Science.gov

Sample records for molecular mechanics program

  1. Molecular mechanisms underlying the fetal programming of adult disease.

    PubMed

    Vo, Thin; Hardy, Daniel B

    2012-08-01

    Adverse events in utero can be critical in determining quality of life and overall health. It is estimated that up to 50 % of metabolic syndrome diseases can be linked to an adverse fetal environment. However, the mechanisms linking impaired fetal development to these adult diseases remain elusive. This review uncovers some of the molecular mechanisms underlying how normal physiology may be impaired in fetal and postnatal life due to maternal insults in pregnancy. By understanding the mechanisms, which include epigenetic, transcriptional, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS), we also highlight how intervention in fetal and neonatal life may be able to prevent these diseases long-term.

  2. The pDynamo Program for Molecular Simulations using Hybrid Quantum Chemical and Molecular Mechanical Potentials.

    PubMed

    Field, Martin J

    2008-07-01

    The pDynamo program has been developed for the simulation of molecular systems using hybrid quantum chemical (QC) and molecular mechanical (MM) potentials. pDynamo is written in a mixture of the computer languages Python and C and is a successor to the previous version of Dynamo, now denoted fDynamo, that was written in Fortran 90 (J. Comput. Chem. 2000, 21, 1088). The current version of Dynamo has a similar range of functionality to the older one but extends it in some significant ways, including the addition of a density functional theory QC capability. This paper gives a general description of pDynamo and outlines some of the advantages and disadvantages that have been encountered in switching computer languages. Some technical aspects of the implementation of pDynamo's algorithms are also discussed and illustrated with the results of example calculations. pDynamo is available on the Web at the address http://www.pdynamo.org and is released under the CeCILL license which is equivalent to the GNU general public license but conforms to the principles of French law.

  3. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.

    PubMed

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu

    2017-03-27

    A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).

  4. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE PAGES

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.; ...

    2017-02-23

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  5. Cisplatin nephrotoxicity: molecular mechanisms

    PubMed Central

    Hanigan, Marie H.; Devarajan, Prasad

    2007-01-01

    Summary Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of several human malignancies. The efficacy of cisplatin is dose dependent, but the significant risk of nephrotoxicity frequently hinders the use of higher doses to maximize its antineoplastic effects. Several advances in our understanding of the biochemical and molecular mechanisms underlying cisplatin nephrotoxicity have recently emerged, and are reviewed in this article. Evidence is presented for distinct mechanisms of cisplatin toxicity in actively dividing tumor cells versus the normally quiescent renal proximal tubular epithelial cells. The unexpected role of gamma-glutamyl transpeptidase in cisplatin nephrotoxicity is elucidated. Recent studies demonstrating the ability of proximal tubular cells to metabolize cisplatin to a nephrotoxin are reviewed. The evidence for apoptosis as a major mechanism underlying cisplatin-induced renal cell injury is presented, along with the data exploring the role of specific intracellular pathways that may mediate the programmed cell death. The information gleaned from this review may provide critical clues to novel therapeutic interventions aimed at minimizing cisplatin-induced nephrotoxicity while enhancing its antineoplastic efficacy. PMID:18185852

  6. DUPLEX: A molecular mechanics program in torsion angle space for computing structures of DNA and RNA

    SciTech Connect

    Hingerty, B.E.

    1992-07-01

    DUPLEX produces energy minimized structures of DNA and RNA of any base sequence for single and double strands. The smallest subunits are deoxydinucleoside monophosphates, and up to 12 residues, single or double stranded can be treated. In addition, it can incorporate NMR derived interproton distances an constraints in the minimizations. Both upper and lower bounds for these distances can be specified. The program has been designed to run on a UNICOS Cray supercomputer, but should run, albeit slowly, on a laboratory computer such as a VAX or a workstation.

  7. Molecular mechanisms of neurite extension.

    PubMed Central

    Valtorta, F; Leoni, C

    1999-01-01

    The extension of neurites is a major task of developing neurons, requiring a significant metabolic effort to sustain the increase in molecular synthesis necessary for plasma membrane expansion. In addition, neurite extension involves changes in the subsets of expressed proteins and reorganization of the cytomatrix. These phenomena are driven by environmental cues which activate signal transduction processes as well as by the intrinsic genetic program of the cell. The present review summarizes some of the most recent progress made in the elucidation of the molecular mechanisms underlying these processes. PMID:10212488

  8. Molecular mechanisms in gliomagenesis.

    PubMed

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    Glioma, and in particular high-grade astrocytoma termed glioblastoma multiforme (GBM), is the most common primary tumor of the brain. Primarily because of its diffuse nature, there is no effective treatment for GBM, and relatively little is known about the processes by which it develops. Therefore, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways. The expression of several of the components of these signaling cascades has been found altered in GBM, and recent data indicate that combinations of mutations in these pathways may contribute to GBM formation, although the exact mechanisms are still to be uncovered. Use of novel techniques including large-scale genomics and proteomics in combination with relevant mouse models will most likely provide novel insights into the molecular mechanisms underlying glioma formation and will hopefully lead to development of treatment modalities for GBM.

  9. Molecular mechanisms of etoposide

    PubMed Central

    Montecucco, Alessandra; Zanetta, Francesca; Biamonti, Giuseppe

    2015-01-01

    Etoposide derives from podophyllotoxin, a toxin found in the American Mayapple. It was first synthesized in 1966 and approved for cancer therapy in 1983 by the U.S. Food and Drug Administration (Hande, 1998[25]). Starting from 1980s several studies demonstrated that etoposide targets DNA topoisomerase II activities thus leading to the production of DNA breaks and eliciting a response that affects several aspects of cell metabolisms. In this review we will focus on molecular mechanisms that account for the biological effect of etoposide. PMID:26600742

  10. Understanding molecular structure from molecular mechanics.

    PubMed

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  11. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  12. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-16

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  13. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  14. Molecular mechanisms of carcinogenesis

    SciTech Connect

    Hall, E.J.

    1997-03-01

    The possibility that chromosomal changes are responsible for neoplasia was proposed in the early years of this century. A combination of improved cytogenetics and the advent of recombinant technology has settled the issue. As recently as 20 years ago, however, the genetic and molecular basis of familiar predisposition to cancer were a mystery, and it is only in the last few years that light has been shed on a few specific types of malignancies. As the genetic basis of human cancer had been documented, a number of genes have been identified as functioning either as oncogenes which act in a dominant fashion to promote tumor growth when mutated, or as tumor suppressor genes which act in a recessive fashion.

  15. Molecular Mechanisms of Parturition

    PubMed Central

    1997-01-01

    The initial signal for triggering human parturition might be fetal but of trophoblastic origin. Concomitantly, this placental signal would have as its target not only the uterus but also the fetus by activating its hypothalamo-pituitary-adrenocortical axis. The latter would represent a second fetal signal which, at the fetomaternal interface, would amplify and define in time the mechanisms responsible for the onset of labor, implying changes in the myometrial and cervical extracellular matrix associated with the accession of the contractile phenotype for myometrial cells. At each phase of these processes in the utero-feto-placental system, the nature of these signals remains to be identified. Is there a single substance, or rather, and more likely, a combination of several? We appear to be in the presence of dynamic systems of a neuro-immuno-hormonal type which are difficult to describe. Nevertheless, steroid hormones appear to coordinate their successive equilibriums until they become irreversible. Such irreversibility constitutes the essential sign of parturition. PMID:18476161

  16. Heavy Equipment Mechanic Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    Designed to train an entry-level mechanic, this heavy equipment mechanic program guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a heavy equipment mechanic program. The general information section contains the following: purpose and objectives; program description,…

  17. Molecular Mechanism of Water Evaporation.

    PubMed

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-04

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  18. Molecular Mechanisms of Microbially Facilitated Corrosion

    DTIC Science & Technology

    1986-10-23

    AD-A173 862 MOLECULAR MECHANISMS OF MICR38IRLLY FACILITATED 1/2 CORROSION(U) TENNESSEE UNIV K~NOXVILLE INST FOR APPLIED MICROBIOLOGY D C WHITE 23 OCT...of Tennessee 10515 Research Drive, Building # 1, Suite 300 Knoxville, Tennessee 37932-2567 N 615-675-9520 October 23, 1986 00 Dr. Eli D . Schmell ELECTE...V) Program Manager, Molecular Biology NOV 4 NO8 Code 041M - Office of Naval Research 800 North Quincy Street D Arlington, VA 22217-5000. Dear Eli

  19. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  20. Molecular mechanisms of dendrite morphogenesis

    PubMed Central

    Arikkath, Jyothi

    2012-01-01

    Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. PMID:23293584

  1. Molecular Mechanisms of Nickel Allergy

    PubMed Central

    Saito, Masako; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorption and excretion of various metals, in particular nickel, is discussed to further understand the pathogenesis of metal allergy. PMID:26848658

  2. Heavy Equipment Mechanic Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the heavy equipment mechanic program in Georgia. The standards are divided into 12 categories: foundations (philosophy, purpose, goals, program objectives, availability, evaluation); admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning);…

  3. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  4. [Cellular and molecular mechanisms of memory].

    PubMed

    Laroche, Serge

    2010-01-01

    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  5. Molecular mechanisms of antibiotic resistance.

    PubMed

    Wright, Gerard D

    2011-04-14

    Over the past decade, resistance to antibiotics has emerged as a crisis of global proportion. Microbes resistant to many and even all clinically approved antibiotics are increasingly common and easily spread across continents. At the same time there are fewer new antibiotic drugs coming to market. We are reaching a point where we are no longer able to confidently treat a growing number of bacterial infections. The molecular mechanisms of drug resistance provide the essential knowledge on new drug development and clinical use. These mechanisms include enzyme catalyzed antibiotic modifications, bypass of antibiotic targets and active efflux of drugs from the cell. Understanding the chemical rationale and underpinnings of resistance is an essential component of our response to this clinical challenge.

  6. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  7. Molecular Mechanisms of Synaptic Specificity

    PubMed Central

    Margeta, Milica A.; Shen, Kang

    2011-01-01

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity. PMID:19969086

  8. Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning : A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory...AD_________________ Award Number: W81XWH-05-1-0622 TITLE: Molecular Mechanisms of Par-4-Induced...SUBTITLE 5a. CONTRACT NUMBER Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0622 5c. PROGRAM

  9. Molecular mechanisms of temperature adaptation

    PubMed Central

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a ‘choir’ of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  10. Molecular Mechanisms of Anthracycline Activity

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni Luca; Zunino, Franco

    On the basis of evidence that anthracyclines are DNA intercalating agents and DNA is the primary target, a large number of analogs and related intercalators have been developed. However, doxorubicin and closely related anthracyclines still remain among the most effective antitumor agents. Multiple mechanisms have been proposed to explain their efficacy. They include inhibition of DNA-dependent functions, free radical formation, and membrane interactions. The primary mechanism of action is now ascribed to drug interference with the function of DNA topoisomerase II. The stabilization of the topoisomerase-mediated cleavable complex results in a specific type of DNA damage (i.e., double-strand protein-associated DNA breaks). The drug-stabilized cleavable complex is a potentially reversible molecular event and its persistence, as a consequence of strong DNA binding, may be recognized as an apoptotic stimulus. Indirect evidence supports the notion that the bioreductive processes of the quinone moiety generating the semiquinone radical with concomitant production of reactive oxygen species may contribute to the drug effects. The cellular defense mechanisms and response to genotoxic/cytotoxic stress appear to be critical determinants of the tumor sensitivity to anthracyclines.

  11. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    PubMed

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors.

  12. Molecular mechanisms of cryptococcal meningitis.

    PubMed

    Liu, Tong-Bao; Perlin, David S; Xue, Chaoyang

    2012-01-01

    Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed.

  13. Molecular mechanisms of RNA interference.

    PubMed

    Wilson, Ross C; Doudna, Jennifer A

    2013-01-01

    Small RNA molecules regulate eukaryotic gene expression during development and in response to stresses including viral infection. Specialized ribonucleases and RNA-binding proteins govern the production and action of small regulatory RNAs. After initial processing in the nucleus by Drosha, precursor microRNAs (pre-miRNAs) are transported to the cytoplasm, where Dicer cleavage generates mature microRNAs (miRNAs) and short interfering RNAs (siRNAs). These double-stranded products assemble with Argonaute proteins such that one strand is preferentially selected and used to guide sequence-specific silencing of complementary target mRNAs by endonucleolytic cleavage or translational repression. Molecular structures of Dicer and Argonaute proteins, and of RNA-bound complexes, have offered exciting insights into the mechanisms operating at the heart of RNA-silencing pathways.

  14. Autophagy: cellular and molecular mechanisms.

    PubMed

    Glick, Danielle; Barth, Sandra; Macleod, Kay F

    2010-05-01

    Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease.

  15. Training Program in the Molecular Basis of Breast Cancer Research

    DTIC Science & Technology

    1996-10-01

    growth, differentiation and molecular genetics. During the reporting period, research by the six students supported by the Iraining program resulted...physicians studying different aspects of breast cancer and cancer therapy, as well as fundamental mechanisms of cell growth, differentiation and molecular...an in vitro culture system preadipocyte cells will differentiate into adipocytes in response to a specific hormonal stimuli. This terminal

  16. Molecular toxicity mechanism of nanosilver.

    PubMed

    McShan, Danielle; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O(2) and other molecules in the environmental and biological systems leading to the release of Ag(+), a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag(+). In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag(+) inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione), binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1) the toxic contribution from the ionic form versus the nano-form; (2) key enzymes and signaling pathways responsible for the toxicity; and (3) effect of coexisting molecules on the toxicity and its relationship to surface coating.

  17. Molecular mechanisms of statin intolerance

    PubMed Central

    Franczyk, Beata; Toth, Peter P.; Rysz, Jacek; Banach, Maciej

    2016-01-01

    Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose. PMID:27279860

  18. Molecular mechanisms of drug addiction.

    PubMed

    Nestler, Eric J

    2004-01-01

    Regulation of gene expression is one mechanism by which drugs of abuse can induce relatively long-lasting changes in the brain to cause a state of addiction. Here, we focus on two transcription factors, CREB (cAMP response element binding protein) and DeltaFosB, which contribute to drug-induced changes in gene expression. Both are activated in the nucleus accumbens, a major brain reward region, but mediate different aspects of the addicted state. CREB mediates a form of tolerance and dependence, which dampens an individual's sensitivity to subsequent drug exposure and contributes to a negative emotional state during early phases of withdrawal. In contrast, DeltaFosB mediates a state of relatively prolonged sensitization to drug exposure and may contribute to the increased drive and motivation for drug, which is a core symptom of addictive disorders. A major goal of current research is to identify the many target genes through which CREB and DeltaFosB mediate these behavioral states. In addition, future work needs to understand how CREB and DeltaFosB, acting in concert with numerous other drug-induced molecular changes in nucleus accumbens and many other brain regions, interact with one another to produce the complex behavioral phenotype that defines addiction.

  19. A Review of the Molecular Mechanisms of Chemically-Induced Neoplasia in Rat and Mouse Models in National Toxicology Program Bioassays and Their Relevance to Human Cancer

    PubMed Central

    Hoenerhoff, Mark J.; Hong, Hue Hua; Ton, Tai-Vu; Lahousse, Stephanie A.; Sills, Robert C.

    2012-01-01

    Tumor response in the B6C3F1 mouse, F344 rat, and other animal models following exposure to various compounds provides evidence that people exposed to these or similar compounds may be at risk for developing cancer. Although tumors in rodents and humans are often morphologically similar, underlying mechanisms of tumorigenesis are often unknown and may be different between the species. Therefore, the relevance of an animal tumor response to human health would be better determined if the molecular pathogenesis were understood. The underlying molecular mechanisms leading to carcinogenesis are complex and involve multiple genetic and epigenetic events and other factors. To address the molecular pathogenesis of environmental carcinogens, we examine rodent tumors (e.g., lung, colon, mammary gland, skin, brain, mesothelioma) for alterations in cancer genes and epigenetic events that are associated with human cancer. Our NTP studies have identified several genetic alterations in chemically induced rodent neoplasms that are important in human cancer. Identification of such alterations in rodent models of chemical carcinogenesis caused by exposure to environmental contaminants, occupational chemicals, and other compounds lends further support that they are of potential human health risk. These studies also emphasize the importance of molecular evaluation of chemically induced rodent tumors for providing greater public health significance for NTP evaluated compounds. PMID:19846892

  20. Molecular mechanisms of synaptic plasticity and memory.

    PubMed

    Elgersma, Y; Silva, A J

    1999-04-01

    To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.

  1. Leaching Mechanisms Program. Annual report

    SciTech Connect

    Dougherty, D.; Colombo, P.; Doty, R.; Fuhrmann, M.

    1984-09-01

    The primary goal of this work is to determine the leaching mechanisms of a variety of matrix materials either in use or being considered for the solidification of low-level radioactive wastes by defense and commercial waste generators. Since this program is new and did not formally begin until May of FY 84, the results reported here are few and preliminary. Efforts were concentrated in the following activities: (1) The literature search for leaching data and proposed leaching models and mechanisms for low-level waste. (2) Data base development for leaching data being compiled from the literature and from the leaching experiments in this program. (3) The selection of solidification agents for the experimental part of the program. (4) Fabrication of leach samples and initiation of leach testing. 28 references, 9 figures, 4 tables.

  2. Polarization effects in molecular mechanical force fields

    PubMed Central

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  3. Molecular Mechanisms of Nitroarene Degradation

    DTIC Science & Technology

    2002-09-17

    nitrobenzene with the concomitant formation of catechol . The analogous enzyme system in Pseudomonas JS42 oxidizes 2-nitrotoluene to 3-methylcatechol and...2NTDO) system from Pseudomonas JS42. The enzymes catalyzing the initial oxidations of nitrobenzene and 2-nitrotoluene belong to a family of...color and the native molecular weight (35,000) showed that the active enzyme was a monomer. The N-terminal sequence of the recombinant reductase was

  4. Molecular Mechanisms and Apoptosis in Pdt

    NASA Astrophysics Data System (ADS)

    Krammer, Barbara; Verwanger, Thomas

    2010-04-01

    Photodynamic Therapy (PDT) is a successful new therapy for malignant and non-malignant diseases. It is based on the activation of a photosensitizing dye by visible light in the target tissue, followed by production of cytotoxic substances. The article gives a short overview on the field of PDT with main focus on molecular mechanisms and apoptosis. It includes photodynamic principles, clinical application and procedures, biological effects, molecular mechanisms of damage processing and apoptosis.

  5. Molecular mechanisms of antibiotic resistance.

    PubMed

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.

  6. Cellular and molecular mechanisms in kidney fibrosis

    PubMed Central

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  7. Molecular Mechanisms of Bone Metastasis.

    PubMed

    Weidle, Ulrich H; Birzele, Fabian; Kollmorgen, Gwendlyn; Rüger, Rüdiger

    2016-01-01

    Metastasis of breast and prostate cancer as well as multiple myeloma to the bones represents a significant medical problem. We herein discuss the molecular basis of the creation of pre-metastatic niches, the process of bone metastasis and the phenomenon of tumor dormancy in the bone marrow as well as its regulation. We describe the identification and validation of genes mediating bone metastasis by use of pre-clinical models of bone metastasis. Additionally, we discuss the role of small integrin binding N-linked glycoproteins (SIBLINGS), the chemokine/chemokine receptor CXCL12/CXCR4 pathway and the role of micro RNAs (miRNAs) as mediators of bone metastasis. Finally, we summarize clinical achievements for the treatment of bone metastases.

  8. Molecular mechanisms in neurologic disorders.

    PubMed

    Cunniff, C

    2001-09-01

    Although many pediatric neurologic disorders, such as epilepsy and mental retardation, are the result of a combination of genetic and environmental factors, many others are the result of mutations of single genes. Most of these single gene traits are inherited in autosomal dominant, autosomal recessive, or X-linked fashion. The diversity of mutations that are responsible for these diseases produces variability in phenotypic expression. However, there are other important features of many neurologic disorders that cannot be explained by standard models of mendelian inheritance. This review focuses on recently described mechanisms, such as genomic imprinting, germline mosaicism, mitochondrial inheritance, and triplet repeat expansion. The diagnostic evaluation, prognostic significance, and recurrence risk for specific neurogenetic disorders is correlated with these underlying disease mechanisms.

  9. Molecular implementation of simple logic programs

    NASA Astrophysics Data System (ADS)

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-11-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  10. [Ontogenetic clock: molecular-genetic mechanism].

    PubMed

    Pisaruk, A V

    2010-01-01

    Proposed is a hypothesis of the mechanism providing for the cell to count out the time of life and to change (according to the set program) the expression of chromosomal genes in order to control ontogenesis ("ontogenetic clock"). This mechanism represents an autonomous molecular-genetic oscillator, which memorizes the number of cycles of own oscillations through cutting the terminal tau-segment of chrono-DNA using special restrictase. The latter is formed at this segment out of two sub-units (proteins) in each cycle of oscillator operation. These proteins are alternately synthesized on ribosomes, since each inhibits the synthesis of the other, thus ensuring successive binding of restrictase sub-units at the terminal segment of chrono-DNA and its single section in one cycle. In addition, each of these proteins is a repressor of own gene and activator of the gene of the other protein, thus ensuring efficiency and reliability of oscillator operation. The design of oscillator of ontogenetic clock is similar to that of circadian oscillator, but its frequency is not synchronized with the nature's physical rhythms and depends on body temperature. Therefore, it is physical rather than biological time that is measured. The chrono-DNA consists of short repetitive sequences of nucleotides (tau-segments) and temporal (regulatory) genes inserted over specified number of these segments. The shortening of chrono-DNA leads to uncovering the next gene and to its destruction by exonuclease. As a result, the synthesis of activator (repressor) stops and the expression of some chromosomal genes changes, initiating the next stage of ontogenesis.

  11. Molecular mechanisms and regulation of iron transport.

    PubMed

    Chung, Jayong; Wessling-Resnick, Marianne

    2003-04-01

    Iron homeostasis is primarily maintained through regulation of its transport. This review summarizes recent discoveries in the field of iron transport that have shed light on the molecular mechanisms of dietary iron uptake, pathways for iron efflux to and between peripheral tissues, proteins implicated in organellar transport of iron (particularly the mitochondrion), and novel regulators that have been proposed to control iron assimilation. The transport of both transferrin-bound and nontransferrin-bound iron to peripheral tissues is discussed. Finally, the regulation of iron transport is also considered at the molecular level, with posttranscriptional, transcriptional, and posttranslational control mechanisms being reviewed.

  12. Modelling the molecular mechanisms of aging.

    PubMed

    Mc Auley, Mark T; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M; Morgan, Amy E; Proctor, Carole J

    2017-02-28

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field.

  13. Pathogenesis and Molecular Mechanisms of Zika Virus.

    PubMed

    Nayak, Shriddha; Lei, Jun; Pekosz, Andrew; Klein, Sabra; Burd, Irina

    2016-09-01

    Zika virus (ZIKV) is one of the most important emerging viruses of 2016. A developing outbreak in the Americas has demonstrated an association between the virus and serious clinical manifestations, such as Guillain-Barré syndrome in adults and congenital malformations in infants born to infected mothers. Pathogenesis and mechanisms of neurologic or immune disease by ZIKV have not been clearly delineated. However, several pathways have been described to explain viral involvement in brain and immune system as well as other organ systems such as eye, skin, and male and female reproductive tracts. ZIKV activates toll-like receptor 3 and several pathways have been described to explain the mechanisms at a molecular level. The mechanism of microcephaly has been more difficult to demonstrate experimentally, likely due to the multifactorial and complex nature of the phenotype. This article provides an overview of existing literature on ZIKV pathogenicity and possible molecular mechanisms of disease as outlined to date.

  14. Modelling the molecular mechanisms of aging

    PubMed Central

    Mc Auley, Mark T.; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M.; Morgan, Amy E.

    2017-01-01

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field. PMID:28096317

  15. General Anesthetics and Molecular Mechanisms of Unconsciousness

    PubMed Central

    Forman, Stuart A.; Chin, Victor A.

    2013-01-01

    General anesthetic agents are unique in clinical medicine, because they are the only drugs used to produce unconsciousness as a therapeutic goal. In contrast to older hypotheses that assumed all general anesthetics produce their central nervous system effects through a common mechanism, we outline evidence that general anesthesia represents a number of distinct pharmacological effects that are likely mediated by different neural circuits, and perhaps via different molecular targets. Within the context of this neurobiological framework, we review recent molecular pharmacological and transgenic animal studies. These studies reveal that different groups of general anesthetics, which can be discerned based on their clinical features, produce unconsciousness via distinct molecular targets and therefore via distinct mechanisms. We further postulate that different types of general anesthetics selectively disrupt different critical steps (perhaps in different neuronal circuits) in the processing of sensory information and memory that results in consciousness. PMID:18617817

  16. Mechanisms and economy of molecular machines

    NASA Astrophysics Data System (ADS)

    Klumpp, Stefan

    2012-11-01

    Cells contain millions of biomolecules that function as molecular machines. This paper reviews aspects of the mechanisms of these machines (alternative pathways and cooperativity) as well as the economic principles of their use in cells. The focus is on the machines that process the genetic information, in particular RNA polymerases.

  17. Disease resistance: Molecular mechanisms and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  18. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  19. Mechanical transduction mechanisms of RecA-like molecular motors.

    PubMed

    Liao, Jung-Chi

    2011-12-01

    A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.

  20. Teratogenic effects of thalidomide: molecular mechanisms.

    PubMed

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2011-05-01

    Fifty years ago, prescription of the sedative thalidomide caused a worldwide epidemic of multiple birth defects. The drug is now used in the treatment of leprosy and multiple myeloma. However, its use is limited due to its potent teratogenic activity. The mechanism by which thalidomide causes limb malformations and other developmental defects is a long-standing question. Multiple hypotheses exist to explain the molecular mechanism of thalidomide action. Among them, theories involving oxidative stress and anti-angiogenesis have been widely supported. Nevertheless, until recently, the direct target of thalidomide remained elusive. We identified a thalidomide-binding protein, cereblon (CRBN), as a primary target for thalidomide teratogenicity. Our data suggest that thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting its ubiquitin ligase activity. In this review, we summarize the biology of thalidomide, focusing on the molecular mechanisms of its teratogenic effects. In addition, we discuss the questions still to be addressed.

  1. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  2. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    PubMed

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  3. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  4. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  5. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  6. Molecular Mechanisms of Inherited Demyelinating Neuropathies

    PubMed Central

    SCHERER, STEVEN S.; WRABETZ, LAWRENCE

    2008-01-01

    The past 15 years have witnessed the identification of more than 25 genes responsible for inherited neuropathies in humans, many associated with primary alterations of the myelin sheath. A remarkable body of work in patients, as well as animal and cellular models, has defined the clinical and molecular genetics of these illnesses and shed light on how mutations in associated genes produce the heterogeneity of dysmyelinating and demyelinating phenotypes. Here, we review selected recent developments from work on the molecular mechanisms of these disorders and their implications for treatment strategies. PMID:18803325

  7. Molecular mechanisms for proton transport in membranes.

    PubMed Central

    Nagle, J F; Morowitz, H J

    1978-01-01

    Likely mechanisms for proton transport through biomembranes are explored. The fundamental structural element is assumed to be continuous chains of hydrogen bonds formed from the protein side groups, and a molecular example is presented. From studies in ice, such chains are predicted to have low impedance and can function as proton wires. In addition, conformational changes in the protein may be linked to the proton conduction. If this possibility is allowed, a simple proton pump can be described that can be reversed into a molecular motor driven by an electrochemical potential across the membrane. PMID:272644

  8. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  9. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    PubMed

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  10. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  11. Molecular mechanisms of UV-induced apoptosis.

    PubMed

    Kulms, D; Schwarz, T

    2000-10-01

    Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation. UV-mediated apoptosis is a highly complex process in which different molecular pathways are involved. These include DNA damage, activation of the tumor suppressor gene p53, triggering of cell death receptors either directly by UV or by autocrine release of death ligands, mitochondrial damage and cytochrome C release. Detailed knowledge about the interplay between these pathways will increase our understanding of photocarcinogenesis. This review briefly discusses recent findings concerning the molecular mechanisms underlying UV-induced apoptosis.

  12. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  13. Molecular mechanisms of membrane interaction at implantation.

    PubMed

    Davidson, Lien M; Coward, Kevin

    2016-03-01

    Successful pregnancy is dependent upon the implantation of a competent embryo into a receptive endometrium. Despite major advancement in our understanding of reproductive medicine over the last few decades, implantation failure still occurs in both normal pregnancies and those created artificially by assisted reproductive technology (ART). Consequently, there is significant interest in elucidating the etiology of implantation failure. The complex multistep process of implantation begins when the developing embryo first makes contact with the plasma membrane of epithelial cells within the uterine environment. However, although this biological interaction marks the beginning of a fundamental developmental process, our knowledge of the intricate physiological and molecular processes involved remains sparse. In this synopsis, we aim to provide an overview of our current understanding of the morphological changes which occur to the plasma membrane of the uterine endothelium, and the molecular mechanisms that control communication between the early embryo and the endometrium during implantation. A multitude of molecular factors have been implicated in this complex process, including endometrial integrins, extracellular matrix molecules, adhesion molecules, growth factors, and ion channels. We also explore the development of in vitro models for embryo implantation to help researchers investigate mechanisms which may underlie implantation failure. Understanding the precise molecular pathways associated with implantation failure could help us to generate new prognostic/diagnostic biomarkers, and may identify novel therapeutic targets.

  14. Molecular Mechanism of Biological Proton Transport

    SciTech Connect

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  15. Cellular and Molecular Mechanisms of Pain

    PubMed Central

    Basbaum, Allan I.; Bautista, Diana M.; Scherrer, Grégory; Julius, David

    2009-01-01

    The nervous system detects and interprets a wide range of thermal and mechanical stimuli as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain. PMID:19837031

  16. [Cellular and molecular mechanisms of memory].

    PubMed

    Laroche, S

    2001-01-01

    There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  17. Molecular Mechanisms of Right Ventricular Failure

    PubMed Central

    Reddy, Sushma; Bernstein, Daniel

    2015-01-01

    An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692

  18. Molecular mechanisms of optic axon guidance

    NASA Astrophysics Data System (ADS)

    Inatani, Masaru

    2005-12-01

    Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.

  19. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  20. Molecular mechanisms of chemoresistance in gastric cancer

    PubMed Central

    Shi, Wen-Jia; Gao, Jin-Bo

    2016-01-01

    Gastric cancer is the fourth most common cancer and the second leading cause of cancer deaths worldwide. Chemotherapy is one of the major treatments for gastric cancer, but drug resistance limits the effectiveness of chemotherapy, which results in treatment failure. Resistance to chemotherapy can be present intrinsically before the administration of chemotherapy or it can develop during chemotherapy. The mechanisms of chemotherapy resistance in gastric cancer are complex and multifactorial. A variety of factors have been demonstrated to be involved in chemoresistance, including the reduced intracellular concentrations of drugs, alterations in drug targets, the dysregulation of cell survival and death signaling pathways, and interactions between cancer cells and the tumor microenvironment. This review focuses on the molecular mechanisms of chemoresistance in gastric cancer and on recent studies that have sought to overcome the underlying mechanisms of chemoresistance. PMID:27672425

  1. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  2. Molecular model with quantum mechanical bonding information.

