fossils are identified to calibrate molecular clocks, and the uncertainty on their age is integrated in subsequent analyses. Finally, models of molecular rate variations are constructed, and incorporated in the so-called relaxed molecular clock approaches. As an illustration of these improvements, we mention that the debated age of the animal (bilaterian metazoans) diversification may have occurred between 642-761 million years ago (Mya), roughly 100 Ma before the Cambrian explosion. Among mammals, the initial diversification of major placental groups may have taken place around 100 Mya, well before the Cretaceous/Tertiary boundary marking the extinction of dinosaurs.

  5. [Molecular dating in the genomic era].

    PubMed

    Douzery, Emmanuel J P; Delsuc, Frédéric; Philippe, Hervé

    2006-04-01

    The comparison of DNA and protein sequences of extant species might be informative for reconstructing the chronology of evolutionary events on Earth. A phylogenetic tree inferred from molecular data directly depicts the evolutionary affinities of species and indirectly allows estimating the age of their origin and diversification. Molecular dating is achieved by assuming the molecular clock hypothesis, i.e., that the rate of change of nucleotide and amino acid sequences is on average constant over geological time. If paleontological calibrations are available, then absolute divergence times of species can be estimated. However, three major difficulties potentially hamper molecular dating : (1) a limited sample of genes and organisms, (2) a limited number of fossil references, and (3) pervasive variations of molecular evolutionary rates among genomes and species. To circumvent these problems, different solutions have been recently proposed. Larger data sets are built with more genes and more species sampled through the mining of an increasing number of genomes. Moreover, independent key fossils are identified to calibrate molecular clocks, and the uncertainty on their age is integrated in subsequent analyses. Finally, models of molecular rate variations are constructed, and incorporated in the so-called relaxed molecular clock approaches. As an illustration of these improvements, we mention that the debated age of the animal (bilaterian metazoans) diversification may have occurred between 642-761 million years ago (Mya), roughly 100 Ma before the Cambrian explosion. Among mammals, the initial diversification of major placental groups may have taken place around 100 Mya, well before the Cretaceous/Tertiary boundary marking the extinction of dinosaurs. PMID:16597406

  6. ROBUST MAXIMUM LIKELIHOOD ESTIMATION IN Q-SPACE MRI.

    PubMed

    Landman, B A; Farrell, J A D; Smith, S A; Calabresi, P A; van Zijl, P C M; Prince, J L

    2008-05-14

    Q-space imaging is an emerging diffusion weighted MR imaging technique to estimate molecular diffusion probability density functions (PDF's) without the need to assume a Gaussian distribution. We present a robust M-estimator, Q-space Estimation by Maximizing Rician Likelihood (QEMRL), for diffusion PDF's based on maximum likelihood. PDF's are modeled by constrained Gaussian mixtures. In QEMRL, robust likelihood measures mitigate the impacts of imaging artifacts. In simulation and in vivo human spinal cord, the method improves reliability of estimated PDF's and increases tissue contrast. QEMRL enables more detailed exploration of the PDF properties than prior approaches and may allow acquisitions at higher spatial resolution.

  7. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR) process and can result from failure of alleles to amplify (allelic dropout) or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003). Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004) discuss the use of occupancy (proportion of patches or habitat area that is occupied) as a surrogate for abundance. In cases of territorial species and where

  8. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  9. Estimation of food consumption

    SciTech Connect

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  10. Efficient Bayesian Phase Estimation.

    PubMed

    Wiebe, Nathan; Granade, Chris

    2016-07-01

    We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase estimation algorithms such as Kitaev's method. PMID:27419551

  11. Efficient Bayesian Phase Estimation

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Granade, Chris

    2016-07-01

    We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase estimation algorithms such as Kitaev's method.

  12. Cost-Estimation Program

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    COSTIT computer program estimates cost of electronic design by reading item-list file and file containing cost for each item. Accuracy of cost estimate based on accuracy of cost-list file. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. The Sun version (NPO-19587). PC version (NPO-19157).

  13. Capital cost estimate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The capital cost estimate for the nuclear process heat source (NPHS) plant was made by: (1) using costs from the current commercial HTGR for electricity production as a base for items that are essentially the same and (2) development of new estimates for modified or new equipment that is specifically for the process heat application. Results are given in tabular form and cover the total investment required for each process temperature studied.

  14. Maximal combustion temperature estimation

    NASA Astrophysics Data System (ADS)

    Golodova, E.; Shchepakina, E.

    2006-12-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models.

  15. Estimating networks with jumps

    PubMed Central

    Kolar, Mladen; Xing, Eric P.

    2013-01-01

    We study the problem of estimating a temporally varying coefficient and varying structure (VCVS) graphical model underlying data collected over a period of time, such as social states of interacting individuals or microarray expression profiles of gene networks, as opposed to i.i.d. data from an invariant model widely considered in current literature of structural estimation. In particular, we consider the scenario in which the model evolves in a piece-wise constant fashion. We propose a procedure that estimates the structure of a graphical model by minimizing the temporally smoothed L1 penalized regression, which allows jointly estimating the partition boundaries of the VCVS model and the coefficient of the sparse precision matrix on each block of the partition. A highly scalable proximal gradient method is proposed to solve the resultant convex optimization problem; and the conditions for sparsistent estimation and the convergence rate of both the partition boundaries and the network structure are established for the first time for such estimators. PMID:25013533

  16. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  17. Workshop on molecular animation.

    PubMed

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E

    2010-10-13

    From February 25 to 26, 2010, in San Francisco, the Resource for Biocomputing, Visualization, and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for producing high-quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories.

  18. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  19. Morphological, biochemical and molecular characterization of Herpetomonas samuelpessoai camargoi n. subsp., a trypanosomatid isolated from the flower of the squash Cucurbita moschata.

    PubMed

    Fiorini, J E; Takata, C S; Teofilo, V M; Nascimento, L C; Faria-e-Silva, P M; Soares, M J; Teixeira, M M; De Souza, W

    2001-01-01

    We report the morphological, biochemical and molecular characteristics of a trypanosomatid isolated from the flower of Cucurbita moschata. Although the trypanosomatid was isolated from a plant, the lack of recognition of Phytomonas-specific molecular markers based on spliced-leader and ribosomal genes as well as by monoclonal antibodies specific for Phytomonas argues against assigning it to this genus. Because the isolate displayed typical opisthomastigote forms in culture, it is assigned to the genus Herpetomonas. Analysis of randomly amplified polymorphic DNA (RAPD) patterns and characterization of ribosomal SSU and ITS markers suggest that it is more closely related to H. samuelpessoai than to any other species. However, the presence of spined flagellates in culture (displaying lateral expansions of the plasma membrane originating near the flagellar pocket) and isolate-specific RAPD fingerprints argue strongly that the trypanosomatid belongs to a new subspecies, for which the name Herpetomonas samuelpessoai camargoi n. subsp. is proposed.

  20. Cyclodextrin-based molecular machines.

    PubMed

    Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2014-01-01

    This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.

  1. Non-molecular-clock-like evolution following viral origins in homo sapiens.

    PubMed

    Mok, Wendy; Seto, Kelly; Stone, Jon

    2007-09-26

    Researchers routinely adopt molecular clock assumptions in conducting sequence analyses to estimate dates for viral origins in humans. We used computational methods to examine the extent to which this practice can result in inaccurate 'retrodiction.' Failing to account for dynamic molecular evolution can affect greatly estimating index case dates, resulting in an overestimated age for the SARS-CoV-human infection, for instance.

  2. Single snapshot DOA estimation

    NASA Astrophysics Data System (ADS)

    Häcker, P.; Yang, B.

    2010-10-01

    In array signal processing, direction of arrival (DOA) estimation has been studied for decades. Many algorithms have been proposed and their performance has been studied thoroughly. Yet, most of these works are focused on the asymptotic case of a large number of snapshots. In automotive radar applications like driver assistance systems, however, only a small number of snapshots of the radar sensor array or, in the worst case, a single snapshot is available for DOA estimation. In this paper, we investigate and compare different DOA estimators with respect to their single snapshot performance. The main focus is on the estimation accuracy and the angular resolution in multi-target scenarios including difficult situations like correlated targets and large target power differences. We will show that some algorithms lose their ability to resolve targets or do not work properly at all. Other sophisticated algorithms do not show a superior performance as expected. It turns out that the deterministic maximum likelihood estimator is a good choice under these hard conditions.

  3. Molecular discrimination of taeniid cestodes.

    PubMed

    McManus, Donald P

    2006-01-01

    DNA approaches are now being used routinely for accurate identification of Echinococcus and Taenia species, subspecies and strains, and in molecular epidemiological surveys of echinococcosis/taeniasis in different geographical settings and host assemblages. The publication of the complete sequences of the mitochondrial (mt) genomes of E. granulosus, E. multilocularis, T. solium and Asian Taenia, and the availability of mtDNA sequences for a number of other taeniid genotypes, has provided additional genetic information that can be used for more in depth phylogenetic and taxonomic studies of these parasites. This very rich sequence information has provided a solid molecular basis, along with a range of different biological, epidemiological, biochemical and other molecular-genetic criteria, for revising the taxonomy of the genus Echinococcus and for estimating the evolutionary time of divergence of the various taxa. Furthermore, the accumulating genetic data has allowed the development of PCR-based tests for unambiguous identification of Echinococcus eggs in the faeces of definitive hosts and in the environment. Molecular phylogenies derived from mtDNA sequence comparisons of geographically distributed samples of T. solium provide molecular evidence for two genotypes, one being restricted to Asia, with the other occurring in Africa and America. Whether the two genetic forms of T. solium differ in important phenotypic characteristics remains to be determined. As well, minor DNA sequence differences have been reported between isolates of T. saginata and Asian Taenia. There has been considerable discussion over a number of years regarding the taxonomic position of Asian Taenia and whether it should be regarded as a genotype, strain, subspecies or sister species of T. saginata. The available molecular genetic data do not support independent species status for Asian Taenia and T. saginata. What is in agreement is that both taxa are closely related to each other but

  4. Molecular identification and phylogenetic relationship of green algae, Spirogyra ellipsospora (Chlorophyta) using ISSR and rbcL markers.

    PubMed

    Wongsawad, Pheravut; Peerapornpisal, Yuwadee

    2014-11-01

    Spirogyra is found in a wide range of habitats, including small stagnant water bodies, rivers, and streams. Spirogyra ellipsospora is common in northern Thailand. Species identification of the Spirogyra species based only on morphological characteristics can be difficult. A reliable and accurate method is required to evaluate genetic variations. This study aims to apply molecular approaches for the identification of S. ellipsospora using microsatellites and rbcL markers. Based on DNA sequencing, the rbcL gene was sequenced and the data was analyzed using the BLAST (Basic Local Alignment Search Tool) program in the NCBI (National Center for Biotechnology Information) database. The sequence of S. ellipsospora from this study revealed definitive identity matches in the range of 99% for the consensus sequences of S. ellipsospora. The 10 primers of ISSR could be amplified by 92 amplification fragments. The DNA fragments and the rbcL sequence data grouped the Spirogyra specimens into two distinct clusters.

  5. Estimating temporary populations.

    PubMed

    Smith, S K

    1994-01-01

    The difficulty of tracking temporary short-term population movements (commuting, seasonal visitation, convention and business travel) is examined, with a focus on Hawaiian statistician Robert Schmitt's work. The author finds that "Schmitt's contributions toward a methodology for estimating daytime populations were important because this approach utilized data sources that were widely available for small areas on at least an annual basis. Consequently, this approach could be used for frequent updates of the estimates, for many areas and at relatively little cost.... The major drawback of the approach is the lack of solid data on temporary residents to serve as larger-area control totals and as a historical base for small-area estimates." The geographical focus is on the United States, particularly Hawaii.

  6. Hierarchical number estimation.

    PubMed

    Friedenberg, Jay; Limratana, William

    2005-01-01

    We investigated number estimation using dot patterns grouped by proximity into larger clusters. Participants estimated the number of dots and clusters in separate trials. Estimation was most accurate when the numbers of elements on both scales were the same. When the number of elements on the unattended scale was higher, overestimation occurred. Conversely, when the number of elements on the unattended scale was lower, underestimation occurred. In Experiment 2, response cues were blocked to reduce any tendency toward attending the irrelevant level. The results were essentially unchanged, indicating response confusion alone cannot account for the effect. The data support the existence of an opposite scale effect in which the number of elements at the unattended level influence the processing of number.

  7. Risk estimates for bone

    SciTech Connect

    Schlenker, R.A.

    1981-01-01

    The primary sources of information on the skeletal effects of internal emitters in humans are the US radium cases with occupational and medical exposures to /sup 226/ /sup 228/Ra and the German patients injected with /sup 224/Ra primarily for treatment of ankylosing spondylitis and tuberculosis. During the past decade, dose-response data from both study populations have been used by committees, e.g., the BEIR committees, to estimate risks at low dose levels. NCRP Committee 57 and its task groups are now engaged in making risk estimates for internal emitters. This paper presents brief discussions of the radium data, the results of some new analyses and suggestions for expressing risk estimates in a form appropriate to radiation protection.

  8. Parameter Estimation with Ignorance

    NASA Astrophysics Data System (ADS)

    Du, H.; Smith, L. A.

    2012-04-01

    Parameter estimation in nonlinear models is a common task, and one for which there is no general solution at present. In the case of linear models, the distribution of forecast errors provides a reliable guide to parameter estimation, but in nonlinear models the facts that (1) predictability may vary with location in state space, and that (2) the distribution of forecast errors is expected not to be Normal, suggests that parameter estimates based on least squares methods may be systematically biased. Parameter estimation for nonlinear systems based on variations in the accuracy of probability forecasts is considered. Empirical results for several chaotic systems (the Logistic Map, the Henon Map and the 12-D Lorenz96 flow) are presented at various noise levels and sampling rates. Selecting parameter values by minimizing Ignorance, a proper local skill score for continuous probability forecasts as a function of the parameter values is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors, the ability of the model to shadow the observations or model synchronization. As expected, it is more effective when the forecast error distributions are non-Gaussian. The goal of parameter estimation is not defined uniquely when the model class is imperfect. In short, the desired parameter values can be expected to be a function of the application for which they are determined. Parameter estimation in this imperfect model scenario is also discussed. Initial experiments suggest that our approach is also useful for identifying "best" parameter in an imperfect model as long as the notion of "best" is well defined. The information deficit, defined as the difference between the Empirical Ignorance and Implied Ignorance can be used to identify remaining forecast system inadequacy, in both perfect and imperfect model scenario.

  9. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  10. Parametric Hazard Function Estimation.

