Science.gov

Sample records for molecular modeling investigations

  1. Binding properties of palmatine to DNA: spectroscopic and molecular modeling investigations.

    PubMed

    Mi, Ran; Tu, Bao; Bai, Xiao-Ting; Chen, Jun; Ouyang, Yu; Hu, Yan-Jun

    2015-12-01

    Palmatine, an isoquinoline alkaloid, is an important medicinal herbal extract with diverse pharmacological and biological properties. In this work, spectroscopic and molecular modeling approaches were employed to reveal the interaction between palmatine and DNA isolated from herring sperm. The absorption spectra and iodide quenching results indicated that groove binding was the main binding mode of palmatine to DNA. Fluorescence studies indicated that the binding constant (K) of palmatine and DNA was ~ 10(4)L·mol(-1). The associated thermodynamic parameters, ΔG, ΔH, and ΔS, indicated that hydrogen bonds and van der Waals forces played major roles in the interaction. The effects of chemical denaturant, thermal denaturation and pH on the interaction were investigated and provided further support for the groove binding mode. In addition to experimental approaches, molecular modeling was conducted to verify binding pattern of palmatine-DNA.

  2. Molecular Modeling and Experimental Investigations of Nonlinear Optical Compounds Monosubstituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Nesterov, Vladimir N.; Antipin, Mikhail Yu.; Clark, Ronald D.; Sanghadasa, Mohan; Cardelino, Beatriz H.; Moore, Craig E.; Frazier, Donald O.

    1999-01-01

    A search for potential nonlinear optical compounds was performed using the Cambridge Structure Database and molecular modeling. We investigated a series of monosubstituted derivatives of dicyanovinylbenzene, since the nonlinear optical (NLO) properties of such derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were studied earlier. The molecular geometry of these compounds was investigated with x-ray analysis and discussed along with the results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the planarity of the molecules of this series has been revealed. Two new compounds from the series studied, ortho-F and para-Cl-dicyanovinylbenzene, according to powder measurements, were found to be NLO compounds in the crystal state about 10 times more active than urea. The peculiarities of crystal structure formation in the framework of balance between van der Waals and electrostatic interactions have been discussed. The crystal shape of DIVA and two new NLO compounds have been calculated on the basis of the known crystal structure.

  3. Molecular modelling: An analytical tool with a predictive character for investigating reactivity in molten salt media.

    NASA Astrophysics Data System (ADS)

    Picard, Gérard S.; Bouyer, Frédéric C.

    1995-04-01

    Possibilities offered by Molecular Modelling for studying homogeneous and interfacial processes and reactions in melts are discussed. A few typical illustrative examples covering some of the main research fields of molten salt chemistry and electrochemistry are given. Quantum chemistry calculations, Molecular Dynamics and Monte Carlo methods appear to be fantastic tools for analyzing and predicting reactivity in molten salts.

  4. Investigation of protein fluctuations via Anisotropic Network Model and Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Okan, Osman B.; Turgut, Deniz; Rammohan, Aravind; Garcia, Angel E.; Ozisik, Rahmi

    2014-03-01

    We use Anisotropic Network Model (ANM) and compare its protein fluctuation predictions against molecular dynamics (MD) simulations and experimental findings for 210 globular proteins. The ANM results are analyzed using bond orientational order (BOO) parameters. We show that BOO parameters could be reformulated as a sum of contact density and geometrical (distribution of contacts in space) components. This reformulation of BOO makes it possible to investigate the role of each individual component separately, and identify cut-off ranges where each component dominates protein fluctuations. Our results indicate that the widely accepted correlation between mean squared displacements (MSDs) and inverse contact density is valid for ANM within the cut-off range of 10-15 Å. We show that the two components of the BOO dominate protein fluctuations at different length scales: contact density at small length scales and geometric distribution of residues at length scales comparable to the protein size. It is also shown that the relationship between MSD and contact density is firmly rooted in BOO, and is rendered possible with a unique distribution of residues that nullifies the average geometric component's contribution to the BOO within the 10 -15 Å cut-off.__ The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and 1050966.

  5. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  6. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method.

    PubMed

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-15

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔH(θ)) and entropy change (ΔS(θ)) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy. PMID:26963729

  7. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  8. Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques

    NASA Astrophysics Data System (ADS)

    Shekhar, Prabhanshu; Nanda, Hirsh; Lösche, Mathias; Heinrich, Frank

    2011-11-01

    Biological membranes are composed of a thermally disordered lipid matrix and therefore require non-crystallographic scattering approaches for structural characterization with x-rays or neutrons. Here we develop a continuous distribution (CD) model to refine neutron or x-ray reflectivity data from complex architectures of organic molecules. The new model is a flexible implementation of the composition-space refinement of interfacial structures to constrain the resulting scattering length density profiles. We show this model increases the precision with which molecular components may be localized within a sample, with a minimal use of free model parameters. We validate the new model by parameterizing all-atom molecular dynamics (MD) simulations of bilayers and by evaluating the neutron reflectivity of a phospholipid bilayer physisorbed to a solid support. The determination of the structural arrangement of a sparsely-tethered bilayer lipid membrane (stBLM) comprised of a multi-component phospholipid bilayer anchored to a gold substrate by a thiolated oligo(ethylene oxide) linker is also demonstrated. From the model we extract the bilayer composition and density of tether points, information which was previously inaccessible for stBLM systems. The new modeling strategy has been implemented into the ga_refl reflectivity data evaluation suite, available through the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR).

  9. Investigations of bisacodyl with modified β-cyclodextrins: Characterization, molecular modeling, and effect of PEG.

    PubMed

    Li, Shanshan; Wang, Lili; Jiang, Jian; Tang, Peixiao; Wang, Qing; Wu, Di; Li, Hui

    2015-12-10

    Bisacodyl inclusion into hydroxypropyl-β-cyclodextrin and 2,6-di-O-methyl-β-cyclodextrin cavities was experimentally and theoretically investigated, and the effect of PEG 4000 on these inclusions was studied. Isothermal calorimetry titration curves indicated that the binary inclusion processes are enthalpy- and entropy-driven. The solid-state complexes were fully characterized by FT-IR, XRPD, DSC and SEM analyses. FT-IR, (1)H NMR, and ROESY studies provided the most favorable encapsulation modes of binary complexes, and results were further confirmed by molecular docking and molecular dynamics studies. The presence of PEG 4000 slightly enhanced encapsulation efficiency, solubility and dissolution rates of the binary complexes. In vivo studies showed that complexes with CDs markedly accelerated gastrointestinal transit time compared with pure bisacodyl, whereas addition of PEG 4000 showed no further significant improvement of the bioavailability. PMID:26428103

  10. Adsorption mechanisms of microcystin variant conformations at water-mineral interfaces: A molecular modeling investigation.

    PubMed

    Pochodylo, Amy L; Aoki, Thalia G; Aristilde, Ludmilla

    2016-10-15

    Microcystins (MCs) are potent toxins released during cyanobacterial blooms. Clay minerals are implicated in trapping MCs within soil particles in surface waters and sediments. In the absence of molecular characterization, the relevance of previously proposed adsorption mechanisms is lacking. Towards obtaining this characterization, we conducted Monte Carlo simulations combined with molecular dynamics relaxation of two MC variants, MC-leucine-arginine (MC-LR) and MC-leucine-alanine (MC-LA), adsorbed on hydrated montmorillonite with different electrolytes. The resulting adsorbate structures revealed how MC conformations and aqueous conditions dictate binding interactions at the mineral surface. Electrostatic coupling between the arginine residue and a carboxylate in MC-LR excluded the participation of arginine in mediating adsorption on montmorillonite in a NaCl solution. However, in a CaCl2 solution, the complexation of Ca by two carboxylate moieties in MC-LR changed the MC conformation, which allowed arginine to mediate electrostatic interaction with the mineral. By contrast, due to the lack of arginine in MC-LA, complexation of Ca by only one carboxylate in MC-LA was required to favor Ca-bridging interaction with the mineral. Multiple water-bridged H-bonding interactions were also important in anchoring MCs at the mineral surface. Our modeling results offer molecular insights into the structural and chemical factors that can control the fate of MCs at water-mineral interfaces.

  11. Adsorption mechanisms of microcystin variant conformations at water-mineral interfaces: A molecular modeling investigation.

    PubMed

    Pochodylo, Amy L; Aoki, Thalia G; Aristilde, Ludmilla

    2016-10-15

    Microcystins (MCs) are potent toxins released during cyanobacterial blooms. Clay minerals are implicated in trapping MCs within soil particles in surface waters and sediments. In the absence of molecular characterization, the relevance of previously proposed adsorption mechanisms is lacking. Towards obtaining this characterization, we conducted Monte Carlo simulations combined with molecular dynamics relaxation of two MC variants, MC-leucine-arginine (MC-LR) and MC-leucine-alanine (MC-LA), adsorbed on hydrated montmorillonite with different electrolytes. The resulting adsorbate structures revealed how MC conformations and aqueous conditions dictate binding interactions at the mineral surface. Electrostatic coupling between the arginine residue and a carboxylate in MC-LR excluded the participation of arginine in mediating adsorption on montmorillonite in a NaCl solution. However, in a CaCl2 solution, the complexation of Ca by two carboxylate moieties in MC-LR changed the MC conformation, which allowed arginine to mediate electrostatic interaction with the mineral. By contrast, due to the lack of arginine in MC-LA, complexation of Ca by only one carboxylate in MC-LA was required to favor Ca-bridging interaction with the mineral. Multiple water-bridged H-bonding interactions were also important in anchoring MCs at the mineral surface. Our modeling results offer molecular insights into the structural and chemical factors that can control the fate of MCs at water-mineral interfaces. PMID:27433998

  12. Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

    PubMed Central

    Natarajan, Sathishkumar; Thamilarasan, Senthil Kumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2015-01-01

    Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea) was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER) webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin. PMID:26703735

  13. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation.

    PubMed

    Pham, Yen; Kuhlman, Brian; Butterfoss, Glenn L; Hu, Hao; Weinreb, Violetta; Carter, Charles W

    2010-12-01

    We substantiate our preliminary description of the class I tryptophanyl-tRNA synthetase minimal catalytic domain with details of its construction, structure, and steady-state kinetic parameters. Generating that active fragment involved deleting 65% of the contemporary enzyme, including the anticodon-binding domain and connecting peptide 1, CP1, a 74-residue internal segment from within the Rossmann fold. We used protein design (Rosetta), rather than phylogenetic sequence alignments, to identify mutations to compensate for the severe loss of modularity, thus restoring stability, as evidenced by renaturation described previously and by 70-ns molecular dynamics simulations. Sufficient solubility to enable biochemical studies was achieved by expressing the redesigned Urzyme as a maltose-binding protein fusion. Michaelis-Menten kinetic parameters from amino acid activation assays showed that, compared with the native full-length enzyme, TrpRS Urzyme binds ATP with similar affinity. This suggests that neither of the two deleted structural modules has a strong influence on ground-state ATP binding. However, tryptophan has 10(3) lower affinity, and the Urzyme has comparably reduced specificity relative to the related amino acid, tyrosine. Molecular dynamics simulations revealed how CP1 may contribute significantly to cognate amino acid specificity. As class Ia editing domains are nested within the CP1, this finding suggests that this module enhanced amino acid specificity continuously, throughout their evolution. We call this type of reconstructed protein catalyst an Urzyme (Ur prefix indicates original, primitive, or earliest). It establishes a model for recapitulating very early steps in molecular evolution in which fitness may have been enhanced by accumulating entire modules, rather than by discrete amino acid sequence changes. PMID:20864539

  14. Investigation the interaction of Daphnin with human serum albumin using optical spectroscopy and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Zhu, Jinhua; Wu, Liye; Zhang, Qingyou; Chen, Xingguo; Liu, Xiuhua

    2012-09-01

    The interaction between Daphnin with human serum albumin has been studied for the first time by spectroscopic methods including fluorescence quenching technology, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that Daphnin can quench the intrinsic fluorescence of HSA by static quenching and there is a single class of binding site on HSA. In addition, the studies of CD spectroscopy and FT-IR spectroscopy showed that the protein secondary structure changed with increases of α-helices at the drug to protein molar ratio of 2. Furthermore, the thermodynamic functions ΔH0 and ΔS0 for the reaction were calculated to be 11.626 kJ mol-1 and 118.843 J mol-1 K-1 according to Van't Hoff equation. The thermodynamic parameters (ΔH0 and ΔS0) and the molecular modeling study indicated that hydrophobic force played an important role to stabilize the Daphnin-HSA complex, and Daphnin could bind within the subdomain IIA of the HSA.

  15. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation.

    PubMed

    De Luca, Laura; De Grazia, Sara; Ferro, Stefania; Gitto, Rosaria; Christ, Frauke; Debyser, Zeger; Chimirri, Alba

    2011-02-01

    This study is focused on a new series of benzylindole derivatives with various substituents at the benzene-fused ring, suggested by our 3D pharmacophore model developed for HIV-1 integrase inhibitors (INIs). All synthesized compounds proved to be active in the nanomolar range (6-35 nM) on the strand-transfer step (ST). In particular, derivative 4-[1-(4-fluorobenzyl)-5,7-dimethoxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid (8e), presenting the highest best-fit value on pharmacophore model, showed a potency comparable to that of clinical INSTIs GS 9137 (1) and MK-0518 (2). The binding mode of our molecules has been investigated using the recently published crystal structure of the complex of full-length integrase from the prototype foamy virus in complex with its cognate DNA (PFV-IN/DNA). The results highlighted the ability of derivative 8e to assume the same binding mode of MK-0518 and GS 9137.

  16. Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuan-Ping; Fan, Wen-Hui; Liang, Yu-Qing; Yan, Hui

    2012-04-01

    Terahertz spectra of glucose and fructose have been measured by terahertz time-domain spectroscopy (THz-TDS) at room temperature. Because they have the same molecular formula, the differences of the THz spectra can be attributed to their molecular structures and the arrangement of molecules in unit cell. In this paper, gaseous-state theory has been employed to simulate the isolated molecule of these two isomers. The results indicate that experimental THz spectral features (0.5 - 4.0 THz) of glucose and fructose arise from the mixture of intramolecular and intermolecular modes, involving hydrogen bonds and covalent bonds, and with the intermolecular modes dominating.

  17. Investigation of the effect of erythrosine B on amyloid beta peptide using molecular modeling.

    PubMed

    Lee, Juho; Kwon, Inchan; Jang, Seung Soon; Cho, Art E

    2016-04-01

    Neurotoxic plaques composed of 39 to 42 residue-long amyloid beta peptides (Aβs) are copiously present in the brains of patients with Alzheimer's disease (AD). Erythrosine B (ER), a xanthene food dye, inhibits the formation of Aβ fibrils and Aβ-associated cytotoxicity in vitro. Here, in an attempt to elucidate the inhibition mechanism, we performed molecular dynamics (MD) simulations to demonstrate the conformational change of Aβ40 induced by ER molecules in atomistic detail. During the simulation, the ER bound to the surfaces of both N-terminus and C-terminus regions of Aβ40. Our result shows that ER interacts with the aromatic side chains at the N-terminus region resulting in destabilization of the inter-chain stacking of Aβ40. Moreover, the stablility of the helical structures at the residues from 13 to 16 suggests that ER disturbs conformational transition of Aβ40. At the C-terminus region, the bound ER blocks water molecules and stabilizes the α-helical structure. Regardless of the number of ER molecules used, the interruption of the formation of the salt-bridge between aspartic acid 23 and lysine 28 occurred. To further validate our analysis, binding free energies of ER at each binding site were evaluated. The finding of stronger binding energy at the N-terminus region supports an inhibition mechanism induced by stacking interaction between ER and phenylalanine. These findings could aid present and future treatment studies for AD by clarifying the inhibition mechanism of ER on the conformational transition of Aβ40 at the molecular level. PMID:27021211

  18. Animal models and molecular imaging tools to investigate lymph node metastases

    PubMed Central

    Servais, Elliot L.; Colovos, Christos; Bograd, Adam J.; White, Julie; Sadelain, Michel

    2012-01-01

    Lymph node metastasis is a strong predictor of poor outcome in cancer patients. Animal studies of lymph node metastasis are constrained by difficulties in the establishment of appropriate animal models, limitations in the noninvasive monitoring of lymph node metastasis progression, and challenges in the pathologic confirmation of lymph node metastases. In this comprehensive review, we summarize available preclinical animal cancer models for noninvasive imaging and identification of lymph node metastases of non-hematogenous cancers. Furthermore, we discuss the strengths and weaknesses of common noninvasive imaging modalities used to identify tumor-bearing lymph nodes and provide guidelines for their pathological confirmation. PMID:21556810

  19. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    PubMed Central

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments. PMID:25110690

  20. Investigation of Cellular and Molecular Responses to Pulsed Focused Ultrasound in a Mouse Model

    PubMed Central

    Burks, Scott R.; Ziadloo, Ali; Hancock, Hilary A.; Chaudhry, Aneeka; Dean, Dana D.; Lewis, Bobbi K.; Frenkel, Victor; Frank, Joseph A.

    2011-01-01

    Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology. PMID:21931834

  1. Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms.

    PubMed

    Craddock, Rachel M; Lockstone, Helen E; Rider, David A; Wayland, Matthew T; Harris, Laura J W; McKenna, Peter J; Bahn, Sabine

    2007-01-01

    Despite decades of research into the aetiology and pathophysiology of schizophrenia, our understanding of this devastating disorder remains incomplete, with adverse consequences for both diagnosis and treatment. Here we investigate whether differences between patients and controls can be observed in peripheral patient tissue, with a view of establishing a means for dynamic investigations into cell function. In vitro stimulation of peripheral blood CD3+ pan T cells with anti-CD3 (clone OKT3) was used to investigate disease-associated cell responses. T cells from both medicated (n = 39), unmedicated (n = 6) and minimally medicated (n = 5) schizophrenia patients were found to have significantly lower proliferative responses to stimulation, compared to well-matched controls (n = 32). Expression of CD3 and TCR (T cell receptor) alphabeta chains was equivalent between patients and controls, ensuring equal stimulation with anti-CD3, and there was no significant difference in the proportions of CD4+ and CD8+ T cells between samples (n = 12). Lower T cell proliferation in schizophrenia patients was not found to result from deficient early tyrosine phosphorylation signalling or lower IL-2 (interleukin-2) production, as these parameters were similar between patients and controls, as was the expression of CD25, the IL-2 receptor alpha chain. Analysis of CD45 isoforms, however, revealed that patients had a significantly greater percentage of CD8+ and CD4+ CD45RA+ cells before stimulation and significantly higher fluorescence intensity of CD45RA on CD4+ and CD8+ cells before and after stimulation. There was significantly higher expression of CD45 RB on both CD4+ and CD8+ unstimulated cells, with a trend towards lower numbers of CD45RO+ T cells in patient blood. Gene expression analysis in freshly isolated T cells from six minimally treated or first onset patients and six controls was carried out using human whole-genome CodeLink microarrays to identify functional pathways that

  2. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation

    SciTech Connect

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Zhuang, Wei E-mail: gaoyq@pku.edu.cn; Gao, Yi Qin E-mail: gaoyq@pku.edu.cn

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  3. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation.

    PubMed

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Gao, Yi Qin; Zhuang, Wei

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  4. Investigation of vital pathogenic target orotate phosphoribosyltransferases (OPRTase) from Thermus thermophilus HB8: Phylogenetic and molecular modeling approach.

    PubMed

    Surekha, Kanagarajan; Prabhu, Damodharan; Richard, Mariadasse; Nachiappan, Mutharasappan; Biswal, Jayashree; Jeyakanthan, Jeyaraman

    2016-06-01

    Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent. PMID:26861612

  5. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  6. The mechanism of hydrogen uptake in [NiFe] hydrogenase: first-principles molecular dynamics investigation of a model compound.

    PubMed

    Furlan, Sara; La Penna, Giovanni

    2012-01-01

    The recent discovery of a model compounds of [NiFe] hydrogenase that catalyzes the heterolytic cleavage of the H(2) molecule into a proton and a stable hydride in water solution under room conditions opened up the possibility to understand the mechanism of H(2) uptake by this peculiar class of enzymes. The simplest model compound belongs to the class of NiRu bimetallic cationic complexes mimicking, in water solution and at room conditions, the hydrogenase active site. By using first-principles molecular dynamics computer simulations, in the Car-Parrinello scheme, we investigated models including the water solvent and nitrate counterions. Several simulations, starting from different initial configurations, provided information on the first step of the H(2) cleavage: (1) the pathway of H(2) approach towards the active site; (2) the role of the ruthenium-bonded water molecule in providing a base that extracts the proton from the activated H(2) molecule; (3) the minor role of Ni in activating the H(2) molecule and its role in stabilizing the hydride produced. PMID:21892688

  7. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  8. Experimental and molecular modeling investigation of (E)-N-{2-[(2-hydroxybenzylidene)amino]phenyl}benzenesulfonamide

    NASA Astrophysics Data System (ADS)

    Özdemir, Namık; Dayan, Serkan; Dayan, Osman; Dinçer, Muharrem; Kalaycıoğlu, Nilgün Ö.

    2013-03-01

    The Schiff base compound (E)-N-{2-[(2-hydroxybenzylidene)amino]phenyl}benzenesulfonamide has been synthesized and characterized by IR, NMR and Uv-vis spectroscopies, and single-crystal X-ray diffraction technique. In addition, quantum chemical calculations employing density functional theory (DFT) method with the 6-311++G(d,p) basis set were performed to study the molecular, spectroscopic and some electronic structure properties of the title compound, and the results were compared with the experimental findings. There exists a good correlation between experimental and theoretical data. Enol-imine/keto-amine tautomerization mechanism was investigated in the gas phase and in solution phase using the polarizable continuum model (PCM) approximation. The energetic and thermodynamic parameters of the enol-imine → keto-amine transfer process show that the single proton exchange is thermodynamically unfavored both in the gas phase and in solution phase. However, the reverse reaction seems to be feasible with a low barrier height and is supported by negative values in enthalpy and free energy changes both in the gas phase and in solution phase. The solvent effect is found to be sizable with increasing polarity of the solvents for the reverse reaction. The predicted nonlinear optical properties of the compound are found to be much greater than those of urea.

  9. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling.

    PubMed

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen-antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (-COOH) was temporarily masked by esterification with phenolic -OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer's yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with

  10. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    PubMed Central

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities

  11. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling.

    PubMed

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen-antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (-COOH) was temporarily masked by esterification with phenolic -OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer's yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with

  12. Does glimepiride alter the pharmacokinetics of sildenafil citrate in diabetic nephropathy animals: investigating mechanism of interaction by molecular modeling studies.

    PubMed

    Tripathi, Alok Shiomurti; Timiri, Ajay Kumar; Mazumder, Papiya Mitra; Chandewar, Anil

    2015-10-01

    The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies. PMID:26428531

  13. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  14. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. PMID:27631126

  15. Systematic investigation of the toxic mechanism of PFOA and PFOS on bovine serum albumin by spectroscopic and molecular modeling.

    PubMed

    Chen, Huilun; He, Pengzhen; Rao, Honghao; Wang, Fei; Liu, Haijun; Yao, Jun

    2015-06-01

    Perfluorinated compounds (PFCs), an emerging class of globally environmental contaminations, pose a great threat to humans with wide exposure from food and other potential sources. The effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on bovine serum albumin (BSA) under normal physiological conditions were characterized by fluorescence, UV-Vis absorption, Fourier transform infrared (FT-IR) spectroscopy and molecular docking methods. The fluorescence study suggested that the fluorescence quenching of BSA by PFCs was a static procedure forming a PFCs-BSA complex. The negative values of enthalpy change (ΔH) and entropy change (ΔS) indicated that van der Waals forces and hydrogen bonds were the dominant intermolecular forces in the binding of PFCs to BSA. The displacement experiments of site markers and molecular docking revealed that the binding of PFOA to BSA took place in sub-domain IIA (Sudlow site I) whereas PFOS was mainly located in the sub-domain IIIA (Sudlow site II) and partially bound into site I. Furthermore, the results of UV-Vis and FT-IR spectra demonstrated that the microenvironment and the secondary structure of BSA were changed in the presence of PFCs. These results indicated that PFCs indeed impact the conformation of BSA and PFOS was more toxic than PFOA, which were supported by theoretical molecular modeling methods.

  16. Systematic investigation of the toxic mechanism of PFOA and PFOS on bovine serum albumin by spectroscopic and molecular modeling.

    PubMed

    Chen, Huilun; He, Pengzhen; Rao, Honghao; Wang, Fei; Liu, Haijun; Yao, Jun

    2015-06-01

    Perfluorinated compounds (PFCs), an emerging class of globally environmental contaminations, pose a great threat to humans with wide exposure from food and other potential sources. The effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on bovine serum albumin (BSA) under normal physiological conditions were characterized by fluorescence, UV-Vis absorption, Fourier transform infrared (FT-IR) spectroscopy and molecular docking methods. The fluorescence study suggested that the fluorescence quenching of BSA by PFCs was a static procedure forming a PFCs-BSA complex. The negative values of enthalpy change (ΔH) and entropy change (ΔS) indicated that van der Waals forces and hydrogen bonds were the dominant intermolecular forces in the binding of PFCs to BSA. The displacement experiments of site markers and molecular docking revealed that the binding of PFOA to BSA took place in sub-domain IIA (Sudlow site I) whereas PFOS was mainly located in the sub-domain IIIA (Sudlow site II) and partially bound into site I. Furthermore, the results of UV-Vis and FT-IR spectra demonstrated that the microenvironment and the secondary structure of BSA were changed in the presence of PFCs. These results indicated that PFCs indeed impact the conformation of BSA and PFOS was more toxic than PFOA, which were supported by theoretical molecular modeling methods. PMID:25497588

  17. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  18. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling.

    PubMed

    Hong, Wei; Wang, Yu; Chang, Zhe; Yang, Yanhui; Pu, Jing; Sun, Tao; Kaur, Sargit; Sacchettini, James C; Jung, Hunmin; Lin Wong, Wee; Fah Yap, Lee; Fong Ngeow, Yun; Paterson, Ian C; Wang, Hao

    2015-10-16

    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR.

  19. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling

    PubMed Central

    Hong, Wei; Wang, Yu; Chang, Zhe; Yang, Yanhui; Pu, Jing; Sun, Tao; Kaur, Sargit; Sacchettini, James C.; Jung, Hunmin; Lin Wong, Wee; Fah Yap, Lee; Fong Ngeow, Yun; Paterson, Ian C.; Wang, Hao

    2015-01-01

    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR. PMID:26471125

  20. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling.

    PubMed

    Hong, Wei; Wang, Yu; Chang, Zhe; Yang, Yanhui; Pu, Jing; Sun, Tao; Kaur, Sargit; Sacchettini, James C; Jung, Hunmin; Lin Wong, Wee; Fah Yap, Lee; Fong Ngeow, Yun; Paterson, Ian C; Wang, Hao

    2015-01-01

    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR. PMID:26471125

  1. Investigations on the Interactions of 5-Fluorouracil with Herring Sperm DNA: Steady State/Time Resolved and Molecular Modeling Studies

    NASA Astrophysics Data System (ADS)

    Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Velmurugan, Devadasan; Hanagata, Nobutaka; Aruna, Prakasarao; Ganesan, Singaravelu

    2015-04-01

    In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103 M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.

  2. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  3. Theoretical investigation of two model systems for molecular photoswitch functionality. I. 2-(4-nitropyrimidin-2-yl)ethenol

    NASA Astrophysics Data System (ADS)

    Woywod, Clemens; Csehi, András; Halász, Gábor J.; Ruud, Kenneth; Vibók, Ágnes

    2014-03-01

    The ground and five lowest-lying electronically excited singlet states of 2-(4-nitropyrimidin-2-yl)ethenol (NPE) have been studied theoretically using the complete active space self-consistent-field (CASSCF), Møller-Plesset second-order perturbation theory (MP2) and second-order multi-configurational perturbation theory (CASPT2) methods. The molecule can be regarded as being composed of a frame and a crane component and is characterised by the existence of two planar minima of similar energy on the ground-state potential energy (PE) surface. This work explores the possibility of an excited-state intramolecular hydrogen transfer (ESIHT) process in NPE. A hypothetical reaction coordinate has been constructed for NPE. State-averaged CASSCF and CASPT2 calculations of the six lowest-lying singlet states have been performed for the isomerisation. Adiabatic and simplified quasi-diabatic PE and transition dipole moment functions have been constructed. The computations indicate that there exist substantial barriers for the rotation process on the adiabatic PE surfaces of all the five excited states investigated. The six quasi-diabatic electronic states considered here decompose into two classes based on whether the electronic wave functions depend weakly or strongly on the nuclear displacement, subject to the effect of the torsion on relevant molecular orbitals.

  4. Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: a reactive molecular dynamics investigation for plasma medicine

    NASA Astrophysics Data System (ADS)

    Van der Paal, Jonas; Aernouts, Stefaan; van Duin, Adri C. T.; Neyts, Erik C.; Bogaerts, Annemie

    2013-10-01

    Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.

  5. Synthesis, in vitro evaluation, and molecular modeling investigation of benzenesulfonimide peroxisome proliferator-activated receptors α antagonists.

    PubMed

    Ammazzalorso, Alessandra; Carrieri, Antonio; Verginelli, Fabio; Bruno, Isabella; Carbonara, Giuseppe; D'Angelo, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Florio, Rosalba; Fracchiolla, Giuseppe; Giampietro, Letizia; Giancristofaro, Antonella; Maccallini, Cristina; Cama, Alessandro; Amoroso, Rosa

    2016-05-23

    Recent evidences suggest a moderate activation of Peroxisome Proliferator-Activated Receptors (PPARs) could be favorable in metabolic diseases, reducing side effects given from full agonists. PPAR partial agonists and antagonists represent, to date, interesting tools to better elucidate biological processes modulated by these receptors. In this work are reported new benzenesulfonimide compounds able to block PPARα, synthesized and tested by transactivation assays and gene expression analysis. Some of these compounds showed a dose-dependent antagonistic behavior on PPARα, submicromolar potency, different profiles of selectivity versus PPARγ, and a repressive effect on CPT1A expression. Dockings and molecular dynamics on properly selected benzenesulfonimide derivatives furnished fresh insights into the molecular determinant most likely responsible for PPARα antagonism. PMID:26974385

  6. Emerging molecular methods for male infertility investigation.

    PubMed

    Benkhalifa, Moncef; Montjean, Debbie; Belloc, Stephanie; Dalleac, Alain; Ducasse, Michel; Boyer, Pierre; Merviel, Philippe; Copin, Henri

    2014-01-01

    Male factors account for approximately 50% of reproductive pathology. Different disorders, including urogenital and endocrine system development abnormalities, lead to testicular and gametogenesis defects. Parallely, studies have reported that somatic and germ cell genome decay are a major cause of male infertility. It has been shown that in somatic karyotype, there is a higher incidence of chromosomal aberrations in infertile men than neonatal population and significant chromosome Y microdeletion or specific gene alterations in affected spermatogenesis. Karyotyping and FISH application at somatic and germ cell levels are no longer sufficient to investigate the potential contribution of genome disorders on male infertility. A wide range of molecular methods are required for better understanding of male infertility causes. Molecular omes and omics techniques have become a great tool to investigate male infertility from chromosome to protein. This review reports different molecular tests and methods that can be offered for male infertility investigation.

  7. Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal oriens-lacunosum/moleculare (O-LM) cells.

    PubMed

    Sekulić, Vladislav; Lawrence, J Josh; Skinner, Frances K

    2014-01-01

    Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal compartment, an essential goal in developing models is to help characterize these properties. To address biological variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using ensembles or populations of models. In collectively capturing a neuron's output, ensemble modeling approaches uncover important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron's biophysical balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-lacunosum/moleculare (O-LM) interneurons, a prominent interneuron subtype that plays an essential gating role of information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih). Although dendritic Ih could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were dependent on the presence of dendritic Ih. These findings inform future experiments that differentiate between

  8. Pseudo-epidermis: A model system for investigating molecular and cellular pathways of cutaneous epidermal toxicity from sulfur mustard

    SciTech Connect

    Bernstein, I.A.; Bernstam, L.I.; Yang, Y.H.; Lin, P.P.; Vaughan, F.L.

    1993-05-13

    Damage to DNA, Inhibition of DNA replication and mitosis, appearance of abnormal keratin peptide and large differentiated cells and, finally, death of cells occur dose- and time-responsively in submerged cultures of keratinocytes exposed to bis-(b-chloroethyl)sulfide (BCES). However, the relevance of these parameters to vesication in human skin exposed to mustard in vivo has yet to be established. The pseudo-epidermis cultured from human cutaneous keratinocytes offers a system in which the pathogenic importance of each of these parameters can be evaluated. To establish the validity of the system, it is necessary to show that the pseudo-epidermis undergoes similar dose- and time-dependent cytotoxicity from BCES as is observed in the human skin after topical exposure to the mustard. This report includes data which demonstrate a dose- and time-dependent destruction of the germinative layer in human pseudo-epidermis after topical application of BCES. In addition, data are included to show that DNA is a primary target for BCES in pseudo-epidermis as it is in vivo. Also included in this report is a proposed sequence of molecular and cellular events to account for cytotoxicity in the germinative population of the pseudo-epidermis after exposure to BCES.

  9. Investigation of molecular mechanisms of action of chelating drugs on protein-lipid model membranes by X-ray fluorescence

    SciTech Connect

    Novikova, N. N.; Zheludeva, S. I.; Koval'chuk, M. V.; Stepina, N. D.; Erko, A. I.; Yur'eva, E. A.

    2009-12-15

    Protein-lipid films based on the enzyme alkaline phosphatase were subjected to the action of chelating drugs, which are used for accelerating the removal of heavy metals from the human body, and the elemental composition of the resulting films was investigated. Total-reflection X-ray fluorescence measurements were performed at the Berlin Electron Storage Ring Company for Synchrotron Radiation (BESSY) in Germany. A comparative estimation of the protective effect of four drugs (EDTA, succimer, xydiphone, and mediphon) on membrane-bound enzymes damaged by lead ions was made. The changes in the elemental composition of the protein-lipid films caused by high doses of chelating drugs were investigated. It was shown that state-of-the-art X-ray techniques can, in principle, be used to develop new methods for the in vitro evaluation of the efficiency of drugs, providing differential data on their actions.

  10. Assessment of Molecular Modeling & Simulation

    SciTech Connect

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  11. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    downward on vertical surfaces, or fully embedded in agar-containing medium. Brachypodium distachyon accessions differ in their gravisensitivity, kinetics of gravitropism and occurrence, periodicity and amplitude of tip oscillations. Mathematical models are being built to fit the data, and used to estimate growth, gravitropism and oscillation parameters for incorporation into Genome-Wide Association Study (GWAS) algorithms aimed at identifying contributing loci. This work was supported by grants from the National Aeronautics and Space Administration (NASA) and from the National Science Foundation (NSF).

  12. Investigating the impact of aqueous-phase chemistry and wet deposition on organic aerosol formation using a molecular surrogate modeling approach.

    PubMed

    Couvidat, Florian; Sartelet, Karine; Seigneur, Christian

    2013-01-15

    A molecular surrogate representation of secondary organic aerosol (SOA) formation is used to investigate the effect of aqueous-phase (in clouds and particles) chemical processing and wet deposition on SOA atmospheric concentrations. To that end, the hydrophilic/hydrophobic organic (H(2)O) model was augmented to account for several gas/aqueous-phase equilibria and aqueous-phase processes, including the formation of oxalic, glyoxilic and pyruvic acids, the oxidation of methyl vinyl ketone (MVK) and methacrolein (MACR), the formation of tetrols and organosulfates from epoxydiols (IEPOX), and further oxidation of water-soluble SOA (aging). Among those processes, SOA chemical aging and IEPOX reactions led to the most significant increases (up to 1 μg m(-3) in some areas) in SOA concentrations in a one-month summer simulation over Europe. However, large uncertainties remain in the gas/aqueous-phase partitioning of oxalic acid, MVK, and MACR. Below-cloud scavenging of SOA precursor gases and of gas-phase SVOC was found to affect SOA concentrations by up to 20%, which suggests that it should be taken into account in air quality models.

  13. A Combination of Hand-Held Models and Computer Imaging Programs Helps Students Answer Oral Questions about Molecular Structure and Function: A Controlled Investigation of Student Learning

    ERIC Educational Resources Information Center

    Harris, Michelle A.; Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Neto, Elias Chaibub; Kallio, Julie

    2009-01-01

    We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging…

  14. Preparation, physicochemical analysis and molecular modeling investigation of 2,2‧-Bipyridine: β-Cyclodextrin inclusion complex in solution and solid state

    NASA Astrophysics Data System (ADS)

    Periasamy, R.; Kothainayaki, S.; Sivakumar, K.

    2015-11-01

    Supramolecular interaction between 2,2‧-Bipyridine (BPY) and β-Cyclodextrin (β-CD) has been investigated in solution and solid state. Non-covalent interaction between BPY and β-CD was studied in solution using absorption and fluorescence spectroscopy. Inclusion complex of BPY and β-CD was prepared in solid state by co-precipitation method and it was characterized using Fourier Transform Infra-red spectroscopy (FT-IR), Thermal analysis, Scanning Electron Microscopy (SEM), Powder X-ray diffractometry (XRD) and Atomic Force Microscopy (AFM). Binding constant values and 1:1 stoichiometry of the inclusion complex were calculated using Benesi-Hildebrand plots at 303 K. Using continuous variation method the 1:1 stoichiometry has been confirmed for BPY: β-CD complex. Thermodynamic parameter, ΔG of inclusion complex formation was determined and the negative value indicated that the inclusion process was an exergonic and spontaneous process. The most probable model of BPY: β-CD inclusion complex suggested by molecular docking studies was in good agreement with the results obtained by experimental methods.

  15. The JPL Molecular Contamination Investigation Facility

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David; Osborn, David

    1990-01-01

    The Molecular Contamination Investigation Facility (MCIF) is discussed in terms of its use for improving the far-UV performance of a camera and its broader applications. The MCIF incorporates two independent vacuum systems with sample isolation chambers and regulated heat exchangers as well as three quartz-crystal microbalances (QCMs) and a residual gas analyzer. One cryogenic QCM is heat sunk into an LN2 heat exchanger, while the others are thermoelectrically controlled and are heat sunk into a regulated heat exchanger. Outgas accumulation can be measured at three surface temperatures between -180 and 80 C simultaneously, and results are presented for the testing of 34 samples in a large-chambered system and 22 samples in a system with a smaller chamber. The MCIF results provide a database for fabrication processes, material selection, maximum bakeout temperatures, and the development of an ultraclean bakeout chamber.

  16. Abstract models of molecular walkers

    NASA Astrophysics Data System (ADS)

    Semenov, Oleg

    Recent advances in single-molecule chemistry have led to designs for artificial multi-pedal walkers that follow tracks of chemicals. The walkers, called molecular spiders, consist of a rigid chemically inert body and several flexible enzymatic legs. The legs can reversibly bind to chemical substrates on a surface, and through their enzymatic action convert them to products. We study abstract models of molecular spiders to evaluate how efficiently they can perform two tasks: molecular transport of cargo over tracks and search for targets on finite surfaces. For the single-spider model our simulations show a transient behavior wherein certain spiders move superdiffusively over significant distances and times. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process (SEP) model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times. Despite this improvement the leading spider eventually slows down and moves diffusively, similarly to a single spider. The slowdown happens because all spiders behind the leading spiders never encounter substrates, and thus they are never biased. They cannot keep up with leading spiders, and cannot put enough pressure on them. Next, we investigate search properties of a single and multiple spiders moving over one- and two-dimensional surfaces with various absorbing and reflecting boundaries. For the single-spider model we evaluate by how much the

  17. The role of the deformational entropy in the miscibility of polymer blends investigated using a hybrid statistical mechanics and molecular dynamics model.