    PubMed

    Bohórquez, Hugo J; Boyd, Russell J; Matta, Chérif F

    2011-11-17

    The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.

  3. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  4. Molecular mechanics conformational analysis of tylosin

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  5. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  6. Molecular Mechanisms Involved in Schwann Cell Plasticity

    PubMed Central

    Boerboom, Angélique; Dion, Valérie; Chariot, Alain; Franzen, Rachelle

    2017-01-01

    Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair. PMID:28261057

  7. Molecular mechanism of Endosulfan action in mammals.

    PubMed

    Sebastian, Robin; Raghavan, Sathees C

    2017-03-01

    Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas of active exposure. However, the molecular insights to its mechanism of action remain poorly understood. In two recent studies, our group investigated the physiological and molecular aspects of endosulfan action using in vitro, ex vivo and in vivo analyses. The results showed that apart from reducing fertility levels in male animals, Endosulfan induced DNA damage that triggers compromised DNA damage response leading to undesirable processing of broken DNA ends. In this review, pesticide use especially of Endosulfan in the Indian scenario is summarized and the importance of our findings, especially the rationalized use of pesticides in the future, is emphasized.

  8. Modeling molecular mechanisms in the axon

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2016-12-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  9. Molecular Mechanisms of Sex Determination in Reptiles

    PubMed Central

    Rhen, T.; Schroeder, A.

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques. PMID:20145384

  10. Molecular mechanisms of sex determination in reptiles.

    PubMed

    Rhen, T; Schroeder, A

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques.

  11. Modeling molecular mechanisms in the axon

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  12. Support of the IMA summer program molecular biology. Final report

    SciTech Connect

    Friedman, A.

    1995-08-01

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The mathematical sciences accompany and support much of the progress achieved by experiment and computation, as well as provide insight into geometric and topological properties of biomolecular structure and processes. The 4 week program at the IMA brought together biologists and mathematicians leading researchers, postdocs, and graduate students. It focused on genetic mapping and DNA sequencing, followed by biomolecular structure and dynamics. High-resolution linkage maps of genetic marker were discussed extensively in relation to the human genome project. The next level of DNA mapping is physical mapping, consisting of overlapping clones spanning the genome. These maps are extremely useful for genetic analysis. They provide the material for less redundant sequencing and for detailed searches for a gene among other things. This topic was also extensively studied by the participants. From there, the program moved to consider protein structure and dynamics; this is a broad field with a large array of interesting topics. It is of key importance in answering basic scientific questions about the nature of all living organisms, and has practical biomedical applications. The major subareas of structure prediction and classification, techniques and heuristics for the simulation of protein folding, and molecular dynamics provide a rich problem domain where mathematics can be helpful in analysis, modeling, and simulation. One of the important problems in molecular biology is the three-dimensional structure of proteins, DNA and RNA in the cell, and the relationship between structure and function. The program helped increased the understanding of the topology of cellular DNA, RNA and proteins and the various life-sustaining mechanisms used by the cell which modify this molecular topology.

  13. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  14. Quantum Mechanical Studies of Molecular Hyperpolarizabilities.

    DTIC Science & Technology

    1980-04-30

    exponent , reflects the screening of an electron in a given orbital by the interior electrons in the atom or molecule. In practice, when studying...Basis sets have evolved over the years in molecular quantum mechanics until sets of orbital exponents for the different atoms composing the molecule have...and R. P. Hurst , J. Chem. Phys. 46, 2356 (1967); S. P. LickmannI and J. W. Moskowitz, J. Chem. Phys. 54, 3622 7T971). 26. T. H. Dunning, J. Chem. Phys

  15. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    SciTech Connect

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  16. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.

  17. Molecular mechanics of tropocollagen-hydroxyapatite biomaterials

    NASA Astrophysics Data System (ADS)

    Dubey, Devendra Kumar

    Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage. For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength

  18. Molecular mechanisms of glucocorticoid receptor signaling.

    PubMed

    Labeur, Marta; Holsboer, Florian

    2010-01-01

    This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR). Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glu-cocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  19. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  20. Molecular mechanisms of phase change in locusts.

    PubMed

    Wang, Xianhui; Kang, Le

    2014-01-01

    Phase change in locusts is an ideal model for studying the genetic architectures and regulatory mechanisms associated with phenotypic plasticity. The recent development of genomic and metabolomic tools and resources has furthered our understanding of the molecular basis of phase change in locusts. Thousands of phase-related genes and metabolites have been highlighted using large-scale expressed sequence tags, microarrays, high-throughput transcriptomic sequences, or metabolomic approaches. However, only several key factors, including genes, metabolites, and pathways, have a critical role in phase transition in locusts. For example, CSP (chemosensory protein) and takeout genes, the dopamine pathway, protein kinase A, and carnitines were found to be involved in the regulation of behavioral phase change and gram-negative bacteria-binding proteins in prophylaxical disease resistance of gregarious locusts. Epigenetic mechanisms including small noncoding RNAs and DNA methylation have been implicated. We review these new advances in the molecular basis of phase change in locusts and present some challenges that need to be addressed.

  1. Hyperinsulinemic Hypoglycemia – The Molecular Mechanisms

    PubMed Central

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult’s insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion. PMID:27065949

  2. Molecular inhibitory mechanism of tricin on tyrosinase

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  3. Cellular and molecular mechanisms of dental nociception.

    PubMed

    Chung, G; Jung, S J; Oh, S B

    2013-11-01

    Due, in part, to the unique structure of the tooth, dental pain is initiated via distinct mechanisms. Here we review recent advances in our understanding of inflammatory tooth pain and discuss 3 hypotheses proposed to explain dentinal hypersensitivity: The first hypothesis, supported by functional expression of temperature-sensitive transient receptor potential channels, emphasizes the direct transduction of noxious temperatures by dental primary afferent neurons. The second hypothesis, known as hydrodynamic theory, attributes dental pain to fluid movement within dentinal tubules, and we discuss several candidate cellular mechanical transducers for the detection of fluid movement. The third hypothesis focuses on the potential sensory function of odontoblasts in the detection of thermal or mechanical stimuli, and we discuss the accumulating evidence that supports their excitability. We also briefly update on a novel strategy for local nociceptive anesthesia via nociceptive transducer molecules in dental primary afferents with the potential to specifically silence pain fibers during dental treatment. Further understanding of the molecular mechanisms of dental pain would greatly enhance the development of therapeutics that target dental pain.

  4. Molecular Mechanisms Regulating Macrophage Response to Hypoxia

    PubMed Central

    Rahat, Michal A.; Bitterman, Haim; Lahat, Nitza

    2011-01-01

    Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ. PMID:22566835

  5. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation

    NASA Astrophysics Data System (ADS)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-01

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  6. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach.

    PubMed

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-03-28

    A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.

  7. Molecular Mechanisms of Placebo Responses In Humans

    PubMed Central

    Peciña, Marta; Zubieta, Jon-Kar

    2014-01-01

    Endogenous opioid and non-opioid mechanisms [e.g. dopamine (DA), endocannabinoids (eCB)] have been implicated in the formation of placebo analgesic effects, with initial reports dating back three-decades. Besides the perspective that placebo effects confound randomized clinical trials (RCTs), the information so far acquired points to neurobiological systems that when activated by positive expectations and maintained through conditioning and reward learning are capable of inducing physiological changes that lead to the experience of analgesia and improvements in emotional state. Molecular neuroimaging techniques with positron emission tomography (PET) and the selective μ-opioid and D2/3 radiotracers [11C]carfentanil and [11C]raclopride have significantly contributed to our understanding of the neurobiological systems involved in the formation of placebo effects. This line of research has described neural and neurotransmitter networks implicated in placebo responses and provided the technical tools to examine inter-individual differences in the function of placebo responsive mechanisms, and potential surrogates (biomarkers). As a consequence, the formation of biological placebo effects is now being linked to the concept of resiliency mechanisms, partially determined by genetic factors, and uncovered by the cognitive emotional integration of the expectations created by the therapeutic environment and its maintenance through learning mechanisms. Further work needs to extend this research into clinical conditions where the rates of placebo responses are high and its neurobiological mechanisms have been largely unexplored (e.g. mood and anxiety disorders, persistent pain syndromes, or even Parkinson Disease and multiple sclerosis). The delineation of these processes within and across diseases would point to biological targets that have not been contemplated in traditional drug development. PMID:25510510

  8. Visualisation in the SPROUT molecular design program.

    PubMed

    Johnson, A P; Zsoldos, Z

    1996-01-01

    SPROUT is an interactive computer system for structure based molecular design. The system consists of several modules that address the different subproblems of structure based drug design. This paper describes the visualisation techniques applied in the program: the display of the novel (geometric region) representation of the interaction sites and the molecular surface display based on a 3D grid representation of the cavity. The hydrogen bonding regions are represented by set operations (subtraction and intersection) of simple spherical and conical 3D objects (with given radii and opening angle) Some complex hydrogen bonding regions are represented by intersections of six or more basic objects. A method for calculating a triangular mesh representation (with normal vectors) of the analytical surfaces of the objects, that have sharp edges and corners because of the intersections, is presented in the paper. The geometric parameters of the interaction regions can be changed interactively in which case the surface display is updated real-time. The volume of space that is available for ligand generation (the cavity of the receptor site) is represented on a 3D grid within SPROUT. The surface of the available space is visualised using an algorithm presented in the paper, that generates a polygonial mesh of the grid points. The grid is also used to cut out stericaly forbidden parts of the interaction site regions. The surface of the reduced object is also visualised using further sphere subtractions. The presented algorithms are fast, aplicable in interactive visualisation programs. Result images of the rendering of the surfaces, calculated by the algorithms, are demonstrated on examples taken from applications of SPROUT to practical ligand design problems.

  9. Molecular Mechanisms of DNA Replication Checkpoint Activation

    PubMed Central

    Recolin, Bénédicte; van der Laan, Siem; Tsanov, Nikolay; Maiorano, Domenico

    2014-01-01

    The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability. PMID:24705291

  10. Sarcopenia: monitoring, molecular mechanisms, and physical intervention.

    PubMed

    Zembroń-Łacny, A; Dziubek, W; Rogowski, Ł; Skorupka, E; Dąbrowska, G

    2014-01-01

    According to European Working Group on Sarcopenia in Older People (EWGSOP) sarcopenia includes both a loss of muscle strength and a decline in functional quality in addition to the loss of muscle protein mass. In order to develop strategies to prevent and treat sarcopenia, the risk factors and causes of sarcopenia must be identified. Age-related muscle loss is characterized by the contribution of multiple factors, and there is growing evidence for a prominent role of low-grade chronic inflammation in sarcopenia. The elderly who are less physically active are more likely to have lower skeletal muscle mass and strength and are at increased risk of developing sarcopenia. Resistance training added to aerobic exercise or high-intensity interval training promote numerous changes in skeletal muscle, many of which may help to prevent or reverse sarcopenia. In this review, we provided current information on definition and monitoring, molecular mechanisms, and physical intervention to counteract sarcopenia.

  11. Molecular mechanics calculations on muscarinic agonists

    NASA Astrophysics Data System (ADS)

    Kooijman, Huub; Kanters, Jan A.; Kroon, Jan

    1990-10-01

    Molecular mechanics calculations have been performed on the conformation freedom with respect to the torsion angles OCCN and COCC of acetylcholine, α( R-methylacetylcholine,β( S)-methylacetylcholine, α( R),β( S)-diemthylacetylcholine and muscarine, in order to obtain information about the active conformation and its interaction with the muscarinic cholinergic receptor. Muscarine has a rather flexible ring system, which makes modelling of the receptor site on the active conformation of this particular ligand a difficult problem. A common minimum for these compounds was found at {+ gauche,anti}), which is identified with the active conformation. However, OCCN angles of up to 120° can be accommodated in the receptor site. The reduced cholinergic activity of the α-methyl derivatives is probably caused by unfavourable interactions between the α-methyl group and the receptor site. The apparent contradictory high activity of the 2-acetyloxycyclopropylammonium ion can be explained by the distorted geometry of α substitution.

  12. Molecular Mechanisms of Midfacial Developmental Defects

    PubMed Central

    Suzuki, Akiko; Sangani, Dhruvee R.; Ansari, Afreen; Iwata, Junichi

    2015-01-01

    The morphogenesis of midfacial processes requires the coordination of a variety of cellular functions of both mesenchymal and epithelial cells to develop complex structures. Any failure or delay in midfacial development as well as any abnormal fusion of the medial and lateral nasal and maxillary prominences will result in developmental defects in the midface with a varying degree of severity, including cleft, hypoplasia, and midline expansion. In spite of the advances in human genome sequencing technology, the causes of nearly 70 percent of all birth defects, which include midfacial development defects, remain unknown. Recent studies in animal models have highlighted the importance of specific signaling cascades and genetic-environmental interactions in the development of the midfacial region. This review will summarize the current understanding of the morphogenetic processes and molecular mechanisms underlying midfacial birth defects based on mouse models with midfacial developmental abnormalities. PMID:26562615

  13. Molecular mechanisms for enhanced DNA vaccine immunogenicity

    PubMed Central

    Li, Lei; Petrovsky, Nikolai

    2016-01-01

    Summary In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development. PMID:26707950

  14. Molecular mechanisms of insulin resistance in diabetes.

    PubMed

    Soumaya, Kouidhi

    2012-01-01

    Molecular components of impaired insulin signaling pathway have emerged with growing interest to understand how the environment and genetic susceptibility combine to cause defects in this fundamental pathway that lead to insulin resistance. When insulin resistance is combined with beta-cell defects in glucose-stimulated insulin secretion, impaired glucose tolerance, hyperglycemia, or Type 2 diabetes can result. The most common underlying cause is obesity, although primary insulin resistance in normal-weight individuals is also possible. The adipose tissue releases free fatty acids that contribute to insulin resistance and also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. This chapter deals with the core elements promoting, insulin resistance, associated with impaired insulin signalling pathway and adipocyte dysfunction. A detailed understanding of these basic pathophysiological mechanisms is critical for the development of novel therapeutic strategies to treat diabetes.

  15. Molecular mechanisms for enhanced DNA vaccine immunogenicity.

    PubMed

    Li, Lei; Petrovsky, Nikolai

    2016-01-01

    In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development.

  16. Molecular mechanisms of pancreatitis: current opinion.

    PubMed

    Vonlaufen, Alain; Wilson, Jeremy S; Apte, Minoti V

    2008-09-01

    Pancreatitis (necroinflammation of the pancreas) has both acute and chronic manifestations. Gallstones are the major cause of acute pancreatitis, whereas alcohol is associated with acute as well as chronic forms of the disease. Cases of true idiopathic pancreatitis are steadily diminishing as more genetic causes of the disease are discovered. The pathogenesis of acute pancreatitis has been extensively investigated over the past four decades; the general current consensus is that the injury is initiated within pancreatic acinar cells subsequent to premature intracellular activation of digestive enzymes. Repeated attacks of acute pancreatitis have the potential to evolve into chronic disease characterized by fibrosis and loss of pancreatic function. Our knowledge of the process of scarring has advanced considerably with the isolation and study of pancreatic stellate cells, now established as the key cells in pancreatic fibrogenesis. The present review summarizes recent developments in the field particularly with respect to the progress made in unraveling the molecular mechanisms of acute and chronic pancreatic injury secondary to gallstones, alcohol and genetic factors. It is anticipated that continued research in the area will lead to the identification and characterization of molecular pathways that may be therapeutically targeted to prevent/inhibit the initiation and progression of the disease.

  17. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    PubMed

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  18. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  19. Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.

    PubMed

    Burger, Steven K; Schofield, Jeremy; Ayers, Paul W

    2013-12-05

    We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.

  20. Multiresolution molecular mechanics: Implementation and efficiency

    NASA Astrophysics Data System (ADS)

    Biyikli, Emre; To, Albert C.

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  1. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  2. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGES

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  3. Molecular mechanisms regulating CD13-mediated adhesion

    PubMed Central

    Ghosh, Mallika; Gerber, Claire; Rahman, M Mamunur; Vernier, Kaitlyn M; Pereira, Flavia E; Subramani, Jaganathan; Caromile, Leslie A; Shapiro, Linda H

    2014-01-01

    CD13/Aminopeptidase N is a transmembrane metalloproteinase that is expressed in many tissues where it regulates various cellular functions. In inflammation, CD13 is expressed on myeloid cells, is up-regulated on endothelial cells at sites of inflammation and mediates monocyte/endothelial adhesion by homotypic interactions. In animal models the lack of CD13 alters the profiles of infiltrating inflammatory cells at sites of ischaemic injury. Here, we found that CD13 expression is enriched specifically on the pro-inflammatory subset of monocytes, suggesting that CD13 may regulate trafficking and function of specific subsets of immune cells. To further dissect the mechanisms regulating CD13-dependent trafficking we used the murine model of thioglycollate-induced sterile peritonitis. Peritoneal monocytes, macrophages and dendritic cells were significantly decreased in inflammatory exudates from global CD13KO animals when compared with wild-type controls. Furthermore, adoptive transfer of wild-type and CD13KO primary myeloid cells, or wild-type myeloid cells pre-treated with CD13-blocking antibodies into thioglycollate-challenged wild-type recipients demonstrated fewer CD13KO or treated cells in the lavage, suggesting that CD13 expression confers a competitive advantage in trafficking. Similarly, both wild-type and CD13KO cells were reduced in infiltrates in CD13KO recipients, confirming that both monocytic and endothelial CD13 contribute to trafficking. Finally, murine monocyte cell lines expressing mouse/human chimeric CD13 molecules demonstrated that the C-terminal domain of the protein mediates CD13 adhesion. Therefore, this work verifies that the altered inflammatory trafficking in CD13KO mice is the result of aberrant myeloid cell subset trafficking and further defines the molecular mechanisms underlying this regulation. PMID:24627994

  4. Molecular mechanisms of muscle plasticity with exercise.

    PubMed

    Hoppeler, Hans; Baum, Oliver; Lurman, Glenn; Mueller, Matthias

    2011-07-01

    The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

  5. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  6. Molecular mechanisms underlying chemical liver injury

    PubMed Central

    Gu, Xinsheng; Manautou, Jose E.

    2013-01-01

    The liver is necessary for survival. Its strategic localisation, blood flow and prominent role in the metabolism of xenobiotics render this organ particularly susceptible to injury by chemicals to which we are ubiquitously exposed. The pathogenesis of most chemical-induced liver injuries is initiated by the metabolic conversion of chemicals into reactive intermediate species, such as electrophilic compounds or free radicals, which can potentially alter the structure and function of cellular macromolecules. Many reactive intermediate species can produce oxidative stress, which can be equally detrimental to the cell. When protective defences are overwhelmed by excess toxicant insult, the effects of reactive intermediate species lead to deregulation of cell signalling pathways and dysfunction of biomolecules, leading to failure of target organelles and eventual cell death. A myriad of genetic factors determine the susceptibility of specific individuals to chemical-induced liver injury. Environmental factors, lifestyle choices and pre-existing pathological conditions also have roles in the pathogenesis of chemical liver injury. Research aimed at elucidating the molecular mechanism of the pathogenesis of chemical-induced liver diseases is fundamental for preventing or devising new modalities of treatment for liver injury by chemicals. PMID:22306029

  7. Molecular mechanisms of autosomal recessive hypercholesterolemia.

    PubMed

    Wilund, Kenneth R; Yi, Ming; Campagna, Filomena; Arca, Marcello; Zuliani, Giovanni; Fellin, Renato; Ho, Yiu-Kee; Garcia, J Victor; Hobbs, Helen H; Cohen, Jonathan C

    2002-11-15

    Mutations in the phosphotyrosine-binding domain protein ARH cause autosomal recessive hypercholesterolemia (ARH), an inherited form of hypercholesterolemia due to a tissue-specific defect in the removal of low density lipoproteins (LDL) from the circulation. LDL uptake by the LDL receptor (LDLR) is markedly reduced in the liver but is normal or only moderately impaired in cultured fibroblasts of ARH patients. To define the molecular mechanism underlying ARH we examined ARH mRNA and protein in fibroblasts and lymphocytes from six probands with different ARH mutations. None of the probands had detectable full-length ARH protein in fibroblasts or lymphoblasts. Five probands were homozygous for mutations that introduced premature termination codons. No relationship was apparent between the site of the mutation in ARH and the amount of mRNA. The only mutation identified in the remaining proband was a SINE VNTR Alu (SVA) retroposon insertion in intron 1, which was associated with no detectable ARH mRNA. (125)I-LDL degradation was normal in ARH fibroblasts, as previously reported. In contrast, LDLR function was markedly reduced in ARH lymphoblasts, despite a 2-fold increase in LDL cell surface binding in these cells. These data indicate that all ARH mutations characterized to date preclude the synthesis of full-length ARH and that ARH is required for normal LDLR function in lymphocytes and hepatocytes, but not in fibroblasts. Residual LDLR function in cells that do not require ARH may explain why ARH patients have lower plasma LDL levels than do patients with homozygous familial hypercholesterolemia who have no functional LDLRs.

  8. [Molecular mechanisms underlying thermosensation in mammals].

    PubMed

    Sokabe, Takaaki; Tominaga, Makoto

    2009-07-01

    Sensing environmental temperature is one of the most important fundamental functions of the living things on the earth. Recently, it has been revealed that several members of the TRP ion channel super family are activated by temperature changes. A number of reports clearly demonstrate that thermal activation of these thermosensitive TRP channels contributes to various temperature-dependent responses in vivo, such as thermosensation, thermotaxis, and the regulation of cellular/tissue functions at physiological body temperature. Nine TRP channels have been reported to respond to a physiological range of temperatures in mammals. TRPV1 and TRPV2 expressed in nociceptive neurons are activated by heat (> 43 degrees C and > 52 degrees C, respectively), and TRPV1-null mice show defects in sensing noxious heat. TRPV3 and TRPV4 are predominantly expressed in skin keratinocytes rather than in sensory neurons, and the gene knock-out of each channel causes abnormal thermotaxis in vivo. TRPM8, which senses cold temperatures (< 27 degrees C), is expressed in nociceptive and non-nociceptive neurons and its loss impairs cold sensitivity. TRPA1 is expressed in nociceptive neurons and acts as a sensor for various harmful stimuli, whereas its responsiveness to noxious cold stimuli is controversial even after the analysis of mice lacking the channel. Other thermoTRPs, TRPM2, TRPM4, and TRPM5 are not expressed in sensory neurons, and are reportedly involved in several functions at physiological body temperatures including insulin secretion, taste sensation, and immune response. In this review, I summarize the molecular mechanisms of thermosensation in mammals by focusing on thermosensitive TRP channels.

  9. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    NASA Astrophysics Data System (ADS)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    substitutions of specific amino acid sidechains, in conjunction with computer-assisted molecular modeling and biomimetic synthesis, allowed us to probe the determinants of catalytic activity and confirm the identification of the amino acid sidechains required for hydrolysis of the silicon alkoxides. If, as suggested by the data of others, silicic acid is conjugated with organic moieties after its transport into the cell, the catalytic mechanism described here may be important in biosilicification by sponges. As is often the case, we have been better able to answer mechanistic questions about "how" silica can be formed biologically, than "why" the diversity of structures is elaborated. Studies of spicule formation during cellular regeneration in Tethya aurantia reveal that synthesis of the larger silica needles (megascleres) and smaller starburst-shaped microscleres may be independently regulated, presumably at the genetic level. The spatial segregation of these morphologically-distinct spicule types within the sponge further suggests an adaptive significance of the different skeletal elements.

  10. Mixed ab initio quantum mechanics/molecular mechanics methods using frozen orbitals with applications to peptides and proteins

    NASA Astrophysics Data System (ADS)

    Philipp, Dean Michael

    Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.

  11. Interfacing the GROMOS (bio)molecular simulation software to quantum-chemical program packages.

    PubMed

    Meier, Katharina; Schmid, Nathan; van Gunsteren, Wilfred F

    2012-10-05

    The newly implemented quantum-chemical/molecular-mechanical (QM/MM) functionality of the Groningen molecular simulation (GROMOS) software for (bio)molecular simulation is described. The implementation scheme is based on direct coupling of the GROMOS C++ software to executables of the quantum-chemical program packages MNDO and TURBOMOLE, allowing for an independent further development of these packages. The new functions are validated for different test systems using program and model testing techniques. The effect of truncating the QM/MM electrostatic interactions at various QM/MM cutoff radii is discussed and the application of semiempirical versus density-functional Hamiltonians for a solute molecule in aqueous solution is compared.

  12. Identification of disease comorbidity through hidden molecular mechanisms

    PubMed Central

    Ko, Younhee; Cho, Minah; Lee, Jin-Sung; Kim, Jaebum

    2016-01-01

    Despite multiple diseases co-occur, their underlying common molecular mechanisms remain elusive. Identification of comorbid diseases by considering the interactions between molecular components is a key to understand the underlying disease mechanisms. Here, we developed a novel approach utilizing both common disease-causing genes and underlying molecular pathways to identify comorbid diseases. Our approach enables the analysis of common pathologies shared by comorbid diseases through molecular interaction networks. We found that the integration of direct genetic sharing and indirect high-level molecular associations revealed significantly strong consistency with known comorbid diseases. In addition, neoplasm-related diseases showed high comorbidity patterns within themselves as well as with other diseases, indicating severe complications. This study demonstrated that molecular pathway information could be used to discover disease comorbidity and hidden biological mechanism to understand pathogenesis and provide new insight on disease pathology. PMID:27991583

  13. Nutritional programming of disease: unravelling the mechanism

    PubMed Central

    Langley-Evans, Simon C

    2009-01-01

    Nutritional programming is the process through which variation in the quality or quantity of nutrients consumed during pregnancy exerts permanent effects upon the developing fetus. Programming of fetal development is considered to be an important risk factor for non-communicable diseases of adulthood, including coronary heart disease and other disorders related to insulin resistance. The study of programming in relation to disease processes has been advanced by development of animal models, which have utilized restriction or over-feeding of specific nutrients in either rodents or sheep. These consistently demonstrate the biological plausibility of the nutritional programming hypothesis and, importantly, provide tools with which to examine the mechanisms through which programming may occur. Studies of animals subject to undernutrition in utero generally exhibit changes in the structure of key organs such as the kidney, heart and brain. These appear consistent with remodelling of development, associated with disruption of cellular proliferation and differentiation. Whilst the causal pathways which extend from this tissue remodelling to disease can be easily understood, the processes which lead to this disordered organ development are poorly defined. Even minor variation in maternal nutritional status is capable of producing important shifts in the fetal environment. It is suggested that these environmental changes are associated with altered expression of key genes, which are responsible for driving the tissue remodelling response and future disease risk. Nutrition-related factors may drive these processes by disturbing placental function, including control of materno-fetal endocrine exchanges, or the epigenetic regulation of gene expression. PMID:19175805

  14. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.

  15. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an SN1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  16. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

    PubMed Central

    López, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2011-01-01

    The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers. PMID:21455285

  17. Molecular and cellular mechanisms of dendritic morphogenesis

    PubMed Central

    Gao, Fen-Biao

    2008-01-01

    Summary Dendrites exhibit unique cell-type specific branching patterns and targeting specificity that are critically important for neuronal function and connectivity. Recent evidence indicates that highly complex transcriptional regulatory networks dictate various aspects of dendritic outgrowth, branching, and routing. In addition to other intrinsic molecular pathways such as membrane protein trafficking, interactions between neighboring dendritic branches also contribute to the final specification of dendritic morphology. Nonredundant coverage by dendrites of same type of neurons, known as tiling, requires the actions of the Tricornered/Furry (Sax-1/Sax-2) signaling pathway. However, the dendrites of a neuron do not cross over each other, a process called self-avoidance that is mediated by Down’s syndrome cell adhesion molecule (Dscam). Those exciting findings have enhanced significantly our understanding of dendritic morphogenesis and revealed the magnitude of complexity in the underlying molecular regulatory networks. PMID:17933513

  18. Molecular chaperones: functional mechanisms and nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José

    2016-08-01

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.

  19. Glioblastoma: pathology, molecular mechanisms and markers.

    PubMed

    Aldape, Kenneth; Zadeh, Gelareh; Mansouri, Sheila; Reifenberger, Guido; von Deimling, Andreas

    2015-06-01

    Recent advances in genomic technology have led to a better understanding of key molecular alterations that underlie glioblastoma (GBM). The current WHO-based classification of GBM is mainly based on histologic features of the tumor, which frequently do not reflect the molecular differences that describe the diversity in the biology of these lesions. The current WHO definition of GBM relies on the presence of high-grade astrocytic neoplasm with the presence of either microvascular proliferation and/or tumor necrosis. High-throughput analyses have identified molecular subtypes and have led to progress in more accurate classification of GBM. These findings, in turn, would result in development of more effective patient stratification, targeted therapeutics, and prediction of patient outcome. While consensus has not been reached on the precise nature and means to sub-classify GBM, it is clear that IDH-mutant GBMs are clearly distinct from GBMs without IDH1/2 mutation with respect to molecular and clinical features, including prognosis. In addition, recent findings in pediatric GBMs regarding mutations in the histone H3F3A gene suggest that these tumors may represent a 3rd major category of GBM, separate from adult primary (IDH1/2 wt), and secondary (IDH1/2 mut) GBMs. In this review, we describe major clinically relevant genetic and epigenetic abnormalities in GBM-such as mutations in IDH1/2, EGFR, PDGFRA, and NF1 genes-altered methylation of MGMT gene promoter, and mutations in hTERT promoter. These markers may be incorporated into a more refined classification system and applied in more accurate clinical decision-making process. In addition, we focus on current understanding of the biologic heterogeneity and classification of GBM and highlight some of the molecular signatures and alterations that characterize GBMs as histologically defined. We raise the question whether IDH-wild type high grade astrocytomas without microvascular proliferation or necrosis might best be

  20. Mechanism of Spontaneous Oscillation Emerging from Collective Molecular Motors

    NASA Astrophysics Data System (ADS)

    Shimamoto, Yuta; Ishiwata, Shin'ichi

    2008-04-01

    Biological systems include a large number and various kinds of molecular machines. Individual molecular machines work stochastically, while the systems constructed of the ensembles of these machines exhibit dynamically-ordered phenomena, rather than a simple sum of individual parts. Here we focus on the spontaneous oscillatory contraction (SPOC) observed in the contractile system of muscle. From the mechanical measurements in the precursor state of SPOC, we discuss how the functions of individual molecular motors are autonomously regulated in the contractile system.

  1. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  2. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  3. Institute for Molecular Medicine Research Program

    SciTech Connect

    Phelps, Michael E

    2012-12-14

    The objectives of the project are the development of new Positron Emission Tomography (PET) imaging instrumentation, chemistry technology platforms and new molecular imaging probes to examine the transformations from normal cellular and biological processes to those of disease in pre-clinical animal models. These technology platforms and imaging probes provide the means to: 1. Study the biology of disease using pre-clinical mouse models and cells. 2. Develop molecular imaging probes for imaging assays of proteins in pre-clinical models. 3. Develop imaging assays in pre-clinical models to provide to other scientists the means to guide and improve the processes for discovering new drugs. 4. Develop imaging assays in pre-clinical models for others to use in judging the impact of drugs on the biology of disease.