    1999-09-13

    Version 00 Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking ofmore » the model assumptions.« less

  11. Estimating hyperconcentrated flow discharge

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    Determining flow discharge in torrential mountain floods can help in managing flood risk. However, standard methods of estimating discharge have significant uncertainties. To reduce these uncertainties, Bodoque et al. developed an iterative methodological approach to flow estimation based on a method known as the critical depth method along with paleoflood evidence. They applied the method to study a flash flood that occurred on 17 December 1997 in the Arroyo Cabrera catchment in central Spain. This large flow event, triggered by torrential rains, was complex and included hyperconcentrated flows, which are flows of water mixed with significant amounts of sediment.

  12. Identifying Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Shah, R. Y., Jackson, J. M.; Bania, T. M.; Clemens, D. P.; Johnson, A. M.; Flynn, E.; Bonaventura, N.; Simon, R.; Meyer, M. H.

    2004-12-01

    Recent molecular surveys, such as the BU-FCRAO Galactic Ring Survey, are revealing the complex structure and dynamics of clouds within the Galactic plane. Yet, difficulties often remain in separating molecular clouds along a line of sight. Identification of nearby clouds is facilitated through the combination of molecular datasets and extinction maps. Star counts at optical and infrared (IR) wavelengths indirectly trace extinction, and when morphologically similar to molecular emission, unambiguously reveal nearby clouds. Here we present the methodology and data used to separate and determine the relative distance to two molecular clouds along the same line of sight (GRSMC 45.60+0.30 and GRSMC 45.46+0.05). We use a combination of optical and near-IR star count maps (derived from the US Naval Observatory and 2MASS catalogs, respectively) and molecular data from the BU-FCRAO Galactic Ring Survey.

  13. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  14. Polyvalent carbocyanine molecular beacons for molecular recognitions.

    PubMed

    Ye, Yunpeng; Bloch, Sharon; Achilefu, Samuel

    2004-06-30

    Polyvalent carboxylate-terminating near-infrared (NIR) carbocyanine molecular beacons were prepared by homologation of reactive carboxyl groups of the beacon with imino diacetic acid. Their conjugation with unprotected d-(+)-glucosamine gave dendritic arrays of the carbohydrate on an inner NIR chromophore core. In vivo evaluation of the dendritic glucosamine constructs shows enhanced uptake in proliferating tumor cells relative to surrounding normal tissue. The structural framework of these polyvalent beacons permits the amplification by synergistic effects of a variety of bioactive motifs or chemical sensors in molecular recognition interactions without dramatic change of their desirable NIR spectral properties.

  15. Improving transition voltage spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian S.

    2011-04-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln(I/Vα) with α<2. On the basis of a simple Lorentzian transmission model we analyze theoretical ab initio as well as experimental I-V curves and show that the voltage required to determine the molecular levels can be reduced by ~30% as compared to conventional TVS. As for conventional TVS, the symmetry/asymmetry of the molecular junction needs to be taken into account in order to gain quantitative information. We show that the degree of asymmetry may be estimated from a plot of Vmin(α) vs α.

  16. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  17. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  18. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  19. Traffic Flow Estimates.

    ERIC Educational Resources Information Center

    Hart, Vincent G.

    1981-01-01

    Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)

  20. Numerical Estimation in Preschoolers

    ERIC Educational Resources Information Center

    Berteletti, Ilaria; Lucangeli, Daniela; Piazza, Manuela; Dehaene, Stanislas; Zorzi, Marco

    2010-01-01

    Children's sense of numbers before formal education is thought to rely on an approximate number system based on logarithmically compressed analog magnitudes that increases in resolution throughout childhood. School-age children performing a numerical estimation task have been shown to increasingly rely on a formally appropriate, linear…

  1. Estimating Large Numbers

    ERIC Educational Resources Information Center

    Landy, David; Silbert, Noah; Goldin, Aleah

    2013-01-01

    Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…

  2. Estimating Thermoelectric Water Use

    NASA Astrophysics Data System (ADS)

    Hutson, S. S.

    2012-12-01

    In 2009, the Government Accountability Office recommended that the U.S. Geological Survey (USGS) and Department of Energy-Energy Information Administration, (DOE-EIA) jointly improve their thermoelectric water-use estimates. Since then, the annual mandatory reporting forms returned by powerplant operators to DOE-EIA have been revised twice to improve the water data. At the same time, the USGS began improving estimation of withdrawal and consumption. Because of the variation in amount and quality of water-use data across powerplants, the USGS adopted a hierarchy of methods for estimating water withdrawal and consumptive use for the approximately 1,300 water-using powerplants in the thermoelectric sector. About 800 of these powerplants have generation and cooling data, and the remaining 500 have generation data only, or sparse data. The preferred method is to accept DOE-EIA data following validation. This is the traditional USGS method and the best method if all operators follow best practices for measurement and reporting. However, in 2010, fewer than 200 powerplants reported thermodynamically realistic values of both withdrawal and consumption. Secondly, water use was estimated using linked heat and water budgets for the first group of 800 plants, and for some of the other 500 powerplants where data were sufficient for at least partial modeling using plant characteristics, electric generation, and fuel use. Thermodynamics, environmental conditions, and characteristics of the plant and cooling system constrain both the amount of heat discharged to the environment and the share of this heat that drives evaporation. Heat and water budgets were used to define reasonable estimates of withdrawal and consumption, including likely upper and lower thermodynamic limits. These results were used to validate the reported values at the 800 plants with water-use data, and reported values were replaced by budget estimates at most of these plants. Thirdly, at plants without valid

  3. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  4. Estimating the Variability of Substitution Rates

    PubMed Central

    Bulmer, M.

    1989-01-01

    Suppose that amino acid or nucleotide data are available for a homologous gene in several species which diverged from a common ancestor at about the same time and that substitution rates between all pairs of species are calculated, correcting as necessary for multiple substitutions and for back and parallel substitutions. The variances and covariances of these corrected substitution rates are evaluated, and are used to construct a new test for uniformity (constancy of the molecular clock) and to find the best estimates of substitution rates in individual lineages with their standard errors. A substantial bias may arise if the effect of correcting the pairwise substitution rates is ignored. PMID:2599371

  5. Thermodynamics of formation of molecular sieves

    NASA Astrophysics Data System (ADS)

    Piccione, Patrick Manuel

    2002-09-01

    Thermodynamic investigations are undertaken to better understand the energetic differences amongst molecular sieve frameworks and the mechanisms and interactions important in molecular sieve self-assembly. The enthalpies relative to quartz at 298.15 K are determined by high-temperature solution calorimetry for a collection of calcined pure-silica molecular sieves with diverse structural features. SiO2 molecular sieves are shown to be only modestly (6.8--14.4 kJ/mol) metastable with respect to quartz. The available thermal energy at typical synthesis conditions is RT = 3.5 kJ/mol. A strong correlation between enthalpy and molar volume is observed. The entropies of four pure-silica molecular sieves with a wide range of molar volumes are determined by heat capacity measurements from 5 to 400 K. The entropies of these structures are almost identical (3.2--4.2 J · K-1mol-1 above quartz). The enthalpy and entropy data are combined to calculate the Gibbs free energies of transition from quartz to eight other silica polymorphs. The molecular sieve Gibbs free energies are only 5.5--12.6 kJ/mol less stable than quartz. Therefore, there are no significant thermodynamic barriers to transformations between silica polymorphs. This result suggests that structure-directing agents (SDAs) in molecular sieves syntheses do not serve to stabilize otherwise very unstable phases. Interaction enthalpies between inorganic frameworks and organic SDAs are measured by HF solution calorimetry for six molecular sieve/SDA pairs. The enthalpies are only moderately exothermic (-1.1 to -5.9 kJ/mol SiO2), as expected if the predominant interactions are silica/hydrocarbon van der Waals contacts. Interaction entropies are estimated for three framework/SDA pairs, and together with the interaction enthalpies allow the calculation of the Gibbs free energies of interaction. The latter values range from -2.0 to -5.4 kJ/mol SiO2. This energy range is comparable to that observed for the SiO2 frameworks

  6. Interstellar molecular clouds.

    PubMed

    Bally, J

    1986-04-11

    The interstellar medium in our galaxy contains matter in a variety of states ranging from hot plasma to cold and dusty molecular gas. The molecular phase consists of giant clouds, which are the largest gravitationally bound objects in the galaxy, the primary reservoir of material for the ongoing birth of new stars, and the medium regulating the evolution of galactic disks.

  7. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  8. Molecular Typing and Differentiation

    EPA Science Inventory

    In this chapter, general background and bench protocols are provided for a number of molecular typing techniques in common use today. Methods for the molecular typing and differentiation of microorganisms began to be widely adopted following the development of the polymerase chai...

  9. Molecular biology of development

    SciTech Connect

    Davidson, E.H.; Firtel, R.A.

    1984-01-01

    This book is a compilation of papers presented at a symposium on the molecular biology of development. Topics discussed include: cytoplasmic localizations and pattern formations, gene expression during oogenesis and early development, developmental expression of gene families molecular aspects of plant development and transformation in whole organisms and cells.

  10. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  11. Crystalline molecular flasks.

    PubMed

    Inokuma, Yasuhide; Kawano, Masaki; Fujita, Makoto

    2011-05-01

    A variety of host compounds have been used as molecular-scale reaction vessels, protecting guests from their environment or restricting the space available around them, thus favouring particular reactions. Such molecular 'flasks' can endow guest molecules with reactivities that differ from those in bulk solvents. Here, we extend this concept to crystalline molecular flasks, solid-state crystalline networks with pores within which pseudo-solution-state reactions can take place. As the guest molecules can spontaneously align along the walls and channels of the hosts, structural changes in the substrates can be directly observed by in situ X-ray crystallography during reaction. Recently, this has enabled observation of the molecular structures of transient intermediates and other labile species, in the form of sequential structural snapshots of the chemical transformation. Here, we describe the principles, development and applications of crystalline molecular flasks.

  12. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  13. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    NASA Astrophysics Data System (ADS)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  14. Magnetic nanoparticle temperature estimation

    SciTech Connect

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  15. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  16. Mean Density Estimation derived from Satellite Constellations

    NASA Astrophysics Data System (ADS)

    Li, A.; Close, S.

    2015-12-01

    With the advent of nanosatellite constellations, we define here a new method to derive neutral densities of the lower thermosphere from multiple similar platforms travelling through same regions of space. Because of similar orbits, the satellites are expected to encounter similar mean neutral densities and hence experience similar drag if their drag coefficients are equivalent. Utilizing free molecular flow theory to bound the minimum possible drag coefficient possible and order statistics to give a statistical picture of the distribution, we are able to estimate the neutral density alongside its associated error bounds. Data sources for this methodology can either be from already established Two Line Elements (TLEs) or from raw data sources, in which an additional filtering step needs to be performed to estimate relevant parameters. The effects of error in the filtering step of the methodology are also discussed and can be removed if the error distribution is Gaussian in nature. This method does not depend on prior models of the atmosphere, but instead is based upon physics models of simple shapes in free molecular flow. With a constellation of 10 satellites, we can achieve a standard deviation of roughly 4% on the estimated mean neutral density. As additional satellites are included in the estimation scheme, the result converges towards the lower limit of the achievable drag coefficient, and accuracy becomes limited by the quality of the ranging measurements and the probability of the accommodation coefficient. Data is provided courtesy of Planet Labs and comparisons are made to existing atmospheric models such as NRLMSISE-00 and JB2006.

  17. Demographic estimates and projections.

    PubMed

    El-badry, M A; Kono, S

    1986-01-01

    The periodic assessment of global population growth from the past to the future has been one of the UN's most important contributions to member states and many other users. Available data and applicable analysis and projection methods were very limited in 1947, when the 1st global population estimates and projections were attempted. The 1st contributions of the Commission were manuals for these functions. Throughout the 1950s, 4 regional reports on Central and South America; Southeast Asia; and Asia and the far East were published. UN studies during this period tended to group regions by their position on a continuum of the demographic transition. Rough but alarming projections of population growth appeared. Projection technics were refined and standardized in the 1960s, and the demand grew for more specialized technics, e.g. dealing with urban/rural populations; the labor force; and other elements. The availability of computer technology at the end of the decade multiplied the projection capabilities, and the total population projections for the future were larger than ever. The 1970s projections, based on the more accurate and widely covered baseline data which had become available in developing countries, were also aided by more powerful and innovative indirect estimation technics; better software, and computers with larger capacities. By 1982, only a few countries were left with a total lack of data. A revision of estimates and projections is now undertaken biennially, incorporating the latest available data, utilizing advanced analytical methods and computer technology. Methodological manuals have been produced as the by-product of the revisions. UN demographic estimates and projections could be further improved by injection of a probabilistic element and the inclusion of economic factors. Roles for the future include maintenance of regional and interregional comparability of assumptions.

  18. Optimal Centroid Position Estimation

    SciTech Connect

    Candy, J V; McClay, W A; Awwal, A S; Ferguson, S W

    2004-07-23

    The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms. This paper discusses the feasibility of employing online optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.

  19. An alternative covariance estimator to investigate genetic heterogeneity in populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic predictions and GWAS have used mixed models for identification of associations and trait predictions. In both cases, the covariance between individuals for performance is estimated using molecular markers. Mixed model properties indicate that the use of the data for prediction is optimal if ...

  20. Estimating the mass of mutagens in indeterminate mixtures

    SciTech Connect

    Schaeffer, D.J.; Kerster, H.W.

    1985-10-01

    A method is shown for estimating the quantity (mass) of genotoxic compounds in complex mixtures without prior identification of components. This method uses fractiles of the probability distribution of responses from the assay of interest and dose-response of the mixture. The method depends upon the assumption of additivity, on average, in the interaction of mutagens and on lognormality of the distribution of mutagen molecular weights. Mass estimates are necessary for hazard characterization, risk estimation, and risk assessment. The method is illustrated using Ames assay results from a coke plant wastewater.

  1. Estimating Distances from Parallaxes

    NASA Astrophysics Data System (ADS)

    Bailer-Jones, Coryn A. L.

    2015-10-01

    Astrometric surveys such as Gaia and LSST will measure parallaxes for hundreds of millions of stars. Yet they will not measure a single distance. Rather, a distance must be estimated from a parallax. In this didactic article, I show that doing this is not trivial once the fractional parallax error is larger than about 20%, which will be the case for about 80% of stars in the Gaia catalog. Estimating distances is an inference problem in which the use of prior assumptions is unavoidable. I investigate the properties and performance of various priors and examine their implications. A supposed uninformative uniform prior in distance is shown to give very poor distance estimates (large bias and variance). Any prior with a sharp cut-off at some distance has similar problems. The choice of prior depends on the information one has available—and is willing to use—concerning, e.g., the survey and the Galaxy. I demonstrate that a simple prior which decreases asymptotically to zero at infinite distance has good performance, accommodates nonpositive parallaxes, and does not require a bias correction.