    PubMed

    Madkour, Tarek M; Salem, Sarah A; Miller, Stephen A

    2013-04-28

    To fully understand the thermodynamic nature of polymer blends and accurately predict their miscibility on a microscopic level, a hybrid model employing both statistical mechanics and molecular dynamics techniques was developed to effectively predict the total free energy of mixing. The statistical mechanics principles were used to derive an expression for the deformational entropy of the chains in the polymeric blends that could be evaluated from molecular dynamics trajectories. Evaluation of the entropy loss due to the deformation of the polymer chains in the case of coiling as a result of the repulsive interactions between the blend components or in the case of swelling due to the attractive interactions between the polymeric segments predicted a negative value for the deformational entropy resulting in a decrease in the overall entropy change upon mixing. Molecular dynamics methods were then used to evaluate the enthalpy of mixing, entropy of mixing, the loss in entropy due to the deformation of the polymeric chains upon mixing and the total free energy change for a series of polar and non-polar, poly(glycolic acid), PGA, polymer blends. PMID:23493907

  18. Spectroscopic and molecular modeling methods to investigate the interaction between 5-Hydroxymethyl-2-furfural and calf thymus DNA using ethidium bromide as a probe.

    PubMed

    Zhu, Jinhua; Chen, Lanlan; Dong, Yingying; Li, Jiazhong; Liu, Xiuhua

    2014-04-24

    In this work, the interaction of 5-Hydroxymethyl-2-furfural (5-HMF) with calf thymus DNA (ctDNA) under simulated physiological conditions (Tris-HCl buffer of pH 7.40), was explored by UV absorption spectroscopy, fluorescence spectroscopy and molecular modeling method, using ethidium bromide (EB) as a fluorescence probe of DNA. The fluorescence quenching mechanism of EB-ctDNA by 5-HMF was confirmed to be a static quenching, which derived from the formation of a new complex. The binding constants of 5-HMF with DNA in the presence of EB were calculated to be 2.17×10(3), 4.24×10(3) and 6.95×10(3) L mol(-1) at 300, 305 and 310 K, respectively. The calculated thermodynamic parameters, enthalpy change ΔH and entropy change ΔS, suggested that both hydrophobic interactions and hydrogen bonds played a predominant role in the binding of 5-HMF to DNA. According to the UV absorption spectroscopy and melting temperature (Tm) curve results, the binding mode of 5-HMF with DNA was indicative of a non-intercalative binding, which was supposed to be a groove binding. The molecular modeling results showed that 5-HMF could bind into the hydrophobic region of ctDNA and supported the conclusions obtained from the above experiments.

  19. Molecular model for chirality phenomena

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-10-01

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  20. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach.

    PubMed

    Paital, Biswaranjan; Sablok, Gaurav; Kumar, Sunil; Singh, Sanjeev Kumar; Chainy, G B N

    2016-09-01

    Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide [Formula: see text], potassium cyanide, sodium dodecyl sulfate (SDS), [Formula: see text]-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD-SDS and [Formula: see text] complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors.

  1. Interaction of vitamin B1 with bovine serum albumin investigation using vitamin B1-selective electrode: potentiometric and molecular modeling study.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2016-09-01

    Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1.

  2. Interaction of vitamin B1 with bovine serum albumin investigation using vitamin B1-selective electrode: potentiometric and molecular modeling study.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2016-09-01

    Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1. PMID:26372107

  3. Molecular crime scene investigation - dusting for fingerprints.

    PubMed

    Jürgen Bajorath

    2013-12-01

    In chemoinformatics and drug design, fingerprints (FPs) are defined as string representations of molecular structure and properties and are popular descriptors for similarity searching. FPs are generally characterized by the simplicity of their design and ease of use. Despite a long history in chemoinformatics, the potential and limitations of FP searching are often not well under- stood. Standard FPs can also be subjected to engineering techniques to tune them for specific search applications.

  4. Molecular investigations of flaxseed mucilage polysaccharides.

    PubMed

    Roulard, Romain; Petit, Emmanuel; Mesnard, François; Rhazi, Larbi

    2016-05-01

    The molecular properties of flaxseed mucilage were determined using a multi-angle laser light scattering (MALLS) detector coupled on-line to size exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4). Water and salt solution were tested as mobile phases. The SEC-MALLS method gave partial information and enabled molecular characterization of disaggregated mucilage molecules. Regardless of the eluent used, the observed Mw ranged from about 1.6 × 10(6) to more than 10 × 10(6) g/mol for mucilage polysaccharides. The AF4-MALLS system enabled a complete analysis of mucilage carbohydrate aggregates in water, in which two populations were satisfactorily separated. The molecular weight distribution (MWD) of molecules ranged from 1.5 × 10(6) to more than 4 × 10(8) g/mol. Experiments showed that the conformational structure of mucilage molecules was strongly influenced by ionic strength. Mucilage carbohydrates exhibited a spherical and compact structure in NaCl solution while they displayed a random-coil conformation in water. PMID:26851358

  5. Molecular investigations of flaxseed mucilage polysaccharides.

    PubMed

    Roulard, Romain; Petit, Emmanuel; Mesnard, François; Rhazi, Larbi

    2016-05-01

    The molecular properties of flaxseed mucilage were determined using a multi-angle laser light scattering (MALLS) detector coupled on-line to size exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4). Water and salt solution were tested as mobile phases. The SEC-MALLS method gave partial information and enabled molecular characterization of disaggregated mucilage molecules. Regardless of the eluent used, the observed Mw ranged from about 1.6 × 10(6) to more than 10 × 10(6) g/mol for mucilage polysaccharides. The AF4-MALLS system enabled a complete analysis of mucilage carbohydrate aggregates in water, in which two populations were satisfactorily separated. The molecular weight distribution (MWD) of molecules ranged from 1.5 × 10(6) to more than 4 × 10(8) g/mol. Experiments showed that the conformational structure of mucilage molecules was strongly influenced by ionic strength. Mucilage carbohydrates exhibited a spherical and compact structure in NaCl solution while they displayed a random-coil conformation in water.

  6. Molecular Modeling of Cardiac Troponin

    NASA Astrophysics Data System (ADS)

    Manning, Edward P.

    The cardiac thin filament regulates interactions of actin and myosin, the force-generating elements of muscular contraction. Over the past several decades many details have been discovered regarding the structure and function of the cardiac thin filament and its components, including cardiac troponin (cTn). My hypothesis is that signal propagation occurs between distant ends of the cardiac troponin complex through calcium-dependent alterations in the dynamics of cTn and tropomyosin (Tm). I propose a model of the thin filament that encompasses known structures of cTn, Tm and actin to gain insight into cardiac troponin's allosteric regulation of thin filament dynamics. By performing molecular dynamics simulations of cTn in conjunction with overlapping Tm in two conditions, with and without calcium bound to site II of cardiac troponin C (cTnC), I found a combination of calcium-dependent changes in secondary structure and dynamics throughout the cTn-Tm complex. I then applied this model to investigate familial hypertrophic cardiomyopathy (FHC), a disease of the sarcomere that is one of the most commonly occurring genetic causes of heart disease. Approximately 15% of known FHC-related mutations are found in cardiac troponin T (cTnT), most of which are in or flank the alpha-helical N-tail domain TNT1. TNT1 directly interacts with overlapping Tm coiled coils. Using this model I identified effects of TNT1 mutations that propagate to the cTn core where site II of cTnC, the regulatory site of calcium binding in the thin filament, is located. Specifically, I found that mutations in TNT1 alter the flexibility of TNT1 and that the flexibility of TNT1 is inversely proportional to the cooperativity of calcium activation of the thin filament. Further, I identified a pathway of propagation of structural and dynamic changes linking TNT1 to site II of cTnC. Mutation-induced changes at site II cTnC alter calcium coordination which corresponds to biophysical measurements of calcium

  7. Optical models of the molecular atmosphere

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  8. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  9. Interactive Modelling of Molecular Structures

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  10. Simple model of a coherent molecular photocell

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Bélanger, Marc-André; Mayou, Didier; Nemati Aram, Tahereh

    2016-04-01

    Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the role of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells.

  11. Simple model of a coherent molecular photocell.

    PubMed

    Ernzerhof, Matthias; Bélanger, Marc-André; Mayou, Didier; Nemati Aram, Tahereh

    2016-04-01

    Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the role of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells. PMID:27059557

  12. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    PubMed

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level. PMID:24712900

  13. Investigation of a Calcium-Responsive Contrast Agent in Cellular Model Systems: Feasibility for Use as a Smart Molecular Probe in Functional MRI

    PubMed Central

    2014-01-01

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca2+ may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca2+-sensitive, Gd3+-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca2+ showed that, despite a reduction in the Ca2+ level, transport of Ca2+ through the plasma membrane remained unaffected, while stimulation with ATP induced Ca2+-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca2+ level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca2+ concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1–6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level. PMID:24712900

  14. Molecular Tools for Investigating the Gut Microbiota

    NASA Astrophysics Data System (ADS)

    Lay, Christophe

    The “microbial world within us” (Zoetendal et al., 2006) is populated by a complex society of indigenous microorganisms that feature different “ethnic” populations. Those microbial cells thriving within us are estimated to outnumber human body cells by a factor of ten to one. Insights into the relation between the intestinal microbial community and its host have been gained through gnotobiology. Indeed, the influence of the gut microbiota upon human development, physiology, immunity, and nutrition has been inferred by comparing gnotoxenic and axenic murine models (Hooper et al., 1998, 2002, 2003; Hooper and Gordon, 2001).

  15. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  16. Molecular modeling of fluoropropene refrigerants.

    PubMed

    Raabe, Gabriele

    2012-05-17

    Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP (global warming potential) refrigerant mixtures. Due to their limited commercial production, experimental data for the thermophysical properties of fluoropropenes and their mixtures are in general rare, which hampers the exploration of their performance in technical applications. In principle, molecular simulation can be used to predict the relevant properties of refrigerants and refrigerant blends, provided that adequate intermolecular potential functions ("force fields") are available. In our earlier work (Raabe, G.; Maginn, E. J., J. Phys. Chem. B2010, 114, 10133-10142), we introduced a transferable force field for fluoropropenes comprising the compounds 3,3,3-trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). In this paper, we provide an extension of the force field model to the trans- and cis-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze(E), HFO-1234ze) and the cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)) as well as revised simulation results for HFO-1216. We present Gibbs ensemble simulation results on the vapor pressures, saturated densities, and heats of vaporization of these compounds in comparison with experimental results. The simulation results show that the force field model enables reliable predictions of the properties of the different fluoropropenes and also reproduces well the differing vapor-liquid coexistence and vapor pressure curve of the cis- and trans-isomers of 1,3,3,3-tetrafluoro-1-propene, HFO-1234ze and HFO-1234ze(E). For these two isomers, we also present molecular dynamics simulation studies on their local structure.

  17. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  18. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  19. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  20. Molecular dynamics simulation investigations of atomic-scale wear

    NASA Astrophysics Data System (ADS)

    Shao, Yuchong; Falk, Michael

    2013-03-01

    Frictional running-in and material transfer in wear take place at the micro- and nano-scale but the fundamental physics remain poorly understood. Here we intend to investigate wear and running-in phenomena in silicon based materials, which are widely utilized in micro/nano electromechanical systems(MEMS/NEMS). We use an atomic force microscopy (AFM) model composed of a crystalline silicon tip and substrate coated with native oxide layers. Molecular dynamics simulation has been performed over a range of temperatures, external loads and slip rates. Results show that adhesive wear takes place across the interface in an atom-by-atom fashion which remodels the tip leading to a final steady state. We quantify the rate of material transfer as a function of the coverage of non-bridging oxygen (NBO) atoms, which has a pronounced change of the system's tribological and wear behaviors. A constitutive rate and state model is proposed to predict the evolution of frictional strength and wear. This work is supported by the National Science Foundation under Award No. 0926111.

  1. Computerized molecular modeling of carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  2. A simple molecular model of neurulation.

    PubMed

    Kerszberg, M; Changeux, J P

    1998-09-01

    A molecular model for the morphogenesis of the central nervous system is built and solved by computer. The formalism rests on molecular-biological data gathered from insects and vertebrates during neural differentiation and neuronal fate specification. Two genetic, hierarchically organized switches are introduced, one associated with f1p4al tissue formation, and the other with neuronal specification. The model switches evolve in time, setting up very similar "prepatterns" of genetic activity in both insects and vertebrates, as observed experimentally. We introduce the hypothesis that cell adhesion and motion are regulated by the switches. If cell motion is turned on by the neural switch, the whole neural tissue (neural plate) thickens, buckles, and folds, ultimately creating a closed neural tube (primary neurulation). When mitoses are more frequent in neural plate tissue, ingression of a neural cell mass takes place instead (secondary neurulation). If cell motions are controlled by the neuronal switch, rather than by the neural one, the differentiation of isolated neuroblasts is observed, which delaminate individually (as in insect neural cord formation). The model thus displays the three major known patterns of neurogenesis; the transition between the vertebrate and insect cases is predicted to result from changes in genetic regulation downstream of the switch genes, and affecting cell adhesion and motility properties. Little is known experimentally about the concerned pathways: their importance as a fruitful area for future investigation is emphasized by our theoretical results.

  3. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  4. Molecular Sieve Bench Testing and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  5. Understanding polycaroboxylate interactions with counterions: A molecular modeling approach

    SciTech Connect

    Fitzwater, S.; Freeman, M.B.

    1993-12-31

    Low molecular weight polycarboyxlates, such as poly(acrylic acid), have utility as dispersants in a variety of commercial applications including home laundry detergents, mineral processing and water treatment. In general, counterions (Ca, Mg, Fe, etc.) are unavoidable in these applications and often dictate the polymer composition and molecular weight necessary for successful performance. The authors have been investigating the interaction of polycarboxylates with counterions in order to better understand how that interaction impacts on the dispersant properties of a polymer. Using computer modeling, it can be seen how molecular geometry, molecular dynamics, and the shape/polarity of the molecular surface are affected by counterion binding and polymer composition. The authors can then combine information from the modeling with experimental information and literature concepts to provide a direction toward the synthesis of improved low molecular weight polycarboxylate dispersants.

  6. Molecular Modeling of Estrogen Receptor Using Molecular Operating Environment

    ERIC Educational Resources Information Center

    Roy, Urmi; Luck, Linda A.

    2007-01-01

    Molecular modeling is pervasive in the pharmaceutical industry that employs many of our students from Biology, Chemistry and the interdisciplinary majors. To expose our students to this important aspect of their education we have incorporated a set of tutorials in our Biochemistry class. The present article describes one of our tutorials where…

  7. The cognitive life of mechanical molecular models.

    PubMed

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations.

  8. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  9. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  10. A Molecular Model for Chiral Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  11. Students' Understanding Is Enhanced through Molecular Modeling

    ERIC Educational Resources Information Center

    Ealy, Julie B.

    2004-01-01

    Integration of molecular modeling into General Chemistry lab encourages students to dually process molecular concepts both verbally and pictorially. When students are tested utilizing questions not previously encountered the dual processing of information can contribute to a transfer to knowledge. General Chemistry students utilized molecular…

  12. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  13. Informing Mechanistic Toxicology with Computational Molecular Models

    EPA Science Inventory

    Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo effo...

  14. Break-junctions for investigating transport at the molecular scale

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Lörtscher, Emanuel

    2014-11-01

    Break-junctions (BJs) enable a pair of atomic-sized electrodes to be created and the relative position between them to be controlled with sub-nanometer accuracy by mechanical means—a level of microscopic control that is not yet achievable by top-down fabrication. Locally, a BJ consists of a single-atom contact, an arrangement that is ideal not only to study various types of quantum point contacts, but also to investigate transport through an individual molecule that can bridge such a junction. In this topical review, we will provide a broad overview on the field of single-molecule electronics, in which BJs serve as the main tool of investigation. To correlate the molecular structure and transport properties to gain a fundamental understanding of the underlying transport mechanisms at the molecular scale, basic experiments that systematically cover all aspects of transport by rational chemical design and tailored experiments are needed. The variety of fascinating transport mechanisms and intrinsic molecular functionalities discovered in the past range from nonlinear transport over conductance switching to quantum interference effects observable even at room temperature. Beside discussing these results, we also look at novel directions and the most recent advances in molecular electronics investigating simultaneously electronic transport and also the mechanical and thermal properties of single-molecule junctions as well as the interaction between molecules and light. Finally, we will describe the requirements for a stepwise transition from fundamental BJ experiments towards technology-relevant architectures for future nanoelectronics applications based on ultimately-scaled molecular building blocks.

  15. Theoretical Modelling of Synthetic Molecular Motors

    NASA Astrophysics Data System (ADS)

    Barbu, Corina; Sofo, Jorge; Crespi, Vincent

    2004-03-01

    Synthetic molecular motors with sizes of few nanometers offer prospects to control molecular-scale mechanical motion. Motors with electric dipoles designed into their structure can undergo conformational changes in response to an external electric field and thereby, in principle, perform mechanical work. The synthetic rotary motor of our interest consists of a molecular caltrop with a three-legged base for attachment to a substrate and a molecular shaft functionalized with a molecular rotor at the upper end. Both the static dipole and the electric field-induced dipole of the molecular rotor are relevant to producing rotation. Also, the combination of external electrostatic torque and the internal thermal fluctuations must be sufficient to overcome any rotational barriers on experimentally relevant timescales. Density functional theory calculations at the B3LYP/TZV level coupled to analytical modelling reveal the dynamical response of the motor.

  16. Structures in Molecular Clouds: Modeling

    SciTech Connect

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  17. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  18. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  19. First Principles Quantitative Modeling of Molecular Devices

    NASA Astrophysics Data System (ADS)

    Ning, Zhanyu

    In this thesis, we report theoretical investigations of nonlinear and nonequilibrium quantum electronic transport properties of molecular transport junctions from atomistic first principles. The aim is to seek not only qualitative but also quantitative understanding of the corresponding experimental data. At present, the challenges to quantitative theoretical work in molecular electronics include two most important questions: (i) what is the proper atomic model for the experimental devices? (ii) how to accurately determine quantum transport properties without any phenomenological parameters? Our research is centered on these questions. We have systematically calculated atomic structures of the molecular transport junctions by performing total energy structural relaxation using density functional theory (DFT). Our quantum transport calculations were carried out by implementing DFT within the framework of Keldysh non-equilibrium Green's functions (NEGF). The calculated data are directly compared with the corresponding experimental measurements. Our general conclusion is that quantitative comparison with experimental data can be made if the device contacts are correctly determined. We calculated properties of nonequilibrium spin injection from Ni contacts to octane-thiolate films which form a molecular spintronic system. The first principles results allow us to establish a clear physical picture of how spins are injected from the Ni contacts through the Ni-molecule linkage to the molecule, why tunnel magnetoresistance is rapidly reduced by the applied bias in an asymmetric manner, and to what extent ab initio transport theory can make quantitative comparisons to the corresponding experimental data. We found that extremely careful sampling of the two-dimensional Brillouin zone of the Ni surface is crucial for accurate results in such a spintronic system. We investigated the role of contact formation and its resulting structures to quantum transport in several molecular

  20. Investigation of glassy state molecular motions in thermoset polymers

    NASA Astrophysics Data System (ADS)

    Tu, Jianwei

    This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks. The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H NMR spectroscopy, which offers unrivaled power to monitor site-specific molecular motions. Three distinctive molecular groups on each isomeric network, i.e., the phenylene rings in the bisphenol A structure (BPA), the phenylene rings in the diaminodiphenylsulfone structure (DDS), and the hydroxypropoyl ether group (HPE) have been selectively deuterated for a comprehensive study of the structure-dynamics- property relationships in thermoset epoxies. Quadrupolar echo experiments and line shape simulations were employed as the main research approach to gain both qualitative and quantitative motional information of the epoxy networks in the glassy state. Quantitative information on the geometry and rate of the molecular motions allows the elucidation of the relationship between molecular motions and macro physical properties and the role of these motions in the mechanical relaxation. Specifically, it is revealed that both the BPA and HPE moieties in the isomeric networks have almost identical behaviors in the deep glassy state, which indicates that the molecular motions in the glassy state are localized, and the correlation length of the motions does not exceed the length of the DGEBA repeat unit. BPA ring motions contribute

  1. Markov state models and molecular alchemy

    NASA Astrophysics Data System (ADS)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  2. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  3. Adaptive modelling of structured molecular representations for toxicity prediction

    NASA Astrophysics Data System (ADS)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria

    2012-12-01

    We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.

  4. Exploring Organic Mechanistic Puzzles with Molecular Modeling

    ERIC Educational Resources Information Center

    Horowitz, Gail; Schwartz, Gary

    2004-01-01

    The molecular modeling was used to reinforce more general skills such as deducing and drawing reaction mechanisms, analyzing reaction kinetics and thermodynamics and drawing reaction coordinate energy diagrams. This modeling was done through the design of mechanistic puzzles, involving reactions not familiar to the students.

  5. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  6. Investigating the Postmortem Molecular Biology of Cartilage and its Potential Forensic Applications.

    PubMed

    Bolton, Shawna N; Whitehead, Michael P; Dudhia, Jayesh; Baldwin, Timothy C; Sutton, Raul

    2015-07-01

    This study investigated the postmortem molecular changes that articular cartilage undergoes following burial. Fresh pig trotters were interred in 30-cm-deep graves at two distinct locations exhibiting dissimilar soil environments for up to 42 days. Extracts of the metacarpophalangeal (MCP) and metatarsophalangeal (MTP) joint cartilage from trotters disinterred weekly over 6 weeks were analyzed by Western blot against the monoclonal antibody 2-B-6 to assess aggrecan degradation. In both soil conditions, aggrecan degradation by-products of decreasing molecular size and complexity were observed up to 21 days postmortem. Degradation products were undetected after this time and coincided with MCP/MTP joint exposure to the soil environment. These results show that cartilage proteoglycans undergo an ordered molecular breakdown, the analysis of which may have forensic applications. This model may prove useful for use as a human model and for forensic investigations concerning crimes against animals and the mortality of endangered species.

  7. Nonlinear Optical Investigations of Vibrational Relaxation in Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Decola, Philip Lawrence

    Experimental studies of four-wave mixing have been used to obtain novel spectroscopic information in molecular crystals. This work can be separated into singly resonant and multiresonant investigations. One effort was to exploit the frequency and time domain capabilities of singly resonant coherent anti-Stokes Raman spectroscopy (CARS) to study vibrational dynamics in naphthalene and benzene single crystals at liquid Helium temperatures. To a large extent vibrational energy is chemical energy, so to understand the flow of vibrational energy in molecules and molecular aggregates can enhance our understanding of chemical reaction rates and pathways. Some of the salient results are: (1) the existence of motional narrowing in molecular crystals makes it possible for lifetime (T _1) broadening to dominate the linewidth of the vibrational transition even when the intrinsic disorder width is much larger than 1/T_1, (2) relaxation in molecular crystals can be surprisingly slow, ranging from subnanosecond to nanosecond, (3) substantial mode dependent contribution to relaxation from ^{13}C impurities in benzene, and (4) evidence of mode specific energy relaxation observed in a systematic study of benzene Raman active modes. The results obtained here are applied to the problems of understanding the contributions to residual low-temperature vibron linewidths and of developing simple mechanical intuitions to explain systematically the kinetic pathways for vibrational relaxation in molecular crystals. These results are discussed in light of the current theories of excitation dynamics in condensed phases. The other area of study was multiresonant nonlinear spectroscopic investigations of mixed organic crystals. The first multiresonant CARS and its Stokes analogue (CSRS) have been obtained in a mixed crystal of pentacene in benzoic acid allowing the simultaneous observation of ground and excited state Raman spectra. These spectra contain lines that are much sharper than expected

  8. Hierarchical Molecular Modelling with Ellipsoids

    SciTech Connect

    Max, N

    2004-03-29

    Protein and DNA structures are represented at varying levels of details using ellipsoidal RGBA textured splats. The splat texture at each level is generated by rendering its children in a hierarchical model, from a distribution of viewing directions, and averaging the result. For rendering, the ellipsoids to be used are chosen adaptively, depending on the distance to the viewpoint. This technique is applied to visualize DNA coiling around nucleosomes in chromosomes.

  9. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  10. Chemical modelling of molecular sources

    NASA Astrophysics Data System (ADS)

    Nejad, L. A. M.; Millar, T. J.

    1987-09-01

    The authors present detailed results of a chemical kinetic model of the outer envelope (1016cm to 1018cm) of the carbon-rich star IRC +10216. The chemistry is driven by a combination of cosmic-ray ionization and ultraviolet radiation and, starting from 7 parent molecules injected into the envelope, the authors find that a complex chemistry ensues. Ion-molecule reactions can efficiently build hydrocarbon species and account for the observed abundances of CH3CN and HNC. Reactions involving CO may lead to observable abundances of oxygen-bearing molecules such as C3O, CH2CO and HCO+.

  11. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems. PMID:27010817

  12. Molecular characterization of hepatocarcinogenesis using mouse models

    PubMed Central

    Teoh, Wei Wei; Xie, Min; Vijayaraghavan, Aadhitthya; Yaligar, Jadegoud; Tong, Wei Min; Goh, Liang Kee; Sabapathy, Kanaga

    2015-01-01

    ABSTRACT Hepatocellular carcinoma (HCC) is a deadly disease, often unnoticed until the late stages, when treatment options become limited. Thus, there is a crucial need to identify biomarkers for early detection of developing HCC, as well as molecular pathways that would be amenable to therapeutic intervention. Although analysis of human HCC tissues and serum components may serve these purposes, inability of early detection also precludes possibilities of identification of biomarkers or pathways that are sequentially perturbed at earlier phases of disease progression. We have therefore explored the option of utilizing mouse models to understand in a systematic and longitudinal manner the molecular pathways that are progressively deregulated by various etiological factors in contributing to HCC formation, and we report the initial findings in characterizing their validity. Hepatitis B surface antigen transgenic mice, which had been exposed to aflatoxin B1 at various stages in life, were used as a hepatitis model. Our findings confirm a synergistic effect of both these etiological factors, with a gender bias towards males for HCC predisposition. Time-based aflatoxin B1 treatment also demonstrated the requirement of non-quiescent liver for effective transformation. Tumors from these models with various etiologies resemble human HCCs histologically and at the molecular level. Extensive molecular characterization revealed the presence of an 11-gene HCC-expression signature that was able to discern transformed human hepatocytes from primary cells, regardless of etiology, and from other cancer types. Moreover, distinct molecular pathways appear to be deregulated by various etiological agents en route to formation of HCCs, in which common pathways converge, highlighting the existence of etiology-specific as well as common HCC-specific molecular perturbations. This study therefore highlights the utility of these mouse models, which provide a rich resource for the

  13. Mathematical modeling of molecular diffusion through mucus

    PubMed Central

    Cu, Yen; Saltzman, W. Mark

    2008-01-01

    The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488

  14. Simple soluble molecular ionization model

    SciTech Connect

    Dunne, Gerald V.; Gauthier, Christopher S.

    2004-05-01

    We present a simple exact analytical solution, using the Weyl-Titchmarsh-Kodaira spectral theorem, for the spectral function of the one-dimensional diatomic molecule model consisting of two attractive {delta}-function wells in the presence of a static external electric field. For sufficiently deep and far apart wells, this molecule supports both an even and an odd state, and the introduction of a static electric field turns these bound states into quasibound states which are Stark-shifted and broadened. The continuum spectrum also inherits an intricate pattern of resonances which reflect the competition between resonant scattering between the two atomic wells and between the linear potential and one or both atomic well(s). All results are analytic and can be easily plotted. The relation between the large orders of the divergent perturbative Stark-shift series and the nonperturbative widths of quasibound levels is studied.

  15. Simple soluble molecular ionization model

    NASA Astrophysics Data System (ADS)

    Dunne, Gerald V.; Gauthier, Christopher S.

    2004-05-01

    We present a simple exact analytical solution, using the Weyl-Titchmarsh-Kodaira spectral theorem, for the spectral function of the one-dimensional diatomic molecule model consisting of two attractive δ -function wells in the presence of a static external electric field. For sufficiently deep and far apart wells, this molecule supports both an even and an odd state, and the introduction of a static electric field turns these bound states into quasibound states which are Stark-shifted and broadened. The continuum spectrum also inherits an intricate pattern of resonances which reflect the competition between resonant scattering between the two atomic wells and between the linear potential and one or both atomic well(s). All results are analytic and can be easily plotted. The relation between the large orders of the divergent perturbative Stark-shift series and the nonperturbative widths of quasibound levels is studied.

  16. Trends in substitution models of molecular evolution

    PubMed Central

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  17. Trends in substitution models of molecular evolution.

    PubMed

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  18. Mobile modeling in the molecular sciences

    EPA Science Inventory

    The art of modeling in the molecular sciences is highly dependent on both the available computational technology, underlying data, and ability to collaborate. With the ever increasing market share of mobile devices, it is assumed by many that tablets will overtake laptops as the...

  19. Molecular model for hydrated biological tissues

    NASA Astrophysics Data System (ADS)

    Sato, Erika Tiemi; Rocha, Alexandre Reily; de Carvalho, Luis Felipe das Chagas e. Silva; Almeida, Janete Dias; Martinho, Herculano

    2015-06-01

    A density-functional microscopic model for soft tissues (STmod) is presented. The model was based on a prototype molecular structure from experimentally resolved type I collagen peptide residues and water clusters treated in periodic boundary conditions. We obtained the optimized geometry, binding and coupling energies, dipole moments, and vibrational frequencies. The results concerning the stability of the confined water clusters, the water-water, and water-collagen interactions were successfully correlated to some important experimental trends of normal and inflammatory tissues.

  20. The role of molecular modeling in bionanotechnology.

    PubMed

    Lu, Deyu; Aksimentiev, Aleksei; Shih, Amy Y; Cruz-Chu, Eduardo; Freddolino, Peter L; Arkhipov, Anton; Schulten, Klaus

    2006-03-01

    Molecular modeling is advocated here as a key methodology for research and development in bionanotechnology. Molecular modeling provides nanoscale images at atomic and even electronic resolution, predicts the nanoscale interaction of unfamiliar combinations of biological and inorganic materials, and evaluates strategies for redesigning biopolymers for nanotechnological uses. The methodology is illustrated in this paper through reviewing three case studies. The first one involves the use of single-walled carbon nanotubes as biomedical sensors where a computationally efficient, yet accurate, description of the influence of biomolecules on nanotube electronic properties through nanotube-biomolecule interactions was developed; this development furnishes the ability to test nanotube electronic properties in realistic biological environments. The second case study involves the use of nanopores manufactured into electronic nanodevices based on silicon compounds for single molecule electrical recording, in particular, for DNA sequencing. Here, modeling combining classical molecular dynamics, material science and device physics, described the interaction of biopolymers, e.g., DNA, with silicon nitrate and silicon oxide pores, furnished accurate dynamic images of pore translocation processes, and predicted signals. The third case study involves the development of nanoscale lipid bilayers for the study of embedded membrane proteins and cholesterol. Molecular modeling tested scaffold proteins, redesigned apolipoproteins found in mammalian plasma that hold the discoidal membranes in the proper shape, and predicted the assembly as well as final structure of the nanodiscs. In entirely new technological areas such as bionanotechnology, qualitative concepts, pictures and suggestions are sorely needed; these three case studies document that molecular modeling can serve a critical role in this respect, even though it may still fall short on quantitative precision.

  1. The role of molecular modeling in bionanotechnology

    NASA Astrophysics Data System (ADS)

    Lu, Deyu; Aksimentiev, Aleksei; Shih, Amy Y.; Cruz-Chu, Eduardo; Freddolino, Peter L.; Arkhipov, Anton; Schulten, Klaus

    2006-03-01

    Molecular modeling is advocated here as a key methodology for research and development in bionanotechnology. Molecular modeling provides nanoscale images at atomic and even electronic resolution, predicts the nanoscale interaction of unfamiliar combinations of biological and inorganic materials, and evaluates strategies for redesigning biopolymers for nanotechnological uses. The methodology is illustrated in this paper through reviewing three case studies. The first one involves the use of single-walled carbon nanotubes as biomedical sensors where a computationally efficient, yet accurate, description of the influence of biomolecules on nanotube electronic properties through nanotube-biomolecule interactions was developed; this development furnishes the ability to test nanotube electronic properties in realistic biological environments. The second case study involves the use of nanopores manufactured into electronic nanodevices based on silicon compounds for single molecule electrical recording, in particular, for DNA sequencing. Here, modeling combining classical molecular dynamics, material science and device physics, described the interaction of biopolymers, e.g., DNA, with silicon nitrate and silicon oxide pores, furnished accurate dynamic images of pore translocation processes, and predicted signals. The third case study involves the development of nanoscale lipid bilayers for the study of embedded membrane proteins and cholesterol. Molecular modeling tested scaffold proteins, redesigned apolipoproteins found in mammalian plasma that hold the discoidal membranes in the proper shape, and predicted the assembly as well as final structure of the nanodiscs. In entirely new technological areas such as bionanotechnology, qualitative concepts, pictures and suggestions are sorely needed; these three case studies document that molecular modeling can serve a critical role in this respect, even though it may still fall short on quantitative precision.

  2. Modelling refractive index changes due to molecular interactions

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

  3. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer

    NASA Astrophysics Data System (ADS)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of

  4. Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect

    Jerzy Bernholc

    2011-02-03

    will some day reach a miniaturization limit, forcing designers of Si-based electronics to pursue increased performance by other means. Any other alternative approach would have the unenviable task of matching the ability of Si technology to pack more than a billion interconnected and addressable devices on a chip the size of a thumbnail. Nevertheless, the prospects of developing alternative approaches to fabricate electronic devices have spurred an ever-increasing pace of fundamental research. One of the promising possibilities is molecular electronics (ME), self-assembled molecular-based electronic systems composed of single-molecule devices in ultra dense, ultra fast molecular-sized components. This project focused on developing accurate, reliable theoretical modeling capabilities for describing molecular electronics devices. The participants in the project are given in Table 1. The primary outcomes of this fundamental computational science grant are publications in the open scientific literature. As listed below, 62 papers have been published from this project. In addition, the research has also been the subject of more than 100 invited talks at conferences, including several plenary or keynote lectures. Many of the goals of the original proposal were completed. Specifically, the multi-disciplinary group developed a unique set of capabilities and tools for investigating electron transport in fabricated and self-assembled nanostructures at multiple length and time scales.

  5. Realistic molecular model of kerogen's nanostructure.

    PubMed

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J-M; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  6. Realistic molecular model of kerogen's nanostructure

    NASA Astrophysics Data System (ADS)

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E.; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J.-M.; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp2/sp3 hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  7. Realistic molecular model of kerogen's nanostructure.

    PubMed

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J-M; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms. PMID:26828313

  8. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid".

    PubMed

    Karthick, T; Balachandran, V; Perumal, S

    2015-04-15

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm(-1) has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  9. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  10. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  11. Investigating bile salt aggregation using coarse-grained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vila Verde, Ana; Frenkel, Daan

    2010-03-01

    Bile salts are necessary for fat digestion due to their unusual surfactant properties: they assemble into small, polydisperse micelles and easily form mixed micelles with poorly soluble amphiphiles. Understanding these properties requires molecular scale information about bile salt micelles, something challenging to obtain experimentally but amenable to computational modeling. To address this issue we build a coarse-grained model of bile salts. We investigate their aggregation behavior through molecular dynamics simulations in a grand-canonical parallel tempering scheme. We validate our model against available solubility and light scattering data. Our results indicate that at physiological bile salt and counter ion concentrations, bile salts pack in many different orientations in pure bile micelles, contrary to standard surfactants. This feature may be physiologically relevant, allowing bile salts to solubilize the heterogeneous blends of fats typical of digestion.

  12. Mechanical properties of borophene films: a reactive molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Quy Le, Minh; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1–0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young’s modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young’s modulus and fracture stress of these five sheets appear in the range 63–136 N m‑1 and 12–19 N m‑1, respectively. In addition, the strains at tensile strength are in the ranges of 9%–14%, 11%–19%, and 10%–16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  13. Investigation of synthetic molecular recognition for biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; McMasters, Sun; Sooter, Letha J.; Pellegrino, Paul M.

    2007-04-01

    A fundamental understanding of the factors which influence binding performance is critical to any technology or methodology relying on molecular recognition of a specific target species. For the Army, there is a growing need for a basic understanding of these interactions with traditional recognition elements (e.g., antibodies) in non-traditional environmental conditions, such as with new and emerging threats. There is a similar need for building a base of knowledge on non-traditional affinity ligands that are biomimetic or biosynthetic in nature. In this paper, specific research at the Army Research Laboratory towards the development, evaluation and use of synthetic affinity ligands for sensing applications is discussed. This includes the results of our investigations of aptamer-based affinity ligands targeting Campylobacter jejuni. Using capillary electrophoretic techniques, the relative binding affinities of the aptamer ligands towards the target pathogen as well as the degree of cross-reactivity with other food borne-pathogens (i.e., Escherichia coli O157:H7 and Salmonella typhimurium) were evaluated. Current progress towards the development of synthetic affinity ligands for sensing applications will also be discussed.

  14. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures. PMID:27678335

  15. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  16. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    NASA Astrophysics Data System (ADS)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  17. Applications of molecular modeling in coal research

    SciTech Connect

    Carlson, G.A.; Faulon, J.L.

    1994-01-01

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-link density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.

  18. Molecular model for hydrated biological tissues.

    PubMed

    Sato, Erika Tiemi; Rocha, Alexandre Reily; de Carvalho, Luis Felipe das Chagas e Silva; Almeida, Janete Dias; Martinho, Herculano

    2015-06-01

    A density-functional microscopic model for soft tissues (STmod) is presented. The model was based on a prototype molecular structure from experimentally resolved type I collagen peptide residues and water clusters treated in periodic boundary conditions. We obtained the optimized geometry, binding and coupling energies, dipole moments, and vibrational frequencies. The results concerning the stability of the confined water clusters, the water-water, and water-collagen interactions were successfully correlated to some important experimental trends of normal and inflammatory tissues. PMID:26172825

  19. High-School Chemistry Students' Performance and Gender Differences in a Computerized Molecular Modeling Learning Environment.

    ERIC Educational Resources Information Center

    Barnea, Nitza; Dori, Yehudit J.

    1999-01-01

    Investigates the effects of using molecular modeling on students' spatial ability, understanding of new concepts related to geometric and symbolic representations, and perception of the model concept. (Author/CCM)

  20. Polymer brushes with nanoinclusions under shear: A molecular dynamics investigation

    PubMed Central

    Milchev, A.; Dimitrov, D. I.; Binder, K.