  4. Molecular and Clinical Based Cardiovascular Care Program

    DTIC Science & Technology

    2007-01-01

    pathogenesis of coronary artery, peripheral vascular , and cerebrovascular disease . Impairment of endothelial function has been demonstrated after high...cardio’Va~ ct•b.r disease , Subsequently, ultrnlow-fat diets (:;;1.0% of totlll caloric intake as fat), emphasi?.in,g the amount ra.thcr th<•.o the...cardiovascular disease at the molecular disease stage and identify biomarkers predictive of sub- clinical CVD; and 3) Relate genomic/proteomic changes to the

  5. DNA deletion as a mechanism for developmentally programmed centromere loss

    PubMed Central

    Lhuillier-Akakpo, Maoussi; Guérin, Frédéric; Frapporti, Andrea; Duharcourt, Sandra

    2016-01-01

    A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3. PMID:26503246

  6. Molecular mechanisms of STIM/Orai communication

    PubMed Central

    Derler, Isabella; Jardin, Isaac

    2016-01-01

    Ca2+ entry into the cell via store-operated Ca2+ release-activated Ca2+ (CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca2+ channels open after depletion of intracellular Ca2+ stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca2+ sensor, while Orai forms a highly Ca2+-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca2+ permeation into the cell. PMID:26825122

  7. [Molecular biology and immunopathogenetic mechanisms of sepsis].

    PubMed

    Průcha, M

    2009-01-01

    Sepsis, the systemic inflammatory response to infection, causes high mortality in patients in non-coronary units of intensive care. The most important characteristic of sepsis is the interaction between two subjects, the macro and the microorganism, associated with the dysfunction of innate and adaptive immunity. Sepsis is understood more as a dynamic syndrome characterized by many phenomenona which are often antagonistic. The inflammation, characterizing sepsis, does not act as a primary physiological compensatory mechanism and rather oscillates between the phase of hyperinflammatory response and anergy or immunoparalysis. The elucidation of the pathogenesis of sepsis is linked to the understanding of immunopathogenetic mechanisms, which characterize the interaction between the macro and microorganisms.

  8. Molecular Mechanisms of Action of BPA.

    PubMed

    Acconcia, Filippo; Pallottini, Valentina; Marino, Maria

    2015-01-01

    Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.

  9. Molecular and Mechanical Behavior of Elastomers.

    ERIC Educational Resources Information Center

    Etzel, A. J.; And Others

    1986-01-01

    Describes an experiment in which stretching a rubber band can be used to compare the statistical theory of rubber elasticity with its continuum mechanics counterpart. Employs the use of the equation of the state of rubber elasticity and the Mooney-Rivlin equation. (TW)

  10. Selectivity and molecular mechanisms of toxicity

    SciTech Connect

    DeMatteis, F. ); Lock, E. A. )

    1987-01-01

    This book contains 11 chapters. Some of the titles are: Mechanisms of genotoxicity of chlorinated aliphatic hydrocarbons; Drugs as suicide substrates of cytochrome P-450; Cellular specific toxicity in the lung; The nephrotoxicity of haloalkane and haloalkene glutathione conjugates; and dioxin and organotin compounds as model immunotoxic chemicals.

  11. Molecular mechanics modeling of azobenzene-based photoswitches.

    PubMed

    Duchstein, Patrick; Neiss, Christian; Görling, Andreas; Zahn, Dirk

    2012-06-01

    We present an extension of the generalized amber force field to allow the modeling of azobenzenes by means of classical molecular mechanics. TD-DFT calculations were employed to derive different interaction models for 4-hydroxy-4'-methyl-azobenzene, including the ground (S(0)) and S(1) excited state. For both states, partial charges and the -N = N- torsion potentials were characterized. On this basis, we pave the way to large-scale model simulations involving azobenzene molecular switches. Using the example of an isolated molecule, the mechanics of cyclic switching processes are demonstrated by classical molecular dynamics simulations.

  12. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  13. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.

  14. Molecular mechanisms of polyploidy and hybrid vigor.

    PubMed

    Chen, Z Jeffrey

    2010-02-01

    Hybrids such as maize (Zea mays) or domestic dog (Canis lupus familiaris) grow bigger and stronger than their parents. This is also true for allopolyploids such as wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana) that contain two or more sets of chromosomes from different species. The phenomenon, known as hybrid vigor or heterosis, was systematically characterized by Charles Darwin (1876). The rediscovery of heterosis in maize a century ago has revolutionized plant and animal breeding and production. Although genetic models for heterosis have been rigorously tested, the molecular bases remain elusive. Recent studies have determined the roles of nonadditive gene expression, small RNAs, and epigenetic regulation, including circadian-mediated metabolic pathways, in hybrid vigor, which could lead to better use and exploitation of the increased biomass and yield in hybrids and allopolyploids for food, feed, and biofuels.

  15. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    NASA Astrophysics Data System (ADS)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  16. Molecular mechanisms regulating NLRP3 inflammasome activation

    PubMed Central

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  17. Molecular mechanisms of bone formation in spondyloarthritis.

    PubMed

    González-Chávez, Susana Aideé; Quiñonez-Flores, Celia María; Pacheco-Tena, César

    2016-07-01

    Spondyloarthritis comprise a group of inflammatory rheumatic diseases characterized by its association to HLA-B27 and the presence of arthritis and enthesitis. The pathogenesis involves both an inflammatory process and new bone formation, which eventually lead to ankylosis of the spine. To date, the intrinsic mechanisms of the pathogenic process have not been fully elucidated, and our progress is remarkable in the identification of therapeutic targets to achieve the control of the inflammatory process, yet our ability to inhibit the excessive bone formation is still insufficient. The study of new bone formation in spondyloarthritis has been mostly conducted in animal models of the disease and only few experiments have been done using human biopsies. The deregulation and overexpression of molecules involved in the osteogenesis process have been observed in bone cells, mesenchymal cells, and fibroblasts. The signaling associated to the excessive bone formation is congruent with those involved in the physiological processes of bone remodeling. Bone morphogenetic proteins and Wnt pathways have been found deregulated in this disease; however, the cause for uncontrolled stimulation remains unknown. Mechanical stress appears to play an important role in the pathological osteogenesis process; nevertheless, the association of other important factors, such as the presence of HLA-B27 and environmental factors, remains uncertain. The present review summarizes the experimental findings that describe the signaling pathways involved in the new bone formation process in spondyloarthritis in animal models and in human biopsies. The role of mechanical stress as the trigger of these pathways is also reviewed.

  18. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  19. Ultraviolet radiation and skin cancer: molecular mechanisms.

    PubMed

    Hussein, Mahmoud R

    2005-03-01

    Every living organism on the surface of the earth is exposed to the ultraviolet (UV) fraction of the sunlight. This electromagnetic energy has both life-giving and life-endangering effects. UV radiation can damage DNA and thus mutagenize several genes involved in the development of the skin cancer. The presence of typical signature of UV-induced mutations on these genes indicates that the ultraviolet-B part of sunlight is responsible for the evolution of cutaneous carcinogenesis. During this process, variable alterations of the oncogenic, tumor-suppressive, and cell-cycle control signaling pathways occur. These pathways include (a) mutated PTCH (in the mitogenic Sonic Hedgehog pathway) and mutated p53 tumor-suppressor gene in basal cell carcinomas, (b) an activated mitogenic ras pathway and mutated p53 in squamous cell carcinomas, and (c) an activated ras pathway, inactive p16, and p53 tumor suppressors in melanomas. This review presents background information about the skin optics, UV radiation, and molecular events involved in photocarcinogenesis.

  20. Dissecting the Molecular Mechanisms of Electrotactic Effects

    PubMed Central

    Bonazzi, Daria; Minc, Nicolas

    2014-01-01

    Significance: Steady electric fields (EFs) surround cells and tissues in vivo and may regulate cellular behavior during development, wound healing, or tissue regeneration. Application of exogenous EFs of similar magnitude as those found in vivo can direct migration, growth, and division in most cell types, ranging from bacteria to mammalian cells. These EF effects have therapeutic potential, for instance, in accelerating wound healing or improving nerve repair. EFs are thought to signal through the plasma membrane to locally activate or recruit components of the cytoskeleton and the polarity machinery. How EFs might function to steer polarity is, however, poorly understood at a molecular level. Recent Advances: Here, we review recent work introducing genetically tractable systems, such as yeast and Dictyostelium cells, that begin to identify proteins and pathways involved in this response both at the level of ion transport at the membrane and at the level of cytoskeleton regulation. Critical Issues: These studies highlight the complexity of these EF effects and bring important novel views on core polarity regulation. Future Directions: Future work pursuing initial screening in model organisms should generate broad mechanistic understanding of electrotactic effects. PMID:24761354

  1. Molecular mechanisms of male germ cell differentiation.

    PubMed

    Hecht, N B

    1998-07-01

    During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.

  2. Multiple Sclerosis: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    Miljković, Djordje; Spasojević, Ivan

    2013-01-01

    Abstract The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy. Antioxid. Redox Signal. 19, 2286–2334. PMID:23473637

  3. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  4. Membrane curvature in cell biology: An integration of molecular mechanisms

    PubMed Central

    Daste, Frederic

    2016-01-01

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  5. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  6. Molecular mechanisms of intercellular communication: transmembrane signaling

    SciTech Connect

    Bitensky, M.W.; George, J.S.; Siegel, H.N.; McGregor, D.M.

    1982-01-01

    This short discussion of transmembrane signaling depicts a particular class of signaling devices whose functional characteristics may well be representative of broader classes of membrane switches. These multicomponent aggregates are characterized by tight organization of interacting components which function by conformational interactions to provide sensitive, amplified, rapid, and modulated responses. It is clear that the essential role of such switches in cell-cell interactions necessitated their appearance early in the history of the development of multicellular organisms. It also seems clear that once such devices made their appearance, the conformationally interactive moieties were firmly locked into a regulatory relationship. Since modification of interacting components could perturb or interfere with the functional integrity of the whole switch, genetic drift was only permitted at the input and outflow extremes. However, the GTP binding moiety and its interacting protein domains on contiguous portions of the receptor and readout components were highly conserved. The observed stringent evolutionary conservation of the molecular features of these membrane switches thus applies primarily to the central (GTP binding) elements. An extraordinary degree of variation was permitted within the domains of signal recognition and enzymatic output. Thus, time and evolution have adapted the central logic of the regulatory algorithm to serve a great variety of cellular purposes and to recognize a great variety of chemical and physical signals. This is exemplified by the richness of the hormonal and cellular dialogues found in primates such as man. Here the wealth of intercellular communiation can support the composition and performance of symphonies and the study of cellular immunology.

  7. Anemia: progress in molecular mechanisms and therapies.

    PubMed

    Sankaran, Vijay G; Weiss, Mitchell J

    2015-03-01

    Anemia is a major source of morbidity and mortality worldwide. Here we review recent insights into how red blood cells (RBCs) are produced, the pathogenic mechanisms underlying various forms of anemia, and novel therapies derived from these findings. It is likely that these new insights, mainly arising from basic scientific studies, will contribute immensely to both the understanding of frequently debilitating forms of anemia and the ability to treat affected patients. Major worldwide diseases that are likely to benefit from new advances include the hemoglobinopathies (β-thalassemia and sickle cell disease); rare genetic disorders of RBC production; and anemias associated with chronic kidney disease, inflammation, and cancer. Promising new approaches to treatment include drugs that target recently defined pathways in RBC production, iron metabolism, and fetal globin-family gene expression, as well as gene therapies that use improved viral vectors and newly developed genome editing technologies.

  8. [Molecular mechanisms of skeletal muscle hypertrophy].

    PubMed

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  9. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  10. Molecular mechanisms of LRRK2 regulation

    NASA Astrophysics Data System (ADS)

    Webber, Philip Jeffrey

    Non-synonymous mutations in LRRK2 are the most common known cause of familial and sporadic Parkinson's disease (PD). The dominant inheritance of these mutations in familial PD suggests a gain-of-function mechanism. Increased kinase activity observed in the most common PD associated LRRK2 mutation G2019S suggests that kinase activity is central to disease. However, not all mutations associated with disease are reported to alter kinase activity and controversy exists in the literature about the effects of mutations appearing in the GTPase domain on kinase activity. The studies conducted as a part of this work aim to characterize the mechanisms that regulate LRRK2 kinase activity and the effects of mutations on enzymatic activity of LRRK2 protein. LRRK2 is a large protein with multiple predicted functional domains including two enzymatic domains in the same protein, the small ras-like GTPase domain and a serine-threonine protein kinase domain. Previous studies indicate that LRRK2 kinase is dependent on a functional GTPase domain and binding to GTP is required for kinase activity. Recent work detailed in this dissertation indicates a complex and reciprocal relationship between kinase and GTPase domains. LRRK2 kinase activity is dependent on adapting a homo-dimer that is augmented by PD mutations that increase LRRK2 kinase activity. Activated LRRK2 autophosphorylates the GTPase and c-terminus of Ras (COR) domains robustly. Phosphorylation of these domains is required for normal activity, as preventing autophosphorylation of these sites drastically lowers kinase activity and GTP binding while phosphorylation maintains baseline activity while still reducing GTP binding. Furthermore, we have developed antibodies specific to autophosphorylation residues that track with LRRK2 kinase activity in vitro. While no measurable activity was detected from treated LRRK2 in vivo, LRRK2 protein purified from brain tissue treated with inflammatory stimuli such as LPS, which increases

  11. Crustacean muscle plasticity: molecular mechanisms determining mass and contractile properties.

    PubMed

    Mykles, D L

    1997-07-01

    Two crustacean models for understanding molecular mechanisms of muscle plasticity are reviewed. Metabolic changes underlying muscle protein synthesis and degradation have been examined in the Bermuda land crab, Gecarcinus lateralis. During proecdysis, the claw closer muscle undergoes a programmed atrophy, which results from a highly controlled breakdown of myofibrillar proteins by Ca(2+)-dependent and, possibly, ATP/ubiquitin-dependent proteolytic enzymes. The advantage of this model is that there is neither fiber degeneration nor contractile-type switching, which often occurs in mammalian skeletal muscles. The second model uses American lobster, Homarus americanus, to understand the genetic regulation of fiber-type switching. Fibers in the claw closer muscles undergo a developmentally-regulated transformation as the isomorphic claws of larvae and juveniles differentiate into the heteromorphic cutter and crusher claws of adults. This switching occurs at the boundary between fast- and slow-fiber regions, and thus the transformation of a specific fiber is determined by its position within the muscle. The ability to predict fiber switching can be exploited to isolate and identify putative master regulatory factors that initiate and coordinate the expression of contractile proteins.

  12. Rock mechanics contributions from defense programs

    SciTech Connect

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

  13. Eucb: A C++ program for molecular dynamics trajectory analysis

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Stavrakoudis, Athanassios

    2011-03-01

    Eucb is a standalone program for geometrical analysis of molecular dynamics trajectories of protein systems. The program is written in GNU C++ and it can be installed in any operating system running a C++ compiler. The program performs its analytical tasks based on user supplied keywords. The source code is freely available from http://stavrakoudis.econ.uoi.gr/eucb under LGPL 3 license. Program summaryProgram title:Eucb Catalogue identifier: AEIC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 169 No. of bytes in distributed program, including test data, etc.: 297 364 Distribution format: tar.gz Programming language: GNU C++ Computer: The tool is designed and tested on GNU/Linux systems Operating system: Unix/Linux systems RAM: 2 MB Supplementary material: Sample data files are available Classification: 3 Nature of problem: Analysis of molecular dynamics trajectories. Solution method: The program finds all possible interactions according to input files and the user instructions. Then it reads all the trajectory frames and finds those frames in which these interactions occur, under certain geometrical criteria. This is a blind search, without a priori knowledge if a certain interaction occurs or not. The program exports time series of these quantities (distance, angles, etc.) and appropriate descriptive statistics. Running time: Depends on the input data and the required options.

  14. [Molecular genetic and epigenetic mechanisms of hepatocarcinogenesis].

    PubMed

    Xue, Kai-Xian

    2005-06-01

    Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the most frequent human malignant neoplasms. Common risk factors of human HCC include chronic hepatitis virus (HBV and HCV) infection, dietary aflatoxin B1 (AFB1) ingestion, chronic alcohol abuse, and cirrhosis associated with genetic liver diseases. Hepatocarcinogenesis is the result of interaction between hereditary and environmental factors. Inheritance determines individual susceptibility to cancer; environment determines which susceptible individuals express cancer. Studies of genetic and epigenetic mechanisms of hepatocarcinogenesis showed that HCC development is a complex polygene and multipathway process; the activation of proto-oncogenes and the inactivation of tumor suppressor genes induced by genetic and epigenetic alterations are core biological processes of hepatocarcinogenesis; RB1, p53, and Wnt pathways are commonly affected in HCCs of different etiologies, which may reflect common pathologic sequence of HCC: chronic liver injury, cirrhosis, atypical hyperplastic nodules, and HCC of early stages. Hepatitis virus infection-associated HCCs have frequent alterations in RB1 pathway, including methylation of p16INK4a and RB1 genes and amplification of Cyclin D1. AFB1 exposure-associated HCCs have frequent alterations in p53 pathway; the G-->T mutation of p53 gene at codon 249 has been identified as a genetic hallmark of HCC caused by AFB1. Alcoholism-associated HCCs have frequent alterations in both RB1 and p53 pathways. The roles of some important genes related to cell apoptosis, DNA repair, drug metabolism, and tumor metastasis in hepatocarcinogenesis had been discussed.

  15. Molecular mechanisms of dominant expression in porphyria.

    PubMed

    Badminton, M N; Elder, G H

    2005-01-01

    Partial deficiency of enzymes in the haem synthetic pathway gives rise to a group of seven inherited metabolic disorders, the porphyrias. Each deficiency is associated with a characteristic increase in haem precursors that correlates with the symptoms associated with individual porphyrias and allows accurate diagnosis. Two types of clinical presentation occur separately or in combination; acute life-threatening neurovisceral attacks and/or cutaneous symptoms. Five of the porphyrias are low-penetrance autosomal dominant conditions in which clinical expression results from additional factors that act by increasing demand for haem or by causing an additional decrease in enzyme activity or by a combination of these effects. These include both genetic and environmental factors. In familial porphyria cutanea tarda (PCTF), environmental factors that include alcohol, exogenous oestrogens and hepatotropic viruses result in inhibition of hepatic enzyme activity via a mechanism that involves excess iron accumulation. In erythropoietic protoporphyria (EPP), co-inheritance of a functional polymorphism in trans to a null ferrochelatase allele accounts for most clinically overt cases. In the autosomal dominant acute hepatic porphyrias (acute intermittent porphyria, variegate porphyria, hereditary coproporphyria), acute neurovisceral attacks occur in a minority of those who inherit one of these disorders. Although various exogenous (e.g. drugs, alcohol) and endogenous factors (e.g. hormones) have been identified as provoking acute attacks, these do not provide a full explanation for the low penetrance of these disorders. It seems probable that genetic background influences susceptibility to acute attacks, but the genes that are involved have not yet been identified.

  16. Principles of cellular-molecular mechanisms underlying neuron functions.

    PubMed

    Ratushnyak, Alexander S; Zapara, Tatiana A

    2009-12-01

    In the present work, it was experimentally shown that a neuron in vitro was capable of responding in a manner similar to habituation, Pavlov's reflex and avoidance of the reinforcements. The locality of plastic property modifications and molecular morphology, as well as the connection between functional activity and cytoskeleton have been revealed. A hypothesis is formulated that the neuron is a molecular system which may exercise the control, forecast, recognition, and classification. The basic principles of the molecular mechanisms of the responses underlying integrative activity, learning and memory at the neuronal level are discussed.

  17. Graph-drawing algorithms geometries versus molecular mechanics in fullereness

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Pisanski, T.; Lukman, D.; Borštnik, B.; Graovac, A.

    1996-09-01

    The algorithms of Kamada-Kawai (KK) and Fruchterman-Reingold (FR) have been recently generalized (Pisanski et al., Croat. Chem. Acta 68 (1995) 283) in order to draw molecular graphs in three-dimensional space. The quality of KK and FR geometries is studied here by comparing them with the molecular mechanics (MM) and the adjacency matrix eigenvectors (AME) algorithm geometries. In order to compare different layouts of the same molecule, an appropriate method has been developed. Its application to a series of experimentally detected fullerenes indicates that the KK, FR and AME algorithms are able to reproduce plausible molecular geometries.

  18. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  19. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.

  20. [Progress in researches of molecular mechanism of schistosome cercariae infection].

    PubMed

    Du, Xiaofeng; Ju, Chuan; Hu, Wei

    2013-12-01

    Schistosome cercariae must penetrate skin as an initial step to successfully infect the final host. Proteolytic enzymes secreted from the acetabular glands of cercariae contribute significantly to the invasion process. Nowadays, the researches of molecular mechanism of schistosome infection mainly focus on the cercarial secretions including serine protease and cysteine protease. Previous researches already showed that Schistosoma mansoni penetrates the skin mainly depend on cercarial elastease secreted by cercariae while Schistosoma japonicum penetrates the skin chiefly by cathepsin B2. The illustration of molecular mechanism of schistosome cecariae infection will accelerate the identification of novel vaccines and drug targets.

  1. Common molecular mechanisms in explicit and implicit memory.

    PubMed

    Barco, Angel; Bailey, Craig H; Kandel, Eric R

    2006-06-01

    Cellular and molecular studies of both implicit and explicit memory suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these memories are encoded and stored within the brain. In this review, we focus on recent advances in our understanding of two types of memory storage: (i) sensitization in Aplysia, a simple form of implicit memory, and (ii) formation of explicit spatial memories in the mouse hippocampus. These two processes share common molecular mechanisms that have been highly conserved through evolution.

  2. Quantum mechanical/molecular mechanical study on the mechanism of the enzymatic Baeyer-Villiger reaction.

    PubMed

    Polyak, Iakov; Reetz, Manfred T; Thiel, Walter

    2012-02-08

    We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.

  3. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    SciTech Connect

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  4. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms.

    PubMed

    Peng, Mei; Darko, Kwame Oteng; Tao, Ting; Huang, Yanjun; Su, Qiongli; He, Caimei; Yin, Tao; Liu, Zhaoqian; Yang, Xiaoping

    2017-03-01

    Metformin, a widely prescribed drug for treating type II diabetes, is one of the most extensively recognized metabolic modulators which has shown an important anti-cancer property. However, fairly amount of clinical trials on its single administration have not demonstrated a convincing efficiency yet. Thus, recent studies tend to combine metformin with clinical commonly used chemotherapeutic drugs to decrease their toxicity and attenuate their tumor resistance. These strategies have displayed promising clinical benefits. Interestingly, metformin experiences a diversity of molecular mechanisms when it combines different chemotherapeutic drugs. For example, AMPK/mTOR signaling pathway activation plays a major role when it combines with hormone modulating drugs. In contrast, suppression of HIF-1, p-gp and MRP1 protein expression is its main mechanism when metformin combines with anti-metabolites. Furthermore, when combining of metformin with antibiotics, inhibition of oxidative stress and inflammatory signaling pathway becomes a novel pharmaceutical mechanism for its cardio-protective effect. Induction of apoptotic mitochondria and nucleus could be the major player for the synergistic effect of its combination with cisplatin. In contrast, down-regulation of lipoprotein or cholesterol synthesis might be the undefined molecular base when metformin combines with taxane. Thus, deep exploration of molecular mechanisms of metformin with these different drugs is critical to understand its synergistic effect and help for personalized administration. In this mini-review, detailed molecular mechanisms of these combinations are discussed and summarized. This work will promote better understanding of molecular mechanisms of metformin and provide precise targets to identify specific patient groups to achieve satisfactory treatment efficacy.

  5. Combined quantum mechanical/molecular mechanics modeling for large organometallic and metallobiochemical systems

    NASA Astrophysics Data System (ADS)

    Leong, Max Kangchien

    A method of combined quantum mechanics/molecular mechanics has been developed to model larger organometallic and metallobiochemical systems where neither quantum mechanics nor molecular mechanics, applied separately, can solve the problem. An electronically transparent interface, which allows charge transfers between the quantum and classical fragments, is devised and realized by employing a special iterative procedure of double (intrafragment and interfragment) self-consistent calculations. The combined QM/MM scheme was successfully applied to model iron picket-fence porphyrin, vitamin B12, aquocobalamin, and vitamin B12 coenzyme molecules.

  6. Resolving the molecular mechanism of cadherin catch bond formation

    SciTech Connect

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi; Sivasankar, Sanjeevi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated

  7. The molecular mechanisms of hemodialysis vascular access failure

    PubMed Central

    Franzoni, Marco; Misra, Sanjay

    2016-01-01

    The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction. PMID:26806833

  8. Unraveling the mechanism of molecular doping in organic semiconductors.

    PubMed

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect.

  9. A Molecular Mechanics Study of Monensin B Ion Selectivity.

    DTIC Science & Technology

    well known knot theorist working with Jon Simon under the math part of the ONR stereochemical topology project. 2) The 5-rung THYME diol-ditosylate has...trefoil knot, which will posses 100 atoms in the ring. 3) The first molecular mechanics studies on the THYME system have been accomplished. 4) Preliminary

  10. A Molecular Mechanics Analysis of Molecular Recognition by Cyclodextrin Mimics of Alpha-Chymotrypsin

    DTIC Science & Technology

    1989-05-26

    Recognition By Cyclodextrin Mimics of Alpha-Chymotrypsin i by C.A. Venanzi. P.M. Canzius, Z. Zhang, and J.D. Bunce LT IC To Be Published in CLECTE JUN 0 51...Clasification) A Molecular Mechanics Analysis of Molecular Recognition By Cyclodextrin Mimics of Alpha-Chymotrypsin. 12. PERSONAL AUTHOR(S) C.A. Venanzil... CYCLODEXTRIN MIMICS OF 0( -CHYMOTRYPSIN Carol A. Venanzi1 , Preston M. Canzius, Zhifeng Zhang, and Jeffrey D. Bunce Department of Chemical Engineering

  11. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  12. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  13. Novel molecular mechanisms and regeneration therapy for heart failure.

    PubMed

    Oka, Toru; Morita, Hiroyuki; Komuro, Issei

    2016-03-01

    Heart failure (HF) is one of the leading causes of mortality in the world. Various molecular mechanisms have been proposed for HF, but its precise mechanisms are still largely unknown. In this review, summarizing the "President's Distinguished Lecture Award" of XX World Congress of International Society for Heart Research 2010 in Kyoto, Japan, we introduce recent our studies on HF, including 1) p53-induced suppression of Hif-1-induced angiogenesis as a novel mechanism of HF, 2) angiogenesis as a potential therapeutic strategy for HF, and 3) IGFBP-4 as a novel factor for cardiomyogenesis by inhibiting canonical Wnt signaling.

  14. Joint Program on Molecular Biology of Marine Organisms

    DTIC Science & Technology

    1992-08-20

    necessary and idemiy by block number) FIELD GROUP SUB-GROUP - biofilm , biofouling, adhesion, bacterial attachment, molecular mechanisms of adhesion... biofilm analysis, on- line analysis, archaebacteria, microbial lipids 19 ABSTRACT (Continue on reverse it hecessary and identify by block nu,,ber... biofilm formation. Bacterial attachment is not, therefore, completely dependent on a series of random, stochastic events. Certain organisms more readily

  15. Molecular mechanisms of neuropathological changes in Alzheimer's disease: a review.

    PubMed

    Serý, Omar; Povová, Jana; Míšek, Ivan; Pešák, Lukáš; Janout, Vladimir

    2013-01-01

    More than 100 years after description of Alzheimer's disease (AD), two major pathological processes observed already by Alois Alzheimer, remain as the main explanation of the pathogenesis of Alzheimer's disease. Important molecular interactions leading to AD neuropathology were described in amyloid cascade and in tau protein function. No clinical trials with novel therapies based on amyloid cascade and tau protein hypotheses have been successful. The main aim of recent research is focused on the question what is primary mechanism leading to the molecular development of AD pathology. Promising explanation of triggering mechanism can be seen in vascular pathology that have direct influence on the development of pathological processes typical for Alzheimer disease. Novel insight into a number of cellular signaling mechanisms, as well as mitochondrial function in Alzheimer disease could also bring explanations of initial processes leading to the development of this pathology.

  16. Molecular mechanics of mineralized collagen fibrils in bone

    NASA Astrophysics Data System (ADS)

    Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.

    2013-04-01

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents.

  17. Molecular Mechanisms in Mood Regulation Involving the Circadian Clock.

    PubMed

    Albrecht, Urs

    2017-01-01

    The circadian system coordinates activities and functions in cells and tissues in order to optimize body functions in anticipation to daily changes in the environment. Disruption of the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel across time-zones, or chronic stress, is correlated with several diseases such as obesity, cancer, and neurological disorders. Molecular mechanisms linking the circadian clock with neurological functions have been uncovered suggesting that disruption of the clock may be critically involved in the development of mood disorders. In this mini-review, I will summarize molecular mechanisms in which clock components play a central role for mood regulation. Such mechanisms have been identified in the monoaminergic system, the HPA axis, and neurogenesis.

  18. Molecular Mechanisms in Mood Regulation Involving the Circadian Clock

    PubMed Central

    Albrecht, Urs

    2017-01-01

    The circadian system coordinates activities and functions in cells and tissues in order to optimize body functions in anticipation to daily changes in the environment. Disruption of the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel across time-zones, or chronic stress, is correlated with several diseases such as obesity, cancer, and neurological disorders. Molecular mechanisms linking the circadian clock with neurological functions have been uncovered suggesting that disruption of the clock may be critically involved in the development of mood disorders. In this mini-review, I will summarize molecular mechanisms in which clock components play a central role for mood regulation. Such mechanisms have been identified in the monoaminergic system, the HPA axis, and neurogenesis. PMID:28223962

  19. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    NASA Technical Reports Server (NTRS)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  20. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  1. Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2015-04-01

    Since many years, carbon nanotubes (CNTs) have been considered for a wide range of applications due to their outstanding mechanical properties. CNTs are tubular structures, showing a graphene like hexagonal lattice. Our interest in the calculation of the mechanical properties is motivated by several applications which demand the knowledge of the material behavior. One application in which the knowledge of the material behavior is vital is the CNT based fiber. Due to the excellent stiffness and strength of the individual CNTs, these fibers are expected to be a promising successor for state of the art carbon fibers. However, the mechanical properties of the fibers fall back behind the properties of individual CNTs. It is assumed that this gap in the properties is a result of the van-der-Waals interactions of the individual CNTs within the fiber. In order to understand the mechanical behavior of the fibers we apply a molecular mechanics approach. The mechanical properties of the individual CNTs are investigated by using a modified structural molecular mechanics approach. This is done by calculating the properties of a truss-beam element framework representing the CNT with the help of a chemical force field. Furthermore, we also investigate the interactions of CNTs arranged in basic CNT assemblies, mimicking the ones in a simple CNT fiber. We consider the van-der-Waals interactions in the structure and calculate the potential surface of the CNT assemblies.

  2. Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  3. Molecular mechanisms of peritoneal dissemination in gastric cancer

    PubMed Central

    Kanda, Mitsuro; Kodera, Yasuhiro

    2016-01-01

    Peritoneal dissemination represents a devastating form of gastric cancer (GC) progression with a dismal prognosis. There is no effective therapy for this condition. The 5-year survival rate of patients with peritoneal dissemination is 2%, even including patients with only microscopic free cancer cells without macroscopic peritoneal nodules. The mechanism of peritoneal dissemination of GC involves several steps: detachment of cancer cells from the primary tumor, survival in the free abdominal cavity, attachment to the distant peritoneum, invasion into the subperitoneal space and proliferation with angiogenesis. These steps are not mutually exclusive, and combinations of different molecular mechanisms can occur in each process of peritoneal dissemination. A comprehensive understanding of the molecular events involved in peritoneal dissemination is important and should be systematically pursued. It is crucial to identify novel strategies for the prevention of this condition and for identification of markers of prognosis and the development of molecular-targeted therapies. In this review, we provide an overview of recently published articles addressing the molecular mechanisms of peritoneal dissemination of GC to provide an update on what is currently known in this field and to propose novel promising candidates for use in diagnosis and as therapeutic targets. PMID:27570420

  4. Dissecting molecular mechanisms in the living brain of dementia patients.

    PubMed

    Barrio, Jorge R; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Petric, Andrej; Small, Gary W; Kepe, Vladimir

    2009-07-21

    Understanding the molecular mechanisms associated with the development of dementia is essential for designing successful interventions. Dementia, like cancer and cardiovascular disease, requires early detection to potentially arrest or prevent further disease progression. By the time a neurologist begins to manage clinical symptoms, the disease has often damaged the brain significantly. Because successful treatment is the logical goal, detecting the disease when brain damage is still limited is of the essence. The role of chemistry in this discovery process is critical. With the advent of molecular imaging, the understanding of molecular mechanisms in human neurodegenerative diseases has exploded. Traditionally, knowledge of enzyme and neurotransmitter function in humans has been extrapolated from animal studies, but now we can acquire data directly from both healthy and diseased human subjects. In this Account, we describe the use of molecular imaging probes to elucidate the biochemical and cellular bases of dementia (e.g., Alzheimer's disease) and the application of these discoveries to the design of successful therapeutic interventions. Molecular imaging permits observation and evaluation of the basic molecular mechanisms of disease progression in the living brains of patients. 2-Deoxy-2-[(18)F]fluoro-d-glucose is used to assess the effect of Alzheimer's disease progression on neuronal circuits projecting from and to the temporal lobe (one of the earliest metabolic signs of the disease). Recently, we have developed imaging probes for detection of amyloid neuropathology (both tau and beta-amyloid peptide deposits) and neuronal losses. These probes allow us to visualize the development of pathology in the living brain of dementia patients and its consequences, such as losses of critical neurons associated with memory deficits and other neuropsychiatric impairments. Because inflammatory processes are tightly connected to the brain degenerative processes

  5. Molecular mechanisms involved in mammalian primary sex determination.

    PubMed

    She, Zhen-Yu; Yang, Wan-Xi

    2014-08-01

    Sex determination refers to the developmental decision that directs the bipotential genital ridge to develop as a testis or an ovary. Genetic studies on mice and humans have led to crucial advances in understanding the molecular fundamentals of sex determination and the mutually antagonistic signaling pathway. In this review, we summarize the current molecular mechanisms of sex determination by focusing on the known critical sex determining genes and their related signaling pathways in mammalian vertebrates from mice to humans. We also discuss the underlying delicate balance between testis and ovary sex determination pathways, concentrating on the antagonisms between major sex determining genes.

  6. Computer programs for the interpretation of low resolution mass spectra: Program for calculation of molecular isotopic distribution and program for assignment of molecular formulas

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Kohl, F. J.

    1977-01-01

    Two FORTRAN computer programs for the interpretation of low resolution mass spectra were prepared and tested. One is for the calculation of the molecular isotopic distribution of any species from stored elemental distributions. The program requires only the input of the molecular formula and was designed for compatability with any computer system. The other program is for the determination of all possible combinations of atoms (and radicals) which may form an ion having a particular integer mass. It also uses a simplified input scheme and was designed for compatability with any system.

  7. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  8. Training Program in the Molecular Basis of Breast Cancer Research.

    DTIC Science & Technology

    1997-10-01

    Faff semester, 1995 the Molecular Medicine Ph.D. Program at all levels was 26, which includes 12 women, and 3 minorities (1 black, 2 Hispanic ...nonconsensus estrogen response element in the proximal region of the promoter which may play a role in the hormonal regulation of this gene . We have...is to determine the cis-acting sequences responsible for the regulation of the human estrogen receptor gene . Deletion and site-directed mutagenesis

  9. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  10. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  11. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    PubMed

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  12. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1

    NASA Astrophysics Data System (ADS)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  13. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed.

  14. A Guide for Developing the Instructional Program in Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Illinois State Board of Vocational Education and Rehabilitation, Springfield. Div. of Vocational and Technical Education.

    This bulletin contains materials suggested for use by agricultural teachers in the improvement of their agricultural mechanics programs. In its function as a guide to planning a teaching program in agricultural mechanics the document outlines the principles and procedures in course planning, 12 guiding concepts in the teaching of agricultural…

  15. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  16. Career Preparation Program Curriculum Guide for: General Mechanics.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the general mechanics program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and evaluation.…

  17. Inactivation mechanism of glycerol dehydration by diol dehydratase from combined quantum mechanical/molecular mechanical calculations.

    PubMed

    Doitomi, Kazuki; Kamachi, Takashi; Toraya, Tetsuo; Yoshizawa, Kazunari

    2012-11-13

    Inactivation of diol dehydratase during the glycerol dehydration reaction is studied on the basis of quantum mechanical/molecular mechanical calculations. Glycerol is not a chiral compound but contains a prochiral carbon atom. Once it is bound to the active site, the enzyme adopts two binding conformations. One is predominantly responsible for the product-forming reaction (G(R) conformation), and the other primarily contributes to inactivation (G(S) conformation). Reactant radical is converted into a product and byproduct in the product-forming reaction and inactivation, respectively. The OH group migrates from C2 to C1 in the product-forming reaction, whereas the transfer of a hydrogen from the 3-OH group of glycerol to C1 takes place during the inactivation. The activation barrier of the hydrogen transfer does not depend on the substrate-binding conformation. On the other hand, the activation barrier of OH group migration is sensitive to conformation and is 4.5 kcal/mol lower in the G(R) conformation than in the G(S) conformation. In the OH group migration, Glu170 plays a critical role in stabilizing the reactant radical in the G(S) conformation. Moreover, the hydrogen bonding interaction between Ser301 and the 3-OH group of glycerol lowers the activation barrier in G(R)-TS2. As a result, the difference in energy between the hydrogen transfer and the OH group migration is reduced in the G(S) conformation, which shows that the inactivation is favored in the G(S) conformation.

  18. Molecular mechanisms of sound amplification in the mammalian cochlea.

    PubMed

    Ashmore, J F; Géléoc, G S; Harbott, L

    2000-10-24

    Mammalian hearing depends on the enhanced mechanical properties of the basilar membrane within the cochlear duct. The enhancement arises through the action of outer hair cells that act like force generators within the organ of Corti. Simple considerations show that underlying mechanism of somatic motility depends on local area changes within the lateral membrane of the cell. The molecular basis for this phenomenon is a dense array of particles that are inserted into the basolateral membrane and that are capable of sensing membrane potential field. We show here that outer hair cells selectively take up fructose, at rates high enough to suggest that a sugar transporter may be part of the motor complex. The relation of these findings to a recent candidate for the molecular motor is also discussed.

  19. Self-renewal molecular mechanisms of colorectal cancer stem cells

    PubMed Central

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer. PMID:27909729

  20. Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules

    PubMed Central

    Mandelkern, L.

    1967-01-01

    The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598

  1. Separating Mechanical and Chemical Contributions to Molecular-Level Friction

    SciTech Connect

    KIM,HYUN I.; HOUSTON,JACK E.

    2000-08-14

    The authors use force-probe microscopy to study the friction force and the adhesive interaction for molecular monolayer self-assembled on both Au probe tips and substrate surfaces. By systematically varying the chemical nature of the end groups on these monolayers the authors have, for the first time, delineated the mechanical and chemical origins of molecular-level friction. They use chemically inert {double_bond}CH{sub 3} groups on both interracial surfaces to establish the purely mechanical component of the friction and contrast the results with the findings for chemically active {double_bond}COOH end-groups. In addition, by using odd or even numbers of methylene groups in the alkyl backbones of the molecules they are able to determine the levels of inter-film and intra-film hydrogen bonding.

  2. Molecular mechanisms of desiccation tolerance in resurrection plants.

    PubMed

    Gechev, Tsanko S; Dinakar, Challabathula; Benina, Maria; Toneva, Valentina; Bartels, Dorothea

    2012-10-01

    Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.

  3. Integrative network analysis reveals molecular mechanisms of blood pressure regulation

    PubMed Central

    Huan, Tianxiao; Meng, Qingying; Saleh, Mohamed A; Norlander, Allison E; Joehanes, Roby; Zhu, Jun; Chen, Brian H; Zhang, Bin; Johnson, Andrew D; Ying, Saixia; Courchesne, Paul; Raghavachari, Nalini; Wang, Richard; Liu, Poching; O'Donnell, Christopher J; Vasan, Ramachandran; Munson, Peter J; Madhur, Meena S; Harrison, David G; Yang, Xia; Levy, Daniel

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression-related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3−/− mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension. PMID:25882670

  4. Molecular mechanism of Ca(2+)-catalyzed fusion of phospholipid micelles.

    PubMed

    Tsai, Hui-Hsu Gavin; Juang, Wei-Fu; Chang, Che-Ming; Hou, Tsai-Yi; Lee, Jian-Bin

    2013-11-01

    Although membrane fusion plays key roles in intracellular trafficking, neurotransmitter release, and viral infection, its underlying molecular mechanism and its energy landscape are not well understood. In this study, we employed all-atom molecular dynamics simulations to investigate the fusion mechanism, catalyzed by Ca(2+) ions, of two highly hydrated 1-palmitoyl-2-oleoyl-sn-3-phosphoethanolamine (POPE) micelles. This simulation system mimics the small contact zone between two large vesicles at which the fusion is initiated. Our simulations revealed that Ca(2+) ions are capable of catalyzing the fusion of POPE micelles; in contrast, we did not observe close contact of the two micelles in the presence of only Na(+) or Mg(2+) ions. Determining the free energy landscape of fusion allowed us to characterize the underlying molecular mechanism. The Ca(2+) ions play a key role in catalyzing the micelle fusion in three aspects: creating a more-hydrophobic surface on the micelles, binding two micelles together, and enhancing the formation of the pre-stalk state. In contrast, Na(+) or Mg(2+) ions have relatively limited effects. Effective fusion proceeds through sequential formation of pre-stalk, stalk, hemifused-like, and fused states. The pre-stalk state is the state featuring lipid tails exposed to the inter-micellar space; its formation is the rate-limiting step. The stalk state is the state where a localized hydrophobic core is formed connecting two micelles; its formation occurs in conjunction with water expulsion from the inter-micellar space. This study provides insight into the molecular mechanism of fusion from the points of view of energetics, structure, and dynamics.

  5. Molecular Transport Mechanisms for Associating and Solvating Penetrant in Polymers

    DTIC Science & Technology

    2007-11-02

    PIB ) at different vapor activities in order to understand complex diffusion mechanisms and probe molecular structures above the glass tranisition. The...the individual diffusion coefficients can be separated and that they are equal to each other for the acetic acid/ PIB system. The values of the...BOH) mixtures in polyisobutylene ( PIB ) was studied at varying mixture compositions. Diffusion coefficients and hydrogen bonding interactions were

  6. Molecular mechanisms of metabolic regulation by insulin in Drosophila.

    PubMed

    Teleman, Aurelio A

    2009-12-14

    The insulin signalling pathway is highly conserved from mammals to Drosophila. Insulin signalling in the fly, as in mammals, regulates a number of physiological functions, including carbohydrate and lipid metabolism, tissue growth and longevity. In the present review, I discuss the molecular mechanisms by which insulin signalling regulates metabolism in Drosophila, comparing and contrasting with the mammalian system. I discuss both the intracellular signalling network, as well as the communication between organs in the fly.

  7. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome.

    PubMed

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-12-01

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies.

  8. Molecular Mechanisms Regulating TGF-β-Induced Foxp3 Expression

    PubMed Central

    Xu, Lili; Kitani, Atsushi; Strober, Warren

    2013-01-01

    Molecular mechanisms regulating TGF-β induction of Foxp3 expression and thus induction of iTregs has been the focus of a great deal of study in recent years. It has become clear that this process is influenced by a number of factors as perhaps might be predicted by the fact that there is an overarching need of the immune system to fine-tune response to environmental antigens. In this review we discuss these mechanisms, with the aim of presenting a broad picture of how the various observations fit together to form an integrated regulatory regime. PMID:20404810

  9. Mechanical instability of α-quartz: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tse, John S.; Klug, Dennis D.

    1991-12-01

    Pressure-induced amorphization in α-quartz has been investigated using constant-pressure molecular-dynamics calculations with the two-body potential of van Beest, Kramer, and van Santen. Both the static properties and the crystalline-to-amorphous phase transition were very well reproduced. Through an analysis of the elastic moduli, the mechanism for the transformation is shown to be a mechanical instability driven mainly by a cooperative twisting and compression of the helical tetrahedral silicate units with an abrupt decrease in the C12, C23, C13, C14, and C33 elastic moduli.

  10. Water Exchange Rates and Molecular Mechanism around Aqueous Halide Ions

    SciTech Connect

    Annapureddy, Harsha V.; Dang, Liem X.

    2014-07-17

    Molecular dynamics simulations were performed to systematically study the water-exchange mechanism around aqueous chloride, bromide, and iodide ions. Transition state theory, Grote-Hynes theory, and the reactive flux method were employed to compute water exchange rates. We computed the pressure dependence of rate constants and the corresponding activation volumes to investigate the mechanism of the solvent exchange event. The activation volumes obtained using the transition state theory rate constants are negative for all the three anions, thus indicating an associative mechanism. Contrary to the transition state theory results, activation volumes obtained using rate constants from Grote-Hynes theory and the reactive flux method are positive, thus indicating a dissociative mechanism. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  11. Kainate receptor trafficking: physiological roles and molecular mechanisms.

    PubMed

    Isaac, John T R; Mellor, Jack; Hurtado, David; Roche, Katherine W

    2004-12-01

    Recently, there has been intense interest in the mechanisms regulating the trafficking and synaptic targeting of kainate receptors in neurons. This topic is still in its infancy when compared with studies of trafficking of other ionotropic glutamate receptors; however, it is already clear that mechanisms exist for subunit- and splice variant-specific trafficking of kainate receptors. There is also enormous diversity of kainate receptor targeting, with the best-studied neurons in this regard being hippocampal CA3 pyramidal neurons and CA1 GABAergic interneurons. This review summarizes the current state of knowledge on this topic, focusing on the molecular mechanisms of kainate receptor trafficking and the potential for these mechanisms to regulate neuronal kainate receptor function.

  12. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.

    PubMed

    Li, Hongzhi; Fajer, Mikolai; Yang, Wei

    2007-01-14

    A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations.

  13. Molecular mechanisms of hookworm disease: stealth, virulence, and vaccines.

    PubMed

    Pearson, Mark S; Tribolet, Leon; Cantacessi, Cinzia; Periago, Maria Victoria; Valero, Maria Adela; Valerio, Maria Adela; Jariwala, Amar R; Hotez, Peter; Diemert, David; Loukas, Alex; Bethony, Jeffrey

    2012-07-01

    Hookworms produce a vast repertoire of structurally and functionally diverse molecules that mediate their long-term survival and pathogenesis within a human host. Many of these molecules are secreted by the parasite, after which they interact with critical components of host biology, including processes that are key to host survival. The most important of these interactions is the hookworm's interruption of nutrient acquisition by the host through its ingestion and digestion of host blood. This results in iron deficiency and eventually the microcytic hypochromic anemia or iron deficiency anemia that is the clinical hallmark of hookworm infection. Other molecular mechanisms of hookworm infection cause a systematic suppression of the host immune response to both the parasite and to bystander antigens (eg, vaccines or allergens). This is achieved by a series of molecules that assist the parasite in the stealthy evasion of the host immune response. This review will summarize the current knowledge of the molecular mechanisms used by hookworms to survive for extended periods in the human host (up to 7 years or longer) and examine the pivotal contributions of these molecular mechanisms to chronic hookworm parasitism and host clinical outcomes.

  14. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  15. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  16. Nanostructure and molecular mechanics of spider dragline silk protein assemblies.

    PubMed

    Keten, Sinan; Buehler, Markus J

    2010-12-06

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.

  17. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  18. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability

    PubMed Central

    Vieille, Claire; Zeikus, Gregory J.

    2001-01-01

    Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described. PMID:11238984

  19. The superspreading mechanism unveiled via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Theodorakis, Panagiotis; Muller, Erich; Craster, Richard; Matar, Omar

    2014-11-01

    Superspreading, by which aqueous droplets laden with specific surfactants wet hydrophobic substrates, is an unusual and dramatic phenomenon. This is attributed to various factors, e.g., a particular surfactant geometry, Marangoni flow, unique solid-fluid interactions, however, direct evidence for a plausible mechanism for superspreading has not yet been provided. Here, we use molecular dynamics simulations of a coarse-grained model with force fields obtained from the SAFT- γ equation of state to capture the superspreading mechanism of water drops with surfactants on model surfaces. Our simulations highlight and monitor the main features of the molecular behavior that lead to the superspreading mechanism, and reproduce and explain the experimentally-observed characteristic maxima of the spreading rate of the droplet vs. surfactant concentration and wettability. We also present a comparison between superspreading and non-superspreading surfactants underlining the main morphological and energetic characteristics of superspreaders. We believe that this is the first time a plausible superspreading mechanism based on a microscopic description is proposed; this will enable the design of surfactants with enhanced spreading ability specifically tailored for applications. EPSRC Grant Number EP/J010502/1.

  20. Linking traits based on their shared molecular mechanisms

    PubMed Central

    Oren, Yael; Nachshon, Aharon; Frishberg, Amit; Wilentzik, Roni; Gat-Viks, Irit

    2015-01-01

    There is growing recognition that co-morbidity and co-occurrence of disease traits are often determined by shared genetic and molecular mechanisms. In most cases, however, the specific mechanisms that lead to such trait–trait relationships are yet unknown. Here we present an analysis of a broad spectrum of behavioral and physiological traits together with gene-expression measurements across genetically diverse mouse strains. We develop an unbiased methodology that constructs potentially overlapping groups of traits and resolves their underlying combination of genetic loci and molecular mechanisms. For example, our method predicts that genetic variation in the Klf7 gene may influence gene transcripts in bone marrow-derived myeloid cells, which in turn affect 17 behavioral traits following morphine injection; this predicted effect of Klf7 is consistent with an in vitro perturbation of Klf7 in bone marrow cells. Our analysis demonstrates the utility of studying hidden causative mechanisms that lead to relationships between complex traits. DOI: http://dx.doi.org/10.7554/eLife.04346.001 PMID:25781485

  1. Molecular mechanisms of coronavirus RNA capping and methylation.

    PubMed

    Chen, Yu; Guo, Deyin

    2016-02-01

    The 5'-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2'-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5'-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5'-cap structure and methylation modification of viral genomic RNAs.

  2. Molecular Mechanisms of Aging and Immune System Regulation in Drosophila

    PubMed Central

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. PMID:22949833

  3. Discovering novel ligands for understanding molecular mechanism of bacteria chemotaxis

    NASA Astrophysics Data System (ADS)

    Lai, Luhua

    2015-03-01

    In order to understand the molecular mechanism of bacteria chemotaxis, we used a combined experimental and computational approach to discover novel chemoeffector molecules and compare their binding features, as well as the conformational changes they produce. We first used molecular docking to computationally screen a large chemical library and tested binding strengths of the top-ranking molecules for the E. coli chemoreceptor Tar. Chemotactic properties of the binding molecules were then studied using a specially designed microfluidic device. Novel attractant and antagonist molecules were identified that bind directly with the E. coli chemoreceptor Tar. Molecular dynamics simulations showed that attractant and antagonist binding result in distinct conformational changes in Tar. Differences of antagonist and attractant binding suggest that molecules lacking triggering interaction with the receptor behave as antagonist. For Tar, the triggering interaction is mediated by the hydrogen bonds formed between a donor group in the attractant and the main-chain carbonyls in the fourth helix of Tar. This ?bind-and-trigger? mechanism of receptor signaling is verified experimentally by converting an antagonist into an attractant when introducing an NH group into the antagonist compound. Similar conformational changes were also observed in the E. coli Tsr system.

  4. Non Equilibrium Transformations of Molecular Compounds Induced Mechanically

    SciTech Connect

    Descamps, M.; Willart, J. F.; Dudognon, E.

    2006-05-05

    Results clarifying the effects of mechanical milling on molecular solids are shortly reviewed. Special attention has been paid to the temperature of milling with regard to the glass transition temperature of the compounds. It is shown that decreasing the grinding temperature has for incidence to increase the amorphization tendency whereas milling above Tg produces a crystal-to-crystal transformation between polymorphic varieties. These observations contradict the usual proposition that grinding transforms the physical state only by a heating effect which induces a local melting. Equilibrium thermodynamics does not seem to be appropriate for describing the process. The driven alloys concept offers a more rational framework to interpret the effect of the milling temperature. Other results are presented which demonstrate the possibility for grinding to realize low temperature solid state alloying which offers new promising ways to stabilize amorphous molecular solids. In a second part the effect of dehydration of a molecular hydrate is described. It is shown that the rate of the dehydration process is a driving force for this other type of mechanical non equilibrium transformation.

  5. Studies on the molecular mechanisms of seed germination.

    PubMed

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination.

  6. Molecular mechanisms of foliar water uptake in a desert tree

    PubMed Central

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  7. Modeling and experimental research on a removal mechanism during chemical mechanical polishing at the molecular scale

    NASA Astrophysics Data System (ADS)

    Wei, An; Yongwu, Zhao; Yongguang, Wang

    2010-11-01

    In order to understand the fundamentals of the chemical mechanical polishing (CMP) material removal mechanism, the indentation depth of a slurry particle into a wafer surface is determined using the in situ nanomechanical testing system tribo-indenter by Hysitron. It was found that the removal mechanism in CMP is most probably a molecular scale removal theory. Furthermore, a comprehensive mathematical model was modified and used to pinpoint the effects of wafer/pad relative velocity, which has not been modeled previously. The predicted results based on the current model are shown to be consistent with the published experimental data. Results and analysis may lead to further understanding of the microscopic removal mechanism at the molecular scale in addition to its underlying theoretical foundation.

  8. Soy isoflavones and prostate cancer: a review of molecular mechanisms.

    PubMed

    Mahmoud, Abeer M; Yang, Wancai; Bosland, Maarten C

    2014-03-01

    Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.

  9. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  10. Mechanical Design Report DARPA BOSS Program

    DTIC Science & Technology

    2008-03-21

    had been learned. Design mechanical components based on optical design Provide feedback to optical designers Provide feedback to optical...Components Lens Evaluation CWRU Incorporate feedback in design Develop new lens structures and fabrication techniques Incorporate feedback in...zoom process. Effective focal length ( EFL ) was used as the independent variable because it is tied directly to the image magnification (zoom), and

  11. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.

    PubMed

    van der Kamp, Marc W; Mulholland, Adrian J

    2013-04-23

    Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.

  12. Molecular mechanism of selective binding of peptides to silicon surface.

    PubMed

    Ramakrishnan, Sathish Kumar; Martin, Marta; Cloitre, Thierry; Firlej, Lucyna; Gergely, Csilla

    2014-07-28

    Despite extensive recent research efforts on material-specific peptides, the fundamental problem to be explored yet is the molecular interactions between peptides and inorganic surfaces. Here we used computer simulations (density functional theory and classical molecular dynamics) to investigate the adsorption mechanism of silicon-binding peptides and the role of individual amino acids in the affinity of peptides for an n-type silicon (n(+)-Si) semiconductor. Three silicon binding 12-mer peptides previously elaborated using phage display technology have been studied. The peptides' conformations close to the surface have been determined and the best-binding amino acids have been identified. Adsorption energy calculations explain the experimentally observed different degrees of affinity of the peptides for n(+)-Si. Our residual scanning analysis demonstrates that the binding affinity relies on both the identity of the amino acid and its location in the peptide sequence.

  13. The molecular mechanism and physiological role of cytoplasmic streaming.

    PubMed

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.

  14. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations.

  15. Neural tube closure: cellular, molecular and biomechanical mechanisms.

    PubMed

    Nikolopoulou, Evanthia; Galea, Gabriel L; Rolo, Ana; Greene, Nicholas D E; Copp, Andrew J

    2017-02-15

    Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.

  16. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism.

    PubMed

    Faizan, Md Imam; Abdullah, Mohd; Ali, Sher; Naqvi, Irshad H; Ahmed, Anwar; Parveen, Shama

    2016-01-01

    Zika virus is an arthropod-borne re-emerging pathogen associated with the global pandemic of 2015-2016. The devastating effect of Zika viral infection is reflected by its neurological manifestations such as microcephaly in newborns. This scenario evoked our interest to uncover the neurotropic localization, multiplication of the virus, and the mechanism of microcephaly. The present report provides an overview of a possible molecular mechanism of Zika virus-induced microcephaly based on recent publications. Transplacental transmission of Zika viral infection from mother to foetus during the first trimester of pregnancy results in propagation of the virus in human neural progenitor cells (hNPCs), where entry is facilitated by the receptor (AXL protein) leading to the alteration of signalling and immune pathways in host cells. Further modification of the viral-induced TLR3-mediated immune network in the infected hNPCs affects viral replication. Downregulation of neurogenesis and upregulation of apoptosis in hNPCs leads to cell cycle arrest and death of the developing neurons. In addition, it is likely that the environmental, physiological, immunological, and genetic factors that determine in utero transmission of Zika virus are also involved in neurotropism. Despite the global concern regarding the Zika-mediated epidemic, the precise molecular mechanism of neuropathogenesis remains elusive.

  17. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  18. DNA intercalation optimized by two-step molecular lock mechanism

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unconventional intercalator that binds DNA through a novel two-step mechanism in which the intermediate and final states bind DNA through the same mono-intercalating moiety. During this process, DNA undergoes significant structural rearrangements, first lengthening before relaxing to a shorter DNA-ligand complex in the intermediate state to form a molecular lock. To reach the final bound state, the molecular length must increase again as the ligand threads between disrupted DNA base pairs. This unusual binding mechanism results in an unprecedented optimized combination of high DNA binding affinity and slow kinetics, suggesting a new paradigm for rational design of DNA intercalators. PMID:27917863

  19. Enlightening molecular mechanisms through study of protein interactions

    PubMed Central

    Rizo, Josep; Rosen, Michael K.; Gardner, Kevin H.

    2012-01-01

    The investigation of molecular mechanisms is a fascinating area of current biological research that unites efforts from scientists with very diverse expertise. This review provides a perspective on the characterization of protein interactions as a central aspect of this research. We discuss case studies on the neurotransmitter release machinery that illustrate a variety of principles and emphasize the power of combining nuclear magnetic resonance (NMR) spectroscopy with other biophysical techniques, particularly X-ray crystallography. These studies have shown that: (i) the soluble SNAP receptor (SNARE) proteins form a tight complex that brings the synaptic vesicle and plasma membranes together, which is key for membrane fusion; (ii) the SNARE syntaxin-1 adopts an autoinhibitory closed conformation; (iii) Munc18-1 plays crucial functions through interactions with closed syntaxin-1 and with the SNARE complex; (iv) Munc13s mediate the opening of syntaxin-1; (v) complexins play dual roles through distinct interactions with the SNARE complex; (vi) synaptotagmin-1 acts a Ca2+ sensor, interacting simultaneously with the membranes and the SNAREs; and (vii) a Munc13 homodimer to Munc13-RIM heterodimer switch modulates neurotransmitter release. Overall, this research underlines the complexities involved in elucidating molecular mechanisms and how these mechanisms can depend critically on an interplay between strong and weak protein interactions. PMID:22735643

  20. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease

    PubMed Central

    Zhou, Fan; Katirai, Foad

    2011-01-01

    Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649

  1. Advancing neuroscience through epigenetics: molecular mechanisms of learning and memory.

    PubMed

    Molfese, David L

    2011-01-01

    Humans share 96% of our 30,000 genes with Chimpanzees. The 1,200 genes that differ appear at first glance insufficient to describe what makes us human and them apes. However, we are now discovering that the mechanisms that regulate how genes are expressed tell a much richer story than our DNA alone. Sections of our DNA are constantly being turned on or off, marked for easy access, or secluded and hidden away, all in response to ongoing cellular activity. In the brain, neurons encode information-in effect memories-at the cellular level. Yet while memories may last a lifetime, neurons are dynamic structures. Every protein in the synapse undergoes some form of turnover, some with half-lives of only hours. How can a memory persist beyond the lifetimes of its constitutive molecular building blocks? Epigenetics-changes in gene expression that do not alter the underlying DNA sequence-may be the answer. In this article, epigenetic mechanisms including DNA methylation and acetylation or methylation of the histone proteins that package DNA are described in the context of animal learning. Through the interaction of these modifications a "histone code" is emerging wherein individual memories leave unique memory traces at the molecular level with distinct time courses. A better understanding of these mechanisms has implications for treatment of memory disorders caused by normal aging or diseases including schizophrenia, Alzheimer's, depression, and drug addiction.

  2. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.

    PubMed

    Ramírez, C L; Martí, M A; Roitberg, A E

    2016-01-01

    One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost.

  3. Molecular-dynamics study of detonation. II. The reaction mechanism

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Grosh, John; Trevino, S. F.

    1996-01-01

    In this work, we investigate mechanisms of chemical reactions that sustain an unsupported detonation. The chemical model of an energetic crystal used in this study consists of heteronuclear diatomic molecules that, at ambient pressure, dissociate endothermically. Subsequent association of the products to form homonuclear diatomic molecules provides the energy release that sustains the detonation. A many-body interaction is used to simulate changes in the electronic bonding as a function of local atomic environment. The consequence of the many-body interaction in this model is that the intramolecular bond is weakened with increasing density. The mechanism of the reaction for this model was extracted by investigating the details of the molecular properties in the reaction zone with two-dimensional molecular dynamics. The mechanism for the initiation of the reaction in this model is pressure-induced atomization. There was no evidence of excitation of vibrational modes to dissociative states. This particular result is directly attributable to the functional form and choice of parameters for this model, but might also have more general applicability.

  4. United polarizable multipole water model for molecular mechanics simulation

    PubMed Central

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-01-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water. PMID:26156485

  5. United polarizable multipole water model for molecular mechanics simulation

    SciTech Connect

    Qi, Rui; Wang, Qiantao; Ren, Pengyu; Wang, Lee-Ping; Pande, Vijay S.

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  6. United polarizable multipole water model for molecular mechanics simulation

    NASA Astrophysics Data System (ADS)

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  7. Forces in molecular recognition: Comparison of experimental data and molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Waltho, J. P.; Vinter, J. G.; Davis, A.; Williams, D. H.

    1988-04-01

    NMR studies of the rotation barrier of the disaccharide of the glycopeptide antibiotic vancomycin have been used to test the performance of computer simulation techniques using molecular mechanics. In the absence of any solvated water, no correlation could be found between experiment and calculation. By introducing solvent water molecules into the binding region of the antibiotic, the NMR results could be simulated both qualitatively and quantitatively within experimental error without using massive computational resources.

  8. Molecular mechanisms of l-DOPA-induced dyskinesia.

    PubMed

    Fisone, Gilberto; Bezard, Erwan

    2011-01-01

    Parkinson's disease (PD), a common neurodegenerative disorder caused by the loss of the dopaminergic input to the basal ganglia, is commonly treated with l-DOPA. Use of this drug, however, is severely limited by the development of dystonic and choreic motor complications, or dyskinesia. This chapter describes the molecular mechanisms implicated in the emergence and manifestation of l-DOPA-induced dyskinesia (LID). Particular emphasis is given to the role played in this condition by abnormalities in signal transduction at the level of the medium spiny neurons (MSNs) of the striatum, which are the principal target of l-DOPA. Recent evidence pointing to pre-synaptic dysregulation is also discussed.

  9. On molecular mechanism of the photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Tretjakov, S. A.

    1995-01-01

    In this work we present the experimental results indicating that the photodestruction (inactivation) of glycolysis enzymes located in mitochondria and responsible for the energy providing of malignant tumors, could serve as a possible molecular mechanism of a photodynamic therapy of cancer. The formation of complexes between the glycolysis enzymes and sensitizer favors can lead to an effective photodestruction of the former [in the experiments lactate dehydrogenase (LDH), pyruvate kinase (PK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and water-soluble tetra(carboxiphenyl)porphyrine [T(CP)P] (the analogue of coprorphyrin) were used as photosensitizer.

  10. Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents.

    PubMed

    Marzocchella, Laura; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2011-09-01

    Flavonoids are a large group of polyphenolic compounds, which are ubiquitously expressed in plants. They are grouped according to their chemical structure and function into flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and isoflavones. Many of flavonoids are found in fruits, vegetables and beverages. Flavonoids have been demonstrated to have advantageous effects on human health because their anti-allergic, anti-inflammatory, anti-platelet aggregation, anti-tumor and anti-oxidant behavior. This report reviews the current knowledge on the molecular mechanisms of action of flavonoids as anti-inflammatory agents and also discusses the relevant patents.

  11. Molecular and Electrophysiological Mechanisms Underlying Cardiac Arrhythmogenesis in Diabetes Mellitus

    PubMed Central

    Tse, Vivian; Yeo, Jie Ming

    2016-01-01

    Diabetes is a common endocrine disorder with an ever increasing prevalence globally, placing significant burdens on our healthcare systems. It is associated with significant cardiovascular morbidities. One of the mechanisms by which it causes death is increasing the risk of cardiac arrhythmias. The aim of this article is to review the cardiac (ion channel abnormalities, electrophysiological and structural remodelling) and extracardiac factors (neural pathway remodelling) responsible for cardiac arrhythmogenesis in diabetes. It is concluded by an outline of molecular targets for future antiarrhythmic therapy for the diabetic population. PMID:27642609

  12. The mechanism of selective molecular capture in carbon nanotube networks.

    PubMed

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  13. Molecular mechanics of dihydroxyphenylalanine at a silica interface

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus

    2012-08-01

    L-3,4-dihydroxyphenylalanine (DOPA) is an amazing biological glue secreted by marine mussels. Through enhanced sampling molecular dynamics, here we demonstrate that proteins with DOPA residues have a strong affinity to a silica surface with an interfacial strength of several hundreds of thousand N/cm2. The mechanism of such strong adhesion is a pair of hydrogen bonds that forms between DOPA and the substrate, enabling enhanced cooperativity as the DOPA residue lays flat on top the surface. Our predicted adhesion force (743 pN) agrees well with experimental measurements (847 ± 157 pN), including the orientation of the DOPA residue on the surface.

  14. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  15. Molecular mechanisms of cisplatin resistance in cervical cancer

    PubMed Central

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. PMID:27354763

  16. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  17. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  18. Lather-Interior Systems Mechanic Program. Apprenticeship Training.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the lather-interior systems mechanic program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee…

  19. A quest to understand molecular mechanisms for genetic stability.

    PubMed

    Sekiguchi, Mutsuo

    2006-06-10

    In the midst of the post-war turmoil in Japan, I fortunately followed a path to become a scientist. Sometime at an early stage of my career, I encountered the problem of the cellular response to DNA damage and had the chance to discover a DNA repair enzyme. This event greatly influenced the subsequent course of my research, and I extended my studies toward elucidating the molecular mechanisms of mutagenesis as well as of carcinogenesis. Through these studies I came to understand the importance of mechanisms for dealing with the actions of reactive oxygen species to the living systems. These recollections deal with these endeavors with emphasis on the early part of my scientific career.

  20. Molecular mechanisms of the membrane sculpting ESCRT pathway.

    PubMed

    Henne, William Mike; Stenmark, Harald; Emr, Scott D

    2013-09-01

    The endosomal sorting complexes required for transport (ESCRT) drive multivesicular body (MVB) biogenesis and cytokinetic abscission. Originally identified through genetics and cell biology, more recent work has begun to elucidate the molecular mechanisms of ESCRT-mediated membrane remodeling, with special focus on the ESCRT-III complex. In particular, several light and electron microscopic studies provide high-resolution imaging of ESCRT-III rings and spirals that purportedly drive MVB morphogenesis and abscission. These studies highlight unifying principles to ESCRT-III function, in particular: (1) the ordered assembly of the ESCRT-III monomers into a heteropolymer, (2) ESCRT-III as a dynamic complex, and (3) the role of the AAA ATPase Vps4 as a contributing factor in membrane scission. Mechanistic comparisons of ESCRT-III function in MVB morphogenesis and cytokinesis suggest common mechanisms in membrane remodeling.

  1. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  2. Molecular mechanism of action of microtubule-stabilizing anticancer agents.

    PubMed

    Prota, Andrea E; Bargsten, Katja; Zurwerra, Didier; Field, Jessica J; Díaz, José Fernando; Altmann, Karl-Heinz; Steinmetz, Michel O

    2013-02-01

    Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of αβ-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of β-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.

  3. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update.

    PubMed

    Arora, Mandeep Kumar; Singh, Umesh Kumar

    2013-04-01

    Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.

  4. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release

    PubMed Central

    Lazarevic, Vesna; Pothula, Santosh; Andres-Alonso, Maria; Fejtova, Anna

    2013-01-01

    Homeostatic plasticity is a process by which neurons adapt to the overall network activity to keep their firing rates in a reasonable range. At the cellular level this kind of plasticity comprises modulation of cellular excitability and tuning of synaptic strength. In this review we concentrate on presynaptic homeostatic plasticity controlling the efficacy of neurotransmitter release from presynaptic boutons. While morphological and electrophysiological approaches were successful to describe homeostatic plasticity-induced changes in the presynaptic architecture and function, cellular and molecular mechanisms underlying those modifications remained largely unknown for a long time. We summarize the latest progress made in the understanding of homeostasis-induced regulation of different steps of the synaptic vesicle cycle and the molecular machineries involved in this process. We particularly focus on the role of presynaptic scaffolding proteins, which functionally and spatially organize synaptic vesicle clusters, neurotransmitter release sites and the associated endocytic machinery. These proteins turned out to be major presynaptic substrates for remodeling during homeostatic plasticity. Finally, we discuss cellular processes and signaling pathways acting during homeostatic molecular remodeling and their potential involvement in the maladaptive plasticity occurring in multiple neuropathologic conditions such as neurodegeneration, epilepsy and neuropsychiatric disorders. PMID:24348337

  5. Molecular mechanism of statin-mediated LOX-1 inhibition.

    PubMed

    Biocca, Silvia; Iacovelli, Federico; Matarazzo, Sara; Vindigni, Giulia; Oteri, Francesco; Desideri, Alessandro; Falconi, Mattia

    2015-01-01

    Statins are largely used in clinics in the treatment of patients with cardiovascular diseases for their effect on lowering circulating cholesterol. Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for ox-LDL, plays a central role in the pathogenesis of atherosclerosis and cardiovascular disorders. We have recently shown that chronic exposure of cells to lovastatin disrupts LOX-1 receptor cluster distribution in plasma membranes, leading to a marked loss of LOX-1 function. Here we investigated the molecular mechanism of statin-mediated LOX-1 inhibition and we demonstrate that all tested statins are able to displace the binding of fluorescent ox-LDL to LOX-1 by a direct interaction with LOX-1 receptors in a cell-based binding assay. Molecular docking simulations confirm the interaction and indicate that statins completely fill the hydrophobic tunnel that crosses the C-type lectin-like (CTLD) recognition domain of LOX-1. Classical molecular dynamics simulation technique applied to the LOX-1 CTLD, considered in the entire receptor structure with or without a statin ligand inside the tunnel, indicates that the presence of a ligand largely increases the dimer stability. Electrophoretic separation and western blot confirm that different statins binding stabilize the dimer assembly of LOX-1 receptors in vivo. The simulative and experimental results allow us to propose a CTLD clamp motion, which enables the receptor-substrate coupling. These findings reveal a novel and significant functional effect of statins.

  6. Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms.

    PubMed

    Turpin, Williams; Humblot, Christèle; Thomas, Muriel; Guyot, Jean-Pierre

    2010-10-15

    Lactic acid bacteria and more particularly lactobacilli have been used for the production of fermented foods for centuries. Several lactobacilli have been recognized as probiotics due to their wide range of health-promoting effects in humans. However, little is known about the molecular mechanisms underpinning their probiotic functions. Here we reviewed the main beneficial effects of lactobacilli and discussed, when the information is available, the molecular machinery involved in their probiotic function. Among the beneficial effects, lactobacilli can improve digestion, absorption and availability of nutrients. As an example, some strains are able to degrade carbohydrates such as lactose or α-galactosides that may cause abdominal pain. Furthermore, they can hydrolyze compounds that limit the bioavailability of minerals like tannin and phytate due to tannin acylhydrolase and phytase activities. In addition, it was shown that some lactobacilli strains can improve mineral absorption in Caco-2 cells. Lactobacilli can also contribute to improve the nutritional status of the host by producing B group vitamins. More recently, the role of lactobacilli in energy homeostasis, particularly in obese patients, is the object of an increased interest. Lactobacilli are also involved in the prevention of diseases. They have potential to prevent carcinogenesis through the modulation of enzymes involved in the xenobiotic pathway, and may prevent cardiovascular diseases such as hypertension through the production of a bioactive peptide that may have angiotensin converting enzyme inhibitor activity. Lactobacilli are increasingly studied for the treatment of inflammatory bowel diseases and exhibit interesting potential in the reduction of pain perception. The ability of some strains to bind to intestinal cells, their pathogen-associated molecular patterns and the metabolites they produce confer interesting immunomodulatory effects. Finally, pathogenic fungi, virus or bacteria can be

  7. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  8. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    PubMed Central

    Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype. PMID:27213345

  9. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  10. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  11. Zinc and diabetes--clinical links and molecular mechanisms.

    PubMed

    Jansen, Judith; Karges, Wolfram; Rink, Lothar

    2009-06-01

    Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.

  12. Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates.

    PubMed

    Meng, Dong-Ya; Sun, Chang-Jian; Yu, Jing-Bo; Ma, Jun; Xue, Wen-Cheng

    2014-01-01

    To evaluate the molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis (MH) clinical strains isolated from urogenital specimens. 15 MH clinical isolates with different phenotypes of resistance to fluoroquinolones antibiotics were screened for mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) in comparison with the reference strain PG21, which is susceptible to fluoroquinolones antibiotics. 15 MH isolates with three kinds of quinolone resistance phenotypes were obtained. Thirteen out of these quinolone-resistant isolates were found to carry nucleotide substitutions in either gyrA or parC. There were no alterations in gyrB and no mutations were found in the isolates with a phenotype of resistance to Ofloxacin (OFX), intermediate resistant to Levofloxacin (LVX) and Sparfloxacin (SFX), and those susceptible to all three tested antibiotics. The molecular mechanism of fluoroquinolone resistance in clinical isolates of MH was reported in this study. The single amino acid mutation in ParC of MH may relate to the resistance to OFX and LVX and the high-level resistance to fluoroquinolones for MH is likely associated with mutations in both DNA gyrase and the ParC subunit of topoisomerase IV.

  13. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  14. Molecular Mechanisms of Biological Aging in Intervertebral Discs

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Patil, Prashanti R.; Risbud, Makarand V.; Kletsas, Dimitris; Iatridis, James C.; Hoyland, Judith A.; Le Maitre, Christine L.; Sowa, Gwendolyn A.; Kang, James D.

    2016-01-01

    Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. PMID:26890203

  15. Towards identification of molecular mechanisms of short stature

    PubMed Central

    2013-01-01

    Growth evaluations are among the most common referrals to pediatric endocrinologists. Although a number of pathologies, both primary endocrine and non-endocrine, can present with short stature, an estimated 80% of evaluations fail to identify a clear etiology, leaving a default designation of idiopathic short stature (ISS). As a group, several features among children with ISS are suggestive of pathophysiology of the GH–IGF-1 axis, including low serum levels of IGF-1 despite normal GH secretion. Candidate gene analysis of rare cases has demonstrated that severe mutations of genes of the GH–IGF-1 axis can present with a profound height phenotype, leading to speculation that a collection of mild mutations or polymorphisms of these genes can explain poor growth in a larger proportion of patients. Recent genome-wide association studies have identified ~180 genomic loci associated with height that together account for approximately 10% of height variation. With only modest representation of the GH–IGF-1 axis, there is little support for the long-held hypothesis that common genetic variants of the hormone pathway provide the molecular mechanism for poor growth in a substantial proportion of individuals. The height-associated common variants are not observed in the anticipated frequency in the shortest individuals, suggesting rare genetic factors with large effect are more plausible in this group. As we advance towards establishing a molecular mechanism for poor growth in a greater percentage of those currently labeled ISS, we highlight two strategies that will likely be offered with increasing frequency: (1) unbiased genetic technologies including array analysis for copy number variation and whole exome/genome sequencing and (2) epigenetic alterations of key genomic loci. Ultimately data from subsets with similar molecular etiologies may emerge that will allow tailored interventions to achieve the best clinical outcome. PMID:24257104

  16. Execution of Educational Mechanical Production Programs for School Children

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuhide; Itoh, Goroh; Shibata, Takayuki

    The authors are conducting experience-based engineering educational programs for elementary and junior high school students with the aim to provide a chance for them to experience mechanical production. As part of this endeavor, we planned and conducted a program called “Fabrication of Original Magnet Plates by Casting” for elementary school students. This program included a course for leading nature laws and logical thinking method. Prior to the program, a preliminary program was applied to school teachers to get comments and to modify for the program accordingly. The children responded excellently to the production process which realizes their ideas, but it was found that the course on natural laws and logical methods need to be improved to draw their interest and attention. We will continue to plan more effective programs, deepening ties with the local community.

  17. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite.

    PubMed

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush

    2016-02-01

    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems.

  18. Graphene Young's modulus: Molecular mechanics and DFT treatments

    NASA Astrophysics Data System (ADS)

    Memarian, F.; Fereidoon, A.; Darvish Ganji, M.

    2015-09-01

    Despite of the numerous theoretical and experimental investigations on the mechanical properties of graphene as a unique nano-structured material, a precious value for this important property has not yet been presented. In the present work, the Young's modulus of single layer graphene sheet has been investigated by using comprehensive classic as well as quantum mechanics (QM) calculations. Molecular mechanics (MM) approach with various well-defined force-fields such as AIREBO, Tresoff and EDIP potentials have been considered. In QM category, several conventional methods (DFTB and DFT-LDA/GGA) have been employed. The results show that EDIP potential method predicts more accurately the graphene Young's modulus value compared to experimental results. Furthermore, despite the various theoretical results reported elsewhere, the EDIP potential calculations result reveals that Young's modulus has the same value at both zigzag and armchair directions. From the results obtained here, we found that among the various MM and QM methods considered here the EDIP method seems to be the most convenient method for evaluation of both structural geometries and mechanical properties of carbon based graphene-like materials. This is because of its less computational costs accompanied with reliable results comparable with the experiments.

  19. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    PubMed

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2.

  20. Physical and chemical mechanisms in molecular radiation biology

    SciTech Connect

    Glass, W.A.; Varma, M.N.

    1991-01-01

    Through its Radiological and Chemical Physics Program, the Department of Energy (DOE) has been a primary source of funding for research in radiation physics and radiochemistry, supporting a wide range of explorations of the link between physical, chemical and biological events. This book is a series of articles by authors working within this field, most of whom have been central to the DOE-sponsored research. The opening papers focus on radiological physics; the second section covers radiation chemistry in a discussion that extends from the initial energy transfer to the production of intermediate chemical species and DNA damage. The third section explores the link between the physical and chemical events and the production of biological effects. Finally the book closes with a series of papers on molecular radiation biology.

  1. Molecular genetic and endocrine mechanisms of hair growth.

    PubMed

    Alonso, Laura C; Rosenfield, Robert L

    2003-01-01

    The prenatal morphogenesis of hair follicles depends upon a precisely regulated series of molecular genetic processes. Hormones and their receptors play prominent roles in modulating postnatal hair cycling, which recapitulates some aspects of morphogenesis. The responses to androgen are the most obvious of these. The postnatal androgen sensitivity of pilosebaceous units in different skin areas is programmed during prenatal development to permit clinical outcomes such as hirsutism and pattern baldness. Thyroid hormone, glucocorticoids, insulin-like growth factor-I, and prolactin have clinically significant effects on specific aspects of hair growth. The nuclear receptors vitamin D receptor and retinoid X receptor are essential for postnatal hair cycling. Other hormones have less clear effects on hair growth. Advances in research on the interaction of hormone target genes with the biological processes involved in hair morphogenesis and cycling can be expected to improve management of hirsutism and alopecia.

  2. Berthing mechanism final test report and program assessment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose is to document the testing performed on both hardware and software developed under the Space Station Berthing Mechanisms Program. Testing of the mechanism occurred at three locations. Several system components, e.g., actuators and computer systems, were functionally tested before assembly. A series of post assembly tests were performed. The post assembly tests, as well as the dynamic testing of the mechanism, are presented.

  3. MOLECULAR MECHANISM OF MICROBIAL TECHNETIUM REDUCTION FINAL REPORT

    SciTech Connect

    DiChristina, Thomas J.

    2013-04-30

    Microbial Tc(VII) reduction is an attractive alternative strategy for bioremediation of technetium-contaminated subsurface environments. Traditional ex situ remediation processes (e.g., adsorption or ion exchange) are often limited by poor extraction efficiency, inhibition by competing ions and production of large volumes of produced waste. Microbial Tc(VII) reduction provides an attractive alternative in situ remediation strategy since the reduced end-product Tc(IV) precipitates as TcO2, a highly insoluble hydrous oxide. Despite its potential benefits, the molecular mechanism of microbial Tc(VII) reduction remains poorly understood. The main goal of the proposed DOENABIR research project is to determine the molecular mechanism of microbial Tc(VII) reduction. Random mutagenesis studies in our lab have resulted in generation of a set of six Tc(VII) reduction-deficient mutants of Shewanella oneidensis. The anaerobic respiratory deficiencies of each Tc(VII) reduction-deficient mutant was determined by anaerobic growth on various combinations of three electron donors and 14 terminal electron acceptors. Results indicated that the electron transport pathways to Tc(VII), NO3 -, Mn(III) and U(VI) share common structural or regulatory components. In addition, we have recently found that wild-type Shewanella are also able to reduce Tc(IV) as electron acceptor, producing Tc(III) as an end-product. The recent genome sequencing of a variety of technetium-reducing bacteria and the anticipated release of several additional genome sequences in the coming year, provides us with an unprecedented opportunity to determine the mechanism of microbial technetium reduction across species and genus lines.

  4. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  5. Molecular mechanics work station for protein conformational studies

    SciTech Connect

    Fine, R.; Levinthal, C.; Schoenborn, B.; Dimmier, G.; Rankowitz, C.

    1984-01-01

    Interest in computational problems in Biology has intensified over the last few years, partly due to the development of techniques for the rapid cloning, sequencing, and mutagenesis of genes from organisims ranging from E. coli to Man. The central dogma of molecular biology; that DNA codes for mRNA which codes for protein, has been understood in a linear programming sense since the genetic code was cracked. But what is not understood at present is how a protein, once assembled as a long sequence of amino acids, folds back on itself to produce a three-dimensional structure which is unique to that protein and which dictates its chemical and biological activity. This folding process is purely physics, and involves the time evolution of a system of several thousand atoms which interact with each other and with atoms from the surrounding solvent. Molecular dynamics simulations on smaller molecules suggest that approaches which treat the protein as a classical ensemble of atoms interacting with each other via an empirical Hamiltonian can yield the kind of predictive results one would like when applied to proteins.

  6. Structures and stabilities of diacetylene-expanded polyhedranes by quantum mechanics and molecular mechanics.

    PubMed

    Jarowski, Peter D; Diederich, François; Houk, Kendall N

    2005-03-04

    The structures, heats of formation, and strain energies of diacetylene (buta-1,3-diynediyl) expanded molecules have been computed with ab initio and molecular mechanics calculations. Expanded cubane, prismane, tetrahedrane, and expanded monocyclics and bicyclics were optimized at the HF/6-31G(d) and B3LYP/6-31G(d) levels. The heats of formation of these systems were obtained from isodesmic equations at the HF/6-31G(d) level. Heats of formation were also calculated from Benson group equivalents. The strain energies of these expanded molecules were estimated by several independent methods. An adapted MM3 molecular mechanics force field, specifically parametrized to treat conjugated acetylene units, was employed for one measure of strain energy and as an additional method for structural analysis. Expanded dodecahedrane and icosahedrane were calculated by this method. Expanded molecules were considered structurally in the context of their potential material applications.

  7. Molecular mechanism of action of fluoride on bone cells.

    PubMed

    Lau, K H; Baylink, D J

    1998-11-01

    Fluoride is an effective anabolic agent to increase spinal bone density by increasing bone formation, and at therapeutically relevant (i.e., micromolar) concentrations, it stimulates bone cell proliferation and activities in vitro and in vivo. However, the fluoride therapy of osteoporosis has been controversial, in large part because of a lack of consistent antifracture efficacy. However, information regarding the molecular mechanism of action of fluoride may improve its optimum and correct usage and may disclose potential targets for the development of new second generation drugs that might have a better efficacy and safety profile. Accordingly, this review will address the molecular mechanisms of the osteogenic action of fluoride. In this regard, we and other workers have proposed two competing models, both of which involve the mitogen activated protein kinase (MAPK) mitogenic signal transduction pathway. Our model involves a fluoride inhibition of a unique fluoride-sensitive phosphotyrosine phosphatase (PTP) in osteoblasts, which results in a sustained increase in the tyrosine phosphorylation level of the key signaling proteins of the MAPK mitogenic transduction pathway, leading to the potentiation of the bone cell proliferation initiated by growth factors. The competing model proposes that fluoride acts in coordination with aluminum to form fluoroaluminate, which activates a pertussis toxin-sensitive Gi/o protein on bone cell membrane, leading to an activation of cellular protein tyrosine kinases (PTKs), which in turn leads to increases in the tyrosine phosphorylation of signaling proteins of the MAPK mitogenic signal transduction pathway, ultimately leading to a stimulation of cell proliferation. A benefit of our model, but not the other model, is that it accounts for all the unique properties of the osteogenic action of fluoride. These include the low effective fluoride dose, the skeletal tissue specificity, the requirement of PTK-activating growth factors

  8. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  9. A quantum mechanical/molecular mechanical approach to the investigation of particle-molecule interactions

    NASA Astrophysics Data System (ADS)

    Sloth, Marianne; Bilde, Merete; Mikkelsen, Kurt V.

    2003-06-01

    A quantum mechanical/molecular mechanical aerosol model is developed to describe the interaction between gas phase molecules and atmospheric particles. The model enables the calculation of interaction energies and time-dependent properties. We use the model to investigate how a succinic acid molecule interacts with an aqueous particle. We show how the interaction energies and linear response properties (excitation energies, transition moments, and polarizabilities) depend on the distance between aerosol particle and molecule and on their relative orientation. The results are compared with those obtained previously using a dielectric continuum model [Sloth et al., J. Phys. Chem. (submitted)].

  10. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  11. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.

    PubMed

    Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2015-11-06

    This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation.

  12. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  13. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  14. Mechanical properties of borophene films: a reactive molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Quy Le, Minh; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young’s modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young’s modulus and fracture stress of these five sheets appear in the range 63-136 N m-1 and 12-19 N m-1, respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  15. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death.

  16. Tea and cancer prevention: Molecular mechanisms and human relevance

    SciTech Connect

    Yang, Chung S. Lambert, Joshua D.; Ju Jihyeung; Lu Gang; Sang Shengmin

    2007-11-01

    Tea made from the leaves of the plant Camellia sinensis is a popular beverage. The possible cancer-preventive activity of tea and tea polyphenols has been studied extensively. This article briefly reviews studies in animal models, cell lines, and possible relevance of these studies to the prevention of human cancer. The cancer-preventive activity of tea constituents have been demonstrated in many animal models including cancer of the skin, lung, oral cavity, esophagus, stomach, liver, pancreas, small intestine, colon, bladder, prostate, and mammary gland. The major active constituents are polyphenols, of which (-)-epigallocatechin-3-gallate (EGCG) is most abundant, most active, and most studied, and caffeine. The molecular mechanisms of the cancer-preventive action, however, are just beginning to be understood. Studies in cell lines led to the proposal of many mechanisms on the action of EGCG. However, mechanisms based on studies with very high concentrations of EGCG may not be relevant to cancer prevention in vivo. The autooxidation of EGCG in cell culture may also produce activities that do not occur in many internal organs. In contrast to the cancer prevention activity demonstrated in different animal models, no such conclusion can be convincingly drawn from epidemiological studies on tea consumption and human cancers. Even though the human data are inconclusive, tea constituents may still be used for the prevention of cancer at selected organ sites if sufficient concentrations of the agent can be delivered to these organs. Some interesting examples in this area are discussed.

  17. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  18. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications.

    PubMed

    Kelce, W R; Wilson, E M

    1997-03-01

    Industrial chemicals and environmental pollutants can disrupt reproductive development in wildlife and humans by mimicking or inhibiting the action of the gonadal steroid hormones, estradiol and testosterone. The toxicity of these so-called environmental endocrine disruptors is especially insidious during sex differentiation and development due to the crucial role of gonadal steroid hormones in regulating these processes. This review describes the mechanism of toxicity and clinical implications of a new class of environmental chemicals that inhibit androgen-mediated sex development. For several of these chemicals, including the agricultural fungicide vinclozolin and the ubiquitous and persistent 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene, the molecular mechanism of action and the adverse developmental effects on male sex differentiation have been elucidated and are used as examples. Environmental chemicals with antiandrogenic activity offer profound implications with regard to recent clinical observations that suggest an increasing incidence of human male genital tract malformations, male infertility, and female breast cancer. Finally, in light of increasing concern over the potential endocrine disrupting effects of environmental pollutants, an in vitro/in vivo investigational strategy is presented which has proved useful in identifying chemicals with antiandrogen activity and their mechanism of action.

  19. Molecular mechanisms of alpha-fetoprotein gene expression.

    PubMed

    Lazarevich, N L

    2000-01-01

    Alpha-fetoprotein (AFP) is the main component of mammalian fetal serum. It is synthesized by visceral endoderm of the yolk sac and by fetal liver. Immediately after birth AFP level in blood decreases dramatically. AFP synthesis is reactivated in liver tumors and germinogeneous teratoblastomas, in a lesser degree after chemical and mechanical liver injuries followed by regeneration (i.e., acute viral hepatitis). AFP blood level change is an important marker for liver tumors that is widely used in clinical practice. Therefore, the study of the molecular and cellular mechanisms participating in regulation of the oncoembryonal protein AFP is an important task. On various experimental models it has been shown that the expression is regulated mainly on the transcriptional level, the AFP gene having a 7 kb regulatory region upstream. Within this region a tissue-specific promoter, three independent enhancers, and a silencer that is at least partially responsible for AFP gene expression decrease in adult liver have been defined. Some ubiquitous and some tissue-specific transcription factors, including hepatocyte nuclear factors (HNFs), which mediate the transcription of most of the liver-specific genes, have been shown to bind to the promoter. However, the mechanisms determining drastic changes of AFP synthesis level in the course of ontogenesis and carcinogenesis remain incompletely clarified. Also, little is known about negative regulators of AFP gene expression in cells of non-hepatic origin and in adult liver.

  20. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  1. Using RNA as Molecular Code for Programming Cellular Function.

    PubMed

    Kushwaha, Manish; Rostain, William; Prakash, Satya; Duncan, John N; Jaramillo, Alfonso

    2016-08-19

    RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.

  2. EGFR gene deregulation mechanisms in lung adenocarcinoma: A molecular review.

    PubMed

    Tsiambas, Evangelos; Lefas, Alicia Y; Georgiannos, Stavros N; Ragos, Vasileios; Fotiades, Panagiotis P; Grapsa, Dimitra; Stamatelopoulos, Athanasios; Kavantzas, Nikolaos; Patsouris, Efstratios; Syrigos, Konstantinos

    2016-08-01

    For the last two decades, evolution in molecular biology has expanded our knowledge in decoding a broad spectrum of genomic imbalances that progressively lead normal cells to a neoplastic state and finally to complete malignant transformation. Concerning oncogenes and signaling transduction pathways mediated by them, identification of specific gene alterations remains a critical process for handling patients by applying targeted therapeutic regimens. The epidermal growth factor receptor (EGFR) signaling pathway plays a crucial role in regulating cell proliferation, differentiation and apoptosis in normal cells. EGFR mutations and amplification represent the gene's main deregulation mechanisms in cancers of different histo-genetic origin. Furthermore, intra-cancer molecular heterogeneity due to clonal rise and expansion mainly explains the variable resistance to novel anti-EGFR monoclonal antibody (mAb), and also tyrosine kinase inhibitors (TKIs). According to recently published 2015 WHO new classification, lung cancer is the leading cause of death related to cancer and its incidence is still on the increase worldwide. The majority of patients suffering from lung cancer are diagnosed with epithelial tumors (adenocarcinoma predominantly and squamous cell carcinoma represent ∼85% of all pathologically defined lung cancer cases). In those patients, EGFR-activating somatic mutations in exons 18/19/20/21 modify patients' sensitivity (i.e. exon 21 L858R, exon 19 LREA deletion) or resistance (ie exon 20 T790M and/or insertion) to TKI mediated targeted therapeutic strategies. Additionally, the role of specific micro-RNAs that affect EGFR regulation is under investigation. In the current review, we focused on EGFR gene/protein structural and functional aspects and the corresponding alterations that occur mainly in lung adenocarcinoma to critically modify its molecular landscape.

  3. YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.

    PubMed

    Tan, Robert K Z; Petrov, Anton S; Harvey, Stephen C

    2006-05-01

    Coarse-grained models can be very different from all-atom models and are highly varied. Each class of model is assembled very differently and some models need customized versions of the standard molecular mechanics methods. The most flexible way to meet these diverse needs is to provide access to internal data structures and a programming language to manipulate these structures. We have created YUP, a general-purpose program for coarse-grained and multi-scaled models. YUP extends the Python programming language by adding new data types. We have then used the extended language to implement three classes of coarse-grained models. The coarse-grained RNA model type is an unusual non-linear polymer and the assembly was easily handled with a simple program. The molecular dynamics algorithm had to be extended for a coarse-grained DNA model so that it could detect a failure that is invisible to a standard implementation. A third model type took advantage of access to the force field to simulate the packing of DNA in viral capsid. We find that objects are easy to modify, extend and redeploy. Thus, new classes of coarse-grained models can be implemented easily.

  4. Drug-DNA intercalation: from discovery to the molecular mechanism.

    PubMed

    Mukherjee, Arnab; Sasikala, Wilbee D

    2013-01-01

    The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.

  5. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms

    PubMed Central

    Kschonsak, Marc; Haering, Christian H

    2015-01-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss – in light of these recent insights – the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles. PMID:25988527

  6. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.

    PubMed

    Kschonsak, Marc; Haering, Christian H

    2015-07-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.

  7. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis

    PubMed Central

    Yu, Hongyang; Huang, Tengbo

    2016-01-01

    Boundary formation is a crucial developmental process in plant organogenesis. Boundaries separate cells with distinct identities and act as organizing centers to control the development of adjacent organs. In flower development, initiation of floral primordia requires the formation of the meristem-to-organ (M–O) boundaries and floral organ development depends on the establishment of organ-to-organ (O–O) boundaries. Studies in this field have revealed a suite of genes and regulatory pathways controlling floral boundary formation. Many of these genes are transcription factors that interact with phytohormone pathways. This review will focus on the functions and interactions of the genes that play important roles in the floral boundaries and discuss the molecular mechanisms that integrate these regulatory pathways to control the floral boundary formation. PMID:26950117

  8. Osteoporosis in diabetes mellitus: Possible cellular and molecular mechanisms.

    PubMed

    Wongdee, Kannikar; Charoenphandhu, Narattaphol

    2011-03-15

    Osteoporosis, a global age-related health problem in both male and female elderly, insidiously deteriorates the microstructure of bone, particularly at trabecular sites, such as vertebrae, ribs and hips, culminating in fragility fractures, pain and disability. Although osteoporosis is normally associated with senescence and estrogen deficiency, diabetes mellitus (DM), especially type 1 DM, also contributes to and/or aggravates bone loss in osteoporotic patients. This topic highlight article focuses on DM-induced osteoporosis and DM/osteoporosis comorbidity, covering alterations in bone metabolism as well as factors regulating bone growth under diabetic conditions including, insulin, insulin-like growth factor-1 and angiogenesis. Cellular and molecular mechanisms of DM-related bone loss are also discussed. This information provides a foundation for the better understanding of diabetic complications and for development of early screening and prevention of osteoporosis in diabetic patients.

  9. A molecular mechanism of chaperone-client recognition

    PubMed Central

    He, Lichun; Sharpe, Timothy; Mazur, Adam; Hiller, Sebastian

    2016-01-01

    Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature. PMID:28138538

  10. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  11. Molecular mechanisms of disease-causing missense mutations

    PubMed Central

    Stefl, Shannon; Nishi, Hafumi; Petukh, Marharyta; Panchenko, Anna R.; Alexov, Emil

    2013-01-01

    Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions, and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies which illustrate the association between missense mutations and diseases. In addition we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally we report the current state-of-the-art methodologies which predict the effects of mutations on protein stability, the hydrogen bond network, pH-dependence, conformational dynamics and protein function. PMID:23871686

  12. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  13. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs.

  14. Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle

    PubMed Central

    Bleve, Valentina; Schäfer, Christian; Franchi, Paola; Silvi, Serena; Mezzina, Elisabetta; Credi, Alberto; Lucarini, Marco

    2015-01-01

    Invited for this months cover are the groups of Professors Marco Lucarini and Alberto Credi at the University of Bologna. The cover picture shows coupled and uncoupled states of a [2]rotaxane incorporating stable nitroxide radical units in both the ring and dumbbell components. Interaction between nitroxide radicals could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon deprotonation of the rotaxane NH2+ centers that effects a quantitative displacement of a dibenzocrown macroring to a 4,4’-bipyridinium recognition site. The complete base- and acid-induced switching cycle of the EPR pattern was repeated several times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. For more details, see the Communication on p. 18 ff. PMID:25870780

  15. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    NASA Astrophysics Data System (ADS)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  16. Obstructive renal injury: from fluid mechanics to molecular cell biology

    PubMed Central

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  17. Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma.

    PubMed

    Vescovo, T; Refolo, G; Vitagliano, G; Fimia, G M; Piacentini, M

    2016-10-01

    Hepatitis C virus (HCV) is a major leading cause of hepatocellular carcinoma (HCC). HCV-induced hepatocarcinogenesis is a multistep process resulting from a combination of pathway alterations that are either caused directly by viral factors or immune mediated as a consequence of a chronic state of inflammation. Host genetic variation is now emerging as an additional element that contribute to increase the risk of developing HCC. The advent of direct-acting antiviral agents foresees a rapid decline of HCC rate in HCV patients. However, a full understanding of the HCV-mediated tumourigenic process is required to elucidate if pro-oncogenic signatures may persist after virus clearance, and to identify novel tools for HCC prevention and therapy. In this review, we summarize the current knowledge of the molecular mechanisms responsible for HCV-induced hepatocarcinogenesis.

  18. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    PubMed

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  19. Molecular mechanisms of hepcidin regulation in sea bass (Dicentrarchus labrax).

    PubMed

    Neves, J V; Caldas, C; Wilson, J M; Rodrigues, P N S

    2011-12-01

    Hepcidin, an antimicrobial peptide described as a key regulator of iron metabolism, is known to respond in mammals to several stimuli, including iron overload, anemia, hypoxia and inflammation, through a number of molecular pathways. In order to understand the molecular pathways involved in the regulation of hepcidin expression in teleost fish, we have isolated for European sea bass (Dicentrarchus labrax) several coding sequences of known molecules involved on these pathways in mammals, namely jak3, stat3, tmprss6, bmp6, bmpr2, hjv, smad4, smad5, tfr1 and tfr2. The transcription levels of the isolated genes were evaluated by real-time PCR on fish subjected to experimental iron modulation (overload/deficiency) or infection with Photobacterium damsela. Results show that genes associated with the major pathway of the inflammatory response (IL6/JAK/STAT pathway) in mammals are also modulated in sea bass, being up-regulated during infection. Similarly, genes of the pathways classically associated with the response to variations in iron status (the HJV/BMP/SMAD and HFE/TfR pathways) are also modulated, mostly through down-regulation in iron deficiency and up-regulation during iron overload. Interestingly, many of these genes are also found to be up-regulated during infection, which may indicate a crosstalk between the known pathways of hepcidin regulation. These observations suggest the evolutionary conservation of the mechanisms of hepcidin regulation in teleost fish.

  20. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential

    PubMed Central

    Dankers, Wendy; Colin, Edgar M.; van Hamburg, Jan Piet; Lubberts, Erik

    2017-01-01

    Over the last three decades, it has become clear that the role of vitamin D goes beyond the regulation of calcium homeostasis and bone health. An important extraskeletal effect of vitamin D is the modulation of the immune system. In the context of autoimmune diseases, this is illustrated by correlations of vitamin D status and genetic polymorphisms in the vitamin D receptor with the incidence and severity of the disease. These correlations warrant investigation into the potential use of vitamin D in the treatment of patients with autoimmune diseases. In recent years, several clinical trials have been performed to investigate the therapeutic value of vitamin D in multiple sclerosis, rheumatoid arthritis, Crohn’s disease, type I diabetes, and systemic lupus erythematosus. Additionally, a second angle of investigation has focused on unraveling the molecular pathways used by vitamin D in order to find new potential therapeutic targets. This review will not only provide an overview of the clinical trials that have been performed but also discuss the current knowledge about the molecular mechanisms underlying the immunomodulatory effects of vitamin D and how these advances can be used in the treatment of autoimmune diseases. PMID:28163705

  1. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities

    PubMed Central

    Lefevre, Sophie; Sliwa, Dominika; Seguin, Alexandra; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2010-01-01

    Abstract Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron–sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment. Antioxid. Redox Signal. 13, 0000–0000. PMID:20156111

  2. Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Irwin, Mary E.; Rivera-Del Valle, Nilsa

    2013-01-01

    Abstract Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability—some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients. Antioxid. Redox Signal. 18, 1349–1383. PMID:22900756

  3. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges

    PubMed Central

    Kim, Yeni; Santos, Renata; Gage, Fred H.; Marchetto, Maria C.

    2017-01-01

    Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs. PMID:28261061

  4. Molecular Mechanisms of IgE Class Switch Recombination.

    PubMed

    Tong, Pei; Wesemann, Duane R

    2015-01-01

    Immunoglobulin (Ig) E is the most tightly regulated of all Ig heavy chain (IgH) isotypes and plays a key role in atopic disease. The gene encoding for IgH in mature B cells consists of a variable region exon-assembled from component gene segments via V(D)J recombination during early B cell development-upstream of a set of IgH constant region CH exons. Upon activation by antigen in peripheral lymphoid organs, B cells can undergo IgH class switch recombination (CSR), a process in which the initially expressed IgH μ constant region exons (Cμ) are deleted and replaced by one of several sets of downstream CH exons (e.g., Cγ, Cε, and Cα). Activation of the IL-4 receptor on B cells, together with other signals, can lead to the replacement of Cμ with Cε resulting in CSR to IgE through a series of molecular events involving irreversible remodeling of the IgH locus. Here, we discuss the molecular mechanisms of CSR and the unique features surrounding the generation of IgE-producing B cells.

  5. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  6. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges.

    PubMed

    Kim, Yeni; Santos, Renata; Gage, Fred H; Marchetto, Maria C

    2017-01-01

    Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.

  7. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.

    PubMed Central

    Malhotra, A; Tan, R K; Harvey, S C

    1994-01-01

    There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed. Images FIGURE 7 FIGURE 8 PMID:7521223

  8. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

    PubMed

    Ferrer, Silvia; Ruiz-Pernía, Javier; Martí, Sergio; Moliner, Vicent; Tuñón, Iñaki; Bertrán, Juan; Andrés, Juan

    2011-01-01

    The development of characterization techniques, advanced synthesis methods, as well as molecular modeling has transformed the study of systems in a well-established research field. The current research challenges in biocatalysis and biotransformation evolve around enzyme discovery, design, and optimization. How can we find or create enzymes that catalyze important synthetic reactions, even reactions that may not exist in nature? What is the source of enzyme catalytic power? To answer these and other related questions, the standard strategies have evolved from trial-and-error methodologies based on chemical knowledge, accumulated experience, and common sense into a clearly multidisciplinary science that allows one to reach the molecular design of tailor-made enzyme catalysts. This is even more so when one refers to enzyme catalysts, for which the detailed structure and composition are known and can be manipulated to introduce well-defined residues which can be implicated in the chemical rearrangements taking place in the active site. The methods and techniques of theoretical and computational chemistry are becoming more and more important in both understanding the fundamental biological roles of enzymes and facilitating their utilization in biotechnology. Improvement of the catalytic function of enzymes is important from scientific and industrial viewpoints, and to put this fact in the actual perspective as well as the potentialities, we recommend the very recent report of Sanderson [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature 471, 397.]. Great fundamental advances have been made toward the ab initio design of enzyme catalysts based on molecular modeling. This has been based on the molecular mechanistic knowledge of the reactions to be catalyzed, together with the development of advanced synthesis and characterization techniques. The corresponding molecular mechanism can be studied by means of powerful quantum chemical calculations. The catalytic

  9. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  10. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  11. Modern evolutionary mechanics theories and resolving the programmed/non-programmed aging controversy.

    PubMed

    Goldsmith, Theodore C

    2014-10-01

    Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions.

  12. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  13. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  14. Molecular mechanisms for insulin resistance in treated HIV-infection

    PubMed Central

    Hruz, Paul W.

    2010-01-01

    Identification and characterization of the molecular mechanisms contributing to the high incidence of insulin resistance in HIV infected patients treated with combined antiretroviral therapy remains a critically important goal in the quest to improve the safety of antiretroviral treatment regimens. The use of in vitro model systems together with the investigation of drug-mediated effects on glucose homeostasis in animals and healthy human volunteers has provided important insight into the contribution of individual drugs to insulin resistance and affected cellular pathways. HIV protease inhibitor mediated blockade of glucose transport and nucleoside reverse transcriptase inhibitor mediated mitochondrial toxicity have been well characterized. Together with growing understanding of mediators of insulin resistance in non-HIV metabolic syndrome, additional cellular effects including the induction of endoplasmic reticulum and oxidative stress, altered adipocytokine secretion, and lipotoxicity have been integrated into this developing picture. Further elucidation of these mechanisms provides potential for the continued development of safer antiviral drugs and targeted treatment of insulin resistance in affected patients. PMID:21663839

  15. Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms

    PubMed Central

    Bukhari, Syed Nasir Abbas

    2014-01-01

    The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans. PMID:25247178

  16. Molecular Mechanisms of Autophagy in the Cardiovascular System

    PubMed Central

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J.

    2014-01-01

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole in order to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease. PMID:25634969

  17. Molecular mechanisms of autophagy in the cardiovascular system.

    PubMed

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J

    2015-01-30

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.

  18. Categorical prototyping: incorporating molecular mechanisms into 3D printing

    NASA Astrophysics Data System (ADS)

    Brommer, Dieter B.; Giesa, Tristan; Spivak, David I.; Buehler, Markus J.

    2016-01-01

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to ‘protoype a model’, as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  19. Nosocomial infection and its molecular mechanisms of antibiotic resistance.

    PubMed

    Xia, Jufeng; Gao, Jianjun; Tang, Wei

    2016-02-01

    Nosocomial infection is a kind of infection, which is spread in various hospital environments, and leads to many serious diseases (e.g. pneumonia, urinary tract infection, gastroenteritis, and puerperal fever), and causes higher mortality than community-acquired infection. Bacteria are predominant among all the nosocomial infection-associated pathogens, thus a large number of antibiotics, such as aminoglycosides, penicillins, cephalosporins, and carbapenems, are adopted in clinical treatment. However, in recent years antibiotic resistance quickly spreads worldwide and causes a critical threat to public health. The predominant bacteria include Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. In these bacteria, resistance emerged from antibiotic resistant genes and many of those can be exchanged between bacteria. With technical advances, molecular mechanisms of resistance have been gradually unveiled. In this review, recent advances in knowledge about mechanisms by which (i) bacteria hydrolyze antibiotics (e.g. extended spectrum β-lactamases, (ii) AmpC β-lactamases, carbapenemases), (iii) avoid antibiotic targeting (e.g. mutated vanA and mecA genes), (iv) prevent antibiotic permeation (e.g. porin deficiency), or (v) excrete intracellular antibiotics (e.g. active efflux pump) are summarized.

  20. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  1. The molecular mechanism of thalidomide analogs in hematologic malignancies.

    PubMed

    Lindner, Stefanie; Krönke, Jan

    2016-12-01

    Thalidomide was sold in the 1950s as a sedative and was also used by pregnant women to treat morning sickness. It became notorious for causing severe birth defects and was removed from the market. More than four decades later, thalidomide had a renaissance in the treatment of cancer. Thalidomide and its more potent analogs, lenalidomide and pomalidomide, are nowadays approved treatments for multiple myeloma and myelodysplastic syndrome with deletion of chromosome 5q. In addition, thalidomide and its analogs inhibit release of tumor necrosis factor-α and increase interleukin-2 (IL-2) and interferon-γ release from T cells. The underlying molecular mechanisms for these pleiotropic effects remained obscure until the identification of the cereblon (CRBN) E3 ubiquitin ligase as the primary target of thalidomide and its analogs in 2010. Binding of thalidomide or lenalidomide increases the affinity of CRBN to the transcription factors IKZF1 and IKZF3 and casein kinase 1α (CK1α). Ubiquitination and degradation of these neo-substrates results in IL-2 release and growth arrest of multiple myeloma and MDS cells. The discovery of this previously undescribed mechanism for an approved drug provides a proof-of-concept for the development of new therapeutics that exploit ubiquitin ligases for specific degradation of disease-associated proteins.

  2. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields

    PubMed Central

    Piraneo, Tara G.; Bull, Jon; Morales, Mariany A.; Lavine, Laura C.; Walsh, Douglas B.; Zhu, Fang

    2015-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies. PMID:26621458

  3. Molecular mechanisms of glucocorticoid action in mast cells.

    PubMed

    Oppong, Emmanuel; Flink, Nesrin; Cato, Andrew C B

    2013-11-05

    Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.

  4. Categorical prototyping: incorporating molecular mechanisms into 3D printing.

    PubMed

    Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J

    2016-01-15

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  5. Molecular mechanisms underlying nutrient detection by incretin-secreting cells

    PubMed Central

    Reimann, Frank

    2010-01-01

    The hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted postprandially from intestinal K- and L-cells, respectively. As incretins, these hormones stimulate insulin secretion from the pancreatic β-cell, and have independently been implicated in the control of food intake and lipid metabolism. Whilst the enteroendocrine cells producing GIP and GLP-1 are therefore attractive targets for the treatment of diabetes and obesity, our understanding of their physiology is fairly limited. The mechanisms employed to sense the arrival of carbohydrate, fat and protein in the gut lumen have been investigated using organ perfusion techniques, primary epithelial cultures and cell line models. The recent development of mice with fluorescently labeled GIP or GLP-1-expressing cells is now enabling the use of single cell techniques to investigate stimulus-secretion coupling mechanisms. This review will focus on the current knowledge of the molecular machinery underlying nutrient sensing within K- and L-cells. PMID:20204054

  6. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  7. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms.

    PubMed

    Das, Atze T; Berkhout, Ben

    2010-06-27

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach.

  8. Molecular mechanisms of CRISPR-mediated microbial immunity.

    PubMed

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.

  9. Molecular mechanisms of liver fibrosis in HIV/HCV coinfection.

    PubMed

    Mastroianni, Claudio M; Lichtner, Miriam; Mascia, Claudia; Zuccalà, Paola; Vullo, Vincenzo

    2014-05-26

    Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV). Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.

  10. Molecular mechanisms controlling the migration of striatal interneurons.

    PubMed

    Villar-Cerviño, Verona; Kappeler, Caroline; Nóbrega-Pereira, Sandrina; Henkemeyer, Mark; Rago, Luciano; Nieto, M Angela; Marín, Oscar

    2015-06-10

    In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.

  11. Cellular and molecular mechanisms of inflammation-induced angiogenesis.

    PubMed

    Szade, Agata; Grochot-Przeczek, Anna; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2015-03-01

    Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.

  12. Statistical mechanics of quasispecies theories of molecular evolution

    NASA Astrophysics Data System (ADS)

    Munoz Tavera, Enrique

    This thesis presents a statistical mechanical analysis of different formulations of quasispecies theory of molecular evolution. These theories, characterized by two different families of models, the Crow-Kimura and the Eigen model, constitute a microscopie description of evolution. These models are most often used for RNA viruses, where a phase transition is predicted, in agreement with experiments, between an organized or quasispecies phase, and a disordered non-selective phase when the mutation rate exceeds a critical value. The methods of statistical mechanics, in particular field-theoretic methods, are employed to obtain analytic solutions to four problems relevant to biological interest. The first chapter presents the study of evolution under a multiple-peak fitness landscape, with biological applications in the study of the proliferation of viruses or cancer under the control of drugs or the immune system. The second chapter studies the effect of incorporating different forms of horizontal gene transfer and two-parent recombination to the classical formulation of quasispecies models. As an example, we study the effect of the sign of epistasis of the fitness landscape on the advantage or disadvantage of recombination for the mean fitness. The third chapter considers the relaxation of the purine/pyrimidine assumption in the classical formulation of the models, by formulating and solving the parallel and Eigen models in the context of a four-letter alphabet. The fourth and final chapter studies finite population effects, both in the presence and in the absence of horizontal gene transfer.

  13. Cisplatin in cancer therapy: molecular mechanisms of action

    PubMed Central

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  14. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    SciTech Connect

    Valiev, Marat; Yang, Jie; Adams, Joseph; Taylor, Susan S.; Weare, John H.

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfer of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.

  15. Determining the Molecular Growth Mechanisms of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Studies of the growth of tetragonal lysozyme crystals employing atomic force microscopy (AFM) have shown the advantages of this technique in investigating the growth mechanisms of protein crystals [1]. The resolution of these studies was in the micron range, which revealed surface features such as the occurrence of dislocations and 2D nucleation islands, similar to those found in inorganic systems. They clearly showed that the crystals grew by these surface growth mechanisms. However, the studies also revealed some surprising features, such as bimolecular growth step heights and pronounced growth anisotropies on the (110) face, which could not be explained. In previous studies we employed Periodic Bond Chain (PBC) theory to tetragonal lysozyme crystal growth and found that the crystals were constructed by strongly bonded molecular chains forming helices about the 43 axes [2,3]. The helices were connected to each other with weaker bonds. The growth process was shown to proceed by the formation of these 43 helices, resulting in bimolecular growth steps on the (110) face. It was also shown to explain many other observations on tetragonal lysozyme crystal growth. Although PBC analysis is not a new technique [4], it has not been widely used as the mechanisms predicted from it could not be experimentally verified. In this study the growth process of these crystals was investigated, particularly for the (110) face, employing some newly developed high resolution AFM techniques. These techniques allowed individual lysozyme molecules on the crystal faces to be resolved and predictions from PBC analyses to be tested. The analyses had shown that of the two possible packing arrangements on (110) faces, only one would actually occur. Employing the first of the newly developed techniques, these faces were scanned by high resolution AFM. The resulting images were then compared with the theoretically constructed images for the two possible packing arrangements on the (110) face

  16. INSTRUCTION IN FARM MECHANICS, SUGGESTIONS FOR DEVELOPING TRAINING PROGRAMS IN FARM MECHANICS IN VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    HOLLENBERG, A.H.; JOHNSON, E.J.

    THE PURPOSE OF THE PROGRAM GUIDE IS TO ASSIST TEACHERS IN TRAINING YOUNG FARMERS AND FARM WORKERS IN THE SELECTION, OPERATION, UTILIZATION, AND MAINTENANCE OF FARM TOOLS, MACHINERY, AND MECHANICAL EQUIPMENT. DESIGNED BY NATIONAL AGRICULTURAL EDUCATION SPECIALISTS, THE DOCUMENT INCLUDES CHAPTERS ON THE CHANGING FARM, SETTING UP PROGRAMS, FARM…

  17. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.

    PubMed

    Tovar-y-Romo, Luis B; Penagos-Puig, Andrés; Ramírez-Jarquín, Josué O

    2016-01-01

    Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.

  18. Integral Equation Theory of Molecular Solvation Coupled with Quantum Mechanical/Molecular Mechanics Method in NWChem Package

    SciTech Connect

    Chuev, Gennady N.; Valiev, Marat; Fedotova, Marina V.

    2012-04-10

    We have developed a hybrid approach based on a combination of integral equation theory of molecular liquids and QM/MM methodology in NorthWest computational Chemistry (NWChem) software package. We have split the evaluations into conse- quent QM/MM and statistical mechanics calculations based on the one-dimensional reference interaction site model, which allows us to reduce signicantly the time of computation. The method complements QM/MM capabilities existing in the NWChem package. The accuracy of the presented method was tested through com- putation of water structure around several organic solutes and their hydration free energies. We have also evaluated the solvent effect on the conformational equilibria. The applicability and limitations of the developed approach are discussed.

  19. Making software get along: integrating optical and mechanical design programs

    NASA Astrophysics Data System (ADS)

    Shackelford, Christie J.; Chinnock, Randal B.

    2001-03-01

    As modern optomechanical engineers, we have the good fortune of having very sophisticated software programs available to us. The current optical design, mechanical design, industrial design, and CAM programs are very powerful tools with some very desirable features. However, no one program can do everything necessary to complete an entire optomechanical system design. Each program has a unique set of features and benefits, and typically two or mo re will be used during the product development process. At a minimum, an optical design program and a mechanical CAD package will be employed. As we strive for efficient, cost-effective, and rapid progress in our development projects, we must use these programs to their full advantage, while keeping redundant tasks to a minimum. Together, these programs offer the promise of a `seamless' flow of data from concept all the way to the download of part designs directly to the machine shop for fabrication. In reality, transferring data from one software package to the next is often frustrating. Overcoming these problems takes some know-how, a bit of creativity, and a lot of persistence. This paper describes a complex optomechanical development effort in which a variety of software tools were used from the concept stage to prototyping. It will describe what software was used for each major design task, how we learned to use them together to best advantage, and how we overcame the frustrations of software that didn't get along.

  20. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage?

    PubMed Central

    de Magalhães, João Pedro

    2012-01-01

    The idea that aging follows a predetermined sequence of events, a program, has been discredited by most contemporary authors. Instead, aging is largely thought to occur due to the accumulation of various forms of molecular damage. Recent work employing functional genomics now suggests that, indeed, certain facets of mammalian aging may follow predetermined patterns encoded in the genome as part of developmental processes. It appears that genetic programs coordinating some aspects of growth and development persist into adulthood and may become detrimental. This link between development and aging may occur due to regulated processes, including through the action of microRNAs and epigenetic mechanisms. Taken together with other results, in particular from worms, these findings provide evidence that some aging changes are not primarily a result of a build-up of stochastic damage but are rather a product of regulated processes. These processes are interpreted as forms of antagonistic pleiotropy, the product of a “shortsighted watchmaker,” and thus do not assume aging evolved for a purpose. Overall, it appears that the genome does, indeed, contain specific instructions that drive aging in animals, a radical shift in our perception of the aging process.—de Magalhães, J. P. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? PMID:22964300

  1. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    SciTech Connect

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  2. Molecular dynamics investigation of mechanisms of femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Changrui

    Laser micro-machining has been widely applied for material processing in many industries. A phenomenon called "laser ablation" is usually involved in the laser micro-machining process. Laser ablation is the process of material removal after the irradiation of a laser beam onto the material. It is commonly characterized by small temporal and spatial scales, extremely high material temperature and pressure, and strong non-equilibrium thermodynamic state. In this work, molecular dynamics (MD) simulation is conducted to study the femtosecond laser ablation of metals (nickel and copper) and dielectrics (fused silica, or glass). The laser heating and the ablation processes are numerically modeled, and the computation is accelerated by parallel processing technique. Both the pair-wise Morse potential and the many-body EAM (Embedded-Atom Method) potential are employed for metals. In the simulation of fused silica, the BKS (van Beest, Kramer and van Santen) potential is used, and the generation of free electrons, the energy transport from laser beam to free electrons and energy coupling between electrons and the lattice are considered. The main goal of this work is to illustrate the detailed processes of femtosecond laser ablation and to study its mechanisms. From the MD results, it is found that the mechanism of femtosecond laser ablation is strongly dependent on the laser fluences. For metals, low fluence laser ablation is mainly through phase explosion (homogeneous gas bubble nucleation), while spinodal decomposition is responsible for high fluence ablation. Ablation mechanism is determined by whether or not the material (liquid) temperature exceeds the critical temperature. For fused silica, the generation and existence of free electrons are found to affect ablation significantly, especially at low fluence, where Coulomb explosion is found to play an important role in material separation.

  3. Mechanical Characterization of Molecular Assemblies at Oil/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Wa

    The self-assembly of charged molecules in liquid phases and their ability to form functional layers at immiscible interfaces are areas of great interest. However, the implementation of these assemblies is often limited by a lack of understanding of the detailed assembly mechanisms. In order to enhance the performance of interfacial assemblies it is essential to be able to characterize the physical and mechanical properties of assembled layers, as well as develop model systems that will allow us to examine the factors that govern their interaction with the surrounding environment. The key purpose of this thesis is to develop an understanding of some of the important factors influencing interfacial assemblies at immiscible liquid interfaces. The first portion of the work involves mechanical characterization of interfacial layers formed by large amphiphilic molecules. The study of block and gradient copolymers, reveals the effect of copolymer sequence distribution on the ability of these molecules to form interfacial assemblies. Specifically, the unique network structure formed by gradient copolymers at oil/water interfaces enables us to create a robust membrane at the interface by ionic crosslinking. The second part of this thesis explores smaller molecule assemblies at liquid interfaces, including commonly used commercial surfactant (span 80) and nano particles (graphene oxide). Both studies demonstrate an interesting correlation between molecular structure and overall properties of the assembled layers. Factors such as interfacial density, particle sizes and pH can greatly influence the structure of the assembled layers, resulting in interesting phenomena such as spontaneous emulsification, wrinkling and layer collapse. The bulk of the oil/water interface study was performed using axisymmetric drop shape analysis (DSA), which successfully quantifies the mechanical tension in the interfacial layer. This analysis was further extended by a development of a double

  4. Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis).

    PubMed

    Li, Dejun; Wang, Xuncheng; Deng, Zhi; Liu, Hui; Yang, Hong; He, Guangming

    2016-03-23

    Tapping panel dryness (TPD) is a serious threat to natural rubber yields from rubber trees, but the molecular mechanisms underlying TPD remain poorly understood. To identify TPD-related genes and reveal these molecular mechanisms, we sequenced and compared the transcriptomes of bark between healthy and TPD trees. In total, 57,760 assembled genes were obtained and analyzed in details. In contrast to healthy rubber trees, 5652 and 2485 genes were up- or downregulated, respectively, in TPD trees. The TPD-related genes were significantly enriched in eight GO terms and five KEGG pathways and were closely associated with ROS metabolism, programmed cell death and rubber biosynthesis. Our results suggest that rubber tree TPD is a complex process involving many genes. The observed lower rubber yield from TPD trees might result from lower isopentenyl diphosphate (IPP) available for rubber biosynthesis and from downregulation of the genes in post-IPP steps of rubber biosynthesis pathway. Our results not only extend our understanding of the complex molecular events involved in TPD but also will be useful for developing effective measures to control TPD of rubber trees.

  5. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    PubMed Central

    2011-01-01

    Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI. PMID:21942950

  6. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  7. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism.

    PubMed

    Cook, Ian; Wang, Ting; Leyh, Thomas S

    2015-10-06

    The human cytosolic sulfotransferases (SULTs) regulate hundreds, perhaps thousands, of small molecule metabolites and xenobiotics via transfer of a sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of the recipients. In liver, where it is abundant, SULT1A1 engages in modifying metabolites and neutralizing toxins. The specificity of 1A1 is the broadest of any SULT, and understanding its selectivity is fundamental to understanding its biology. Here, for the first time, we show that SULT1A1 substrates separate naturally into two classes: those whose affinities are either enhanced ∼20-fold (positive synergy) or unaffected (neutral synergy) by the presence of a saturating nucleotide. kcat for the positive-synergy substrates is shown to be ∼100-fold greater than that of neutral-synergy compounds; consequently, the catalytic efficiency (kcat/Km) is approximately 3 orders of magnitude greater for the positive-synergy species. All-atom dynamics modeling suggests a molecular mechanism for these observations in which the binding of only positive-synergy compounds causes two phenylalanine residues (F81 and 84) to reposition and "sandwich" the phenolic moiety of the substrates, thus enhancing substrate affinity and positioning the nucleophilic oxygen for attack. Molecular dynamics movies reveal that the neutral-synergy compounds "wander" about the active site, infrequently achieving a reactive position. In-depth analysis of select point mutants strongly supports the model and provides an intimate view of the interdependent catalytic functions of subsections of the active site.

  8. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).

  9. Molecular Mechanisms Associated with Xylan Degradation by Xanthomonas Plant Pathogens*

    PubMed Central

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-01-01

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  10. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens.

    PubMed

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-11-14

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses.

  11. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl

  12. A Model for Evaluating Vocational Automobile Mechanics Programs.

    ERIC Educational Resources Information Center

    Daugherty, Ronald D.; Suzuki, Warren N.

    The purpose of this manual is to suggest adaptable procedures and materials that can be used by Alaska vocational educators to evaluate their automotive mechanic programs systematically. Section 1 is an introduction to the manual and to the evaluation process. The remaining six sections represent major tasks or activities that should be…

  13. Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  14. Automotive Electricity: Automotive Mechanics Instructional Program. Block 3.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The third of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive electricity at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  15. Fuel System: Automotive Mechanics Instructional Program. Block 4.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The fourth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive fuel systems at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  16. Molecular Mechanisms of Olfactory Responses to Stimulus Mixtures

    DTIC Science & Technology

    1991-02-26

    addition, the recent molecular cloning of the olfactory neuron-specific G- protein, Golf, from rat olfactory epithelium (25), has prompted a re-evaluation... molecular cloning of a G-protein that is exclusively expressed within olfactory neurons (25) prompted a re-evaluation of the molecular identities of...Fritsch, E.F. and Maniatis, T. (1989) Plasmid vectors. In Molecular Cloning : A Laboratory Manual, pp. 1.1-1.110. Cold Spring Harbor Laboratory Press, Cold

  17. Exploring Molecular and Mechanical Gradients in Structural Bioscaffolds†

    PubMed Central

    Waite, J. Herbert; Lichtenegger, Helga C.; Stucky, Galen D.; Hansma, Paul

    2007-01-01

    Most organisms consist of a functionally adaptive assemblage of hard and soft tissues. Despite the obvious advantages of reinforcing soft protoplasm with a hard scaffold, such composites can lead to tremendous mechanical stresses where the two meet. Although little is known about how nature relieves these stresses, it is generally agreed that fundamental insights about molecular adaptation at hard/soft interfaces could profoundly influence how we think about biomaterials. Based on two noncellular tissues, mussel byssus and polychaete jaws, recent studies suggest that one natural strategy to minimize interfacial stresses between adjoining stiff and soft tissue appears to be the creation of a “fuzzy” boundary, which avoids abrupt changes in mechanical properties. Instead there is a gradual mechanical change that accompanies the transcendence from stiff to soft and vice versa. In byssal threads, the biochemical medium for achieving such a gradual mechanical change involves the elegant use of collagen-based self-assembling block copolymers. There are three distinct diblock copolymer types in which one block is always collagenous, whereas the other can be either elastin-like (soft), amorphous polyglycine (intermediate), or silk-like (stiff). Gradients of these are made by an incrementally titrated expression of the three proteins in secretory cells the titration phenotype of which is linked to their location. Thus, reflecting exactly the composition of each thread, the distal cells secrete primarily the silk– and polyglycine–collagen diblocks, whereas the proximal cells secrete the elastin– and polyglycine–collagen diblocks. Those cells in between exhibit gradations of collagens with silk or elastin blocks. Spontaneous self-assembly appears to be by pH triggered metal binding by histidine (HIS)-rich sequences at both the amino and carboxy termini of the diblocks. In the polychaete jaws, HIS-rich sequences are expanded into a major block domain. Histidine

  18. Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection

    ERIC Educational Resources Information Center

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…

  19. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  20. The molecular ecophysiology of programmed cell death in marine phytoplankton.

    PubMed

    Bidle, Kay D

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  1. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission.

    PubMed

    Gross, Christine; Thoma-Kress, Andrea K

    2016-03-09

    The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  2. Molecular mechanism of induction of key enzymes related to lipogenesis.

    PubMed

    Noguchi, T; Iritani, N; Tanaka, T

    1992-06-01

    Key enzymes related to lipogenesis in the liver are induced by a high glucose diet or insulin and suppressed by starvation, diabetes, or glucagon. Most of these enzymes are also induced by dietary fructose, even in diabetic liver. This regulation occurs at the posttranscriptional level as well as at the transcriptional level. We studied extensively the molecular mechanism of induction of L-type pyruvate kinase (LPK). The transcription of the LPK gene in the liver was stimulated by insulin and inhibited by glucagon. This insulin action required ongoing protein synthesis and metabolism of glucose and was enhanced by glucocorticoid. On the other hand, the mechanism of induction of the LPK by dietary fructose depended on plasma insulin levels. Dietary fructose stimulated transcription of the LPK gene in normal rats, whereas it acted mainly at the posttranscriptional level in diabetic rats. These fructose effects were attributable to a common metabolite of fructose and glycerol. The induction of LPK mRNA by dietary glucose was impaired in the liver of Wistar fatty rats, a model of obese non-insulin-dependent diabetes mellitus, but fructose-induced accumulation of the mRNA was not. Studies on transgenic mice indicated that the 5'-flanking region up to -3 kb of the LPK gene contained all cis-acting elements necessary for tissue-specific expression of LPK and its stimulation by diets and insulin. Further analysis using a transient expression assay revealed the presence of three cis-acting elements necessary for expression of LPK in hepatocytes in the region up to -170 kb. However, these elements alone were not sufficient for dietary and hormonal regulation of this enzyme when analyzed in transgenic mice.

  3. Parkinson disease: from pathology to molecular disease mechanisms.

    PubMed

    Dexter, David T; Jenner, Peter

    2013-09-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with both motor and nonmotor symptoms owing to a spreading process of neuronal loss in the brain. At present, only symptomatic treatment exists and nothing can be done to halt the degenerative process, as its cause remains unclear. Risk factors such as aging, genetic susceptibility, and environmental factors all play a role in the onset of the pathogenic process but how these interlink to cause neuronal loss is not known. There have been major advances in the understanding of mechanisms that contribute to nigral dopaminergic cell death, including mitochondrial dysfunction, oxidative stress, altered protein handling, and inflammation. However, it is not known if the same processes are responsible for neuronal loss in nondopaminergic brain regions. Many of the known mechanisms of cell death are mirrored in toxin-based models of PD, but neuronal loss is rapid and not progressive and limited to dopaminergic cells, and drugs that protect against toxin-induced cell death have not translated into neuroprotective therapies in humans. Gene mutations identified in rare familial forms of PD encode proteins whose functions overlap widely with the known molecular pathways in sporadic disease and these have again expanded our knowledge of the neurodegenerative process but again have so far failed to yield effective models of sporadic disease when translated into animals. We seem to be missing some key parts of the jigsaw, the trigger event starting many years earlier in the disease process, and what we are looking at now is merely part of a downstream process that is the end stage of neuronal death.

  4. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications

    PubMed Central

    Hua, Yinan; Nair, Sreejayan

    2014-01-01

    Cardiovascular disease is the leading cause of death in the U.S. and other developed country. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or overexpress proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better

  5. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    PubMed Central

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  6. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells.

    PubMed

    Watanabe, Masahiko

    2008-03-01

    Cerebellar Purkinje cells (PCs) play a principal role in motor coordination and motor learning. To fulfill these functions, PCs receive and integrate two types of excitatory inputs, climbing fiber (CF) and parallel fiber (PF). CFs are projection axons from the inferior olive, and convey error signals to PCs. On the other hand, PFs are T-shaped axons of cerebellar granule cells, and convey sensory and motor information carried through the pontocerebellar and spinocerebellar mossy fiber pathways. The most remarkable feature of PC circuits is the highly territorial innervation by these two excitatory afferents. A single climbing CF powerfully and exclusively innervates proximal PC dendrites, whereas hundreds of thousands of PFs innervate distal PC dendrites. Recent studies using gene-manipulated mice have been elucidating that the PC circuitry is formed and maintained by molecular mechanisms that fuel homosynaptic competition among CFs and heterosynaptic competition between CFs and PFs. GluRdelta2 (a PC-specific glutamate receptor) and precerebellin or Cbln1 (a granule cell-derived secretory protein) cooperatively work for selective strengthening of PF-PC synapses, and prevent excessive distal extension of CFs that eventually causes multiple innervation at distal dendrites. In contrast, P/Q-type Ca2+ channels, which mediate Ca2+ influx upon CF activity, selectively strengthen the innervation by a single main CF, and expel PFs and other CFs from proximal dendrites that it innervates. Therefore, we now understand that owing to these mechanisms, territorial innervation by CFs and PFs is properly structured and mono-innervation by CFs is established. Several key issues for future study are also discussed.

  7. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  8. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  9. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta.

    PubMed

    Boardman, Leigh; Sørensen, Jesper G; Terblanche, John S

    2015-11-01

    Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced by pre-treatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2h at 35°C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods.

  10. Molecular profiling to identify molecular mechanism in esophageal cancer with familial clustering.

    PubMed

    Chattopadhyay, Indranil; Phukan, Rupkumar; Singh, Avninder; Vasudevan, Madavan; Purkayastha, Joydeep; Hewitt, Stephen; Kataki, Amal; Mahanta, Jagadish; Kapur, Sujala; Saxena, Sunita

    2009-05-01

    To identify the genes and molecular functional pathways involved in esophageal cancer, we analyzed the gene expression profile of esophageal tumor tissue from patients having family history of esophageal cancer by cDNA microarray. Three hundred and fifty differentially expressed genes (26 up-regulated and 324 down-regulated) were identified. Genes involved in humoral immune response (PF4), extracellular matrix organization (COL4A4), metabolism of xenobiotics (EPHX1), TGF-beta signaling (SMAD1) and calcium signaling pathways (VDAC1) were down-regulated and genes involved in regulation of actin cytoskeleton (WASL), neuroactive ligand receptor interaction (GRM3), Toll-like receptor (CD14), B-cell receptor (IFITM1) and insulin signaling pathways (FOXO1A) were up-regulated. Validation of differential expression of subset of genes by QRT-PCR and tissue microarray in familial and non-familial cases showed no significant difference in expression of these genes in two groups suggesting familial clustering occurs as result of sharing of common environmental factors. Gene expression profiling of clinical specimens from well characterized populations that have familial clustering of cancer identified molecular mechanism associated with progression of esophageal cancer.

  11. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    DTIC Science & Technology

    2016-06-08

    AFRL-AFOSR-VA-TR-2016-0231 Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites Darren Lipomi...04-2013 to 31-03-2016 4. TITLE AND SUBTITLE Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites 5a...conjugated polymers and composites by analysis of the structural determinants of the mechanical properties. We developed coarse-grained molecular

  12. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  13. Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes

    PubMed Central

    Antzelevitch, Charles

    2012-01-01

    An early repolarization (ER) pattern in the ECG, distinguished by J-point elevation, slurring of the terminal part of the QRS and ST-segment elevation has long been recognized and considered to be a benign electrocardiographic manifestation. Experimental studies conducted over a decade ago suggested that some cases of ER may be associated with malignant arrhythmias. Validation of this hypothesis was provided by recent studies demonstrating that an ER pattern in the inferior or inferolateral leads is associated with increased risk for life-threatening arrhythmias, termed ER syndrome (ERS). Because accentuated J waves characterize both Brugada syndrome (BS) and ERS, these syndromes have been grouped under the term “J wave syndromes”. ERS and BS share similar ECG characteristics, clinical outcomes and risk factors, as well as a common arrhythmic platform related to amplification of Ito-mediated J waves. Although BS and ERS differ with respect to the magnitude and lead location of abnormal J wave manifestation, they can be considered to represent a continuous spectrum of phenotypic expression. Although most subjects exhibiting an ER pattern are at minimal to no risk, mounting evidence suggests that careful attention should be paid to subjects with “high risk” ER. The challenge ahead is to be able to identify those at risk for sudden cardiac death. Here I review the clinical and genetic aspects as well as the cellular and molecular mechanisms underlying the J wave syndromes. PMID:22498570

  14. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis

    PubMed Central

    Charlier, Edith; Relic, Biserka; Deroyer, Céline; Malaise, Olivier; Neuville, Sophie; Collée, Julie; Malaise, Michel G.; De Seny, Dominique

    2016-01-01

    Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression. PMID:27999417

  15. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab

    PubMed Central

    Brand, Toni M; Iida, Mari

    2011-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance. PMID:21293176

  16. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds.

    PubMed

    Trio, Phoebe Zapanta; You, Sixiang; He, Xi; He, Jianhua; Sakao, Kozue; Hou, De-Xing

    2014-05-01

    Garlic (Allium sativum L.) has long been used both for culinary and medicinal purposes by many cultures. Population and preclinical investigations have suggested that dietary garlic intake has health benefits, such as lowering the risk of esophageal, stomach and prostate cancers. Extensive studies from laboratory and animal models have revealed that garlic has a wide range of biological activities, and garlic organosulfur compounds (OSCs) are responsible for the biological activities. However, the presence and potency of garlic OSCs vary with respect to the mode of garlic preparation and extraction. Cooked or processed garlic products showed different kinds of garlic OSCs, some of which are highly unstable and instantly decomposed. These facts, possibly gave paradoxical results on the garlic effects. In this review, we first summarized the biotransformation processes of garlic alliin into different garlic OSCs as well as the garlic OSCs compositions from different garlic preparations. Next, we reviewed the chemopreventive functions and molecular mechanisms focusing on the anti-inflammation, antioxidation, anti-diabetes and anticancer activity behind different garlic OSCs.

  17. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.

    PubMed

    Blank, Lars M; Ebert, Birgitta E; Buehler, Katja; Bühler, Bruno

    2010-08-01

    Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.

  18. [Phenotype analysis and the molecular mechanism of enamel hypoplasia].

    PubMed

    Lv, Ping; Gao, Xue-jun

    2009-02-18

    Enamel hypoplasia is a surface defect of the tooth crown caused by a disturbance of enamel matrix secretion. Enamel hypoplasia may be inherited, or result from illness, malnutrition, trauma, or high concentrations of fluorides or strontium in the drinking water or food. Different types of enamel hypoplasia have been distinguished, such as pit-type, plane-type, and linear enamel hypoplasia. Hypoplasia has been related to the intensity and duration of stress events, the number of affected ameloblasts, and their position along the forming tooth crown. Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental enamel formation, most teeth are affected in both the primary and permanent dentition. The malformed enamel can be unusually thin, soft, rough and stained. The strict definition of AI includes only those cases where enamel defects occur in the absence of other symptoms. Currently, there are seven candidate genes for AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. Since the enamel is formed according to a strict chronological sequence, and once formed, undergoes no repair or regeneration. Then the analysis the phenotype of enamel hypoplasia can provide insights of the severity of inherited or environmental stress and the molecular mechanism during the period of enamel formation.

  19. Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF

    SciTech Connect

    Miller, Susan M.

    2014-04-24

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

  20. [Endocrine xenoestrogenics disrupters: molecular mechanisms and detection methods].

    PubMed

    Mnif, Wissem; Pillon, Arnaud; Balaguer, Patrick; Bartegi, Aghleb

    2007-01-01

    The attention paid to endocriniens modulators for purpose micropolluants (endocrine disrupters) has been increasingly studied these last years particularly on animals. The results of this study raised big concerns from Doctors and Biologists on the eventual risks human health can face. Indeed, endocrine systems of the body play an essential and pervasive role in both the short- and long-term regulation of metabolic processes. Nutritional, behavioural, and reproductive processes are intricately regulated by endocrine systems, as are growth (including bone growth/remodelling), gut, cardiovascular, and kidney function and responses to all forms of stress. Disorders of any of the endocrine system, involving both over- and under-active hormone secretion, result inevitably in disease, the effects of which may extend to many different organs and functions and are often debilitating or life-threatening. Viewed from this general perspective, the threat posed from environmental chemicals with endocrine activity (either agonist or antagonistic) is potentially serious. However, the fact that humans and wildlife are exposed to such chemicals does not necessarily mean that clinically manifest disturbance of the relevant endocrine system will result, because much depends on the level and duration of exposure and on the timing of exposure. Indeed, a large numbers of environmental estrogens are suspected of altering human health as well as the marine ecosystem balance. The objective of this review is to study the different molecular mechanisms of these xenoestrogenes micropolluants, in order to emphasize their potential risk and to present some of the different experimental methods for their detection.

  1. Mechanical Response Study of Collagen by means of Molecular Simulation

    NASA Astrophysics Data System (ADS)

    in't Veld, Pieter J.

    2005-03-01

    We developed a coarse-grained model to study mechanical behavior of collagen fibrils as a function of their degree of cross-linking. A collagen molecule is represented by Lennard-Jones beads, which intra-molecularly are connected through harmonic springs on both bond length and angle. In this model each bead represents a helical turn in a collagen molecule. Triple-helical collagen molecules, which are 300 nm long, are packed within fibrils in a staggered fashion with an axial spacing of 67 nm in the absence of a load on the tendon. We treat the outer layer or shell different from the core by assuming the shell has the maximum amount of available cross-links. The core has a variable amount of cross-links by allowing cross-link formation and breakage depending on a reaction-type criterion. We study the stress-strain behavior of a single fibril through tensile deformation along the principal axis and a three-point bend perpendicular to the principal axis.

  2. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  3. Functionalized Cyclophanes Incorporated into Molecular Architectures and Mechanized Materials

    NASA Astrophysics Data System (ADS)

    Boyle, Megan Marie

    Supramolecular chemistry, the chemistry of the noncovalent bond beyond the molecule, has been utilized historically to organize the formation of novel compounds and topologies, including mechanically interlocked molecules (MIMs). Specifically, the host-guest complex between the cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+) and electron-rich guests has been exploited to template the formation of catenanes, rotaxanes and other topologically interesting molecules. By equipping CBPQT 4+ with new functional handles, previously unattainable topologies can be accessed. Moving beyond the synthesis of MIMs in solution, functionalizing the cyclophane enables the marriage of these existing topologies to different materials. In doing so, new properties can be obtained and new functions can be elicited. In this thesis, the functionalization of CBPQT4+ is featured in respect to a bioconjugate device that utilizes the cyclophane and a molecular Figure-of-Eight (Fo8). The DNA bioconjugate device is constructed characterized, and recognition properties are examined here. The donor-acceptor Fo8 is also synthesized and characterized here. The Fo8 possesses a structure that could not be attainable without the functionalized CBPQT4+ host. Furthermore, the resulting stereochemical implications and consequences of the Fo8 structure are presented.

  4. Molecular mechanism for cavitation in water under tension.

    PubMed

    Menzl, Georg; Gonzalez, Miguel A; Geiger, Philipp; Caupin, Frédéric; Abascal, José L F; Valeriani, Chantal; Dellago, Christoph

    2016-11-29

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh-Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments.

  5. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics

    PubMed Central

    Georgieva, Ivelina; Nikolov, George St.

    1998-01-01

    A series of Pt(ll) complexes with antitumor properties: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL2 (meso-1-PtL2) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL2, [2L=2Cl−,2I−,SO42−; halo = F (erythro-8-PtL2),halo = Cl (erythro-9-PtL2)] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-δ, meso-λ, d,l-δ, d,I-λ. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL2 < erythro-9-PtL2 < erythro-8-PtL2 for L=I−, Cl− and SO42− are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL2). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type. PMID:18475828

  6. Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics.

    PubMed

    Trendafilova, N; Georgieva, I; Nikolov, G S

    1998-01-01

    A SERIES OF PT(LL) COMPLEXES WITH ANTITUMOR PROPERTIES: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL(2) (meso-1-PtL(2)) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL(2), [2L=2Cl-,2I-,SO(4) (2)-; halo = F (erythro-8-PtL(2)),halo = Cl (erythro-9-PtL(2))] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-delta, meso-lambda, d,l-delta, d,I-lambda. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL(2) < erythro-9-PtL(2) < erythro-8-PtL(2) for L=I-, Cl- and SO(4) (2-) are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL(2)). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type.

  7. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab.

    PubMed

    Brand, Toni M; Iida, Mari; Wheeler, Deric L

    2011-05-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance.

  8. The molecular mechanisms between metabolic syndrome and breast cancer.

    PubMed

    Chen, Yi; Wen, Ya-yuan; Li, Zhi-rong; Luo, Dong-lin; Zhang, Xiao-hua

    2016-03-18

    Metabolic syndrome, which is extremely common in developed and some developing countries, is a clustering of at least three of five of the following medical conditions: abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides, and low high-density lipoprotein levels. It has been proved that there is a strong association between metabolic syndrome and breast cancer. Metabolic syndrome could increase the risk of breast cancer and influence the prognosis of the breast cancer patients. Some characteristic of metabolic syndrome such as obesity and lack of physical exercise are all risk factors for developing breast cancer. The metabolic syndrome mainly include obesity, type 2 diabetes, hypercholesterolemia and nonalcoholic fatty liver disease, and each of them impacts the risk of breast cancer and the prognosis of the breast cancer patients in different ways. In this Review, we focus on recently uncovered aspects of the immunological and molecular mechanisms that are responsible for the development of this highly prevalent and serious disease. These studies bring new insight into the complex associations between metabolic syndrome and breast cancer and have led to the development of novel therapeutic strategies that might enable a personalized approach in the management of this disease.

  9. Molecular mechanism of high pressure action on lupanine

    NASA Astrophysics Data System (ADS)

    Giel-Pietraszuk, Małgorzata; Gdaniec, Zofia; Brukwicki, Tadeusz; Barciszewski, Jan

    2007-01-01

    High hydrostatic pressure (HHP) is an emerging tool for studying conformational changes in lipids, proteins and nucleic acids. Although many thermodynamic parameters describing those processes have been determined, a molecular mechanism of HHP action is poorly recognized. To get insight into that, we have studied quinolizidine alkaloid, lupanine. It consists of two quinolizidine moieties, one of which contains lactam group. Using Fourier-transform infrared (FT-IR) spectroscopy, we have showed that at 6 kbar, the intensity of amide band at 1589 cm -1 decreased and a new band at 1556 cm -1 appeared. These changes are due to the hydrolysis of lupanine to lupanic acid. That reaction was confirmed with 13C NMR spectra of lupanine exposed to HHP. The NMR signals at 176.6 and 184.3 ppm were assigned to lactam group of lupanine and carboxylic group of lupanic acid, respectively. The ring opening reaction of lupanine under HHP is reversible at ambient pressure, as evidenced by CD measurements. A slightly acidic condition induced by HHP causes protonation of lactam group and carbocation is formed, while on the other hand, water molecule as nucleophile attacks electrophilic carbon of lactam and electrons move towards oxonium ion. Finally, C sbnd N bond breaks down and carboxyl group is formed.

  10. Molecular mechanism of viral resistance to a potent non-nucleoside inhibitor unveiled by molecular simulations.

    PubMed

    Asthana, Shailendra; Shukla, Saumya; Ruggerone, Paolo; Vargiu, Attilio V

    2014-11-11

    Recently, we reported on a potent benzimidazole derivative (227G) that inhibits the growth of the bovine viral diarrhea virus (BVDV) in cell-based and enzyme assays at nanomolar concentrations. The target of 227G is the viral RNA-dependent RNA polymerase (RdRp), and the I261M mutation located in motif I of the RdRp finger domain was found to induce drug resistance. Here we propose a molecular mechanism for the retained functionality of the enzyme in the presence of the inhibitor, on the basis of a thorough computational study of the apo and holo forms of the BVDV RdRp either in the wild type (wt) or in the form carrying the I261M mutation. Our study shows that although the mutation affects to some extent the structure of the apoenzyme, the functional dynamics of the protein appear to be largely maintained, which is consistent with the retained functionality of this natural mutant. Despite the binding site of 227G not collapsing or undergoing drastic structural changes upon introduction of the I261M substitution, these alterations reflect crucially on the binding mode of 227G, which is significantly different from that found in wt RdRp. In particular, while in the wt system the four loops lining the template entrance site embrace 227G and close the template passageway, in the I261M variant the template entrance is only marginally occluded, allowing in principle the translocation of the template to the interior of the enzyme. In addition, the mutated enzyme in the presence of 227G retains several characteristics of the wt apoprotein. Our work provides an original molecular picture of a resistance mechanism that is consistent with published experimental data.

  11. First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones.

    PubMed

    Arafet, Kemel; Ferrer, Silvia; Moliner, Vicent

    2015-06-02

    Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain.

  12. MATCH: an atom-typing toolset for molecular mechanics force fields.

    PubMed

    Yesselman, Joseph D; Price, Daniel J; Knight, Jennifer L; Brooks, Charles L

    2012-01-15

    We introduce a toolset of program libraries collectively titled multipurpose atom-typer for CHARMM (MATCH) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion of multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges, and force field parameters are achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In this work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond charge increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM general force field (Vanommeslaeghe, et al., J Comput Chem 2010, 31, 671), one million molecules from the PubChem database of small molecules are typed, parameterized, and minimized.

  13. Molecular Quantum Mechanics: Analytic Gradients and Beyond - Program and Abstracts

    DTIC Science & Technology

    2007-06-03

    France Institut de Chimie UMR 7177 CNRS/ Universite Louis Pasteur, Laboratoire de Chimie Quantique, ,4 Rue Blaise Pascal , B. P. 1032 67 070 Strasbourg...purposes [3]. References: [1] P. R. Schreiner, A. A. Fokin, R. A. Pascal , A. de Meijere, Org. Lett. 2006, 8, 3635. [2] (a) A. Navarro-Vazquez, M. Prall...Fokin, A. A.; Pascal , R. A.; de Meijere, A. Organic Letters 2006, 8, 3635. 110 [PI-23] 51V NMR Chemical Shifts Calculated from QM/MM Models of

  14. Neoplastic cell transformation by high-LET radiation: molecular mechanisms.

    PubMed

    Yang, T C; Craise, L M; Mei, M T; Tobias, C A

    1989-01-01

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double

  15. Understanding mechanical properties of polymer nanocomposites with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sen, Suchira

    Equilibrium Molecular Dynamics (MD) simulations are used extensively to study various aspects of polymer nanocomposite (PNC) behavior in the melt state---the key focus is on understanding mechanisms of mechanical reinforcement. Mechanical reinforcement of the nanocomposite is believed to be caused by the formation of a network-like structure---a result of polymer chains bridging particles to introduce network elasticity. In contrast, in traditional composites, where the particle size range is hundreds of microns and high loadings of particle are used, the dominant mechanism is the formation of a percolated filler structure. The difference in mechanism with varying particle sizes, at similar particle loading, arises from the polymer-particle interfacial area available, which increases dramatically as the particle size decreases. Our interest in this work is to find (a) the kind of polymer-particle interactions necessary to facilitate the formation of a polymer network in a nanocomposite, and (b) the reinforcing characteristics of such a polymer network. We find that very strong polymer-particle binding is necessary to create a reinforcing network. The strength of the binding has to be enough to immobilize polymer on the particle surface for timescales comparable and larger than the terminal relaxation time of the stress of the neat melt. The second finding, which is a direct outcome of very strong binding, is that the method of preparation plays a critical role in determining the reinforcement of the final product. The starting conformations of the polymer chains determine the quality of the network. The strong binding traps the polymer on the particle surface which gets rearranged to a limited extent, within stress relaxation times. Significant aging effects are seen in system relaxation; the inherent non-equilibrium consequences of such strong binding. The effect of the polymer immobilization slows down other relaxation processes. The diffusivity of all chains is

  16. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    SciTech Connect

    Wang, Jing-Fang; Chou, Kuo-Chen

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  17. Recent advances toward a molecular mechanism of efflux pump inhibition

    PubMed Central

    Opperman, Timothy J.; Nguyen, Son T.

    2015-01-01

    Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps. PMID:25999939

  18. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease.

    PubMed

    Drake, Amanda J; Tang, Justin I; Nyirenda, Moffat J

    2007-09-01

    Compelling epidemiological evidence suggests that exposure to an adverse intrauterine environment, manifested by low-birth weight, is associated with cardiometabolic and behavioural disorders in adulthood. These observations have led to the concept of 'fetal programming'. The molecular mechanisms that underlie this relationship remain unclear, but are being extensively investigated using a number of experimental models. One major hypothesis for early life physiological programming implicates fetal overexposure to stress (glucocorticoid) hormones. Several animal studies have shown that prenatal glucocorticoid excess, either from endogenous overproduction with maternal stress or through exogenous administration to the mother or fetus, reduces birth weight and causes lifelong hypertension, hyperglycaemia and behavioural abnormality in the offspring. Intriguingly, these effects are transmitted across generations without further exposure to glucocorticoids, which suggests an epigenetic mechanism. These animal observations could have huge implications if extrapolated to humans, where glucocorticoids have extensive therapeutic use in obstetric and neonatal practice.

  19. On The Molecular Mechanism Of Positive Novolac Resists

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  20. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants

    PubMed Central

    Leelawat, Surang; Leelawat, Kawin

    2017-01-01

    Cholangiocarcinoma (CCA) is one of the most common causes of cancer-associated mortality in Thailand. Certain phytochemicals have been demonstrated to modulate apoptotic signaling pathways, which may be targeted for the prevention and treatment of cancer. Therefore, the aim of the present study was to investigate the effect of specific medicinal plants on the inhibition of CCA cell proliferation, and to identify the molecular mechanisms underlying this. A WST-1 cell proliferation assay was performed using an RMCCA1 cell line, and apoptotic signaling pathways were also investigated using a PathScan Stress and Apoptosis Signaling Antibody Array Kit. The cell proliferation assay indicated that extracts from the Phyllanthus emblica fruit pulp (PEf), Phyllanthus emblica seed (PEs), Terminalia chebula fruit pulp (TCf), Terminalia chebula seed (TCs), Areca catechu seed (ACs), Curcuma longa (CL) and Moringa oleifera seed (MOs) exerted anti-proliferative activity in RMCCA1 cells. In addition, the PathScan assay revealed that certain pro-apoptotic molecules, including caspase-3, poly (ADP-ribose) polymerase, checkpoint kinase 2 and tumor protein 53, exhibited increased activity in RMCCA1 cells treated with the aforementioned selected plant extracts, with the exception of PEf. The mitogen-activated protein kinase (MAPK) pathways (including ERK1/2 and p38 MAPK) expression level was significantly increased in RMCCA1 cells pre-treated with extracts of PEs, TCf, CL and MOs. The activation of protein kinase B (Akt) was significantly demonstrated in RMCCA1 cells pre-treated with extracts of TCf, ACs and MOs. In summary, the present study demonstrated that extracts of PEs, TCf, TCs, ACs, CL and MOs exhibited anti-proliferative effects in CCA cells by inducing pro-apoptotic signals and modulating signal transduction molecules. Further studies in vivo are required to demonstrate the potential applications of specific plant extracts for the treatment of human cancer. PMID:28356985

  1. Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility.

    PubMed

    Stone, J L

    2002-03-01

    The breakdown of self-incompatibility has occurred repeatedly throughout the evolution of flowering plants and has profound impacts on the genetic structure of populations. Recent advances in understanding of the molecular basis of self-incompatibility have provided insights into the mechanisms of its loss in natural populations, especially in the tomato family, the Solanaceae. In the Solanaceae, the gene that controls self-incompatibility in the style codes for a ribonuclease that causes the degradation of RNA in pollen tubes bearing an allele at the S-locus that matches either of the two alleles held by the maternal plant. The pollen component of the S-locus has yet to be identified. Loss of self-incompatibility can be attributed to three types of causes: duplication of the S-locus, mutations that cause loss of S-RNase activity, and mutations that do not cause loss of S-RNase activity. Duplication of the S-locus has been well studied in radiation-induced mutants but may be a relatively rare cause of the breakdown of self-incompatibility in nature. Point mutations within the S-locus that disrupt the production of S-RNase have been documented in natural populations. There are also a number of mutants in which S-RNase production is unimpaired, yet self-incompatibility is disrupted. The identity and function of these mutations is not well understood. Careful work on a handful of model organisms will enable population biologists to better understand the breakdown of self-incompatibility in nature.

  2. Molecular mechanism of parallel fiber-Purkinje cell synapse formation.

    PubMed

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki

    2012-01-01

    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  3. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    SciTech Connect

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  4. Molecular Mechanisms for Sweet-suppressing Effect of Gymnemic Acids*

    PubMed Central

    Sanematsu, Keisuke; Kusakabe, Yuko; Shigemura, Noriatsu; Hirokawa, Takatsugu; Nakamura, Seiji; Imoto, Toshiaki; Ninomiya, Yuzo

    2014-01-01

    Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. PMID:25056955

  5. Stability Mechanisms of a Thermophilic Laccase Probed by Molecular Dynamics

    PubMed Central

    Christensen, Niels J.; Kepp, Kasper P.

    2013-01-01

    Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å) and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation. Approaching Topt (∼350 K) from 300 K, this change correlated with a beginning “unzipping” of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive) at 400 K, suggesting a general salt stabilization effect. In contrast, F− (but not Cl−) specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F− intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes. PMID:23658618

  6. Molecular mechanism of reduction in pregnenolone synthesis by cigarette smoke

    SciTech Connect

    Bose, Mahuya; Whittal, Randy M.; Gairola, C. Gary; Bose, Himangshu S.

    2008-05-15

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for the synthesis of pregnenolone. Here, we investigated the molecular mechanism of the reduction of pregnenolone synthesis by cigarette smoke condensate (CSC). Pre-exposure or post-exposure of cells with CSC led to reduced pregnenolone synthesis, in a fashion similar to its effect on isolated mitochondria. However, there was no difference in the expression of 30 kDa StAR in cells treated with moderately concentrated CSC by either regimen. The active form of 37 kDa StAR is degraded easily suggesting that the continuous presence of CSC reduces StAR expression. Mitochondrial import of {sup 35}S-methionine-labeled StAR followed by extraction of the StAR-mitochondrial complex with 1% digitonin showed similarly sized complexes in the CSC-treated and untreated mitochondria. Further analysis by sucrose density gradient centrifugation showed a specific complex, 'complex 2', in the untreated mitochondria but absent in the CSC-treated mitochondria. Mass spectrometric analysis revealed that complex 2 is the outer mitochondrial protein, VDAC1. Knockdown of VDAC1 expression by siRNA followed by co-transfection with StAR resulted in a lack of pregnenolone synthesis and 37 kDa StAR expression with reduced expression of the intermediate, 32 kDa StAR. Taken together, these results suggest that in the absence of VDAC1, active StAR expression is reduced indicating that VDAC1 expression is essential for StAR activity. In the absence of VDAC1-StAR interaction, cholesterol cannot be transported into mitochondria; thus the interaction with VDAC1 is a mandatory step for initiating steroidogenesis.

  7. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  8. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be

  9. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease

    PubMed Central

    De Iudicibus, Sara; Franca, Raffaella; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2011-01-01

    Natural and synthetic glucocorticoids (GCs) are widely employed in a number of inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in moderate to severe active Crohn’s disease and ulcerative colitis. Despite their extensive therapeutic use and the proven effectiveness, considerable clinical evidence of wide inter-individual differences in GC efficacy among patients has been reported, in particular when these agents are used in inflammatory diseases. In recent years, a detailed knowledge of the GC mechanism of action and of the genetic variants affecting GC activity at the molecular level has arisen from several studies. GCs interact with their cytoplasmic receptor, and are able to repress inflammatory gene expression through several distinct mechanisms. The glucocorticoid receptor (GR) is therefore crucial for the effects of these agents: mutations in the GR gene (NR3C1, nuclear receptor subfamily 3, group C, member 1) are the primary cause of a rare, inherited form of GC resistance; in addition, several polymorphisms of this gene have been described and associated with GC response and toxicity. However, the GR is not self-standing in the cell and the receptor-mediated functions are the result of a complex interplay of GR and many other cellular partners. The latter comprise several chaperonins of the large cooperative hetero-oligomeric complex that binds the hormone-free GR in the cytosol, and several factors involved in the transcriptional machinery and chromatin remodeling, that are critical for the hormonal control of target genes transcription in the nucleus. Furthermore, variants in the principal effectors of GCs (e.g. cytokines and their regulators) have also to be taken into account for a comprehensive evaluation of the variability in GC response. Polymorphisms in genes involved in the transport and/or metabolism of these hormones have also been

  10. Use of transgenic animals in understanding molecular mechanisms of toxicity.

    PubMed

    Wolf, C R; Henderson, C J

    1998-06-01

    Understanding molecular mechanisms of chemical toxicity and the potential risks of drugs to man is a pivotal part of the drug development process. With the dramatic increase in the number of new chemical entities arising from high throughput screening, there is an urgent need to develop systems for the rapid evaluation of potential drugs so that those agents which are most likely to be free of adverse effects can be identified at the earliest possible stage in drug development. The complex mechanisms of action of chemical toxins has made it extremely difficult to evaluate the precise toxic mechanism and also the relative role of specific genes in either potentiating or ameliorating the toxic effect. This problem can be addressed by the application of genetic strategies. Such strategies can exploit strain differences in susceptibility to specific toxic agents or, with the rapidly developing technologies, can exploit the use of transgenic animals where specific genes can be manipulated and subsequent effects on chemical toxicity evaluated. Transgenic animals can be exploited in a variety of ways to understand mechanisms of chemical toxicity. For example, a human gene encoding a drug metabolizing enzyme can be directly introduced and the effects on toxic response evaluated. Alternatively, specific genes can be deleted from the mouse genome and the consequences on toxicological response determined. Many toxic chemical agents modulate patterns of gene expression within target cells. This can be used to screen for responses to different types of toxic insult. In such experiments the promotor of a stress-regulated gene can be ligated to a suitable reporter gene, such as lacZ, or green fluorescent protein, and inserted into the genome of an appropriate test species. On administration of a chemical agent, cells which are sensitive to the toxic effects of that chemical will express the reporter, which can then be identified using an appropriate assay system. This latter

  11. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    SciTech Connect

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  12. Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.

    PubMed

    Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P

    2016-02-18

    Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations.

  13. Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.

    PubMed

    Saito, Toru; Thiel, Walter

    2014-05-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study on the mechanism of reversible dioxygen binding in the active site of hemocyanin (Hc). The QM region is treated by broken-symmetry density functional theory (DFT) with spin projection corrections. The X-ray structures of deoxygenated (deoxyHc) and oxygenated (oxyHc) hemocyanin are well reproduced by QM/MM geometry optimizations. The computed relative energies strongly depend on the chosen density functional. They are consistent with the available thermodynamic data for oxygen binding in hemocyanin and in synthetic model complexes when the BH&HLYP hybrid functional with 50% Hartree-Fock exchange is used. According to the QM(BH&HLYP)/MM results, the reaction proceeds stepwise with two sequential electron transfer (ET) processes in the triplet state followed by an intersystem crossing to the singlet product. The first ET step leads to a nonbridged superoxo CuB(II)-O2(•-) intermediate via a low-barrier transition state. The second ET step is even more facile and yields a side-on oxyHc complex with the characteristic Cu2O2 butterfly core, accompanied by triplet-singlet intersystem crossing. The computed barriers are very small so that the two ET processes are expected to very rapid and nearly simultaneous.

  14. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  15. Gauge-origin independent magnetizabilities from hybrid quantum mechanics/molecular mechanics models: Theory and applications to liquid water

    NASA Astrophysics Data System (ADS)

    Aidas, Kestutis; Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-07-01

    The theory of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach for gauge-origin independent calculations of the molecular magnetizability using Hartree-Fock or Density Functional Theory is presented. The method is applied to liquid water using configurations generated from classical Molecular Dynamics simulation to calculate the statistical averaged magnetizability. Based on a comparison with experimental data, treating only one water molecule quantum mechanically appears to be insufficient, while a quantum mechanical treatment of also the first solvation shell leads to good agreement between theory and experiment. This indicates that the gas-to-liquid phase shift for the molecular magnetizability is to a large extent of non-electrostatic nature.

  16. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    PubMed Central

    Dardick, Chris; Callahan, Ann M.

    2014-01-01

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages. PMID:25009543

  17. Epigenetics: Behavioral Influences on Gene Function, Part II--Molecular Mechanisms

    ERIC Educational Resources Information Center

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    A study presented on the effect of parenting on stress response and other behaviors show that animals exposed to a high degree of nurturing show a blunted response to stress. Molecular mechanisms responsible for these differences in the adult offspring as well as the molecular mechanisms by which epigenetic effects are propagated from one…

  18. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  19. Modeling Mechanical Properties of Carbon Molecular Clusters and Carbon Nanostructural Materials

    DTIC Science & Technology

    2003-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014264 TITLE: Modeling Mechanical Properties of Carbon Molecular...Clusters and Carbon Nanostructural Materials DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Res. Soc. Symp. Proc. Vol. 740 © 2003 Materials Research Society 17.2 Modeling mechanical properties of carbon molecular clusters and carbon

  20. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  1. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    NASA Astrophysics Data System (ADS)

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-03-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.

  2. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    PubMed Central

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-01-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury. PMID:28327610

  3. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    PubMed

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  4. Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract.

    PubMed

    Subramanian, Veedamali S; Srinivasan, Padmanabhan; Wildman, Alexis J; Marchant, Jonathan S; Said, Hamid M

    2017-04-01

    Mammalian cells utilize two transporters for the uptake of ascorbic acid (AA), Na(+)-dependent vitamin C transporter SVCT-1 and SVCT-2. In the intestine, these transporters are involved in AA absorption and are expressed at the apical and basolateral membrane domains of the polarized epithelia, respectively. Little is known about the differential expression of these two transporters along the anterior-posterior axis of the intestinal tract and the molecular mechanism(s) that dictate this pattern of expression. We used mouse and human intestinal cDNAs to address these issues. The results showed a significantly lower rate of carrier-mediated AA uptake by mouse colon than jejunum. This was associated with a significantly lower level of expression of SVCT-1 and SVCT-2 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels in the colon than the jejunum, implying the involvement of transcriptional mechanism(s). Similarly, expression levels of SVCT-1 and SVCT-2 mRNA and hnRNA were significantly lower in human colon. We also examined the levels of expression of hepatocyte nuclear factor 1α and specificity protein 1, which drive transcription of the Slc23a1 and Slc23a2 promoters, respectively, and found them to be markedly lower in the colon. Furthermore, significantly lower levels of the activating markers for histone (H3) modifications [H3 trimethylation of lysine 4 (H3K4me3) and H3 triacetylation of lysine 9 (H3K9ac)] were observed in the Slc23a1 and Slc23a2 promoters in the colon. These findings show, for the first time, that SVCT-1 and SVCT-2 are differentially expressed along the intestinal tract and that this pattern of expression is, at least in part, mediated via transcriptional/epigenetic mechanisms.NEW & NOTEWORTHY Our findings show, for the first time, that transporters of the water-soluble vitamin ascorbic acid (i.e., the vitamin C transporters SVCT-1 and SVCT-2) are differentially expressed along the length of the intestinal tract and that the

  5. A quantum-mechanics molecular-mechanics scheme for extended systems.

    PubMed

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  6. A quantum-mechanics molecular-mechanics scheme for extended systems

    NASA Astrophysics Data System (ADS)

    Hunt, Diego; Sanchez, Veronica M.; Scherlis, Damián A.

    2016-08-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  7. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain

  8. First principles calculation of the mechanical compression of two organic molecular crystals.

    PubMed

    Zerilli, Frank J; Kuklja, Maija M

    2006-04-20

    The mechanical compression curves for the organic molecular crystals 1,1-diamino-2,2-dinitroethylene and beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (beta-HMX) are calculated using the Hartree-Fock approximation to the solutions of the many-body Schrödinger equation for a periodic system as implemented in the computer program CRYSTAL. No correction was made for basis set superposition error. The equilibrium lattice parameters are reproduced to within 1% of reported experimental values. Pressure values on the isotherm also agree well with reported experimental values. To obtain accurate results, the relaxation of all the atomic coordinates as well as the lattice parameters under a fixed volume constraint was required.

  9. [The molecular physiological and genetic mechanisms underlying the superb efficacy of quinolones].

    PubMed

    Long, Quan-xin; He, Ying; Xie, Jian-ping

    2012-08-01

    The fluoroquinolones are the most widely used broad-spectrum antibiotics, accounting for 18% of global antibacterial market share. They can kill bacteria rapidly with variety of derivatives available. Different quinolones vary significantly in rate and spectrum of killing, oxygen requirement for metabolism and reliance upon protein synthesis. Further understanding the sophisticated mechanisms of action of this important antibiotic family based on the molecular genetic response of bacteria can facilitate the discovery of better quinolone derivatives. Factors such as SOS response, bacterial toxin-antitoxin system, programmed death, chromosome fragmentation and reactive oxygen have been implicated in the action to some extent. "Two steps characteristic" of quinolones killing is also emphasized, which might inspire future better quinolones modification.

  10. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics

    PubMed Central

    Aytenfisu, Asaminew H.; Liberman, Joseph A.; Wedekind, Joseph E.; Mathews, David H.

    2015-01-01

    Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches. PMID:26370581

  11. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level.

    PubMed

    Kőszegi, Tamás; Poór, Miklós

    2016-04-15

    Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.

  12. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level

    PubMed Central

    Kőszegi, Tamás; Poór, Miklós

    2016-01-01

    Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences. PMID:27092524

  13. Molecular mechanisms underlying sex change in hermaphroditic groupers.

    PubMed

    Zhou, Li; Gui, Jian-Fang

    2010-06-01

    , the SOX3-positive primordial germ cells develop toward spermatogonia. Therefore, we suggest that SOX3, as a transcription factor, might have more important roles in oogenesis than in spermatogenesis. Based on the findings, a hypothetic molecular mechanism underlying sex change is proposed in the hermaphroditic groupers, and some candidate genes related to the grouper sex change are also suggested for further research.

  14. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  15. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  16. Two programmed replicative lifespans of Saccharomyces cerevisiae formed by the endogenous molecular-cellular network.

    PubMed

    Hu, Jie; Zhu, Xiaomei; Wang, Xinan; Yuan, Ruoshi; Zheng, Wei; Xu, Minjuan; Ao, Ping

    2014-12-07

    Cellular replicative capacity is a therapeutic target for regenerative medicine as well as cancer treatment. The mechanism of replicative senescence and cell immortality is still unclear. We investigated the diauxic growth of Saccharomyces cerevisiae and demonstrate that the replicative capacity revealed by the yeast growth curve can be understood by using the dynamical property of the molecular-cellular network regulating S. cerevisiae. The endogenous network we proposed has a limit cycle when pheromone signaling is disabled, consistent with the exponential growth phase with an infinite replicative capacity. In the post-diauxic phase, the cooperative effect of the pheromone activated mitogen-activated protein kinase (MAPK) signaling pathway with the cell cycle leads to a fixed point attractor instead of the limit cycle. The cells stop dividing after several generations counting from the beginning of the post-diauxic growth. By tuning the MAPK pathway, S. cerevisiae therefore programs the number of offsprings it replicates.

  17. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    PubMed

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-09

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D.

  18. YinYang atom: a simple combined ab initio quantum mechanical molecular mechanical model.

    PubMed

    Shao, Yihan; Kong, Jing

    2007-05-10

    A simple interface is proposed for combined quantum mechanical (QM) molecular mechanical (MM) calculations for the systems where the QM and MM regions are connected through covalent bonds. Within this model, the atom that connects the two regions, called YinYang atom here, serves as an ordinary MM atom to other MM atoms and as a hydrogen-like atom to other QM atoms. Only one new empirical parameter is introduced to adjust the length of the connecting bond and is calibrated with the molecule propanol. This model is tested with the computation of equilibrium geometries and protonation energies for dozens of molecules. Special attention is paid on the influence of MM point charges on optimized geometry and protonation energy, and it is found that it is important to maintain local charge-neutrality in the MM region in order for the accurate calculation of the protonation and deprotonation energies. Overall the simple YinYang atom model yields comparable results to some other QM/MM models.

  19. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration.

    PubMed

    Friedland, Robert P

    2015-01-01

    The concept of molecular mimicry was established to explain commonalities of structure which developed in response to evolutionary pressures. Most examples of molecular mimicry in medicine have involved homologies of primary protein structure which cause disease. Molecular mimicry can be expanded beyond amino acid sequence to include microRNA and proteomic effects which are either pathogenic or salutogenic (beneficial) in regard to Parkinson's disease, Alzheimer's disease, and related disorders. Viruses of animal or plant origin may mimic nucleotide sequences of microRNAs and influence protein expression. Both Parkinson's and Alzheimer's diseases involve the formation of transmissible self-propagating prion-like proteins. However, the initiating factors responsible for creation of these misfolded nucleating factors are unknown. Amyloid patterns of protein folding are highly conserved through evolution and are widely distributed in the world. Similarities of tertiary protein structure may be involved in the creation of these prion-like agents through molecular mimicry. Cross-seeding of amyloid misfolding, altered proteostasis, and oxidative stress may be induced by amyloid proteins residing in bacteria in our microbiota in the gut and in the diet. Pathways of molecular mimicry induced processes induced by bacterial amyloid in neurodegeneration may involve TLR 2/1, CD14, and NFκB, among others. Furthermore, priming of the innate immune system by the microbiota may enhance the inflammatory response to cerebral amyloids (such as amyloid-β and α-synuclein). This paper describes the specific molecular pathways of these cross-seeding and neuroinflammatory processes. Evolutionary conservation of proteins provides the opportunity for conserved sequences and structures to influence neurological disease through molecular mimicry.

  20. A molecular wound response program associated with regeneration initiation in planarians.

    PubMed

    Wenemoser, Danielle; Lapan, Sylvain W; Wilkinson, Alex W; Bell, George W; Reddien, Peter W

    2012-05-01

    Planarians are capable of regenerating any missing body part and present an attractive system for molecular investigation of regeneration initiation. The gene activation program that occurs at planarian wounds to coordinate regenerative responses remains unknown. We identified a large set of wound-induced genes during regeneration initiation in planarians. Two waves of wound-induced gene expression occurred in differentiated tissues. The first wave includes conserved immediate early genes. Many second-wave genes encode conserved patterning factors required for proper regeneration. Genes of both classes were generally induced by wounding, indicating that a common initial gene expression program is triggered regardless of missing tissue identity. Planarian regeneration uses a population of regenerative cells (neoblasts), including pluripotent stem cells. A class of wound-induced genes was activated directly within neoblasts, including the Runx transcription factor-encoding runt-1 gene. runt-1 was required for specifying different cell types during regeneration, promoting heterogeneity in neoblasts near wounds. Wound-induced gene expression in neoblasts, including that of runt-1, required SRF (serum response factor) and sos-1. Taken together, these data connect wound sensation to the activation of specific cell type regeneration programs in neoblasts. Most planarian wound-induced genes are conserved across metazoans, and identified genes and mechanisms should be important broadly for understanding wound signaling and regeneration initiation.

  1. Mechanisms of early life programming: current knowledge and future directions.

    PubMed

    Tarry-Adkins, Jane L; Ozanne, Susan E

    2011-12-01

    It has been >20 y since epidemiologic studies showed a relation between patterns of early growth and subsequent risk of diseases, such as type 2 diabetes, cardiovascular disease, and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, and animal models have provided strong evidence that the early environment, including early nutrition, plays an important role in mediating these relations. The concept of early life programming is therefore widely accepted. However, the mechanisms by which a phenomenon that occurs in early life can have long-term effects on the function of a cell and therefore on the metabolism of an organism many years later are only starting to emerge. These mechanisms include 1) permanent structural changes in an organ resulting from suboptimal concentrations of an important factor during a critical period of development, eg, the permanent reduction in β cell mass in the endocrine pancreas; 2) persistent alterations in epigenetic modifications (eg, DNA methylation and histone modifications) that lead to changes in gene expression (eg, several transcription factors are susceptible to programmed changes in gene expression through such mechanisms); and 3) permanent effects on the regulation of cellular aging (eg, increases in oxidative stress that lead to macromolecular damage, including that to DNA and specifically to telomeres, can contribute to such effects). Further understanding of such processes will enable the development of preventive and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease.

  2. Raman scattering from molecular conduction junctions: Charge transfer mechanism

    NASA Astrophysics Data System (ADS)

    Oren, Michal; Galperin, Michael; Nitzan, Abraham

    2012-03-01

    We present a model for the charge transfer contribution to surface-enhanced Raman spectroscopy (SERS) in a molecular junction. The model is a generalization of the equilibrium scheme for SERS of a molecule adsorbed on a metal surface [B. N. J. Persson. Chem. Phys. Lett.CHPLBC0009-261410.1016/0009-2614(81)85441-3 82, 561 (1981)]. We extend the same physical consideration to a nonequilibrium situation in a biased molecular junction and to nonzero temperatures. Two approaches are considered and compared: a semiclassical approach appropriate for nonresonance Raman scattering, and a quantum approach based on the nonequilibrium Green's function method. Nonequilibrium effects on this contribution to SERS are demonstrated with numerical examples. It is shown that the semiclassical approach provides an excellent approximation to the full quantum calculation as long as the molecular electronic state is outside the Fermi window, that is, as long as the field-induced charge transfer is small.

  3. Dysregulation of Apoptotic Signaling in Cancer: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2010-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Defects in this native defense mechanism promote malignant transformation and frequently confer chemoresistance to transformed cells. Indeed, the evasion of apoptosis has been recognized as a hallmark of cancer. Given that multiple mechanisms function at many levels to orchestrate the regulation of apoptosis, a multitude of opportunities for apoptotic dysregulation are present within the intricate signaling network of cell. Several of the molecular mechanisms by which cancer cells are protected from apoptosis have been elucidated. These advances have facilitated the development of novel apoptosis-inducing agents that have demonstrated single-agent activity against various types of cancers cells and/or sensitized resistant cancer cells to conventional cytotoxic therapies. Herein, we will highlight several of the central modes of apoptotic dysregulation found in cancer. We will also discuss several therapeutic strategies that aim to reestablish the apoptotic response, and thereby eradicate cancer cells, including those that demonstrate resistance to traditional therapies. PMID:18459149

  4. Molecular adsorption at particle surfaces: a PM toxicity mediation mechanism.

    PubMed

    Kendall, Michaela; Brown, Leslie; Trought, Katherine

    2004-01-01

    surfactant was added at a fixed concentration lower than physiological lung lavage concentrations to ensure the lipid remained in suspension during experimentation ex situ. For dipalmitoylphosphatidylcholine (DPPC) combinations with particles, visible particle agglomeration occurred within 1 h. Marked changes in the size distribution of the immersed particles were observed, compared to a phosphate buffer control. Differences in particle agglomeration and particle settling were observed between M120, R330, and R400. Reduction of DPPC occurred in a surface- and size-dependent manner. This indicates that surface adsorption was responsible for the observed agglomeration and the gross reductions in phospholipid concentrations. Combination of particles with fibrinogen and albumin revealed little agglomeration/precipitation at the protein concentrations chosen. However, surfactant protein (SP-D) was completely eliminated from suspension upon combination with all three-particle types. This reaction between SP-D particles was therefore concluded to be independent of surface chemistry. Further investigation as to whether this is size- or surface-area-dependent is recommended. The biological implication is that molecular adsorption at nonbiological particulate matter (PM) surfaces in BALF may mediate the toxicity of PM via one or both of these mechanisms, as in the case of biological particles.

  5. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    PubMed

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  6. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    NASA Astrophysics Data System (ADS)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r-1 term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  7. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    SciTech Connect

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r{sup −1} term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN{sub 2} reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN{sub 2} reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical

  8. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  9. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  10. Implementation and Assessment of a Molecular Biology and Bioinformatics Undergraduate Degree Program

    ERIC Educational Resources Information Center

    Pham, Daphne Q. -D.; Higgs, David C.; Statham, Anne; Schleiter, Mary Kay

    2008-01-01

    The Department of Biological Sciences at the University of Wisconsin-Parkside has developed and implemented an innovative, multidisciplinary undergraduate curriculum in Molecular Biology and Bioinformatics (MBB). The objective of the MBB program is to give students a hands-on facility with molecular biology theories and laboratory techniques, an…

  11. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  12. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  13. A mechanical actuator driven electrochemically by artificial molecular muscles.

    PubMed

    Juluri, Bala Krishna; Kumar, Ajeet S; Liu, Yi; Ye, Tao; Yang, Ying-Wei; Flood, Amar H; Fang, Lei; Stoddart, J Fraser; Weiss, Paul S; Huang, Tony Jun

    2009-02-24

    A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (< or =20 mV s(-1)) and (ii) the time for potential step experiments at oxidizing (>+0.4 V) and reducing (<+0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The approximately 550 nm deflections were calculated to be commensurate with forces per molecule of approximately 650 pN. The thermal relaxation that characterizes the device's deflection is consistent with the double bistability associated with the palindromic [3]rotaxane and reflects a metastable contracted state. The use of the cooperative forces generated by these self-assembled, nanometer-scale artificial molecular muscles that are electrically wired to an external power supply constitutes a seminal step toward molecular-machine-based nanoelectromechanical systems (NEMS).

  14. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Russo, Ilaria; Frangogiannis, Nikolaos G

    2015-01-01

    Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly activates a fibrogenic program, leading to accumulation of advanced glycation end-products (AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have also been implicated in the diabetic myocardium. This manuscript reviews our current understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. Based on the pathophysiologic mechanism, we propose therapeutic interventions that may attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper clinical translation. PMID:26705059

  15. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing

    PubMed Central

    Lee, Mike; Kiefel, Helena; LaJevic, Melissa D.; Macauley, Matthew S.; Kawashima, Hiroto; O'Hara, Edward; Pan, Junliang; Paulson, James C.; Butcher, Eugene C.

    2014-01-01

    Lymphocytes are recruited from blood by high-endothelial venules (HEVs). We performed transcriptomic analyses and identified molecular signatures that distinguish HEVs from capillary endothelium and that define tissue-specific HEV specialization. Capillaries displayed gene programs for vascular development. HEVs were enriched in genes for immune defense and lymphocyte migration. We identify capillary and HEV markers and candidate mechanisms for regulated lymphocyte recruitment including a lymph node HEV-selective transmembrane mucin; transcriptional control of functionally specialized carbohydrate ligands for lymphocyte L-selectin; HEV expression of molecules for transendothelial migration; and metabolic programs for lipid mediators of lymphocyte motility and chemotaxis. We also elucidate a carbohydrate recognition pathway that targets B cells to intestinal lymphoid tissues, defining CD22 as a lectin-homing receptor for mucosal HEVs. PMID:25173345

  16. Conical intersections in solution: formulation, algorithm, and implementation with combined quantum mechanics/molecular mechanics method.

    PubMed

    Cui, Ganglong; Yang, Weitao

    2011-05-28

    The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or

  17. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies

    NASA Astrophysics Data System (ADS)

    Woods, Christopher J.; Manby, Frederick R.; Mulholland, Adrian J.

    2008-01-01

    The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.

  18. Biochemical and Molecular Mechanisms of Desiccation Tolerance in Bryophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bryophytes, because they descend from the earliest branching events in the phylogeny of land plants, hold an important position in our investigations into the mechanisms by which plants respond to dehydration and by what paths such mechanisms have evolved. This is true regardless of what aspect of p...

  19. Molecular and cellular mechanisms of food allergy and food tolerance.

    PubMed

    Chinthrajah, R Sharon; Hernandez, Joseph D; Boyd, Scott D; Galli, Stephen J; Nadeau, Kari C

    2016-04-01

    Ingestion of innocuous antigens, including food proteins, normally results in local and systemic immune nonresponsiveness in a process termed oral tolerance. Oral tolerance to food proteins is likely to be intimately linked to mechanisms that are responsible for gastrointestinal tolerance to large numbers of commensal microbes. Here we review our current understanding of the immune mechanisms responsible for oral tolerance and how perturbations in these mechanisms might promote the loss of oral tolerance and development of food allergies. Roles for the commensal microbiome in promoting oral tolerance and the association of intestinal dysbiosis with food allergy are discussed. Growing evidence supports cutaneous sensitization to food antigens as one possible mechanism leading to the failure to develop or loss of oral tolerance. A goal of immunotherapy for food allergies is to induce sustained desensitization or even true long-term oral tolerance to food allergens through mechanisms that might in part overlap with those associated with the development of natural oral tolerance.

  20. Molecular and Cellular Mechanisms of Food Allergy and Food Tolerance

    PubMed Central

    Boyd, Scott D.; Galli, Stephen J.; Nadeau, Kari C.

    2016-01-01

    Ingestion of innocuous antigens, including food proteins, normally results in local and systemic immune nonresponsiveness in a process termed oral tolerance. Oral tolerance to food proteins is likely to be intimately linked to mechanisms that are responsible for gastrointestinal tolerance to large numbers of commensal microbes. Here, we review our current understanding of the immune mechanisms responsible for oral tolerance and how perturbations in these mechanisms may promote the loss of oral tolerance and development of food allergies. Roles for the commensal microbiome in promoting oral tolerance, and the association of intestinal dysbiosis with food allergy, are discussed. Growing evidence supports cutaneous sensitization to food antigens as one possible mechanism leading to the failure to develop or loss of oral tolerance. A goal of immunotherapy for food allergies is to induce sustained desensitization, or even true long-term oral tolerance, to food allergens through mechanisms that may in part overlap with those associated with the development of natural oral tolerance. PMID:27059726