  2. Estimating directional epistasis.

    PubMed

    Le Rouzic, Arnaud

    2014-01-01

    Epistasis, i.e., the fact that gene effects depend on the genetic background, is a direct consequence of the complexity of genetic architectures. Despite this, most of the models used in evolutionary and quantitative genetics pay scant attention to genetic interactions. For instance, the traditional decomposition of genetic effects models epistasis as noise around the evolutionarily-relevant additive effects. Such an approach is only valid if it is assumed that there is no general pattern among interactions-a highly speculative scenario. Systematic interactions generate directional epistasis, which has major evolutionary consequences. In spite of its importance, directional epistasis is rarely measured or reported by quantitative geneticists, not only because its relevance is generally ignored, but also due to the lack of simple, operational, and accessible methods for its estimation. This paper describes conceptual and statistical tools that can be used to estimate directional epistasis from various kinds of data, including QTL mapping results, phenotype measurements in mutants, and artificial selection responses. As an illustration, I measured directional epistasis from a real-life example. I then discuss the interpretation of the estimates, showing how they can be used to draw meaningful biological inferences.

  3. Valid lower bound for all estimators in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2016-09-01

    The widely used quantum Cramér–Rao bound (QCRB) sets a lower bound for the mean square error of unbiased estimators in quantum parameter estimation, however, in general QCRB is only tight in the asymptotical limit. With a limited number of measurements biased estimators can have a far better performance for which QCRB cannot calibrate. Here we introduce a valid lower bound for all estimators, either biased or unbiased, which can serve as standard of merit for all quantum parameter estimations.

  4. Fragment oriented molecular shapes.

    PubMed

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  5. Molecular gearing systems

    DOE PAGESBeta

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  6. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  7. Molecular Programming with DNA

    NASA Astrophysics Data System (ADS)

    Winfree, Erik

    2009-05-01

    Information can be stored in molecules and processed by molecular reactions. Molecular information processing is at the heart of all biological systems; might it soon also be at the heart of non-biological synthetic chemical systems? Perhaps yes. One technological approach comes from DNA nanotechnology and DNA computing, where DNA is used as a non-biological informational polymer that can be rationally designed to create a rich class of molecular systems -- for example, DNA molecules that self-assemble precisely, that fold into complex nanoscale objects, that act as mechanical actuators and molecular motors, and that make decisions based on digital and analog logic. I will argue that to fully exploit their design potential, we will need to invent programming languages for specifying the behavior of information-based molecular systems, to create theoretical tools for understanding and analyzing the behavior of molecular programs, to develop compilers that automate the design of molecules with the desired behaviors, and to expand experimental techniques so that the implementation and debugging of complex molecular systems becomes as commonplace and practical as computer programming.

  8. Molecular gearing systems

    SciTech Connect

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds that of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.

  9. Los Alamos PC estimating system

    SciTech Connect

    Stutz, R.A.; Lemon, G.D.

    1987-01-01

    The Los Alamos Cost Estimating System (QUEST) is being converted to run on IBM personal computers. This very extensive estimating system is capable of supporting cost estimators from many different and varied fields. QUEST does not dictate any fixed method for estimating. QUEST supports many styles and levels of detail estimating. QUEST can be used with or without data bases. This system allows the estimator to provide reports based on levels of detail defined by combining work breakdown structures. QUEST provides a set of tools for doing any type of estimate without forcing the estimator to use any given method. The level of detail in the estimate can be mixed based on the amount of information known about different parts of the project. The system can support many different data bases simultaneously. Estimators can modify any cost in any data base.

  10. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  11. Magnetomotive Molecular Nanoprobes

    PubMed Central

    John, Renu; Boppart, Stephen A.

    2012-01-01

    Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766

  12. Estimating Divergence Times and Substitution Rates in Rhizobia

    PubMed Central

    Chriki-Adeeb, Rim; Chriki, Ali

    2016-01-01

    Accurate estimation of divergence times of soil bacteria that form nitrogen-fixing associations with most leguminous plants is challenging because of a limited fossil record and complexities associated with molecular clocks and phylogenetic diversity of root nodule bacteria, collectively called rhizobia. To overcome the lack of fossil record in bacteria, divergence times of host legumes were used to calibrate molecular clocks and perform phylogenetic analyses in rhizobia. The 16S rRNA gene and intergenic spacer region remain among the favored molecular markers to reconstruct the timescale of rhizobia. We evaluate the performance of the random local clock model and the classical uncorrelated lognormal relaxed clock model, in combination with four tree models (coalescent constant size, birth–death, birth–death incomplete sampling, and Yule processes) on rhizobial divergence time estimates. Bayes factor tests based on the marginal likelihoods estimated from the stepping-stone sampling analyses strongly favored the random local clock model in combination with Yule process. Our results on the divergence time estimation from 16S rRNA gene and intergenic spacer region sequences are compatible with age estimates based on the conserved core genes but significantly older than those obtained from symbiotic genes, such as nodIJ genes. This difference may be due to the accelerated evolutionary rates of symbiotic genes compared to those of other genomic regions not directly implicated in nodulation processes. PMID:27168719

  13. Estimating Divergence Times and Substitution Rates in Rhizobia.

    PubMed

    Chriki-Adeeb, Rim; Chriki, Ali

    2016-01-01

    Accurate estimation of divergence times of soil bacteria that form nitrogen-fixing associations with most leguminous plants is challenging because of a limited fossil record and complexities associated with molecular clocks and phylogenetic diversity of root nodule bacteria, collectively called rhizobia. To overcome the lack of fossil record in bacteria, divergence times of host legumes were used to calibrate molecular clocks and perform phylogenetic analyses in rhizobia. The 16S rRNA gene and intergenic spacer region remain among the favored molecular markers to reconstruct the timescale of rhizobia. We evaluate the performance of the random local clock model and the classical uncorrelated lognormal relaxed clock model, in combination with four tree models (coalescent constant size, birth-death, birth-death incomplete sampling, and Yule processes) on rhizobial divergence time estimates. Bayes factor tests based on the marginal likelihoods estimated from the stepping-stone sampling analyses strongly favored the random local clock model in combination with Yule process. Our results on the divergence time estimation from 16S rRNA gene and intergenic spacer region sequences are compatible with age estimates based on the conserved core genes but significantly older than those obtained from symbiotic genes, such as nodIJ genes. This difference may be due to the accelerated evolutionary rates of symbiotic genes compared to those of other genomic regions not directly implicated in nodulation processes. PMID:27168719

  14. Potential molecular wires and molecular alligator clips

    NASA Astrophysics Data System (ADS)

    Schumm, Jeffry S.; Pearson, Darren L.; Jones, LeRoy, II; Hara, Ryuichiro; Tour, James M.

    1996-12-01

    The synthesis of oligo(2-ethylphenylene-ethynylene)s, oligo(2-(0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s, and oligo(3-ethylthiophene-ethynylene)s is described via an iterative divergent convergent approach. Synthesized were the monomer, dimer, tetramer, octamer and 16-mer of the oligo(3-ethylthiophene-ethynylene)s and oligo(2-0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s. The 16-mers are 100 Å and 128 Å long, respectively. At each stage in the iteration, the length of the framework doubles. Only three sets of reaction conditions are needed for the entire iterative synthetic sequence; an iodination, a protodesilylation, and a Pd/Cu-catalyzed cross coupling. The oligomers were characterized spectroscopically and by mass spectrometry. The optical properties are presented which show the stage of optical absorbance saturation. The size exclusion chromatography values for the number average weights, relative to polystyrene, illustrate the tremendous differences in the hydrodynamic volume of these rigid rod oligomers versus the random coils of polystyrene. These differences become quite apparent at the octamer stage. The preparation of thiol-protected end groups is described. These may serve as molecular alligator clips for adhesion to gold surfaces. These oligomers may act as molecular wires in molecular electronic devices and they also serve as useful models for understanding related bulk polymers.

  15. ESTIM: A parameter estimation computer program: Final report

    SciTech Connect

    Hills, R.G.

    1987-08-01

    The computer code, ESTIM, enables subroutine versions of existing simulation codes to be used to estimate model parameters. Nonlinear least squares techniques are used to find the parameter values that result in a best fit between measurements made in the simulation domain and the simulation code's prediction of these measurements. ESTIM utilizes the non-linear least square code DQED (Hanson and Krogh (1982)) to handle the optimization aspects of the estimation problem. In addition to providing weighted least squares estimates, ESTIM provides a propagation of variance analysis. A subroutine version of COYOTE (Gartling (1982)) is provided. The use of ESTIM with COYOTE allows one to estimate the thermal property model parameters that result in the best agreement (in a least squares sense) between internal temperature measurements and COYOTE's predictions of these internal temperature measurements. We demonstrate the use of ESTIM through several example problems which utilize the subroutine version of COYOTE.

  16. Molecularly imprinted membranes.

    PubMed

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-07-19

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40-50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed.

  17. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  18. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  19. Hybrid estimation technique for predicting butene concentration in polyethylene reactor

    NASA Astrophysics Data System (ADS)

    Mohd Ali, Jarinah; Hussain, M. A.

    2016-03-01

    A component of artificial intelligence (AI), which is fuzzy logic, is combined with the so-called conventional sliding mode observer (SMO) to establish a hybrid type estimator to predict the butene concentration in the polyethylene production reactor. Butene or co-monomer concentration is another significant parameter in the polymerization process since it will affect the molecular weight distribution of the polymer produced. The hybrid estimator offers straightforward formulation of SMO and its combination with the fuzzy logic rules. The error resulted from the SMO estimation will be manipulated using the fuzzy rules to enhance the performance, thus improved on the convergence rate. This hybrid estimation is able to estimate the butene concentration satisfactorily despite the present of noise in the process.

  20. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  1. Molecular line observations of the S235B region

    NASA Astrophysics Data System (ADS)

    Nakano, Makoto; Yoshida, Shigeomi

    The core of the molecular cloud associated with the young stellar object S235B has been observed in molecular lines of CS, CO, and CH3OH with high angular resolution by the 45-m radio telescope of the Nobeyama Radio Observatory. The core is 0.6 x 1.0 pc in extent. The number density of molecular hydrogen and the fractional abundance of CS relative to molecular hydrogen are estimated to be 300,000/cu cm and 5 x 10 to the -10th, respectively. The CO observations show evidence of bipolar flow. This suggests that S235B is not a compact H II region but an expanding ionized envelope around a young star. The mass-loss rate from S235B is estimated as 10 to the -6th solar mass/yr. CH3OH emission shows a very compact distribution and a narrow line width, suggesting that the methanol lines are weakly masing.

  2. Misalignment estimation software system

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.

    1973-01-01

    A system of computer software, spacecraft, and ground system activity is described that enables spacecraft startrackers and inertial assemblies to be aligned and calibrated from the ground after the spacecraft has achieved orbit. The system generates in the uplink flow an exercise designed to render misalignments visible, and sends the exercise to the spacecraft where the spacecraft inserts the misalignment into the information in the form of attitude sensor error. The information is downlinked for processing into misalignment estimates to be used for correcting spacecraft model at data base.

  3. Estimating turbine limit load

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1993-01-01

    A method for estimating turbine limit-load pressure ratio from turbine map information is presented and demonstrated. It is based on a mean line analysis at the last-rotor exit. The required map information includes choke flow rate at all speeds as well as pressure ratio and efficiency at the onset of choke at design speed. One- and two-stage turbines are analyzed to compare the results with those from a more rigorous off-design flow analysis and to show the sensitivities of the computed limit-load pressure ratios to changes in the key assumptions.

  4. Estimating separation efficiency

    SciTech Connect

    Juska, J.W.

    1984-12-01

    PACKED COLUMNS are getting renewed interest for largescale vapor-liquid operations such as distillation, absorption and stripping. Packings offer advantages of low cost and low pressure drop. Unfortunately, there are only a few generalized methods available in the open literature for estimating the height of packing equivalent to a theoretical plate (HETP). These methods are empirical and supported by vendor advice. The performance data published by universities are often obtained using small (less than ten inches in diameter) columns and with packings not industrially important. When commercial-scale data are published, they usually are not supported by analysis or generalization.

  5. Molecular Epidemiology of Tuberculosis: Current Insights

    PubMed Central

    Mathema, Barun; Kurepina, Natalia E.; Bifani, Pablo J.; Kreiswirth, Barry N.

    2006-01-01

    Molecular epidemiologic studies of tuberculosis (TB) have focused largely on utilizing molecular techniques to address short- and long-term epidemiologic questions, such as in outbreak investigations and in assessing the global dissemination of strains, respectively. This is done primarily by examining the extent of genetic diversity of clinical strains of Mycobacterium tuberculosis. When molecular methods are used in conjunction with classical epidemiology, their utility for TB control has been realized. For instance, molecular epidemiologic studies have added much-needed accuracy and precision in describing transmission dynamics, and they have facilitated investigation of previously unresolved issues, such as estimates of recent-versus-reactive disease and the extent of exogenous reinfection. In addition, there is mounting evidence to suggest that specific strains of M. tuberculosis belonging to discrete phylogenetic clusters (lineages) may differ in virulence, pathogenesis, and epidemiologic characteristics, all of which may significantly impact TB control and vaccine development strategies. Here, we review the current methods, concepts, and applications of molecular approaches used to better understand the epidemiology of TB. PMID:17041139

  6. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  7. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  8. Catalytic molecular beacons.

    PubMed

    Stojanovic, M N; de Prada, P; Landry, D W

    2001-06-01

    We have constructed catalytic molecular beacons from a hammerhead-type deoxyribozyme by a modular design. The deoxyribozyme was engineered to contain a molecular beacon stem-loop module that, when closed, inhibits the deoxyribozyme module and is complementary to a target oligonucleotide. Binding of target oligonucleotides opens the beacon stem-loop and allosterically activates the deoxyribozyme module, which amplifies the recognition event through cleavage of a doubly labeled fluorescent substrate. The customized modular design of catalytic molecular beacons allows for any two single-stranded oligonucleotide sequences to be distinguished in homogenous solution in a single step. Our constructs demonstrate that antisense conformational triggers based on molecular beacons can be used to initiate catalytic events. The selectivity of the system is sufficient for analytical applications and has potential for the construction of deoxyribozyme-based drug delivery tools specifically activated in cells containing somatic mutations.