    2010-01-01

    We use molecular dynamics simulations with a dissipative particle dynamics thermostat to study the behavior of nanosized inclusions (colloids) in a polymer brush under shear whereby the solvent is explicitly included in the simulation. The brush is described by a bead-spring model for flexible polymer chains, grafted on a solid substrate, while the polymer-soluble nanoparticles in the solution are taken as soft spheres whose diameter is about three times larger than that of the chain segments and the solvent. We find that the brush number density profile, as well as the density profiles of the nanoinclusions and the solvent, remains insensitive to strong shear although the grafted chains tilt in direction of the flow. The thickness of the penetration layer of nanoinclusions, as well as their average concentration in the brush, stays largely unaffected even at the strongest shear. Our result manifests the remarkable robustness of polymer brushes with embedded nanoparticles under high shear which could be of importance for technological applications. PMID:21045924

  1. A new method for the analysis of the dynamics of the molecular genetic control systems. II. Application of the method of generalized threshold models in the investigation of concrete genetic systems.

    PubMed

    Prokudina, E I; Valeev RYu; Tchuraev, R N

    1991-07-01

    Mathematical models of the prokaryotic control systems of tryptophan biosynthesis (both normal and with cloned blocks) and arabinose catabolism have been built using the method of generalized threshold models. Kinetic curves for molecular components (mRNAs, proteins, metabolites) of the systems considered are obtained. It has been shown that the method of generalized threshold models gives a more detailed qualitative picture of the dynamics of the molecular genetic control systems in comparison with the heuristic method of threshold models. The qualitative analysis of the functioning of the following mechanisms of control of the tryptophan biosynthesis: (1) inhibition of the activity of anthranilate synthetase by tryptophan, (2) repression and (3) attenuation of transcription of the tryptophan operon on the basis of the mathematical model of the control system of the tryptophan biosynthesis demonstrates that feedback inhibition is the most operative of the considered mechanisms while repression allows the bacterium to economize intracellular resources. As regards the control system of the arabinose catabolism the results of modelling enable us to state the following. The induction by arabinose within a wide range of parameter values causes two subsystems (araBAD and transport operons) of the arabinose regulon with a low rate of arabinose utilization to pass into a stationary regime and one subsystem (araC operon) to pass into a stable periodical regime. A study of the system characterized by the effective utilization of arabinose has shown that under induction by arabinose stable oscillations with small amplitudes of the concentration of regulatory protein and oscillations with large amplitudes of the concentrations of arabinose-isomerase and transport protein may occur. The period of the oscillation depends on the mean lifetime of the "activator-DNA" complex and on the rate constant of arabinoseisomerase degradation.

  2. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  3. A Series of Molecular Dynamics and Homology Modeling Computer Labs for an Undergraduate Molecular Modeling Course

    ERIC Educational Resources Information Center

    Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.

    2010-01-01

    As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…

  4. A realistic molecular model of cement hydrates

    PubMed Central

    Pellenq, Roland J.-M.; Kushima, Akihiro; Shahsavari, Rouzbeh; Van Vliet, Krystyn J.; Buehler, Markus J.; Yip, Sidney; Ulm, Franz-Josef

    2009-01-01

    Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this “liquid stone” gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm3) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO2, and H2O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)1.65(SiO2)(H2O)1.75, also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking. PMID:19805265

  5. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    PubMed

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  6. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  7. Development of versatile molecular transport model for modeling spacecraft contamination

    NASA Astrophysics Data System (ADS)

    Chang, Chien W.; Kannenberg, Keith; Chidester, Michael H.

    2010-08-01

    This paper describes a MATLAB-based molecular transport model developed for modeling contamination of spacecraft and optical instruments in space. The model adopts the Gebhart inverse-matrix theory for thermal radiation to analyze mass (molecular) transfer due to direct and reflected flux processes by balancing the mass fluxes instead of heat fluxes among surfaces with prescribed boundary conditions (contamination sticking fractions). The model can easily input view factor results from current thermal tools as well as measured outgassing data from ASTM E 1559 tests or vacuum bake-outs of flight components. Application examples of a geosynchronous satellite and an optical telescope are given to demonstrate versatile applications of the developed model.

  8. Molecular modeling of auxin transport inhibitors

    SciTech Connect

    Gardner, G.; Black-Schaefer, C.; Bures, M.G. )

    1990-05-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for ({sup 3}H)NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections.

  9. A molecular investigation of adsorption onto mineral pigments

    NASA Astrophysics Data System (ADS)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  10. On the coalescence-dispersion modeling of turbulent molecular mixing

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Kosaly, George

    1987-01-01

    The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.

  11. Modeling ion sensing in molecular electronics

    SciTech Connect

    Chen, Caroline J.; Smeu, Manuel Ratner, Mark A.

    2014-02-07

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H{sup +}), alkali metal cations (M{sup +}), calcium ions (Ca{sup 2+}), and hydronium ions (H{sub 3}O{sup +}) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C{sub 9}H{sub 7}NS{sub 2}), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M{sup +} + QDT species containing monovalent cations, where M{sup +} = H{sup +}, Li{sup +}, Na{sup +}, or K{sup +}. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  12. A Molecular Communications Model for Drug Delivery.

    PubMed

    Femminella, Mauro; Reali, Gianluca; Vasilakos, Athanasios V

    2015-12-01

    This paper considers the scenario of a targeted drug delivery system, which consists of deploying a number of biological nanomachines close to a biological target (e.g., a tumor), able to deliver drug molecules in the diseased area. Suitably located transmitters are designed to release a continuous flow of drug molecules in the surrounding environment, where they diffuse and reach the target. These molecules are received when they chemically react with compliant receptors deployed on the receiver surface. In these conditions, if the release rate is relatively high and the drug absorption time is significant, congestion may happen, essentially at the receiver site. This phenomenon limits the drug absorption rate and makes the signal transmission ineffective, with an undesired diffusion of drug molecules elsewhere in the body. The original contribution of this paper consists of a theoretical analysis of the causes of congestion in diffusion-based molecular communications. For this purpose, it is proposed a reception model consisting of a set of pure loss queuing systems. The proposed model exhibits an excellent agreement with the results of a simulation campaign made by using the Biological and Nano-Scale communication simulator version 2 (BiNS2), a well-known simulator for molecular communications, whose reliability has been assessed through in vitro experiments. The obtained results can be used in rate control algorithms to optimally determine the optimal release rate of molecules in drug delivery applications.

  13. Modeling a crowdsourced definition of molecular complexity.

    PubMed

    Sheridan, Robert P; Zorn, Nicolas; Sherer, Edward C; Campeau, Louis-Charles; Chang, Charlie Zhenyu; Cumming, Jared; Maddess, Matthew L; Nantermet, Philippe G; Sinz, Christopher J; O'Shea, Paul D

    2014-06-23

    This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1-5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R(2) ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.

  14. Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis.

    PubMed

    Li, Wu; Zhu, Yan-ming; Wang, Geoff; Wang, Yang; Liu, Yu

    2015-08-01

    Vitrinite in coal, the mainly generating methane maceral, plays an important role in hydrocarbon generation of coal. This study aims at obtaining products formation mechanism of vitrinite pyrolysis, and hence determining the chemical bond, molecular liquefaction activity, and reactions mechanism of methane and C2-4 during pyrolysis. The ReaxFF molecular dynamics (MD) simulation was carried out at temperature of 1500 K in order to investigate the mechanism of vitrinite pyrolysis. Initially, a minimum energy conformational structure model was constrained by a combination of elemental and carbon-13 nuclear magnetic resonance ((13)C NMR) literature data. The model analysis shows the chemical and physical parameters of vitrinite pyrolysis are broadly consistent with the experimental data. Based on the molecular model, ReaxFF MD simulations further provide information of unimolecule such as bond length, and chemical shift, and hence the total population and energy of main products. Molecules bond and pyrolysis fragments, based on active bond analyzed, revealed pyrolysis products of single vitrinite molecule with aliphatic C-C bond, especially ring and chain aliphatic as liquefaction activity. The molecular cell whose density is 0.9 g/cm(3) with lowest energy accords with the experimental density 1.33 g/cm(3). The content of main products after pyrolysis, classifying as CH4, H2O, and H2, was changed along with the increasing temperature. The gas molecule, fragments and generation pathways of CO2, H2, CH4, and C2H6 were also elucidated. These results show agreement with experimental observations, implying that MD simulation can provide reasonable explanation for the reaction processes involved in coal vitrinite pyrolysis. Thus the mechanism of coal hydrocarbon generation was revealed at the molecular level.

  15. Molecular modeling of human alkaline sphingomyelinase.

    PubMed

    Suresh, Panneer Selvam; Olubiyi, Olujide; Thirunavukkarasu, Chinnasamy; Strodel, Birgit; Kumar, Muthuvel Suresh

    2011-01-01

    Alkaline sphingomyelinase, which is expressed in the human intestine and hydrolyses sphingomyelin, is a component of the plasma and the lysosomal membranes. Hydrolase of sphingomyelin generates ceramide, sphingosine, and sphingosine 1-phosphate that have regulatory effects on vital cellular functions such as proliferation, differentiation, and apoptosis. The enzyme belongs to the Nucleotide Pyrophosphatase/Phosphodiesterase family and it differs in structural similarity with acidic and neutral sphingomyelinase. In the present study we modeled alkaline sphingomyelinase using homology modeling based on the structure of Nucleotide Pyrophosphatase/Phosphodiesterase from Xanthomonas axonopodis with which it shares 34% identity. Homology modeling was performed using Modeller9v7. We found that Cys78 and Cys394 form a disulphide bond. Further analysis shows that Ser76 may be important for the function of this enzyme, which is supported by the findings of Wu et al. (2005), that S76F abolishes the activity completely. We found that the residues bound to Zn(2+) are conserved and geometrically similar with the template. Molecular Dynamics simulations were carried out for the modeled protein to observe the effect of Zinc metal ions. It was observed that the metal ion has little effect with regard to the stability but induces increased fluctuations in the protein. These analyses showed that Zinc ions play an important role in stabilizing the secondary structure and in maintaining the compactness of the active site. PMID:21544170

  16. [Molecular genetic investigation of sugar beet (Beta vulgaris L.)].

    PubMed

    Butorina, A K; Kornienko, A V

    2011-10-01

    Molecular genetic studies of sugar beet (Beta vulgaris L.) are reviewed as a basis for the development of genomics of this species. The methods used to study structural and functional genomics are considered. The results and their application to increase the efficiency of sugar beet breeding are discussed.

  17. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    SciTech Connect

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  18. Investigating Molecular Hydrogen in Active Regions with IRIS

    NASA Astrophysics Data System (ADS)

    Jaeggli, Sarah A.; Saar, Steven H.; Daw, Adrian N.; Innes, Davina

    2014-06-01

    Molecular hydrogen should be the most abundant molecular species in sunspots, but recent observations with IRIS show that its florescent signature is absent from above the sunspot umbra, but appears brightly during flares. In this poster we continue the analysis of FUV observations of H2 in active regions, examining the correlation between the intensity of the H2 lines and the lines of C II and Si IV which are responsible for their excitation. We particularly focus on differentiating places where H2 is abundant, holes in the chromospheric opacity where FUV photons can enter more deeply into the solar atmosphere, and places where the FUV radiation field is intense, as in flares.

  19. Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps.

    PubMed

    Boninsegna, Lorenzo; Gobbo, Gianpaolo; Noé, Frank; Clementi, Cecilia

    2015-12-01

    Identification of the collective coordinates that describe rare events in complex molecular transitions such as protein folding has been a key challenge in the theoretical molecular sciences. In the Diffusion Map approach, one assumes that the molecular configurations sampled have been generated by a diffusion process, and one uses the eigenfunctions of the corresponding diffusion operator as reaction coordinates. While diffusion coordinates (DCs) appear to provide a good approximation to the true dynamical reaction coordinates, they are not parametrized using dynamical information. Thus, their approximation quality could not, as yet, be validated, nor could the diffusion map eigenvalues be used to compute relaxation rate constants of the system. Here we combine the Diffusion Map approach with the recently proposed Variational Approach for Conformation Dynamics (VAC). Diffusion Map coordinates are used as a basis set, and their optimal linear combination is sought using the VAC, which employs time-correlation information on the molecular dynamics (MD) trajectories. We have applied this approach to ultra-long MD simulations of the Fip35 WW domain and found that the first DCs are indeed a good approximation to the true reaction coordinates of the system, but they could be further improved using the VAC. Using the Diffusion Map basis, excellent approximations to the relaxation rates of the system are obtained. Finally, we evaluate the quality of different metric spaces and find that pairwise minimal root-mean-square deviation performs poorly, while operating in the recently introduced kinetic maps based on the time-lagged independent component analysis gives the best performance.

  20. Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations.

    PubMed

    Soteras, Ignacio; Curutchet, Carles; Bidon-Chanal, Axel; Dehez, François; Ángyán, János G; Orozco, Modesto; Chipot, Christophe; Luque, F Javier

    2007-11-01

    The main thrust of this investigation is the development of models of distributed atomic polarizabilities for the treatment of induction effects in molecular mechanics simulations. The models are obtained within the framework of the induced dipole theory by fitting the induction energies computed via a fast but accurate MP2/Sadlej-adjusted perturbational approach in a grid of points surrounding the molecule. Particular care is paid in the examination of the atomic quantities obtained from models of implicitly and explicitly interacting polarizabilities. Appropriateness and accuracy of the distributed models are assessed by comparing the molecular polarizabilities recovered from the models and those obtained experimentally and from MP2/Sadlej calculations. The behavior of the models is further explored by computing the polarization energy for aromatic compounds in the context of cation-π interactions and for selected neutral compounds in a TIP3P aqueous environment. The present results suggest that the computational strategy described here constitutes a very effective tool for the development of distributed models of atomic polarizabilities and can be used in the generation of new polarizable force fields.

  1. Polymorphism and disorder in caffeine: Dielectric investigation of molecular mobilities

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Decroix, A. A.

    2014-12-01

    Using dielectric relaxation data we have characterized the molecular mobilities of caffeine both in phase I (stable and metastable) and in phase II. In phase I effects of sublimation and phase transformation kinetics were carefully considered. In plane rotational motions were followed on a wide temperature range. A noticeable antiferroelectric short range order developing at the approach of the glass-like transition is characterized. Condition for occurrence of a critical-like behaviour is discussed. At high temperature the emergence of an additional ultra slow relaxation process is highlighted. Possible molecular mechanisms are proposed for both processes. In phase II the existence of a less intense relaxation process is confirmed. Close similarity with the main process developing in phase I hints at a common origin of the dipolar motions. Careful consideration of recent structure determinations leads to suggest that this process is associated to similar molecular in plane rotations but developing at the surface of crystalline samples. Lower cooperativity at the surface is reflected in the smaller activation entropy of the relaxation.

  2. Investigation of the hybrid molecular probe for intracellular studies

    PubMed Central

    Martinez, Karen; Medley, Colin D.; Yang, Chaoyong James; Tan, Weihong

    2009-01-01

    Monitoring gene expression in vivo is essential to the advancement of biological studies, medical diagnostics, and drug discovery. Adding to major efforts in developing molecular probes for mRNA monitoring, we have recently developed an alternative tool, the hybrid molecular probe (HMP). To optimize the probe, a series of experiments were performed to study the properties of HMP hybridization kinetics and stability. The results demonstrated the potential of the HMP as a prospective tool for use in both hybridization studies and in vitro and in vivo analyses. The HMP has shown no tendency to produce false positive signals, which is a major concern for living cell studies. Moreover, HMP has shown the ability to detect the mRNA expression of different genes inside single cells from both basal and stimulated genes. As an effective alternative to conventional molecular probes, the proven sensitivity, simplicity, and stability of HMPs show promise for their use in monitoring mRNA expression in living cells. PMID:18421445

  3. Ab initio computational investigation of physisorption of molecular hydrogen on achiral single-walled carbon nanotubes.

    PubMed

    Ferre-Vilaplana, A

    2005-06-01

    Using relatively approximated methods, physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) as a mechanism to develop hydrogen storage systems has been only partially investigated in literature. Here, we use ab initio molecular-orbital theory, at benchmark quality level, to provide a more complete description about the mentioned mechanism. Physisorption inside and outside achiral-armchair and zigzag-SWCNTs, in the range of diameters from about 6 A-chiral vectors (5,5) and (8,0)-to more than 30 A-chiral vectors (30,30) and (40,0)-was examined. Perpendicular, longitudinal, and transversal configurations, with the hydrogen molecule centered on an aromatic ring, were taken into account. SWCNTs were modeled as curved coronenelike (C24H12) graphene sheets. Local modeling strategies, using more complete basis sets for the adsorbate and for the nearest atoms to the adsorbate than for the lion's share of the substrate, at the Moller-Plesset second-order correlation level, were selected for numerical treatment. Basis-set superposition errors were corrected by means of the counterpoise method of Bois and Bernardi. It was found that physisorption of molecular hydrogen on SWCNTs would depend mainly on the diameter being virtually independent of the chirality. Lowest physisorption energies, up to 20% less than that on planar graphene, would be reached outside nanotubes in the range of diameters of 6-10 A. For hydrogen storage purposes, highest physisorption energies, up to 40% greater than that on planar graphene, but not more, would be reached inside nanotubes in the relatively narrow range of diameters of 10-20 A. Finally, for diameters from 20 A onwards physisorption of molecular hydrogen on SWCNTs would be in the range of +/-10% of that on planar graphene. To our knowledge, this would be the most complete and realistic theoretical investigation of the target physisorption mechanism to date.

  4. Some Reflections on the Use and Abuse of Molecular Models

    ERIC Educational Resources Information Center

    Petersen, Quentin R.

    1970-01-01

    Describes the historical applications of molecular models and the controversies which they produced. The author discusses types of molecular models from the van't Hoff and Kekule models to the more recently developed ones. He presents a new model which was constructed to overcome the disadvantages of (1) falling apart, (2) inaccurate angles, (3)…

  5. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  6. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  7. Modeling Molecular Pathways of Neuronal Ischemia

    PubMed Central

    Taxin, Zachary H.; Neymotin, Samuel A.; Mohan, Ashutosh; Lipton, Peter; Lytton, William W.

    2014-01-01

    Neuronal ischemia, the consequence of a stroke (cerebrovascular accident), is a condition of reduced delivery of nutrients to brain neurons. The brain consumes more energy per gram of tissue than any other organ, making continuous blood flow critical. Loss of nutrients, most critically glucose and O2, triggers a large number of interacting molecular pathways in neurons and astrocytes. The dynamics of these pathways take place over multiple temporal scales and occur in multiple interacting cytosolic and organelle compartments: in mitochondria, endoplasmic reticulum, and nucleus. The complexity of these relationships suggests the use of computer simulation to understand the interplay between pathways leading to reversible or irreversible damage, the forms of damage, and interventions that could reduce damage at different stages of stroke. We describe a number of models and simulation methods that can be used to further our understanding of ischemia. PMID:24560148

  8. Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Chengzhi; Bai, Minli; Lv, Jizu; Liu, Hao; Li, Xiaojie

    2014-12-01

    This study investigated the effect of copper (Cu) nanoparticles on the solid contact between friction surfaces by applying a molecular dynamics method to reveal the mechanisms responsible for the favorable friction properties of nanoparticles. Two models were built, which were named model A (without Cu) and model B (with Cu), respectively. The differences in the mechanical properties between these two models were compared. The simulation results demonstrated that the improvement in friction properties by Cu nanoparticles was more obvious at low velocity than at high velocity. At low velocity, a Cu nano-film was formed on the friction surface, which accommodated the velocity gradient and plastic deformation. Due to the good lubrication effect of the nano-film, the plastic deformation, defect structures and friction force of model B were improved compared with model A. Under high velocity conditions, a transfer layer appeared adjacent to the interface in both models. Because of this, the friction forces of the two models decreased with increased velocity. The fluid mechanics theory was used to explain why the friction force in model B was lower than that in model A at high velocity. The effect of the load on friction properties was also analyzed and the results showed that the mechanisms of anti-wear and friction reduction by Cu nanoparticles under a low load were the same as those under a high load.

  9. Molecular dynamics modeling and characterization of graphene/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur

    The current work focuses on the characterization of graphene based nanocomposites using molecular dynamic simulation and multiscale modeling approaches. Both graphene-epoxy and graphene-cellulose nanocomposites were considered in this study. A hierarchical multiscale modeling approach has been proposed using peridynamics and molecular dynamics simulation. Firstly, the mechanical properties of crosslinked graphene/epoxy (G-Ep) nanocomposites were investigated by molecular mechanics (MM) and molecular dynamics (MD) simulations. The influence of graphene's weight concentration, aspect ratio and dispersion on stress-strain response and elastic properties were studied. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to the neat epoxy resin. It appears that the RDF, molecular energy and aspect ratios are influenced by both graphene concentrations and aspect ratios. The graphene concentrations in the range of 1-3% are seen to improve Young's modulus and shorter graphenes are observed to be more effective than larger ones. In addition, the dispersed graphene system is more promising in enhancing in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching the graphene with a chemical bond at the graphene-epoxy interface. In the second part of the work, cellulose was considered to study the mechanical properties of graphene-cellulose bionanocomposite. Similar to graphene-epoxy systems, the effect of graphene dispersion and agglomeration were studied in the stress-strain plots of graphene-cellulose system. A pcff forcefield was used to define intermolecular and intramolecular interactions. The effect of graphene's aspect ratio and weight concentration on the structural property of each unitcell was

  10. Investigation of molecular penetration depth variation with SMBI fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo

    2016-09-01

    We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).

  11. Investigation of molecular penetration depth variation with SMBI fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo

    2016-09-01

    We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).

  12. Cellular models to investigate biochemical pathways in Parkinson's disease.

    PubMed

    Alberio, Tiziana; Lopiano, Leonardo; Fasano, Mauro

    2012-04-01

    Cellular models are instrumental in dissecting a complex pathological process into simpler molecular events. Parkinson's disease is multifactorial and clinically heterogeneous; the aetiology of the sporadic (and most common) form is still unclear and only a few molecular mechanisms have been clarified so far in the neurodegenerative cascade. In such a multifaceted picture, it is particularly important to identify experimental models that simplify the study of the different networks of proteins/genes involved. Cellular models that reproduce some of the features of the neurons that degenerate in Parkinson's disease have contributed to many advances in our comprehension of the pathogenic flow of the disease. In particular, the pivotal biochemical pathways (i.e. apoptosis and oxidative stress, mitochondrial impairment and dysfunctional mitophagy, unfolded protein stress and improper removal of misfolded proteins) have been widely explored in cell lines, challenged with toxic insults or genetically modified. The central role of α-synuclein has generated many models aiming to elucidate its contribution to the dysregulation of various cellular processes. In conclusion, classical cellular models appear to be the correct choice for preliminary studies on the molecular action of new drugs or potential toxins and for understanding the role of single genetic factors. Moreover, the availability of novel cellular systems, such as cybrids or induced pluripotent stem cells, offers the chance to exploit the advantages of an in vitro investigation, although mirroring more closely the cell population being affected.

  13. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  14. Model For Dense Molecular Cloud Cores

    NASA Technical Reports Server (NTRS)

    Doty, Steven D.; Neufeld, David A.

    1997-01-01

    We present a detailed theoretical model for the thermal balance, chemistry, and radiative transfer within quiescent dense molecular cloud cores that contain a central protostar. In the interior of such cores, we expect the dust and gas temperatures to be well coupled, while in the outer regions CO rotational emissions dominate the gas cooling and the predicted gas temperature lies significantly below the dust temperature. Large spatial variations in the gas temperature are expected to affect the gas phase chemistry dramatically; in particular, the predicted water abundance varies by more than a factor of 1000 within cloud cores that contain luminous protostars. Based upon our predictions for the thermal and chemical structure of cloud cores, we have constructed self-consistent radiative transfer models to compute the line strengths and line profiles for transitions of (12)CO, (13)CO, C(18)O, ortho- and para-H2(16)O, ortho- and para-H2(18)O, and O I. We carried out a general parameter study to determine the dependence of the model predictions upon the parameters assumed for the source. We expect many of the far-infrared and submillimeter rotational transitions of water to be detectable either in emission or absorption with the use of the Infrared Space Observatory (ISO) and the Submillimeter Wave Astronomy Satellite. Quiescent, radiatively heated hot cores are expected to show low-gain maser emission in the 183 GHz 3(sub 13)-2(sub 20) water line, such as has been observed toward several hot core regions using ground-based telescopes. We predict the (3)P(sub l) - (3)P(sub 2) fine-structure transition of atomic oxygen near 63 micron to be in strong absorption against the continuum for many sources. Our model can also account successfully for recent ISO observations of absorption in rovibrational transitions of water toward the source AFGL 2591.

  15. Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect

    Weinan E

    2012-03-29

    The main bottleneck in modeling transport in molecular devices is to develop the correct formulation of the problem and efficient algorithms for analyzing the electronic structure and dynamics using, for example, the time-dependent density functional theory. We have divided this task into several steps. The first step is to developing the right mathematical formulation and numerical algorithms for analyzing the electronic structure using density functional theory. The second step is to study time-dependent density functional theory, particularly the far-field boundary conditions. The third step is to study electronic transport in molecular devices. We are now at the end of the first step. Under DOE support, we have made subtantial progress in developing linear scaling and sub-linear scaling algorithms for electronic structure analysis. Although there has been a huge amount of effort in the past on developing linear scaling algorithms, most of the algorithms developed suffer from the lack of robustness and controllable accuracy. We have made the following progress: (1) We have analyzed thoroughly the localization properties of the wave-functions. We have developed a clear understanding of the physical as well as mathematical origin of the decay properties. One important conclusion is that even for metals, one can choose wavefunctions that decay faster than any algebraic power. (2) We have developed algorithms that make use of these localization properties. Our algorithms are based on non-orthogonal formulations of the density functional theory. Our key contribution is to add a localization step into the algorithm. The addition of this localization step makes the algorithm quite robust and much more accurate. Moreover, we can control the accuracy of these algorithms by changing the numerical parameters. (3) We have considerably improved the Fermi operator expansion (FOE) approach. Through pole expansion, we have developed the optimal scaling FOE algorithm.

  16. Modelling spin Hamiltonian parameters of molecular nanomagnets.

    PubMed

    Gupta, Tulika; Rajaraman, Gopalan

    2016-07-12

    Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs. PMID:27366794

  17. Challenges and novel approaches for investigating molecular mediation

    PubMed Central

    Richmond, R.C.; Hemani, G.; Tilling, K.; Davey Smith, G.; Relton, C.L.

    2016-01-01

    Understanding mediation is useful for identifying intermediates lying between an exposure and an outcome which, when intervened upon, will block (some or all of) the causal pathway between the exposure and outcome. Mediation approaches used in conventional epidemiology have been adapted to understanding the role of molecular intermediates in situations of high-dimensional omics data with varying degrees of success. In particular, the limitations of observational epidemiological study including confounding, reverse causation and measurement error can afflict conventional mediation approaches and may lead to incorrect conclusions regarding causal effects. Solutions to analysing mediation which overcome these problems include the use of instrumental variable methods such as Mendelian randomization, which may be applied to evaluate causality in increasingly complex networks of omics data. PMID:27439390

  18. Non Equilibrium Quantum Transport in a model of molecular conductor

    NASA Astrophysics Data System (ADS)

    Schiro', Marco; Fabrizio, Michele

    2010-03-01

    We investigate non equilibrium effects in quantum transport through a simple model of molecular conductor where a single electronic level coupled to a vibrational mode is hybridized with biased metallic contacts. Using a recently developed numerical method [1] we compute the time dependent current and extract steady state properties such as I-V characteristic, differential conductance and phonon distribution function. We also discuss transient effects and comment on the onset of bistability in the strong coupling regime. [4pt] [1] M. Schiro', M. Fabrizio, Phys.Rev.B 79 153302 (2009)

  19. Final Report for Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect

    Glotzer, Sharon C.

    2013-08-28

    In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

  20. Molecular investigation into outbreak of HIV in a Scottish prison.

    PubMed Central

    Yirrell, D. L.; Robertson, P.; Goldberg, D. J.; McMenamin, J.; Cameron, S.; Leigh Brown, A. J.

    1997-01-01

    OBJECTIVES: To support already established epidemiological links between inmates of Glenochil prison positive for HIV infection by using molecular techniques and thus provide evidence of the extent of acquisition during a recent outbreak of the disease resulting from needle sharing. To identify possible sources of the outbreak, and to demonstrate the ability of the methodology to make further links beyond the original outbreak. DESIGN: Viral sequences obtained from the blood of HIV positive prisoners previously identified by standard epidemiological methods were compared with each other and with sequences from other Scottish patients. SETTING: Glenochil prison for men, central Scotland. SUBJECTS: Adult inmates and their possible contacts. RESULTS: Phylogenetic analysis of viral sequences in two different genomic regions showed that 13 of the 14 HIV positive prisoners had been infected from a common source. Previous research had shown that six of these had acquired their infection in Glenochil; molecular evidence suggests that more than double this number were infected while incarcerated. Virus from two long term HIV positive patients who were in the prison at the time of the outbreak but who were not identified in the original or subsequent surveys was sufficiently different to make it unlikely that they were the source. A viral sequence from heterosexual transmission from one inmate showed the ability of these techniques to follow the infection through different routes of infection. CONCLUSION: The number of prisoners infected with HIV during the 1993 outbreak within Glenochil prison was more than twice that previously shown. This shows the potential for the spread of bloodborne diseases within prisons by injecting drugs. PMID:9167560

  1. Homology Modeling and Molecular Docking for the Science Curriculum

    PubMed Central

    McDougal, Owen M.; Comia, Nic; Sambasivarao, S.V.; Remm, Andrew; Mallory, Chris; Oxford, Julia Thom; Maupin, C. Mark; Andersen, Tim

    2015-01-01

    DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that simplifies the exploration of computational biochemistry. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular structure creation, ligand binding calculations, and visualization of docking results. A student procedure is provided that illustrates use of DockoMatic to create a homology model for the amino propeptide region (223 amino acids with two disulfide bonds) of collagen α1 (XI), followed by molecular docking of the commercial drug Arixtra® to the homology model of the amino propeptide domain of collagen α1 (XI), and finally, analysis of the results of the docking experiment. The activities and supplemental materials described are intended to educate students in the use of computational tools to create and investigate homology models for other systems of interest and to train students to be proficient with molecular docking and analyzing results. The tutorial also serves as a foundation for investigators seeking to explore the viability of using computational biochemistry to study their receptor-ligand binding motifs. PMID:24376157

  2. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGESBeta

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  3. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  4. Molecular dynamics simulation study on the molecular structures of the amylin fibril models.

    PubMed

    Xu, Weixin; Su, Haibin; Zhang, John Z H; Mu, Yuguang

    2012-12-01

    The structural characterization of amyloid fibers is one of the most investigated areas in structural biology. Recently, protofibril models for amylin, i.e., the 37-residue human islet amyloid polypeptide or hIAPP were suggested by two groups based on NMR (Biochemistry 2007, 46, 13505-13522) and X-ray (Protein Sci. 2008, 17, 1467-1474) techniques. However, there are significant differences in the two models which maybe originate from the polymorphic nature of amylin fibrils. To obtain further insights into the packing and stability features of the different models, we performed a series of molecular dynamics simulations on them. Our analysis showed that even pairs of β-sheets composed of a limited number of β-strands are stable in the 100-ns simulations, which suggests that steric zipper interactions at a β-sheet-β-sheet interface strongly contribute to the stability of these amyloid aggregates. For both models, outer strands are more flexible, which might coincide with the dynamical requirement that outer strands act as growing sites facilitating conformational changes of new incoming chains. Moreover, simulation results showed that the X-ray models are structurally more compact than the NMR models and have more intimate patterns, which lead to more rigid amyloid models. As a result, the X-ray models are energetically more stable than the NMR models. Further modeling analyses verify the most likely amylin fibril model among both NMR and X-ray models. Upon further study of the force-induced dissociation of a single chain from the protofibrils, the binding energy and the mechanical stability of the fibril models are revealed. On these bases, it is possible to reconcile the crystallographic and the NMR data on the basic amylin fiber unit. PMID:23145779

  5. Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    PubMed Central

    Xu, M K; Gaysina, D; Barnett, J H; Scoriels, L; van de Lagemaat, L N; Wong, A; Richards, M; Croudace, T J; Jones, P B

    2015-01-01

    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations. PMID:26125156

  6. ATOMIC AND MOLECULAR PHYSICS: Modelling of a DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Xie, Ping; Xue, Xiao-Guang; Wang, Peng-Ye

    2009-11-01

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage phi29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the phi29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.

  7. Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes.

    PubMed

    Franz, Alexander W E; Clem, Rollie J; Passarelli, A Lorena

    2014-03-01

    Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.

  8. Model calculations for diffuse molecular clouds. [interstellar hydrogen cloud model

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A steady state isobaric cloud model is developed. The pressure, thermal, electrical, and chemical balance equations are solved simultaneously with a simple one dimensional approximation to the equation of radiative transfer appropriate to diffuse clouds. Cooling is mainly by CII fine structure transitions, and a variety of heating mechanisms are considered. Particular attention is given to the abundance variation of H2. Inhomogeneous density distributions are obtained because of the attenuation of the interstellar UV field and the conversion from atomic to molecular hyrodgen. The effects of changing the model parameters are described and the applicability of the model to OAO-3 observations is discussed. Good qualitative agreement with the fractional H2 abundance determinations has been obtained. The observed kinetic temperatures near 80 K can also be achieved by grain photoelectron heating. The problem of the electron density is solved taking special account of the various hydrogen ions as well as heavier ones.

  9. The molecular medicine informatics model (MMIM).

    PubMed

    Hibbert, Marienne; Gibbs, Peter; O'Brien, Terence; Colman, Peter; Merriel, Robert; Rafael, Naomi; Georgeff, Michael

    2007-01-01

    In 2005 a major collaboration in Melbourne, Australia successfully implemented a major medical informatics infrastructure. The convergence of life sciences, healthcare, and information technology is now driving research into the fundamentals of disease causation and toward tailoring individualized treatment. The Molecular Medicine Informatics Model (MMIM) is a 'virtual' research repository of clinical, laboratory and genetic data sets. Integrated data, physically located within independent hospital and research organisations can be searched and queried seamlessly via a federated data integrator. Researchers must gain authorisation to access data, and obtain permission from the data owners before the data can be accessed. The legal and ethical issues surrounding the use of this health data have been addressed so data complies with privacy requirements. The MMIM platform also record links individual cases across multiple institutions and multiple clinical specialties. Significant research outcomes in epilepsy and colorectal cancer have already been enabled by the MMIM research platform. The infrastructure of MMIM enables discovery research to be accessible via the Web with security, intellectual property and privacy addressed.

  10. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  11. Copromicroscopic and molecular investigations on intestinal parasites in kenneled dogs.

    PubMed

    Simonato, Giulia; Frangipane di Regalbono, Antonio; Cassini, Rudi; Traversa, Donato; Beraldo, Paola; Tessarin, Cinzia; Pietrobelli, Mario

    2015-05-01

    Intestinal parasites are common in dogs worldwide, and their importance has recently increased for a renewed awareness on the public health relevance that some of them have. In this study, the prevalence of helminths and protozoa was evaluated by microscopy in 318 canine faecal samples collected from eight rescue shelters in the North-eastern Italy; 285 of them were also submitted to the molecular characterization of Giardia duodenalis and Cryptosporidium spp. isolates. An analysis was performed to evaluate the prevalence rates in relation to canine individual data, shelter provenance and anthelmintic treatments. Overall, 52.5% (167/318) of faecal samples were positive for at least one parasite. Trichuris vulpis showed the highest overall prevalence rate (29.2%), followed by G. duodenalis (15.1%), Toxocara canis (9.7%), ancylostomatids (8.2%) and Cystoisospora (5.7%). The prevalence of G. duodenalis, evaluated by real-time PCR, was 57.9% (165/285), and 79 isolates were characterized by nested PCR on the β-giardin gene. The assemblages found were mainly the host-specific genotypes C and D, while only one assemblage was identified as the human-specific genotype B1. Isolates of Cryptosporidium spp., recorded in 3/285 (1.1%) stool samples, were Cryptosporidium parvum based on the characterization of the Cryptosporidium oocyst wall protein (COWP) gene. Although the results describe a relatively limited risk of dog-originating zoonoses, there is the need to improve the quality of shelter practices towards better health managements for safe pet-adoption campaigns and a minimization of the environmental faecal pollution with canine intestinal parasites. PMID:25687526

  12. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Eskhan, Asma Omar

    adhesion and mechanics are correlated. To test this hypothesis, nonadhesive and adhesive models of contact mechanics were used to estimate Young's moduli. Our results indicated that the nonadhesive model of contact mechanics estimated 18 % more rigid bacterial cells. Our results thus point to the importance of considering molecular details when investigating bacterial adhesion and mechanics.

  13. Investigation of the kinetic model equations

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Zhong, Chengwen

    2014-03-01

    Currently the Boltzmann equation and its model equations are widely used in numerical predictions for dilute gas flows. The nonlinear integro-differential Boltzmann equation is the fundamental equation in the kinetic theory of dilute monatomic gases. By replacing the nonlinear fivefold collision integral term by a nonlinear relaxation term, its model equations such as the famous Bhatnagar-Gross-Krook (BGK) equation are mathematically simple. Since the computational cost of solving model equations is much less than that of solving the full Boltzmann equation, the model equations are widely used in predicting rarefied flows, multiphase flows, chemical flows, and turbulent flows although their predictions are only qualitatively right for highly nonequilibrium flows in transitional regime. In this paper the differences between the Boltzmann equation and its model equations are investigated aiming at giving guidelines for the further development of kinetic models. By comparing the Boltzmann equation and its model equations using test cases with different nonequilibrium types, two factors (the information held by nonequilibrium moments and the different relaxation rates of high- and low-speed molecules) are found useful for adjusting the behaviors of modeled collision terms in kinetic regime. The usefulness of these two factors are confirmed by a generalized model collision term derived from a mathematical relation between the Boltzmann equation and BGK equation that is also derived in this paper. After the analysis of the difference between the Boltzmann equation and the BGK equation, an attempt at approximating the collision term is proposed.

  14. Physics Beyond the Standard Model from Molecular Hydrogen Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ubachs, Wim; Salumbides, Edcel John; Bagdonaite, Julija

    2015-06-01

    The spectrum of molecular hydrogen can be measured in the laboratory to very high precision using advanced laser and molecular beam techniques, as well as frequency-comb based calibration [1,2]. The quantum level structure of this smallest neutral molecule can now be calculated to very high precision, based on a very accurate (10-15 precision) Born-Oppenheimer potential [3] and including subtle non-adiabatic, relativistic and quantum electrodynamic effects [4]. Comparison between theory and experiment yields a test of QED, and in fact of the Standard Model of Physics, since the weak, strong and gravitational forces have a negligible effect. Even fifth forces beyond the Standard Model can be searched for [5]. Astronomical observation of molecular hydrogen spectra, using the largest telescopes on Earth and in space, may reveal possible variations of fundamental constants on a cosmological time scale [6]. A study has been performed at a 'look-back' time of 12.5 billion years [7]. In addition the possible dependence of a fundamental constant on a gravitational field has been investigated from observation of molecular hydrogen in the photospheres of white dwarfs [8]. The latter involves a test of the Einsteins equivalence principle. [1] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] K. Pachucki, Phys. Rev. A82, 032509 (2010). [4] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [5] E.J. Salumbides et al., Phys. Rev. D87, 112008 (2013). [6] F. van Weerdenburg et al., Phys. Rev. Lett. 106, 180802 (2011). [7] J. Badonaite et al., Phys. Rev. Lett. 114, 071301 (2015). [8] J. Bagdonaite et al., Phys. Rev. Lett. 113, 123002 (2014).