  9. Interventional Molecular Imaging.

    PubMed

    Solomon, Stephen B; Cornelis, Francois

    2016-04-01

    Although molecular imaging has had a dramatic impact on diagnostic imaging, it has only recently begun to be integrated into interventional procedures. Its significant impact is attributed to its ability to provide noninvasive, physiologic information that supplements conventional morphologic imaging. The four major interventional opportunities for molecular imaging are, first, to provide guidance to localize a target; second, to provide tissue analysis to confirm that the target has been reached; third, to provide in-room, posttherapy assessment; and fourth, to deliver targeted therapeutics. With improved understanding and application of(18)F-FDG, as well as the addition of new molecular probes beyond(18)F-FDG, the future holds significant promise for the expansion of molecular imaging into the realm of interventional procedures. PMID:26912443

  10. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  11. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  12. Automated Estimating System

    1996-04-15

    AES6.1 is a PC software package developed to aid in the preparation and reporting of cost estimates. AES6.1 provides an easy means for entering and updating the detailed cost, schedule information, project work breakdown structure, and escalation information contained in a typical project cost estimate through the use of menus and formatted input screens. AES6.1 combines this information to calculate both unescalated and escalated cost for a project which can be reported at varying levelsmore » of detail. Following are the major modifications to AES6.0f: Contingency update was modified to provide greater flexibility for user updates, Schedule Update was modified to provide user ability to schedule Bills of Material at the WBS/Participant/Cost Code level, Schedule Plot was modified to graphically show schedule by WBS/Participant/Cost Code, All Fiscal Year reporting has been modified to use the new schedule format, The Schedule 1-B-7, Cost Schedule, and the WBS/Participant reprorts were modified to determine Phase of Work from the B/M Cost Code, Utility program was modified to allow selection by cost code and update cost code in the Global Schedule update, Generic summary and line item download were added to the utility program, and an option was added to all reports which allows the user to indicate where overhead is to be reported (bottom line or in body of report)« less

  13. Semimajor Axis Estimation Strategies

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Alfriend, Kyle T.; Breger, Louis; Mitchell, Megan

    2004-01-01

    This paper extends previous analysis on the impact of sensing noise for the navigation and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter correlation coefficient. This work was motivated by previous publications which suggested that a "good" navigation filter would have a strong correlation (i.e., coefficient near -1) to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However, practical experience with CDGPS-based filters has shown this strong correlation seldom occurs (typical correlations approx. -0.1), even when the estimation accuracies are very good. We derive an analytic estimate of the filter correlation coefficient and demonstrate that, for the process and sensor noises levels expected with CDGPS, the expected value will be very low. It is also demonstrated that this correlation can be improved by increasing the time step of the discrete Kalman filter, but since the balance condition is not satisfied, the SMA error also increases. These observations are verified with several linear simulations. The combination of these simulations and analysis provide new insights on the crucial role of the process noise in determining the semimajor axis knowledge.

  14. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  15. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  16. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  17. [Molecular/polymeric magnetism

    SciTech Connect

    Not Available

    1993-01-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE)[sub x][center dot]y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others' models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of [Tc] were also tested.

  18. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  19. Molecular motors: nature's nanomachines.

    PubMed

    Tyreman, M J A; Molloy, J E

    2003-12-01

    Molecular motors are protein-based machines that convert chemical potential energy into mechanical work. This paper aims to introduce the non-specialist reader to molecular motors, in particular, acto-myosin, the prototype system for motor protein studies. These motors produce their driving force from changes in chemical potential arising directly from chemical reactions and are responsible for muscle contraction and a variety of other cell motilities.

  20. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. PMID:27631126

  1. THE DARK MOLECULAR GAS

    SciTech Connect

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  2. Nonparametric Estimators for Incomplete Surveys

    NASA Astrophysics Data System (ADS)

    Caditz, David M.

    2016-11-01

    Nonparametric estimators, such as the 1/{V}\\max estimator and the {C}- estimator, have been applied extensively to estimate luminosity functions (LFs) of astronomical sources from complete, truncated survey data sets. Application of such estimators to incomplete data sets typically requires further truncation of data, separation into subsets of constant completeness, and/or correction for incompleteness-induced bias. In this paper, we derive generalizations of the above estimators designed for use with incomplete, truncated data sets. We compare these generalized nonparametric estimators, investigate some of their simple statistical properties, and validate them using Monte Carlo simulation methods. We apply a nonparametric estimator to data obtained from the extended Baryon Oscillation Spectroscopic Survey to estimate the QSO LF for redshifts 0.68\\lt z\\lt 4.

  3. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia.

    PubMed

    Pyron, R Alexander

    2011-07-01

    Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.

  4. Interstellar molecular clouds

    NASA Astrophysics Data System (ADS)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  5. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  6. Molecular classification of gliomas.

    PubMed

    Masui, Kenta; Mischel, Paul S; Reifenberger, Guido

    2016-01-01

    The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients. PMID:26948350

  7. Earthquake Loss Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  8. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  9. Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes.

    PubMed

    Sahu, R; Biswal, D K; Roy, B; Tandon, V

    2016-09-01

    Opisthorchiasis is a public health problem in South-East Asian countries and Eastern Europe. The infection implicates mainly two species of Opisthorchis, namely O. viverrini and O. felineus, that occur mostly in fish-eating mammals and humans, although there are rare reports of human cases involving two other species, O. noverca and O. guayaquilensis. Opisthorchis noverca has been reported frequently in dogs and pigs from the Indian subcontinent, with rare reports from cattle and human subjects. With a view to supplementing morphology-based identification of this species, the present study aimed to provide molecular characterization of O. noverca, using rDNA internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase I (mt COI) markers so as to determine its genetic correlation with other species of Opisthorchiidae, and also to generate a taxon-specific molecular marker based on the ITS2 region. The phylogenetic relationship between O. noverca and other species of the genus was determined using molecular sequence data. To strengthen the result, secondary structure sequence analyses of ITS2 with hemi-compensatory base changes (hCBCs), and amino acid sequence analyses, were also evaluated. Our results confirm that O. noverca is a distinct and valid species. PMID:26467395

  10. Bayesian molecular clock dating of species divergences in the genomics era.

    PubMed

    dos Reis, Mario; Donoghue, Philip C J; Yang, Ziheng

    2016-02-01

    Five decades have passed since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics and studying the macroevolutionary process of speciation and extinction to estimating a timescale for life on Earth.

  11. Bayesian molecular clock dating of species divergences in the genomics era.

    PubMed

    dos Reis, Mario; Donoghue, Philip C J; Yang, Ziheng

    2016-02-01

    Five decades have passed since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics and studying the macroevolutionary process of speciation and extinction to estimating a timescale for life on Earth. PMID:26688196

  12. Estimating multipartite entanglement measures

    SciTech Connect

    Osterloh, Andreas; Hyllus, Philipp

    2010-02-15

    We investigate the lower bound obtained from experimental data of a quantum state {rho}, as proposed independently by O. Guehne et al. [Phys. Rev. Lett. 98, 110502 (2007)] and J. Eisert et al. [New J. Phys. 9, 46 (2007)], and apply it to mixed states of three qubits. The measure we consider is the convex-roof extended three-tangle. Our findings highlight an intimate relation to lower bounds obtained recently from so-called characteristic curves of a given entanglement measure. We apply the bounds to estimate the three-tangle present in recently performed experiments aimed at producing a three-qubit Greenberger-Horne-Zeilinger (GHZ) state. A nonvanishing lower bound is obtained if the GHZ fidelity of the produced states is larger than 3/4.

  13. Ramjet cost estimating handbook

    NASA Technical Reports Server (NTRS)

    Emmons, H. T.; Norwood, D. L.; Rasmusen, J. E.; Reynolds, H. E.

    1978-01-01

    Research conducted under Air Force Contract F33615-76-C-2043 to generate cost data and to establish a cost methodology that accurately predicts the production costs of ramjet engines is presented. The cost handbook contains a description of over one hundred and twenty-five different components which are defined as baseline components. The cost estimator selects from the handbook the appropriate components to fit his ramjet assembly, computes the cost from cost computation data sheets in the handbook, and totals all of the appropriate cost elements to arrive at the total engine cost. The methodology described in the cost handbook addresses many different ramjet types from simple podded arrangements of the liquid fuel ramjet to the more complex integral rocket/ramjet configurations including solid fuel ramjets and solid ducted rockets. It is applicable to a range of sizes from 6 in diameter to 18 in diameter and to production quantities up to 5000 engines.

  14. Uncertainties in transpiration estimates.

    PubMed

    Coenders-Gerrits, A M J; van der Ent, R J; Bogaard, T A; Wang-Erlandsson, L; Hrachowitz, M; Savenije, H H G

    2014-02-13

    arising from S. Jasechko et al. Nature 496, 347-350 (2013)10.1038/nature11983How best to assess the respective importance of plant transpiration over evaporation from open waters, soils and short-term storage such as tree canopies and understories (interception) has long been debated. On the basis of data from lake catchments, Jasechko et al. conclude that transpiration accounts for 80-90% of total land evaporation globally (Fig. 1a). However, another choice of input data, together with more conservative accounting of the related uncertainties, reduces and widens the transpiration ratio estimation to 35-80%. Hence, climate models do not necessarily conflict with observations, but more measurements on the catchment scale are needed to reduce the uncertainty range. There is a Reply to this Brief Communications Arising by Jasechko, S. et al. Nature 506, http://dx.doi.org/10.1038/nature12926 (2014).

  15. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  16. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  17. Estimating earthquake potential

    USGS Publications Warehouse

    Page, R.A.

    1980-01-01

    The hazards to life and property from earthquakes can be minimized in three ways. First, structures can be designed and built to resist the effects of earthquakes. Second, the location of structures and human activities can be chosen to avoid or to limit the use of areas known to be subject to serious earthquake hazards. Third, preparations for an earthquake in response to a prediction or warning can reduce the loss of life and damage to property as well as promote a rapid recovery from the disaster. The success of the first two strategies, earthquake engineering and land use planning, depends on being able to reliably estimate the earthquake potential. The key considerations in defining the potential of a region are the location, size, and character of future earthquakes and frequency of their occurrence. Both historic seismicity of the region and the geologic record are considered in evaluating earthquake potential. 

  18. Estimating many variances

    SciTech Connect

    Robbins, H.

    1981-01-01

    Suppose that an unknown random parameter theta with distribution function G is such that given theta, an observable random variable x has conditional probability density f(x / theta) of known form. If a function t = t(x) is used to estimate theta, then the expected squared error with respect to the random variation of both theta and x is: E(t-theta)/sup 2/ = ..integral.. ..integral..(t(x)-theta)/sup 2/ f(x parallel theta)dx dG(theta). For fixed G we can seek to minimize this equation within any desired class of functions t, such as the class of all linear functions A + Bx, or the class of al Borel functions whatsoever.

  19. Molecular diffusivity of polycyclic aromatic hydrocarbons in air

    SciTech Connect

    Gustafson, K.E.; Dickhut, R.M. . Dept. of Physical Sciences Virginia Inst. of Marine Science, Gloucester Point, VA )

    1994-04-01

    Molecular diffusivities in air are essential for the accurate determination of chemical fluxes across the air-water interface. Gas-phase diffusion coefficients are also important parameters for describing the dispersion of contaminants in unsaturated soils. The molecular diffusivities of benzene, toluene, naphthalene, acenaphthylene, phenanthrene, anthracene, benz[a]anthracene, pyrene, and benzo[e]pyrene were measured in air at temperatures ranging from [minus]5 to +40 C using a modified arrested flow method. Molecular diffusivities in air for all compounds studied decreased with molecular size, and increased logarithmically with temperature. The experimental data have been used to formulate a predictive equation for the estimation of molecular diffusivities of aromatic chemicals in air as a function of temperature and molar volume.

  20. DockingShop: A Tool for Interactive Molecular Docking

    SciTech Connect

    Lu, Ting-Cheng; Max, Nelson L.; Ding, Jinhui; Bethel, E. Wes; Crivelli, Silvia N.

    2005-04-24

    Given two independently determined molecular structures, the molecular docking problem predicts the bound association, or best fit between them, while allowing for conformational changes of the individual molecules during construction of a molecular complex. Docking Shop is an integrated environment that permits interactive molecular docking by navigating a ligand or protein to an estimated binding site of a receptor with real-time graphical feedback of scoring factors as visual guides. Our program can be used to create initial configurations for a protein docking prediction process. Its output--the structure of aprotein-ligand or protein-protein complex--may serve as an input for aprotein docking algorithm, or an optimization process. This tool provides molecular graphics interfaces for structure modeling, interactive manipulation, navigation, optimization, and dynamic visualization to aid users steer the prediction process using their biological knowledge.

  1. Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  2. Strategies for Estimating Discrete Quantities.

    ERIC Educational Resources Information Center

    Crites, Terry W.

    1993-01-01

    Describes the benchmark and decomposition-recomposition estimation strategies and presents five techniques to develop students' estimation ability. Suggests situations involving quantities of candy and popcorn in which the teacher can model those strategies for the students. (MDH)

  3. Historical Tank Content Estimate (HTCE) and sampling estimate comparisons

    SciTech Connect

    Remund, K.M.; Chen, G.; Hartley, S.A.

    1995-11-01

    There has been a substantial effort over the years to characterize the waste content in Hanford`s waste tanks. This characterization is vital to future efforts to retrieve, pretreat, and dispose of the waste in the proper manner. The present study is being conducted to help escalate this effort. This study compares estimates from two independent tank characterization approaches. One approach is based on tank sampling while the other is based on historical records. In order to statistically compare the two independent approaches, quantified variabilities (or uncertainty estimates) around the estimates of the mean concentrations are required. For the sampling-based estimates, the uncertainty estimates are provided in the Tank Characterization Reports (TCR`s). However, the historically based estimates are determined from a model, and therefore possess no quantified variabilities. Steps must be taken to provide quantified variabilities for these estimates. These steps involve a parameter influence study (factorial experiment study) and an uncertainty analysis (Monte Carlo study) of the Historical Tank Content Estimate (HTCE). The purpose of the factorial experiment is to identify in the Hanford Defined Wastes (HDW) model which parameters, as they vary, have the largest effect on the HTCE. The results of this study provide the proper input parameters for the Monte Carlo study. The two estimates (HTCE and sampling-based) can then be compared. The purpose of the Monte Carlo study is to provide estimates of variability around the estimate derived the historical records.

  4. Molecular dewetting on insulators.

    PubMed

    Burke, S A; Topple, J M; Grütter, P

    2009-10-21

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.

  5. ATOMIC AND MOLECULAR PHYSICS: Triatomic wake effect and the determination of the molecular structure of HD2+ from the Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Zhu, Zhou-Sen; Miao, Jing-Wei; Liao, Xue-Hua; Miao, Lei; Yuan, Xue-Dong; Shi, Mian-Gong

    2009-11-01

    A new theoretical model of the triatomic molecular wake effect is proposed and applied to molecular ions D3+ and HD2+ while passing through a solid. The wake effects resulting from the reactions of the two similar ions with thin carbon foil are also investigated by using the Coulomb explosion technique. The experimental results are in good agreement with theoretical estimates and the molecular structure of HD2+ is determined by using the model.

  6. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  7. Estimating concurrence via entanglement witnesses

    SciTech Connect

    Jurkowski, Jacek; Chruscinski, Dariusz

    2010-05-15

    We show that each entanglement witness detecting a given bipartite entangled state provides an estimation of its concurrence. We illustrate our result with several well-known examples of entanglement witnesses and compare the corresponding estimation of concurrence with other estimations provided by the trace norm of partial transposition and realignment.

  8. Molecular Data from Solar Spectroscopy

    NASA Astrophysics Data System (ADS)

    Grevesse, N.; Sauval, A. J.

    1992-03-01

    We show through a few examples how the analysis of molecular transitions present in the solar visible and infrared spectrum can be used to refine our knowledge of the molecular constants and to test the accuracy of available molecular data like transition probabilities and dissociation energies for a few diatomic molecules. Key words: ATOMIC PROCESSES - MOLECULAR PROCESSES - SUN: ATMOSPHERE - SUN: SPECTRA

  9. Dielectric properties of liquid phase molecular clusters using the external field method: molecular dynamics study.

    PubMed

    Abeyrathne, Chathurika D; Halgamuge, Malka N; Farrell, Peter M; Skafidas, Efstratios

    2014-07-21

    We analyzed the dielectric properties of molecular liquids using the external field method with reaction field approximations. The applicability of this method to determine the dielectric properties of molecules with zero (1,4-dioxane) and non-zero (water and bio-molecular aqueous solutions) permanent dipole moment was studied. The relative static dielectric constant obtained using the external field method for polar and non-polar molecular liquids, including molecules with zero permanent dipole moment, agreed well with the experimental values presented in the literature. Our results indicate that the Debye relaxation time constants estimated from the non-equilibrium simulations using the external field method were accurate for molecules whose permanent dipole moments were less than 12 D.

  10. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  11. Stueckelberg and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Lacki, Jan

    The first period of E. C. G. Stueckelberg's scientific career was marked by important contributions he made to molecular physics.1 After publishing his thesis in 1927 in Basel [1] Stueckelberg joined the prestigious Palmer Physical Laboratory in Princeton where he worked under the guidance of Karl Taylor Compton, brother of Arthur Holly Compton. Stueckelberg owed this position devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3 to a recommendation by A. Sommerfeld.2 In this stimulating environment, he devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3

  12. HNCO in molecular clouds

    SciTech Connect

    Jackson, J.M.; Armstrong, J.T.; Barrett, A.H.

    1984-05-15

    In a survey of 18 molecular clouds, HNCO J/sub K/-1K1..-->..J'/sub K/'-1K'1 = 5/sub 05/..-->..4/sub 05/ and 4/sub 04/..-->..3/sub 03/ emission was etected in seven clouds, and possibly in one other. Emission in these transitions originates in high-density regions (n> or approx. =10/sup 6/ cm/sup -3/). The molecule's excitation requirements allow us to derive limits to excitation temperatures an optical depths. We discuss the possibility of clumping with respect to the beam and compare our results with data from other molecular species. The HNCO emission from Sgr A is an ordder of magnitude larger than the other detected sources as is the ratio ..delta..T +- /sub A/(HNCO 5/sub 05/..-->..4/sub 04/)/..delta..T +- /sub A/(C/sup 18/O 1..-->..0). HNCO is probably a constituent of most molecular clouds.

  13. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  14. Tree Topology Estimation

    PubMed Central

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina

    2015-01-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004

  15. Tree Topology Estimation.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina

    2015-08-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004

  16. Estimate exchanger vibration

    SciTech Connect

    Nieh, C.D.; Zengyan, H.

    1986-04-01

    Based on the classical beam theory, a simple method for calculating the natural frequency of unequally spanned tubes is presented. The method is suitable for various boundary conditions. Accuracy of the calculations is sufficient for practical applications. This method will help designers and operators estimate the vibration of tubular exchangers. In general, there are three reasons why a tube vibrates in cross flow: vortex shedding, fluid elasticity and turbulent buffeting. No matter which is the cause, the basic reason is that the frequency of exciting force is approximately the same as or equal to the natural frequency of the tube. To prevent the heat exchanger from vibrating, it is necessary to select correctly the shell-side fluid velocity so that the frequency of exciting force is different from the natural frequency of the tube, or to vary the natural frequency of the heat exchanger tube. So precisely determining the natural frequency of the heat exchanger, especially its foundational frequency under various supporting conditions, is of significance.

  17. Estimation of the FEV.

    PubMed Central

    Oldham, P D; Cole, T J

    1983-01-01

    The procedure recommended by the Medical Research Council for estimating a subject's forced expiratory volume in one second (FEV1) is to require five separate attempts, discard the first two results, and average the last three. The most popular alternatives are to use the largest of the last three or the largest of a smaller number of results. Nine different indices derived from some or all of five attempts were compared in two studies. In one 40 normal subjects were studied. In the other 335 men exposed to industrial dust, whose forced expiratory volume declined with their degree of radiological pneumoconiosis as well as with age, were studied. There were small but consistent differences between indices. The index which emerged as the best overall in both studies was the mean of the largest three results from five attempts. It was better than the recommended index for all the comparisons made, but at the same time it gave a very similar mean value for the FEV1. Excluding the lowest two results rather than the first two from five blows is a rational procedure, and it should be formally recognised as providing the best index available. PMID:6623419

  18. TRAC performance estimates

    NASA Technical Reports Server (NTRS)

    Everett, L.

    1992-01-01

    This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.

  19. Mean thermospheric density estimation derived from satellite constellations

    NASA Astrophysics Data System (ADS)

    Li, Alan; Close, Sigrid

    2015-10-01

    This paper defines a method to estimate the mean neutral density of the thermosphere given many satellites of the same form factor travelling in similar regions of space. A priori information to the estimation scheme include ranging measurements and a general knowledge of the onboard ADACS, although precise measurements are not required for the latter. The estimation procedure seeks to utilize order statistics to estimate the probability of the minimum drag coefficient achievable, and amalgamating all measurements across multiple time periods allows estimation of the probability density of the ballistic factor itself. The model does not depend on prior models of the atmosphere; instead we require estimation of the minimum achievable drag coefficient which is based upon physics models of simple shapes in free molecular flow. From the statistics of the minimum, error statistics on the estimated atmospheric density can be calculated. Barring measurement errors from the ranging procedure itself, it is shown that with a constellation of 10 satellites, we can achieve a standard deviation of roughly 4% on the estimated mean neutral density. As more satellites are added to the constellation, the result converges towards the lower limit of the achievable drag coefficient, and accuracy becomes limited by the quality of the ranging measurements and the probability of the accommodation coefficient. Comparisons are made to existing atmospheric models such as NRLMSISE-00 and JB2006.

  20. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  1. Controlling molecular assemblies

    NASA Astrophysics Data System (ADS)

    Dameron, Arrelaine A.

    Using molecules designed to have only specific differences in their functionality, we have explored the influence of molecular conformation on the structural, electronic, and physical properties of self-assembled monolayers using both scanning probe and ensemble techniques. In the former case, we used two structurally similar molecules that differ in the degrees of freedom afforded to each. We found that this influenced the degree of order and conductance of self-assembled monolayers of each molecule, but had little influence of conductance switching of individual molecules inserted in alkanethiolate self-assembled monolayers. We further demonstrated how molecular structure influences phase separation, displace-ability, and molecular mobility of self-assembled monolayers by assembling 1-adamantanethiol on Au{111}. Molecular-resolution imaging of the self-assembled monolayers with the scanning tunneling microscopy confirmed a highly ordered hexagonally close-packed molecular lattice. We found that the 1-adamantanethiolate self-assembled monolayers were susceptible to replacement by the presence of another thiolated species, both from solution and vapor phases. Additionally, we determined that the displacement process is a nucleation and growth mechanism and the structure of the resulting self-assembled monolayers is dependent on the strength of the intermolecular interactions of the displacing molecules. It was hypothesized that 1-adamantanethiolate displacement was driven by a combination of energies gained from the exchange of one self-assembled monolayer for a denser self-assembled monolayer and from the increased stability due to intermolecular interaction forces. Exploiting the susceptibility of the 1-adamantanethiolate self-assembled monolayers to displacement, we have designed a novel patterning strategy, termed 'microdisplacement printing', by combining these sacrificial self-assembled monolayers with microcontact printing. During microdisplacement printing

  2. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  3. Molecular systematics and diagnosis.

    PubMed

    Thompson, R C A; Zarlenga, D S; La Rosa, G; Pozio, E; Rosenthal, B; Bandi, C; Mortarino, M; Casiraghi, M; Genchi, C; Gasser, R B; Hu, M; Chilton, N B; Matthews, J B; Hodgkinson, J E

    2004-10-28

    This collection of articles provides an account of six presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology(WAAVP) (held in New Orleans, Louisiana, USA, from 10 to 14 August 2003) in a symposium session on Molecular Systematics and Diagnosis, organised and chaired by R.B. Gasser and D.S. Zarlenga. The focus was on recent advances in molecular tools for specific and genotypic identification,diagnosis, systematics and population genetics, with special emphasis on investigations of parasitic nematodes and protists.

  4. Localization of deformable tumors from short-arc projections using Bayesian estimation

    SciTech Connect

    Hoegele, W.; Zygmanski, P.; Dobler, B.; Kroiss, M.; Koelbl, O.; Loeschel, R.

    2012-12-15

    Purpose: The authors present a stochastic framework for radiotherapy patient positioning directly utilizing radiographic projections. This framework is developed to be robust against anatomical nonrigid deformations and to cope with challenging imaging scenarios, involving only a few cone beam CT projections from short arcs. Methods: Specifically, a Bayesian estimator (BE) is explicitly derived for the given scanning geometry. This estimator is compared to reference methods such as chamfer matching (CM) and the minimization of the median absolute error adapted as tools of robust image processing and statistics. In order to show the performance of the stochastic short-arc patient positioning method, a CIRS IMRT thorax phantom study is presented with movable markers and the utilization of an Elekta Synergy{sup Registered-Sign} XVI system. Furthermore, a clinical prostate CBCT scan of a Varian{sup Registered-Sign} On-Board Imager{sup Registered-Sign} system is utilized to investigate the robustness of the method for large variations of image quality (anterior-posterior vs lateral views). Results: The results show that the BE shifts reduce the initial setup error of up to 3 cm down to 3 mm at maximum for an imaging arc as short as 10 Degree-Sign while CM achieves residual errors of 7 mm at maximum only for arcs longer than 40 Degree-Sign . Furthermore, the BE can compensate robustly for low image qualities using several low quality projections simultaneously. Conclusions: In conclusion, an estimation method for marker-based patient positioning for short imaging arcs is presented and shown to be robust and accurate for deformable anatomies.

  5. Molecular processes in cellular arsenic metabolism

    SciTech Connect

    Thomas, David J.

    2007-08-01

    Elucidating molecular processes that underlie accumulation, metabolism and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptual model that incorporates available information on molecular processes involved in the influx, metabolism, binding and efflux of arsenicals in cells. This conceptual model is initially conceived as a non-quantitative representation of critical molecular processes that can be used as a framework for experimental design and prediction. However, with refinement and incorporation of additional data, the conceptual model can be expressed in mathematical terms and should be useful for quantitative estimates of the kinetic and dynamic behavior of iAs and its methylated metabolites in cells. Development of a quantitative model will be facilitated by the availability of tools and techniques to manipulate molecular processes underlying transport of arsenicals across cell membranes or expression and activity of enzymes involved in methylation of arsenicals. This model of cellular metabolism might be integrated into more complex pharmacokinetic models for systemic metabolism of iAs and its methylated metabolites. It may also be useful in development of biologically based dose-response models describing the toxic and carcinogenic actions of arsenicals.

  6. A molecular palaeobiological exploration of arthropod terrestrialization.

    PubMed

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R; Puttick, Mark N; Blaxter, Mark; Vinther, Jakob; Olesen, Jørgen; Giribet, Gonzalo; Edgecombe, Gregory D; Pisani, Davide

    2016-07-19

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325830

  7. Self-correcting maps of molecular pathways.

    PubMed

    Rzhetsky, Andrey; Zheng, Tian; Weinreb, Chani

    2006-01-01

    Reliable and comprehensive maps of molecular pathways are indispensable for guiding complex biomedical experiments. Such maps are typically assembled from myriads of disparate research reports and are replete with inconsistencies due to variations in experimental conditions and/or errors. It is often an intractable task to manually verify internal consistency over a large collection of experimental statements. To automate large-scale reconciliation efforts, we propose a random-arcs-and-nodes model where both nodes (tissue-specific states of biological molecules) and arcs (interactions between them) are represented with random variables. We show how to obtain a non-contradictory model of a molecular network by computing the joint distribution for arc and node variables, and then apply our methodology to a realistic network, generating a set of experimentally testable hypotheses. This network, derived from an automated analysis of over 3,000 full-text research articles, includes genes that have been hypothetically linked to four neurological disorders: Alzheimer's disease, autism, bipolar disorder, and schizophrenia. We estimated that approximately 10% of the published molecular interactions are logically incompatible. Our approach can be directly applied to an array of diverse problems including those encountered in molecular biology, ecology, economics, politics, and sociology. PMID:17183692

  8. A molecular palaeobiological exploration of arthropod terrestrialization

    PubMed Central

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  9. Atomic and Molecular Adsorption on Re(0001)

    SciTech Connect

    Hahn, Konstanze; Mavrikakis, Manos

    2014-02-01

    Using periodic, self-consistent density functional theory calculations, the adsorption of several atomic (H, S, N, O and C) and molecular (CO2, N2, NH3, HCN, CO and NO) species and molecular fragments (NH2, NH, CN, CNH2, HNO, NOH, CH3, CH2, CH and OH) on the (0001) facet of rhenium at a coverage of 0.25 ML has been studied. Preferred binding sites with their corresponding binding energy and deformation energy of the surface, as well as an estimated diffusion barrier of each species have been determined. Atomic species and molecular fragments tend to bind to threefold sites, whereas molecular species tend to bind to top sites. The binding strength, with respect to the corresponding gas phase species and in increasing order for all species studied, is: CO2 < N2 < NH3 < CO < CH3 < HCN < NO < H < NH2 < OH < CH2 < CNH2 < CN < HNO < NH < NOH < S < N < O < CH < C. The vibrational frequencies of all species in their most energetically favorable adsorbed configuration have been calculated. Finally, the thermochemistry of adsorption and decomposition of NO, NO + H, NH3, N2, CO2, CO and CH4 on Re(0001) has been analyzed.