  15. Metal nanoelectrodes for molecular transistor and investigation of electron transport in molecular systems

    NASA Astrophysics Data System (ADS)

    Suyatin, D. B.; Soldatov, E. S.; Maximov, Ivan; Montelius, Lars; Samuelson, Lars; Khomutov, G. B.; Gubin, S. P.; Sergeev-Cherenkov, A. N.

    2002-06-01

    Gold nanoelectrodes with gaps of less than 10 nm were formed by conventional E-beam lithography on silicon substrates covered by Al2O3. Molecular films were deposited on the electrodes by Langmuir-Shaefer technique. The I-V curves of such systems show a suppressed conductance indicating a correlated electron tunnelling through the system. All measurements were made at room temperature.

  16. Metal nanoelectrodes for molecular transistor and investigation of electron transport in molecular systems

    NASA Astrophysics Data System (ADS)

    Suyatin, D. B.; Soldatov, E. S.; Maximov, Ivan; Montelius, Lars; Samuelson, Lars; Khomutov, G. B.; Gubin, S. P.; Sergeev-Cherenkov, A. N.

    2003-06-01

    Gold nanoelectrodes with gaps of less than 10 nm were formed by conventional E-beam lithography on silicon substrates covered by Al2O3. Molecular films were deposited on the electrodes by Langmuir-Shaefer technique. The I-V curves of such systems show a suppressed conductance indicating a correlated electron tunnelling through the system. All measurements were made at room temperature.

  17. Digital Learning Material for Model Building in Molecular Biology

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  18. Investigation of Molecular Structure of Porous Epoxy Thermosets via Swelling and Glass Transition Behavior

    NASA Astrophysics Data System (ADS)

    Sharifi, Majid; Ghorpade, Kaustubh; Raman, Vijay; Palmese, Giuseppe

    2014-05-01

    Many of the excellent properties of highly crosslinked polymers are due to their molecular structures. In this study, network structures of three epoxy systems, Epon828-PACM, Epon836-PACM, and Epon1001F-PACM were investigated via equilibrium swelling theory. Each systems separately cured in presence of an inert solvent, THF, ranging from 0 to 92% by volume fraction of solvent. Experimental results showed that the conventional swelling theory is valid for specimens polymerized in moderate dilute environments, i.e. up to around 60% solvent by vol. whereas in extremely dilute environments, i.e. above 60%, the computed Mc values are exponentially increasing. This drastic increase in Mc was investigated by Tg measurement of the polymer phase (on supercritically dried specimens). The measured Mc could not predict the corresponding Tg values according to Fox equation. Due to the highly porous nature of the resulting thermosets after supercritical drying, a modifying factor, based on the probability of finding elastic chains in a porous network, was incorporated in the conventional swelling model (Bray-Merrill equation). It was shown that the adjusted Mc values of each thermoset and the corresponding Tgs are acceptably match via the well-known Fox equation. The modified Mc values indicate that, polymer networks produced in presence of miscible inert phases have relatively uniform molecular weight between crosslinks, irrespective of the amount of that inert phase.

  19. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    ERIC Educational Resources Information Center

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  20. Molecular modeling of PMR-15 polyimide

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280--300°C use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

  1. The Molecular Medicine Informatics Model (MMIM).

    PubMed

    Hibbert, Marienne; Gibbs, Peter; O'Brien, Terence; Colman, Peter; Merriel, Robert; Rafael, Naomi; Georgeff, Michael

    2007-01-01

    In 2005, a major collaboration in Melbourne Australia successfully completed implementing a major medical informatics infrastructure - this is now being used for discovery research and has won significant expansion funding for 2006 - 2009. The convergence of life sciences, healthcare, and information technology is now driving research into the fundamentals of disease causation. Key to enabling this is collating data in sufficient numbers of patients to ensure studies are adequately powered. The Molecular Medicine Informatics Model (MMIM) is a 'virtual' research repository of clinical, laboratory and genetic data sets. Integrated data, physically located within independent hospital and research organisations can be searched and queried seamlessly via a federated data integrator. Researchers must gain authorisation to access data, and inform/obtain permission from the data owners, before the data can be accessed. The legal and ethical issues surrounding the use of this health data have been addressed so data complies with privacy requirements. The MMIM platform has also solved the issue of record linking individual cases and integrating data sources across multiple institutions and multiple clinical specialties. Significant research outcomes already enabled by the MMIM research platform include epilepsy seizure analyses for responders / non responders to therapy; sensitivity of faecal occult blood testing for asymptomatic colorectal cancer and advanced adenomas over a 25-year experience in colorectal cancer screening; subsite-specific colorectal cancer in diabetic and non diabetic patients; and the influence of language spoken on colorectal cancer diagnosis, management and outcomes. Ultimately the infrastructure of MMIM enables discovery research to be accessible via the Web with security, intellectual property and privacy addressed.

  2. Application of Molecular Modeling to Urokinase Inhibitors Development

    PubMed Central

    Sulimov, V. B.; Katkova, E. V.; Oferkin, I. V.; Sulimov, A. V.; Romanov, A. N.; Roschin, A. I.; Beloglazova, I. B.; Plekhanova, O. S.; Tkachuk, V. A.; Sadovnichiy, V. A.

    2014-01-01

    Urokinase-type plasminogen activator (uPA) plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program), postprocessing (DISCORE program), direct generalized docking (FLM program), and the application of the quantum chemical calculations (MOPAC package), search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM. PMID:24967388

  3. Modeling Complex Workflow in Molecular Diagnostics

    PubMed Central

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  4. Investigation and Modeling of Cranberry Weather Stress.

    NASA Astrophysics Data System (ADS)

    Croft, Paul Joseph

    Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.

  5. Fluctuation theorem for the flashing ratchet model of molecular motors

    NASA Astrophysics Data System (ADS)

    Lacoste, D.; Mallick, K.

    2009-08-01

    Molecular motors convert chemical energy derived from the hydrolysis of adenosine triphosphate (ATP) into mechanical energy. A well-studied model of a molecular motor is the flashing ratchet model. We show that this model exhibits a fluctuation relation known as the Gallavotti-Cohen symmetry. Our study highlights the fact that the symmetry is present only if the chemical and mechanical degrees of freedom are both included in the description.

  6. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  7. Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

    PubMed Central

    Mohammad Hosseini Naveh, Zeynab; Malliavin, Therese E.; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2014-01-01

    Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit. PMID:24551117

  8. The theoretical investigation of one of the derivatives of 1, 2-dithienylcyclopentene as a molecular switch.

    PubMed

    Safarpour, Mohammad Ali; Hashemianzadeh, Seyed Majid; Kasaeian, Azam

    2008-04-01

    The structural and electronic properties of a three-state molecular switch-an active device in a nano-electronic circuit-were studied using the B3LYP/6-31G* method. Due to its chemical stability, high conductivity upon doping, and non-linear optical properties, polythiophene is among the most widely studied conjugated organic polymers, both experimentally and theoretically. The aim of the present work was to theoretically study a very complex case: a three-state switch synthesized and experimentally investigated by Nishida et al. (Org Lett 6:2523-2526, 2004). An initial set of test calculations showed B3LYP level of theory and 6-31G* basis set to be the most appropriate for our purpose, i.e., the study of the structure, charge and spin distributions, as well as electrical characteristics such as electric polarizability, HOMO-LUMO gap (HLG) and electric dipole moment, for one of the 1,2-dithienylcyclopentene derivatives. Also, natural bond orbital analyses were performed to calculate local charges and charge transfers in order to study the capability of the molecule as a molecular switch. The results reported here are of general significance, and demonstrate that it is possible to use certain structural and electrical properties to understand and design electro-photochromic compounds showing a switching function in cases where stable forms can be exchanged by light or electron transfer. Figure Model of a thiophene wire incorporating a redox active unit.

  9. Biophysical Investigations with MARCKS-ED: Dissecting the Molecular Mechanism of Its Curvature Sensing Behaviors

    PubMed Central

    de Jesus, Armando J.; Espinoza, Arianna; Yin, Hang

    2014-01-01

    Curved membranes are a common and important attribute in cells. Protein and peptide curvature sensors are known to activate signaling pathways, initiate vesicle budding, trigger membrane fusion, and facilitate molecular transport across cell membranes. Nonetheless, there is little understanding how these proteins and peptides achieve preferential binding of different membrane curvatures. The current study is to elucidate specific factors required for curvature sensing. As a model system, we employed a recently identified peptide curvature sensor, MARCKS-ED, derived from the effector domain of the myristoylated alanine-rich C-kinase substrate protein, for these biophysical investigations. An atomistic molecular dynamics (MD) simulation suggested an important role played by the insertion of the Phe residues within MARCKS-ED. To test these observations from our computational simulations, we performed electron paramagnetic resonance (EPR) studies to determine the insertion depth of MARCKS-ED into differently curved membrane bilayers. Next, studies with varied lipid compositions revealed their influence on curvature sensing by MARCKS-ED, suggesting contributions from membrane fluidity, rigidity, as well as various lipid structures. Finally, we demonstrated that the curvature sensing by MARCKS-ED is configuration independent. In summary, our studies have shed further light to the understanding of how MARCKS-ED differentiates between membrane curvatures, which may be generally applicable to protein curvature sensing behavior. PMID:25195712

  10. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  11. Molecular Modeling and Computational Chemistry at Humboldt State University.

    ERIC Educational Resources Information Center

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  12. Nanoindentation of virus capsids in a molecular model

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  13. Animal models for investigating chronic pancreatitis

    PubMed Central

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  14. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    NASA Astrophysics Data System (ADS)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe3C- (cementite-), Fe23C6- and Cr23C6-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr23C6 carbide and the experimentally non-existing Fe23C6 carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe-C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  15. Growth mechanism, electronic spectral investigation and molecular orbital studies of L-prolinium phosphate.

    PubMed

    Liu, Xiaojing; Sun, Xin; Xu, Xijin; Sun, Ping

    2015-01-01

    By using atomic force microscopy, birth and spread has proved to be the primary growth mechanism for L-prolinium phosphate (LPP). The phenomenon of newly formed islands expanding to the edge of the preceding terrace was observed. The optimized molecular structure and the molecular properties were calculated by density functional theory method. Natural bond orbital analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of LPP leading to high NLO activity. Molecular electrostatic potential, frontier molecular orbital analysis and thermodynamic properties were investigated to get a better insight of the molecular properties. Global and local reactivity descriptors were computed to predict the reactivity and reactive sites on the molecules. Non-linear optical (NLO) properties such as the total dipole moment (μ) and first order hyperopolarizability (β) were also calculated to predict NLO behavior.

  16. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction. PMID:20099174

  17. A model for including thermal conduction in molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Wu, Yue; Friauf, Robert J.

    1989-01-01

    A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.

  18. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  19. Investigation of the resonance-assisted hydrogen bond in model β-diketones through localized molecular orbital analysis of the spin-spin coupling constants related to the O-H···O hydrogen bond.

    PubMed

    Zarycz, M Natalia C; Provasi, Patricio F

    2015-02-01

    The resonance-assisted hydrogen bond (HB) phenomenon has been studied theoretically by a localized molecular orbital (LMO) decomposition of the spin-spin coupling constants between atoms either involved or close to the O-H···O system of some β-diketones and their saturated counterparts. The analysis, carried out at the level of the second-order polarization propagator approximation, shows that the contributions in terms of LMO to the paramagnetic spin orbital and the spin dipolar Ramsey terms proof the importance of the delocalized π-electron structure supporting the idea of the existence of the resonance-assisted HB phenomenon phenomenon. The LMO contributions to the Fermi contact term indicate mainly the presence of the HB that may or not be linked to the π-electrons.

  20. Investigating Transitions in Planetary Dynamo Models

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista Marie

    All planets in the solar system have or once had intrinsic magnetic fields, with the possible exception of Venus. The properties and characteristics of these fields are as diverse as the planets themselves. Given this diversity, the fundamental goal is to determine what controls the strength, morphology, and evolution of planetary magnetic fields. Since these fields are thought to result from dynamo action driven by thermochemical convection in electrically-conducting fluid regions, the coupling between magnetic fields, fluid flow, and heat/mass transfer must also be understood. We seek to investigate this coupling and to understand better the processes that occur in numerical dynamo models and, hopefully, in planetary cores as well. I have carried out a suite of dynamo and non-magnetic, but otherwise identical, models which are compared in order to quantify the influence of magnetic fields on convective dynamics systematically and to understand why the Lorentz force has a surprisingly weak dynamical role in magnetic systems. The characteristics of convection, including convective flow structures and speeds as well as heat transfer, are found to be only weakly affected by the presence of magnetic fields. We compare different parameterizations of the relative influence of magnetic and rotational forces and show that the traditional Elsasser number overestimates the role of the Lorentz force in dynamos. Instead, we argue that an alternatively defined 'dynamic Elsasser number' better represents the Lorentz to Coriolis force ratio. We also find a sharp transition between dipolar and multipolar dynamos. This morphological transition is linked to the breakdown of helical flow as inertial forces become stronger than viscous forces. Because viscous forces are negligible in planetary interiors, my findings imply that present day dynamo models with moderate rotation rates ( E ≳ 10-4) may be too viscous to reproduce the physical mechanisms of field generation in planetary

  1. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  2. Apnoeic oxygenation in pregnancy: a modelling investigation.

    PubMed

    Pillai, A; Chikhani, M; Hardman, J G

    2016-09-01

    Recent studies have shown that nasal oxygen delivery can prolong the time to desaturation during apnoea in the non-pregnant population. We investigated the benefits of apnoeic oxygenation during rapid sequence induction in the obstetric population using computational modelling. We used the Nottingham Physiology Simulator, and pre-oxygenated seven models of pregnancy for 3 min using Fi O2 1.0, before inducing apnoea. We found that increasing Fi O2 at the open glottis increased the time to desaturation, extending the time taken for Sa O2 to reach 40% from 4.5 min to 58 min in the average parturient model (not in labour). Our study suggests that a small increase in time to desaturation could be achieved at Fi O2 0.4-0.6, which could be delivered by standard nasal cannulae. The greatest increases in time to desaturation were seen at Fi O2 1.0, which could be delivered by high-flow nasal cannulae under ideal conditions. PMID:27440389

  3. An investigation of molecular dynamics simulation and molecular docking: interaction of citrus flavonoids and bovine β-lactoglobulin in focus.

    PubMed

    Sahihi, M; Ghayeb, Y

    2014-08-01

    Citrus flavonoids are natural compounds with important health benefits. The study of their interaction with a transport protein, such as bovine β-lactoglobulin (BLG), at the atomic level could be a valuable factor to control their transport to biological sites. In the present study, molecular docking and molecular dynamics simulation methods were used to investigate the interaction of hesperetin, naringenin, nobiletin and tangeretin as citrus flavonoids and BLG as transport protein. The molecular docking results revealed that these flavonoids bind in the internal cavity of BLG and the BLG affinity for binding the flavonoids follows naringenin>hesperetin>tangeretin>nobiletin. The docking results also indicated that the BLG-flavonoid complexes are stabilized through hydrophobic interactions, hydrogen bond interactions and π-π stacking interactions. The analysis of molecular dynamics (MD) simulation trajectories showed that the root mean square deviation (RMSD) of various systems reaches equilibrium and fluctuates around the mean value at various times. Time evolution of the radius of gyration, total solvent accessible surface of the protein and the second structure of protein showed as well that BLG and BLG-flavonoid complexes were stable around 2500ps, and there was not any conformational change as for BLG-flavonoid complexes. Further, the profiles of atomic fluctuations indicated the rigidity of the ligand binding site during the simulation.

  4. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  5. Constructing Molecular Models with Low-Cost Toy Beads

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2012-01-01

    In teaching the science of the nano world, ball-and-stick molecular models are frequently used as 3D representations of molecules. Unlike a chemical formula, a molecular model allows us to visualise the 3D shape of the molecule and the relative positions of its atoms, the bonds between atoms and why a pair of mirror isomers with the same atoms,…

  6. A dynamic styrofoam-ball model for simulating molecular motion

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  7. Molecular Diffusive Motion in a Monolayer of a Model Lubricant

    NASA Astrophysics Data System (ADS)

    Diama, A.; Criswell, L.; Mo, H.; Taub, H.; Herwig, K. W.; Hansen, F. Y.; Volkmann, U. G.; Dimeo, R.; Neumann, D.

    2003-03-01

    Squalane (C_30H_62), a branched alkane of intermediate length consisting of a tetracosane backbone (n-C_24H_50 or C24) and six symmetrically placed methyl sidegroups, is frequently taken as a model lubricant. We have conducted quasielastic neutron scattering (QNS) experiments to investigate the diffusive motion on different time scales in a squalane monolayer adsorbed on the (0001) surfaces of an exfoliated graphite substrate. Unlike tetracosane, high-energy resolution spectra (time scale ˜0.1 - 4 ns) at temperatures of 215 K and 230 K show the energy width of the QNS to have a maximum near Q = 1.2 ÅThis nonmonotonic Q dependence suggests a more complicated diffusive motion than the simple rotation about the long molecular axis believed to occur in a C24 monolayer at this temperature. Lower-energy-resolution spectra (time scale ˜4 - 40 ps) show evidence of two types of diffusive motion whose rates have opposite temperature dependences. The rate of the faster motion decreases as the monolayer is heated, and we speculate that it is due to hindered rotation of the methyl groups. The rate of the slower motion increases with temperature and may involve both uniaxial rotation and translational diffusion. Our experimental results will be compared with molecular dynamics simulations.

  8. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  9. Molecular dynamics investigation of hexagonal boron nitride sputtering and sputtered particle characteristics

    NASA Astrophysics Data System (ADS)

    Smith, Brandon D.; Boyd, Iain D.

    2016-08-01

    The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen at as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.

  10. Molecular modeling of responsive polymer films

    SciTech Connect

    Tagliazucchi, Mario; Calvo, Ernesto J; Szleifer, Igal

    2010-06-29

    In this perspective, we have shown three different cases of responsive polymers at surfaces where the properties of the surface can be varied in response to cues from the bulk solution or in the presence of an external field. The most important conclusion in all three cases is that the chemical reaction equilibrium, physical interactions and molecular organization are strongly coupled, and it is imperative to consider the global and local changes that occur to the surface structure and properties due to this coupling. In particular acid-base and redox equilibrium are very different in polymer-modified surfaces than in the corresponding bulk solutions. Moreover, the definition of ‘‘apparent redox potentials’’ and ‘‘apparent pKa’’results from the averaging over highly inhomogeneous values,and, therefore, they do not necessarily represent the state of the layer and the local values and their variation are very important for the design of functional surfaces. The very large variation on chemical equilibrium results from the optimization of all the interactions. The picture that emerges is that trying to deduce what the final state of the system is by looking at the individual optimization of each contribution leads to qualitative incorrect assumptions and only the minimization of the complete free energy leads to the proper behavior in these complex systems.In the cases where domain formation is possible in grafted weak polyacid layers charge regulation may lead to regimes of coexistence between aggregates with relatively low fraction of charged polymer segments surrounded by highly stretched chains that have a relatively high fraction of charged groups.Therefore, one can control the state of charge, local electrostatic potential and local pH in all three dimensions with im-portant gradients on length scales of nanometers. For hydrophobic redox polymers we show how the application of an electrode potential can lead to changes in the structure

  11. Quantitative and logic modelling of gene and molecular networks

    PubMed Central

    Le Novère, Nicolas

    2015-01-01

    Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms. PMID:25645874

  12. Molecular dynamics simulations of water within models of ion channels.

    PubMed Central

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-01-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models. Images FIGURE 1 FIGURE 5 FIGURE 7 PMID:8785323

  13. Molecular model for the rheology of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Picu, Catalin; Sarvestani, Alireza

    2006-03-01

    In this work we develop a molecular model for the rheology of entangled monodisperse homopolymers filled with nanoparticles at low filling volume fraction. This research is the continuation of our ongoing effort towards establishing a connection between the macroscopic time-dependent behavior of polymer nanocomposites and their molecular structure. The model is developed based on insight gained from molecular simulations, regarding the structure and dynamics of polymeric chains confined between nanoparticles. These simulations provide physically relevant parameters for the rheological model. The model accounts for reptation, chain stretch and contour length fluctuations. It also accounts for the short-range energetic interactions between polymers and fillers. Its predictions are compared with experimental data. The rheological model is implemented in a FEM package to simulate nanocomposite processing.

  14. A Novel Network Model for Molecular Prognosis

    PubMed Central

    Wan, Ying-Wooi; Bose, Swetha; Denvir, James; Guo, Nancy Lan

    2015-01-01

    Network-based genome-wide association studies (NWAS) utilize the molecular interactions between genes and functional pathways in biomarker identification. This study presents a novel network-based methodology for identifying prognostic gene signatures to predict cancer recurrence. The methodology contains the following steps: 1) Constructing genome-wide coexpression networks for different disease states (metastatic vs. non-metastatic). Prediction logic is used to induct valid implication relations between each pair of gene expression profiles in terms of formal logic rules. 2) Identifying differential components associated with specific disease states from the genome-wide coexpression networks. 3) Dissecting network modules that are tightly connected with major disease signal hallmarks from the disease specific differential components. 4) Identifying most significant genes/probes associated with clinical outcome from the pathway connected network modules. Using this methodology, a 14-gene prognostic signature was identified for accurate patient stratification in early stage lung cancer. PMID:26005718

  15. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale

    PubMed Central

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale. PMID:27642240

  16. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale

    PubMed Central

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale.

  17. A Comprehensive Investigation Into Modeling Supernovae Spectra

    NASA Astrophysics Data System (ADS)

    Hillier, Desmond

    Supernovae are a rich source of information. By studying their light curves and spectra we gain insights into stellar evolution, the nature of the progenitor star, surface abundances at the time of the explosion, whether previous mass-loss episodes have occurred, the physics of the explosion including the amount and type of elements synthesized, and whether the explosion has produced significant mixing between shells of different chemical composition. To maximize the information that can be gleaned from observations of supernovae it is essential that we have the necessary spectroscopic tools. To this end, we are developing a code, CMFGEN, capable of modeling supernova light curves and spectra. The code is currently being used, to study core-collapse supernovae as well as those arising from the nuclear detonation of a White Dwarf star. We wish to extend CMFGEN's capabilities by developing a procedure to handle non-monotonic velocity flows so that we can treat shock breakout and the interaction of supernova ejecta with circumstellar material. We will also investigate magnetar-powered SNe, and explore the connection between Type Ib and Type Ic supernovae and those supernovae associated with long-duration gamma-ray bursters. Through detailed studies of individual supernova, and through the construction of model grids, we are able to infer deficiencies in our modeling, in our atomic data, and in the progenitor models, and hence make refinements so that we can improve our understanding of all SNe classes. Previous (IUE), current (HST, Chandra, GALEX), and future NASA missions (James Webb Telescope) do/will provide a wealth of data on supernovae. The proposed research is related to strategic subgoal 3D: "Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets." Supernovae are inherently coupled to the evolution of the universe and life: They can trigger star formation and they provide the raw materials (e.g., oxygen

  18. A Student Evaluation of Molecular Modeling in First Year College Chemistry.

    ERIC Educational Resources Information Center

    Ealy, Julie B.

    1999-01-01

    Evaluates first-year college students' perceptions of molecular modeling. Examines the effectiveness, integration with course content, interests, benefits, advantages, and disadvantages of molecular modeling. (Author/CCM)

  19. Molecular Modeling on the PC (by Matthew F. Schlecht)

    NASA Astrophysics Data System (ADS)

    Rioux, Reviewed Frank

    2000-06-01

    "Computeraided molecular modeling doesn't exist for its own sake, but to contribute to scientific endeavor, and enable the scientist to work smarter." This is the last sentence of Schlecht's preface and it says something very important about contemporary scientific research in the academic and industrial venues. Owing to the accelerating improvement in computer technology (hardware and software) and its widespread availability, molecular modeling has become a reliable and important tool in chemical research. Consequently, experimentalists have incorporated molecular modeling techniques in their research, and partnerships with computational chemists have become common. This is a wellorganized and thorough monograph that devotes its attention to one type of molecular modeling, molecular mechanics, and one molecular modeling software package, PCMODEL. Schlecht targets two reader-user groups, the novice and the journeyman modeler, and articulates three goals. He wants to provide the novice with an introduction to molecular mechanics, and after that with some practical examples of the use of empirical force field calculations. His third goal is to provide the journeyman modeler with a reference work that will aid "further study and practice". These are potentially conflicting goals, but Schlecht is, in my opinion, successful because of the way his book is organized. A comprehensive treatment such as this one is not meant to be read from cover to cover, because it is both an exposition of basic principles and a user's manual. Therefore, the novice and the experienced modeler will undoubtedly use this book in different ways. For example, a novice modeler might be advised to read the Preface and Chapter 1, which together provide a broad introduction to the historical development and goals of molecular mechanics. From there the novice could go to Chapter 5 and read section 5.1 on the components of the molecular mechanics force field, which is presented in 22 pages with

  20. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    PubMed

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-01

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  1. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  2. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  3. Molecular model for the anticlinic smectic-C(A) phase

    PubMed

    Osipov; Fukuda

    2000-09-01

    Both phenomenological and molecular-statistical theories of the anticlinic smectic-C(A) phase (Sm-C(A)) are considered in detail. The anticlinic structure produces antiferroelectricity in the chiral smectic-C(A) phase (Sm-C(A)*). The molecular theory is based on a simple model potential which stabilizes Sm-C(A) with respect to the synclinic smectic-C phase (Sm-C). Conventional dispersion and steric interactions between mesogenic molecules generally do not promote Sm-C(A). It may be stabilized by interlayer orientational correlations between transverse molecular dipoles located in the flexible chains. Such correlations are not sensitive to molecular handedness (chirality), and thus the theory accounts for the formation of the anticlinic phase in racemic mixtures. The model is also confirmed by other experimental data. Finally a simple phase diagram of the perfectly ordered smectic liquid crystal is presented which contains Sm-A, Sm-C, and Sm-C(A).

  4. The Electron-Pair Repulsion Model for Molecular Geometry

    ERIC Educational Resources Information Center

    Gillespie, R. J.

    1970-01-01

    Describes how the electron-pair repulsion model qualitatively explains the size and shape of molecular orbitals. Briefly discusses trigonal bipyramidal molecules, three-center bonds, and transition elements. Describes cluster compounds and finishes with a discussion of the exceptions to the model and effects of ligand-ligand repulsions. (RR)

  5. Reasoning with Atomic-Scale Molecular Dynamic Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  6. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. PMID:25631536

  7. Molecular Interaction between Magainin 2 and Model Membranes in Situ

    PubMed Central

    Nguyen, Khoi; Le Clair, Stéphanie V.; Ye, Shuji; Chen, Zhan

    2009-01-01

    In this paper, we investigated the molecular interactions of Magainin 2 with model cell membranes using Sum Frequency Generation (SFG) vibrational spectroscopy and Attenuated Total Reflectance – Fourier Transform Infrared spectroscopy (ATR-FTIR). Symmetric 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (POPG) and 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) bilayers, which model the bacterial and mammalian cell membranes respectively, were used in the studies. It was observed by SFG that Magainin 2 orients relatively parallel to the POPG lipid bilayer surface at low solution concentrations, around 200 nM. When increasing the Magainin 2 concentration to 800 nM, both SFG and ATR-FTIR results indicate that Magainin 2 molecules insert into the POPG bilayer and adopt a transmembrane orientation with an angle of about 20 degrees from the POPG bilayer normal. For the POPC bilayer, even at a much higher peptide concentration of 2.0 µM, no ATR-FTIR signal was detected. For this concentration on POPC, SFG studies indicated that Magainin 2 molecules adopt an orientation nearly parallel to the bilayer surface, with an orientation angle of 75 degrees from the surface normal. This shows that SFG has a much better detection limit than ATR-FTIR and can therefore be applied to study interfacial molecules with much lower surface coverage. This Magainin 2 orientation study and further investigation of the lipid bilayer SFG signals support the proposed toroidal pore model for the antimicrobial activity of Magainin 2. PMID:19728722

  8. Molecular investigations of food-borne Cladosporium and Fusarium species from Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sampling of contaminated foodstuffs throughout southwest Nigeria yielded three fungal isolates belonging to the genus Fusarium and two fungal isolates belonging to the genus Cladosporium. In this study we subjected these isolates to various molecular investigations. We were able to confirm or refi...

  9. Molecular modeling: An open invitation for applied mathematics

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  10. Application of molecular modeling to polymer grafted nanostructures

    NASA Astrophysics Data System (ADS)

    Adiga, Shashishekar P.

    Polymer chains undergo conformational transitions in response to a change in solvent quality of their environment, making them strong candidates to be used in smart nanometer-scale devices. In the present work molecular modeling is used to explore grafted polymer structures with various functionalities. The first part of this research focuses on two examples of selective transport through nanopores modified with polymer brush structures. The first is the investigation of solvent flow through nanopores grafted with linear chains. Molecular dynamics (MD) simulations are used to demonstrate how a stretch-collapse transition in grafted polymer chains can be used to control solvent flow rate through a nanopore in response to environmental stimuli. A continuum fluid dynamics method based on porous layer model for describing flow through the smart nanopore is described and its accuracy is analyzed by comparing with the results from MD simulations. The continuum method is then applied to determine regulation of water permeation in response to pH through a poly(L-glutamic acid) grafted nanoporous membrane. A second example is use of a rod-coil transition in "bottle brush" molecules that are grafted to the inside of a nanopore to size select macromolecules as they diffuse through the functionalized nanopores. These stimuli-responsive nanopores have a variety of potential applications including molecular sorting, smart drug delivery, and ultrafiltration, as well as controlled chemical release. Tethered polymers play an important role in biological structures as well. In the second part of the research, application of atomistic simulations to characterize the effect of phosphorylation on neurofilament structure is presented. Neurofilaments are intermediate filaments that regulate axonal diameter through their long, flexible side arms extending from the central core. Their functionality is imparted by polymer brush like structure that causes steric repulsion between the

  11. Corn Storage Protein - A Molecular Genetic Model

    SciTech Connect

    Messing, Joachim

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  12. Investigating System Dependability Modeling Using AADL

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin R.; Madl, Gabor

    2013-01-01

    This report describes Architecture Analysis & Design Language (AADL) models for a diverse set of fault-tolerant, embedded data networks and describes the methods and tools used to created these models. It also includes error models per the AADL Error Annex. Some networks were modeled using Error Detection Isolation Containment Types (EDICT). This report gives a brief description for each of the networks, a description of its modeling, the model itself, and evaluations of the tools used for creating the models. The methodology includes a naming convention that supports a systematic way to enumerate all of the potential failure modes.

  13. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife.

    PubMed

    Balkenhol, Niko; Waits, Lisette P

    2009-10-01

    Transportation infrastructures such as roads, railroads and canals can have major environmental impacts. Ecological road effects include the destruction and fragmentation of habitat, the interruption of ecological processes and increased erosion and pollution. Growing concern about these ecological road effects has led to the emergence of a new scientific discipline called road ecology. The goal of road ecology is to provide planners with scientific advice on how to avoid, minimize or mitigate negative environmental impacts of transportation. In this review, we explore the potential of molecular genetics to contribute to road ecology. First, we summarize general findings from road ecology and review studies that investigate road effects using genetic data. These studies generally focus only on barrier effects of roads on local genetic diversity and structure and only use a fraction of available molecular approaches. Thus, we propose additional molecular applications that can be used to evaluate road effects across multiple scales and dimensions of the biodiversity hierarchy. Finally, we make recommendations for future research questions and study designs that would advance molecular road ecology. Our review demonstrates that molecular approaches can substantially contribute to road ecology research and that interdisciplinary, long-term collaborations will be particularly important for realizing the full potential of molecular road ecology.

  14. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kirby, Andrew R; Morris, Victor J; Tosh, Susan M

    2011-10-01

    The rheological properties and microstructure of aqueous oat β-glucan solutions varying in molecular weight were investigated. The structural features and molecular weights (MW) were characterized by (13)C NMR spectroscopy and high performance size-exclusion chromatography (HPSEC), respectively. The microstructure of the β-glucans dispersions was also examined by atomic force microscopy (AFM). The samples with β-glucan content between 78 and 86% on a dry weight basis had MW, intrinsic viscosity ([η]) and critical concentration (c*) in the range of 142-2800×10(3)g/mol, 1.7-7.2dl/g and 0.25-1.10g/dl, respectively. The flow and viscoelastic behaviour was highly dependent on MW and on the concentration of the β-glucans dispersions. Pseudoplastic behaviour was exhibited at high concentrations and Newtonian behaviour was evident at low concentrations. At the same concentration, the viscosity was higher for higher MW samples. The Cox-Merz rule was applicable for the lower molecular weight samples at higher concentrations whereas the high molecular weight sample deviated at concentrations greater than 1.0%, w/v. The mechanical spectra with variation of both MW and concentration were typical of entangled biopolymer solutions. AFM images revealed the formation of clusters or aggregates linked via individual polymer chains scattered heterogeneously throughout the system. The aggregate size increased with the molecular weight of the samples investigated and has been linked to the rheological behaviour of the samples.

  15. Extended master equation models for molecular communication networks.

    PubMed

    Chou, Chun Tung

    2013-06-01

    We consider molecular communication networks consisting of transmitters and receivers distributed in a fluidic medium. In such networks, a transmitter sends one or more signaling molecules, which are diffused over the medium, to the receiver to realize the communication. In order to be able to engineer synthetic molecular communication networks, mathematical models for these networks are required. This paper proposes a new stochastic model for molecular communication networks called reaction-diffusion master equation with exogenous input (RDMEX). The key idea behind RDMEX is to model the transmitters as time series of signaling molecule counts, while diffusion in the medium and chemical reactions at the receivers are modeled as Markov processes using master equation. An advantage of RDMEX is that it can readily be used to model molecular communication networks with multiple transmitters and receivers. For the case where the reaction kinetics at the receivers is linear, we show how RDMEX can be used to determine the mean and covariance of the receiver output signals, and derive closed-form expressions for the mean receiver output signal of the RDMEX model. These closed-form expressions reveal that the output signal of a receiver can be affected by the presence of other receivers. Numerical examples are provided to demonstrate the properties of the model.

  16. Energetics of molecular-beam epitaxy models

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.

    1990-01-01

    The removal energies of constituent atoms from various unreconstructed semiconductor surfaces are calculated using a Green function method. An efficient difference-equation approach within the second-neighbor tight-binding model is employed. For a compound AB, binding energies for the A and B atoms on the (111), (-1 -1 -1), (100), and (110) surfaces are calculated. Analyses are made of the energy to remove an atom from the nearly full surface and from the nearly empty surface. Results are presented for Si, GaAs, CdTe, and HgTe; and the surface sublimation energies are found to depend on surface coverage and do not display a simple linear relationship to the number of bonds broken, as is often assumed in modeling growth by MBE.

  17. Investigation of Mixed Surfactant Films at Water Surface Using Molecular Dynamics Simulations.

    PubMed

    Habartová, Alena; Roeselová, Martina; Cwiklik, Lukasz

    2015-10-27

    Multicomponent Langmuir monolayers are important models of organic coatings of naturally occurring water-vapor interfaces such as the surfaces of oceans or aerosol particles. We investigated mixed monolayers comprised of palmitic acid, C15H31COOH (PA) and 1-bromoalkanes of different chain length (C5, C10, and C16) at the air-water interface employing classical molecular dynamics simulations. Different composition ratios and lateral compression of the monolayers were considered. The structural parameters, such as density profiles, and deuterium order parameter, evaluated as functions of composition and the lateral film packing, provide microscopic information about organization and dynamics of the mixed monolayers. Simulations demonstrate that stable and well mixed monolayers are formed by the mixtures of PA and BrC16H33 (BrCl6), whereas the two considered shorter bromoalkanes, BrC5H11 (BrC5) and BrC10H21 (BrC10), do not form stable films. This is in accord with earlier experimental studies. Under high lateral pressures, in PA/BrC10 mixed systems molecules of the bromoalkane readily flip in the monolayer and subsequently leave the film, while the molecules of the longer BrC16 are expelled from the PA film but no flipping occurs. These results suggest that the film collapse under pressure is preceded by squeezing-out of bromoalkanes from the PA monolayer. PMID:26439598

  18. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    He, Jian-feng; Zhu, Quan-hong; Deng, Qin-ying

    2007-08-01

    A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 μmol l -1 and 1.42 mmol l -1, respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.

  19. Investigation of water structure in nafion membranes by infrared spectroscopy and molecular dynamics simulation.

    PubMed

    Hofmann, Detlef W M; Kuleshova, Liudmila; D'Aguanno, Bruno; Di Noto, Vito; Negro, Enrico; Conti, Fosca; Vittadello, Michele

    2009-01-22

    The structure and interactions of water species in hydrated Nafion membranes as a function of water content were investigated on the basis of medium-infrared spectral analysis and molecular dynamics (MD) simulations. The spectral decomposition of the FT-IR data in the stretching OH region was performed on different levels of hydration of the sulfate functional groups (lambdaH2O/RSO3- = 2-22). Quantum mechanical calculations of two model systems [perfluoroethanesulfonic acid/(H2O)6 cluster] and a [perfluorobutanesulfonic acid/(H2O)6 crystal] were carried out in order to account for the band assignments of Nafion in the stretching OH region (2500-4000 cm-1). Our findings indicated that the secondary structure of water species in Nafion can be accurately explained in terms of our reactive force field for water. The distinction between "surface" and "bulk" water contributions in Nafion membrane pores is proposed along with a quantitative estimate of the different types of OH groups present in the system. The average pore size was calculated and supported by the spectral results. PMID:19113878

  20. Investigations of protostellar outflow launching and gas entrainment: Hydrodynamic simulations and molecular emission

    SciTech Connect

    Offner, Stella S. R.; Arce, Héctor G.

    2014-03-20

    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in the surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.

  1. The emerging role of cloud computing in molecular modelling.

    PubMed

    Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W

    2013-07-01

    There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways.

  2. INVESTIGATIONS INTO MOLECULAR PATHWAYS IN THE POST GENOME ERA: CROSS SPECIES COMPARATIVE GENOMICS APPROACH

    EPA Science Inventory


    Genome sequencing efforts in the past decade were aimed at generating draft sequences of many prokaryotic and eukaryotic model organisms. Successful completion of unicellular eukaryotes, worm, fly and human genome have opened up the new field of molecular biology and function...

  3. A molecular model for neurodevelopmental disorders.

    PubMed

    Gigek, C O; Chen, E S; Ota, V K; Maussion, G; Peng, H; Vaillancourt, K; Diallo, A B; Lopez, J P; Crapper, L; Vasuta, C; Chen, G G; Ernst, C

    2015-01-01

    Genes implicated in neurodevelopmental disorders (NDDs) important in cognition and behavior may have convergent function and several cellular pathways have been implicated, including protein translational control, chromatin modification, and synapse assembly and maintenance. Here, we test the convergent effects of methyl-CpG binding domain 5 (MBD5) and special AT-rich binding protein 2 (SATB2) reduced dosage in human neural stem cells (NSCs), two genes implicated in 2q23.1 and 2q33.1 deletion syndromes, respectively, to develop a generalized model for NDDs. We used short hairpin RNA stably incorporated into healthy neural stem cells to supress MBD5 and SATB2 expression, and massively parallel RNA sequencing, DNA methylation sequencing and microRNA arrays to test the hypothesis that a primary etiology of NDDs is the disruption of the balance of NSC proliferation and differentiation. We show that reduced dosage of either gene leads to significant overlap of gene-expression patterns, microRNA patterns and DNA methylation states with control NSCs in a differentiating state, suggesting that a unifying feature of 2q23.1 and 2q33.1 deletion syndrome may be a lack of regulation between proliferation and differentiation in NSCs, as we observed previously for TCF4 and EHMT1 suppression following a similar experimental paradigm. We propose a model of NDDs whereby the balance of NSC proliferation and differentiation is affected, but where the molecules that drive this effect are largely specific to disease-causing genetic variation. NDDs are diverse, complex and unique, but the optimal balance of factors that determine when and where neural stem cells differentiate may be a major feature underlying the diverse phenotypic spectrum of NDDs.