  10. Bayesian phylogenetic estimation of fossil ages

    PubMed Central

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  11. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  12. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  13. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.

  14. Uveal melanoma: Estimating prognosis

    PubMed Central

    Kaliki, Swathi; Shields, Carol L; Shields, Jerry A

    2015-01-01

    Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms “uvea,” “iris,” “ciliary body,” “choroid,” “melanoma,” “uveal melanoma” and “prognosis,” “metastasis,” “genetic testing,” “gene expression profiling.” Relevant English language articles were extracted, reviewed, and referenced appropriately. PMID:25827538

  15. Age at first reproduction explains rate variation in the strepsirrhine molecular clock

    PubMed Central

    Tsantes, C.; Steiper, M. E.

    2009-01-01

    Although the molecular clock hypothesis posits that the rate of molecular change is constant over time, there is evidence that rates vary among lineages. Some of the strongest evidence for variable molecular rates comes from the primates; e.g., the “hominoid slowdown.” These rate differences are hypothesized to correlate with certain species attributes, such as generation time and body size. Here, we examine rates of molecular change in the strepsirrhine suborder of primates and test whether body size or age at first reproduction (a proxy for generation time) explains patterns of rate variation better than a null model where the molecular clock is independent of these factors. To examine these models, we analyzed DNA sequences from four pairs of recently diverged strepsirrhine sister taxa to estimate molecular rates by using sign tests, likelihood ratio tests, and regression analyses. Our analysis does not support a model where body weight or age at first reproduction strongly influences rates of molecular evolution across mitochondrial and nuclear sites. Instead, our analysis supports a model where age at first reproduction influences neutral evolution in the nuclear genome. This study supports the generation time hypothesis for rate variation in the nuclear molecular clock. Molecular clock variation due to generation time may help to resolve the discordance between molecular and paleontological estimates for divergence date estimates in primate evolution. PMID:19841267

  16. Age at first reproduction explains rate variation in the strepsirrhine molecular clock.

    PubMed

    Tsantes, C; Steiper, M E

    2009-10-27

    Although the molecular clock hypothesis posits that the rate of molecular change is constant over time, there is evidence that rates vary among lineages. Some of the strongest evidence for variable molecular rates comes from the primates; e.g., the "hominoid slowdown." These rate differences are hypothesized to correlate with certain species attributes, such as generation time and body size. Here, we examine rates of molecular change in the strepsirrhine suborder of primates and test whether body size or age at first reproduction (a proxy for generation time) explains patterns of rate variation better than a null model where the molecular clock is independent of these factors. To examine these models, we analyzed DNA sequences from four pairs of recently diverged strepsirrhine sister taxa to estimate molecular rates by using sign tests, likelihood ratio tests, and regression analyses. Our analysis does not support a model where body weight or age at first reproduction strongly influences rates of molecular evolution across mitochondrial and nuclear sites. Instead, our analysis supports a model where age at first reproduction influences neutral evolution in the nuclear genome. This study supports the generation time hypothesis for rate variation in the nuclear molecular clock. Molecular clock variation due to generation time may help to resolve the discordance between molecular and paleontological estimates for divergence date estimates in primate evolution.

  17. Energy pooling upconversion in organic molecular systems.

    PubMed

    LaCount, Michael D; Weingarten, Daniel; Hu, Nan; Shaheen, Sean E; van de Lagemaat, Jao; Rumbles, Garry; Walba, David M; Lusk, Mark T

    2015-04-30

    A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems, stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways. For stilbene-fluorescein, the results are consistent with data generated in an earlier experimental investigation. Exercising these model systems facilitated the development of a set of design rules for the optimization of energy pooling. PMID:25793313

  18. Sparse image reconstruction for molecular imaging.

    PubMed

    Ting, Michael; Raich, Raviv; Hero, Alfred O

    2009-06-01

    The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. This paper, therefore, does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.

  19. Consequences of Secondary Calibrations on Divergence Time Estimates

    PubMed Central

    Schenk, John J.

    2016-01-01

    Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates. PMID:26824760

  20. Synthetic molecular walkers.

    PubMed

    Leigh, David A; Lewandowska, Urszula; Lewandowski, Bartosz; Wilson, Miriam R

    2014-01-01

    In biological systems, molecular motors have been developed to harness Brownian motion and perform specific tasks. Among the cytoskeletal motor proteins, kinesins ensure directional transport of cargoes to the periphery of the cell by taking discrete steps along microtubular tracks. In the past decade there has been an increasing interest in the development of molecules that mimic aspects of the dynamics of biological systems and can became a starting point for the creation of artificial transport systems.To date, both DNA-based and small-molecule walkers have been developed, each taking advantage of the different chemistries available to them. DNA strollers exploit orthogonal base pairing and utilize strand-displacement reactions to control the relative association of the component parts. Small-molecule walkers take advantage of the reversibility of weak noncovalent interactions as well as the robustness of dynamic covalent bonds in order to transport molecular fragments along surfaces and molecular tracks using both diffusional processes and ratchet mechanisms. Here we review both types of synthetic systems, including their designs, dynamics, and how they are being used to perform functions by controlled mechanical motion at the molecular level.

  1. Molecular dynamics simulations.

    PubMed

    Lindahl, Erik R

    2008-01-01

    Molecular simulation is a very powerful toolbox in modern molecular modeling, and enables us to follow and understand structure and dynamics with extreme detail--literally on scales where motion of individual atoms can be tracked. This chapter focuses on the two most commonly used methods, namely, energy minimization and molecular dynamics, that, respectively, optimize structure and simulate the natural motion of biological macromolecules. The common theoretical framework based on statistical mechanics is covered briefly as well as limitations of the computational approach, for instance, the lack of quantum effects and limited timescales accessible. As a practical example, a full simulation of the protein lysozyme in water is described step by step, including examples of necessary hardware and software, how to obtain suitable starting molecular structures, immersing it in a solvent, choosing good simulation parameters, and energy minimization. The chapter also describes how to analyze the simulation in terms of potential energies, structural fluctuations, coordinate stability, geometrical features, and, finally, how to create beautiful ray-traced movies that can be used in presentations.

  2. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  3. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  4. Gymnastics of molecular chaperones.

    PubMed

    Mayer, Matthias P

    2010-08-13

    Molecular chaperones assist folding processes and conformational changes in many proteins. In order to do so, they progress through complex conformational cycles themselves. In this review, I discuss the diverse conformational dynamics of the ATP-dependent chaperones of the Hsp60, Hsp70, Hsp90, and Hsp100 families. PMID:20705236

  5. [Molecular and genetic epidemiology].

    PubMed

    Kang, D H

    2001-04-21

    Molecular epidemiology is defined as "the use of biological markers in epidemiologic research" and genetic epidemiology is defined as "the study of the interaction between genetic and environmental factors in epidemiologic research". Traditional epidemiologic approaches defined as "the study of the distribution and determinants of disease frequency in human population" could not address the importance of genetic susceptibility of humans in disease occurrence. However, the use of biological or genetic markers identified and characterized by the help of advance in molecular biology and human genetics now can provide us better understanding of multi-factorial or multistep disease occurrence in humans. Biological markers used in molecular epidemiology are classified into three groups: biomarkers of exposure (i.e., carcinogen metabolites in human urine, DNA-adducts, etc.), biomarkers of effects (i.e., oncoproteins, tumor markers, etc.), and biomarkers of susceptibility (i.e., genetic polymorphisms of carcinogen metabolism enzymes, DNA repair, etc.). Susceptibility genes involved in disease pathogenesis are categorized into two groups: high penetrance genes (i.e., BRAC1, RB, etc.) and low penetrance genes (i.e., GSTs, XRCC1, etc.). This paper will address the usefulnesses of bomarkers in edpidemiologic research and will show the examples of the use of selected low penetrance genes involved in human carcinogenesis. The importance of multidisciplinary approaches among epidemiologists, molecular biologists, and human geneticists will also be discussed.

  6. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  7. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  8. [Ortho-molecular nutrition].

    PubMed

    Martínez Bradshaw, Alejandro

    2005-03-01

    Ortho-molecular nutrition contemplates the deficiency of certain nutrients, not their deprivation, as the generator of short-term and long-term pathologies. By means of supplying these nutrients, an organism recovers. This method consists in building up an organism's functions by following the guides and indications provided by the organism itself. PMID:15871343

  9. Biophysics of molecular gastronomy.

    PubMed

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP.

  10. Reading the Molecular Clock.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  11. Molecular therapy for glioblastoma.

    PubMed

    Karpati, G; Li, H; Nalbantoglu, J

    1999-10-01

    Glioblastoma (GB), the relatively frequent and most malignant form of primary brain tumor, is fatal within 1 to 2 years of onset of symptoms, despite conventional therapy. Molecular therapy promises to be an effective and possibly curative treatment. Several molecular strategies have been tested, either in animal models or clinical trials. These include: prodrug activating systems, introduction of tumor suppressor or cell-cycle-related genes, inhibition of growth factors and/or their receptors, inhibition of neovascularization, immunomodulatory maneuvers, oncolytic viruses and inhibition of matrix metalloproteinases. Of special interest for the development of optimal molecular therapy of GB, is the choice of the most efficient and least toxic gene vectors (adenovirus, retrovirus, herpes simplex virus), the route of administration of the therapeutic agent (intratumoral with or without debulking and intracarotid), avoidance of collateral damage to the perineoplastic neuropil and adequate preclinical studies. The ultimate molecular therapy will probably involve the application of multiple simultaneous (combinatorial) therapeutic modalities. The safety and efficiency of these in humans can only be judged by properly controlled therapeutic trials. PMID:11249660

  12. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  13. Molecular contributions to conservation

    USGS Publications Warehouse

    Haig, Susan M.

    1998-01-01

    Recent advances in molecular technology have opened a new chapter in species conservation efforts, as well as population biology. DNA sequencing, MHC (major histocompatibility complex), minisatellite, microsatellite, and RAPD (random amplified polymorphic DNA) procedures allow for identification of parentage, more distant relatives, founders to new populations, unidentified individuals, population structure, effective population size, population-specific markers, etc. PCR (polymerase chain reaction) amplification of mitochondrial DNA, nuclear DNA, ribosomal DNA, chloroplast DNA, and other systems provide for more sophisticated analyses of metapopulation structure, hybridization events, and delineation of species, subspecies, and races, all of which aid in setting species recovery priorities. Each technique can be powerful in its own right but is most credible when used in conjunction with other molecular techniques and, most importantly, with ecological and demographic data collected from the field. Surprisingly few taxa of concern have been assayed with any molecular technique. Thus, rather than showcasing exhaustive details from a few well-known examples, this paper attempts to present a broad range of cases in which molecular techniques have been used to provide insight into conservation efforts.

  14. Molecular diagnostics in genodermatoses.

    PubMed

    Schaffer, Julie V

    2012-12-01

    In recent years, there has been tremendous progress in elucidating the molecular bases of genodermatoses. The interface between genetics and dermatology has broadened with the identification of "new" heritable disorders, improved recognition of phenotypic spectrums, and integration of molecular and clinical data to simplify disease categorization and highlight relationships between conditions. With the advent of next-generation sequencing and other technological advances, dermatologists have promising new tools for diagnosis of genodermatoses. This article first addresses phenotypic characterization and classification with the use of online databases, considering concepts of clinical and genetic heterogeneity. Indications for genetic testing related to medical care and patient/family decision making are discussed. Standard genetic testing is reviewed, including resources for finding specialized laboratories, methods of gene analysis, and patient/family counseling. The benefits and challenges associated with multigene panels, array-based analysis (eg, copy number variation, linkage, and homozygosity), and whole-exome or whole-genome sequencing are then examined. Specific issues relating to molecular analysis of mosaic skin conditions and prenatal/preimplantation diagnosis are also presented. Use of the modern molecular diagnostics described herein enhance our ability to counsel, monitor, and treat patients and families affected by genodermatoses, with broader benefits of providing insights into cutaneous physiology and multifactorial skin disorders.

  15. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  16. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. PMID:27653486

  17. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique.

  18. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  19. Estimating atomic sizes with Raman spectroscopy.

    PubMed

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

  20. Maximum-Likelihood Estimator of Clock Offset between Nanomachines in Bionanosensor Networks.

    PubMed

    Lin, Lin; Yang, Chengfeng; Ma, Maode

    2015-12-07

    Recent advances in nanotechnology, electronic technology and biology have enabled the development of bio-inspired nanoscale sensors. The cooperation among the bionanosensors in a network is envisioned to perform complex tasks. Clock synchronization is essential to establish diffusion-based distributed cooperation in the bionanosensor networks. This paper proposes a maximum-likelihood estimator of the clock offset for the clock synchronization among molecular bionanosensors. The unique properties of diffusion-based molecular communication are described. Based on the inverse Gaussian distribution of the molecular propagation delay, a two-way message exchange mechanism for clock synchronization is proposed. The maximum-likelihood estimator of the clock offset is derived. The convergence and the bias of the estimator are analyzed. The simulation results show that the proposed estimator is effective for the offset compensation required for clock synchronization. This work paves the way for the cooperation of nanomachines in diffusion-based bionanosensor networks.

  1. Maximum-Likelihood Estimator of Clock Offset between Nanomachines in Bionanosensor Networks

    PubMed Central

    Lin, Lin; Yang, Chengfeng; Ma, Maode

    2015-01-01

    Recent advances in nanotechnology, electronic technology and biology have enabled the development of bio-inspired nanoscale sensors. The cooperation among the bionanosensors in a network is envisioned to perform complex tasks. Clock synchronization is essential to establish diffusion-based distributed cooperation in the bionanosensor networks. This paper proposes a maximum-likelihood estimator of the clock offset for the clock synchronization among molecular bionanosensors. The unique properties of diffusion-based molecular communication are described. Based on the inverse Gaussian distribution of the molecular propagation delay, a two-way message exchange mechanism for clock synchronization is proposed. The maximum-likelihood estimator of the clock offset is derived. The convergence and the bias of the estimator are analyzed. The simulation results show that the proposed estimator is effective for the offset compensation required for clock synchronization. This work paves the way for the cooperation of nanomachines in diffusion-based bionanosensor networks. PMID:26690173

  2. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  3. [Future prospects of molecular epidemiology in tuberculosis].

    PubMed

    Matsumoto, Tomoshige; Iwamoto, Tomotada

    2009-12-01

    Before the availability of high-resolution genotyping tools in 1990s, there was a prevailing dogma of little genomic sequence diversity in Mycobacterium tuberculosis. Due to the low levels of genetic variation, it was assumed that M. tuberculosis exhibit very little phenotypic variation in immunologic and virulence factors. The fingerprinting method based on restriction fragment length polymorphisms (RFLP) of IS6110 insertion sequences had unveiled the underestimation of the sequence variation in M. tuberculosis and the importance of strain-to-strain variation for understanding pathogenesis, immune mechanisms, bacterial evolution, and host adaptation. This method became a gold standard for strain differentiation in the molecular epidemiological study. It had lead to a profusion of studies in molecular epidemiology such as the detection of unsuspected transmission, the estimation of the extent of recent transmission, the identification of laboratory cross-contamination, the identification of outbreaks, and distinction between reinfection and relapse. This, in 1990s, is the opening of the molecular epidemiology of tuberculosis. After the completion of genome project of the M. tuberculosis laboratory strain H37Rv, some of the clinical isolates were completely sequenced. This prompted the in silico genome comparison and identified various genomic markers which can give a unifying framework for both epidemiology and evolutionary analysis of M. tuberculosis population. Of them, variable numbers of tandem repeats (VNTR) was found as the most promising PCR-based method which can provide adequate discrimination of M. tuberculosis strains in many cases, including the estimation of M. tuberculosis transmission and the identification of genetic lineages. PCR-based VNTR analysis is easy, rapid, and highly specific and can generate portable digit-based data, unlike the analog information obtained from IS6110 RFLP which is labor intensive. In this regards, investigators can

  4. CULTURE-INDEPENDENT MOLECULAR METHODS FOR FECAL SOURCE IDENTIFICATION

    EPA Science Inventory

    Fecal contamination is widespread in the waterways of the United States. Both to correct the problem, and to estimate public health risk, it is necessary to identify the source of the contamination. Several culture-independent molecular methods for fecal source identification hav...

  5. Determination of Molecular Size and Avogadro's Number: A Student Experiment

    ERIC Educational Resources Information Center

    Alexandrakis, George C.

    1978-01-01

    Describes an experiment for estimating molecular size and Avogadro's number. Uses the diffusion length of iodine in air at 100 degrees Celsius as a function of time, and the change in volume of a small quantity of carbon dioxide as it goes from the solid to the gaseous state. (GA)

  6. A dissociative electron attachment cross-section estimator

    NASA Astrophysics Data System (ADS)

    Munro, James J.; Harrison, Stephen; Fujimoto, Milton M.; Tennyson, Jonathan

    2012-11-01

    Dissociative electron attachment (DEA) is the major process where molecules are destroyed in low-energy plasmas. DEA cross sections are therefore important for a whole variety of applications but are both hard to measure or compute accurately. A method for estimating DEA cross sections based a simple resonance plus survival model is presented. Test results are presented for DEA of molecular oxygen and molecular chlorine, for which experimental measurements are available for comparison, and SiBr and SiBr2, for which no previous data is available. The estimator has been implemented as part of Quantemol-N expert system which uses the R-matrix method to predict resonance positions and widths.

  7. Gate engineered performance of single molecular transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2016-05-01

    The operation, performance and electrostatics of multigated Single Molecular Transistor (SMT) devices are investigated using first-principles based density functional theory calculations for planar (pentacene) and non-planar (sucrose) molecules as islands. It has been found that the incorporation of larger numbers of gates allows enhanced electrostatic control in the SMT operation which has been quantified from the energy calculations and estimation of the gate capacitances. The effect of multiple gates is more dominant for a non-planar molecule than a planar molecule within an SMT which indicates the usefulness of such multi-gate architectures for future nanoelectronic devices.

  8. [Oligoglycine surface structures: molecular dynamics simulation].

    PubMed

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  9. NAOMI: nanoparticle assisted optical molecular imaging

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; van Velthoven, Mirjam E. J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; Graf, Christina; van Leeuwen, Ton G.

    2006-02-01

    Our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using OCT as the imaging modality are presented. We derive an expression to estimate the sensitivity of this technique. We propose to use nanoparticles based on biodegradable polymers, loaded with suitable dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. This report presents preliminary results of our investigation on the use of nanoshells to serve as contrast agents We injected nanoshells with specific contrast features in the 800 nm wavelength region in excised porcine eyes. The nanoshells showed up as bright reflecting structures in the OCT images, which confirm their potential as contrast agents.

  10. Estimators for the Cauchy distribution

    SciTech Connect

    Hanson, K.M.; Wolf, D.R.

    1993-12-31

    We discuss the properties of various estimators of the central position of the Cauchy distribution. The performance of these estimators is evaluated for a set of simulated experiments. Estimators based on the maximum and mean of the posterior probability density function are empirically found to be well behaved when more than two measurements are available. On the contrary, because of the infinite variance of the Cauchy distribution, the average of the measured positions is an extremely poor estimator of the location of the source. However, the median of the measured positions is well behaved. The rms errors for the various estimators are compared to the Fisher-Cramer-Rao lower bound. We find that the square root of the variance of the posterior density function is predictive of the rms error in the mean posterior estimator.

  11. Some Stereochemical Principles from Polymers: Molecular Symmetry and Molecular Flexibility

    ERIC Educational Resources Information Center

    Price, Charles C.

    1973-01-01

    Discusses the use of the properties of polyethylene, polypropylene, polyisobutylene, and their three epoxides to illustrate the relationships of entropy to molecular properties and the concepts of molecular chirality, geometry, and flexibility. (CC)

  12. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  13. Robust and intelligent bearing estimation

    DOEpatents

    Claassen, John P.

    2000-01-01

    A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.

  14. Supercooled liquid water Estimation Tool

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  15. Quantum estimation by local observables

    SciTech Connect

    Hotta, Masahiro; Ozawa, Masanao

    2004-08-01

    Quantum estimation theory provides optimal observations for various estimation problems for unknown parameters in the state of the system under investigation. However, the theory has been developed under the assumption that every observable is available for experimenters. Here, we generalize the theory to problems in which the experimenter can use only locally accessible observables. For such problems, we establish a Cramer-Rao-type inequality by obtaining an explicit form of the Fisher information as a reciprocal lower bound for the mean-square errors of estimations by locally accessible observables. Furthermore, we explore various local quantum estimation problems for composite systems, where nontrivial combinatorics is needed for obtaining the Fisher information.

  16. A maximum-likelihood estimation of pairwise relatedness for autopolyploids

    PubMed Central

    Huang, K; Guo, S T; Shattuck, M R; Chen, S T; Qi, X G; Zhang, P; Li, B G

    2015-01-01

    Relatedness between individuals is central to ecological genetics. Multiple methods are available to quantify relatedness from molecular data, including method-of-moment and maximum-likelihood estimators. We describe a maximum-likelihood estimator for autopolyploids, and quantify its statistical performance under a range of biologically relevant conditions. The statistical performances of five additional polyploid estimators of relatedness were also quantified under identical conditions. When comparing truncated estimators, the maximum-likelihood estimator exhibited lower root mean square error under some conditions and was more biased for non-relatives, especially when the number of alleles per loci was low. However, even under these conditions, this bias was reduced to be statistically insignificant with more robust genetic sampling. We also considered ambiguity in polyploid heterozygote genotyping and developed a weighting methodology for candidate genotypes. The statistical performances of three polyploid estimators under both ideal and actual conditions (including inbreeding and double reduction) were compared. The software package POLYRELATEDNESS is available to perform this estimation and supports a maximum ploidy of eight. PMID:25370210

  17. Frequency tracking and parameter estimation for robust quantum state estimation

    SciTech Connect

    Ralph, Jason F.; Jacobs, Kurt; Hill, Charles D.

    2011-11-15

    In this paper we consider the problem of tracking the state of a quantum system via a continuous weak measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequency.

  18. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  19. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  20. Estimating discharge measurement uncertainty using the interpolated variance estimator

    USGS Publications Warehouse

    Cohn, T.; Kiang, J.; Mason, R.

    2012-01-01

    Methods for quantifying the uncertainty in discharge measurements typically identify various sources of uncertainty and then estimate the uncertainty from each of these sources by applying the results of empirical or laboratory studies. If actual measurement conditions are not consistent with those encountered in the empirical or laboratory studies, these methods may give poor estimates of discharge uncertainty. This paper presents an alternative method for estimating discharge measurement uncertainty that uses statistical techniques and at-site observations. This Interpolated Variance Estimator (IVE) estimates uncertainty based on the data collected during the streamflow measurement and therefore reflects the conditions encountered at the site. The IVE has the additional advantage of capturing all sources of random uncertainty in the velocity and depth measurements. It can be applied to velocity-area discharge measurements that use a velocity meter to measure point velocities at multiple vertical sections in a channel cross section.

  1. Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogens

    PubMed Central

    Dawidziuk, A; Koczyk, G; Popiel, D; Kaczmarek, J; Buśko, M

    2014-01-01

    Aims We propose and test an efficient and rapid protocol for the detection of toxigenic Fusarium isolates producing three main types of Fusarium-associated mycotoxins (fumonisins, trichothecenes and zearelanone). Methods and Results The novel approach utilizes partially multiplexed markers based on genes essential for mycotoxin biosynthesis (fumonisin—fum6, fum8; trichothecenes—tri5, tri6; zearalenone, zea2) in Fusarium spp. The protocol has been verified by screening a collection of 96 isolates representing diverse species of filamentous fungi. Each Fusarium isolate was taxonomically identified through both molecular and morphological techniques. The results demonstrate a reliable detection of toxigenic potential for trichothecenes (sensitivity 100%, specificity 95%), zearalenone (sensitivity 100%, specificity 100%) and fumonisins (sensitivity 94%, specificity 88%). Both presence and identity of toxin biosynthetic genes were further confirmed by direct sequencing of amplification products. Conclusions The cross-species-specific PCR markers for key biosynthetic genes provide a sensitive detection of toxigenic fungal isolates, contaminating biological material derived from agricultural fields. Significance and Impact of the Study The conducted study shows that a PCR-based assay of biosynthetic genes is a reliable, cost-effective, early warning system against Fusarium contamination. Its future use as a high-throughput detection strategy complementing chemical assays enables effective targeted application of crop protection products. PMID:24575830

  2. Theoretical molecular studies of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1991-01-01

    When work under this grant began in 1974 there was a great need for state-to-state collisional excitation rates for interstellar molecules observed by radio astronomers. These were required to interpret observed line intensities in terms of local temperatures and densities, but, owing to lack of experimental or theoretical values, estimates then being used for this purpose ranged over several orders of magnitude. A problem of particular interest was collisional excitation of formaldehyde; Townes and Cheung had suggested that the relative size of different state-to-state rates (propensity rules) was responsible for the anomalous absorption observed for this species. We believed that numerical molecular scattering techniques (in particular the close coupling or coupled channel method) could be used to obtain accurate results, and that these would be computationally feasible since only a few molecular rotational levels are populated at the low temperatures thought to prevail in the observed regions. Such calculations also require detailed knowledge of the intermolecular forces, but we thought that those could also be obtained with sufficient accuracy by theoretical (quantum chemical) techniques. Others, notably Roy Gordon at Harvard, had made progress in solving the molecular scattering equations, generally using semi-empirical intermolecular potentials. Work done under this grant generalized Gordon's scattering code, and introduced the use of theoretical interaction potentials obtained by solving the molecular Schroedinger equation. Earlier work had considered only the excitation of a diatomic molecule by collisions with an atom, and we extended the formalism to include excitation of more general molecular rotors (e.g., H2CO, NH2, and H2O) and also collisions of two rotors (e.g., H2-H2).

  3. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  4. Molecular pathways in dystonia

    PubMed Central

    Bragg, D. Cristopher; Armata, Ioanna A.; Nery, Flavia C.; Breakefield, Xandra O.; Sharma, Nutan

    2011-01-01

    The hereditary dystonias comprise a set of diseases defined by a common constellation of motor deficits. These disorders are most likely associated with different molecular etiologies, many of which have yet to be elucidated. Here we discuss recent advances in three forms of hereditary dystonia, DYT1, DYT6 and DYT16, which share a similar clinical picture: onset in childhood or adolescence, progressive spread of symptoms with generalized involvement of body regions and a steady state affliction without treatment. Unlike DYT1, the genes responsible for DYT6 and DYT16 have only recently been identified, with relatively little information about the function of the encoded proteins. Nevertheless, recent data suggest that these proteins may fit together within interacting pathways involved in dopaminergic signaling, transcriptional regulation, and cellular stress responses. This review focuses on these molecular pathways, highlighting potential common themes among these dystonias which may serve as areas for future research. PMID:21134457

  5. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors.

  6. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems.

  7. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  8. Molecular biology of potyviruses.

    PubMed

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.

  9. Molecular Pathology and Biomarkers.

    PubMed

    Ha, Patrick K; Stenman, Göran

    2016-01-01

    The field of salivary gland tumor biology is quite broad, given the numerous subtypes of both benign and malignant tumors originating from the major and minor salivary glands. Knowledge about the molecular pathology of these lesions is still limited, and there are few clinically useful diagnostic and prognostic biomarkers. However, recent discoveries of certain key genomic alterations, such as chromosome translocations, copy number alterations, and mutations, provide new insights into the molecular pathogenesis of these lesions and may help to better define them. It is also hoped that this new knowledge can help to guide therapy, but this translation has been somewhat slow to develop, perhaps due to the rarity of these tumors and the lack of large, randomized studies. However, because of the limitations inherent in what surgery and radiation can provide, there is an urgent need for understanding of the mechanisms of carcinogenesis in these tumors individually, so that chemotherapy and/or targeted therapy can be rationally selected.

  10. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  11. Molecular-beam scattering

    SciTech Connect

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  12. Functional Molecular Ecological Networks

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  13. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  14. Molecular opacities for exoplanets

    PubMed Central

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  15. Communication: Molecular gears.