  4. A molecular model for neurodevelopmental disorders

    PubMed Central

    Gigek, C O; Chen, E S; Ota, V K; Maussion, G; Peng, H; Vaillancourt, K; Diallo, A B; Lopez, J P; Crapper, L; Vasuta, C; Chen, G G; Ernst, C

    2015-01-01

    Genes implicated in neurodevelopmental disorders (NDDs) important in cognition and behavior may have convergent function and several cellular pathways have been implicated, including protein translational control, chromatin modification, and synapse assembly and maintenance. Here, we test the convergent effects of methyl-CpG binding domain 5 (MBD5) and special AT-rich binding protein 2 (SATB2) reduced dosage in human neural stem cells (NSCs), two genes implicated in 2q23.1 and 2q33.1 deletion syndromes, respectively, to develop a generalized model for NDDs. We used short hairpin RNA stably incorporated into healthy neural stem cells to supress MBD5 and SATB2 expression, and massively parallel RNA sequencing, DNA methylation sequencing and microRNA arrays to test the hypothesis that a primary etiology of NDDs is the disruption of the balance of NSC proliferation and differentiation. We show that reduced dosage of either gene leads to significant overlap of gene-expression patterns, microRNA patterns and DNA methylation states with control NSCs in a differentiating state, suggesting that a unifying feature of 2q23.1 and 2q33.1 deletion syndrome may be a lack of regulation between proliferation and differentiation in NSCs, as we observed previously for TCF4 and EHMT1 suppression following a similar experimental paradigm. We propose a model of NDDs whereby the balance of NSC proliferation and differentiation is affected, but where the molecules that drive this effect are largely specific to disease-causing genetic variation. NDDs are diverse, complex and unique, but the optimal balance of factors that determine when and where neural stem cells differentiate may be a major feature underlying the diverse phenotypic spectrum of NDDs. PMID:25966365

  5. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    NASA Astrophysics Data System (ADS)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  6. Zebrafish as a Model to Investigate CNS Myelination

    PubMed Central

    Preston, Marnie A.; Macklin, Wendy B.

    2015-01-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  7. Zebrafish as a model to investigate CNS myelination.

    PubMed

    Preston, Marnie A; Macklin, Wendy B

    2015-02-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems.

  8. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  9. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    SciTech Connect

    Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

    2014-08-21

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  10. Molecular modeling of protein-glycosaminoglycan interactions.

    PubMed

    Cardin, A D; Weintraub, H J

    1989-01-01

    Forty-nine regions in 21 proteins were identified as potential heparin-binding sites based on the sequence organizations of their basic and nonbasic residues. Twelve known heparin-binding sequences in vitronectin, apolipoproteins E and B-100, and platelet factor 4 were used to formulate two search strings for identifying potential heparin-binding regions in other proteins. Consensus sequences for glycosaminoglycan recognition were determined as [-X-B-B-X-B-X-] and [-X-B-B-B-X-X-B-X-] where B is the probability of a basic residue and X is a hydropathic residue. Predictions were then made as to the heparin-binding domains in endothelial cell growth factor, purpurin, and antithrombin-III. Many of the natural sequences conforming to these consensus motifs show prominent amphipathic periodicities having both alpha-helical and beta-strand conformations as determined by predictive algorithms and circular dichroism studies. The heparin-binding domain of vitronectin was modeled and formed a hydrophilic pocket that wrapped around and folded over a heparin octasaccharide, yielding a complementary structure. We suggest that these consensus sequence elements form potential nucleation sites for the recognition of polyanions in proteins and may provide a useful guide in identifying heparin-binding regions in other proteins. The possible relevance of protein-glycosaminoglycans interactions in atherosclerosis is discussed. PMID:2463827

  11. Investigations of Mechanical Properties of Polymer Brushes and Hydrogels Through Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Ou, Yangpeng

    In this thesis, the forces between surfaces coated with polyelectrolye brushes and polymer gels were investigated via molecular dynamics simulation on a computer workstation that I built. The first project investigated the reasons for why grafted polyelectrolye brushes have smaller friction coefficients than grafted neutral polymer brushes. The flexible neutral polymer brush is treated as a bead-spring model, and the polyelectrolyte brush is treated the same way except that each bead is charged and there are counterions present to neutralize the charge. We investigated the friction coefficient, monomer density, and brush penetration for the two kinds of brushes with both the same grafting density and the same normal force under good solvent conditions. We found that polyelectrolyte brushes have smaller friction coefficients in both simulations. We present evidence that the reason for this is that the extra normal force contribution provided by the counterion osmotic pressure that exists for polyelectrolyte brushes permits them to support the same load as identical neutral polymer brushes of higher grafting density. Because of the resulting lower monomer density for the charged brushes, fewer monomer collisions take place per unit time, resulting in a lower friction coefficient. The second project investigated interactions between two grafted polymer gels. Unlike polyelectrolyte polymer brushes, polymer chains are linked to other neighboring polymer chains. We studied a defect-free network of diamond-like topology containing 8 tetra-functional nodes linked by 16 non-crossing chains. We studied the shear force, friction coefficient, and density profiles of these polymer gels. We found that polymer gels have very small friction coefficients in our simulation, which is consistent with previous experimental measurements. In order to understand and explain this very low friction coefficient behavior, we computed the interpenetrations between two polymer gels, the

  12. SPECTRAFACTORY.NET: A DATABASE OF MOLECULAR MODEL SPECTRA

    SciTech Connect

    Cami, J.; Van Malderen, R.; Markwick, A. J. E-mail: Andrew.Markwick@manchester.ac.uk

    2010-04-01

    We present a homogeneous database of synthetic molecular absorption and emission spectra from the optical to mm wavelengths for a large range of temperatures and column densities relevant for various astrophysical purposes, but in particular for the analysis, identification, and first-order analysis of molecular bands in spectroscopic observations. All spectra are calculated in the LTE limit from several molecular line lists, and are presented at various spectral resolving powers corresponding to several specific instrument simulations. The database is available online at http://www.spectrafactory.net, where users can freely browse, search, display, and download the spectra. We describe how additional model spectra can be requested for (automatic) calculation and inclusion. The database already contains over half a million model spectra for 39 molecules (96 different isotopologues) over the wavelength range 350 nm-3 mm ({approx}3-30000 cm{sup -1})

  13. Simple Validation of Transient Plume Models Using Molecular Beam-Related Applications

    SciTech Connect

    Woronowicz, M. S.

    2008-12-31

    A simple effort using molecular beam data to compare the results of two different transient free molecule point source models was performed, motivated by a desire to determine the utility of such formulations for a variety of time-dependent applications. These models are evaluated against effusive molecular beam time-of-flight data, as well as behavior observed in pulsed laser ablation experiments and high-fidelity direct simulation Monte Carlo results. Such comparisons indicate that the physical behavior of these time-dependent expansions require taking a surface-enforced directional bias into account. This bias has been absent in a number of investigative formulations, both historical and current.

  14. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  15. First principles modelling of contact resistance in molecular electronic devices.

    NASA Astrophysics Data System (ADS)

    Stokbro, Kurt; Taylor, Jeremy; Brandbyge, Mads

    2002-03-01

    We have used the TranSIESTA package[1,2] to investigate the contact resistance of gold-thiol bonds. The TranSIESTA package is a new density functional code employing local basis sets[3], combined with a non-equilibrium Greens function transport scheme. With this package we can calculate the selfconsistent electronic structure of a nanostructure coupled to 3-dimensional electrodes with different electrochemical potentials, using the same level of model chemistry for the electrodes as for the nanostructure. We have used the method to calculate the electron transport through DiThiol-Benzene (DTB) connected to gold electrodes. The transport properties have been calculated for a range of different molecule-electrode couplings, and I will discuss the influence of the coupling on the molecular conductance, and compare with experimental data. [1] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Material Research Society symposium proceedings volume 636, D9.25 (2000). [2] M. Brandbyge, K. Stokbro, J. Taylor, J. L. Mozos, P. Ordejon, Condmat 0110650 [3] SIESTA: D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  16. Iron affects the structure of cell membrane molecular models.

    PubMed

    Suwalsky, M; Martínez, F; Cárdenas, H; Grzyb, J; Strzałka, K

    2005-03-01

    The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions. PMID:15752465

  17. A molecular dynamics model for the Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Smith, Roger; Ramasawmy, D.; Kenny, S. D.

    2005-01-01

    The impact of positively charged Arn+ ions, n = 1, 4, 8, incident normally on the (1 0 0) surface of NaCl is studied by Molecular Dynamics (MD) simulations for energies up to 1 keV. The model assumes fixed charges on the ions and the effect of projectile charge is investigated as a function of energy. It is shown that there is a significant enhancement in the sputtering yield at low impact energies due to the attachment of Cl ions to the impacting Ar, which is subsequently ejected from the lattice. The low energy Ar ions can also experience acceleration towards the NaCl crystal due to Coulombic attraction. At energies greater than a few hundred eV the Ar ions implant within the crystal which accommodates the extra charge from these ions. As a result the sputtering yield from the initial impact is reduced but as the dose increases, the yield rises as Na+ ions are preferentially ejected from the lattice. A large proportion of the ejected material is in the form of clusters.

  18. United polarizable multipole water model for molecular mechanics simulation

    NASA Astrophysics Data System (ADS)

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  19. United polarizable multipole water model for molecular mechanics simulation.

    PubMed

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  20. United polarizable multipole water model for molecular mechanics simulation

    SciTech Connect

    Qi, Rui; Wang, Qiantao; Ren, Pengyu; Wang, Lee-Ping; Pande, Vijay S.

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  1. Animal models of osteoarthritis in an era of molecular biology.

    PubMed

    Bendele, A M

    2002-12-01

    Animal models of osteoarthritis (OA) are used to study the pathogenesis of cartilage degeneration and to evaluate potential anti-arthritic drugs for clinical use. In general, these models fall into 2 categories, spontaneous and induced (surgical instability or genetic manipulation). Animal models of naturally occurring OA occur in knee joints of guinea pigs, mice and Syrian hamsters. Commonly utilized surgical instability models include medial meniscal tear in guinea pigs and rats, medial or lateral partial meniscectomy in rabbits, medial partial or total meniscectomy or anterior cruciate transection in dogs. Transgenic models have been developed in mice. These models all have potential use in the study of molecular mechanisms associated with OA development via use of immunohistochemistry, biochemistry and molecular probes to identify altered matrix molecules at different stages in disease progression. Testing of specific types of inhibitors developed through evaluation of matrix changes in the disease process will ultimately help identify key processes which initiate and perpetuate the disease and will lead to discovery of new disease modifying pharmaceutical agents for OA patients. This paper will focus on the discussion of several models which are likely to be useful in the molecular dissection of processes involved in cartilage degeneration. PMID:15758375

  2. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  3. Promoting Representational Competence with Molecular Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary

    2016-01-01

    Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…

  4. Fischer and Schrock Carbene Complexes: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2015-01-01

    An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…

  5. Markov models of molecular kinetics: generation and validation.

    PubMed

    Prinz, Jan-Hendrik; Wu, Hao; Sarich, Marco; Keller, Bettina; Senne, Martin; Held, Martin; Chodera, John D; Schütte, Christof; Noé, Frank

    2011-05-01

    Markov state models of molecular kinetics (MSMs), in which the long-time statistical dynamics of a molecule is approximated by a Markov chain on a discrete partition of configuration space, have seen widespread use in recent years. This approach has many appealing characteristics compared to straightforward molecular dynamics simulation and analysis, including the potential to mitigate the sampling problem by extracting long-time kinetic information from short trajectories and the ability to straightforwardly calculate expectation values and statistical uncertainties of various stationary and dynamical molecular observables. In this paper, we summarize the current state of the art in generation and validation of MSMs and give some important new results. We describe an upper bound for the approximation error made by modeling molecular dynamics with a MSM and we show that this error can be made arbitrarily small with surprisingly little effort. In contrast to previous practice, it becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM can be much improved if non-metastable states are introduced near the transition states. Moreover, we show that it is not necessary to resolve all slow processes by the state space partitioning, but individual dynamical processes of interest can be resolved separately. We also present an efficient estimator for reversible transition matrices and a robust test to validate that a MSM reproduces the kinetics of the molecular dynamics data.

  6. Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-09-01

    In this study; spectroscopic investigation of adenosine having clinical importance was studied computationally and obtained results were compared with experimental ones. In this scope, geometric optimization and conformational analysis were studied and vibrational spectroscopic properties were studied on the most stable form. NMR and TD-DFT studies on the title compound were conducted with its experimental data. In addition atomic charge distribution, NBO, frontier molecular analysis, thermodynamic analysis and hyperpolarization features were studied.

  7. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    PubMed Central

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  8. Pure and Modified Co-Poly(amide-12-b-ethylene oxide) Membranes for Gas Separation Studied by Molecular Investigations

    PubMed Central

    De Lorenzo, Luana; Tocci, Elena; Gugliuzza, Annarosa; Drioli, Enrico

    2012-01-01

    This paper deals with a theoretical investigation of gas transport properties in a pure and modified PEBAX block copolymer membrane with N-ethyl-o/p-toluene sulfonamide (KET) as additive molecules. Molecular dynamics simulations using COMPASS force field, Gusev-Suter Transition State Theory (TST) and Monte Carlo methods were used. Bulk models of PEBAX and PEBAX/KET in different copolymer/additive compositions were assembled and analyzed to evaluate gas permeability and morphology to characterize structure-performance relationships. PMID:24958285

  9. MODELING THE MOLECULAR COMPOSITION IN AN ACTIVE GALACTIC NUCLEUS DISK

    SciTech Connect

    Harada, Nanase; Thompson, Todd A.; Herbst, Eric

    2013-03-10

    We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic-ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO{sup +}, HC{sub 3}N, C{sub 2}H, and c-C{sub 3}H{sub 2} using a variety of plausible disk structures. These simple models have molecular regions with an X-ray-dominated region layer, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C{sub n}H{sub 2}) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlight molecular abundance observations and ratios that may distinguish among theoretical models of the density distribution in AGN disks. Finally, we assess the importance of the shock crossing time and the accretion time relative to the formation time for various chemical species. Vertical column densities are tabulated for a number of molecular species at both the characteristic shock crossing time and steady state. Although we do not attempt to fit any particular system or set of observations, we discuss our models and results in the context of the nearby AGN NGC 1068.

  10. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  11. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  12. Molecular polymorphism: microwave spectra, equilibrium structures, and an astronomical investigation of the HNCS isomeric family.

    PubMed

    McGuire, Brett A; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Brünken, Sandra; Lattanzi, Valerio; Neill, Justin L; Spezzano, Silvia; Yu, Zhenhong; Zaleski, Daniel P; Remijan, Anthony J; Pate, Brooks H; McCarthy, Michael C

    2016-08-10

    The rotational spectra of thioisocyanic acid (HNCS), and its three energetic isomers (HSCN, HCNS, and HSNC) have been observed at high spectral resolution by a combination of chirped-pulse and Fabry-Pérot Fourier-transform microwave spectroscopy between 6 and 40 GHz in a pulsed-jet discharge expansion. Two isomers, thiofulminic acid (HCNS) and isothiofulminic acid (HSNC), calculated here to be 35-37 kcal mol(-1) less stable than the ground state isomer HNCS, have been detected for the first time. Precise rotational, centrifugal distortion, and nitrogen hyperfine coupling constants have been determined for the normal and rare isotopic species of both molecules; all are in good agreement with theoretical predictions obtained at the coupled cluster level of theory. On the basis of isotopic spectroscopy, precise molecular structures have been derived for all four isomers by correcting experimental rotational constants for the effects of rotation-vibration interaction calculated theoretically. Formation and isomerization pathways have also been investigated; the high abundance of HSCN relative to ground state HNCS, and the detection of strong lines of SH using CH3CN and H2S, suggest that HSCN is preferentially produced by the radical-radical reaction HS + CN. A radio astronomical search for HSCN and its isomers has been undertaken toward the high-mass star-forming region Sgr B2(N) in the Galactic Center with the 100 m Green Bank Telescope. While we find clear evidence for HSCN, only a tentative detection of HNCS is proposed, and there is no indication of HCNS or HSNC at the same rms noise level. HSCN, and tentatively HNCS, displays clear deviations from a single-excitation temperature model, suggesting weak masing may be occurring in some transitions in this source. PMID:27478937

  13. Molecular polymorphism: microwave spectra, equilibrium structures, and an astronomical investigation of the HNCS isomeric family.

    PubMed

    McGuire, Brett A; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Brünken, Sandra; Lattanzi, Valerio; Neill, Justin L; Spezzano, Silvia; Yu, Zhenhong; Zaleski, Daniel P; Remijan, Anthony J; Pate, Brooks H; McCarthy, Michael C

    2016-08-10

    The rotational spectra of thioisocyanic acid (HNCS), and its three energetic isomers (HSCN, HCNS, and HSNC) have been observed at high spectral resolution by a combination of chirped-pulse and Fabry-Pérot Fourier-transform microwave spectroscopy between 6 and 40 GHz in a pulsed-jet discharge expansion. Two isomers, thiofulminic acid (HCNS) and isothiofulminic acid (HSNC), calculated here to be 35-37 kcal mol(-1) less stable than the ground state isomer HNCS, have been detected for the first time. Precise rotational, centrifugal distortion, and nitrogen hyperfine coupling constants have been determined for the normal and rare isotopic species of both molecules; all are in good agreement with theoretical predictions obtained at the coupled cluster level of theory. On the basis of isotopic spectroscopy, precise molecular structures have been derived for all four isomers by correcting experimental rotational constants for the effects of rotation-vibration interaction calculated theoretically. Formation and isomerization pathways have also been investigated; the high abundance of HSCN relative to ground state HNCS, and the detection of strong lines of SH using CH3CN and H2S, suggest that HSCN is preferentially produced by the radical-radical reaction HS + CN. A radio astronomical search for HSCN and its isomers has been undertaken toward the high-mass star-forming region Sgr B2(N) in the Galactic Center with the 100 m Green Bank Telescope. While we find clear evidence for HSCN, only a tentative detection of HNCS is proposed, and there is no indication of HCNS or HSNC at the same rms noise level. HSCN, and tentatively HNCS, displays clear deviations from a single-excitation temperature model, suggesting weak masing may be occurring in some transitions in this source.

  14. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  15. Multi-level molecular modelling for plasma medicine

    NASA Astrophysics Data System (ADS)

    Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.

    2016-02-01

    Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.

  16. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…

  17. Investigating Population Heterogeneity With Factor Mixture Models

    ERIC Educational Resources Information Center

    Lubke, Gitta H.; Muthen, Bengt

    2005-01-01

    Sources of population heterogeneity may or may not be observed. If the sources of heterogeneity are observed (e.g., gender), the sample can be split into groups and the data analyzed with methods for multiple groups. If the sources of population heterogeneity are unobserved, the data can be analyzed with latent class models. Factor mixture models…

  18. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  19. Ligand binding to anti-cancer target CD44 investigated by molecular simulations.

    PubMed

    Nguyen, Tin Trung; Tran, Duy Phuoc; Pham Dinh Quoc Huy; Hoang, Zung; Carloni, Paolo; Van Pham, Phuc; Nguyen, Chuong; Li, Mai Suan

    2016-07-01

    CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer. PMID:27342250

  20. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes

    PubMed Central

    2013-01-01

    Background An important mechanism of endocrine activity is chemicals entering target cells via transport proteins and then interacting with hormone receptors such as the estrogen receptor (ER). α-Fetoprotein (AFP) is a major transport protein in rodent serum that can bind and sequester estrogens, thus preventing entry to the target cell and where they could otherwise induce ER-mediated endocrine activity. Recently, we reported rat AFP binding affinities for a large set of structurally diverse chemicals, including 53 binders and 72 non-binders. However, the lack of three-dimensional (3D) structures of rat AFP hinders further understanding of the structural dependence for binding. Therefore, a 3D structure of rat AFP was built using homology modeling in order to elucidate rat AFP-ligand binding modes through docking analyses and molecular dynamics (MD) simulations. Methods Homology modeling was first applied to build a 3D structure of rat AFP. Molecular docking and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) scoring were then used to examine potential rat AFP ligand binding modes. MD simulations and free energy calculations were performed to refine models of binding modes. Results A rat AFP tertiary structure was first obtained using homology modeling and MD simulations. The rat AFP-ligand binding modes of 13 structurally diverse, representative binders were calculated using molecular docking, (MM-GBSA) ranking and MD simulations. The key residues for rat AFP-ligand binding were postulated through analyzing the binding modes. Conclusion The optimized 3D rat AFP structure and associated ligand binding modes shed light on rat AFP-ligand binding interactions that, in turn, provide a means to estimate binding affinity of unknown chemicals. Our results will assist in the evaluation of the endocrine disruption potential of chemicals. PMID:24266910

  1. Experimental Investigation of Iron Plasma Opacity Models

    SciTech Connect

    Bailey, J. E.; Rochau, G. A.; Hansen, S. B.; Nash, T. J.; Nielsen, D. S.; Lake, P. W.; Iglesias, C. A.; Mancini, R. C.; MacFarlane, J. J.; Golovkin, I.; Wang, P.; Blancard, C.; Cosse, Ph.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Abdallah, J. Jr.; Pradhan, A. K.; Nahar, S. N.

    2009-09-10

    Recent experiments extended iron opacity model tests to temperatures above 150 eV for the first time. The experiments use the Z Facility to volumetrically heat a CH-tamped Fe/Mg plasma using x-rays. The frequency dependent sample transmission is measured by viewing a backlight through the sample. The plasma conditions are inferred from the Mg K-shell absorption. The strategy for this research is to examine the underlying physics within Fe opacity models by comparisons with the measured transmission. Physics topics of interest include charge state distribution, energy level structure, and line broadening. In this talk we discuss methods to exploit the data and advance understanding for these topics. In addition, we review new experiments under way to further improve the data and to achieve higher energy density conditions.

  2. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1.

    PubMed

    Singh, Narender; Dueñas-González, Alfonso; Lyko, Frank; Medina-Franco, Jose L

    2009-05-01

    DNA methyltransferases (DNMTs) are a family of enzymes that methylate DNA at the C5 position of cytosine residues, and their inhibition is a promising strategy for the treatment of various developmental and proliferative diseases, particularly cancers. In the present study, a binding model for hydralazine, with a validated homology model of human DNMT, was developed by the use of automated molecular docking and molecular dynamics simulations. The docking protocol was validated by predicting the binding mode of 2'-deoxycytidine, 5-azacytidine, and 5-aza-2'-deoxycytidine. The inhibitory activity of hydralazine toward DNMT may be rationalized at the molecular level by similar interactions within the binding pocket (e.g., by a similar pharmacophore) as established by substrate-like deoxycytidine analogues. These interactions involve a complex network of hydrogen bonds with arginine and glutamic acid residues that also play a major role in the mechanism of DNA methylation. Despite the different scaffolds of other non-nucleoside DNMT inhibitors such as procaine and procainamide, the current modeling work reveals that these drugs exhibit similar interactions within the DNMT1 binding site. These findings are valuable in guiding the rational design and virtual screening of novel DNMT inhibitors.

  3. Molecular dynamics studies of supercooled water using a monatomic model

    NASA Astrophysics Data System (ADS)

    Moore, Emily Brooke

    There remain many unanswered questions regarding the structure and behavior of water, particularly when cooled below the melting temperature into water's supercooled region. In this region, liquid water is metastable, and rapid crystallization makes it difficult to study experimentally the liquid and the crystallization process. Computational studies are hindered by the complexity of accurately modeling water and the computational cost of simulating processes such as crystallization. In this work, the development and validation of mW, a monatomic water model, is presented. This model is able to quantitatively reproduce the structure, dynamic anomalies and phase behavior of water without hydrogen atoms or electrostatics by reproducing water's propensity to form locally tetrahedral structures. Using the mW water model in molecular dynamics simulations, we show the evolution of the local structure of water from 300--100 K. We find that the thermodynamic and structural properties studied, density, tetrahedrality and structural correlation length, change maximally or are maximum at 202 +/- 2 K, the liquid-liquid transformation temperature. Shifting to water confined within cylindrical nanopores, we present the development of a rotationally invariant method, the CHILL algorithm, to distinguish between liquid, hexagonal and cubic ice. We analyze the process of homogeneous nucleation, growth and melting within hydrophilic pores, as well as the effect of water-pore interaction strength on the melting of ice and liquid-ice coexistence within pores. Crystallization within the nanopores results in cubic ice with hexagonal stacking faults in agreement with experiments. We also investigate crystallization of bulk liquid within water's experimentally inaccessible "no man's land." Crystallization occurs through rapid development of ice nuclei that grow and consolidate, precluding the measurement of diffusion within the liquid. Analysis of how ice structure develops shows that

  4. SWIFT MODELLER: a Java based GUI for molecular modeling.

    PubMed

    Mathur, Abhinav; Shankaracharya; Vidyarthi, Ambarish S

    2011-10-01

    MODELLER is command line argument based software which requires tedious formatting of inputs and writing of Python scripts which most people are not comfortable with. Also the visualization of output becomes cumbersome due to verbose files. This makes the whole software protocol very complex and requires extensive study of MODELLER manuals and tutorials. Here we describe SWIFT MODELLER, a GUI that automates formatting, scripting and data extraction processes and present it in an interactive way making MODELLER much easier to use than before. The screens in SWIFT MODELLER are designed keeping homology modeling in mind and their flow is a depiction of its steps. It eliminates the formatting of inputs, scripting processes and analysis of verbose output files through automation and makes pasting of the target sequence as the only prerequisite. Jmol (3D structure visualization tool) has been integrated into the GUI which opens and demonstrates the protein data bank files created by the MODELLER software. All files required and created by the software are saved in a folder named after the work instance's date and time of execution. SWIFT MODELLER lowers the skill level required for the software through automation of many of the steps in the original software protocol, thus saving an enormous amount of time per instance and making MODELLER very easy to work with.

  5. Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andrew Richard

    2013-12-01

    Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid

  6. Molecular orientation distributions during injection molding of liquid crystalline polymers: Ex situ investigation of partially filled moldings

    SciTech Connect

    Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.

    2013-01-10

    The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence of shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.

  7. Modeling of Switching and Hysteresis in Molecular Transport

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj P.; Partridge, Harry (Technical Monitor)

    2002-01-01

    The conventional way of modeling current transport in two and three terminal molecular devices could be inadequate for certain cases involving switching and hysteresis. Here we present an alternate approach. Contrary to the regular way where applied bias directly modulates the conducting energy levels of the molecule, our method introduces a nonlinear potential energy surface varying with the applied bias as a control parameter. A time-dynamics is also introduced properly accounting for switching and hysteresis behavior. Although the model is phenomenological at this stage, we believe any detailed model would contain similar descriptions at its core.

  8. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    SciTech Connect

    Venkattraman, A.; Alexeenko, A. A.

    2011-05-20

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron-beam (e-beam) physical vapor deposition of copper thin films. A suitable molecular model for copper-copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi-symmetric DSMC simulations for analysis of a typical e-beam metal deposition system with a cup crucible. The dimensional and non-dimensional mass fluxes obtained are compared for two different deposition configurations with non-uniformity as high as 40% predicted from the simulations.

  9. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-03-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves.

  10. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  11. Molecular dynamics modeling of a nanomaterials-water surface interaction

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid

    2016-04-01

    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  12. Investigating habits: strategies, technologies and models

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2014-01-01

    Understanding habits at a biological level requires a combination of behavioral observations and measures of ongoing neural activity. Theoretical frameworks as well as definitions of habitual behaviors emerging from classic behavioral research have been enriched by new approaches taking account of the identification of brain regions and circuits related to habitual behavior. Together, this combination of experimental and theoretical work has provided key insights into how brain circuits underlying action-learning and action-selection are organized, and how a balance between behavioral flexibility and fixity is achieved. New methods to monitor and manipulate neural activity in real time are allowing us to have a first look “under the hood” of a habit as it is formed and expressed. Here we discuss ideas emerging from such approaches. We pay special attention to the unexpected findings that have arisen from our own experiments suggesting that habitual behaviors likely require the simultaneous activity of multiple distinct components, or operators, seen as responsible for the contrasting dynamics of neural activity in both cortico-limbic and sensorimotor circuits recorded concurrently during different stages of habit learning. The neural dynamics identified thus far do not fully meet expectations derived from traditional models of the structure of habits, and the behavioral measures of habits that we have made also are not fully aligned with these models. We explore these new clues as opportunities to refine an understanding of habits. PMID:24574988

  13. Investigating the Life Cycle of Molecular Clouds in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Beerman, Lori; Dalcanton, Julianne; Schruba, Andreas; Leroy, Adam K.; Johnson, Lent C.; Weisz, Daniel R.; Fouesneau, Morgan; PHAT Collaboration

    2015-01-01

    There is currently a great divide between high resolution studies of stellar clusters and molecular clouds in the Milky Way, and those done in extragalactic systems, where individual stars and clouds cannot usually be resolved. For my thesis work, I combined several astronomical data sets to investigate the life cycle of molecular clouds in the Andromeda Galaxy. The primary data sets I used are the Panchromatic Hubble Andromeda Treasury (PHAT), which catalogued over 200 million stars, and a molecular cloud catalogue that is constructed from new high spatial/spectral resolution (20 pc, 1 km/s) CARMA observations. Several ancillary data sets, including H-alpha and Spitzer IR emission maps were also used, taking advantage of broad wavelength coverage to search for indicators of star formation with different timescales. Comparisons were also made with the PHAT cluster sample, and the youngest (<10 Myr) stellar clusters were used as an additional star formation indicator. The ages and masses of these clusters were determined by fitting the color-magnitude diagrams (CMDs) of their resolved stars to theoretical isochrones. The distribution of the youngest clusters shows a strong correlation with the molecular cloud distribution, while no correlation is evident for clusters greater than 30 Myr. Each molecular cloud in the sample was then classified as a star-forming cloud or a non-star forming cloud, based on the presence of any one of several star formation indicators. About 60% of the clouds in the sample were found to be associated with massive star formation. Based on the comparison between these observations and the results from a Monte Carlo simulation, I will also demonstrate how we can constrain the timescales for the relative phases in a cloud's life.

  14. Depositions of molecular nanomagnets on graphene investigated with atomic force microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Walker, Sean; Vojvodin, Cameron; Li, Zhi; Willick, Kyle; Tang, Xiaowu (Shirley); Baugh, Jonathan

    Molecular nanomagnets display interesting quantum phenomena, and have been proposed as potential building blocks in a variety of nanoelectronic devices with applications to both quantum memory and quantum information processing. These devices often require deposition of the molecules either sparsely (e.g. for single molecule devices) or as a thin-film. Consequently, in order for these devices to be successfully realized, the nature of the interactions between nanomagnets and the surfaces on which they may be deposited needs to be understood. We have investigated the depositions of molecular nanomagnets on graphene using atomic force microscopy and Raman spectrocopy. The nanomagnets contained a range of chemical functional groups including long alkyl chains and extended π-systems of electrons. By comparing their binding affinities we learn about the nature of the interactions between the different functional groups and the graphene.

  15. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  16. Thermal Analysis Investigation of Dapoxetine and Vardenafil Hydrochlorides using Molecular Orbital Calculations

    PubMed Central

    Attia, Ali Kamal; Souaya, Eglal R.; Soliman, Ethar A.

    2015-01-01

    Purpose: Thermal analysis techniques have been used to study the thermal behavior of dapoxetine and vardenafil hydrochlorides and confirmed using semi-empirical molecular orbital calculations. Methods: Thermogravimetric analysis, derivative thermogravimetry, differential thermal analysis and differential scanning calorimetry were used to determine the thermal behavior and purity of the drugs under investigation. Thermodynamic parameters such as activation energy, enthalpy, entropy and Gibbs free energy were calculated. Results: Thermal behavior of DAP and VAR were confirmed using by semi-empirical molecular orbital calculations. The purity values were found to be 99.97% and 99.95% for dapoxetine and vardenafil hydrochlorides, respectively. The purity of dapoxetine and vardenafil hydrochlorides is similar to that found by reported methods according to DSC data. Conclusion: Thermal analysis justifies its application in quality control of pharmaceutical compounds due to its simplicity, sensitivity and low operational costs. PMID:26819925

  17. The activation strain model and molecular orbital theory

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2015-01-01

    The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. WIREs Comput Mol Sci 2015, 5:324–343. doi: 10.1002/wcms.1221 PMID:26753009

  18. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    PubMed

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  19. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound–target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  20. Investigation of hydrogen bonded molecular solids by diffraction, spectroscopy, and computational chemistry

    NASA Astrophysics Data System (ADS)

    Hudson, Matthew R.

    The nature of hydrogen-bonding interactions in the solid state is examined through the investigation of molecular crystals by incoherent inelastic neutron scattering (INS) spectroscopy, Raman spectroscopy, X-ray and neutron diffraction, and computational chemistry. The molecular solids studied range from small organic molecules to larger inorganic acid salts. Hydrogen bonding is the primary mode of interaction in the solid state for each of the systems studied. INS spectra were collected at 25 K for each molecular solid and the motions of the hydrogen atoms assigned. Raman spectra were collected at 78 and 298 K to aid in the molecular mode assignments of the INS spectra and to examine possible phase changes as a function of temperature. Neutron diffraction was employed, when possible, to accurately locate the hydrogen atom positions, and X-ray diffraction was performed to obtain accurate unit cell dimensions and to obtain initial characterizations of the samples. The diffraction structures served as the basis for solid-state density functional theory (DFT) calculations. DFT simulations were used to aid in the vibrational normal mode assignments, to investigate possible solid-phase transitions, and as a test of the limits of basis sets and the available DFT theory. Of the six molecular solids studied, several important observations were made: (1) the determination of a structural phase transition in L-alanine alaninium nitrate by both spectroscopic and theoretical methods, (2) the structure of picolinic acid was elucidated at 25 K and room-temperature by the combination of INS and theory, (3) glycine lithium sulfate was found to be a useful test of DFT to accurately optimize the structure and calculate the normal modes of a complex 3D network of hydrogen-bonding interactions, (4) nicotinic acid was found to be a useful test of one dimensional hydrogen-bonding interactions with pi-stacking interactions dominating the orthogonal directions, and (5) parabanic acid

  1. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    SciTech Connect

    Splettstoesser, Thomas; Holmes, Kenneth; Noe, Frank; Smith, Jeremy C

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  2. Cavitation erosion - scale effect and model investigations

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  3. Geometric investigations of a vorticity model equation

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Kolev, Boris; Preston, Stephen C.

    2016-01-01

    This article consists of a detailed geometric study of the one-dimensional vorticity model equation which is a particular case of the generalized Constantin-Lax-Majda equation. Wunsch showed that this equation is the Euler-Arnold equation on Diff (S1) when the latter is endowed with the right-invariant homogeneous H ˙ 1 / 2-metric. In this article we prove that the exponential map of this Riemannian metric is not Fredholm and that the sectional curvature is locally unbounded. Furthermore, we prove a Beale-Kato-Majda-type blow-up criterion, which we then use to demonstrate a link to our non-Fredholmness result. Finally, we extend a blow-up result of Castro-Córdoba to the periodic case and to a much wider class of initial conditions, using a new generalization of an inequality for Hilbert transforms due to Córdoba-Córdoba.

  4. An Investigation of Item Fit Statistics for Mixed IRT Models

    ERIC Educational Resources Information Center

    Chon, Kyong Hee

    2009-01-01

    The purpose of this study was to investigate procedures for assessing model fit of IRT models for mixed format data. In this study, various IRT model combinations were fitted to data containing both dichotomous and polytomous item responses, and the suitability of the chosen model mixtures was evaluated based on a number of model fit procedures.…

  5. In Silico Modeling of the Immune System: Cellular and Molecular Scale Approaches

    PubMed Central

    Belfiore, Mariagrazia; Aricò, Giuseppina; Ronsisvalle, Simone

    2014-01-01

    The revolutions in biotechnology and information technology have produced clinical data, which complement biological data. These data enable detailed descriptions of various healthy and diseased states and responses to therapies. For the investigation of the physiology and pathology of the immune responses, computer and mathematical models have been used in the last decades, enabling the representation of biological processes. In this modeling effort, a major issue is represented by the communication between models that work at cellular and molecular level, that is, multiscale representation. Here we sketch some attempts to model immune system dynamics at both levels. PMID:24804217

  6. Ligands Binding and Molecular Simulation: the Potential Investigation of a Biosensor Based on an Insect Odorant Binding Protein

    PubMed Central

    Yi, Xin; Zhang, Yanbo; Wang, Peidan; Qi, Jiangwei; Hu, Meiying; Zhong, Guohua

    2015-01-01

    Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications. PMID:25552932

  7. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein.

    PubMed

    Yi, Xin; Zhang, Yanbo; Wang, Peidan; Qi, Jiangwei; Hu, Meiying; Zhong, Guohua

    2015-01-01

    Based on mimicking biological olfaction, biosensors have been applied for the detection of various ligands in complex environment, which could represent one of the most promising research fields. In this study, the basic characters of one insect odorant binding protein (OBP) as a biosensor were explored. To explore the molecular recognition process, the tertiary structure of the protein was modeled and the protein-ligand interactions with 1,536,550 chemicals were investigated by the molecular docking. The availability of large amount of recombinant SlitOBP1 overcame the difficulty to obtain biological sensing material. After obtained the purified recombinant protein, the result of fluorescence binding assays proved the candidate protein has good affinities with the majority of the tested chemicals. With the aid of simulation docking, the key conserved amino acids within the binding site were identified and then mutated to alanine. After mutation, the protein-ligand binding characteristics were recorded, and the competitive binding assays were carried out to provide experimental verification. The detailed information on its structure and affinities investigated in this study could allow the design of specific mutants with desired characteristics, which provides a solid base for tailoring OBP for biosensor and provides a role model for screening the other elements in olfactory system for different applications. PMID:25552932

  8. Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study.

    PubMed

    Presti, Davide; Labat, Fréderic; Pedone, Alfonso; Frisch, Michael J; Hratchian, Hrant P; Ciofini, Ilaria; Menziani, Maria Cristina; Adamo, Carlo

    2014-12-01

    A computational protocol that combines periodic and QM/QM' calculations has been applied to investigate the structural (geometrical and electronic) and photophysical absorption properties of the salicylidene aniline (SA) thermochromic molecular crystal. The protocol consists of three different steps, namely (i) the description of the molecular crystal using a periodic approach taking into account dispersion interactions, (ii) the identification of reliable finite models (clusters), and (iii) the calculation of vertical transition energies including environmental effects through the use of an electronic embedding model (QM/QM' ONIOM approach). The encouraging results obtained in this work for the β polymorph of SA, both in terms of accuracy and computational cost, open the way to the simulation and the prediction of the photophysical behavior of other molecular crystals, especially those much less well characterized experimentally. PMID:26583240

  9. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics.