    PubMed

    Burnell, E Elliott; de Lange, Cornelis A; Meerts, W Leo

    2016-09-01

    The (1)H nuclear magnetic resonance spectrum of hexamethylbenzene orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy. The spectrum contains over 350 000 lines with many overlapping transitions, from which four independent direct dipolar couplings are obtained. The rotations of the six methyl groups appear to be correlated due to mutual steric hindrance. Adjacent methyl groups show counter-rotating or geared motion. Hexamethylbenzene thus behaves as a molecular hexagonal gear. PMID:27608981

  16. Communication: Molecular gears

    NASA Astrophysics Data System (ADS)

    Burnell, E. Elliott; de Lange, Cornelis A.; Meerts, W. Leo

    2016-09-01

    The 1H nuclear magnetic resonance spectrum of hexamethylbenzene orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy. The spectrum contains over 350 000 lines with many overlapping transitions, from which four independent direct dipolar couplings are obtained. The rotations of the six methyl groups appear to be correlated due to mutual steric hindrance. Adjacent methyl groups show counter-rotating or geared motion. Hexamethylbenzene thus behaves as a molecular hexagonal gear.

  17. Molecular opacities for exoplanets.

    PubMed

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy.

  18. Molecular-beam scattering

    NASA Astrophysics Data System (ADS)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  19. Primer on molecular genetics

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  20. Conceptual Considerations in Molecular Science

    ERIC Educational Resources Information Center

    Sawyer, Donald T.

    2005-01-01

    There are significant misconceptions within the chemical community and molecular science, particularly in the undergraduate curriculum and the associated textbooks. Some of the misconceptions are described, which give poor basis to understand molecular bonding and structure, and reaction mechanisms.

  1. Electrostatics in molecular phenomena

    NASA Astrophysics Data System (ADS)

    Náray-Szabó, G.

    1995-04-01

    Molecular electrostatic potentials (MEP) and fields (MEF) became very popular in the last two decades since they offer a pictorial modeling of complicated molecular events. In this paper we give an overview on applications. We can discuss chemical reactivity in terms of MEP maps: negative and positive regions are preferred by electrophilic and nucleophilic reagents, respectively. We may define the concept of electrostatic enzyme catalysis. In cases when the ground-state polarity of the active site essentially increases in the transition state the catalytic rate enhancement is due to electrostatic stabilization by the polar protein and solvent environment. Crystal surfaces provide strong MEF, thus enhanced reactivity, in their vicinity. Hydration depends also on the electrostatic behaviour. It is possible to define the average MEF of a molecule that is an appropriate descriptor of hydration ability to be used in quantitative structure-activity relationships. Molecular recognition has also important electrostatic aspects. Complementarity and similarity are determined beside steric aspects by electrostatic and hydrophobic factors, as well. We may define hydrophilic and hydrophobic regions around a molecule in terms of the MEF and apply this representation to the study of host-guest complementarity, as well as crystal packing.

  2. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion. PMID:17303718

  3. Molecular dynamics simulations.

    PubMed

    Lindahl, Erik

    2015-01-01

    Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.

  4. Molecular Epidemiology of Malaria

    PubMed Central

    Conway, David J.

    2007-01-01

    Malaria persists as an undiminished global problem, but the resources available to address it have increased. Many tools for understanding its biology and epidemiology are well developed, with a particular richness of comparative genome sequences. Targeted genetic manipulation is now effectively combined with in vitro culture assays on the most important human parasite, Plasmodium falciparum, and with in vivo analysis of rodent and monkey malaria parasites in their laboratory hosts. Studies of the epidemiology, prevention, and treatment of human malaria have already been influenced by the availability of molecular methods, and analyses of parasite polymorphisms have long had useful and highly informative applications. However, the molecular epidemiology of malaria is currently undergoing its most substantial revolution as a result of the genomic information and technologies that are available in well-resourced centers. It is a challenge for research agendas to face the real needs presented by a disease that largely exists in extremely resource-poor settings, but it is one that there appears to be an increased willingness to undertake. To this end, developments in the molecular epidemiology of malaria are reviewed here, emphasizing aspects that may be current and future priorities. PMID:17223628

  5. [Molecular biology of hearing].

    PubMed

    Stöver, T; Diensthuber, M

    2011-03-01

    The inner ear is our most sensitive sensory organ and can be subdivided into 3 functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear habors the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In the past years there was significant progress in research on the molecular basis of hearing. More and more genes and proteins which are related to hearing can be identified and characterized. The increasing knowledge on these genes contributes not only to a better understanding of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.

  6. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  7. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy. PMID:25307570

  8. Molecular biology of hearing

    PubMed Central

    Stöver, Timo; Diensthuber, Marc

    2012-01-01

    The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss. PMID:22558056

  9. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.).

    PubMed

    Raman, Rosy; Taylor, Belinda; Marcroft, Steve; Stiller, Jiri; Eckermann, Paul; Coombes, Neil; Rehman, Ata; Lindbeck, Kurt; Luckett, David; Wratten, Neil; Batley, Jacqueline; Edwards, David; Wang, Xiaowu; Raman, Harsh

    2012-07-01

    Blackleg, caused by Leptosphaeria maculans, is one of the most important diseases of oilseed and vegetable crucifiers worldwide. The present study describes (1) the construction of a genetic linkage map, comprising 255 markers, based upon simple sequence repeats (SSR), sequence-related amplified polymorphism, sequence tagged sites, and EST-SSRs and (2) the localization of qualitative (race-specific) and quantitative (race non-specific) trait loci controlling blackleg resistance in a doubled-haploid population derived from the Australian canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum using the whole-genome average interval mapping approach. Marker regression analyses revealed that at least 14 genomic regions with LOD ≥ 2.0 were associated with qualitative and quantitative blackleg resistance, explaining 4.6-88.9 % of genotypic variation. A major qualitative locus, designated RlmSkipton (Rlm4), was mapped on chromosome A7, within 0.8 cM of the SSR marker Xbrms075. Alignment of the molecular markers underlying this QTL region with the genome sequence data of B. rapa L. suggests that RlmSkipton is located approximately 80 kb from the Xbrms075 locus. Molecular marker-RlmSkipton linkage was further validated in an F(2) population from Skipton/Ag-Spectrum. Our results show that SSR markers linked to consistent genomic regions are suitable for enrichment of favourable alleles for blackleg resistance in canola breeding programs.

  10. Information estimators for weighted observations.

    PubMed

    Hino, Hideitsu; Murata, Noboru

    2013-10-01

    The Shannon information content is a valuable numerical characteristic of probability distributions. The problem of estimating the information content from an observed dataset is very important in the fields of statistics, information theory, and machine learning. The contribution of the present paper is in proposing information estimators, and showing some of their applications. When the given data are associated with weights, each datum contributes differently to the empirical average of statistics. The proposed estimators can deal with this kind of weighted data. Similar to other conventional methods, the proposed information estimator contains a parameter to be tuned, and is computationally expensive. To overcome these problems, the proposed estimator is further modified so that it is more computationally efficient and has no tuning parameter. The proposed methods are also extended so as to estimate the cross-entropy, entropy, and Kullback-Leibler divergence. Simple numerical experiments show that the information estimators work properly. Then, the estimators are applied to two specific problems, distribution-preserving data compression, and weight optimization for ensemble regression.

  11. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  12. PBXN-110 Burn Rate Estimate

    SciTech Connect

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  13. Reinforcing flood-risk estimation.

    PubMed

    Reed, Duncan W

    2002-07-15

    Flood-frequency estimation is inherently uncertain. The practitioner applies a combination of gauged data, scientific method and hydrological judgement to derive a flood-frequency curve for a particular site. The resulting estimate can be thought fully satisfactory only if it is broadly consistent with all that is reliably known about the flood-frequency behaviour of the river. The paper takes as its main theme the search for information to strengthen a flood-risk estimate made from peak flows alone. Extra information comes in many forms, including documentary and monumental records of historical floods, and palaeological markers. Meteorological information is also useful, although rainfall rarity is difficult to assess objectively and can be a notoriously unreliable indicator of flood rarity. On highly permeable catchments, groundwater levels present additional data. Other types of information are relevant to judging hydrological similarity when the flood-frequency estimate derives from data pooled across several catchments. After highlighting information sources, the paper explores a second theme: that of consistency in flood-risk estimates. Following publication of the Flood estimation handbook, studies of flood risk are now using digital catchment data. Automated calculation methods allow estimates by standard methods to be mapped basin-wide, revealing anomalies at special sites such as river confluences. Such mapping presents collateral information of a new character. Can this be used to achieve flood-risk estimates that are coherent throughout a river basin? PMID:12804255

  14. Estimation in the Power Law.

    ERIC Educational Resources Information Center

    Thomas, Hoben

    1981-01-01

    Psychophysicists neglect to consider how error should be characterized in applications of the power law. Failures of the power law to agree with certain theoretical predictions are examined. A power law with lognormal product structure is proposed and approximately unbiased parameter estimates given for several common estimation situations.…

  15. Reinforcing flood-risk estimation.

    PubMed

    Reed, Duncan W

    2002-07-15

    Flood-frequency estimation is inherently uncertain. The practitioner applies a combination of gauged data, scientific method and hydrological judgement to derive a flood-frequency curve for a particular site. The resulting estimate can be thought fully satisfactory only if it is broadly consistent with all that is reliably known about the flood-frequency behaviour of the river. The paper takes as its main theme the search for information to strengthen a flood-risk estimate made from peak flows alone. Extra information comes in many forms, including documentary and monumental records of historical floods, and palaeological markers. Meteorological information is also useful, although rainfall rarity is difficult to assess objectively and can be a notoriously unreliable indicator of flood rarity. On highly permeable catchments, groundwater levels present additional data. Other types of information are relevant to judging hydrological similarity when the flood-frequency estimate derives from data pooled across several catchments. After highlighting information sources, the paper explores a second theme: that of consistency in flood-risk estimates. Following publication of the Flood estimation handbook, studies of flood risk are now using digital catchment data. Automated calculation methods allow estimates by standard methods to be mapped basin-wide, revealing anomalies at special sites such as river confluences. Such mapping presents collateral information of a new character. Can this be used to achieve flood-risk estimates that are coherent throughout a river basin?

  16. Quantity Estimation Of The Interactions

    SciTech Connect

    Gorana, Agim; Malkaj, Partizan; Muda, Valbona

    2007-04-23

    In this paper we present some considerations about quantity estimations, regarding the range of interaction and the conservations laws in various types of interactions. Our estimations are done under classical and quantum point of view and have to do with the interaction's carriers, the radius, the influence range and the intensity of interactions.

  17. The incredible shrinking covariance estimator

    NASA Astrophysics Data System (ADS)

    Theiler, James

    2012-05-01

    Covariance estimation is a key step in many target detection algorithms. To distinguish target from background requires that the background be well-characterized. This applies to targets ranging from the precisely known chemical signatures of gaseous plumes to the wholly unspecified signals that are sought by anomaly detectors. When the background is modelled by a (global or local) Gaussian or other elliptically contoured distribution (such as Laplacian or multivariate-t), a covariance matrix must be estimated. The standard sample covariance overfits the data, and when the training sample size is small, the target detection performance suffers. Shrinkage addresses the problem of overfitting that inevitably arises when a high-dimensional model is fit from a small dataset. In place of the (overfit) sample covariance matrix, a linear combination of that covariance with a fixed matrix is employed. The fixed matrix might be the identity, the diagonal elements of the sample covariance, or some other underfit estimator. The idea is that the combination of an overfit with an underfit estimator can lead to a well-fit estimator. The coefficient that does this combining, called the shrinkage parameter, is generally estimated by some kind of cross-validation approach, but direct cross-validation can be computationally expensive. This paper extends an approach suggested by Hoffbeck and Landgrebe, and presents efficient approximations of the leave-one-out cross-validation (LOOC) estimate of the shrinkage parameter used in estimating the covariance matrix from a limited sample of data.

  18. Revisiting a Classic Study of the Molecular Clock.

    PubMed

    Robinson, Lauren M; Boland, Joseph R; Braverman, John M

    2016-03-01

    A constant rate of molecular evolution among homologous proteins and across lineages is known as the molecular clock. This concept has been useful for estimating divergence times. Here, we revisit a study by Richard Dickerson (J Mol Evol 1:26-45, 1971), wherein he provided striking visual evidence for a constant rate of amino acid changes among various evolutionary branch points. Dickerson's study is commonly cited as support of the molecular clock and a figure from it is often reproduced in textbooks. Since its publication, however, there have been updates made to dates of common ancestors based on the fossil record that should be considered. Additionally, collecting the accession numbers and carefully outlining Dickerson's methods serves as a resource to students of the molecular clock hypothesis.

  19. Molecular assembly of superquenchers in signaling molecular interactions.

    PubMed

    Yang, Chaoyong James; Lin, Hui; Tan, Weihong

    2005-09-21

    We have designed a novel molecular assembly of quencher molecules to form superquenchers with excellent quenching efficiency. The superquencher can be engineered as desired by assembling different types and different numbers of quencher molecules. By labeling a superquencher to a molecular beacon, a 320-fold enhancement of fluorescent signal was achieved, compared to about 14-fold from a molecular beacon prepared with the same monomer quencher. Our molecular assembly approach can effectively improve the sensitivity of a variety of fluorescent assays and can be widely useful for molecular interaction studies.

  20. Robust and intelligent bearing estimation

    SciTech Connect

    Claassen, J.P.

    1998-07-01

    As the monitoring thresholds of global and regional networks are lowered, bearing estimates become more important to the processes which associate (sparse) detections and which locate events. Current methods of estimating bearings from observations by 3-component stations and arrays lack both accuracy and precision. Methods are required which will develop all the precision inherently available in the arrival, determine the measurability of the arrival, provide better estimates of the bias induced by the medium, permit estimates at lower SNRs, and provide physical insight into the effects of the medium on the estimates. Initial efforts have focused on 3-component stations since the precision is poorest there. An intelligent estimation process for 3-component stations has been developed and explored. The method, called SEE for Search, Estimate, and Evaluation, adaptively exploits all the inherent information in the arrival at every step of the process to achieve optimal results. In particular, the approach uses a consistent and robust mathematical framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, and to withdraw metrics helpful in choosing the best estimate(s) or admitting that the bearing is immeasurable. The approach is conceptually superior to current methods, particular those which rely on real values signals. The method has been evaluated to a considerable extent in a seismically active region and has demonstrated remarkable utility by providing not only the best estimates possible but also insight into the physical processes affecting the estimates. It has been shown, for example, that the best frequency at which to make an estimate seldom corresponds to the frequency having the best detection SNR and sometimes the best time interval is not at the onset of the signal. The method is capable of measuring bearing dispersion, thereby withdrawing the bearing bias as a function of frequency