    PubMed

    Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo

    2006-12-29

    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.

  10. Assessing High School Chemistry Students' Modeling Sub-Skills in a Computerized Molecular Modeling Learning Environment

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Kaberman, Zvia

    2012-01-01

    Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…

  11. The molecular basis of social behavior: models, methods and advances.

    PubMed

    LeBoeuf, Adria C; Benton, Richard; Keller, Laurent

    2013-02-01

    Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior. PMID:22995551

  12. Buckling induced delamination of graphene composites through hybrid molecular modeling

    NASA Astrophysics Data System (ADS)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  13. Model-free simulation approach to molecular diffusion tensors.

    PubMed

    Chevrot, Guillaume; Hinsen, Konrad; Kneller, Gerald R

    2013-10-21

    In the present work, we propose a simple model-free approach for the computation of molecular diffusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-based superposition fits of consecutive conformations. From the rigid body trajectory, we compute the translational and angular velocities of the molecule and by integration of the latter also the corresponding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial mean square displacement and, for comparison, also from the Kubo integral of the velocity correlation tensor. The method is illustrated for two simple model systems - a water molecule and a lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations. PMID:24160503

  14. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  15. Model-free simulation approach to molecular diffusion tensors

    NASA Astrophysics Data System (ADS)

    Chevrot, Guillaume; Hinsen, Konrad; Kneller, Gerald R.

    2013-10-01

    In the present work, we propose a simple model-free approach for the computation of molecular diffusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-based superposition fits of consecutive conformations. From the rigid body trajectory, we compute the translational and angular velocities of the molecule and by integration of the latter also the corresponding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial mean square displacement and, for comparison, also from the Kubo integral of the velocity correlation tensor. The method is illustrated for two simple model systems - a water molecule and a lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations.

  16. Experiments with a universe for molecular modelling of biological processes.

    PubMed

    Jedruch, W T; Barski, M

    1990-01-01

    A computer simulation program and results of preliminary simulations of an abstract two-dimensional universe are presented, in which biological and physical processes can be modelled at the molecular level. Two types of permanent elements (atoms) occupy squares of the universe: called 0 and 1. Atoms sharing a common square form a particle, with properties determined by its component atoms. Atoms, particles, and complexes of particles move and collide according to rules like those of classical mechanics. At a higher level of organization, the string of atoms in a particle is viewed as a program, whose execution can affect the space around the particle. The computer program (written in Turbo-Pascal language) can simulate the evolution of the universe starting from any given initial configuration of the particles. Three examples of simulations, showing the development of ordered spatial structures from initial sets of randomly distributed particles, illustrate the universe's potential in modelling various molecular processes.

  17. Investigation of the Binding Profiles of AZD2184 and Thioflavin T with Amyloid-β(1-42) Fibril by Molecular Docking and Molecular Dynamics Methods.

    PubMed

    Kuang, Guanglin; Murugan, N Arul; Tu, Yaoquan; Nordberg, Agneta; Ågren, Hans

    2015-09-01

    Detecting deposits of amyloid β fibrils in the brain is of paramount importance for an early diagnosis of Alzheimer's disease. A number of PET tracers have been developed for amyloid imaging, but many suffer from poor specificity and large signal to background ratio. Design of tracers with specificity and improved binding affinity requires knowledge about various potential binding sites in the amyloid β fibril available for the tracers and the nature of the local microenvironment of these sites. In this study we investigate the local structure of fibrils using two important probes, namely, thioflavin T (a fluorescent probe) and AZD2184 (a PET tracer). The target structures for amyloid-β(1-42) fibril are based on reported NMR solution models. By explicitly considering the effect of fibril flexibility on the available binding sites for all these models, the binding affinity of these probes has been investigated. The binding profiles of AZD2184 and thioflavin T were studied by molecular docking and molecular dynamics simulation methods. The two compounds were found to bind at the same sites of the fibril: three of which are within the fibril, and one is on the two sides of the Met35 residue on the surface. The binding affinity of AZD2184 and thioflavin T is found to be higher at the core sites than on the surface due to more contact residues. The binding affinity of AZD2184 is much higher than that of thioflavin T at every site due to electrostatic interaction and spatial restriction, which is in good agreement with experimental observation. However, the structural change of thioflavin T is much more significant than that of AZD2184, which is the chemical basis for its usage as a fluorescent probe. The ramifications of these results for the design and optimization of PET radioligands and fluorescent probes are briefly discussed.

  18. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation.

    PubMed

    Singh, Shailza; Mandlik, Vineetha

    2015-05-01

    Leishmania major is the causative agent of cutaneous leishmaniasis which affects over 1 million people in 88 different countries. The incidence of this disease is on the rise due to the current problems associated with the present chemotherapeutics. In addition, Leishmania confronts resistance to the traditional drugs like sodium stibogluconate and newer repurposed drugs like miltefosine. ABC transporters are involved in the development of drug resistance. Miltefosine, the drug used for the treatment of leishmaniasis, is effluxed by P4 ATPase and ABC transporter, which is the prime focus of our study in this paper. P4 ATPase (MDR1) along with an unnamed protein (cdc50) translocates miltefosine from the outer to the inner leaflet by the process of flipping which is ATP driven. In contrast, miltefosine also escapes from the cells by an energy dependent mechanism that involves the ABC transporter protein (ABC). It is known that certain genes in the parasite amplify the portions of a gene which encodes ABC transporter and P4 ATPase involved in translocating phospholipids and hence resistance to miltefosine. We observed the ABC and P4 ATPase genes, 39 T-box elements were observed in the ABC transporter protein and three elements were observed in the P4 ATPase gene suggesting its role in transcription regulation. To the best of our knowledge, there are no structural and regulatory reports on these two proteins in L. major. Computational structural biology tools may aid in understanding the interaction of miltefosine with the P4-ATPase-cdc50 complex and the ABC transporter. This can be achieved by modeling the target protein structures, studying the dynamics associated with the different domains of the protein and later using activators and inhibitors to alter the functioning of the protein. Molecular dynamics simulation with a lipid bilayer is performed to investigate the conformational changes and structure-activity relationship. As transporters are difficult to model

  19. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  20. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  1. "Zwitterionic Proton Sponge" Hydrogen Bonding Investigations on the Basis of Car-Parrinello Molecular Dynamics.

    PubMed

    Jezierska, Aneta; Panek, Jarosław J

    2015-06-22

    1,8-Bis(dimethylamino)-4,5-dihydroxynaphthalene has been investigated on the basis of static DFT computations and Car-Parrinello molecular dynamics. The simulations were performed in the gas phase and in the solid state. The studied "zwitterionic proton sponge" possesses two, short intramolecular hydrogen bonds (O-H···O and N-H···N) classified as Low Barrier Hydrogen Bonds (LBHBs); therefore, the system studied is strongly anharmonic. In addition, the compound exists as a "zwitterion" in solution and in the solid state, thus the intramolecular hydrogen bonds belong to the class of charge-assisted interactions. The applied quantum-chemical methods enabled investigations of metric and spectroscopic parameters of the molecule. The time-evolution investigations of the H-bonding showed a strong delocalization of the bridge protons and their high mobility, reflected in the low barriers on the free energy surfaces. Frequent proton transfer phenomena were noticed. The power spectra of atomic velocity were computed to analyze the vibrational features associated with O-H and N-H stretching. A broad absorption was indicated for both hydrogen bridges. For the first time, Car-Parrinello molecular dynamics results are reported for the compound, and they indicate a broad, shallow but not barrierless, potential well for each of the bridge protons. PMID:25965324

  2. Investigations to improve carbon dioxide control with amine and molecular sieve type sorbers

    NASA Technical Reports Server (NTRS)

    Bertrand, J. F.; Brose, H. F.; Kester, F. L.; Lunde, P. J.

    1972-01-01

    The optimization trends and operating parameters of an integral molecular sieve bed heat exchanger were investigated. The optimum combination of substrate and coating for the HS-B porous polymer was determined based on the CO2 dynamic capacity in the presence of water vapor. Full size HS-B canister performance was evaluated. An Amine CO2 Concentrator utilizing IR-45 sorber material and available Manned Orbiting Laboratory hardware was designed, fabricated and tested for use as an experiment in the NASA 90-day space simulator test of 1970. It supported four men in the simulator for 71 days out of the 90-day test duration.

  3. An NMR and molecular dynamics investigation of the avian prion hexarepeat conformational features in solution

    NASA Astrophysics Data System (ADS)

    Pietropaolo, Adriana; Raiola, Luca; Muccioli, Luca; Tiberio, Giustiniano; Zannoni, Claudio; Fattorusso, Roberto; Isernia, Carla; Mendola, Diego La; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2007-07-01

    The prion protein is a copper binding glycoprotein that in mammals can misfold into a pathogenic isoform leading to prion diseases, as opposed, surprisingly, to avians. The avian prion N-terminal tandem repeat is richer in prolines than the mammal one, and understanding their effect on conformation is of great biological importance. Here we succeeded in investigating the conformations of a single avian hexarepeat by means of NMR and molecular dynamics techniques. We found a high flexibility and a strong conformational dependence on pH: local turns are present at acidic and neutral pH, while unordered regions dominate at basic conditions.

  4. Diffusion and separation of CH4/N2 in pillared graphene nanomaterials: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Zhou, Sainan; Lu, Xiaoqing; Wu, Zhonghua; Jin, Dongliang; Guo, Chen; Wang, Maohuai; Wei, Shuxian

    2016-09-01

    Diffusion and separation of CH4/N2 in pillared graphene were investigated by molecular dynamics. The pillared graphene with (6, 6) carbon nanotube (CNT) exhibited the higher diffusion and selectivity of CH4 over N2 than that with (7, 7) CNT due to the cooperative effect of pore topological characteristics and interaction energy. The stronger interaction facilitated CH4 to enter CNT prior to N2, and higher pressure promoted CH4 to pass CNT more easily. The relative concentrations profiles showed that CH4 reached equilibrium state faster than N2 at low pressure. Our results highlight potential use of pillared graphene in gas purification and separation.

  5. Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD).

    PubMed

    Zhang, Jinkang; Williams, Timothy D; Abdallah, Mohamed Abou-Elwafa; Harrad, Stuart; Chipman, James K; Viant, Mark R

    2015-12-01

    The potential for human exposure to the brominated flame retardant, hexabromocyclododecane (HBCD) has given rise to health concerns, yet there is relatively limited knowledge about its possible toxic effects and the underlying molecular mechanisms that may mediate any impacts on health. In this study, unbiased transcriptomic and metabolomic approaches were employed to investigate the potential molecular changes that could lead to the toxicity of HBCD under concentrations relevant to human exposure conditions using in vitro models. A concentration-dependent cytotoxic effect of HBCD to A549 and HepG2/C3A cells was observed based on MTT assays or CCK-8 assays with EC50 values of 27.4 μM and 63.0 μM, respectively. Microarray-based transcriptomics and mass spectrometry-based metabolomics revealed few molecular changes in A549 cells or HepG2/C3A cells following a 24-hour exposure to several sub-lethal concentrations (2 to 4000 nM) of HBCD. Quantification of the level of HBCD in the HepG2/C3A exposed cells suggested that the flame retardant was present at concentrations several orders of magnitude higher than those reported to occur in human tissues. We conclude that at the concentrations known to be achievable following exposure in humans, HBCD exhibits no detectable acute toxicity in A549 cells, representative of the lung, or in HepG2/C3A cells, that are hepatocytes with some xenobiotic metabolic capacity.

  6. Two Models of Magnetic Support for Photoevaporated Molecular Clouds

    SciTech Connect

    Ryutov, D; Kane, J; Mizuta, A; Pound, M; Remington, B

    2004-05-05

    The thermal pressure inside molecular clouds is insufficient for maintaining the pressure balance at an ablation front at the cloud surface illuminated by nearby UV stars. Most probably, the required stiffness is provided by the magnetic pressure. After surveying existing models of this type, we concentrate on two of them: the model of a quasi-homogeneous magnetic field and the recently proposed model of a ''magnetostatic turbulence''. We discuss observational consequences of the two models, in particular, the structure and the strength of the magnetic field inside the cloud and in the ionized outflow. We comment on the possible role of reconnection events and their observational signatures. We mention laboratory experiments where the most significant features of the models can be tested.

  7. Mechanistic modeling confronts the complexity of molecular cell biology.

    PubMed

    Phair, Robert D

    2014-11-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  8. Mechanistic modeling confronts the complexity of molecular cell biology

    PubMed Central

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build—and subject to exhaustive experimental tests—models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set. PMID:25368428

  9. Investigation of the torsional barrier of EDOT using molecular mechanics and DFT methods.

    PubMed

    Durães, Jussara A; da Silva Filho, Demétrio A; Ceschin, Artemis M; Sales, Maria J A; Martins, João B L

    2014-08-01

    When heterocyclic monomers are polymerized by electrochemical or chemical methods, they form fully conjugated polymers which have a wide range of applications due to their outstanding electronic properties. Among this class of compounds, thiophene derivatives are widely used due to their chemical stability and synthesis flexibility. With the goal to investigate the torsion barrier of polymer chains, a few units of 3,4-ethylenedioxythiophene (EDOT) were chosen and submitted to molecular mechanics (MM), density functional theory (DFT) and coupled cluster CCSD(T) calculations. This study helps to understand the performance and transferability of force fields used in molecular mechanics and molecular dynamics simulations often used to describe structure-property relationships of those systems. Determination of inter-ring torsion angle was performed in a comparative study using both force field, DFT and CCSD(T) methods. A good agreement was noticed between MM and QC results and highlights the importance of the description of the interactions involving the oxygen atoms present in the structure of EDOT. These observations are related to the α,α-coupling that occurs between the monomer units and yields a linear polymer. DFT HOMO and LUMO orbitals were also presented. Finally, UV-vis spectra of EDOT units were obtained using several levels of theory by means of time-dependent DFT calculations (TD-DFT). PMID:25116151

  10. Modelling molecular interaction pathways using a two-stage identification algorithm.

    PubMed

    Gormley, Padhraig; Li, Kang; Irwin, George W

    2007-08-01

    In systems biology, molecular interactions are typically modelled using white-box methods, usually based on mass action kinetics. Unfortunately, problems with dimensionality can arise when the number of molecular species in the system is very large, which makes the system modelling and behavior simulation extremely difficult or computationally too expensive. As an alternative, this paper investigates the identification of two molecular interaction pathways using a black-box approach. This type of method creates a simple linear-in-the-parameters model using regression of data, where the output of the model at any time is a function of previous system states of interest. One of the main objectives in building black-box models is to produce an optimal sparse nonlinear one to effectively represent the system behavior. In this paper, it is achieved by applying an efficient iterative approach, where the terms in the regression model are selected and refined using a forward and backward subset selection algorithm. The method is applied to model identification for the MAPK signal transduction pathway and the Brusselator using noisy data of different sizes. Simulation results confirm the efficacy of the black-box modelling method which offers an alternative to the computationally expensive conventional approach. PMID:19003449

  11. Modelling molecular interaction pathways using a two-stage identification algorithm

    PubMed Central

    Li, Kang; Irwin, George W.

    2008-01-01

    In systems biology, molecular interactions are typically modelled using white-box methods, usually based on mass action kinetics. Unfortunately, problems with dimensionality can arise when the number of molecular species in the system is very large, which makes the system modelling and behavior simulation extremely difficult or computationally too expensive. As an alternative, this paper investigates the identification of two molecular interaction pathways using a black-box approach. This type of method creates a simple linear-in-the-parameters model using regression of data, where the output of the model at any time is a function of previous system states of interest. One of the main objectives in building black-box models is to produce an optimal sparse nonlinear one to effectively represent the system behavior. In this paper, it is achieved by applying an efficient iterative approach, where the terms in the regression model are selected and refined using a forward and backward subset selection algorithm. The method is applied to model identification for the MAPK signal transduction pathway and the Brusselator using noisy data of different sizes. Simulation results confirm the efficacy of the black-box modelling method which offers an alternative to the computationally expensive conventional approach. PMID:19003449

  12. Molecular Dynamics Simulations of Fracture of Model Epoxies

    SciTech Connect

    STEVENS,MARK J.

    2000-01-18

    The failure of thermosetting polymer adhesives is an important problem which particularly lacks understanding from the molecular viewpoint. While linear elastic fracture mechanics works well for such polymers far from the crack tip, the method breaks down near the crack tip where large plastic deformation occurs and the molecular details become important [1]. Results of molecular dynamics simulations of highly crosslinked polymer networks bonded to a solid surface are presented here. Epoxies are used as the guide for modeling. The focus of the simulations is the network connectivity and the interfacial strength. In a random network, the bond stress is expected to vary, and the most stressed bonds will break first [2]. Crack initiation should occur where a cluster of highly constrained bonds exists. There is no reason to expect crack initiation to occur at the interface. The results to be presented show that the solid surface limits the interfacial bonding resulting in stressed interfacial bonds and interfacial fracture. The bonds in highly-crosslinked random networks do not become stressed as expected. The sequence of molecular structural deformations that lead to failure has been determined and found to be strongly dependent upon the network connectivity. The structure of these networks and its influence on the stress-strain behavior will be discussed in general. A set of ideal, ordered networks have been constructed to manipulate the deformation sequence to achieve different fracture modes (i.e. cohesive vs. adhesive).

  13. Towards synthetic molecular motors: a model elastic-network study

    NASA Astrophysics Data System (ADS)

    Sarkar, Amartya; Flechsig, Holger; Mikhailov, Alexander S.

    2016-04-01

    Protein molecular motors play a fundamental role in biological cells and development of their synthetic counterparts is a major challenge. Here, we show how a model motor system with the operation mechanism resembling that of muscle myosin can be designed at the concept level, without addressing the implementation aspects. The model is constructed as an elastic network, similar to the coarse-grained descriptions used for real proteins. We show by numerical simulations that the designed synthetic motor can operate as a deterministic or Brownian ratchet and that there is a continuous transition between such two regimes. The motor operation under external load, approaching the stall condition, is also analysed.

  14. Molecular Dynamics Models of Shaped Particles Using Filling Solutions

    NASA Astrophysics Data System (ADS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    Algorithms such as molecular dynamics are useful computational methods for generating trajectories for studying kinetics and nonequilibrium, as well as equilibrium, problems involving ensembles of nano- and colloidal particles. Highly coarse-grained representations of complex particles can be created by rigidly connecting beads into a compos- ite particle. Here we show that by permitting the beads to vary in radii and to overlap, particles can be modeled with more complicated shapes, approaching perfect polygons and polyhedra in two and three dimensions, respectively. The positions and radii of the beads correspond to afilling solution of the very short-range repulsive shape of the modeled nanoparticle.

  15. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2010-09-01

    Folded polyproline peptides can exist as either left-(PPII) or right-handed (PPI) helices, depending on their environment. In this work, we have characterized the conformations and the free energy landscapes of Ace-(Pro)n-Nme, n =2,3,…,9, and 13 peptides both in vacuo and in an implicit solvent environment. In order to enhance the sampling provided by regular molecular dynamics simulations, we have used the recently developed adaptively biased molecular dynamics method—which provides an accurate description of the free energy landscapes in terms of a set of relevant collective variables—combined with Hamiltonian and temperature replica exchange molecular dynamics methods. The collective variables, which are chosen so as to reflect the stable structures and the "slow modes" of the polyproline system, were based primarily on properties of length and of the cis/trans isomerization associated with the prolyl bonds. Results indicate that the space of peptide structures is characterized not just by pure PPII and PPI structures, but rather by a broad distribution of stable minima with similar free energies. These results are in agreement with recent experimental work. In addition, we have used steered molecular dynamics methods in order to quantitatively estimate the free energy difference of PPI and PPII for peptides of the length n =2,…,5 in vacuo and implicit water and qualitatively investigate transition pathways and mechanisms for the PPII to PPI transitions. A zipper-like mechanism, starting from either the center of the peptide or the amidated end, appear to be the most likely mechanisms for the PPII→PPI transition for the longer peptides.

  16. Core structure of a dissociated edge dislocation and pipe diffusion in copper investigated by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Huang, J.; Meyer, M.; Pontikis, V.

    1991-06-01

    The atomic core structure of two Schockley partial dislocations in copper has been investigated as a function of temperature using molecular dynamics. We employed a resonant model pseudopotential adapted to copper. Our results show that at increasing temperature, the core of the partials becomes increasingly extended and invades entirely the fault ribbon, yet, the separation distance between the partials remains unchanged. At high temperatures vibrational amplitudes of atoms are much larger in the core of the partials than in the bulk of the perfect crystal and the local atomic structure becomes highly disordered. Although disordered, the core structure remains solid-like up to temperatures close to the melting point. Pipe diffusion along this dissociated dislocation has also been investigated. The formation energies of a vacancy and an interstitial are obtained by quasi-dynamics relaxation at T = 0 K while the migration energies for pipe diffusion are calculated at high temperature. Contrary to current assumptions in favour of a vacancy mechanism, we found that in our model the two types of defects may contribute comparably to pipe diffusion since their activation energies are very close. The trajectories of the migrating defects involve not only the partials' cores but also the stacking fault ribbon extending between them, thus explaining why pipe diffusion is slower when the dislocations are dissociated. La structure de coeur de deux dislocations partielles de Schockley a été étudiée, par dynamique moléculaire, en fonction de la température. Nous avons utilisé un pseudopotentiel calculé pour le cuivre à l'aide d'un modèle de résonance. Nos résultats montrent que le coeur des partielles s'étend de plus en plus à mesure que la température augmente et qu'il recouvre complètement le ruban de faute. Cependant la distance de dissociation entre les partielles ne change pas. A haute température, les amplitudes de vibration atomique sont nettement plus

  17. Molecular models need to be tested: the case of a solar flares discoidal HDL model.

    PubMed

    Shih, Amy Y; Sligar, Stephen G; Schulten, Klaus

    2008-06-01

    In the absence of atomic structures of high-density lipoproteins in their lipid-bound states, many molecular models have been produced based on experimental data. Using molecular dynamics, we show that a recently proposed "solar-flares" model of discoidal high-density lipoprotein is implausible. Our simulations show a collapse of the protruding solar-flare loops and a notable protein rearrangement due to an energetically unfavorable orientation of the hydrophobic protein surface toward the aqueous solvent.

  18. Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrej M.; Gray, Malcolm D.

    2012-07-01

    Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.

  19. Radical damage in lipids investigated with the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Green, Mandy C.; Nakata, Hiroya; Fedorov, Dmitri G.; Slipchenko, Lyudmila V.

    2016-05-01

    To quantify the thermodynamics for hydrogen abstraction lipids, the fragment molecular orbital method (FMO) is used to calculate structures and energies of the reactants and products. The analytic second derivative is developed for the open-shell Hartree-Fock formulation of FMO and used to calculate zero point energy corrections. The accuracy of FMO is evaluated for a lipid model and the errors in reaction energies are found not to exceed 0.5 kcal/mol. The reaction energies determined for multiple sites in two lipids are used to discuss likely sites and pathways of radical initiation in membranes.

  20. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    SciTech Connect

    Bowsher, James Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  1. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    PubMed Central

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  2. Single Molecule Switches and Molecular Self-Assembly: Low Temperature STM Investigations and Manipulations

    SciTech Connect

    Iancu, Violeta

    2006-08-01

    This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-popphyrin. The molecules are absorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the det

  3. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  4. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  5. Multiscale model for photoinduced molecular motion in azo polymers.

    PubMed

    Juan, Mathieu L; Plain, Jérôme; Bachelot, Renaud; Royer, Pascal; Gray, Stephen K; Wiederrecht, Gary P

    2009-06-23

    Light-induced isomerization processes in azobenzene-containing polymers produce mass transport that is of much interest for nanoscale imaging and lithography. Yet, despite the development of numerous models to simulate the mass transport mechanism, no model precisely describes all the experimental observations. We develop a new statistical approach that correctly reproduces light-driven mass motion in azobenzene-containing polymers with a high degree of accuracy. Comparisons with experiments show that our model predicts the nanoscale topographic modifications for many different incident field configurations, including optical near-fields produced by plasmonic structures with complex polarization states. In particular, the model allows the detailed molecular motions that lead to these topographic modifications to be identified.

  6. Phase computations and phase models for discrete molecular oscillators

    PubMed Central

    2012-01-01

    Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330

  7. Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling.

    PubMed

    Akatyeva, E; Dumitrică, T

    2012-12-21

    There is a growing need to understand the stability of quasi-one-dimensional one-layer-thick graphene nanoribbons. Objective molecular dynamics based on density-functional tight-binding models are used to investigate the stability against torsional deformations of nanoribbons with bare, F-, and OH-decorated armchair edges. The prevalence of chiral nanoribbons, including homochiral ones, prompted the construction of a simple phenomenological model inspired from the Landau phase transition theory. Our model is based on atomistic data and gives the structural parameters of the nanoribbon as a function of its edge chemistry and axial strain.

  8. Multiscale molecular dynamics/hydrodynamics implementation of two dimensional "Mercedes Benz" water model

    NASA Astrophysics Data System (ADS)

    Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.

    2015-09-01

    A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

  9. Molecular modelling of miraculin: Structural analyses and functional hypotheses.

    PubMed

    Paladino, Antonella; Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2008-02-29

    Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies. PMID:18158914

  10. Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics

    PubMed Central

    Baele, Guy; Li, Wai Lok Sibon; Drummond, Alexei J.; Suchard, Marc A.; Lemey, Philippe

    2013-01-01

    Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic mean estimator (HME) and a posterior simulation-based analog of Akaike’s information criterion through Markov chain Monte Carlo (AICM), in Bayesian model selection of demographic and molecular clock models. Almost simultaneously, a Bayesian model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME, stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using proper priors on a large set of empirical data sets. PMID:23090976

  11. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li

    2012-01-01

    Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.

  12. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers. PMID:26752623

  13. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  14. Investigations on the antiretroviral activity of carbon nanotubes using computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2014-01-01

    Carbon nanotubes are the interesting class of materials with wide range of applications. They have excellent physical, chemical and electrical properties. Numerous reports were made on the antiviral activities of carbon nanotubes. However the mechanism of antiviral action is still in infancy. Herein we report, our recent novel findings on the molecular interactions of carbon nanotubes with the three key target proteins of HIV using computational chemistry approach. Armchair, chiral and zigzag CNTs were modeled and used as ligands for the interaction studies. The structure of the key proteins involved in HIV mediated infection namely HIV- Vpr, Nef and Gag proteins were collected from the PDB database. The docking studies were performed to quantify the interaction of the CNT with the three different disease targets. Results showed that the carbon nanotubes had high binding affinity to these proteins which confirms the antagonistic molecular interaction of carbon nanotubes to the disease targets. The modeled armchair carbon nanotubes had the binding affinities of -12.4 Kcal/mole, -20 Kcal/mole and -11.7 Kcal/mole with the Vpr, Nef and Gag proteins of HIV. Chiral CNTs also had the maximum affinity of -16.4 Kcal/mole to Nef. The binding affinity of chiral CNTs to Vpr and Gag was found to be -10.9 Kcal/mole and -10.3 Kcal/mole respectively. The zigzag CNTs had the binding affinity of -11.1 Kcal/mole with Vpr, -18.3 Kcal/mole with Nef and -10.9 with Gag respectively. The strong molecular interactions suggest the efficacy of CNTs for targeting the HIV mediated retroviral infections.

  15. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  16. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased.

  17. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    NASA Astrophysics Data System (ADS)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular

  18. Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha-delta bungarotoxin-4 inhibitors discovery

    PubMed Central

    Kumar, R. Barani; Suresh, M. Xavier; Priya, B. Shanmuga

    2015-01-01

    Background: The alpha-delta bungartoxin-4 (α-δ-Bgt-4) is a potent neurotoxin produced by highly venomous snake species, Bungarus caeruleus, mainly targeting neuronal acetylcholine receptors (nAchRs) and producing adverse biological malfunctions leading to respiratory paralysis and mortality. Objective: In this study, we predicted the three-dimensional structure of α-δ-Bgt-4 using homology modeling and investigated the conformational changes and the key residues responsible for nAchRs inhibiting activity. Materials and Methods: From the selected plants, which are traditionally used for snake bites, the active compounds are taken and performed molecular interaction studies and also used for modern techniques like pharmacophore modeling and mapping and absorption, distribution, metabolism, elimination and toxicity analysis which may increase the possibility of success. Results: Moreover, 100's of drug-like compounds were retrieved and analyzed through computational virtual screening and allowed for pharmacokinetic profiling, molecular docking and dynamics simulation. Conclusion: Finally the top five drug-like compounds having competing level of inhibition toward α-δ-Bgt-4 toxin were suggested based on their interaction with α-δ-Bgt-4 toxin. PMID:26109766

  19. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m-1 and 4.1 mN · m-1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.

  20. Improved molecular collision models for nonequilibrium rarefied gases

    NASA Astrophysics Data System (ADS)

    Parsons, Neal

    The Direct Simulation Monte Carlo (DSMC) method typically used to model thermochemical nonequilibrium rarefied gases requires accurate total collision cross sections, reaction probabilities, and molecular internal energy exchange models. However, the baseline total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, reaction probabilities are defined such that experimentally determined equilibrium reaction rates are replicated, and internal energy relaxation models are phenomenological in nature. Therefore, these models have questionable validity in modeling strongly nonequilibrium gases with temperatures greater than those possible in experimental test facilities. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method can be used to accurately compute total collision cross sections, reaction probabilities, and internal energy exchange models based on first principles for hypervelocity collision conditions. In this thesis, MD/QCT-based models were used to improve simulations of two unique nonequilibrium rarefied gas systems: the Ionian atmosphere and hypersonic shocks in Earth's atmosphere. The Jovian plasma torus flows over Io at ≈ 57 km/s, inducing high-speed collisions between atmospheric SO2 and the hypervelocity plasma's O atoms and ions. The DSMC method is well-suited to model the rarefied atmosphere, so MD/QCT studies are therefore conducted to improve DSMC collision models of the critical SO2-O collision pair. The MD/QCT trajectory simulations employed a new potential energy surface that was developed using a ReaxFF fit to a set of ab initio calculations. Compared to the MD/QCT results, the baseline DSMC models are found to significantly under-predict total cross sections, use reaction probabilities that are unrealistically high, and give unphysical internal energies above the dissociation energy for non-reacting inelastic collisions and under-predicts post

  1. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    NASA Astrophysics Data System (ADS)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  2. From the molecular structure to spectroscopic and material properties: computational investigation of a bent-core nematic liquid crystal.

    PubMed

    Greco, Cristina; Marini, Alberto; Frezza, Elisa; Ferrarini, Alberta

    2014-05-19

    We present a computational investigation of the nematic phase of the bent-core liquid crystal A131. We use an integrated approach that bridges density functional theory calculations of molecular geometry and torsional potentials to elastic properties through the molecular conformational and orientational distribution function. This unique capability to simultaneously access different length scales enables us to consistently describe molecular and material properties. We can reassign (13)C NMR chemical shifts and analyze the dependence of phase properties on molecular shape. Focusing on the elastic constants we can draw some general conclusions on the unconventional behavior of bent-core nematics and highlight the crucial role of a properly-bent shape.

  3. Mathematical modeling as a tool for investigating cell cycle control networks.

    PubMed

    Sible, Jill C; Tyson, John J

    2007-02-01

    Although not a traditional experimental "method," mathematical modeling can provide a powerful approach for investigating complex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one modeling approach based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations. We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for mathematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects in order to gain a systems-level perspective for complex control systems. PMID:17189866

  4. A molecular-thermodynamic model for polyelectrolyte solutions

    SciTech Connect

    Jiang, J.; Liu, H.; Hu, Y.; Prausnitz, J.M.

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  5. A molecular-thermodynamic model for polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Jianwen; Liu, Honglai; Hu, Ying; Prausnitz, J. M.

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity ɛ. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter Γ that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results.

  6. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    NASA Astrophysics Data System (ADS)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  7. Investigation into the molecular and thermodynamic basis of protein interactions in multimodal chromatography using functionalized nanoparticles.

    PubMed

    Srinivasan, Kartik; Parimal, Siddharth; Lopez, Maria M; McCallum, Scott A; Cramer, Steven M

    2014-11-11

    Although multimodal chromatography offers significant potential for bioseparations, there is a lack of molecular level understanding of the nature of protein binding in these systems. In this study a nanoparticle system is employed that can simulate a chromatographic resin surface while also being amenable to isothermal titration calorimetry (ITC) and solution NMR. ITC and NMR titration experiments are carried out with (15)N-labeled ubiquitin to investigate the interactions of ubiquitin with nanoparticles functionalized with two industrially important multimodal ligands. The ITC results suggest that binding to both multimodal ligand surfaces is entropically driven over a range of temperatures and that this is due primarily to the release of surface bound waters. In order to reveal structural details of the interaction process, binding-induced chemical shift changes obtained from the NMR experiments are employed to obtain dissociation constants of individual amino acid residues on the protein surface. The residue level information obtained from NMR is then used to identify a preferred binding face on ubiquitin for interaction to both multimodal ligand surfaces. In addition, electrostatic potential and spatial aggregation propensity maps are used to determine important protein surface property data that are shown to correlate well with the molecular level information obtained from NMR. Importantly, the data demonstrate that the cluster of interacting residues on the protein surface act co-operatively to give rise to multimodal binding affinities several orders of magnitude greater than those obtained previously for interactions with free solution ligands. The use of NMR and ITC to study protein interactions with functionalized nanoparticles offers a new tool for obtaining important molecular and thermodynamic insights into protein affinity in multimodal chromatographic systems. PMID:25310519

  8. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  9. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  10. New models and molecular markers in evaluation of developmental toxicity

    SciTech Connect

    Huuskonen, Hannele . E-mail: hannele.huuskonen@sttv.fi

    2005-09-01

    Mammalian and non-mammalian embryos and embryonic stem cells may be used as models in mechanistic studies and in testing embryotoxicity of compounds. In addition to conventional culture methods, genetic modifications and use of molecular markers offer significant advantages in mechanistic studies as well as in developing new test methods for embryotoxicity. Zebrafish model has been used for a long time and at present several applications are available. It is an easy vertebral non-mammalian model, whose genome is largely known and several genetic modifications are easily constructed to study gene expression or knocked down genes. Fluorescent marker proteins can be used also in zebrafish to indicate gene activation in transgenic models. Chemical genetics approach has been developed using zebrafish model. This is a new approach to screen small molecules that regulate signaling pathways. Embryonic stem cells have been used in mechanistic studies and mouse embryonic stem cell test has been validated to study embryotoxicity in vitro. This method has been improved using quantitative measurements of molecular endpoints by real-time RT-PCR or fluorescent activated cell sorting methods (FACS). Methods facilitating differentiation to several different cell types are available. We have studied preimplantation mouse embryos as a possible model for in vitro testing. In this method, superovulated and in vivo fertilized preimplantation embryos were collected at morula stage and cultured up to blastocysts. The mouse preimplantation culture test was improved by quantitative gene expression measurement using two-step real-time RT-PCR methods. New endpoints improve the tests of in vitro embryotoxicity because subjective assessments are replaced by objective measurements. In addition, automation is possible and less time is needed for analysis. Thus, high throughput screening will come possible to test large numbers of compounds.

  11. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGESBeta

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  12. Cross-link guided molecular modeling with ROSETTA.

    PubMed

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  13. Towards Accurate Molecular Modeling of Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.

    2010-03-01

    There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.

  14. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  15. A source model for the L134N molecular cloud

    NASA Technical Reports Server (NTRS)

    Swade, Daryl A.; Schloerb, F. P.

    1992-01-01

    The dark molecular cloud L134N is observed at millimeter wavelengths in the CS (J = 3-2), OCS (J = 7-6), and HDO (1 sub 11-1 sub 10) transitions. The CS (J = 3-2) transition was observed at four positions within the cloud, while the other two transitions were observed at one position each. Fractional abundances in the LTE approximation are calculated for each emission line detected. L134N appears to have a high-density core characterized by NH3, C3H2, and H(C-13)O(+) emission maps. A lower density envelope characterized by C(0-18), CS (J = 2-1), and SO emission surrounds the core. There appears to be a gas-phase oxygen abundance gradient in L134N with atomic oxygen depleted in the high-density core. Observed molecular distributions within L134N can be explained by a model in which chemical and physical processes in icy-dust-grain mantles influence the gas-phase molecular abundances.

  16. A source model for the L134N molecular cloud

    NASA Astrophysics Data System (ADS)

    Swade, Daryl A.; Schloerb, F. P.

    1992-06-01

    The dark molecular cloud L134N is observed at millimeter wavelengths in the CS (J = 3-2), OCS (J = 7-6), and HDO (111-1 sub 10) transitions. The CS (J = 3-2) transition was observed at four positions within the cloud, while the other two transitions were observed at one position each. Fractional abundances in the LTE approximation are calculated for each emission line detected. L134N appears to have a high-density core characterized by NH3, C3H2, and H(C-13)O(+) emission maps. A lower density envelope characterized by C(0-18), CS (J = 2-1), and SO emission surrounds the core. There appears to be a gas-phase oxygen abundance gradient in L134N with atomic oxygen depleted in the high-density core. Observed molecular distributions within L134N can be explained by a model in which chemical and physical processes in icy-dust-grain mantles influence the gas-phase molecular abundances.

  17. Coupled continuum and molecular model of flow through fibrous filter

    NASA Astrophysics Data System (ADS)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 < Kn ⩽ 1, the difference in pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  18. Lessons from molecular modeling human α-L-iduronidase.

    PubMed

    Figueiredo, Danieli Forgiarini; Antunes, Dinler A; Rigo, Maurício M; Mendes, Marcus F A; Silva, Jader P; Mayer, Fabiana Q; Matte, Ursula; Giugliani, Roberto; Vieira, Gustavo F; Sinigaglia, Marialva

    2014-11-01

    Human α-L-iduronidase (IDUA) is a member of glycoside hydrolase family and is involved in the catabolism of glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS). Mutations in this enzyme are responsible for mucopolysaccharidosis I (MPS I), an inherited lysosomal storage disorder. Despite great interest in determining and studying this enzyme structure, the lack of a high identity to templates and other technical issues have challenged both bioinformaticians and crystallographers, until the recent publication of an IDUA crystal structure (PDB: 4JXP). In the present work, four alternative IDUA models, generated and evaluated prior to crystallographic determination, were compared to the 4JXP structure. A combined analysis using several viability assessment tools and molecular dynamics simulations highlights the strengths and limitations of different comparative modeling protocols, all of which are based on the same low identity template (only 22%). Incorrect alignment between the target and template was confirmed to be a major bottleneck in homology modeling, regardless of the modeling software used. Moreover, secondary structure analysis during a 50ns simulation seems to be useful for indicating alignment errors and structural instabilities. The best model was achieved through the combined use of Phyre 2 and Modeller, suggesting the use of this protocol for the modeling of other proteins that still lack high identity templates.

  19. Molecular Dynamics Trajectory Compression with a Coarse-Grained Model

    PubMed Central

    Cheng, Yi-Ming; Gopal, Srinivasa Murthy; Law, Sean M.; Feig, Michael

    2012-01-01

    Molecular dynamics trajectories are very data-intensive thereby limiting sharing and archival of such data. One possible solution is compression of trajectory data. Here, trajectory compression based on conversion to the coarse-grained model PRIMO is proposed. The compressed data is about one third of the original data and fast decompression is possible with an analytical reconstruction procedure from PRIMO to all-atom representations. This protocol largely preserves structural features and to a more limited extent also energetic features of the original trajectory. PMID:22025759

  20. Kinetic modeling based probabilistic segmentation for molecular images.

    PubMed

    Saad, Ahmed; Hamarneh, Ghassan; Möller, Torsten; Smith, Ben

    2008-01-01

    We propose a semi-supervised, kinetic modeling based segmentation technique for molecular imaging applications. It is an iterative, self-learning algorithm based on uncertainty principles, designed to alleviate low signal-to-noise ratio (SNR) and partial volume effect (PVE) problems. Synthetic fluorodeoxyglucose (FDG) and simulated Raclopride dynamic positron emission tomography (dPET) brain images with excessive noise levels are used to validate our algorithm. We show, qualitatively and quantitatively, that our algorithm outperforms state-of-the-art techniques in identifying different functional regions and recovering the kinetic parameters.

  1. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  2. Myosin-V stepping kinetics: a molecular model for processivity.

    PubMed

    Rief, M; Rock, R S; Mehta, A D; Mooseker, M S; Cheney, R E; Spudich, J A

    2000-08-15

    Myosin-V is a molecular motor that moves processively along its actin track. We have used a feedback-enhanced optical trap to examine the stepping kinetics of this movement. By analyzing the distribution of time periods separating discrete approximately 36-nm mechanical steps, we characterize the number and duration of rate-limiting biochemical transitions preceding each such step. These data show that myosin-V is a tightly coupled motor whose cycle time is limited by ADP release. On the basis of these results, we propose a model for myosin-V processivity.

  3. Investigation of Transmission Line Models for Switching Overvoltages Studies

    NASA Astrophysics Data System (ADS)

    Sadeghkhani, Iman; Ketabi, Abbas; Feuillet, Rene

    2013-06-01

    Overvoltages caused by switching operation of power system equipments might damage some equipment and delay power system restoration. This paper presents a comparison between transmission line (TL) models for overvoltages study and investigates which TL model is most proper for every case study. Both simulation time and accuracy factors of TL models are considered for selecting best TL model. Various cases of switching of transformer, shunt reactor, capacitor bank, and transmission line are investigated and simulation results for a partial of 39-bus New England test system, show that the proposed TL model evaluation increase accuracy and reduce simulation time (accelerate power system restoration) properly.

  4. Model morphing and sequence assignment after molecular replacement

    SciTech Connect

    Terwilliger, Thomas C.; Read, Randy J.; Adams, Paul D.; Brunger, Axel T.; Afonine, Pavel V.; Hung, Li-Wei

    2013-11-01

    A procedure for model building is described that combines morphing a model to match a density map, trimming the morphed model and aligning the model to a sequence. A procedure termed ‘morphing’ for improving a model after it has been placed in the crystallographic cell by molecular replacement has recently been developed. Morphing consists of applying a smooth deformation to a model to make it match an electron-density map more closely. Morphing does not change the identities of the residues in the chain, only their coordinates. Consequently, if the true structure differs from the working model by containing different residues, these differences cannot be corrected by morphing. Here, a procedure that helps to address this limitation is described. The goal of the procedure is to obtain a relatively complete model that has accurate main-chain atomic positions and residues that are correctly assigned to the sequence. Residues in a morphed model that do not match the electron-density map are removed. Each segment of the resulting trimmed morphed model is then assigned to the sequence of the molecule using information about the connectivity of the chains from the working model and from connections that can be identified from the electron-density map. The procedure was tested by application to a recently determined structure at a resolution of 3.2 Å and was found to increase the number of correctly identified residues in this structure from the 88 obtained using phenix.resolve sequence assignment alone (Terwilliger, 2003 ▶) to 247 of a possible 359. Additionally, the procedure was tested by application to a series of templates with sequence identities to a target structure ranging between 7 and 36%. The mean fraction of correctly identified residues in these cases was increased from 33% using phenix.resolve sequence assignment to 47% using the current procedure. The procedure is simple to apply and is available in the Phenix software package.

  5. Investigation of molecular interaction between cefpodoxime acid and human mixtard insulin by ultrasonic and spectral methods.

    PubMed

    Ganesh, T; Kannappan, V; Mohamed Kamil, M G; Kumar, R

    2016-09-10

    This paper deals with the extensive investigation of molecular interaction between third generation cephalosporin antibiotic, Cefpodoxime Acid (CA) and Human Mixtard Insulin (HMI) in an aqueous medium through ultrasonic, dilute solution viscometric (DSV) and spectral [UV-vis, Attenuated total reflection (ATR)-FT IR] methods at various blend compositions of the drug and insulin at three different (303K, 310K and 313K) temperatures. This is an attempt to unravel the possibility of drug induced hypoglycemic effect. The existence of solute-solute interaction in aqueous solutions of CA and HMI is established from the variation of ultrasonic velocity and other acoustical parameters with blend composition. DSV method is used to confirm the range of blend composition at which the molecular interaction is significant. The conclusions drawn from ultrasonic and DSV methods are further established by the UV-vis and ATR- FT IR spectral studies of ternary mixtures at different blend compositions. Further, the existing interactions suggest the possibility of cefpodoxime acid induced hypoglycemia which is discussed based on the structural aspects of the two components.

  6. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation

    PubMed Central

    Cui, Fengchao; Yang, Kecheng; Li, Yunqi

    2015-01-01

    To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485

  7. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  8. Molecular-Level Investigations of Nucleation Mechanisms and Kinetics of Formation of Environmental Nanoparticles

    SciTech Connect

    Young-Shin Jun; Glenn A. Waychunas

    2007-04-19

    Environmental nanoparticles are often poorly-crystalline or metastable structures, whose kinetics of formation and growth are poorly understood. Further, the sorption or growth of nanoparticles on mineral surfaces may control the mineral surface's reactivity and modify its ability to influence contaminant transport. Due to the characteristic length scale, a holistic understanding of the nucleation mechanisms and kinetics of nanoparticle formation on mineral surfaces is difficult to achieve with traditional methodology. In this work, our intent is to determine the molecular nature of nucleation on surfaces, the kinetics of surface nucleation and growth, and the effect of crystal surface topology using new synchrotron-based techniques. We have approached these objectives by: (1) combining state-of-the-art crystal-truncation rod diffraction (CTR) and grazing incidence x-ray absorption fine structure spectroscopy (GIXAS) techniques to investigate the three-dimensional molecular-scale geometry of silicate monomer sorption on the r-plane of hematite; and (2) developing a new grazing-incidence small angle x-ray scattering (GISAXS) setup at SSRL (0.08 nm{sup -1} < q < 8 nm{sup -1}) to explore the initial development of environmental nanoparticles on various mineral surfaces. This study also includes complementary techniques such as atomic force microscopy (AFM), bulk SAXS, dynamic light scattering (DLS), XRD, and TEM.

  9. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation.

    PubMed

    Cui, Fengchao; Yang, Kecheng; Li, Yunqi

    2015-01-01

    To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189-195, 214-220 and 225-228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485

  10. Paramagnetic particle assemblies as colloidal models for atomic and molecular systems

    NASA Astrophysics Data System (ADS)

    Li, Dichuan

    2011-12-01

    Colloidal particles are ideal models for studying the behavior of atomic and molecular systems. They resemble their atomic and molecular analogues in that their dynamics are driven by thermal energy and their equilibrium properties are controlled by inter-particle interactions. Based on this analogy, it is reasonable to construct colloidal chains, where each particle represents a repeat unit, as models for polymers. The advantages of this system over molecular systems are its controllable rigidity, contour length and diameter, as well as the convenience to capture its instantaneous shape and position via video microscopy, which are not trivial to realize in molecular systems. By utilizing the dipolar properties of magnetic colloids, a number of groups have assembled semiflexible and rigid colloidal chains by cross-linking magnetic beads under a magnetic field using polymer linkers. Recently, efforts in constructing colloidal chains led even to anisotropic magnetic colloidal chains that mimic the detailed atomic arrangements of polymers. These properties make colloidal chains possible candidates for the classic bead-spring or bead-rod model systems for semiflexible and rigid polymers. In my thesis, I present a method for generating linear colloidal chain structures by linking surface functionalized paramagnetic particles using DNA. First, I investigate the force interactions between individual magnetic particles under different conditions to optimize the resulting chain stability. A systematic study the bending and rotational diffusion dynamics of the chains and their relationship with the DNA linking chemistry is presented. I then demonstrate their use as a ideal model system to study polymer dynamics In addition, a technique to measure short-range repulsive surface forces between these colloids with high precision was developed. Building on these repulsive force studies, a colloidal system to study 2-D phase transitions was created. This thesis provides insights

  11. Accelerating Molecular Dynamics Simulations to Investigate Shock Response at the Mesoscales

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash; Agarwal, Garvit; Valisetty, Ramakrishna; Namburu, Raju; Rajendran, Arunachalam

    The capability of large-scale molecular dynamics (MD) simulations to model dynamic response of materials is limited to system sizes at the nanoscales and the nanosecond timescales. A new method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of MD simulations to the mesoscales. The QCGD method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and retaining the energetics of these atoms as would be predicted in MD simulations. The QCGD method allows the modeling of larger size systems and larger time-steps for simulations and thus is able to extend the capabilities of MD simulations to model materials behavior at mesoscales. The success of the QCGD method is demonstrated by reproducing the shock propagation and failure behavior of single crystal and nanocrystalline Al microstructures as predicted using MD simulations and also modeling the shock response and failure behavior of Al microstructures at the micron length scales. The scaling relationships, the hugoniot behavior, and the predicted spall strengths using the MD and the QCGD simulations will be presented. This work is sponsored by the US Army Research Office under Contract# W911NF-14-1-0257.

  12. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  13. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  14. The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis.

    PubMed

    Yang, Y; Pan, L; Lightstone, F C; Merz, K M

    2016-01-01

    The potential of mean force simulations, widely applied in Monte Carlo or molecular dynamics simulations, are useful tools to examine the free energy variation as a function of one or more specific reaction coordinate(s) for a given system. Implementation of the potential of mean force in the simulations of biological processes, such as enzyme catalysis, can help overcome the difficulties of sampling specific regions on the energy landscape and provide useful insights to understand the catalytic mechanism. The potential of mean force simulations usually require many, possibly parallelizable, short simulations instead of a few extremely long simulations and, therefore, are fairly manageable for most research facilities. In this chapter, we provide detailed protocols for applying the potential of mean force simulations to investigate enzymatic mechanisms for several different enzyme systems. PMID:27498632

  15. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

    PubMed Central

    2013-01-01

    Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β-tin-Ge was found in the subsurface region beneath the tool when indented on the (010) plane, while direct amorphization was observed in the region right under the indenter when the germanium was loaded along the [101] and [111] directions. The transformed phases extend along the < 110 > slip direction of germanium. The depth and shape of the deformed layers after unloading are quite different according to the crystal orientation of the indentation plane. The study results suggest that phase transformation is the dominant mechanism of deformation of monocrystalline germanium film in nanoindentation. PMID:23947487

  16. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    NASA Astrophysics Data System (ADS)

    Liu, Yingshuai; Li, Xuelian; Bao, Shujuan; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml-1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.

  17. Real-time investigation of nucleic acids phosphorylation process using molecular beacons.

    PubMed

    Tang, Zhiwen; Wang, Kemin; Tan, Weihong; Ma, Changbei; Li, Jun; Liu, Lingfeng; Guo, Qiuping; Meng, Xiangxian

    2005-01-01

    Phosphorylation of nucleic acids is an indispensable process to repair strand interruption of nucleic acids. We have studied the process of phosphorylation using molecular beacon (MB) DNA probes in real-time and with high selectivity. The MB employed in this method is devised to sense the product of a 'phosphorylation-ligation' coupled enzyme reaction. Compared with the current assays, this novel method is convenient, fast, selective, highly sensitive and capable of real-time monitoring in a homogenous solution. The preference of T4 polynucleotide kinase (T4 PNK) has been investigated using this approach. The results revealed that a single-stranded oligonucleotide containing guanine at the 5' termini is most preferred, while those utilizing cytosine in this location are least preferred. The preference of (T)9 was reduced greatly when phosphoryl was modified at the 5' end, implying that T4 PNK could discern the phosphorylated/unphosphorylated oligonucleotides. The increase of oligonucleotide DNA length leads to an enhancement in preference. A fast and accurate method for assaying the kinase activity of T4 PNK has been developed with a wide linear detection range from 0.002 to 4.0 U/ml in 3 min. The effects of certain factors, such as NTP, ADP, (NH4)2SO4 and Na2HPO4, on phosphorylation have been investigated. This novel approach enables us to investigate the interactions between proteins and nucleic acids in a homogenous solution, such as those found in DNA repair or in drug development.

  18. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Rohiwal, S. S.; Satvekar, R. K.; Tiwari, A. P.; Raut, A. V.; Kumbhar, S. G.; Pawar, S. H.

    2015-04-01

    The protein nanoparticles formulation is a challenging task as they are prone to undergo conformational transitions while processing which may affect bioavailability for bioactive compounds. Herein, a modified desolvation method is employed to prepare Bovine Serum Albumin nanoparticles, with controllable particle size ranging from 100 to 300 nm and low polydispersity index. The factors influencing the size and structure of BSA NPs viz. protein concentration, pH and the conditions for purification are well investigated. The structure of BSA NPs is altered due to processing, and may affect the effective binding ability with drugs and bioactive compounds. With that aims, investigations of molecular characteristics of BSA NPs are carried out in detail by using spectroscopic techniques. UV-visible absorption and Fourier Transform Infrared demonstrate the alteration in protein structure of BSA NPs whereas the FT-Raman spectroscopy investigates changes in the secondary and tertiary structures of the protein. The conformational changes of BSA NPs are observed by change in fluorescence intensity and emission maximum wavelength of tryptophan residue by fluorescence spectroscopy. The field emission scanning electron and atomic force microscopy micrographs confirm the size and semi-spherical morphology of the BSA NPs. The effect of concentration and pH on particle size distribution is studied by particle size analyzer.

  19. Single molecule switches and molecular self-assembly: Low temperature STM investigations and manipulations

    NASA Astrophysics Data System (ADS)

    Iancu, Violeta

    This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-porphyrin. The molecules are adsorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the detailed underlying switching mechanisms are uncovered from the statistical analyses conducted over 1200 switching events together with the support of geometrically relaxed parametric calculations. The second switch, a spintronic switch, uses Co-porphyrin conformational changes to tune the spin-electron interaction between the Co atom and Cu(111) electrons. A change in the molecular conformation, from saddle to planar, leads to enhanced spin-electron coupling strength, and consequently, elevated Kondo temperatures. Self-assembly process is exploited for both the molecules and the analyses reveal important information regarding the layer growth and the electronic differences that appear due to the modified molecule-substrate environment.

  20. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin.

    PubMed Central

    Saam, Jan; Tajkhorshid, Emad; Hayashi, Shigehiko; Schulten, Klaus

    2002-01-01

    Retinal cis-trans isomerization and early relaxation steps have been studied in a 10-ns molecular dynamics simulation of a fully hydrated model of membrane-embedded rhodopsin. The isomerization, induced by transiently switching the potential energy function governing the C(11)==C(12) dihedral angle of retinal, completes within 150 fs and yields a strongly distorted retinal. The most significant conformational changes in the binding pocket are straightening of retinal's polyene chain and separation of its beta-ionone ring from Trp-265. In the following 500 ps, transition of 6s-cis to 6s-trans retinal and dramatic changes in the hydrogen bonding network of the binding pocket involving the counterion for the protonated Schiff base, Glu-113, occur. Furthermore, the energy initially stored internally in the distorted retinal is transformed into nonbonding interactions of retinal with its environment. During the following 10 ns, increased mobilities of some parts of the protein, such as the kinked regions of the helices, mainly helix VI, and the intracellular loop I2, were observed, as well as transient structural changes involving the conserved salt bridge between Glu-134 and Arg-135. These features prepare the protein for major structural transformations achieved later in the photocycle. Retinal's motion, in particular, can be compared to an opening turnstile freeing the way for the proposed rotation of helix VI. This was demonstrated by a steered molecular dynamics simulation in which an applied torque enforced the rotation of helix VI. PMID:12496081

  1. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures.

    PubMed

    Takemasa, Makoto; Nishinari, Katsuyoshi

    2016-03-31

    Although the intermolecular nuclear Overhauser effect (NOE) signal was valuable to elucidate molecular association structure, it could not always be observed for associated molecules due to the short spin-spin relaxation time T2 in NMR measurements, especially for high molar mass systems. While almost no study has been reported for high molar mass polymers (>1 × 10(6)), especially for polysaccharide-polysaccharide interactions, NOE signals were observed for the first time between two different types of polysaccharides, xanthan and galactomannan (locust bean gum), forming a synergistic gel, as a direct evidence of intermolecular binding of polysaccharides. The NOE peak was found between pyruvic acid in xanthan and anomeric proton of mannose of galactomannan. This NOE signal was observed only when mixing time >0.5 s, indicating indirect NOEs caused by spin diffusion. Therefore, this NOE could not be used to construct the molecular models. However, it is a direct evidence for the binding between two different types of polysaccharide to elucidate the synergistic gelation. This NOE signal was observed only for low molar mass galactomannans (1.4 × 10(4)). T2 of pyruvate methyl drastically decreased at low temperatures in the presence of synergistic interaction, suggesting that pyruvate group at terminal end of side chain in xanthan plays an essential role in synergistic interaction. PMID:26943259

  2. Multiensemble Markov models of molecular thermodynamics and kinetics

    PubMed Central

    Wu, Hao; Paul, Fabian; Noé, Frank

    2016-01-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models—clustering of high-dimensional spaces and modeling of complex many-state systems—with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein–ligand binding model. PMID:27226302

  3. Synthesis of molecular complexes based on porphyrins for the investigation of the energy transfer and primary charge separation in photosynthesis

    NASA Astrophysics Data System (ADS)

    Gribkova, S. E.; Evstigneeva, Rima P.; Luzgina, Valentina N.

    1993-10-01

    Data on the synthesis, steric structures, and photochemical properties of molecular diad systems based on porphyrins as synthetic models of the reaction centre in photosynthesis are considered and treated systematically. The bibliography includes 102 references.

  4. A Model of In vitro Plasticity at the Parallel Fiber—Molecular Layer Interneuron Synapses

    PubMed Central

    Lennon, William; Yamazaki, Tadashi; Hecht-Nielsen, Robert

    2015-01-01

    Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here. PMID:26733856

  5. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites With Diversely Expressed Enzymes.

    PubMed

    Chude-Okonkwo, Uche A K; Malekian, Reza; Maharaj, B T Sunil

    2016-04-01

    Targeted drug delivery (TDD) for disease therapy using liposomes as nanocarriers has received extensive attention in the literature. The liposome's ability to incorporate capabilities such as long circulation, stimuli responsiveness, and targeting characteristics, makes it a versatile nanocarrier. Timely drug release at the targeted site requires that trigger stimuli such as pH, light, and enzymes be uniquely overexpressed at the targeted site. However, in some cases, the targeted sites may not express trigger stimuli significantly, hence, achieving effective TDD at those sites is challenging. In this paper, we present a molecular communication-based TDD model for the delivery of therapeutic drugs to multiple sites that may or may not express trigger stimuli. The nanotransmitter and nanoreceiver models for the molecular communication system are presented. Here, the nanotransmitter and nanoreceiver are injected into the targeted body system's blood network. The compartmental pharmacokinetics model is employed to model the transportation of these therapeutic nanocarriers to the targeted sites where they are meant to anchor before the delivery process commences. We also provide analytical expressions for the delivered drug concentration. The effectiveness of the proposed model is investigated for drug delivery on tissue surfaces. Results show that the effectiveness of the proposed molecular communication-based TDD depends on parameters such as the total transmitter volume capacity, the receiver radius, the diffusion characteristic of the microenvironment of the targeted sites, and the concentration of the enzymes associated with the nanotransmitter and the nanoreceiver designs.

  6. Assessment of a Molecular Diffusion Model in MELCOR

    SciTech Connect

    Chang OH; Richard Moore

    2005-06-01

    The MELCOR (version 1.8.5) [1] computer code with INEEL revisions is being improved for the analysis of very high temperature gas-cooled reactors [2]. Following a loss-of-coolant accident, flow through the reactor vessel may initially stagnate due to a non-uniform concentration of helium and air. However, molecular diffusion will eventually result in a uniform concentration of air and helium. The differences in fluid temperatures within the reactor vessel will then result in the establishment of a natural circulation flow that can supply significant amounts of air to the reactor core. The heat released by the resulting oxidation of graphite in the reactor core has the potential to increase the peak fuel temperature. In order to analyze the effects of oxidation on the response of the reactor during accidents, a molecular diffusion model was added to MELCOR. The model is based on Fick's Second Law for spatially uniform pressure and temperature. This paper describes equimolal counter diffusion experiments in a two bulb diffusion cell and the results of the assessment calculations.

  7. Aggregation of model asphaltenes: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Costa, J. L. L. F. S.; Simionesie, D.; Zhang, Z. J.; Mulheran, P. A.

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes.

  8. Modeling and Computer Simulation: Molecular Dynamics and Kinetic Monte Carlo

    SciTech Connect

    Wirth, B.D.; Caturla, M.J.; Diaz de la Rubia, T.

    2000-10-10

    Recent years have witnessed tremendous advances in the realistic multiscale simulation of complex physical phenomena, such as irradiation and aging effects of materials, made possible by the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials and the vast improvements in computational power and parallel computing. As a result, computational materials science is emerging as an important complement to theory and experiment to provide fundamental materials science insight. This article describes the atomistic modeling techniques of molecular dynamics (MD) and kinetic Monte Carlo (KMC), and an example of their application to radiation damage production and accumulation in metals. It is important to note at the outset that the primary objective of atomistic computer simulation should be obtaining physical insight into atomic-level processes. Classical molecular dynamics is a powerful method for obtaining insight about the dynamics of physical processes that occur on relatively short time scales. Current computational capability allows treatment of atomic systems containing as many as 10{sup 9} atoms for times on the order of 100 ns (10{sup -7}s). The main limitation of classical MD simulation is the relatively short times accessible. Kinetic Monte Carlo provides the ability to reach macroscopic times by modeling diffusional processes and time-scales rather than individual atomic vibrations. Coupling MD and KMC has developed into a powerful, multiscale tool for the simulation of radiation damage in metals.

  9. Aggregation of model asphaltenes: a molecular dynamics study.

    PubMed

    Costa, J L L F S; Simionesie, D; Zhang, Z J; Mulheran, P A

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes. PMID:27465036

  10. Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2016-03-01

    Treating differential molecular diffusion correctly and accurately remains as a great challenge to the modeling of turbulent non-premixed combustion. The aim of this paper is to develop consistent modeling strategies for differential molecular diffusion in flamelet models. Two types of differential molecular diffusion models are introduced, linear differential diffusion models and nonlinear differential diffusion models. A multi-component turbulent mixing layer problem is analyzed in detail to gain insights into differential molecular diffusion and its characteristics, particularly the dependence of differential molecular diffusion on the Reynolds number and the Lewis number. These characteristics are then used to validate the differential molecular diffusion models. Finally, the new models are applied to the modeling of a series of laboratory-scale turbulent non-premixed jet flames with different Reynolds number (Sandia Flames B, C, and D) to further assess the models' performance.

  11. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  12. Energetics and efficiency of a molecular motor model

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.; Svane, Axel

    2013-12-01

    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action.

  13. Molecular modeling of pathogenesis-related proteins of family 5.

    PubMed

    Thompson, Claudia E; Fernandes, Cláudia L; de Souza, Osmar N; Salzano, Francisco M; Bonatto, Sandro L; Freitas, Loreta B

    2006-01-01

    The family of pathogenesis-related (PR) 5 proteins have diverse functions, and some of them are classified as thaumatins, osmotins, and inhibitors of alpha-amylase or trypsin. Although the specific function of many PR5 in plants is unknown, they are involved in the acquired systemic resistance and response to biotic stress, causing the inhibition of hyphal growth and reduction of spore germination, probably by a membrane permeabilization mechanism or by interaction with pathogen receptors. We have constructed three-dimensional models of four proteins belonging to the Rosaceae and Fagaceae botanical families by using the technique of comparative molecular modelling by homology. There are four main structural differences between all the PR5, corresponding to regions with replacements of amino acids. Folding and the secondary structures are very similar for all of them. However, the isoelectric point and charge distributions differ for each protein.

  14. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    PubMed

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  15. Deformation-induced damage and recovery in model hydrogels - A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Jancar, Josef; Vilgis, Thomas A.

    2016-09-01

    Using molecular dynamics simulation of a model hybrid cross-link hydrogel, we investigate the network damage evolution and the related structure transformations. We model the hydrogel structure as a network-connected assembly of crosslinked clusters whereby deformation-induced damage is considered along with network recovery. The two principal mechanisms involved in hydrogel recovery from deformation include segment hops of the building structure units (segments) between clusters and cluster shape modification. These mechanisms act either instantaneously, or with a certain time delay after the onset of deformation. By elucidating the conditions under which one of the mechanisms prevails, one may design hydrogel materials with a desired response to deformation.

  16. A review of molecular modelling of electric double layer capacitors.

    PubMed

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  17. A Module Analysis Approach to Investigate Molecular Mechanism of TCM Formula: A Trial on Shu-feng-jie-du Formula

    PubMed Central

    Zhang, Fangbo; Tang, Shihuan; Liu, Xi; Gao, Yibo; Wang, Yanping

    2013-01-01

    At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis. PMID:24376467

  18. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    SciTech Connect

    Chen, Chun-Yu; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Li, Xin; Liu, Emily; Liu, Yun; Smith, Gregory Scott; Wu, Bin; Yang, Jun; Do, Changwoo

    2011-01-01

    An experimental scheme using contrast variation small angle neutron scattering technique (SANS), is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers (PAMAM) solutions. The focus is placed on understanding the dependence of intra-dendrimer water and polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH value of solution. Assuming the spherical symmetry in the spatial arrangement of the constituent component of dendrimer, and the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside dendrimer, the intra-dendrimer water distribution along the radial direction can be determined based on the model of coherent scattering cross section developed in this work. Moreover, our result clearly reveals an outward relocation of the peripheral groups, as well as the enhanced intra-dendrimer hydration, upon increasing the molecular protonation and therefore allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  19. Homology modeling and molecular dynamics simulations of lymphotactin.

    PubMed Central

    Buyong; Xiong, J.; Lubkowski, J.; Nussinov, R.

    2000-01-01

    We have modeled the structure of human lymphotactin (hLpnt), by homology modeling and molecular dynamics simulations. This chemokine is unique in having a single disulfide bond and a long C-terminal tail. Because other structural classes of chemokines have two pairs of Cys residues, compared to one in Lpnt, and because it has been shown that both disulfide bonds are required for stability and function, the question arises how the Lpnt maintains its structural integrity. The initial structure of hLpnt was constructed by homology modeling. The first 63 residues in the monomer of hLpnt were modeled using the structure of the human CC chemokine, RANTES, whose sequence appeared most similar. The structure of the long C-terminal tail, missing in RANTES, was taken from the human muscle fatty-acid binding protein. In a Protein Data Bank search, this protein was found to contain a sequence that was most homologous to the long tail. Consequently, the modeled hLpnt C-terminal tail consisted of both alpha-helical and beta-motifs. The complete model of the hLpnt monomer consisted of two alpha-helices located above the five-stranded beta-sheet. Molecular dynamics simulations of the solvated initial model have indicated that the stability of the predicted fold is related to the geometry of Pro78. The five-stranded beta-sheet appeared to be preserved only when Pro78 was modeled in the cis conformation. Simulations were also performed both for the C-terminal truncated forms of the hLpnt that contained one or two (CC chemokine-like) disulfide bonds, and for the chicken Lpnt (cLpnt). Our MD simulations indicated that the turn region (T30-G34) in hLpnt is important for the interactions with the receptor, and that the long C-terminal region stabilizes both the turn (T30-G34) and the five-stranded beta-sheet. The major conclusion from our theoretical studies is that the lack of one disulfide bond and the extension of the C-terminus in hLptn are mutually complementary. It is very likely

  20. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  1. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. PMID:24680836

  2. An investigation of substituted aromatic isocyanide based molecular-level wires on metal surfaces

    NASA Astrophysics Data System (ADS)

    Habeeb, Zeeshan

    Ever since hemiquinone was presented as the first potential conductor having an electron donor catechol moiety and an electron acceptor quinone component separated by an aliphatic insulator, thus behaving as a rectifier. However, due to experimental limitations, it was not until 1988 that this rectifying behavior could be confirmed by scanning tunneling microscopic measurements, but even then these early experiments were marred by irreproducibility. Since then, with rapidly improving technology, different strategies were developed to probe the conducting properties of different kinds of molecules with much improved reducibility. With these experimental probes the design of a molecular-level conductor essentially consists of selecting a combination of the backbone of the molecule, its functional anchoring groups and the choice of the metal electrode that all complement each other. In this study, the conduction properties of aromatic isocyanide-based molecules were studied on different metal surfaces. 1,4 phenyldiisocyanide (PDI), 2,3,5,6-Tetrachloro 1,4-phenyldiisocyanide (TMPDI) and 2,3,5,6-Tetramethyl 1,4-phenyldiisocyanide (TMPDI) are the simplest molecular-level linker conductors used in this study. Organometallic polymers of varying lengths were also studied; (CNC6H4NC)2W(DPPE) 2 (1W), (CNC6H4NC)3(W(DPPE)2) 2 (2W) and (CNC6H4NC)4(W(DPPE) 2)3 (3W) were probed for their conduction properties. Before the conduction properties can be investigated, the surface manner in which the linker molecules bond to the surface of a metal electrode is investigated. Such a study has been performed on solution self-assembled monolayers (SAMs) of the linker and organometallic polymer molecules on evaporated meal films. In order to perform a more systematic study, the linker molecules were adsorbed onto single crystal Pd(111) surfaces and ultra high vacuum surface science techniques were used to investigate the surface chemistry. Reflection-Absorption Infrared Spectroscopy, (RAIRS

  3. Investigation of the structure of levan polysaccharide chains in water via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Turgut, Deniz; Coskunkan, Binnaz; Cem, Gulcin; Rende, Deniz; Arga, K. Yalcin; Bucak, Seyda; Baysal, Nihat; Toksoy-Oner, Ebru; Ozisik, Rahmi

    2014-03-01

    Levan is a biopolymer consisting of β-D-fructofuranose units with β (2-6) linkages between fructose rings. Investigation of the structure and behavior of levan in aqeous environments is necessary to understand its biological activity and its potential use in various applications such as carbohydrate-derived drug release. The use of different in vivo and in vitro bioactivity assays fail to relate the chemical structure and conformation to the observed biological activity. Therefore, considerable research has been directed on elucidating the biological activity mechanisms of polysaccharides by structure-function analysis. To overcome the inherent difficulties of experiments, molecular dynamics (MD) simulations have been used to retrieve comprehensive information regarding the conformations of polysaccharides and their dynamic properties. In the current study, the structure of levan is investigated in aqueous medium and in saline solutions via fully atomistic MD simulations at 298 and 310 K, representing room temperature and physiological temperatures, respectively. The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232 and 113M265.

  4. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  5. Molecular identification of python species: development and validation of a novel assay for forensic investigations.

    PubMed

    Ciavaglia, Sherryn A; Tobe, Shanan S; Donnellan, Stephen C; Henry, Julianne M; Linacre, Adrian M T

    2015-05-01

    Python snake species are often encountered in illegal activities and the question of species identity can be pertinent to such criminal investigations. Morphological identification of species of pythons can be confounded by many issues and molecular examination by DNA analysis can provide an alternative and objective means of identification. Our paper reports on the development and validation of a PCR primer pair that amplifies a segment of the mitochondrial cytochrome b gene that has been suggested previously as a good candidate locus for differentiating python species. We used this DNA region to perform species identification of pythons, even when the template DNA was of poor quality, as might be the case with forensic evidentiary items. Validation tests are presented to demonstrate the characteristics of the assay. Tests involved the cross-species amplification of this marker in non-target species, minimum amount of DNA template required, effects of degradation on product amplification and a blind trial to simulate a casework scenario that provided 100% correct identity. Our results demonstrate that this assay performs reliably and robustly on pythons and can be applied directly to forensic investigations where the presence of a species of python is in question.

  6. A molecular dynamics based investigation of thermally vibrating graphene under different boundary conditions

    NASA Astrophysics Data System (ADS)

    Rahman, R.; Foster, J. T.

    2015-08-01

    In this paper we have investigated the ripples in graphenes under thermal agitation. It is known that as temperature increases ripples originate in the flat landscape of a graphene sheet which is responsible for changing its properties. Among a limited number of works available in literature the role of length scales and temperature on the characteristics of the ripples has been investigated. However it is important to include the boundary conditions with other parameters in order to get a broader picture. In this work graphenes with three different sizes (2 nm, 10 nm and 50 nm) were considered under both simply supported and free-opposite-sides boundary conditions at different temperatures (e.g. 10 K, 100 K and 500 K) using molecular dynamics simulations. The variation in natural frequencies and their dependency on the boundary condition, length scale and temperature was thoroughly studied. Change in the boundary condition can introduce new modes of vibrations in graphenes. A combined effect of length scale, boundary condition and temperature was shown to be responsible for developing the geometrical patterns in the ripples. With free-opposite-sides boundary conditions the ripples are more harmonic in larger graphene than other cases. It was also noticed that the probability distribution for the off-plane displacements of the carbon atoms in graphene is typically non-stationary at small length scales. Variation in boundary conditions and length scales may affect the kurtosis of the distribution. The results showed adequate agreement with available data in the literature.

  7. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  8. Investigation of Molecular Marker Lipids in Alpine Ice Cores Via Stir Bar Sorptive Extraction

    NASA Astrophysics Data System (ADS)

    Makou, M. C.; Eglinton, T. I.; Thompson, L. G.; Hughen, K. A.

    2005-12-01

    Recently developed analytical techniques were employed to identify and quantify organic molecular markers trapped in high-altitude ice. While various compounds represent potentially useful proxies for biomass burning, vegetation type, atmospheric circulation, and anthropogenic activity, prior attempts to measure organic compounds in ice cores have typically required large volumes of sample material that are incompatible with generation of high-resolution paleoclimate records. We employed stir bar sorptive extraction (SBSE) and thermal desorption (TD), coupled with gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), to examine the organic content of small quantities (≤ 30 ml) of ice. To test the utility of the approach, post-industrial ice core samples from the Huascarán and Sajama sites (Andes), the Dasuopu and Puruogangri sites (Tibetan Plateau), and Mt. Kilimanjaro (east Africa) were tested. n-Alkanes, n-alkanoic acids, n-alkyl amides and nitriles, polycyclic aromatic hydrocarbons (PAHs), and various diterpenoids were identified in this suite of cores. These marker compounds suggest inputs from biomass burning, fresh vascular plant material, and anthropogenic activities such as fossil fuel combustion. Differences in distributions of the alkyl amide and nitrile homologues between the different sites suggest a predominantly local or regional supply of organic matter. Pre-industrial samples from the Sajama and Puruogangri ice cores were also analyzed in order to assess the character of biomarker assemblages in the absence of anthropogenic contributions and investigate changes in inputs over time. PAHs and diterpenoids, which may result from biomass burning and were observed in the modern Sajama samples, occurred in two Holocene Sajama samples, but not in a last glacial sample. Enhanced inputs of terrestrial vegetation combustion biomarkers were consistent with periods of enhanced aridity in both cores. This study demonstrates the utility of SBSE, TD

  9. A molecular model for H(2) interactions in aliphatic and aromatic hydrocarbons.

    PubMed

    Figueroa-Gerstenmaier, Susana; Giudice, Simona; Cavallo, Luigi; Milano, Giuseppe

    2009-05-28

    A model for molecular hydrogen interacting with aliphatic and aromatic hydrocarbons is presented. The model has been derived using ab initio techniques and molecular dynamics simulations. In particular, quadrupole moments of hydrogen, and variation on energy with intermolecular distance of different conformations for the hydrogen-benzene couple were calculated using the Møller-Plesset method. Hydrogen was modelled using a two-centre Lennard-Jones potential plus electrostatic interactions. Lennard-Jones parameters were optimized on the basis of a correct reproduction of experimental data of hydrogen solubility in benzene and cyclohexane, calculated using the test particle insertion method. Different sets of parameters for specific interactions (hydrogen-aliphatic and hydrogen-aromatic systems) were considered avoiding the simple use of Lorentz-Berthelot combining rules. Additionally, structural and thermodynamic properties of hydrogen-benzene, hydrogen-cyclohexane and hydrogen in an equimolar mixture of benzene-cyclohexane at different low concentrations of hydrogen were investigated by means of molecular dynamics simulations. Electrostatic charges were taken from ab initio quantum mechanical calculations but after careful analysis of the calculated properties, their irrelevance was evidenced. Moreover, Coulombic interactions make simulations more expensive and, therefore, we do not recommend their inclusion in the modelling of hydrogen-aliphatic and aromatic interactions. PMID:19440622

  10. Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model

    NASA Astrophysics Data System (ADS)

    Pean, C.; Rotenberg, B.; Simon, P.; Salanne, M.

    2016-09-01

    We perform molecular dynamics simulations of a typical nanoporous-carbon based supercapacitor. The organic electrolyte consists in 1-ethyl-3-methylimidazolium and hexafluorophosphate ions dissolved in acetonitrile. We simulate systems at equilibrium, for various applied voltages. This allows us to determine the relevant thermodynamic (capacitance) and transport (in-pore resistivities) properties. These quantities are then injected in a transmission line model for testing its ability to predict the charging properties of the device. The results from this macroscopic model are in good agreement with non-equilibrium molecular dynamics simulations, which validates its use for interpreting electrochemical impedance experiments.

  11. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  12. Multiscale modeling for materials design: Molecular square catalysts

    NASA Astrophysics Data System (ADS)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  13. Investigating Student Understanding of Quantum Physics: Spontaneous Models of Conductivity.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.

    2002-01-01

    Investigates student reasoning about models of conduction. Reports that students often are unable to account for the existence of free electrons in a conductor and create models that lead to incorrect predictions and responses contradictory to expert descriptions of the physics involved. (Contains 36 references.) (Author/YDS)

  14. Investigating the LGBTQ Responsive Model for Supervision of Group Work

    ERIC Educational Resources Information Center

    Luke, Melissa; Goodrich, Kristopher M.

    2013-01-01

    This article reports an investigation of the LGBTQ Responsive Model for Supervision of Group Work, a trans-theoretical supervisory framework to address the needs of lesbian, gay, bisexual, transgender, and questioning (LGBTQ) persons (Goodrich & Luke, 2011). Findings partially supported applicability of the LGBTQ Responsive Model for Supervision…

  15. An investigation of simple nonsmooth power system models

    SciTech Connect

    Mantri, R.; Venkatasubramanian, V.; Saberi, A.

    1994-12-31

    Recently new notions of solutions and equilibrium points have been proposed for analyzing nonsmooth system descriptions. This paper observes certain new phenomena in simple nonsmooth power system models presenting a preliminary analysis. The results include an investigation of new Hopf-like bifurcations related to the birth of limit cycles in two dimensional non-Lipschitzian power system models.

  16. Evaluating the Adequacy of Molecular Clock Models Using Posterior Predictive Simulations.

    PubMed

    Duchêne, David A; Duchêne, Sebastian; Holmes, Edward C; Ho, Simon Y W

    2015-11-01

    Molecular clock models are commonly used to estimate evolutionary rates and timescales from nucleotide sequences. The goal of these models is to account for rate variation among lineages, such that they are assumed to be adequate descriptions of the processes that generated the data. A common approach for selecting a clock model for a data set of interest is to examine a set of candidates and to select the model that provides the best statistical fit. However, this can lead to unreliable estimates if all the candidate models are actually inadequate. For this reason, a method of evaluating absolute model performance is critical. We describe a method that uses posterior predictive simulations to assess the adequacy of clock models. We test the power of this approach using simulated data and find that the method is sensitive to bias in the estimates of branch lengths, which tends to occur when using underparameterized clock models. We also compare the performance of the multinomial test statistic, originally developed to assess the adequacy of substitution models, but find that it has low power in identifying the adequacy of clock models. We illustrate the performance of our method using empirical data sets from coronaviruses, simian immunodeficiency virus, killer whales, and marine turtles. Our results indicate that methods of investigating model adequacy, including the one proposed here, should be routinely used in combination with traditional model selection in evolutionary studies. This will reveal whether a broader range of clock models to be considered in phylogenetic analysis. PMID:26163668

  17. Evaluating the Adequacy of Molecular Clock Models Using Posterior Predictive Simulations.

    PubMed

    Duchêne, David A; Duchêne, Sebastian; Holmes, Edward C; Ho, Simon Y W

    2015-11-01

    Molecular clock models are commonly used to estimate evolutionary rates and timescales from nucleotide sequences. The goal of these models is to account for rate variation among lineages, such that they are assumed to be adequate descriptions of the processes that generated the data. A common approach for selecting a clock model for a data set of interest is to examine a set of candidates and to select the model that provides the best statistical fit. However, this can lead to unreliable estimates if all the candidate models are actually inadequate. For this reason, a method of evaluating absolute model performance is critical. We describe a method that uses posterior predictive simulations to assess the adequacy of clock models. We test the power of this approach using simulated data and find that the method is sensitive to bias in the estimates of branch lengths, which tends to occur when using underparameterized clock models. We also compare the performance of the multinomial test statistic, originally developed to assess the adequacy of substitution models, but find that it has low power in identifying the adequacy of clock models. We illustrate the performance of our method using empirical data sets from coronaviruses, simian immunodeficiency virus, killer whales, and marine turtles. Our results indicate that methods of investigating model adequacy, including the one proposed here, should be routinely used in combination with traditional model selection in evolutionary studies. This will reveal whether a broader range of clock models to be considered in phylogenetic analysis.

  18. Molecular model for force production and transmission during vertebrate gastrulation.

    PubMed

    Pfister, Katherine; Shook, David R; Chang, Chenbei; Keller, Ray; Skoglund, Paul

    2016-02-15

    Vertebrate embryos undergo dramatic shape changes at gastrulation that require locally produced and anisotropically applied forces, yet how these forces are produced and transmitted across tissues remains unclear. We show that depletion of myosin regulatory light chain (RLC) levels in the embryo blocks force generation at gastrulation through two distinct mechanisms: destabilizing the myosin II (MII) hexameric complex and inhibiting MII contractility. Molecular dissection of these two mechanisms demonstrates that normal convergence force generation requires MII contractility and we identify a set of molecular phenotypes correlated with both this failure of convergence force generation in explants and of blastopore closure in whole embryos. These include reduced rates of actin movement, alterations in C-cadherin dynamics and a reduction in the number of polarized lamellipodia on intercalating cells. By examining the spatial relationship between C-cadherin and actomyosin we also find evidence for formation of transcellular linear arrays incorporating these proteins that could transmit mediolaterally oriented tensional forces. These data combine to suggest a multistep model to explain how cell intercalation can occur against a force gradient to generate axial extension forces. First, polarized lamellipodia extend mediolaterally and make new C-cadherin-based contacts with neighboring mesodermal cell bodies. Second, lamellipodial flow of actin coalesces into a tension-bearing, MII-contractility-dependent node-and-cable actin network in the cell body cortex. And third, this actomyosin network contracts to generate mediolateral convergence forces in the context of these transcellular arrays.

  19. Implementation of CCNUGrid-based Computational Environment for Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Luo, Changhua; Ren, Yanliang; Wan, Jian; Xu, Xin

    2007-12-01

    Grid computing technology has being regarded as one of the most promising solutions for the tremendous requirement of computing resources in the field of molecular modeling up to date. Contrast to building a more and more powerful super-computer with novel hardware in a local network, grid technology enable us, in principle, to integrate various previous and present computing resources located in different location into a computing platform as a whole. As a case demonstration, we reported herein that a campus grid entitled CCNUGrid was implemented with grid middleware, consisting of four local computing networks distributed in College of Chemistry, College of Physics, Center for Network, and Center for Education Information Technology and Engineering, respectively, at Central China Normal University. Visualization functions of monitoring computer machines in each local network, monitoring job processing flow, and monitoring computational results were realized in this campus grid-based computational environment, in addition to the conventional components of grid architecture: universal portal, task management, computing node and security. In the last section of this paper, a molecular docking-based virtual screening study was performed at the CCNUGrid, as one example of CCNUGrid applications.

  20. The molecular face of lipid rafts in model membranes

    PubMed Central

    Risselada, H. Jelger; Marrink, Siewert J.

    2008-01-01

    Cell membranes contain a large number of different lipid species. Such a multicomponent mixture exhibits a complex phase behavior with regions of structural and compositional heterogeneity. Especially domains formed in ternary mixtures, composed of saturated and unsaturated lipids together with cholesterol, have received a lot of attention as they may resemble raft formation in real cells. Here we apply a simulation model to assess the molecular nature of these domains at the nanoscale, information that has thus far eluded experimental determination. We are able to show the spontaneous separation of a saturated phosphatidylcholine (PC)/unsaturated PC/cholesterol mixture into a liquid-ordered and a liquid-disordered phase with structural and dynamic properties closely matching experimental data. The near-atomic resolution of the simulations reveals remarkable features of both domains and the boundary domain interface. Furthermore, we predict the existence of a small surface tension between the monolayer leaflets that drives registration of the domains. At the level of molecular detail, raft-like lipid mixtures show a surprising face with possible implications for many cell membrane processes. PMID:18987307

  1. The molecular face of lipid rafts in model membranes.

    PubMed

    Risselada, H Jelger; Marrink, Siewert J

    2008-11-11

    Cell membranes contain a large number of different lipid species. Such a multicomponent mixture exhibits a complex phase behavior with regions of structural and compositional heterogeneity. Especially domains formed in ternary mixtures, composed of saturated and unsaturated lipids together with cholesterol, have received a lot of attention as they may resemble raft formation in real cells. Here we apply a simulation model to assess the molecular nature of these domains at the nanoscale, information that has thus far eluded experimental determination. We are able to show the spontaneous separation of a saturated phosphatidylcholine (PC)/unsaturated PC/cholesterol mixture into a liquid-ordered and a liquid-disordered phase with structural and dynamic properties closely matching experimental data. The near-atomic resolution of the simulations reveals remarkable features of both domains and the boundary domain interface. Furthermore, we predict the existence of a small surface tension between the monolayer leaflets that drives registration of the domains. At the level of molecular detail, raft-like lipid mixtures show a surprising face with possible implications for many cell membrane processes. PMID:18987307

  2. Investigating the impact of representation upon coarse-grained models

    NASA Astrophysics Data System (ADS)

    Foley, Thomas; Shell, M. Scott; Noid, William

    The first step in building a coarse-grained (CG) model is choosing a representation or `mapping' of the original system at a reduced resolution. In practice, the mapping is often chosen on the basis of `physical intuition.' Consequently this crucial step would greatly benefit from the development of systematic and principled methodologies. Accordingly, we have studied the relationship between the mapping and the resulting CG model. As a starting point, we have analytically derived, as a function of the CG mapping, the exact many-body potential of mean force (PMF) for the simple Gaussian Network Model (GNM) of protein fluctuations. We use this as a simple model for investigating the effect of the CG mapping upon the information loss and quality of the CG model. Moreover, by considering the GNM's for different proteins, we investigate the significance of high resolution structural features for the quality of the CG model. We acknowledge support from the NSF, Alfred P. Sloan Foundation, and KITP.

  3. A Molecular Dynamics Investigation of the Titration of a Trivalent Aqueous Ion

    SciTech Connect

    Rustad, James R; Casey, William H

    2006-03-01

    We carried out a series of molecular dynamics simulations of the hydrolysis of a model trivalent metal ion in aqueous solution. We use a dissociative model for water and examine the spontaneous speciation of M3+ into M(OH)n(3-n)+(n = 1, 4) both in neutral solution and as a function of added protons and hydroxide ions. The species distributions in neutral solution correspond reasonably well with those expected for real trivalent metal ions at neutral pH. However, the change in the species distributions as a function of either added protons or hydroxide ions is much less than expected with very large concentrations of protons or hydroxide ions required to shift the species equilibria in either direction. The influence of added protons and hydroxide ions on the species distributions appears to be proportional to the average charge of the hydrolysis couples, being highest for the 3+/2+ couple and lowest for the 1+/0 and 0/1- couples. Proton exchange rates varywith proton/hydroxide ion concentration giving a minimum at intermediate values ([H+]≈ 0.166) with increasing rates at both lower and higher pH

  4. Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Rakesh, L.

    2009-09-01

    Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the

  5. Initial investigation of cryogenic wind tunnel model filler materials

    NASA Technical Reports Server (NTRS)

    Rush, H. F.; Firth, G. C.

    1985-01-01

    Various filler materials are being investigated for applicability to cryogenic wind tunnel models. The filler materials will be used to fill surface grooves, holes and flaws. The severe test environment of cryogenic models precludes usage of filler materials used on conventional wind tunnel models. Coefficients of thermal expansion, finishing characteristics, adhesion and stability of several candidate filler materials were examined. Promising filler materials are identified.

  6. Molecular dynamics in polymers, polymer networks, and model compounds by dielectric relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Fitz, Benjamin David

    Segmental dynamics are investigated in model compounds, polymers, and network-forming polymers. Two aspects of these materials are investigated: (1) the role of molecular structure and connectivity on determining the characteristics of the segmental relaxation, and (2) monitoring the variations in the segmental dynamics during network-forming chemical reactions. We quantify the most important aspects of the dynamics: the relaxation shape, the relaxation strength, the relaxation time, and the temperature dependencies of these properties. Additionally, two general segmental dynamics issues of interest are the length-scale and the homogeneous/heterogeneous aspects. A judicious choice of network-forming polymer provides for the determination of an upper bound on the length-scale. A comparison of relaxation characteristics between dynamic light scattering (measuring density fluctuations) and dielectric relaxation spectroscopy (measuring segmental dipolar reorientation) provides one evaluation of the heterogeneity issue. Dipole dynamics in small molecule model compounds show the influence of molecular connectivity on the cooperative molecular response associated with the glass transition. A rigid, nonpolar, cyanate ester network is shown to develop an anomalous relaxation process during crosslinking. A specific local mode of motion is assigned. Additionally, the main relaxation becomes extraordinarily broad during the course of the network formation, due to markedly increased segmental rigidity and loss of configurational entropy.

  7. Investigating Molecular Inheritance of Carbon in Star-forming Regions along a Galactic Gradient

    NASA Astrophysics Data System (ADS)

    Smith, Rachel L.; Blake, Geoffrey; Boogert, Adwin; Pontoppidan, Klaus Martin; Lockwood, Alexandra C.

    2015-08-01

    Observations of CO isotopologues taken at high spectral resolution toward young stellar objects (YSOs) are valuable tools for investigating protoplanetary chemical reservoirs, and enable robust comparisons between YSOs and solar system material (meteorites and the Sun). Investigating a range of YSO environments also helps parameterize variations in the distribution and evolution of carbon-based molecules, furthering an understanding of prebiotic chemistry. We have begun a wide survey of massive YSOs using Keck-NIRSPEC at high spectral resolution (R=25,000). Fundamental and first-overtone near-IR CO rovibrational absorption spectra have thus far been obtained toward 14 massive, luminous YSOs at Galactocentric radii (RGC) ranging from ~4.5 to 9.7 kpc. From these data we can obtain precise [12CO]/[13CO] gas-phase abundance ratios along a Galactic gradient, and [12CO]/[13CO]Gas can be further evaluated against published [12CO2]/[13CO2]Ice and [12CO]/[13CO]Ice because all observations are in absorption, a robust study of molecular inheritance is possible by virtue of comparing 12C/13C along the same lines-of-sight. Initial results for cold CO gas at RGC ~ 6.1 kpc and 9.4 kpc reveal [12C16O]/[13C16O] of 59+/-8 and 74+/-3, respectively, roughly following an expected 12C/13C Galactic gradient. Thus far, we find [12CO]/[13CO] in the cold CO gas to be lower than [12CO2]/[13CO2]Ice, suggesting that CO2 may not originate from CO reservoirs as often assumed. While very high-resolution observations of CO gas toward low-mass YSOs observed with VLT-CRIRES show significant heterogeneity in [12CO]/[13CO] at RGC ~ 8 kpc, this dispersion is not found for the massive YSOs. Both the low-mass and massive YSOs have higher [12CO]/[13CO] in warm vs. cold gas, and both show signatures suggesting possible interplay between CO ice and gas reservoirs. Overall, our results indicate that carbon isotopic evolution in massive YSO environments may follow different paths compared to low-mass YSOs

  8. Advantages of High Resolution Modeling to Investigate Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Kirsch, B.; Lopez, S. R.; Condon, L. E.; Maxwell, R. M.

    2012-12-01

    Urban infrastructures have impervious surfaces that directly affect the hydrology of the system. Impervious surfaces affect drainage networks, alter aqueous flow paths, change feedbacks to the atmosphere and promote contaminant transport. Through the usage of a fully integrated physical hydrology model, this study aims to investigate the impacts of green infrastructure within an urban environment. The model used for analysis is ParFlow, a fully coupled physical hydrologic model that simulates surface and subsurface water interactions, coupled with the common land model (CLM) to simulate land surface processes. Analysis includes investigating stormwater routing, infiltration, pollutant transport and water quality during infiltration and storage on a test domain. This work will also investigate, from an economic perspective, the costs of urbanization upon water resources and under what conditions green infrastructure projects may produce positive benefit-cost ratios, as well as how such infrastructure may impact optimal water resource management strategies.

  9. Molecular Limits to the Quantum Confinement Model in Diamond Clusters

    SciTech Connect

    Willey, T M; Bostedt, C; van Buuren, T; Dahl, J E; Liu, S E; Carlson, R K; Terminello, L J; Moller, T

    2005-04-07

    The electronic structure of monodisperse, hydrogen-passivated diamond clusters in the gas phase has been studied with x-ray absorption spectroscopy. The data show that the bulk-related unoccupied states do not exhibit any quantum confinement. Additionally, density of states below the bulk absorption edge appears, consisting of features correlated to CH and CH{sub 2} hydrogen surface termination, resulting in an effective red shift of the lowest unoccupied states. The results contradict the commonly used and very successful quantum confinement model for semiconductors which predicts increasing band edge blue shifts with decreasing particle size. Our findings indicate that in the ultimate size limit for nanocrystals a more molecular description is necessary.

  10. The stochastic model of F1-ATPase molecular motor functioning

    NASA Astrophysics Data System (ADS)

    Pogrebnaya, Aleksandra F.; Romanovsky, Yury M.; Tikhonov, Aleksander N.

    2004-05-01

    This work is devoted to the study of the energy characteristics of the F1ATPase-substrate complex. The results of calculations of the electrostatic energy in the enzyme-substrate complex are presented in the first part. In calculations, we take into account the electrostatic interactions between the charged groups of the substrate (MgATP) and reaction products (MgADP and Pi) and charged amino acid residues of the α3β3γ complex that correspond to various conformations of the enzyme. The hydrolysis of ATP in the catalytic site leads to coordinated conformational changes in α, β subunits and to ordered rotation of γ subunit located in the center of F1ATPase complex. The calculations show that the energetically favorable process involving MgATP binding at the catalytic site in the "open" conformation initiates γ subunit rotation followed by the hydrolysis in the other (tight) catalytic site. In the second part, we propose the simplest stochastic model describing the ordered rotation of γ subunit (the rotor of F1-ATPase molecular motor). In the model we take into account the electrostatic interaction using the results of the previous calculations. We employ experimentally obtained dynamic parameters. The model takes into account the thermal fluctuations of the bath and the random processes of the substrate binding and the escape of the reaction products.

  11. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  12. Synthesis, spectroscopic and molecular structures investigations of some carboxylated schiff bases

    NASA Astrophysics Data System (ADS)

    Titinchi, Salam J. J.; Abbo, Hanna S.; Saeed, Ali A. H.

    2004-11-01

    A series of nine carboxylated Schiff bases (five of them are newly prepared viz. compounds 5- 9), are prepared and characterized by various physico-chemical techniques. The molecular structures of synthesized Schiff bases are investigated by IR, UV-Visible, molar conductivities at different concentrations in two different solvents and by their pH values in ethanolic solutions. The IR spectra show absorptions due to = N⊕H- stretching and -N-H bending vibrations, the UV-Visible spectra indicates absorptions are due to protonated species. The molar conductivities, 0.1-0.6 Ω -1 cm 2 mol -1, prove that these compounds are weak electrolytes and are even weaker than tyrosine and phenylalanine, 2.5-13 Ω -1 cm 2 mol -1. The melting points and pH values of Schiff bases are compared with those of some α-aminoacids and some related Schiff bases that have no COOH group in their structures. On the bases of these data, it was concluded that carboxylated Schiff bases exist in two forms, the ionized and the free base where the later is predominant. The ionized form is similar to the zwitterion of the α-aminoacid, in which a proton is transferred from COOH to the azomethine (-CH dbnd6 N-) group.

  13. Investigation of molecular heterogeneity of β-thalassemia disorder in District Charsadda of Pakistan

    PubMed Central

    Shakeel, Muhammad; Arif, Muhammad; Rehman, Shoaib Ur; Yaseen, Tabassum

    2016-01-01

    Objective: Thalassemia is blood related disease which arises from the reduced level of hemoglobin in red blood cells (RBC), a protein responsible for carrying oxygen inside the body. Considering its widespread occurrence in developing countries like Pakistan, this study aims to investigate the common molecular anomalies of the beta thalassemia disease in district Charsadda, Khyber Pakhtunkhwa. Methods: This work was done at Abdul Wali Khan University (AWKU) Mardan, Khyber Pakhtunkhwa, Pakistan. The work was performed on the blood samples collected from the patients and their families with beta thalassemia major (n = 13 families) belonged to District Charsadda. The collected blood samples were analyzed for presence of six known mutations with the help of polymerase cha in reaction technique i.e. amplification of refractory mutation system. Results: Our Study reports six known mutations (IVS-1-5, FSC 8/9, CD 41/42, IVS-1-1, CD 15 and FSC-5) accounting for about 90% of total beta thalassemia genes in this country. Among the reported mutations, IVS 1-5 was the most prevalent beta thalassemia gene in patients belonging to District Charsadda. Conclusion: The results and findings of the current study may help in accessing the frequency of these common mutations and in initiating pre-natal diagnosis programme in Pakistan. PMID:27182268

  14. Investigation of the molecular similarity in closely related protein systems: The PrP case study.

    PubMed

    Storchi, Loriano; Paciotti, Roberto; Re, Nazzareno; Marrone, Alessandro

    2015-10-01

    The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. PMID:26018750

  15. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  16. Mechanistic investigations and molecular medicine applications of gold nanoparticle mediated (GNOME) laser transfection

    NASA Astrophysics Data System (ADS)

    Schomaker, M.; Heinemann, D.; Kalies, S.; Willenbrock, S.; Murua Escobar, H.; Buch, A.; Sodeik, B.; Ripken, T.; Meyer, H.

    2014-03-01

    Alternative high throughput transfection methods are required to understand the molecular network of the cell, which is linked to the evaluation of target genes as therapeutic agents. Besides diagnostic purposes, the transfection of primary- and stem cells is of high interest for therapeutic use. Here, the cell release of trans- or exogene proteins is used to develop immune cancer therapies. The basic requirement to accomplish manipulation of cells is an efficient and gentle transfection method. Therefore, we developed an automatized cell manipulation platform providing high throughput by using GNOME laser transfection. Herein, the interaction of moderately focused laser pulses with gold nanoparticles in close vicinity to the cell membrane mediate transient membrane permeabilization. The exact nature of the involved permeabilization effects depends on the applied particles and laser parameters. Hereinafter, we describe investigations considering the parameter regime, the permeabilization mechanism and the safety profile of GNOME laser transfection. The experimental and calculated results imply a combined permeabilization mechanism consisting of both photochemical and photothermal effects. Furthermore, paramount spatial control achieved either by laser illumination with micrometer precision or targeted gold nanoparticle binding to the cells was demonstrated, allowing selective cell manipulation and destruction. Additionally, the possibility to manipulate difficult to transfect primary cells (neurons) is shown. These results give insights in the basic mechanisms involved in GNOME laser transfection and serve as a strong basis to deliver different molecules for therapeutic (e.g. proteins) and diagnostic (siRNA) use.

  17. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    SciTech Connect

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  18. Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives

    NASA Astrophysics Data System (ADS)

    Sumimoto, Michinori; Yokogawa, Daisuke; Komeda, Masahiro; Yamamoto, Hidetoshi; Hori, Kenji; Fujimoto, Hitoshi

    2011-10-01

    The molecular geometries, electronic structures, and excitation energies of NPh 3, NPh 2Me, NPhMe 2, and NMe 3, were investigated using DFT and post-Hartree Fock methods. When the structural stabilities of these compounds were compared to results obtained by using MP4(SDQ) method, it was confirmed that the optimized geometries by using MP2 method were sufficiently reliable. The excited states with large oscillator strengths consisted of transition components from the HOMO. It should be noted that the orbitals of the nitrogen atom mix with the π-orbital of the phenyl group in an anti-bonding way in the HOMO, and the orbital energy increases with this mixing. The unoccupied orbitals are generated from bonding and anti-bonding type interactions between the π-orbitals of the phenyl groups; therefore, the number of phenyl groups strongly affects the energy diagram of the compounds studied. The differences in the energy diagram cause a spectral change in these compounds in the ultraviolet region.

  19. Investigation into the Effect of Molds in Grasses on Their Content of Low Molecular Mass Thiols

    PubMed Central

    Skladanka, Jiri; Adam, Vojtech; Zitka, Ondrej; Krystofova, Olga; Beklova, Miroslava; Kizek, Rene; Havlicek, Zdenek; Slama, Petr; Nawrath, Adam

    2012-01-01

    The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii. PMID:23202817

  20. Investigation of the radiation stimulated oxidation of sulfite by molecular oxygen in aqueous solutions

    SciTech Connect

    Muratbekov, M.B.; Koroleva, G.Y.

    1986-09-01

    The principles of the radiation-stimulated oxidation of sulfite by molecular oxygen in the range of pH 11.0-14.6 were investigated. It was established that with increasing sulfite concentration, the kinetic order of the reaction with respect to sulfite falls from 1 to 0, and with respect to oxygen it increases from 0 to 1. This is explained by the fact that at low sulfite concentrations the rate-determining step of the process is the reaction SO/sub 5//sup -/ (HSO/sub 5/) + SO/sub 3//sup 2 -/ ..-->.. SO/sub 4//sup -/ (HSO/sub 4/) + SO/sub 4//sup 2 -/, while at high concentrations it is the reaction SO/sub 3/ + O/sub 2/ ..-->.. SO/sub 5//sup -/. The influence of the pH is explained on the assumption of the existence of two forms of the peroxomonosulfate radical, the more reactive of which is the acid. A number of ratios of reaction rate constants were determined.

  1. Investigations of drug-DNA interactions using molecular docking, cyclic voltammetry and UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Perveen, Fouzia; Qureshi, Rumana; Ansari, Farzana Latif; Kalsoom, Saima; Ahmed, Safeer

    2011-10-01

    Molecular docking and QSAR studies were carried out for the investigation of interactions between 11 antitumor drugs and double stranded DNA. Quantitative structure activity relationship was established using MOE software package showing good correlation of binding strength with various physicochemical parameters e.g., hydrophobic surface area ( Vsurf), EHOMO, EHUMO, partition coefficient (log P) and molar refractivity ( M R) of the drugs . The most important parameter obtained from the docking studies was the formation constant ( K f) which is an indicative of the binding strength of the drug with DNA. This parameter was also calculated using the experimental techniques namely cyclic voltammetry (CV) and UV-Vis spectrophotometry. Variation in electrochemical characteristics (shift in peak potential and peak current decrease) and spectral profile of these drugs on the addition of DNA were used to determine the values of formation constant. The docking studies were used to predict the mode of interaction of the drug with DNA. It was observed that as far as binding strength was concerned the computational results complemented the experimental results. The order of magnitude of experimental and theoretical K f was same. The high value of K f implied that the respective drugs bind to DNA most efficiently.

  2. Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tucker, Garritt J.; Tiwari, Shreevant; Zimmerman, Jonathan A.; McDowell, David L.

    2012-03-01

    Atomistic simulations are employed to investigate the deformation of nanocrystalline copper and the associated strain accommodation mechanisms at 10 K as a function of grain size. Volume-averaged kinematic metrics based on continuum mechanics theory are formulated to analyze the results of molecular dynamics simulations. The metrics rely on both reference and current configurations, along with nearest neighbor lists to estimate nanoscale behavior of atomic deformation fields in nanocrystalline copper. Various deformation mechanisms are activated in the structures, and shown to depend on average grain size of the nanocrystalline structure. Furthermore, grain boundaries, along with dislocation glide, become an important source of strain accommodation as grain size is reduced. It is demonstrated that the metrics capture the contributions of various mechanisms, and provide a sense of the history of atomic regions undergoing both elastic and plastic deformation. The significance of this research is that unique kinematic signatures of the mechanisms are uncovered using certain metrics, and we are able to resolve the contributions of the deformation mechanisms to the overall strain of the structure using Green strain.

  3. Low-dose laulimalide represents a novel molecular probe for investigating microtubule organization

    PubMed Central

    Bennett, Melissa J.; Chan, Gordon K.; Rattner, J.B.; Schriemer, David C.

    2012-01-01

    Laulimalide is a natural product that has strong taxoid-like properties but binds to a distinct site on β-tubulin in the microtubule (MT) lattice. At elevated concentrations, it generates MTs that are resistant to depolymerization, and it induces a conformational state indistinguishable from taxoid-treated MTs. In this study, we describe the effect of low-dose laulimalide on various stages of the cell cycle and compare these effects to docetaxel as a representative of taxoid stabilizers. No evidence of MT bundling in interphase was observed with laulimalide, in spite of the fact that MTs are stabilized at low dose. Cells treated with laulimalide enter mitosis but arrest at prometaphase by generating multiple asters that coalesce into supernumerary poles and interfere with the integrity of the metaphase plate. Cells with a preformed bipolar spindle exist under heightened tension under laulimalide treatment, and chromosomes rapidly shear from the plate, even though the bipolar spindle is well-preserved. Docetaxel generates a similar phenotype for HeLa cells entering mitosis, but when treated at metaphase, cells undergo chromosomal fragmentation and demonstrate reduced centromere dynamics, as expected for a taxoid. Our results suggest that laulimalide represents a new class of molecular probe for investigating MT-mediated events, such as kinetochore-MT interactions, which may reflect the location of the ligand binding site within the interprotofilament groove. PMID:22871740

  4. Low-dose laulimalide represents a novel molecular probe for investigating microtubule organization.

    PubMed

    Bennett, Melissa J; Chan, Gordon K; Rattner, J B; Schriemer, David C

    2012-08-15

    Laulimalide is a natural product that has strong taxoid-like properties but binds to a distinct site on β-tubulin in the microtubule (MT) lattice. At elevated concentrations, it generates MTs that are resistant to depolymerization, and it induces a conformational state indistinguishable from taxoid-treated MTs. In this study, we describe the effect of low-dose laulimalide on various stages of the cell cycle and compare these effects to docetaxel as a representative of taxoid stabilizers. No evidence of MT bundling in interphase was observed with laulimalide, in spite of the fact that MTs are stabilized at low dose. Cells treated with laulimalide enter mitosis but arrest at prometaphase by generating multiple asters that coalesce into supernumerary poles and interfere with the integrity of the metaphase plate. Cells with a preformed bipolar spindle exist under heightened tension under laulimalide treatment, and chromosomes rapidly shear from the plate, even though the bipolar spindle is well-preserved. Docetaxel generates a similar phenotype for HeLa cells entering mitosis, but when treated at metaphase, cells undergo chromosomal fragmentation and demonstrate reduced centromere dynamics, as expected for a taxoid. Our results suggest that laulimalide represents a new class of molecular probe for investigating MT-mediated events, such as kinetochore-MT interactions, which may reflect the location of the ligand binding site within the interprotofilament groove. PMID:22871740

  5. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  6. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  7. Serological and molecular investigation for brucellosis in swine in selected districts of Uganda.

    PubMed

    Erume, Joseph; Roesel, Kristina; Dione, Michel M; Ejobi, Francis; Mboowa, Gerald; Kungu, Joseph M; Akol, Joyce; Pezo, Danilo; El-Adawy, Hosny; Melzer, Falk; Elschner, Mandy; Neubauer, Heinrich; Grace, Delia

    2016-08-01

    Brucellosis is a notifiable zoonotic disease affecting livestock, humans, and wildlife in Uganda. Pigs can be infected with human pathogenic Brucella suis biovars 1 and 3 and can be a significant source of brucellosis for humans. Uganda has a rapidly growing pig population, and the pork consumption per capita is the highest in East Africa. The objective of this work was to determine the seroprevalence of brucellosis in Ugandan pigs. A cross-sectional serosurvey of pigs was conducted in three of the major pig-keeping districts in Uganda (Masaka (n = 381 samples), Mukono (n = 398), and Kamuli (n = 414)). In addition, pigs originating from these districts were sampled in the major pig abattoir in Kampala (n = 472). In total, 1665 serum samples were investigated by serological and molecular tests. Only three putative brucellosis-positive samples were detected serologically using indirect ELISA. These sera were found negative for Brucella antibodies by CFT; however, two had antibodies against Yersinia enterocolitica as determined by SAT. Presence of antibodies against Yersiniae was confirmed by Y. enterocolitica antibody-specific ELISA. The two Yersiniae ELISA-positive samples were brucellosis negative using real-time PCR. We tested additional 142 sera from the 1665 samples with real-time PCR. All tested negative. Under this type of production system, we expect a maximum B. suis prevalence of less than 1 % at 95 % confidence level, and therefore, the risk of acquiring brucellosis from the pigs or their products is negligible. However, pigs may harbor the zoonotic Y. enterocolitica. This is the first study to investigate the occurrence of brucellosis in pigs in Uganda and the first study to report Y. enterocolitica antibodies in swine in Uganda. PMID:27142028

  8. Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations.

    PubMed

    Jee, Sang Eun; Zhou, Jienfeng; Tan, Jianquo; Breschi, Lorenzo; Tay, Franklin R; Grégoire, Geneviève; Pashley, David H; Jang, Seung Soon

    2016-05-01

    The purpose of this study is to investigate the interaction of neat ethanol with bound and non-bound water in completely demineralized dentin that is fully hydrated, using molecular dynamics (MD) simulation method. The key to creating ideal resin-dentin bonds is the removal of residual free water layers and its replacement by ethanol solvent in which resin monomers are soluble, using the ethanol wet-bonding technique. The test null hypotheses were that ethanol cannot remove any collagen-bound water, and that ethanol cannot infiltrate into the spacing between collagen triple helix due to narrow interlayer spacing. Collagen fibrillar structures of overlap and gap regions were constructed by aligning the collagen triple helix of infinite length in hexagonal packing. Three layers of the water molecules were specified as the layers of 0.15-0.22nm, 0.22-0.43nm and 0.43-0.63nm from collagen atoms by investigating the water distribution surrounding collagen molecules. Our simulation results show that ethanol molecules infiltrated into the intermolecular spacing in the gap region, which increased due to the lateral shrinkage of the collagen structures in contact with ethanol solution, while there was no ethanol infiltration observed in the overlap region. Infiltrated ethanol molecules in the gap region removed residual water molecules via modifying mostly the third water layer (50% decrease), which would be considered as a loosely-bound water layer. The first and second hydration layers, which would be considered as tightly bound water layers, were not removed by the ethanol molecules, thus maintaining the helical structures of the collagen molecules. PMID:26969524

  9. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  10. Computational modeling of multispectral remote sensing systems: Background investigations

    NASA Technical Reports Server (NTRS)

    Aherron, R. M.

    1982-01-01

    A computational model of the deterministic and stochastic process of remote sensing has been developed based upon the results of the investigations presented. The model is used in studying concepts for improving worldwide environment and resource monitoring. A review of various atmospheric radiative transfer models is presented as well as details of the selected model. Functional forms for spectral diffuse reflectance with variability introduced are also presented. A cloud detection algorithm and the stochastic nature of remote sensing data with its implications are considered.

  11. Investigation on the interaction of letrozole with herring sperm DNA through spectroscopic and modeling methods.

    PubMed

    Huang, Yan-Mei; Zheng, Shou-Jun; Yan, Jin; Yang, Hong-Qin; Wu, Di; Wang, Qing; Li, Hui

    2016-08-01

    The interaction of letrozole, an efficient and safe aromatase inhibitor, with herring sperm DNA (hsDNA) was investigated in vitro through spectroscopy analysis and molecular modeling to elucidate the binding mechanism of anticancer drugs and DNA. The binding constant and the number of binding sites were 2.13 × 10(4)  M(-1) and 1.09, respectively, at 298 K. Thermodynamic parameters (ΔG, ΔH and ΔS) exhibited negative values, which indicated that binding was spontaneous and Van der Waals forces and hydrogen bond were the main interaction forces. Fourier transform infrared spectroscopy and other spectroscopy analysis methods illustrated that letrozole could intercalate into the phosphate backbone of hsDNA and interact with the nitrogenous bases. Consistent with the experimental findings, molecular modeling results demonstrated that the interaction was dominated by intercalation and hydrogen bonding. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26669513

  12. Investigation on the interaction of letrozole with herring sperm DNA through spectroscopic and modeling methods.

    PubMed

    Huang, Yan-Mei; Zheng, Shou-Jun; Yan, Jin; Yang, Hong-Qin; Wu, Di; Wang, Qing; Li, Hui

    2016-08-01

    The interaction of letrozole, an efficient and safe aromatase inhibitor, with herring sperm DNA (hsDNA) was investigated in vitro through spectroscopy analysis and molecular modeling to elucidate the binding mechanism of anticancer drugs and DNA. The binding constant and the number of binding sites were 2.13 × 10(4)  M(-1) and 1.09, respectively, at 298 K. Thermodynamic parameters (ΔG, ΔH and ΔS) exhibited negative values, which indicated that binding was spontaneous and Van der Waals forces and hydrogen bond were the main interaction forces. Fourier transform infrared spectroscopy and other spectroscopy analysis methods illustrated that letrozole could intercalate into the phosphate backbone of hsDNA and interact with the nitrogenous bases. Consistent with the experimental findings, molecular modeling results demonstrated that the interaction was dominated by intercalation and hydrogen bonding. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Computer-aided molecular modeling techniques for predicting the stability of drug cyclodextrin inclusion complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola

    2002-06-01

    Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.

  14. Probing the Physical Conditions of Dense Molecular Gas in ULIRGs with LVG modelling

    NASA Astrophysics Data System (ADS)

    Leonidaki, Ioanna; Zhang, Zhi-Yu; Greve, Thomas; Xilouris, Manolis

    2015-08-01

    The gas-rich content of Ultra Luminous Infrared Galaxies (ULIRGs) constitutes a great laboratory in characterising the physical processes occuring in molecular gas and hence probing star formation properties. In particular, molecules with large dipole moments such as CS, HCN, HCO+, which are the fuel of star formation, can reveal the physical/excitation conditions of molecular gas phases in galaxies. For that reason, we compiled the aforementioned dense gas tracers in a sample of local (U)LIRGs in order to investigate the physical properties of the gas while at the same time put constrains on their excitation conditions. The sample in use consists of 26 galaxies all observed within the framework of the Herschel Comprehensive (U)LIRG Emission Survey (HerCULES). For all galaxies, we compiled our ground-based spectral line observations as well as all available data from the literature. Using Large Velocity Gradient (LVG) radiative transfer models in these spectral lines and in a wide parameter space [n(H2), Tkin, Nmol], and combining multiple molecules and multiple excitation components, it is possible to break the degeneracy between different parameters and to probe molecular gas physical conditions ranging from the cold and low-density average states in giant molecular clouds all the way up to the state of the gas found only near their star-forming regions. We then analyse the best LVG solution ranges to match the observed SLEDs (using more than one excitation components where necessary) in order to disentangle different molecular gas phases and possibly different molecular gas heating mechanisms.

  15. A kinetic model for molecular diffusion through pores.

    PubMed

    D'Agostino, Tommaso; Salis, Samuele; Ceccarelli, Matteo

    2016-07-01

    The number of pathogens developing multiple drug resistance is ever increasing. The impact on healthcare systems is huge and the need for novel antibiotics as well a new way to develop them is urgent, especially against Gram-negative bacteria. The first defense of these bacteria is the outer membrane, where unspecific protein channels (porins) modulate nutrients passive diffusion. Also polar antibiotics enter through this path and down-regulation and/or mutation of porins are very common in drug resistant strains. Our inability to come up with novel effective antibiotics mostly relies upon the insufficient comprehension of the key molecular features enabling better penetration through porins. Molecular dynamics simulations offer an extraordinary tool in the study of the dynamics of biological systems; however, one of the major drawbacks of this method is that its use is currently restricted to study time scales of the order of microsecond. Enhanced sampling methods like Metadynamics have been recently used to investigate the diffusion of antibiotics through bacterial porins. The main limitation is that dynamical properties cannot be estimated because of the different potential that the systems under study are experiencing. Recently, the scope of Metadynamics has been extended. By applying an a posteriori analysis one can obtain rates of transitions and rate-limiting steps of the process under study, directly comparable with kinetic data extracted from electrophysiology experiments. In this work, we apply this method to the study of the permeability of Escherichia coli's OmpF with respect to Meropenem, finding good agreement with the residence time obtained analyzing experimental current noise. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  16. Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Basu, Sumit

    2015-04-01

    In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.

  17. On dioxygen permeation through a dehydrogenase-pyrroloquinoline quinone complex. A molecular-dynamics investigation.

    PubMed

    Pietra, Francesco

    2014-02-01

    In this work, an all atom model of the quinoprotein dehydrogenase PqqC in complex with the PQQ (=4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid) cofactor and dioxygen (O2 ), solvated with TIP3 water in periodic boxes, was subjected to random-acceleration molecular dynamics (RAMD). It was found that O2 leaves the active binding pocket, in front of PQQ, to get to the solvent, as easily as with a variety of other O2 -activating enzymes, O2 carriers, and gas-sensing proteins. The shortest pathway, orthogonal to the center of the mean plane of PQQ, was largely preferred by O2 over pathways slightly deviating from this line. These observations challenge the interpretation of an impermeable active binding pocket of PqqC-PQQ, as drawn from both X-ray diffraction data of the crystal at low temperature and physiological experimentation.

  18. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations.

    PubMed

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-08-24

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.

  19. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations

    PubMed Central

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-01-01

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5. PMID:26299310

  20. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal