Science.gov

Sample records for molecular motors design

  1. Bio-inspired novel design principles for artificial molecular motors.

    PubMed

    Hugel, Thorsten; Lumme, Christina

    2010-10-01

    Since we have learned that biological organisms like ourselves are driven by tiny biological molecular motors we try to design and produce artificial molecular motors. However, despite the huge efforts since decades, man-made artificial molecular motors are still far from biological molecular motors or macroscopic motors with regard to performance, especially with respect to energy efficiency. This review highlights recent progress towards artificial molecular motors and discusses how their design and development can be guided by the design concepts of biological molecular motors or macroscopic motors.

  2. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  3. In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors.

    PubMed

    Nitta, Takahiro; Tanahashi, Akihito; Hirano, Motohisa

    2010-06-07

    We present an extended computer simulation method which allows in silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. The simulation reproduced molecular shuttle movements under external forces and dissociation of shuttles from guiding track surfaces. The simulation was validated by comparing the simulation results with the corresponding experimental ones. Using the simulation, track designers can change guiding track designs, choose guiding methods, tune the strength of external forces, and test the module performance. This simulation would significantly reduce the effort expended in designing guiding tracks for molecular shuttles powered by kinesin motors.

  4. Molecular Motors from DNA

    NASA Astrophysics Data System (ADS)

    Turberfield, Andrew

    2013-03-01

    DNA is a wonderful material for nanoscale construction: its self-assembly can be programmed by making use of its information-carrying capability and its hybridization or hydrolysis can be used as to provide energy for synthetic molecular machinery. With DNA it is possible to design and build three-dimensional scaffolds, to attach molecular components to them with sub-nanometre precision-and then to make them move. I shall describe our work on autonomous, biomimetic molecular motors powered by chemical fuels and the use of synthetic molecular machinery to control covalent chemical synthesis. I shall demonstrate bipedal motors whose operation depends on the coordination of the chemomechanical cycles of two separate catalytic centres and burnt bridges motors that can be programmed to navigate networks of tracks. I shall also discuss the use of kinesin motor proteins to power synthetic devices.

  5. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency.

    PubMed

    Nikiforov, Alexander; Gamez, Jose A; Thiel, Walter; Filatov, Michael

    2016-01-07

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor.

  6. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency

    PubMed Central

    2015-01-01

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor. PMID:26670164

  7. Light-driven rotary molecular motors without point chirality: a minimal design.

    PubMed

    Wang, Jun; Oruganti, Baswanth; Durbeej, Bo

    2017-03-08

    A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-adiabatic molecular dynamics simulations based on multiconfigurational quantum chemistry to demonstrate that this chiral feature is not essential for inducing unidirectional rotary motion in molecules that incorporate a cyclohexenylidene moiety into a protonated Schiff-base framework. Rather, the simulations show that it is possible to exploit the intrinsic asymmetry of the puckered cyclohexenylidene to control the direction of photoinduced rotation.

  8. DNA based molecular motors

    NASA Astrophysics Data System (ADS)

    Michaelis, Jens; Muschielok, Adam; Andrecka, Joanna; Kügel, Wolfgang; Moffitt, Jeffrey R.

    2009-12-01

    Most of the essential cellular processes such as polymerisation reactions, gene expression and regulation are governed by mechanical processes. Controlled mechanical investigations of these processes are therefore required in order to take our understanding of molecular biology to the next level. Single-molecule manipulation and force spectroscopy have over the last 15 years been developed into extremely powerful techniques. Applying these techniques to the investigation of proteins and DNA molecules has led to a mechanistic understanding of protein function on the level of single molecules. As examples for DNA based molecular machines we will describe single-molecule experiments on RNA polymerases as well as on the packaging of DNA into a viral capsid-a process that is driven by one of the most powerful molecular motors.

  9. Molecular Motors and Stochastic Models

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard

    The behavior of single molecular motors such as kinesin or myosin V, which move on linear filaments, involves a nontrivial coupling between the biochemical motor cycle and the stochastic movement. This coupling can be studied in the framework of nonuniform ratchet models which are characterized by spatially localized transition rates between the different internal states of the motor. These models can be classified according to their functional relationships between the motor velocity and the concentration of the fuel molecules. The simplest such relationship applies to two subclasses of models for dimeric kinesin and agrees with experimental observations on this molecular motor.

  10. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  11. From Computational Photobiology to the Design of Vibrationally Coherent Molecular Devices and Motors

    NASA Astrophysics Data System (ADS)

    Olivucci, Massimo

    2014-03-01

    In the past multi-configurational quantum chemical computations coupled with molecular mechanics force fields have been employed to investigate spectroscopic, thermal and photochemical properties of visual pigments. Here we show how the same computational technology can nowadays be used to design, characterize and ultimately, prepare light-driven molecular switches which mimics the photophysics of the visual pigment bovine rhodopsin (Rh). When embedded in the protein cavity the chromophore of Rh undergoes an ultrafast and coherent photoisomerization. In order to design a synthetic chromophore displaying similar properties in common solvents, we recently focused on indanylidene-pyrroline (NAIP) systems. We found that these systems display light-induced ground state coherent vibrational motion similar to the one detected in Rh. Semi-classical trajectories provide a mechanistic description of the structural changes associated to the observed coherent motion which is shown to be ultimately due to periodic changes in the π-conjugation.

  12. The mechanochemistry of molecular motors.

    PubMed Central

    Keller, D; Bustamante, C

    2000-01-01

    A theory of molecular motors is presented that explains how the energy released in single chemical reactions can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and give general expressions for motor velocity versus load force for any member of each class. We show that in some cases simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to determine the step at which movement occurs. PMID:10653770

  13. Fluctuation Relations for Molecular Motors

    NASA Astrophysics Data System (ADS)

    Lacoste, David; Mallick, Kirone

    This review is focused on the application of specific fluctuation relations, such as the Gallavotti-Cohen relation, to ratchet models of a molecular motor. A special emphasis is placed on two-state models such as the flashing ratchet model. We derive the Gallavotti-Cohen fluctuation relation for these models and we discuss some of its implications.

  14. Thermodynamics and kinetics of molecular motors.

    PubMed

    Astumian, R Dean

    2010-06-02

    Molecular motors are first and foremost molecules, governed by the laws of chemistry rather than of mechanics. The dynamical behavior of motors based on chemical principles can be described as a random walk on a network of states. A key insight is that any molecular motor in solution explores all possible motions and configurations at thermodynamic equilibrium. By using input energy and chemical design to prevent motion that is not wanted, what is left behind is the motion that is desired. This review is focused on two-headed motors such as kinesin and Myosin V that move on a polymeric track. By use of microscopic reversibility, it is shown that the ratio between the number of forward steps and the number of backward steps in any sufficiently long time period does not directly depend on the mechanical properties of the linker between the two heads. Instead, this ratio is governed by the relative chemical specificity of the heads in the front-versus-rear position for the fuel, adenosine triphosphate and its products, adenosine diphosphate and inorganic phosphate. These insights have been key factors in the design of biologically inspired synthetic molecular walkers constructed out of DNA or out of small organic molecules.

  15. Thermodynamics and Kinetics of Molecular Motors

    PubMed Central

    Astumian, R. Dean

    2010-01-01

    Abstract Molecular motors are first and foremost molecules, governed by the laws of chemistry rather than of mechanics. The dynamical behavior of motors based on chemical principles can be described as a random walk on a network of states. A key insight is that any molecular motor in solution explores all possible motions and configurations at thermodynamic equilibrium. By using input energy and chemical design to prevent motion that is not wanted, what is left behind is the motion that is desired. This review is focused on two-headed motors such as kinesin and Myosin V that move on a polymeric track. By use of microscopic reversibility, it is shown that the ratio between the number of forward steps and the number of backward steps in any sufficiently long time period does not directly depend on the mechanical properties of the linker between the two heads. Instead, this ratio is governed by the relative chemical specificity of the heads in the front-versus-rear position for the fuel, adenosine triphosphate and its products, adenosine diphosphate and inorganic phosphate. These insights have been key factors in the design of biologically inspired synthetic molecular walkers constructed out of DNA or out of small organic molecules. PMID:20513383

  16. Unidirectional molecular motor on a gold surface

    NASA Astrophysics Data System (ADS)

    van Delden, Richard A.; Ter Wiel, Matthijs K. J.; Pollard, Michael M.; Vicario, Javier; Koumura, Nagatoshi; Feringa, Ben L.

    2005-10-01

    Molecules capable of mimicking the function of a wide range of mechanical devices have been fabricated, with motors that can induce mechanical movement attracting particular attention. Such molecular motors convert light or chemical energy into directional rotary or linear motion, and are usually prepared and operated in solution. But if they are to be used as nanomachines that can do useful work, it seems essential to construct systems that can function on a surface, like a recently reported linear artificial muscle. Surface-mounted rotors have been realized and limited directionality in their motion predicted. Here we demonstrate that a light-driven molecular motor capable of repetitive unidirectional rotation can be mounted on the surface of gold nanoparticles. The motor design uses a chiral helical alkene with an upper half that serves as a propeller and is connected through a carbon-carbon double bond (the rotation axis) to a lower half that serves as a stator. The stator carries two thiol-functionalized `legs', which then bind the entire motor molecule to a gold surface. NMR spectroscopy reveals that two photo-induced cis-trans isomerizations of the central double bond, each followed by a thermal helix inversion to prevent reverse rotation, induce a full and unidirectional 360° rotation of the propeller with respect to the surface-mounted lower half of the system.

  17. Computational design of faster rotating second-generation light-driven molecular motors by control of steric effects.

    PubMed

    Oruganti, Baswanth; Fang, Changfeng; Durbeej, Bo

    2015-09-07

    We report a systematic computational investigation of the possibility to accelerate the rate-limiting thermal isomerizations of the rotary cycles of synthetic light-driven overcrowded alkene-based molecular motors through modulation of steric interactions. Choosing as a reference system a second-generation motor known to accomplish rotary motion in the MHz regime and using density functional theory methods, we propose a three-step mechanism for the thermal isomerizations of this motor and show that variation of the steric bulkiness of the substituent at the stereocenter can reduce the (already small) free-energy barrier of the rate-determining step by a further 15-17 kJ mol(-1). This finding holds promise for future motors of this kind to reach beyond the MHz regime. Furthermore, we demonstrate and explain why one particular step is kinetically favored by decreasing and another step is kinetically favored by increasing the steric bulkiness of this substituent, and identify a possible back reaction capable of impeding the rotary rate.

  18. Unidirectional light-driven molecular motors based on overcrowded alkenes.

    PubMed

    Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L

    2014-01-01

    Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.

  19. Duty ratio of cooperative molecular motors.

    PubMed

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  20. Duty ratio of cooperative molecular motors

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  1. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  2. Ratchet models of molecular motors

    NASA Astrophysics Data System (ADS)

    Jaster, Nicole

    2003-09-01

    Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks. Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system. Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the

  3. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.

    PubMed

    Chahibi, Youssef; Akyildiz, Ian F; Balasingham, Ilangko

    2016-10-24

    Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.

  4. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.

    PubMed

    Chahibi, Youssef; Akyildiz, Ian F; Balasingham, Ilangko

    2016-12-01

    Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.

  5. Towards synthetic molecular motors: a model elastic-network study

    NASA Astrophysics Data System (ADS)

    Sarkar, Amartya; Flechsig, Holger; Mikhailov, Alexander S.

    2016-04-01

    Protein molecular motors play a fundamental role in biological cells and development of their synthetic counterparts is a major challenge. Here, we show how a model motor system with the operation mechanism resembling that of muscle myosin can be designed at the concept level, without addressing the implementation aspects. The model is constructed as an elastic network, similar to the coarse-grained descriptions used for real proteins. We show by numerical simulations that the designed synthetic motor can operate as a deterministic or Brownian ratchet and that there is a continuous transition between such two regimes. The motor operation under external load, approaching the stall condition, is also analysed.

  6. Molecular Motors: Power Strokes Outperform Brownian Ratchets.

    PubMed

    Wagoner, Jason A; Dill, Ken A

    2016-07-07

    Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Their actions are often described in terms of "Power Stroke" (PS) and "Brownian Ratchet" (BR) mechanisms. Here, we use a transition-state model and stochastic thermodynamics to describe a range of mechanisms ranging from PS to BR. We incorporate this model into Hill's diagrammatic method to develop a comprehensive model of motor processivity that is simple but sufficiently general to capture the full range of behavior observed for molecular motors. We demonstrate that, under all conditions, PS motors are faster, more powerful, and more efficient at constant velocity than BR motors. We show that these differences are very large for simple motors but become inconsequential for complex motors with additional kinetic barrier steps.

  7. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  8. Molecular motors: thermodynamics and the random walk.

    PubMed Central

    Thomas, N.; Imafuku, Y.; Tawada, K.

    2001-01-01

    The biochemical cycle of a molecular motor provides the essential link between its thermodynamics and kinetics. The thermodynamics of the cycle determine the motor's ability to perform mechanical work, whilst the kinetics of the cycle govern its stochastic behaviour. We concentrate here on tightly coupled, processive molecular motors, such as kinesin and myosin V, which hydrolyse one molecule of ATP per forward step. Thermodynamics require that, when such a motor pulls against a constant load f, the ratio of the forward and backward products of the rate constants for its cycle is exp [-(DeltaG + u(0)f)/kT], where -DeltaG is the free energy available from ATP hydrolysis and u(0) is the motor's step size. A hypothetical one-state motor can therefore act as a chemically driven ratchet executing a biased random walk. Treating this random walk as a diffusion problem, we calculate the forward velocity v and the diffusion coefficient D and we find that its randomness parameter r is determined solely by thermodynamics. However, real molecular motors pass through several states at each attachment site. They satisfy a modified diffusion equation that follows directly from the rate equations for the biochemical cycle and their effective diffusion coefficient is reduced to D-v(2)tau, where tau is the time-constant for the motor to reach the steady state. Hence, the randomness of multistate motors is reduced compared with the one-state case and can be used for determining tau. Our analysis therefore demonstrates the intimate relationship between the biochemical cycle, the force-velocity relation and the random motion of molecular motors. PMID:11600075

  9. Tetrapodal molecular switches and motors: synthesis and photochemistry.

    PubMed

    Chen, Kuang-Yen; Wezenberg, Sander J; Carroll, Gregory T; London, Gábor; Kistemaker, Jos C M; Pijper, Thomas C; Feringa, Ben L

    2014-08-01

    The design, synthesis, and dynamic behavior of a series of novel tetrapodal molecular switches and motors containing common functional groups for attachment to various inorganic and organic surfaces are presented. Using a Diels-Alder reaction, an anthracene unit with four functionalized alkyl substituents ("legs") was coupled to maleimide-functionalized molecular switches or motors under ambient conditions. Terminal functional groups at the "legs" include thioacetates and azides, making these switches and motors ideal candidates for attachment to metallic or alkyne-functionalized surfaces. UV/vis absorption spectroscopy shows that the molecular switches and motors retain their ability to undergo reversible photoinduced and/or thermally induced structural changes after attachment to the tetrapodal anthracene.

  10. Development of an electrically driven molecular motor.

    PubMed

    Murphy, Colin J; Sykes, E Charles H

    2014-10-01

    For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  11. Unidirectional rotary motion in achiral molecular motors.

    PubMed

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  12. Unidirectional rotary motion in achiral molecular motors

    NASA Astrophysics Data System (ADS)

    Kistemaker, Jos C. M.; Štacko, Peter; Visser, Johan; Feringa, Ben L.

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings—like wheels on an axle—demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  13. Single rotating molecule-machines: nanovehicles and molecular motors.

    PubMed

    Rapenne, Gwénaël; Joachim, Christian

    2014-01-01

    In the last decade many molecular machines with controlled molecular motions have been synthesized. In the present review chapter we will present and discuss our contribution to the field, in particular through some examples of rotating molecular machines that have been designed, synthesized, and studied in our group. After starting by explaining why it is so important to study such machines as single molecules, we will focus on two families of molecular machines, nanovehicles and molecular motors. The first members of the nanovehicle family are molecules with two triptycenes as wheels: the axle and the wheelbarrow. Then come the four-wheel nanocars. Since triptycene wheels are not very mobile on metallic surfaces, alternative wheels with a bowl-shape structure have also been synthesized and studied on surfaces. The molecular motors are built around ruthenium organometallic centers and have a piano-stool geometry with peripheric ferrocenyl groups.

  14. Mechanochemical models of processive molecular motors

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Sun, Sean X.

    2012-05-01

    Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.

  15. Universal optimal working cycles of molecular motors.

    PubMed

    Efremov, Artem; Wang, Zhisong

    2011-04-07

    Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts.

  16. Controlled clockwise and anticlockwise rotational switching of a molecular motor.

    PubMed

    Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  17. Controlled clockwise and anticlockwise rotational switching of a molecular motor

    NASA Astrophysics Data System (ADS)

    Perera, U. G. E.; Ample, F.; Kersell, H.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  18. Controlled Rotation and Manipulation of Individual Molecular Motors

    NASA Astrophysics Data System (ADS)

    Kersell, Heath; Perera, U. G. E.; Ample, F.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2015-03-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines, but the parallels between the two are frequently only superficial because many molecular machines are governed by quantum processes. Previously, chemically and light driven rotary molecular motors have been developed. For electrically driven motors, tunneling electrons from the tip of a scanning tunneling microscope (STM) have been used to drive rotation in a simple rotor into a single direction and to move a wheeled molecule across a surface. Here, we show that a single standalone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or counterclockwise direction [1] by selective inelastic electron tunneling through different sub-units of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotator for controlled rotations, and a Ru atomic ball bearing connecting the static and rotational parts. The directional rotation originates from saw-tooth-like rotational potentials, which are determined by the internal molecular structure and are independent of the surface adsorption site. This project is supported by the US DOE, BES grant: DE-FG02-02ER46012.

  19. Mechanoregulation of molecular motors in flagella

    NASA Astrophysics Data System (ADS)

    Gadelha, Hermes

    2014-11-01

    Molecular motors are nano-biological machines responsible for exerting forces that drive movement in living organisms, from cargo transport to cell division and motility. Interestingly, despite the inherent complexity of many interacting motors, order and structure may arise naturally, as exemplified by the harmonic, self-organized undulatory motion of the flagellum. The real mechanisms behind this collective spontaneous oscillation are still unknown, and it is challenging task to measure experimentally the molecular motor dynamics within the flagellar structure in real time. In this talk we will explore different competing hypotheses that are capable of generating flagellar bending waves that ``resemble'' in-vitro observations, emphasizing the need for further mathematical analysis and model validation. It also highlight that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

  20. Patterns of molecular motors that guide and sort filaments.

    PubMed

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  1. High-Pressure Microscopy for Studying Molecular Motors.

    PubMed

    Nishiyama, Masayoshi

    2015-01-01

    Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.

  2. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    AFRL-OSR-VA-TR-2014-0121 LIGHT-DRIVEN CHIRAL MOLECULAR MOTORS FOR PASSIVE AGILE FILTERS Quan Li KENT STATE UNIV OH Final Report 05/20/2014...Prescribed by ANSI Std. Z39.18 1 FINAL REPORT Title: Light-driven Chiral Molecular Motors for Passive Agile Filters AFOSR...As we proposed originally, the major objective of this project was to synthesize novel light- driven chiral molecular motors or switches targeted

  3. Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors.

    PubMed

    Teimouri, Hamid; Kolomeisky, Anatoly B; Mehrabiani, Kareem

    2015-02-13

    Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  4. Theoretical analysis of dynamic processes for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-02-01

    Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  5. Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors.

    PubMed

    García-Iriepa, Cristina; Marazzi, Marco; Zapata, Felipe; Valentini, Alessio; Sampedro, Diego; Frutos, Luis Manuel

    2013-05-02

    Generation of a chiral hydrogen bond environment in efficient molecular photoswitches is proposed as a novel strategy for the design of photoactive molecular motors. Here, the following strategy is used to design a retinal-based motor presenting singular properties: (i) a single excitation wavelength is needed to complete the unidirectional rotation process (360°); (ii) the absence of any thermal step permits the process to take place at low temperatures; and (iii) the ultrafast process permits high rotational frequencies.

  6. Thermodynamics and kinetics of a molecular motor ensemble.

    PubMed Central

    Baker, J E; Thomas, D D

    2000-01-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble. PMID:11023881

  7. Thermodynamics and kinetics of a molecular motor ensemble.

    PubMed

    Baker, J E; Thomas, D D

    2000-10-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble.

  8. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    PubMed

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  9. Length regulation of active biopolymers by molecular motors.

    PubMed

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  10. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  11. Distinct transport regimes for two elastically coupled molecular motors.

    PubMed

    Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard

    2012-05-18

    Cooperative cargo transport by two molecular motors involves an elastic motor-motor coupling, which can reduce the motors' velocity and/or enhance their unbinding from the filament. We show theoretically that these interference effects lead, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive by explicit calculations and general time scale arguments, can be explored experimentally by varying the elastic coupling strength.

  12. A general two-cycle network model of molecular motors

    NASA Astrophysics Data System (ADS)

    Zhang, Yunxin

    2009-09-01

    Molecular motors are single macromolecules that generate forces at the piconewton range and nanometer scale. They convert chemical energy into mechanical work by moving along filamentous structures. In this paper, we study the velocity of two-head molecular motors in the framework of a mechanochemical network theory. The network model, a generalization of the recently work of Liepelt and Lipowsky [Steffen Liepelt, Reinhard Lipowsky, Kinesins network of chemomechanical motor cycles, Physical Review Letters 98 (25) (2007) 258102], is based on the discrete mechanochemical states of a molecular motor with multiple cycles. By generalizing the mathematical method developed by Fisher and Kolomeisky for a single cycle motor [Michael E. Fisher, Anatoly B. Kolomeisky, Simple mechanochemistry describes the dynamics of kinesin molecules, Proceedings of the National Academy of Sciences 98 (14) (2001) 7748-7753], we are able to obtain an explicit formula for the velocity of a molecular motor.

  13. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  14. Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.

    PubMed

    Small, Lara S R; Bruning, Marc; Thomson, Andrew R; Boyle, Aimee L; Davies, Roberta B; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner; Woolfson, Derek N; Bromley, Elizabeth H C

    2017-03-14

    Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed. We use circular dichroism, analytical ultracentrifugation, dynamic light scattering, and disulfide rearrangement studies to demonstrate the ability of this six-peptide set to form the structure designed for the Tumbleweed motor. The successful formation of a suitable hub structure is both a test of the transferability of design rules for protein folding as well as an important step in the production of a synthetic protein-based molecular motor.

  15. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  16. Optical Traps to Study Properties of Molecular Motors

    PubMed Central

    Spudich, James A.; Rice, Sarah E.; Rock, Ronald S.; Purcell, Thomas J.; Warrick, Hans M.

    2016-01-01

    In vitro motility assays enabled the analysis of coupling between ATP hydrolysis and movement of myosin along actin filaments or kinesin along microtubules. Single-molecule assays using laser trapping have been used to obtain more detailed information about kinesins, myosins, and processive DNA enzymes. The combination of in vitro motility assays with laser-trap measurements has revealed detailed dynamic structural changes associated with the ATPase cycle. This article describes the use of optical traps to study processive and nonprocessive molecular motor proteins, focusing on the design of the instrument and the assays to characterize motility. PMID:22046048

  17. Motor Proteins and Molecular Motors: How to Operate Machines at Nanoscale

    PubMed Central

    Kolomeisky, Anatoly B.

    2013-01-01

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environment, strongly supporting fundamental cellular processes such as transfer of genetic information, transport, organization and functioning. In last two decades motor proteins have become a subject of intense research efforts that were aimed to uncover fundamental principles and mechanisms of molecular motors dynamics. In this review, we critically discuss a recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized for explaining non-equilibrium nature and mechanisms of molecular motors. PMID:24100357

  18. Motor proteins and molecular motors: how to operate machines at the nanoscale.

    PubMed

    Kolomeisky, Anatoly B

    2013-11-20

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.

  19. Collective alignment of polar filaments by molecular motors.

    PubMed

    Ziebert, F; Vershinin, M; Gross, S P; Aranson, I S

    2009-04-01

    We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors' stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.

  20. Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors.

    PubMed

    DelRosso, Nicole V; Derr, Nathan D

    2017-01-11

    Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters. We then discuss mechanistic work to create fully synthetic motors de novo and conclude with future directions in creating novel motor systems.

  1. Helicases as molecular motors: An insight

    NASA Astrophysics Data System (ADS)

    Tuteja, Narendra; Tuteja, Renu

    2006-12-01

    Helicases are one of the smallest motors of biological system, which harness the chemical free energy of ATP hydrolysis to catalyze the opening of energetically stable duplex nucleic acids and thereby are involved in almost all aspect of nucleic acid metabolism including replication, repair, recombination, transcription, translation, and ribosome biogenesis. Basically, they break the hydrogen bonding between the duplex helix and translocate unidirectionally along the bound strand. Mostly all the helicases contain some conserved signature motifs, which act as an engine to power the unwinding. After the discovery of the first prokaryotic DNA helicase from Escherichia coli bacteria in 1976 and the first eukaryotic one from the lily plant in 1978, many more (>100) have been isolated. All the helicases share some common properties, including nucleic acid binding, NTP hydrolysis and unwinding of the duplex. Many helicases have been crystallized and their structures have revealed an underlying common structural fold for their function. The defects in helicases gene have also been reported to be responsible for variety of human genetic disorders, which can lead to cancer, premature aging or mental retardation. Recently, a new role of a helicase in abiotic stress signaling in plant has been discovered. Overall, helicases act as essential molecular tools for cellular machinery and help in maintaining the integrity of genome. Here an overview of helicases has been covered which includes history, biochemical assay, properties, classification, role in human disease and mechanism of unwinding and translocation.

  2. Molecular motors as an auto-oscillator

    PubMed Central

    Ishiwata, Shin’ichi; Shimamoto, Yuta; Suzuki, Madoka

    2010-01-01

    The organization of biomotile systems possesses structural and functional hierarchy, building up from single molecules via protein assemblies and cells further up to an organ. A typical example is the hierarchy of cardiac muscle, on the top of which is the heart. The heartbeat is supported by the rhythmic contraction of the muscle cells that is controlled by the Ca2+ oscillation triggered by periodic electrical excitation of pacemaker cells. Thus, it is usually believed that the heartbeat is governed by the control system based on a sequential one-way chain with the electrical∕chemical information transfer from the upper to the lower level of hierarchy. On the other hand, it has been known for many years that the contractile system of muscle, i.e., skinned muscle fibers and myofibrils, itself possesses the auto-oscillatory properties even in the constant chemical environment. A recent paper [Plaçais, et al. (2009), Phys. Rev. Lett. 103, 158102] demonstrated the auto-oscillatory movement∕tension development in an in vitro motility assay composed of a single actin filament and randomly distributed myosin II molecules, suggesting that the auto-oscillatory properties are inherent to the contractile proteins. Here we discuss how the molecular motors may acquire the higher-ordered auto-oscillatory properties while stepping up the staircase of hierarchy. PMID:21119762

  3. Parsimonious design principles for motor unit models.

    PubMed

    Ban, Lan; Shapiro, Nicholas P; Lee, Robert H

    2007-01-01

    Motor units are known to display type-specific differences in passive and active electrical properties, and attempts to predict motor unit type based on the measurement of membrane properties have been rather successful. Quantitative models of motoneurons have also grown in complexity and their predictive power is predicated upon the accurate description of basic membrane properties. This paper presents results from a modeling study which sought to specify a small and simple set of "design rules" that motoneurons might obey during type-specific differentiation.

  4. Monte Carlo simulations of single and coupled synthetic molecular motors.

    PubMed

    Chen, C-M; Zuckermann, M

    2012-11-01

    We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley et al. [HFSP J. 3, 204 (2009)] for studying the properties of a synthetic protein motor, the "Tumbleweed" (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can be

  5. Fluctuation theorem for the flashing ratchet model of molecular motors

    NASA Astrophysics Data System (ADS)

    Lacoste, D.; Mallick, K.

    2009-08-01

    Molecular motors convert chemical energy derived from the hydrolysis of adenosine triphosphate (ATP) into mechanical energy. A well-studied model of a molecular motor is the flashing ratchet model. We show that this model exhibits a fluctuation relation known as the Gallavotti-Cohen symmetry. Our study highlights the fact that the symmetry is present only if the chemical and mechanical degrees of freedom are both included in the description.

  6. Fluctuation theorem for the flashing ratchet model of molecular motors.

    PubMed

    Lacoste, D; Mallick, K

    2009-08-01

    Molecular motors convert chemical energy derived from the hydrolysis of adenosine triphosphate (ATP) into mechanical energy. A well-studied model of a molecular motor is the flashing ratchet model. We show that this model exhibits a fluctuation relation known as the Gallavotti-Cohen symmetry. Our study highlights the fact that the symmetry is present only if the chemical and mechanical degrees of freedom are both included in the description.

  7. Molecular motor traffic: From biological nanomachines to macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  8. Molecular motors: a traffic cop within?

    PubMed Central

    Welte, M. A.; Gross, S. P.

    2008-01-01

    Intracellular transport along microtubules is often bidirectional, employing multiple plus- and minus-end directed motors. How cells regulate such transport in time and space is a fundamental but unsolved question in cell biology. A recent paper presents a new modeling approach to predict how much of transport can be understood just from our knowledge of the motors involved. The model can generate strikingly complex patterns of motion, mimicking key aspects of cargo transport in vivo. Previous studies had inferred that plus-end motors on bidirectional cargoes are usually turned off when the minus-end motors are engaged (and vice versa). In the model, such motor coordination can arise from motors competing in a tug-of-war, without help from additional regulators. This new theoretical framework should stimulate much research that will help unravel whether regulation of intracellular transport is dominated by higher-order control mechanisms or is achieved simply by tuning basic properties of the motors themselves. PMID:19404428

  9. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  10. Molecular crowding creates traffic jams of kinesin motors on microtubules.

    PubMed

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-04-17

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends.

  11. Molecular crowding creates traffic jams of kinesin motors on microtubules

    PubMed Central

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-01-01

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends. PMID:22431622

  12. Cooperative behavior of molecular motors: Cargo transport and traffic phenomena

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard; Beeg, Janina; Dimova, Rumiana; Klumpp, Stefan; Müller, Melanie J. I.

    2010-01-01

    All eukaryotic cells including those of our own body contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and make discrete mechanical steps with a step size of the order of 10 nm but are able to pull cargo particles over much larger distances, from micrometers up to meters. In vivo, the intracellular cargos include large membrane-bounded organelles, smaller vesicles, a subset of mRNAs, cytoskeletal filaments, and various protein building blocks, which are transported between different cell compartments. This cargo transport is usually performed by teams of motors. If all motors belong to the same molecular species, the cooperative action of the motors leads to uni-directional transport with a strongly increased run length and with a characteristic force dependence of the velocity distributions. If two antagonistic teams of motors pull on the same cargo particle, they perform a stochastic tug-of-war, which is characterized by a subtle force balance between the two motor teams and leads to several distinct patterns of bi-directional transport. So far, all experimental observations on bi-directional transport are consistent with such a tug-of-war. If many motors and/or cargo particles are transported along the filaments, one encounters various traffic phenomena. Depending on their mutual interactions and the compartment geometry, the motors form various spatio-temporal patterns such as traffic jams, and undergo nonequilibrium phase transitions between different patterns of transport.

  13. Design and implementation of spherical ultrasonic motor.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki; Ishida, Hiroshi

    2009-11-01

    We present a mechanical design and implementation of spherical ultrasonic motor (SUSM) that is an actuator with multiple rotational degrees of freedom (multi-DOF). The motor is constructed of 3 annular stators and a spherical rotor and is much smaller and simpler than conventional multi-DOF mechanisms such as gimbals using servomotors. We designed a novel SUSM using experimental data from a single annular stator and a finite element method. The SUSM using a spherical rotor of diameter 20 mm without any reduction gear has demonstrated advantages of high responsiveness, good accuracy, and high torque at low speed. The dynamic implementation of SUSM was consistent with the driving model of SUSM based on a friction drive.

  14. Effect of the size of solvent molecules on the single-chain mechanics of poly(ethylene glycol): implications on a novel design of a molecular motor.

    PubMed

    Luo, Zhonglong; Zhang, Bo; Qian, Hu-Jun; Lu, Zhong-Yuan; Cui, Shuxun

    2016-10-20

    Excluded-volume (EV) interaction, also known as the EV effect, can drive the collapse of polymer chains in a polymer solution and promote the crystallization of polymer chains. Herein we report, for the first time, the effect of EV interaction on the single-chain mechanics of a polymer, poly(ethylene glycol) (PEG). By using AFM-based single-molecule force spectroscopy, the single-chain mechanics of a PEG chain has been detected in various nonpolar organic solvents with different molecule sizes. It is observed that the nonpolar solvents can be classified into two categories. In the small-sized organic solvents (e.g., tetrachloroethane and n-nonane), PEG presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity from quantum mechanical calculations. However, in the middle-sized solvents (e.g., n-dodecane and n-hexadecane), the single-chain entropic elasticity of PEG is influenced by EV interactions noticeably, which indicates that the PEG chain tends to adopt a compact conformation under these conditions. To stretch a PEG chain from a free state to a fully extended state, more energy (1.54 kBT per repeating unit) is needed in small-sized organic solvents than in middle-sized organic solvents. It is expected that a partially stretched PEG chain would shrink to some extent when the solvent is changed from a middle-sized organic solvent to a small-sized one. Accordingly, a novel design of a PEG-based single-molecule motor that works with solvent stimuli is proposed.

  15. Engineering controllable bidirectional molecular motors based on myosin.

    PubMed

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  16. Stochastic simulations of cargo transport by processive molecular motors

    NASA Astrophysics Data System (ADS)

    Korn, Christian B.; Klumpp, Stefan; Lipowsky, Reinhard; Schwarz, Ulrich S.

    2009-12-01

    We use stochastic computer simulations to study the transport of a spherical cargo particle along a microtubule-like track on a planar substrate by several kinesin-like processive motors. Our newly developed adhesive motor dynamics algorithm combines the numerical integration of a Langevin equation for the motion of a sphere with kinetic rules for the molecular motors. The Langevin part includes diffusive motion, the action of the pulling motors, and hydrodynamic interactions between sphere and wall. The kinetic rules for the motors include binding to and unbinding from the filament as well as active motor steps. We find that the simulated mean transport length increases exponentially with the number of bound motors, in good agreement with earlier results. The number of motors in binding range to the motor track fluctuates in time with a Poissonian distribution, both for springs and cables being used as models for the linker mechanics. Cooperativity in the sense of equal load sharing only occurs for high values for viscosity and attachment time.

  17. Embedding dual function into molecular motors through collective motion.

    PubMed

    Saito, Nen; Kaneko, Kunihiko

    2017-03-10

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.

  18. Stochastic simulations of cargo transport by processive molecular motors.

    PubMed

    Korn, Christian B; Klumpp, Stefan; Lipowsky, Reinhard; Schwarz, Ulrich S

    2009-12-28

    We use stochastic computer simulations to study the transport of a spherical cargo particle along a microtubule-like track on a planar substrate by several kinesin-like processive motors. Our newly developed adhesive motor dynamics algorithm combines the numerical integration of a Langevin equation for the motion of a sphere with kinetic rules for the molecular motors. The Langevin part includes diffusive motion, the action of the pulling motors, and hydrodynamic interactions between sphere and wall. The kinetic rules for the motors include binding to and unbinding from the filament as well as active motor steps. We find that the simulated mean transport length increases exponentially with the number of bound motors, in good agreement with earlier results. The number of motors in binding range to the motor track fluctuates in time with a Poissonian distribution, both for springs and cables being used as models for the linker mechanics. Cooperativity in the sense of equal load sharing only occurs for high values for viscosity and attachment time.

  19. Embedding dual function into molecular motors through collective motion

    PubMed Central

    Saito, Nen; Kaneko, Kunihiko

    2017-01-01

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently. PMID:28281683

  20. Molecular motors and the 2nd law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong

    2014-03-01

    Molecular motors from biology and nanotechnology often operate on chemical energy of fuel molecules in an isothermal environment, unlike macroscopic heat engines that draw energy from a heat flow between two temperatures. Nevertheless, isothermal molecular motors are still subject to the 2nd law of thermodynamics in a fundamental way: their directional motion must cost a finite amount of energy other than the environmental heat even though no work is done; otherwise the 2nd law would be violated. Hence the 2nd law requires a finite energy price for pure direction of molecular motors. But what is the lowest price of direction allowed by the 2nd law? And how does the 2nd law-decreed price of direction limit performance of molecular motors? In the talk, I shall present our theoretical study of the 2nd law-molecular motor link on basis of the accumulated biomotor phenomenology, and also introduce our experimental effort to develop biomimetic DNA bipedal nanomotors following the mechanistic guidelines out of the theoretical study. [Main contents of this talk are from references:] This work is partially supported by FRC grants R-144-000-259-112, R-144-000-290-112 and R-144-000-320-112.

  1. Mechanism of Spontaneous Oscillation Emerging from Collective Molecular Motors

    NASA Astrophysics Data System (ADS)

    Shimamoto, Yuta; Ishiwata, Shin'ichi

    2008-04-01

    Biological systems include a large number and various kinds of molecular machines. Individual molecular machines work stochastically, while the systems constructed of the ensembles of these machines exhibit dynamically-ordered phenomena, rather than a simple sum of individual parts. Here we focus on the spontaneous oscillatory contraction (SPOC) observed in the contractile system of muscle. From the mechanical measurements in the precursor state of SPOC, we discuss how the functions of individual molecular motors are autonomously regulated in the contractile system.

  2. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  3. Monte Carlo simulations of single and coupled synthetic molecular motors

    NASA Astrophysics Data System (ADS)

    Chen, C.-M.; Zuckermann, M.

    2012-11-01

    We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was originally proposed by Bromley [HFSP J.10.2976/1.3111282 3, 204 (2009)] for studying the properties of a synthetic protein motor, the “Tumbleweed” (TW), and involves rigid Y-shaped motors diffusively rotating along the track while controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are investigated by varying the parameters of the model. The latter includes ligand concentration and the range and strength of the binding interaction between motors and the track. In particular, it is of experimental interest to study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW motors were first studied since no previous MC simulations of these motors have been performed. We first studied single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was found that the average first passage time of the coupled motors only increases slowly with m while the average dwell time increases exponentially with m. Thus the stability of coupled motors on the track can

  4. Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry

    NASA Astrophysics Data System (ADS)

    Zuckermann, Martin J.; Angstmann, Christopher N.; Schmitt, Regina; Blab, Gerhard A.; Bromley, Elizabeth HC; Forde, Nancy R.; Linke, Heiner; Curmi, Paul MG

    2015-05-01

    The stepping direction of linear molecular motors is usually defined by a spatial asymmetry of the motor, its track, or both. Here we present a model for a molecular walker that undergoes biased directional motion along a symmetric track in the presence of a temporally symmetric chemical cycle. Instead of using asymmetry, directionality is achieved by persistence. At small load force the walker can take on average thousands of steps in a given direction until it stochastically reverses direction. We discuss a specific experimental implementation of a synthetic motor based on this design and find, using Langevin and Monte Carlo simulations, that a realistic walker can work against load forces on the order of picoNewtons with an efficiency of ∼18%, comparable to that of kinesin. In principle, the walker can be turned into a permanent motor by externally monitoring the walker’s momentary direction of motion, and using feedback to adjust the direction of a load force. We calculate the thermodynamic cost of using feedback to enhance motor performance in terms of the Shannon entropy, and find that it reduces the efficiency of a realistic motor only marginally. We discuss the implications for natural protein motor performance in the context of the strong performance of this design based only on a thermal ratchet.

  5. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  6. "Cargo-mooring" as an operating principle for molecular motors.

    PubMed

    Lisowski, Bartosz; Kuśmierz, Łukasz; Żabicki, Michał; Bier, Martin

    2015-06-07

    Navigating through an ever-changing and unsteady environment, and utilizing chemical energy, molecular motors transport the cell׳s crucial components, such as organelles and vesicles filled with neurotransmitter. They generate force and pull cargo, as they literally walk along the polymeric tracks, e.g. microtubules. What we suggest in this paper is that the motor protein is not really pulling its load. The load is subject to diffusion and the motor may be doing little else than rectifying the fluctuations, i.e. ratcheting the load׳s diffusion. Below we present a detailed model to show how such ratcheting can quantitatively account for observed data. The consequence of such a mechanism is the dependence of the transport׳s speed and efficacy not only on the motor, but also on the cargo (especially its size) and on the environment (i.e. its viscosity and structure). Current experimental works rarely provide this type of information for in vivo studies. We suggest that even small differences between assays can impact the outcome. Our results agree with those obtained in wet laboratories and provide novel insight in a molecular motor׳s functioning.

  7. Guiding Molecular Motors with Nano-Imprinted Structures

    NASA Astrophysics Data System (ADS)

    Bunk, Richard; Carlberg, Patrick; Månsson, Alf; Nicholls, Ian A.; Omling, Pär; Sundberg, Mark; Tågerud, Sven; Montelius, Lars

    2005-05-01

    This work, for the first time, demonstrates that nano-imprinted samples, with 100 nm wide polymer lines, can act as guides for molecular motors consisting of motor proteins actin and myosin. The motor protein function was characterized using fluorescence microscopy and compared to actomyosin motility on non-structured nitrocellulose surfaces. Our results open for further use of the nano-imprint technique in the production of disposable chips for bio-nanotechnological applications and miniaturized biological test systems. We discuss how the nano-imprinted motor protein assay system may be optimized and also how it compares to previously tested assay systems involving low-resolution UV-lithography and low throughput but high-resolution electron beam lithography.

  8. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  9. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish

    2013-08-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors “transduce” input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular nano-motors, we consider the porters, sliders and rowers, pistons and hooks, exporters, importers, packers and movers as well as those that also synthesize, manipulate and degrade “macromolecules of life”. We review mostly the quantitative models for the kinetics of these motors. We also describe several of those motor-driven intracellular stochastic processes for which quantitative models are yet to be developed. In part I, we discuss mainly the methodology and the generic models of various important classes of molecular motors. In part II, we review many specific examples emphasizing the unity of the basic mechanisms as well as diversity of operations arising from the differences in their detailed structure and kinetics. Multi-disciplinary research is presented here from the perspective of physicists.

  10. Time-dependent motor properties of multipedal molecular spiders

    NASA Astrophysics Data System (ADS)

    Samii, Laleh; Blab, Gerhard A.; Bromley, Elizabeth H. C.; Linke, Heiner; Curmi, Paul M. G.; Zuckermann, Martin J.; Forde, Nancy R.

    2011-09-01

    Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders’ processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.

  11. Rotation of artificial rotor axles in rotary molecular motors.

    PubMed

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  12. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  13. Design of a hybrid transducer type ultrasonic motor.

    PubMed

    Nakamura, K; Kurosawa, M; Ueha, S

    1993-01-01

    The authors present a design method for a hybrid transducer-type ultrasonic motor (HTUSM) for practical use. They introduce a simple equivalent circuit that expresses the unique operation mechanism of the hybrid transducer-type motor. A numerical simulation based on the model enables them to predict the motor characteristics such as the maximum torque and the no-load revolution speed. In addition, for the purpose of efficient design and physical interpretation of the phenomena, they discuss analytically the maximum torque of a special case and develop two design charts for the prediction of the no-load speed of the motor.

  14. A finite element code for electric motor design

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  15. Myosin-I molecular motors at a glance.

    PubMed

    McIntosh, Betsy B; Ostap, E Michael

    2016-07-15

    Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.

  16. Biased motion and molecular motor properties of bipedal spiders.

    PubMed

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J; Forde, Nancy R

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  17. Biased motion and molecular motor properties of bipedal spiders

    NASA Astrophysics Data System (ADS)

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J.; Forde, Nancy R.

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  18. Molecular beacon sequence design algorithm.

    PubMed

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  19. Universal bound on the efficiency of molecular motors

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-12-01

    The thermodynamic uncertainty relation provides an inequality relating any mean current, the associated dispersion and the entropy production rate for arbitrary non-equilibrium steady states. Applying it here to a general model of a molecular motor running against an external force or torque, we show that the thermodynamic efficiency of such motors is universally bounded by an expression involving only experimentally accessible quantities. For motors pulling cargo through a viscous fluid, a universal bound for the corresponding Stokes efficiency follows as a variant. A similar result holds if mechanical force is used to synthesize molecules of high chemical potential. Crucially, no knowledge of the detailed underlying mechano-chemical mechanism is required for applying these bounds.

  20. Interferometric Scattering Microscopy for the Study of Molecular Motors.

    PubMed

    Andrecka, J; Takagi, Y; Mickolajczyk, K J; Lippert, L G; Sellers, J R; Hancock, W O; Goldman, Y E; Kukura, P

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods.

  1. Interferometric Scattering Microscopy for the Study of Molecular Motors

    PubMed Central

    Andrecka, J.; Takagi, Y.; Mickolajczyk, K.J.; Lippert, L.G.; Sellers, J.R.; Hancock, W.O.; Goldman, Y.E.; Kukura, P.

    2016-01-01

    Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20 nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods. PMID:27793291

  2. ATOMIC AND MOLECULAR PHYSICS: Modelling of a DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Xie, Ping; Xue, Xiao-Guang; Wang, Peng-Ye

    2009-11-01

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage phi29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the phi29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.

  3. Optimal brushless DC motor design using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.

    2010-11-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  4. Chemically optimizing operational efficiency of molecular rotary motors.

    PubMed

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R

    2014-07-09

    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.

  5. Symposium FF: Molecular Motors, Nanomachines, and Active Nanostructures

    DTIC Science & Technology

    2008-06-23

    effects . Contributed talks by Francisco Raymo and Dongwhan Lee were followed by the second invited talk by Miguel Garcia-Garibay from UCLA...to 100 scientists in the audience for almost all talks. The large fraction of invited talks resulted in a consistently high quality of presentations...and engineers, and the large number of parallel symposia draws in attendees who are more peripherally interested in molecular motors. The main

  6. Mechanical transduction mechanisms of RecA-like molecular motors.

    PubMed

    Liao, Jung-Chi

    2011-12-01

    A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.

  7. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  8. Synthesis of technomimetic molecules: towards rotation control in single-molecular machines and motors.

    PubMed

    Rapenne, Gwénaël

    2005-04-07

    Technomimetic molecules are molecules designed to imitate macroscopic objects at the molecular level, also transposing the motions that these objects are able to undergo. This article focuses on technomimetic molecules with rotary motions, including gears, wheelbarrows and motors. Following the bottom-up approach the synthesis of technomimetic molecules grants access to the study of mechanical properties at the molecular level. These molecules are designed to operate as single molecules on surfaces under the control of the tip of a scanning tunneling microscope or atomic force microscope.

  9. Rotary molecular motion at the nanoscale: motors, propellers, wheels

    NASA Astrophysics Data System (ADS)

    Vukovic, Lela; Wang, Boyang; Kral, Petr

    2009-03-01

    We describe by molecular dynamics simulations nanoscale systems that could realize rotary motion. First, we study molecular propellers formed by carbon nanotube rotors with attached aromatic blades [1]. We show that these propellers could pump different types of liquids, and their pumping efficiency strongly depends on the chemistry of the (hydrophobic or hydrophilic) liquid-blade interface. We also investigate nanoscopic wheels with hydrophobic surfaces that show rolling activity on water when driven. Finally, we model efficient molecular motors driven by electron tunneling, which could drive rotary molecular systems [2]. [3pt] [1] B. Wang and P. Kr'al, . Rev. Lett. 98, 266102 (2007).[0pt] [2] B. Wang, L. Vukovic and P. Kr'al, Phys. Rev. Lett. 101, 186808 (2008).

  10. Ultrafast Excited State Dynamics in Molecular Motors: Coupling of Motor Length to Medium Viscosity.

    PubMed

    Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R; Laptenok, Sergey P; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R

    2017-03-07

    Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state followed by thermal helix inversions. The internal rotation of a large molecular unit required in these steps is expected to be sensitive to both the viscosity of the medium and the volume of the rotating unit. In this work, we describe a study of motor motion in both ground and excited states as a function of the size of the rotating units. The excited state decay is ultrafast, highly non-single exponential, and is best described by a sum of three exponential relaxation components. The average excited state decay time observed for a series of motors with substituents of increasing volume was determined. While substitution does affect the lifetime, the size of the substituent has only a minor effect. The solvent polarity dependence is also slight, but there is a significant solvent viscosity effect. Increasing the viscosity has no effect on the fastest of the three decay components, but it does lengthen the two slower decay times, consistent with them being associated with motion along an intramolecular coordinate displacing a large solvent volume. However, these slower relaxation times are again not a function of the size of the substituent. We conclude that excited state decay arises from motion along a coordinate which does not necessarily require complete rotation of the substituents through the solvent, but is instead more localized in the core structure of the motor. The decay of the metastable state to the ground state through a helix inversion occurs 14 orders of magnitude more slowly than the excited state decay, and was measured as a function of substituent size, solvent viscosity and temperature. In this case neither substituent size nor solvent viscosity influences

  11. Operating principles of rotary molecular motors: differences between F1 and V1 motors.

    PubMed

    Yamato, Ichiro; Kakinuma, Yoshimi; Murata, Takeshi

    2016-01-01

    Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases.

  12. Study of the Synchronous Reluctance Motor Design

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2016-08-01

    The paper focuses on studying the external-rotor synchronous reluctance motor. The analysis is performed to estimate the influence of the number of stator slots and non-magnetic areas in the rotor (i.e., flux barriers) on the electromagnetic torque and torque ripple of the studied motor. It is concluded that the increase in the number of stator slots Z = 6 to Z = 18 causes an approximately twofold decrease in the ripple factor, but torque increases by 5 %. Electromagnetic torque will be increased approximately by 24 %, if non-magnetic flux barriers are created in the rotor of the studied synchronous reluctance motor.

  13. Robotic endoscope motor module and gearing design.

    PubMed

    Oliveira, Jillian M; Chen, Yi; Hunter, Ian W

    2011-01-01

    Actuation of a robotic endoscope with increased torque output is presented. This paper will specifically focus on the motor module section of a robotic endoscope, which comprises of a pair of motors and gear reduction assemblies. The results for the endoscope and biopsy tool stiffness, as well as the stall force and force versus speed characteristics of the motor module assembly are shown. The scope stiffness was found to be 0.006 N/degree and additional stiffness of the biopsy tools were found to be in the range of 0.09 to 0.13 N/degree. Calculations for worm gearing and efficiency are discussed.

  14. Microtubules and associated molecular motors in Neurospora crassa.

    PubMed

    Mouriño-Pérez, Rosa Reyna; Riquelme, Meritxell; Callejas-Negrete, Olga Alicia; Galván-Mendoza, José Iván

    2016-01-01

    The cytoskeleton provides structure, shape and movement to various cells. Microtubules (MTs) are tubular structures made of α and β-tubulin heterodimers organized in 13 protofilaments, forming a hollow cylinder. A vast group of MT-associated proteins determines the function, behavior and interaction of the MTs with other cellular components. Among these proteins, molecular motors such as the dynein-dynactin complex and kinesin superfamily play roles in MT organization and organelle transport. This article focuses on the MT cytoskeleton and associated molecular motors in the filamentous fungus Neurospora crassa In addition to reviewing current available information for this fungus and contrasting it with knowledge of other fungal species, we present new experimental results that support the role of dynein, dynactin and conventional kinesin in MT organization, dynamics and transport of subcellular structures (nuclei and secretory vesicles). In wild type hyphae of N. crassa, cytoplasmic MTs are arranged longitudinally along hyphae and display a helical curvature. They interlace with one another to form a network throughout the cytoplasm. N. crassa dynein and dynactin mutants have a scant and disorganized MT cytoskeleton, an erratic and reduced Spitzenkörper (Spk) and distorted hyphal morphology. In contrast, hyphae of mutants with defective conventional kinesin exhibit only minor disruptions in MT and Spk organization. Although nuclear positioning is affected in all mutants, the MT-associated motor proteins are not major contributors to nuclear movement during hyphal growth. Cytoplasmic bulk flow is the vehicle for nuclear displacement in growing hyphal regions of N. crassa Motors are involved in nuclei saltatory movements in both retrograde or anterograde direction. In the dynein and kinesin mutants, micro and macrovesicles can reach the Spk, although growth is slightly impaired and the Spk displays an erratic path. Hyphal growth requires MTs, and their associated

  15. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  16. Design of a Gated Molecular Proton Channel

    SciTech Connect

    Gu, Wei; Zhou, Bo; Geyer, Tihamer; Hutter, Michael C.; Fang, Haiping; Helms, Volkhard H.

    2011-01-17

    The generation of an electrochemical pH gradient across biological membranes using energy from photosynthesis and respiration provides the universal driving force in cells for the production of adenosine triphosphate (ATP), the energy unit of life. Creating such an electrochemical potential requires the transportation of protons against a thermodynamic gradient. In biological proton pumps, chemical energy is used to induce protein conformational changes during each catalytic cycle where one or a few protons are pumped against a proton concentration gradient across the membrane. On the other hand, membrane channels also exist that mediate continuous particle exchange and may be switched between open and closed states. Being able to design nanochannels with similar functions would be of great importance for creating novel molecular devices with a wide range of applications such as molecular motors, fuel cells, rechargeable nanobatteries that provide energy to other nanomachines, and the generation of locally and temporally controlled pH jumps on microfluidic chips.

  17. A Hopping Mechanism for Cargo Transport by Molecular Motors on Crowded Microtubules

    NASA Astrophysics Data System (ADS)

    Goldman, Carla

    2010-05-01

    Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work Gross, Hither and yon: a review of bidirectional microtubule-based transport (Gross in Phys. Biol. 1:R1-R11, 2004). Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that - (ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movement even if directed by motors of a single polarity. The global properties of the model in the long-time regime are obtained by mapping the dynamics of the collection of interacting motors and cargos into an asymmetric simple exclusion process (ASEP) which can be resolved using the matrix ansatz introduced by Derrida (Derrida and Evans in Nonequilibrium Statistical Mechanics in One Dimension, pp. 277-304, 1997; Derrida et al. in J. Phys. A 26:1493-1517, 1993).

  18. Facile assembly of light-driven molecular motors onto a solid surface.

    PubMed

    Chen, Jiawen; Chen, Kuang-Yen; Carroll, Gregory T; Feringa, Ben L

    2014-10-28

    In order to improve the rotary motion of surface assembled light-driven molecular motors, tetra-acid-functionalized motors were bound to an amine-coated quartz surface without prior activation of the acid groups. In contrast to earlier bipodal motors, the tetravalent motor showed no significant reduction in the rotation speed when attached to a surface.

  19. Traffic jams and shocks of molecular motors inside cellular protrusions.

    PubMed

    Pinkoviezky, I; Gov, N S

    2014-05-01

    Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest that the experimental observations may be explained by the formation of traffic jams that form at the tip. The model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments are briefly described.

  20. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes.

    PubMed

    Vives, Guillaume; de Rouville, Henri-Pierre Jacquot; Carella, Alexandre; Launay, Jean-Pierre; Rapenne, Gwénaël

    2009-06-01

    This tutorial review presents our strategy to control the rotation in a molecular rotary motor, and the family of star-shaped ruthenium complexes designed to perform such a task. The molecules have a piano-stool structure with a "stator" meant to be grafted on a surface, and a "rotor" bearing redox-active groups, so that addressing the molecule with nano-electrodes would trigger rotation.

  1. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors.

    PubMed

    Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T; Giuseppone, Nicolas

    2015-02-01

    Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

  2. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors

    NASA Astrophysics Data System (ADS)

    Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T.; Giuseppone, Nicolas

    2015-02-01

    Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

  3. Extracting the stepping dynamics of molecular motors in living cells from trajectories of single particles.

    PubMed

    Bruno, Augusto; Bruno, Luciana; Levi, Valeria

    2013-01-01

    Molecular motors are responsible of transporting a wide variety of cargos in the cytoplasm. Current efforts are oriented to characterize the biophysical properties of motors in cells with the aim of elucidating the mechanisms of these nanomachines in the complex cellular environment. In this study, we present an algorithm designed to extract motor step sizes and dwell times between steps from trajectories of motors or cargoes driven by motors in cells. The algorithm is based on finding patterns in the trajectory compatible with the behavior expected for a motor step, i.e., a region of confined motion followed by a jump in the position to another region of confined motion with similar characteristics to the previous one. We show that this algorithm allows the analysis of 2D trajectories even if they present complex motion patterns such as active transport interspersed with diffusion and does not require the assumption of a given step size or dwell period. The confidence on the step detection can be easily obtained and allows the evaluation of the confidence of the dwell and step size distributions. To illustrate the possible applications of this algorithm, we analyzed trajectories of myosin-V driven organelles in living cells.

  4. Relation between cooperative molecular motors and active Brownian particles

    NASA Astrophysics Data System (ADS)

    Touya, Clément; Schwalger, Tilo; Lindner, Benjamin

    2011-05-01

    Active Brownian particles (ABPs), obeying a nonlinear Langevin equation with speed-dependent drift and noise amplitude, are well-known models used to describe self-propelled motion in biology. In this paper we study a model describing the stochastic dynamics of a group of coupled molecular motors (CMMs). Using two independent numerical methods, one based on the stationary velocity distribution of the motors and the other one on the local increments (also known as the Kramers-Moyal coefficients) of the velocity, we establish a connection between the CMM and the ABP models. The parameters extracted for the ABP via the two methods show good agreement for both symmetric and asymmetric cases and are independent of N, the number of motors, provided that N is not too small. This indicates that one can indeed describe the CMM problem with a simpler ABP model. However, the power spectrum of velocity fluctuations in the CMM model reveals a peak at a finite frequency, a peak which is absent in the velocity spectrum of the ABP model. This implies richer dynamic features of the CMM model which cannot be captured by an ABP model.

  5. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  6. Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core

    PubMed Central

    2017-01-01

    Exploring routes to visible-light-driven rotary motors, the possibility of red-shifting the excitation wavelength of molecular motors by extension of the aromatic core is studied. Introducing a dibenzofluorenyl moiety in a standard molecular motor resulted in red-shifting of the absorption spectrum. UV/vis and 1H NMR spectroscopy showed that these motors could be isomerized with light of wavelengths up to 490 nm and that the structural modification did not impair the anticipated rotary behavior. Extension of the aromatic core is therefore a suitable strategy to apply in pursuit of visible-light-driven molecular motors. PMID:28248510

  7. Stochastic thermodynamics of single enzymes and molecular motors.

    PubMed

    Seifert, U

    2011-03-01

    For a single enzyme or molecular motor operating in an aqueous solution of non-equilibrated solute concentrations, a thermodynamic description is developed on the level of an individual trajectory of transitions between states. The concept of internal energy, intrinsic entropy and free energy for states follows from a microscopic description using one assumption on time scale separation. A first-law energy balance then allows the unique identification of the heat dissipated in one transition. Consistency with the second law on the ensemble level enforces both stochastic entropy as third contribution to the entropy change involved in one transition and the local detailed balance condition for the ratio between forward and backward rates for any transition. These results follow without assuming weak coupling between the enzyme and the solutes, ideal solution behavior or mass action law kinetics. The present approach highlights both the crucial role of the intrinsic entropy of each state and the physically questionable role of chemiostats for deriving the first law for molecular motors subject to an external force under realistic conditions.

  8. Active fluidization of polymer networks through molecular motors.

    PubMed

    Humphrey, D; Duggan, C; Saha, D; Smith, D; Käs, J

    2002-03-28

    Entangled polymer solutions and melts exhibit elastic, solid-like resistance to quick deformations and a viscous, fluid-like response to slow deformations. This viscoelastic behaviour reflects the dynamics of individual polymer chains driven by brownian motion: since individual chains can only move in a snake-like fashion through the mesh of surrounding polymer molecules, their diffusive transport, described by reptation, is so slow that the relaxation of suddenly imposed stress is delayed. Entangled polymer solutions and melts therefore elastically resist deforming motions that occur faster than the stress relaxation time. Here we show that the protein myosin II permits active control over the viscoelastic behaviour of actin filament solutions. We find that when each actin filament in a polymerized actin solution interacts with at least one myosin minifilament, the stress relaxation time of the polymer solution is significantly shortened. We attribute this effect to myosin's action as a 'molecular motor', which allows it to interact with randomly oriented actin filaments and push them through the solution, thus enhancing longitudinal filament motion. By superseding reptation with sliding motion, the molecular motors thus overcome a fundamental principle of complex fluids: that only depolymerization makes an entangled, isotropic polymer solution fluid for quick deformations.

  9. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  10. Stepping molecular motor amid Lévy white noise

    NASA Astrophysics Data System (ADS)

    Lisowski, Bartosz; Valenti, Davide; Spagnolo, Bernardo; Bier, Martin; Gudowska-Nowak, Ewa

    2015-04-01

    We consider a model of a stepping molecular motor consisting of two connected heads. Directional motion of the stepper takes place along a one-dimensional track. Each head is subject to a periodic potential without spatial reflection symmetry. When the potential for one head is switched on, it is switched off for the other head. Additionally, the system is subject to the influence of symmetric, white Lévy noise that mimics the action of external random forcing. The stepper exhibits motion with a preferred direction which is examined by analyzing the median of the displacement of a midpoint between the positions of the two heads. We study the modified dynamics of the stepper by numerical simulations. We find flux reversals as noise parameters are changed. Speed and direction appear to very sensitively depend on characteristics of the noise.

  11. A theoretical model of a molecular-motor-powered pump.

    PubMed

    Bull, Joseph L; Hunt, Alan J; Meyhöfer, Edgar

    2005-03-01

    The motion of a cylindrical bead in a fluid contained within a two-dimensional channel is investigated using the boundary element method as a model of a biomolecular-motor-powered microfluidics pump. The novelty of the pump lies in the use of motor proteins (kinesin) to power the bead motion and the few moving parts comprising the pump. The performance and feasibility of this pump design is investigated using two model geometries: a straight channel, and a curved channel with two concentric circular walls. In the straight channel geometry, it is shown that increasing the bead radius relative to the channel width, increases the flow rate at the expense of increasing the force the kinesins must generate in order to move the bead. Pump efficiency is generally higher for larger bead radii, and larger beads can support higher imposed loads. In the circular channel geometry, it is shown that bead rotation modifies the force required to move the bead and that shifting the bead inward slightly reduces the required force. Bead rotation has a minimal effect on flow rate. Recirculation regions, which can develop between the bead and the channel walls, influence the stresses and force on the bead. These results suggest this pump design is feasible, and the kinesin molecules provide sufficient force to deliver pico- to atto- l/s flows.

  12. Adhesion of photon-driven molecular motors to surfaces via 1,3-dipolar cycloadditions: effect of interfacial interactions on molecular motion.

    PubMed

    Carroll, Gregory T; London, Gábor; Landaluce, Tatiana Fernández; Rudolf, Petra; Feringa, Ben L

    2011-01-25

    We report the attachment of altitudinal light-driven molecular motors to surfaces using 1,3-dipolar cycloaddition reactions. Molecular motors were designed containing azide or alkyne groups for attachment to alkyne- or azide-modified surfaces. Surface attachment was characterized by UV-vis, IR, XPS, and ellipsometry measurements. Surface-bound motors were found to undergo photochemical and thermal isomerizations consistent with unidirectional rotation in solution. Confinement at a surface was found to reduce the rate of the thermal isomerization process. The rate of thermal isomerization was also dependent on the surface coverage of the motors. In solution, changes in the UV-vis signal that accompany thermal isomerization can be fit with a single monoexponential decay. In contrast, thermal isomerization of the surface-bound motors does not follow a single monoexponential decay and was found to fit a biexponential decay. Both one- and two-legged motors were attached to surfaces. The kinetics of thermal isomerization was not affected by the valency of attachment, indicating that the changes in kinetics from solution to surface systems are related to interactions between the surface-bound motors.

  13. Report on Toyota/Prius Motor Design and Manufacturing Assessment

    SciTech Connect

    Hsu, J.S.

    2004-07-28

    In today's hybrid vehicle market the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to analyze and study the Prius drive system to understand the design and manufacturing mechanisms Toyota utilized to achieved their performance and cost goals. During the course of this research effort ORNL has dissected both the 2003 and 2004 Toyota/Prius drive motors. This study is focused primarily on motor design considerations and an assessment of manufacturing issues.

  14. External forces influence the elastic coupling effects during cargo transport by molecular motors.

    PubMed

    Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard

    2015-02-01

    Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors' stepping and unbinding behavior and thereby the ability to transport cargos. Based on a generic single motor description, we introduce a framework that explains the response of two identical molecular motors to a constant external force. In particular, we relate the single motor parameters, the coupling strength and the external load force to the dynamics of the motor pair. We derive four distinct transport regimes and determine how the crossover lines between the regimes depend on the load force. Our description of the overall cargo dynamics takes into account relaxational displacements of the cargo caused by the unbinding of one motor. For large forces and weak elastic coupling these back-shifts dominate the displacements. To develop an intuitive understanding about motor cooperativity during cargo transport, we introduce a time scale for load sharing. This time scale allows us to predict how the regulation of single motor parameters influences the cooperativity. As an example, we show that up-regulating the single motor processivity enhances load sharing of the motor pair.

  15. Design and use of brushless dc motor without detent torque

    NASA Astrophysics Data System (ADS)

    Wavre, N.

    1990-03-01

    Two applications of motors which cannot accept a residual detent torque due to the rotor magnets are presented. The first application concerns the joint mechanism of the Synchronous Meteorological Satellite/HERA project. The brushless torque motor drives a reversible harmonic drive with a high gear ratio of 500. The motor is designed to produce a stall torque of 3.0 Nm with a total imput power of 30 W for a total weight of 1.5 kg, with a no load speed of 500 rpm. The second application concerns the driving mechanism of an infrared sensor. The need to take all geometrical and magnetic parameters into consideration in designing space mechanisms is stressed.

  16. Simulation studies of self-organization of microtubules and molecular motors.

    SciTech Connect

    Jian, Z.; Karpeev, D.; Aranson, I. S.; Bates, P. W.; Michigan State Univ.

    2008-05-01

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the 'computational bottlenecks' associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.

  17. Simulation studies of self-organization of microtubules and molecular motors

    NASA Astrophysics Data System (ADS)

    Jia, Zhiyuan; Karpeev, Dmitry; Aranson, Igor S.; Bates, Peter W.

    2008-05-01

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the “computational bottlenecks” associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.

  18. Motor Mania: Revving Up for Technological Design

    ERIC Educational Resources Information Center

    Frazier, Wendy M.; Sterling, Donna R.

    2008-01-01

    Students get very excited when confronted with problems that they find meaningful. Problem-based learning lets students solve problems using the strategies and tools that scientists use. While developing solutions via technological design and construction, students experience firsthand the relationship between science and technology. To capture…

  19. Computer-assisted design in perceptual-motor skills research

    NASA Technical Reports Server (NTRS)

    Rogers, C. A., Jr.

    1974-01-01

    A categorization was made of independent variables previously found to be potent in simple perceptual-motor tasks. A computer was then used to generate hypothetical factorial designs. These were evaluated in terms of literature trends and pragmatic criteria. Potential side-effects of machine-assisted research strategy were discussed.

  20. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  1. The reciprocal coordination and mechanics of molecular motors in living cells.

    PubMed

    Laib, Jeneva A; Marin, John A; Bloodgood, Robert A; Guilford, William H

    2009-03-03

    Molecular motors in living cells are involved in whole-cell locomotion, contractility, developmental shape changes, and organelle movement and positioning. Whether motors of different directionality are functionally coordinated in cells or operate in a semirandom "tug of war" is unclear. We show here that anterograde and retrograde microtubule-based motors in the flagella of Chlamydomonas are regulated such that only motors of a common directionality are engaged at any single time. A laser trap was used to position microspheres on the plasma membrane of immobilized paralyzed Chlamydomonas flagella. The anterograde and retrograde movements of the microsphere were measured with nanometer resolution as microtubule-based motors engaged the transmembrane protein FMG-1. An average of 10 motors acted to move the microsphere in either direction. Reversal of direction during a transport event was uncommon, and quiescent periods separated every transport event, suggesting the coordinated and exclusive action of only a single motor type. After a jump to 32 degrees C, temperature-sensitive mutants of kinesin-2 (fla10) showed exclusively retrograde transport events, driven by 7 motors on average. These data suggest that molecular motors in living cells can be reciprocally coordinated to engage simultaneously in large numbers and for exclusive transport in a single direction, even when a mixed population of motors is present. This offers a unique model for studying the mechanics, regulation, and directional coordination of molecular motors in a living intracellular environment.

  2. Enantiopure Functional Molecular Motors Obtained by a Switchable Chiral-Resolution Process.

    PubMed

    van Leeuwen, Thomas; Gan, Jefri; Kistemaker, Jos C M; Pizzolato, Stefano F; Chang, Mu-Chieh; Feringa, Ben L

    2016-05-17

    Molecular switches, rotors, and motors play an important role in the development of nano-machines and devices, as well as responsive and adaptive functional materials. For unidirectional rotors based on chiral overcrowded alkenes, their stereochemical homogeneity is of crucial importance. Herein, a method to obtain new and functionalizable overcrowded alkenes in enantiopure form is presented. The procedure involves a short synthesis of three steps and a solvent-switchable chiral resolution by using a readily available resolving agent. X-ray crystallography revealed the mode of binding of the motor with the resolving agent, as well as the absolute configuration of the motor. (1) H NMR and UV/Vis spectroscopy techniques were used to determine the dynamic behavior of this molecular motor. This method provides rapid access to ample amounts of enantiopure molecular motors, which will greatly facilitate the further development of responsive molecular systems based on chiral overcrowded alkenes.

  3. Solid propellant processing factor in rocket motor design

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  4. Design Methodology for Low-Speed Variable Reluctance Motors

    NASA Astrophysics Data System (ADS)

    Suriano, John Riden

    Lowering the gear reduction in actuators by utilizing high-torque low-speed motors enables the use of less expensive and simpler gear systems and decreases the overall system inertia. Variable reluctance machines can produce high torque at low speeds. Their static torque, a critical quantity for determination of low speed operation, is compared for three variable reluctance motor design variations using linear analysis. Saturation effects, which are crucial to the accurate determination of static torque, are modeled using a dual energy technique first proposed by Lord Rayleigh. Dual energy techniques utilizing flux tubes and magnetomotive force slices are developed into a numerical method for predicting nonlinear three-dimensional magnetostatic field parameters. The dual energy method offers a compromise between the accurate but laborious finite element method and the speed of simplified lumped parameter magnetic circuit calculations. A two-dimensional dual energy model of a variable reluctance motor is developed. Results of calculations on a 4 kW Oulton machine are compared to measurements and other calculation methods. Finally, as a demonstration, the model is used to evaluate two competing variable reluctance motors for use as replacements for a DC windshield wiper motor.

  5. Harnessing molecular motors for nanoscale pulldown in live cells.

    PubMed

    Bird, Jonathan E; Barzik, Melanie; Drummond, Meghan C; Sutton, Daniel C; Goodman, Spencer M; Morozko, Eva L; Cole, Stacey M; Boukhvalova, Alexandra K; Skidmore, Jennifer; Syam, Diana; Wilson, Elizabeth A; Fitzgerald, Tracy; Rehman, Atteeq U; Martin, Donna M; Boger, Erich T; Belyantseva, Inna A; Friedman, Thomas B

    2017-02-01

    Protein-protein interactions (PPIs) regulate assembly of macromolecular complexes, yet remain challenging to study within the native cytoplasm where they normally exert their biological effect. Here we miniaturize the concept of affinity pulldown, a gold-standard in vitro PPI interrogation technique, to perform nanoscale pulldowns (NanoSPDs) within living cells. NanoSPD hijacks the normal process of intracellular trafficking by myosin motors to forcibly pull fluorescently tagged protein complexes along filopodial actin filaments. Using dual-color total internal reflection fluorescence microscopy, we demonstrate complex formation by showing that bait and prey molecules are simultaneously trafficked and actively concentrated into a nanoscopic volume at the tips of filopodia. The resulting molecular traffic jams at filopodial tips amplify fluorescence intensities and allow PPIs to be interrogated using standard epifluorescence microscopy. A rigorous quantification framework and software tool are provided to statistically evaluate NanoSPD data sets. We demonstrate the capabilities of NanoSPD for a range of nuclear and cytoplasmic PPIs implicated in human deafness, in addition to dissecting these interactions using domain mapping and mutagenesis experiments. The NanoSPD methodology is extensible for use with other fluorescent molecules, in addition to proteins, and the platform can be easily scaled for high-throughput applications.

  6. Myosin-V: a class of unconventional molecular motors.

    PubMed

    Larson, R E

    1996-03-01

    In this review we focus on the biochemical and structural properties of the myosin-V class of unconventional myosins as an example of the diversity of molecular motors within the myosin superfamily. A member of this class was first identified as a novel calmodulin-binding protein in mammalian brain (Larson RE, Pitta DE and Ferro JA (1988). Brazilian Journal of Medical and Biological Research, 21: 213-217). To date, the myosin-V class is represented by two molecules from yeast, one from nematodes, several from vertebrates (chickens, rats, mice and humans) and possibly one from plants. The domain structure of these myosins features a highly conserved head containing the ATP-hydrolysis and actin-binding sites, an extended neck composed of six tandem IQ-motifs which are sites for calmodulin binding and a large tail which has coiled-coil segments intercalated with globular regions of as yet unknown function. Biochemical studies on purified myosin-V from vertebrate brains and the description of myosin-V mutants in yeast and mice have made myosin-V one of the best characterized, unconventional myosin classes at the present time, surpassed only by the well-studied myosin-I class.

  7. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    NASA Astrophysics Data System (ADS)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  8. Molecular motors robustly drive active gels to a critically connected state

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; Mackintosh, Fred C.; Koenderink, Gijsje H.

    2013-09-01

    Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.

  9. DNA polymerase as a molecular motor and pump.

    PubMed

    Sengupta, Samudra; Spiering, Michelle M; Dey, Krishna K; Duan, Wentao; Patra, Debabrata; Butler, Peter J; Astumian, R Dean; Benkovic, Stephen J; Sen, Ayusman

    2014-03-25

    DNA polymerase is responsible for synthesizing DNA, a key component in the running of biological machinery. Using fluorescence correlation spectroscopy, we demonstrate that the diffusive movement of a molecular complex of DNA template and DNA polymerase enhances during nucleotide incorporation into the growing DNA template. The diffusion coefficient of the complex also shows a strong dependence on its inorganic cofactor, Mg2+ ions. When exposed to gradients of either nucleotide or cofactor concentrations, an ensemble of DNA polymerase complex molecules shows collective movement toward regions of higher concentrations. By immobilizing the molecular complex on a patterned gold surface, we demonstrate the fabrication of DNA polymerase-powered fluid pumps. These miniature pumps are capable of transporting fluid and tracer particles in a directional manner with the pumping speed increasing in the presence of the cofactor. The role of DNA polymerase as a micropump opens up avenues for designing miniature fluid pumps using enzymes as engines.

  10. Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.

  11. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  12. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  13. Design and construction of the lawnmower, an artificial burnt-bridges motor.

    PubMed

    Kovacic, Suzana; Samii, Laleh; Curmi, Paul M G; Linke, Heiner; Zuckermann, Martin J; Forde, Nancy R

    2015-04-01

    Molecular motors of the cell are protein-based, nanoscale machines, which use a variety of strategies to transduce chemical energy into mechanical work in the presence of a large thermal background. The design and construction of artificial molecular motors is one approach to better understand their basic physical principles. Here, we propose the concept of a protein-based, burnt-bridges ratchet, inspired by biological examples. Our concept, the lawnmower, utilizes protease blades to cleave peptide substrates, and uses the asymmetric substrate-product interface arising from productive cleavage to bias subsequent diffusion on the track (lawn). Following experimental screening to select a protease to act as the motor's blades, we chemically couple trypsin to quantum dots and demonstrate activity of the resulting lawnmower construct in solution. Accompanying Brownian dynamics simulations illustrate the importance for processivity of correct protease density on the quantum dot and spacing of substrates on the track. These results lay the groundwork for future tests of the protein-based lawnmower's motor performance characteristics.

  14. How molecular motors are arranged on a cargo is important for vesicular transport.

    PubMed

    Erickson, Robert P; Jia, Zhiyuan; Gross, Steven P; Yu, Clare C

    2011-05-01

    The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.

  15. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    NASA Astrophysics Data System (ADS)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  16. Transport dynamics of molecular motors that switch between an active and inactive state.

    PubMed

    Pinkoviezky, I; Gov, N S

    2013-08-01

    Molecular motors are involved in key transport processes in the cell. Many of these motors can switch from an active to a nonactive state, either spontaneously or depending on their interaction with other molecules. When active, the motors move processively along the filaments, while when inactive they are stationary. We treat here the simple case of spontaneously switching motors, between the active and inactive states, along an open linear track. We use our recent analogy with vehicular traffic, where we go beyond the mean-field description. We map the phase diagram of this system, and find that it clearly breaks the symmetry between the different phases, as compared to the standard total asymmetric exclusion process. We make several predictions that may be testable using molecular motors in vitro and in living cells.

  17. Towards dynamic control of wettability by using functionalized altitudinal molecular motors on solid surfaces.

    PubMed

    London, Gábor; Chen, Kuang-Yen; Carroll, Gregory T; Feringa, Ben L

    2013-08-05

    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part of the motors. Molecular motors were attached to quartz surfaces by using interfacial 1,3-dipolar cycloadditions. To test the effect of the functional groups on the rotary motion, photochemical and thermal isomerization studies of the motors were performed both in solution and when attached to the surface. We found that the substituents have no significant effect on the thermal and photochemical processes, and the functionalized motors preserved their rotary function both in solution and on a quartz surface. Preliminary results on the influence of the functional groups on surface wettability are also described.

  18. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    NASA Astrophysics Data System (ADS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B.

    2015-04-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations.

  19. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions

    NASA Astrophysics Data System (ADS)

    Pinkoviezky, I.; Gov, N. S.

    2017-01-01

    Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.

  20. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions.

    PubMed

    Pinkoviezky, I; Gov, N S

    2017-01-06

    Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.

  1. Mechanism of cooperative behaviour in systems of slow and fast molecular motors.

    PubMed

    Larson, Adam G; Landahl, Eric C; Rice, Sarah E

    2009-06-28

    Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [M. J. Muller, S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(12), 4609-4614; S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(48), 17284-17289]. Here, we combine a similar theoretical approach with a simple experiment to describe the behaviour of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity approximately 15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behaviour depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors.

  2. Electric motor designs for attenuating torque disturbance in sensitive space mechanisms

    NASA Astrophysics Data System (ADS)

    Marks, David B.; Fink, Richard A.

    2003-09-01

    When a motion control system introduces unwanted torque jitter and motion anomalies into sensitive space flight optical or positioning mechanisms, the pointing accuracy, positioning capability, or scanning resolution of the mission suffers. Special motion control technology must be employed to provide attenuation of the harmful torque disturbances. Brushless DC (BLDC) Motors with low torque disturbance characteristics have been successfully used on such notable missions as the Hubble Space Telescope when conventional approaches to motor design would not work. Motor designs for low disturbance mechanisms can include two and three phase sinusoidal BLDC motors, BLDC motors without iron teeth, and sometimes skewed or non-integral slot designs for motors commutated with Hall effect devices. The principal components of motor torque disturbance, successful BLDC motor designs for attenuating disturbances, and design trade-offs for optimum performance are examined.

  3. Pattern Formations in Polymer-Molecular Motor Networks

    NASA Astrophysics Data System (ADS)

    Smith, David; Humphrey, David; Duggan, Cynthia; Käs, Josef

    2001-03-01

    In previous studies with the microtubule-kinesin system, organized patterns such as asters and rotating vortices have been seen (Nedelec et al, Nature 1997), which were of a dynamic nature and dependent on active motors. A similar system was constructed using actin and myosin, which displays similar patterns, however, with drastically different dynamics. These patterns arise independent of the initial amount of immediate use energy (in the form of ATP), assembling only upon the near exhaustion of available ATP. Further studies have clearly shown that in fact these patterns are not dependent upon the motor activity of the myosin but its propensity to serve as a cross-linking element in an actin network, with the motor activity serving to prevent the arising of order in the system. We believe the dynamic differences inherent between the two polymer-motor systems studied lies primarily in the structural nature of the motor complexes, with the kinesin complex ordering the system by pushing multiple filaments in a parallel direction, and the myosin complexes disordering the system by pushing filaments in an antiparallel manner.

  4. Kinetic Mechanism of DNA Translocation by the RSC Molecular Motor

    PubMed Central

    Eastlund, Allen; Malik, Shuja Shafi; Fischer, Christopher J.

    2013-01-01

    ATP-dependent nucleosome repositioning by chromatin remodeling enzymes requires the translocation of these enzymes along the nucleosomal DNA. Using a fluorescence stopped-flow assay we monitored DNA translocation by a minimal RSC motor and through global analysis of these time courses we have determined that this motor has a macroscopic translocation rate of 2.9 bp/s with a step size of 1.24 bp. From the complementary quantitative analysis of the associated time courses of ATP consumption during DNA translocation we have determined that this motor has an efficiency of 3.0 ATP/bp, which is slightly less that the efficiency observed for several genetically related DNA helicases and which likely results from random pausing by the motor during translocation. Nevertheless, this motor is able to exert enough force during translocation to displace streptavidin from biotinylated DNA. Taken together these results are the necessary first step for quantifying both the role of DNA translocation in nucleosome repositioning by RSC and the efficiency at which RSC couples ATP binding and hydrolysis to nucleosome repositioning. PMID:23399434

  5. Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    NASA Technical Reports Server (NTRS)

    Duong, Khanh A.; Garcia, Ephrahim

    1997-01-01

    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.

  6. A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage

    NASA Astrophysics Data System (ADS)

    Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya

    The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.

  7. Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion.

    PubMed

    Goychuk, Igor; Kharchenko, Vasyl O; Metzler, Ralf

    2014-08-21

    The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.

  8. Ultra high resolution stepper motors design, development, performance and application

    NASA Technical Reports Server (NTRS)

    Moll, H.; Roeckl, G.

    1979-01-01

    The design and development of stepper motors with steps in the 10 arc sec to 2 arc min range is described. Some of the problem areas, e.g. rotor suspension, tribology aspects and environmental conditions are covered. A summary of achieved test results and the employment in different mechanisms already developed and tested is presented to give some examples of the possible use of this interesting device. Adaptations to military and commercial requirements are proposed and show the wide range of possible applications.

  9. Novel stator design of fan motors using soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Sheng; Tsai, Mi-Ching; Hsieh, Min-Fu

    2008-04-01

    Cooling fans are an important device needed in consumer electronic products. To enhance the performance of cooling fans, this paper presents a novel brushless dc motor with a three dimensional stator structure using soft magnetic composite to reduce the hub size and allow more airflow. Four models are designed and their output characteristics are compared using finite element simulation. From the results, one of them is selected for prototyping whose performance appears to meet the requirement. The prototype has a 10% smaller diameter than that of conventional types. Moreover, the operation test shows that the required performance is achieved.

  10. Molecular motors: how to make models that can be used to convey the concept of molecular ratchets and thermal capture.

    PubMed

    DoHarris, Lindsay; Giesler, Amanda; Humber, Brent; Sukumar, Aravin; Janssen, Luke J

    2011-06-01

    A wide variety of cellular processes use molecular motors, including processive motors that move along some form of track (e.g., myosin with actin, kinesin or dynein with tubulin) and polymerases that move along a template (e.g., DNA and RNA polymerases, ribosomes). In trying to understand how these molecular motors actually move, many apply their understanding of how man-made motors work: the latter use some form of energy to exert a force or torque on its load. However, quite a different mechanism has been proposed to possibly account for the movement of molecular motors. Rather than hydrolyzing ATP to push or pull their load, they might use their own thermal vibrational energy as well as that of their load and their environment to move the load, capturing those movements that occur along a desired vector or axis and resisting others; ATP hydrolysis is required to make backward movements impossible. This intriguing thermal capture or Brownian ratchet model is relatively more difficult to convey to students. In this report, we describe several teaching aids that are very easily constructed using widely available household materials to convey the concept of a molecular ratchet.

  11. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors

    NASA Astrophysics Data System (ADS)

    Jack, M. W.; Tumlin, C.

    2016-05-01

    We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.

  12. How molecular motors work in the crowded environment of living cells: coexistence and efficiency of normal and anomalous transport.

    PubMed

    Goychuk, Igor; Kharchenko, Vasyl O; Metzler, Ralf

    2014-01-01

    Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.

  13. Increased speed of rotation for the smallest light-driven molecular motor.

    PubMed

    ter Wiel, Matthijs K J; van Delden, Richard A; Meetsma, Auke; Feringa, Ben L

    2003-12-10

    In this paper we present the smallest artificial light-driven molecular motor consisting of only 28 carbon and 24 hydrogen atoms. The concept of controlling directionality of rotary movement at the molecular level by introduction of a stereogenic center next to the central olefinic bond of a sterically overcrowded alkene does not only hold for molecular motors with six-membered rings, but is also applicable to achieve the unidirectional movement for molecular motors having five-membered rings. Although X-ray analyses show that the five-membered rings in the cis- and trans-isomer of the new molecular motor are nearly flat, the energy differences between the (pseudo-)diaxial and (pseudo-)diequatorial conformations of the methyl substituents in both isomers are still large enough to direct the rotation of one-half of the molecule with respect to the other half in a clockwise fashion. The full rotary cycle comprises four consecutive steps: two photochemical isomerizations each followed by a thermal helix inversion. Both photochemical cis-trans isomerizations proceed with a preference for the unstable diequatorial isomers over the stable diaxial isomers. The thermal barriers for helix inversion of this motor molecule have decreased dramatically compared to its six-membered ring analogue, the half-life of the fastest step being only 18 s at room temperature.

  14. Interplay between crosslinkers and dynamic molecular motor-induced instabilities in the moderation of biopolymer organization

    NASA Astrophysics Data System (ADS)

    Smith, David; Humphrey, David; Ziebert, Falko; Zimmermann, Walter; Käs, Josef

    2006-03-01

    Structure and function of biological cells rely on the highly-dynamic self-organization of protein filaments to an intracellular cytoskeleton responsive to mechanical and chemical stimuli. While dissolving these complex cellular structures through Brownian motion is inherently slow (tens of minutes), changes in the activity of the molecular motor myosin II cause rapid order-disorder transitions within 1-2 minutes in reconstituted cytoskeletal actin networks. When motor-induced filament sliding decreases, actin network structure rapidly and reversibly self-organizes into various assemblies triggered by a nonlinear instability. Modulation of static crosslinker concentrations allow for a wide phase space of order ranging from nematics to compact asters & dense packing of motor-filament clusters. The observed isothermal transitions between disorder and self-organization illustrate that molecular motors can substantially contribute to dynamic cellular organization.

  15. Tug-of-war between opposing molecular motors explains chromosomal oscillation during mitosis.

    PubMed

    Sutradhar, S; Paul, R

    2014-03-07

    Chromosomes move towards and away from the centrosomes during the mitosis. This oscillation is observed when the kinetochore, a specific protein structure on the chromosome is captured by centrosome-nucleated polymer called microtubules. We present a computational model, incorporating activities of various molecular motors and microtubule dynamics, to demonstrate the observed oscillation. The model is robust and is not restricted to any particular cell type. Quantifying the average velocity, amplitude and periodicity of the chromosomal oscillation, we compare numerical results with the available experimental data. Our analysis supports a tug-of-war like mechanism between opposing motors that changes the course of chromosomal oscillation. It turns out that, various modes of oscillation can be fully understood by assembling the dynamics of molecular motors. Near the stall regime, when opposing motors are engaged in a tug-of-war, sufficiently large kinetochore-microtubule generated force may prolong the stall durations.

  16. Molecular thermodynamics for chemical process design.

    PubMed

    Prausnitz, J M

    1979-08-24

    Chemical process design requires quantitative information on the equilibrium properties of a variety of fluid mixtures. Since the experimental effort needed to provide this information is often prohibitive in cost and time, chemical engineers must utilize rational estimation techniques based on limited experimental data. The basis for such techniques is molecular thermodynamics, a synthesis of classical and statistical thermodynamics, molecular physics, and physical chemistry.

  17. Motility States of Molecular Motors Engaged in a Stochastic Tug-of-War

    NASA Astrophysics Data System (ADS)

    Müller, Melanie J. I.; Klumpp, Stefan; Lipowsky, Reinhard

    2008-12-01

    Intracellular transport is mediated by molecular motors that pull cargos along cytoskeletal filaments. Many cargos move bidirectionally and are transported by two teams of motors which move into opposite directions along the filament. We have recently introduced a stochastic tug-of-war model for this situation. This model describes the motion of the cargo as a Markov process on a two-dimensional state space defined by the numbers of active plus and active minus motors. In spite of its simplicity, this tug-of-war model leads to a complex dependence of the cargo motility on the motor parameters. We present new numerical results for the dependence on the number of involved motors. In addition, we derive a simple and intuitive sharp maxima approximation, from which one obtains the cargo motility state from only four simple inequalities. This approach provides a fast and reliable method to determine the cargo motility.

  18. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  19. Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors.

    PubMed

    Elting, Mary Williard; Spudich, James A

    2012-12-11

    Single-molecule analysis is a powerful modern form of biochemistry, in which individual kinetic steps of a catalytic cycle of an enzyme can be explored in exquisite detail. Both single-molecule fluorescence and single-molecule force techniques have been widely used to characterize a number of protein systems. We focus here on molecular motors as a paradigm. We describe two areas where we expect to see exciting developments in the near future: first, characterizing the coupling of force production to chemical and mechanical changes in motors, and second, understanding how multiple motors work together in the environment of the cell.

  20. Stepping and Crowding of Molecular Motors: Statistical Kinetics from an Exclusion Process Perspective

    PubMed Central

    Ciandrini, Luca; Romano, M. Carmen; Parmeggiani, Andrea

    2014-01-01

    Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions. PMID:25185553

  1. Self-organization of waves and pulse trains by molecular motors in cellular protrusions.

    PubMed

    Yochelis, A; Ebrahim, S; Millis, B; Cui, R; Kachar, B; Naoz, M; Gov, N S

    2015-09-03

    Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general.

  2. Stepping and crowding of molecular motors: statistical kinetics from an exclusion process perspective.

    PubMed

    Ciandrini, Luca; Romano, M Carmen; Parmeggiani, Andrea

    2014-09-02

    Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions.

  3. Self-organization of waves and pulse trains by molecular motors in cellular protrusions

    PubMed Central

    Yochelis, A.; Ebrahim, S.; Millis, B.; Cui, R.; Kachar, B.; Naoz, M.; Gov, N. S.

    2015-01-01

    Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general. PMID:26335545

  4. Influence of molecular motors on the motion of particles in viscoelastic media.

    PubMed

    Bouzat, Sebastián

    2014-06-01

    We study theoretically and by numerical simulations the motion of particles driven by molecular motors in a viscoelastic medium representing the cell cytoplasm. For this, we consider a generalized Langevin equation coupled to a stochastic stepping dynamics for the motors that takes into account the action of each motor separately. In the absence of motors, the model produces subdiffusive motion of particles characterized by a power-law scaling of the mean square displacement versus the lag time as t^{α}, with 0<α<1, similar to that observed in cells. Our results show how the action of the motors can induce a transition to a superdiffusive regime at large lag times with the characteristics of those found in experiments reported in the literature. We also show that at small lag times, the motors can act as static crosslinkers that slow down the natural subdiffusive transport. An analysis of previously reported experimental data in the relevant time scales provides evidence of this phenomenon. Finally, we study the effect of a harmonic potential representing an optical trap, and we show a way to approach to a macroscopic description of the active transport in cells. This last point stresses the relevance of the molecular motors for generating not only directed motion to specific targets, but also fast diffusivelike random motion.

  5. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  6. Z40 Solid Rocket Motor: Design Status of the Motor Case Structure

    NASA Astrophysics Data System (ADS)

    Mataloni, A.; Pantanella, G.; Perugini, P.; Di Vizio, F.; Cardelli, M.

    2014-06-01

    For the VEGA Launch system new developments are running in order to: a) performances increase b) cost reduction c) introduction of new technologies.The VEGA E configuration foresees the Z40 SRM as second stage, by replacing the Z23 and Z9 SRMs.The Z40 design is based on the consolidated AVIO heritage with important improvements both from the material and from the technological side.From the material side a top class fiber has been selected and the prepreg material is based on an in house resin formulation tailored to t he specific motor case process requirements.Important improvements in skirts manufacturing will be tested as well, with the development of a customized automatic tape laying machine.

  7. An enantioselective synthetic route toward second-generation light-driven rotary molecular motors.

    PubMed

    Pijper, Thomas C; Pijper, Dirk; Pollard, Michael M; Dumur, Frédéric; Davey, Stephen G; Meetsma, Auke; Feringa, Ben L

    2010-02-05

    Controlling the unidirectional rotary process of second-generation molecular motors demands access to these motors in their enantiomerically pure form. In this paper, we describe an enantioselective route to three new second-generation light-driven molecular motors. Their synthesis starts with the preparation of an optically active alpha-methoxy-substituted upper-half ketone involving an enzymatic resolution. The subsequent conversion of this ketone to the corresponding hydrazone by treatment with hydrazine led to full racemization. However, conversion to a TBDMS-protected hydrazone by treatment with bis-TBDMS hydrazine, prepared according to a new procedure, proceeds with nearly full retention of the stereochemical integrity. Oxidation of the TBDMS-protected hydrazone and subsequent coupling to a lower-half thioketone followed by recrystallization provided the molecular motors with >99% ee. As these are the first molecular motors that have a methoxy substituent at the stereogenic center, the photochemical and thermal isomerization steps involved in the rotary cycle of one of these new molecules were studied in detail with various spectroscopic techniques.

  8. Ultra-fast force-clamp laser trapping of single molecular motors and DNA binding proteins

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-09-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  9. Rotor compound concept for designing an industrial HTS synchronous motor

    NASA Astrophysics Data System (ADS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  10. The analysis and design of brushless D.C. motors

    NASA Astrophysics Data System (ADS)

    Benarous, Maamar

    In modern computer systems electrical drives are used to rotate hard discs. These motors require special torque- speed characteristics. The speed of the hard disc must be constant in order for the unit to function correctly. One type of drive, which is used for hard discs is the brushless-DC-motor. This machine has permanent magnet excitation and a polyphase armature winding. It therefore takes the form of a synchronous machine, and in order to be brushless the armature winding is stationary and the excitation rotates. To run at adjustable speed a variable frequency supply is required. In the brushless D.C form the inverter output is phase locked to the rotor position, it is therefore electro-magnetically similar to the D.C machine where fixed brushes determine the frequency and phase of the current in the armature winding. In order to perform the phase lock action signals measuring the rotor position are needed. In one form of machine Hall effect probes detect the position of the rotor poles, in a second given that the rotor is in motion the induced back emf is used. Experimentally it is convenient to replace these magnet systems with a photo- transistor and rotating shutter system and this was the approach used in this thesis. The objective of this research is to investigate different aspects of this motor. The generation, measurement, and placement of signals is described and illustrated, and the design and construction of an inverter supply circuit is described. Both 2D and 3D finite element analysis is used in order to find the machine parameters as well as cogging torque analysis, using the concept of permanent magnet magnetisation characteristics. It is shown that the cogging can be reduced for certain types of magnetisation. The finite element analysis is taken further by connecting the drive circuit needed to run the machine into the finite element mesh, the machine parameters are defined using this method. The close agreement between the simulation and

  11. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor

    NASA Astrophysics Data System (ADS)

    Napitu, B. D.; Thijssen, J. M.

    2015-07-01

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  12. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor.

    PubMed

    Napitu, B D; Thijssen, J M

    2015-07-15

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green's function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  13. Bidirectional transport by molecular motors: enhanced processivity and response to external forces.

    PubMed

    Müller, Melanie J I; Klumpp, Stefan; Lipowsky, Reinhard

    2010-06-02

    Intracellular transport along cytoskeletal filaments is often mediated by two teams of molecular motors that pull on the same cargo and move in opposite directions along the filaments. We have recently shown theoretically that this bidirectional transport can be understood as a stochastic tug-of-war between the two motor teams. Here, we further develop our theory to investigate the experimentally accessible dynamic behavior of cargos transported by strong motors such as kinesin-1 or cytoplasmic dynein. By studying the run and binding times of such a cargo, we show that the properties of biological motors, such as the large ratio of stall/detachment force and the small ratio of superstall backward/forward velocity, are favorable for bidirectional cargo transport, leading to fast motion and enhanced diffusion. In addition, cargo processivity is shown to be strongly enhanced by transport via several molecular motors even if these motors are engaged in a tug-of-war. Finally, we study the motility of a bidirectional cargo under force. Frictional forces arising, e.g., from the viscous cytoplasm, lead to peaks in the velocity distribution, while external forces as exerted, e.g., by an optical trap, lead to hysteresis effects. Our results, in particular our explicit expressions for the cargo binding time and the distance of the peaks in the velocity relation under friction, are directly accessible to in vitro as well as in vivo experiments.

  14. Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors.

    PubMed

    Tu, Z C

    2013-02-01

    The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency (> 1/2) for a small load distribution factor (< 0.1).

  15. Beam finite-element model of a molecular motor for the simulation of active fibre networks

    PubMed Central

    Müller, Kei W.; Birzle, Anna M.; Wall, Wolfgang A.

    2016-01-01

    Molecular motors are proteins that excessively increase the efficiency of subcellular transport processes. They allow for cell division, nutrient transport and even macroscopic muscle movement. In order to understand the effect of motors in large biopolymer networks, e.g. the cytoskeleton, we require a suitable model of a molecular motor. In this contribution, we present such a model based on a geometrically exact beam finite-element formulation. We discuss the numerical model of a non-processive motor such as myosin II, which interacts with actin filaments. Based on experimental data and inspired by the theoretical understanding offered by the power-stroke model and the swinging-cross-bridge model, we parametrize our numerical model in order to achieve the effect that a physiological motor has on its cargo. To this end, we introduce the mechanical and mathematical foundations of the model, then discuss its calibration, prove its usefulness by conducting finite-element simulations of actin–myosin motility assays and assess the influence of motors on the rheology of semi-flexible biopolymer networks. PMID:26997891

  16. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors.

    PubMed

    Johann, D; Goswami, D; Kruse, K

    2016-06-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  17. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors

    NASA Astrophysics Data System (ADS)

    Johann, D.; Goswami, D.; Kruse, K.

    2016-06-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  18. Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles.

    PubMed

    Zimmermann, Eva; Seifert, Udo

    2015-02-01

    Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.

  19. Molecular Nanotechnology and Designs of Future

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Reviewing the status of current approaches and future projections, as already published in the scientific journals and books, the talk will summarize the direction in which computational and experimental molecular nanotechnologies are progressing. Examples of nanotechnological approach to the concepts of design and simulation of atomically precise materials in a variety of interdisciplinary areas will be presented. The concepts of hypothetical molecular machines and assemblers as explained in Drexler's and Merckle's already published work and Han et. al's WWW distributed molecular gears will be explained.

  20. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

    PubMed Central

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury. PMID:26617489

  1. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth.

    PubMed

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury.

  2. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    PubMed Central

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-01-01

    Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective. PMID:25945702

  3. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    SciTech Connect

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-04-16

    In this review, current structural understanding of the apicomplexan glideosome and actin regulation is described. Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.

  4. Characterizing the composition of molecular motors on moving axonal cargo using "cargo mapping" analysis.

    PubMed

    Neumann, Sylvia; Campbell, George E; Szpankowski, Lukasz; Goldstein, Lawrence S B; Encalada, Sandra E

    2014-10-30

    Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate ("map") the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. "Cargo mapping" consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to "map" them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for

  5. Embryonic amygdalar transplants in adult rats with motor cortex lesions: a molecular and electrophysiological analysis.

    PubMed

    Jiménez-Díaz, Lydia; Nava-Mesa, Mauricio O; Heredia, Margarita; Riolobos, Adelaida S; Gómez-Álvarez, Marcelo; Criado, José María; de la Fuente, Antonio; Yajeya, Javier; Navarro-López, Juan D

    2011-01-01

    Transplants of embryonic nervous tissue ameliorate motor deficits induced by motor cortex lesions in adult animals. Restoration of lost brain functions has been recently shown in grafts of homotopic cortical origin, to be associated with a functional integration of the transplant after development of reciprocal host-graft connections. Nevertheless little is known about physiological properties or gene expression profiles of cortical implants with functional restorative capacity but no cortical origin. In this study, we show molecular and electrophysiological evidence supporting the functional development and integration of heterotopic transplants of embryonic amygdalar tissue placed into pre-lesioned motor cortex of adult rats. Grafts were analyzed 3 months post-transplantation. Using reverse transcriptase quantitative polymerase chain reaction, we found that key glutamatergic, GABAergic, and muscarinic receptors transcripts were expressed at different quantitative levels both in grafted and host tissues, but were all continuously present in the graft. Parallel sharp electrode recordings of grafted neurons in brain slices showed a regular firing pattern of transplanted neurons similar to host amygdalar pyramidal neurons. Synaptic connections from the adjacent host cortex on grafted neurons were electrophysiologically investigated and confirmed our molecular results. Taken together, our findings indicate that grafted neurons from a non-cortical, non-motor-related, but ontogenetical similar source, not only received functionally effective contacts from the adjacent motor cortex, but also developed electrophysiological and gene expression patterns comparable to host pyramidal neurons; suggesting an interesting tool for the field of neural repair and donor tissue in adults.

  6. Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes

    NASA Astrophysics Data System (ADS)

    Bhat, Deepak; Gopalakrishnan, Manoj

    2013-10-01

    Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well as directional correlations between successive runs in bidirectional transport. We show, based on a study of the direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly, memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results and extend them to biologically relevant situations.

  7. Block 2 Solid Rocket Motor (SRM) conceptual design study. Volume 1: Appendices

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The design studies task implements the primary objective of developing a Block II Solid Rocket Motor (SRM) design offering improved flight safety and reliability. The SRM literature was reviewed. The Preliminary Development and Validation Plan is presented.

  8. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  9. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2017-02-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  10. A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Lim, Seong Yeop; Lee, Ju

    2006-04-01

    This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance, especially the back-emf wave form, the efficiency, and the rated torque, within a restricted volume. The electromagnetic performance of the conventional model and the proposed design is analyzed using the finite element method. The theoretical results have been confirmed by comparing them with experimental results for the back-emf wave form, the torque versus current characteristics, and the motor efficiency.

  11. Analysis of persistence during intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Pallavicini, C.; Despósito, M. A.; Levi, V.; Bruno, L.

    2010-09-01

    The displacement of particles or probes in the cell cytoplasm as a function of time is characterized by different anomalous diffusion regimes. The transport of large cargoes, such as organelles, vesicles or large proteins, involves the action of ATP-consuming molecular motors. We investigate the motion of pigment organelles driven by myosin-V motors in Xenopus laevis melanocytes using a high spatio-temporal resolution tracking technique. By analyzing the turning angles (phi) of the obtained 2D trajectories as a function of the time lag, we determine the critical time of the transition between anticorrelated and directed motion as the time when the turning angles begin to concentrate around phi = 0. We relate this transition with the crossover from subdiffusive to superdiffusive behavior observed in a previous work [5]. We also assayed the properties of the trajectories in cells with inhibited myosin activity, and we can compare the results in the presence and absence of active motors.

  12. Designed self-organization for molecular optoelectronics

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Neff, David; Towler, Ian; Day, Scott; Grambos, Zachary; Shremshock, Mikala; Butts, Heather; Meadows, Christiaan; Samiso, Yuko; Cao, Huan; Rahman, Mashiur

    2006-05-01

    The convergence of terahertz spectroscopy and single molecule experimentation offer significant promise of enhancement in sensitivity and selectivity in molecular recognition, identification and quantitation germane to military and security applications. This presentation reports the results of experiments which address fundamental barriers to the integration of large, patterned bio-compatible molecular opto-electronic systems with silicon based microelectronic systems. The central thrust of this approach is sequential epitaxy on surface bound single stranded DNA one-dimensional substrates. The challenge of producing highly structured macromolecular substrates, which are necessary in order to implement molecular nanolithography, has been addressed by combining "designer" synthetic DNA with biosynthetically derived plasmid components. By design, these one dimensional templates are composed of domains which contain sites which are recognized, and therefore addressable by either complementary DNA sequences and/or selected enzymes. Such design is necessary in order to access the nominal 2 nm linewidth potential resolution of nanolithography on these one-dimensional substrates. The recognition and binding properties of DNA ensure that the lithographic process is intrinsically self-organizing, and therefore self-aligning, a necessity for assembly processes at the requisite resolution. Another requirement of this molecular epitaxy approach is that the substrate must be immobilized. The challenge of robust surface immobilization is being addressed via the production of the equivalent of molecular tube sockets. In this application, multi-valent core-shell fluorescent quantum dots provide a mechanism to prepare surface attachment sites with a pre-determined 1:1 attachment site : substrate (DNA) molecule ratio.

  13. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Bruno, L.; Levi, V.; Brunstein, M.; Despósito, M. A.

    2009-07-01

    Intracellular transport of large cargoes, such as organelles, vesicles, or large proteins, is a complex dynamical process that involves the interplay of adenosine triphosphate-consuming molecular motors, cytoskeleton filaments, and the viscoelastic cytoplasm. In this work we investigate the motion of pigment organelles (melanosomes) driven by myosin-V motors in Xenopus laevis melanocytes using a high-spatio-temporal resolution tracking technique. By analyzing the obtained trajectories, we show that the melanosomes mean-square displacement undergoes a transition from a subdiffusive to a superdiffusive behavior. A stochastic theoretical model, which explicitly considers the collective action of the molecular motors, is introduced to generalize the interpretation of our data. Starting from a generalized Langevin equation, we derive an analytical expression for the mean square displacement, which also takes into account the experimental noise. By fitting theoretical expressions to experimental data we were able to discriminate the exponents that characterize the passive and active contributions to the dynamics and to estimate the “global” motor forces correctly. Then, our model gives a quantitative description of active transport in living cells with a reduced number of parameters.

  14. Operations and thermodynamics of an artificial rotary molecular motor in solution.

    PubMed

    Moro, Lorenzo; di Giosia, Matteo; Calvaresi, Matteo; Bakalis, Evangelos; Zerbetto, Francesco

    2014-06-23

    A general framework is provided that makes possible the estimation of time-dependent properties of a stochastic system moving far from equilibrium. The process is investigated and discussed in general terms of nonequilibrium thermodynamics. The approach is simple and can be exploited to gain insight into the dynamics of any molecular-level machine. As a case study, the dynamics of an artificial molecular rotary motor, similar to the inversion of a helix, which drives the motor from a metastable state to equilibrium, are examined. The energy path that the motor walks was obtained from the results of atomistic calculations. The motor undergoes unidirectional rotation and its entropy, internal energy, free energy, and net exerted force are given as a function of time, starting from the solution of Smoluchowski's equation. The rather low value of the organization index, that is, the ratio of the work done by the particle against friction during the unidirectional motion per available free energy, reveals that the motion is mainly subject to randomness, and the amount of energy converted to heat due to the directional motion is very small.

  15. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    PubMed Central

    Reyes-Aldrete, Emilio; Sherman, Michael B.; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J.; Morais, Marc C.

    2016-01-01

    SUMMARY Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring, and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. PMID:26904950

  16. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

    PubMed Central

    2016-01-01

    The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e., zinc, palladium, and platinum) metal dichloride complexes. The photochemical and thermal isomerization behavior of these complexes has been studied in detail using UV–vis and 1H NMR spectroscopy. Our results confirm that metal coordination induces a contraction of the diazafluorenyl lower half, resulting in a reduction of the steric hindrance in the “fjord” region of the molecule, which causes an increase of the rotational speed. Importantly, metal complexation can be accomplished in situ and is found to be reversible upon the addition of a competing ligand. Consequently, the rotational behavior of these molecular motors can be dynamically controlled with chemical additives. PMID:27669358

  17. How molecular motors extract order from chaos (a key issues review).

    PubMed

    Hoffmann, Peter M

    2016-03-01

    Molecular motors are the workhorses of living cells. Seemingly by 'magic', these molecules are able to complete purposeful tasks while being immersed in a sea of thermal chaos. Here, we review the current understanding of how these machines work, present simple models based on thermal ratchets, discuss implications for statistical physics, and provide an overview of ongoing research in this important and fascinating field of study.

  18. How molecular motors extract order from chaos (a key issues review)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter M.

    2016-03-01

    Molecular motors are the workhorses of living cells. Seemingly by ‘magic’, these molecules are able to complete purposeful tasks while being immersed in a sea of thermal chaos. Here, we review the current understanding of how these machines work, present simple models based on thermal ratchets, discuss implications for statistical physics, and provide an overview of ongoing research in this important and fascinating field of study.

  19. Computational Insight to Improve the Thermal Isomerisation Performance of Overcrowded Alkene-Based Molecular Motors through Structural Redesign.

    PubMed

    Oruganti, Baswanth; Wang, Jun; Durbeej, Bo

    2016-11-04

    Synthetic overcrowded alkene-based molecular motors achieve 360° unidirectional rotary motion of one motor half (rotator) relative to the other (stator) through sequential photochemical and thermal isomerisation steps. In order to facilitate and expand the use of these motors for various applications, it is important to investigate ways to increase the rates and efficiencies of the reactions governing the rotary motion. Here, we use computational methods to explore whether the thermal isomerisation performance of some of the fastest available motors of this type can be further improved by reducing the sizes of the motor halves. Presenting three new redesigned motors that combine an indanylidene rotator with a cyclohexadiene, pyran or thiopyran stator, we first use multiconfigurational quantum chemical methods to verify that the photoisomerisations of these motors sustain unidirectional rotary motion. Then, by performing density functional calculations, we identify both stepwise and concerted mechanisms for the thermal isomerisations of the motors and show that the rate-determining free-energy barriers of these processes are up to 25 kJ mol(-1) smaller than those of the original motors. Furthermore, the thermal isomerisations of the redesigned motors proceed in fewer steps. Altogether, the results suggest that the redesigned motors are useful templates for improving the thermal isomerisation performance of existing overcrowded alkene-based motors.

  20. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex.

    PubMed

    Yao, Zi-Shuo; Mito, Masaki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Takahashi, Kazuyuki; Zhang, Kuirun; Nakanishi, Takumi; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2014-12-01

    Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

  1. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex

    NASA Astrophysics Data System (ADS)

    Yao, Zi-Shuo; Mito, Masaki; Kamachi, Takashi; Shiota, Yoshihito; Yoshizawa, Kazunari; Azuma, Nobuaki; Miyazaki, Yuji; Takahashi, Kazuyuki; Zhang, Kuirun; Nakanishi, Takumi; Kang, Soonchul; Kanegawa, Shinji; Sato, Osamu

    2014-12-01

    Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

  2. Design of a motor-generator for an energy storage flywheel

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. Leland; Studer, Philip A.

    1988-01-01

    The paper examines motor/generator designs in which the rotor is integrated into the flywheel. Rotational loss considerations tend to dominate the design tradeoffs to maintain high system storage efficiency with a directly coupled unit. Some of the design alternatives are described as a guide to the experimental and analytical program needed to finalize a design.

  3. Molecular Rift: Virtual Reality for Drug Designers.

    PubMed

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  4. Design and simulation of a novel impact piezoelectric linear-rotary motor

    NASA Astrophysics Data System (ADS)

    Han, Liling; Zhao, Yahui; Pan, Chengliang; Yu, Liandong

    2016-01-01

    This paper presents a novel impact piezoelectric linear-rotary motor which is driven by a single piezoceramic tube with two parts of electrodes. From the inner and outer electrodes, longitudinal displacement of the tube is generated and used to actuate the shaft with linear motion ability. From the grooved helical interdigitated electrodes, torsional displacement is generated and used to actuate the shaft with rotary motion ability. Working principle and structural design of the motor are introduced and quasi-static longitudinal and torsional displacements of the tube are estimated. With established kinematics model of the motor, the working behaviors of the motor are investigated numerically with MATLAB/Simulink software. The stepping characteristics of the linear and rotary motions are analyzed, compared, and discussed. With optimized material selection, structural design, and driving parameters, the proposed linear-rotary motor will provide remarkable performances as a miniaturized multi-degree driving device for complex positioning and manipulation applications.

  5. Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model.

    PubMed

    Erdmann, Thorsten; Albert, Philipp J; Schwarz, Ulrich S

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  6. Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking

    PubMed Central

    Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.

    2014-01-01

    Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250

  7. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    SciTech Connect

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  8. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  9. High molecular recognition: design of "Keys".

    PubMed

    Chen, Beining; Piletsky, Sergey; Turner, Anthony P F

    2002-09-01

    Molecular recognition between molecules is one of the most fundamental processes in biology and chemistry. The recognition process is largely driven by non-covalent forces such as hydrogen bonding, electrostatics, van der Waals forces, pi-pi interactions, and conformational energy. The complementarity between the receptor and substrate is very similar to the "lock and key" function, first described by Emil Fischer over 100 years ago, - the lock being the molecular receptor such as a protein or enzyme and the key being the substrate such as a drug, that is recognized to give a defined receptor-substrate complex. This review focuses on the design of specific ligand systems as "Keys" to enable the induced fit of these keys into the target macromolecules, protein/enzyme (Locks) with particular emphasis on protein recognition.

  10. Design of motion adjusting system for space camera based on ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan

    2011-08-01

    Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.

  11. Improved hidden Markov models for molecular motors, part 2: extensions and application to experimental data.

    PubMed

    Syed, Sheyum; Müllner, Fiona E; Selvin, Paul R; Sigworth, Fred J

    2010-12-01

    Unbiased interpretation of noisy single molecular motor recordings remains a challenging task. To address this issue, we have developed robust algorithms based on hidden Markov models (HMMs) of motor proteins. The basic algorithm, called variable-stepsize HMM (VS-HMM), was introduced in the previous article. It improves on currently available Markov-model based techniques by allowing for arbitrary distributions of step sizes, and shows excellent convergence properties for the characterization of staircase motor timecourses in the presence of large measurement noise. In this article, we extend the VS-HMM framework for better performance with experimental data. The extended algorithm, variable-stepsize integrating-detector HMM (VSI-HMM) better models the data-acquisition process, and accounts for random baseline drifts. Further, as an extension, maximum a posteriori estimation is provided. When used as a blind step detector, the VSI-HMM outperforms conventional step detectors. The fidelity of the VSI-HMM is tested with simulations and is applied to in vitro myosin V data where a small 10 nm population of steps is identified. It is also applied to an in vivo recording of melanosome motion, where strong evidence is found for repeated, bidirectional steps smaller than 8 nm in size, implying that multiple motors simultaneously carry the cargo.

  12. Effectiveness of beads for tracking small-scale molecular motor dynamics

    NASA Astrophysics Data System (ADS)

    Lade, Steven J.; Craig, Erin M.; Linke, Heiner

    2011-08-01

    Investigations into molecular motor dynamics are increasingly focused on small-scale features of the motor’s motion. We define performance measures of a common type of single-molecule motility assay, the bead assay, for its ability to detect such features. Using numerical models, we explore the dependence of assay performance on a number of experimentally controllable parameters, including bead size, optical force, and the method of attaching the bead to the motor. We find that the best parameter choice depends on the objective of the experiments, and give a guide to parameter selection. Comparison of the models against experimental data from a recent bead assay of myosin V exemplifies how our methods can also be used to extract additional information from bead assays, particularly that related to small-scale features. By analyzing the experimental data we find evidence for previously undetected multiple waiting states of the bead-motor complex. Furthermore, from numerical simulations we find that equilibrium bead dynamics display features previously attributed to aborted motor steps, and that bead dynamics alone can produce multiple subphases during a step.

  13. Using Motor-Learning Theory to Design More Effective Instruction

    ERIC Educational Resources Information Center

    Rukavina, Paul B.; Foxworth, K. Randell

    2009-01-01

    Choosing which teaching approach to use and when to use it is a complex decision, especially for preservice teachers learning to teach individuals with a variety of skill levels and abilities. One source of information that teachers can use to help select an approach is motor-learning theory. This article describes an early field experience in…

  14. Design sensitivity analysis of dynamic responses for a BLDC motor with mechanical and electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Im, Hyungbin; Bae, Dae Sung; Chung, Jintai

    2012-04-01

    This paper presents a design sensitivity analysis of dynamic responses of a BLDC motor with mechanical and electromagnetic interactions. Based on the equations of motion which consider mechanical and electromagnetic interactions of the motor, the sensitivity equations for the dynamic responses were derived by applying the direct differential method. From the sensitivity equation along with the equations of motion, the time responses for the sensitivity analysis were obtained by using the Newmark time integration method. The sensitivities of the motor performances such as the electromagnetic torque, rotating speed, and vibration level were analyzed for the six design parameters of rotor mass, shaft/bearing stiffness, rotor eccentricity, winding resistance, coil turn number, and residual magnetic flux density. Furthermore, to achieve a higher torque, higher speed, and lower vibration level, a new BLDC motor was designed by applying the multi-objective function method. It was found that all three performances are sensitive to the design parameters in the order of the coil turn number, magnetic flux density, rotor mass, winding resistance, rotor eccentricity, and stiffness. It was also found that the torque and vibration level are more sensitive to the parameters than the rotating speed. Finally, by applying the sensitivity analysis results, a new optimized design of the motor resulted in better performances. The newly designed motor showed an improved torque, rotating speed, and vibration level.

  15. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force.

    PubMed

    Vu, Huong T; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D

    2016-08-12

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F)-dependent velocity [P(v)] and run length [P(n)] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P(n) and P(v) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F, P(v) is non-Gaussian and is bimodal with peaks at positive and negative values of v, which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps.

  16. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force

    NASA Astrophysics Data System (ADS)

    Vu, Huong T.; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D.

    2016-08-01

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F )-dependent velocity [P (v )] and run length [P (n )] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P (n ) and P (v ) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F , P (v ) is non-Gaussian and is bimodal with peaks at positive and negative values of v , which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps.

  17. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis.

    PubMed Central

    Astumian, R D; Bier, M

    1996-01-01

    The typical biochemical paradigm for coupling between hydrolysis of ATP and the performance of chemical or mechanical work involves a well-defined sequence of events (a kinetic mechanism) with a fixed stoichiometry between the number of ATP molecules hydrolyzed and the turnover of the output reaction. Recent experiments show, however, that such a deterministic picture of coupling may not be adequate to explain observed behavior of molecular motor proteins in the presence of applied forces. Here we present a general model in which the binding of ATP and release of ADP serve to modulate the binding energy of a motor protein as it travels along a biopolymer backbone. The mechanism is loosely coupled--the average number of ATPs hydrolyzed to cause a single step from one binding site to the next depends strongly on the magnitude of an applied force and on the effective viscous drag force. The statistical mechanical perspective described here offers insight into how local anisotrophy along the "track" for a molecular motor, combined with an energy-releasing chemical reaction to provide a source of nonequilibrium fluctuations, can lead to macroscopic motion. Images Scheme 1 FIGURE 1 PMID:8789082

  18. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching

    SciTech Connect

    Lee, Lawrence K.; Ginsburg, Michael A.; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-09-13

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  19. A minimal system allowing tubulation with molecular motors pulling on giant liposomes

    PubMed Central

    Roux, Aurélien; Cappello, Giovanni; Cartaud, Jean; Prost, Jacques; Goud, Bruno; Bassereau, Patricia

    2002-01-01

    The elucidation of physical and molecular mechanisms by which a membrane tube is generated from a membrane reservoir is central to the understanding of the structure and dynamics of intracellular organelles and of transport intermediates in eukaryotic cells. Compelling evidence exists that molecular motors of the dynein and kinesin families are involved in the tubulation of organelles. Here, we show that lipid giant unilamellar vesicles (GUVs), to which kinesin molecules have been attached by means of small polystyrene beads, give rise to membrane tubes and to complex tubular networks when incubated in vitro with microtubules and ATP. Similar tubes and networks are obtained with GUVs made of purified Golgi lipids, as well as with Golgi membranes. No tube formation was observed when kinesins were directly bound to the GUV membrane, suggesting that it is critical to distribute the load on both lipids and motors by means of beads. A kinetic analysis shows that network growth occurs in two phases: a phase in which membrane-bound beads move at the same velocity than free beads, followed by a phase in which the tube growth rate decreases and strongly fluctuates. Our work demonstrates that the action of motors bound to a lipid bilayer is sufficient to generate membrane tubes and opens the way to well controlled experiments aimed at the understanding of basic mechanisms in intracellular transport. PMID:11959994

  20. A minimal system allowing tubulation with molecular motors pulling on giant liposomes

    NASA Astrophysics Data System (ADS)

    Roux, Aurélien; Cappello, Giovanni; Cartaud, Jean; Prost, Jacques; Goud, Bruno; Bassereau, Patricia

    2002-04-01

    The elucidation of physical and molecular mechanisms by which a membrane tube is generated from a membrane reservoir is central to the understanding of the structure and dynamics of intracellular organelles and of transport intermediates in eukaryotic cells. Compelling evidence exists that molecular motors of the dynein and kinesin families are involved in the tubulation of organelles. Here, we show that lipid giant unilamellar vesicles (GUVs), to which kinesin molecules have been attached by means of small polystyrene beads, give rise to membrane tubes and to complex tubular networks when incubated in vitro with microtubules and ATP. Similar tubes and networks are obtained with GUVs made of purified Golgi lipids, as well as with Golgi membranes. No tube formation was observed when kinesins were directly bound to the GUV membrane, suggesting that it is critical to distribute the load on both lipids and motors by means of beads. A kinetic analysis shows that network growth occurs in two phases: a phase in which membrane-bound beads move at the same velocity than free beads, followed by a phase in which the tube growth rate decreases and strongly fluctuates. Our work demonstrates that the action of motors bound to a lipid bilayer is sufficient to generate membrane tubes and opens the way to well controlled experiments aimed at the understanding of basic mechanisms in intracellular transport.

  1. 46 CFR 11.524 - Service requirements for designated duty engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... steam and/or motor vessels. 11.524 Section 11.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Engineer Officer § 11.524 Service requirements for designated duty engineer of steam and/or motor vessels... requirements for endorsements as DDE are: (1) For designated duty engineer of steam and/or motor vessels of...

  2. 46 CFR 11.524 - Service requirements for designated duty engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... steam and/or motor vessels. 11.524 Section 11.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Engineer Officer § 11.524 Service requirements for designated duty engineer of steam and/or motor vessels... requirements for endorsements as DDE are: (1) For designated duty engineer of steam and/or motor vessels of...

  3. 46 CFR 11.524 - Service requirements for designated duty engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... steam and/or motor vessels. 11.524 Section 11.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Engineer Officer § 11.524 Service requirements for designated duty engineer of steam and/or motor vessels... requirements for endorsements as DDE are: (1) For designated duty engineer of steam and/or motor vessels of...

  4. 46 CFR 11.524 - Service requirements for designated duty engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... steam and/or motor vessels. 11.524 Section 11.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Engineer Officer § 11.524 Service requirements for designated duty engineer of steam and/or motor vessels... requirements for endorsements as DDE are: (1) For designated duty engineer of steam and/or motor vessels of...

  5. Carbon Nanotube Based Molecular Electronics and Motors: A View from Classical and Quantum Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    The tubular forms of fullerenes popularly known as carbon nanotubes are experimentally produced as single-, multiwall, and rope configurations. The nanotubes and nanoropes have shown to exhibit unusual mechanical and electronic properties. The single wall nanotubes exhibit both semiconducting and metallic behavior. In short undefected lengths they are the known strongest fibers which are unbreakable even when bent in half. Grown in ropes their tensile strength is approximately 100 times greater than steel at only one sixth the weight. Employing large scale classical and quantum molecular dynamics simulations we will explore the use of carbon nanotubes and carbon nanotube junctions in 2-, 3-, and 4-point molecular electronic device components, dynamic strength characterization for compressive, bending and torsional strains, and chemical functionalization for possible use in a nanoscale molecular motor. The above is an unclassified material produced for non-competitive basic research in the nanotechnology area.

  6. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  7. A metal switch for controlling the activity of molecular motor proteins.

    PubMed

    Cochran, Jared C; Zhao, Yu Cheng; Wilcox, Dean E; Kull, F Jon

    2011-12-25

    Kinesins are molecular motors that require a divalent metal ion (for example, Mg(2+)) to convert the energy of ATP hydrolysis into directed force production along microtubules. Here we present the crystal structure of a recombinant kinesin motor domain bound to Mn(2+) and ADP and report on a serine-to-cysteine substitution in the switch 1 motif of kinesin that allows its ATP hydrolysis activity to be controlled by adjusting the ratio of Mn(2+) to Mg(2+). This mutant kinesin binds ATP similarly in the presence of either metal ion, but its ATP hydrolysis activity is greatly diminished in the presence of Mg(2+). In human kinesin-1 and kinesin-5 as well as Drosophila melanogaster kinesin-10 and kinesin-14, this defect is rescued by Mn(2+), providing a way to control both the enzymatic activity and force-generating ability of these nanomachines.

  8. Design of single-phase driven screw-thread-type ultrasonic motor.

    PubMed

    Chang, Lien-Kai; Tsai, Mi-Ching

    2016-05-01

    Most screw-thread-type ultrasonic motors are designed to be two-phase driven. This paper aims to present a novel single phase driven design that generates the required wobble motion, thus significantly simplifying the driving circuit of the ultrasonic motor. The proposed single-phase driven screw-thread-type ultrasonic motor works with two orthogonal bending modes generated by an asymmetric stator design. The novel stator design can improve the vibration displacement and further enhance the performance of the single phase driven motor. The vibration characteristics of the asymmetric stator structure were analyzed by ANSYS finite element analysis software. Based on the design and analysis processes, a prototype of the desired screw-thread-type ultrasonic motor was fabricated and tested. When the operating voltage is 200 Vpp, the obtained main characteristics of the proposed motor are as follows: the working frequency is between 28.3 and 29.5 kHz; the maximum no-load velocity is approximately 4.1 mm s(-1); and the thrust force is 1.6 N.

  9. Design of single-phase driven screw-thread-type ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Chang, Lien-Kai; Tsai, Mi-Ching

    2016-05-01

    Most screw-thread-type ultrasonic motors are designed to be two-phase driven. This paper aims to present a novel single phase driven design that generates the required wobble motion, thus significantly simplifying the driving circuit of the ultrasonic motor. The proposed single-phase driven screw-thread-type ultrasonic motor works with two orthogonal bending modes generated by an asymmetric stator design. The novel stator design can improve the vibration displacement and further enhance the performance of the single phase driven motor. The vibration characteristics of the asymmetric stator structure were analyzed by ANSYS finite element analysis software. Based on the design and analysis processes, a prototype of the desired screw-thread-type ultrasonic motor was fabricated and tested. When the operating voltage is 200 Vpp, the obtained main characteristics of the proposed motor are as follows: the working frequency is between 28.3 and 29.5 kHz; the maximum no-load velocity is approximately 4.1 mm s-1; and the thrust force is 1.6 N.

  10. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  11. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  12. Microporous solids designed from molecular building blocks

    NASA Astrophysics Data System (ADS)

    Davis, Charles Earnest

    The synthesis, characterization, and application of porous materials has experienced explosive growth in the last fifty years. An increased number of technologies are based on the unique properties of rigid, open framework solids in areas such as molecular and ionic separations, sensors, and catalysts. However, until recently, the only well characterized solids that have seen extensive application were metal oxide frameworks such as the aluminosilicate zeolites and aluminophosphates. The syntheses of these materials have lacked the ability to design and control the properties of the solid. Therefore, this work has focused on the concept of directed synthesis employing molecular building blocks in an attempt to tailor open framework systems based on simple chemical functionality. Towards this goal, highly symmetric molecular species with well defined reactive sites have been polymerized through metal centers in the presence of templating agents and potential guests. Highly crystalline solids were obtained using a variety of techniques including vapor and gel diffusion, recrystallization, and hydrothermal synthesis. Complete characterization of the structure and properties has been achieved using elemental microanalysis, infrared spectroscopy, powder and single crystal x-ray analysis, nuclear magnetic resonance spectroscopy, thermogravimetry, and gas chromatography. These new materials are based on the linking of germanium sulfide cages and polycarboxylic aromatic rings with transition metal ions. The fundamental problems of interpenetrating networks, poor structural rigidity in the absence of guests, and low crystallinity have been overcome to produce highly selective, stable frameworks capable of ion exchange, molecular selectivity, and potentially catalysis. Furthermore, the concept of selectivity based on electronic character and functionality has been introduced and demonstrated. This unique property is believed to be the result of metal center accessibility in

  13. An exact approach for studying cargo transport by an ensemble of molecular motors

    PubMed Central

    2013-01-01

    Background Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies. Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport. Results In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived. Conclusions Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments. The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms

  14. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller.

  15. Molecular design and QSARs/QSPRs with molecular descriptors family.

    PubMed

    Bolboacă, Sorana D; Jäntschi, Lorentz; Diudea, Mircea V

    2013-06-01

    The aim of the present paper is to present the methodology of the molecular descriptors family (MDF) as an integrative tool in molecular modeling and its abilities as a multivariate QSAR/QSPR modeling tool. An algorithm for extracting useful information from the topological and geometrical representation of chemical compounds was developed and integrated to calculate MDF members. The MDF methodology was implemented and the software is available online (http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/). This integrative tool was developed in order to maximize performance, functionality, efficiency and portability. The MDF methodology is able to provide reliable and valid multiple linear regression models. Furthermore, in many cases, the MDF models were better than the published results in the literature in terms of correlation coefficients (statistically significant Steiger's Z test at a significance level of 5%) and/or in terms of values of information criteria and Kubinyi function. The MDF methodology developed and implemented as a platform for investigating and characterizing quantitative relationships between the chemical structure and the activity/property of active compounds was used on more than 50 study cases. In almost all cases, the methodology allowed obtaining of QSAR/QSPR models improved in explanatory power of structure-activity and structure-property relationships. The algorithms applied in the computation of geometric and topological descriptors (useful in modeling physicochemical or biological properties of molecules) and those used in searching for reliable and valid multiple linear regression models certain enrich the pool of low-cost low-time drug design tools.

  16. Visualisation in the SPROUT molecular design program.

    PubMed

    Johnson, A P; Zsoldos, Z

    1996-01-01

    SPROUT is an interactive computer system for structure based molecular design. The system consists of several modules that address the different subproblems of structure based drug design. This paper describes the visualisation techniques applied in the program: the display of the novel (geometric region) representation of the interaction sites and the molecular surface display based on a 3D grid representation of the cavity. The hydrogen bonding regions are represented by set operations (subtraction and intersection) of simple spherical and conical 3D objects (with given radii and opening angle) Some complex hydrogen bonding regions are represented by intersections of six or more basic objects. A method for calculating a triangular mesh representation (with normal vectors) of the analytical surfaces of the objects, that have sharp edges and corners because of the intersections, is presented in the paper. The geometric parameters of the interaction regions can be changed interactively in which case the surface display is updated real-time. The volume of space that is available for ligand generation (the cavity of the receptor site) is represented on a 3D grid within SPROUT. The surface of the available space is visualised using an algorithm presented in the paper, that generates a polygonial mesh of the grid points. The grid is also used to cut out stericaly forbidden parts of the interaction site regions. The surface of the reduced object is also visualised using further sphere subtractions. The presented algorithms are fast, aplicable in interactive visualisation programs. Result images of the rendering of the surfaces, calculated by the algorithms, are demonstrated on examples taken from applications of SPROUT to practical ligand design problems.

  17. Design and performance of an axial air-gap solution pump motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Sohns, C. W.; Daniel, D. S.; Bailey, J. M.

    1990-05-01

    An axial air gap, permanent magnet, brushless dc motor was designed and was evaluated on a dynamometer to measure operating characteristics. The motor must deliver 0.167 hp (approx. 120 W) to the pump rotor at 1800 rpm. Initial performance data with a half-bridge, Hall-probe synchronized drive system and a dry motor bearing did not achieve the desired motor performance. Subsequently, a commercial full-bridge, speed regulated sensorless drive system was used to test the motor. The motor delivered the required 90 oz-in. of torque at 1800 rpm. These data revealed the need for rewinding the stator core to improve motor efficiency. A second stator core, with deeper slots and additional turns of wire, was subsequently fabricated and tested. At 1800 rpm, the drive system could produce only 60 oz-in. of torque due to an unexpectedly high generated voltage. Motor efficiency was 60 to 70 pct. at this torque level when the data were corrected for bearing and coupling drag.

  18. Discrete Kinetic Models for Molecular Motors: Asymptotic Velocity and Gaussian Fluctuations

    NASA Astrophysics Data System (ADS)

    Faggionato, Alessandra; Silvestri, Vittoria

    2014-12-01

    We consider random walks on quasi one dimensional lattices, as introduced in Faggionato and Silvestri (Random Walks on Quasi One Dimensional Lattices: Large Deviations and Fluctuation Theorems, 2014). This mathematical setting covers a large class of discrete kinetic models for non-cooperative molecular motors on periodic tracks. We derive general formulas for the asymptotic velocity and diffusion coefficient, and we show how to reduce their computation to suitable linear systems of the same degree of a single fundamental cell, with possible linear chain removals. We apply the above results to special families of kinetic models, also catching some errors in the biophysics literature.

  19. Molecular genetics of myosin motors in Arabidopsis. Final report, July 1, 1992--June 30, 1996

    SciTech Connect

    Schiefelbein, J.

    1997-02-01

    The normal growth and development of plant cells depends on the precise organization and distribution of the cellular contents. The basic goal of this investigation was to define a group of the molecules that are involved in organizing and transporting plant cell components. Based largely on studies of animal and fungal cells, one of the molecules thought to be involved in intracellular trafficking in plants is the actin-based motor protein myosin. Therefore, the major aim of this study was to isolate and analyze plant genes encoding myosin proteins. The plant of choice for these experiments was Arabidopsis thaliana, which offers numerous advantages for molecular genetics research.

  20. Design of high precision motor driving system for circular scanning ultrasonic endoscopic imaging equipment

    NASA Astrophysics Data System (ADS)

    Deng, Haoran; Bai, Baoping; Chen, Xiaodong; Zhao, Qiang; Li, Yanan; Wang, Yi; Yu, Daoyin

    2013-12-01

    This paper describes the development of a motor driving system for circular scanning ultrasonic endoscopic imaging equipment. It was designed to guarantee the motor rotating at a relatively constant speed in load fluctuation conditions, which result from the bending and twisting of the flexible shaft which connects the probe to the motor. A hardware feedback circuit based on Frequency-To-Voltage Converter LM331 and Step-Down Voltage Regulator LM2576-ADJ was designed to ensure steady rotation of motor in load fluctuation conditions, and a D/A module offered by MCU was used to regulate the real-time rotary speed. The feedback response cycle is about 20 μs according to theoretical analysis. Experimental results show that the maximum error is +/-1 r/min under the normal running environment (300 ~1500 r/min) and load fluctuation conditions, which means the average instability is reduced to 0.11% as compared with that of the motor drive simply based on MCU which is 0.94%. Both theoretical analysis and experimental results indicate that the motor driving system has high accuracy, fast response, excellent reliability and good versatility and portability, and can precisely guarantee the smooth movement of load-changing PMW (Pulse Width Modulation) motor, so as to ensure the imaging quality, and can effectively improve the efficiency and accuracy of the diagnosis.

  1. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  2. Molecularly designed architectures--the metalloligand way.

    PubMed

    Kumar, Girijesh; Gupta, Rajeev

    2013-12-21

    Designed materials offer noteworthy applications which are often architecture dependent. Despite knowing such a fact, one of the major challenges faced by the scientific community is to find ways to predict and, if possible, control the resultant architecture of a network. If such an exercise is fruitful, it creates enormous opportunities to synthesize exotic materials with tailor-made applications. Any network is composed of individual molecules and the transition from a single molecule to a network can be achieved through several routes taking advantage of synthetic chemistry. There exists a molecular building block at the heart of such a transition which mediates such a process from a single molecule to a network. Although a large number of building blocks have created assorted materials, utilization of a well-defined coordination complex as the building block (i.e., metalloligand) is unique for the construction of a designed architecture. A coordination complex as the building block offers structural rigidity that places the auxiliary functional groups to a pre-organized conformation. Such auxiliary functional groups could then coordinate a secondary metal ion or be involved in the self-assembly via weak interactions, such as hydrogen bonds. This review focuses on the recent progress achieved through assorted molecular building blocks towards generating ordered networks. Broadly, two classes of metalloligands will be discussed: those offering hydrogen bond sensitive functional groups and those tendering coordination bond responsive groups. Nevertheless, the result is the construction of networks of a highly-ordered nature in both cases. The present review is expected to provide new strategies for constructing functional materials through metalloligands for challenging and practical applications.

  3. Design and test of a four channel motor for electromechanical flight control actuation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    To provide a suitable electromagnetic torque summing approach to flight control system redundancy, a four channel motor capable of sustaining full performance after any two credible failures was designed, fabricated, and tested. The design consists of a single samarium cobalt permanent magnet rotor with four separate three phase windings arrayed in individual stator quadrants around the periphery. Trade studies established the sensitivities of weight and performance to such parameters as design speed, winding pattern, number of poles, magnet configuration, and strength. The motor electromagnetically sums the torque of the individual channels on a single rotor and eliminate complex mechanical gearing arrangements.

  4. Totally asymmetric simple exclusion process simulations of molecular motor transport on random networks with asymmetric exit rates

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Miedema, D. M.; Nienhuis, B.; Schall, P.

    2015-11-01

    Using the totally asymmetric simple-exclusion-process and mean-field transport theory, we investigate the transport in closed random networks with simple crossing topology—two incoming, two outgoing segments, as a model for molecular motor motion along biopolymer networks. Inspired by in vitro observation of molecular motor motion, we model the motor behavior at the intersections by introducing different exit rates for the two outgoing segments. Our simulations of this simple network reveal surprisingly rich behavior of the transport current with respect to the global density and exit rate ratio. For asymmetric exit rates, we find a broad current plateau at intermediate motor densities resulting from the competition of two subnetwork populations. This current plateau leads to stabilization of transport properties within such networks.

  5. Are two-station biased random walkers always potential molecular motors?

    PubMed

    Bakalis, Evangelos; Zerbetto, Francesco

    2015-01-12

    The short answer to the title question is no. Despite their tremendous complexity, many nanomachines are simply one-dimensional systems undergoing a biased, that is, unidirectional, walk on a two-minima potential energy curve. The initially prepared state, or station, is higher in energy than the final equilibrium state that is reached after overcoming an energy barrier. All chemical reactions comply with this scheme, which does not necessarily imply that a generic chemical reaction is a potential molecular motor. If the barrier is low, the system may walk back and the motion will have a large purely Brownian component. Alternatively, a large distance from the barrier of either of the two stations may introduce a Brownian component. Starting from a general inequality that leverages on the idea that the amount of heat dissipated along the potential energy curve is a good indication of the effectiveness of the biased walk, we provide guidelines for the selection of the features of artificial molecular motors.

  6. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    PubMed Central

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  7. Design of a directed molecular network.

    PubMed

    Ashkenasy, Gonen; Jagasia, Reshma; Yadav, Maneesh; Ghadiri, M Reza

    2004-07-27

    An ability to rationally design complex networks from the bottom up can offer valuable quantitative model systems for use in gaining a deeper appreciation for the principles governing the self-organization and functional characteristics of complex systems. We report herein the de novo design, graph prediction, experimental analysis, and characterization of simple self-organized, nonlinear molecular networks. Our approach makes use of the sequence-dependent auto- and cross-catalytic functional characteristics of template-directed peptide fragment condensation reactions in neutral aqueous solutions. Starting with an array of 81 sequence similar 32-residue coiled-coil peptides, we estimated the relative stability difference between all plausible A(2)B-type coiled-coil ensembles and used this information to predict the auto- and cross-catalysis pathways and the resulting plausible network motif and connectivities. Similar to most complex systems, the generated graph displays clustered nodes with an overall hierarchical architecture. To test the validity of the design principles used, nine nodes composing a main segment of the graph were experimentally analyzed for their capacity in establishing the predicted network connectivity. The resulting self-organized chemical network is shown to display 25 directed edges in good agreement with the graph analysis estimations. Moreover, we show that by varying the system parameters (presence or absence of certain substrates or templates), its operating network motif can be altered, even to the extremes of turning pathways on or off. We suggest that this approach can be expanded for the construction of large-scale networks, offering a means to study and to understand better the emergent, collective behaviors of networks.

  8. Design of a directed molecular network

    PubMed Central

    Ashkenasy, Gonen; Jagasia, Reshma; Yadav, Maneesh; Ghadiri, M. Reza

    2004-01-01

    An ability to rationally design complex networks from the bottom up can offer valuable quantitative model systems for use in gaining a deeper appreciation for the principles governing the self-organization and functional characteristics of complex systems. We report herein the de novo design, graph prediction, experimental analysis, and characterization of simple self-organized, nonlinear molecular networks. Our approach makes use of the sequence-dependant auto- and cross-catalytic functional characteristics of template-directed peptide fragment condensation reactions in neutral aqueous solutions. Starting with an array of 81 sequence similar 32-residue coiled-coil peptides, we estimated the relative stability difference between all plausible A2B-type coiled-coil ensembles and used this information to predict the auto- and cross-catalysis pathways and the resulting plausible network motif and connectivities. Similar to most complex systems, the generated graph displays clustered nodes with an overall hierarchical architecture. To test the validity of the design principles used, nine nodes composing a main segment of the graph were experimentally analyzed for their capacity in establishing the predicted network connectivity. The resulting self-organized chemical network is shown to display 25 directed edges in good agreement with the graph analysis estimations. Moreover, we show that by varying the system parameters (presence or absence of certain substrates or templates), its operating network motif can be altered, even to the extremes of turning pathways on or off. We suggest that this approach can be expanded for the construction of large-scale networks, offering a means to study and to understand better the emergent, collective behaviors of networks. PMID:15256596

  9. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept.

  10. Characteristic analysis and shape optimal design of a ring-type traveling wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Ro, Jong-Suk; Yi, Kyung-Pyo; Chung, Tae-Kyung; Jung, Hyun-Kyo

    2013-07-01

    The contact mechanism should be analyzed for an estimation of the performance of a traveling wave ultra-sonic motor (TWUSM), because the operation of this type of motor depends on the frictional force between the rotor and the stator. However, the nonlinearity of the contact mechanism of the TWUSM makes it difficult to proposed a proper contact model, a characteristic analysis method and an optimal design method. To address these problems, a characteristic analysis and optimal design method using a cylindrical dynamic contact model (CDCM), an analytical method, a numerical method and an evolutionary strategy algorithm (ESA) is proposed in this research. The feasibility and usefulness of the proposed characteristic analysis and optimal design method are verified through experimental data. Furthermore, the importance of the shape of the teeth and the reason for the improvement of motor performances by the chamfering at the teeth are proposed and verified in this paper.

  11. 46 CFR 11.524 - Service requirements for national endorsement as designated duty engineer (DDE) of steam, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... qualified member of the engine department or equivalent position; (2) For designated duty engineer of steam... engine department or equivalent position; and (3) For designated duty engineer of steam, motor, and/or... designated duty engineer (DDE) of steam, motor, and/or gas turbine-propelled vessels. 11.524 Section...

  12. Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines.

    PubMed

    Greb, Lutz; Eichhöfer, Andreas; Lehn, Jean-Marie

    2015-11-23

    The thermal and photochemical E/Z isomerization of camphorquinone-derived imines was studied by a combination of kinetic, structural, and computational methods. The thermal isomerization proceeds by linear N inversion, whereas the photoinduced process occurs through C=N bond rotation with preferred directionality as a result of diastereoisomerism. Thereby, these imines are arguably the simplest example of synthetic molecular motors. The generality of the orthogonal trajectories of the thermal and photochemical pathways allows for the postulation that every suitable chiral imine qualifies, in principle, as a molecular motor driven by light or heat.

  13. Design, modeling and control of a novel multi functional translational-rotary micro ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Tuncdemir, Safakcan

    The major goal of this thesis was to design and develop an actuator, which is capable of producing translational and rotary output motions in a compact structure with simple driving conditions, for the needs of small-scale actuators for micro robotic systems. Piezoelectric ultrasonic motors were selected as the target actuator schemes because of their unbeatable characteristics in the meso-scale range, which covers the structure sizes from hundred micrometers to ten millimeters and with operating ranges from few nanometers to centimeters. In order to meet the objectives and the design constraints, a number of key research tasks had to be undertaken. The design constraints and objectives were so stringent and entangled that none of the existing methods in literature could solve the research problems individually. Therefore, several unique methods were established to accomplish the research objectives. The methods produced novel solutions at every stage of design, development and modeling of the multi functional micro ultrasonic motor. Specifically, an ultrasonic motor utilizing slanted ceramics on a brass rod was designed. Because of the unique slanted ceramics design, longitudinal and torsional mode vibration modes could be obtained on the same structure. A ring shaped mobile element was loosely fitted on the metal rod stator. The mobile element moved in translational or rotational, depending on whether the vibration mode was longitudinal or torsional. A new ultrasonic motor drive method was required because none of the existing ultrasonic motor drive techniques were able to provide both output modes in a compact and cylindrical structure with the use of single drive source. By making use of rectangular wave drive signals, saw-tooth shaped displacement profile could be obtained at longitudinal and torsional resonance modes. Thus, inheriting the operating principle of smooth impact drive method, a new resonance type inertial drive was introduced. This new technique

  14. Optimization of brushless direct current motor design using an intelligent technique.

    PubMed

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance.

  15. Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors.

    PubMed

    Sun, Jing; Zhang, Daohai; Bae, Dong-Hun; Sahni, Sumit; Jansson, Patric; Zheng, Ying; Zhao, Qian; Yue, Fei; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2013-09-01

    The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, being a promising new target for cancer treatment. However, the precise molecular effects of NDRG1 remain unclear. Herein, we summarize recent advances in understanding the impact of NDRG1 on cancer metastasis with emphasis on its interactions with the key oncogenic nuclear factor-kappaB, phosphatidylinositol-3 kinase/phosphorylated AKT/mammalian target of rapamycin and Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways. Recent studies demonstrating the inhibitory effects of NDRG1 on the epithelial-mesenchymal transition, a key initial step in metastasis, TGF-β pathway and the Wnt/β-catenin pathway are also described. Furthermore, NDRG1 was also demonstrated to regulate molecular motors in cancer cells, leading to inhibition of F-actin polymerization, stress fiber formation and subsequent reduction of cancer cell migration. Collectively, this review summarizes the underlying molecular mechanisms of the antimetastatic effects of NDRG1 in cancer cells.

  16. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  17. Techniques for molecular imaging probe design.

    PubMed

    Reynolds, Fred; Kelly, Kimberly A

    2011-12-01

    Molecular imaging allows clinicians to visualize disease-specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology--all essential to progress in molecular imaging probe development. In this review, we discuss target selection, screening techniques, and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents.

  18. Elastic properties of dynein motor domain obtained from all-atom molecular dynamics simulations.

    PubMed

    Kamiya, Narutoshi; Mashimo, Tadaaki; Takano, Yu; Kon, Takahide; Kurisu, Genji; Nakamura, Haruki

    2016-08-01

    Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA(+) ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state, revealed how the structure of dynein changes upon ATP binding. Although both the ADP- and ATP-bound state structures have been resolved, the dynamic properties at the atomic level remain unclear. In this work, we built two models named 'the ADP model' and 'the ATP model', where ADP and ATP are bound to AAA1 in the AAA(+) ring, respectively, to observe the initial procedure of the structural change from the unprimed to the primed state. We performed 200-ns molecular dynamics simulations for both models and compared their structures and dynamics. The motions of the stalk, consisting of a long coiled coil with a microtubule-binding domain, significantly differed between the two models. The elastic properties of the stalk were analyzed and compared with the experimental results.

  19. Reaction-diffusion-advection approach to spatially localized treadmilling aggregates of molecular motors

    NASA Astrophysics Data System (ADS)

    Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.

    2016-04-01

    Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.

  20. A study of some non-equilibrium driven models and their contribution to the understanding of molecular motors

    NASA Astrophysics Data System (ADS)

    Mazilu, Irina; Gonzalez, Joshua

    2008-03-01

    From the point of view of a physicist, a bio-molecular motor represents an interesting non-equilibrium system and it is directly amenable to an analysis using standard methods of non-equilibrium statistical physics. We conduct a rigorous Monte Carlo study of three different driven lattice gas models that retain the basic behavior of three types of cytoskeletal molecular motors. Our models incorporate novel features such as realistic dynamics rules and complex motor-motor interactions. We are interested to have a deeper understanding of how various parameters influence the macroscopic behavior of these systems, what is the density profile and if the system undergoes a phase transition. On the analytical front, we computed the steady-state probability distributions exactly for the one of the models using the matrix method that was established in 1993 by B. Derrida et al. We also explored the possibilities offered by the ``Bethe ansatz'' method by mapping some well studied spin models into asymmetric simple exclusion models (already analyzed using computer simulations), and to use the results obtained for the spin models in finding an exact solution for our problem. We have exhaustive computational studies of the kinesin and dynein molecular motor models that prove to be very useful in checking our analytical work.

  1. Design and Implementation of a Motor Incremental Shaft Encoder

    DTIC Science & Technology

    2008-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited DESIGN AND...La Valley 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Department of Electrical and Computer Engineering at the Naval Postgraduate School continuously

  2. Tug-of-war between two elastically coupled molecular motors: a case study on force generation and force balance.

    PubMed

    Uçar, Mehmet Can; Lipowsky, Reinhard

    2017-01-04

    Intracellular transport is performed by molecular motors that pull cargos along cytoskeletal filaments. Many cellular cargos are observed to move bidirectionally, with fast transport in both directions. This behaviour can be understood as a stochastic tug-of-war between two teams of antagonistic motors. The first theoretical model for such a tug-of-war, the Müller-Klumpp-Lipowsky (MKL) model, was based on two simplifying assumptions: (i) both motor teams move with the same velocity in the direction of the stronger team, and (ii) this velocity matching and the associated force balance arise immediately after the rebinding of an unbound motor to the filament. In this study, we extend the MKL model by including an elastic coupling between the antagonistic motors, and by allowing the motors to perform discrete motor steps. Each motor step changes the elastic interaction forces experienced by the motors. In order to elucidate the basic concepts of force balance and force fluctuations, we focus on the simplest case of two antagonistic motors, one kinesin against one dynein. We calculate the probability distribution for the spatial separation of the motors and the dependence of this distribution on the motors' unbinding rate. We also compute the probability distribution for the elastic interaction forces experienced by the motors, which determines the average elastic force 〈F〉 and the standard deviation of the force fluctuations around this average value. The average force 〈F〉 is found to decrease monotonically with increasing unbinding rate ε0. The behaviour of the MKL model is recovered in the limit of small ε0. In the opposite limit of large ε0, 〈F〉 is found to decay to zero as 1/ε0. Finally, we study the limiting case with ε0 = 0 for which we determine both the force statistics and the time needed to attain the steady state. Our theoretical predictions are accessible to experimental studies of in vitro systems consisting of two antagonistic motors

  3. Molecular Orbital Based Design Guidelines for Hypergolic Energetic Ionic Liquids

    DTIC Science & Technology

    2015-01-01

    Journal Article 3. DATES COVERED (From - To) October 2013- December 2013 4. TITLE AND SUBTITLE Molecular Orbital Based Design Guidelines for Hypergolic... orbitals (HOMO) of the anions for a series of ionic liquids and the lowest occupied molecular orbital (LUMO) of HNO3, and variation in the computed...code) 661-525-5657 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 DOI: 10.1002/prep.201400087 Molecular Orbital Based Design

  4. Controlled Directional Motions of Molecular Vehicles, Rotors, and Motors: From Metallic to Silicon Surfaces, a Strategy to Operate at Higher Temperatures.

    PubMed

    Chérioux, Frédéric; Galangau, Olivier; Palmino, Frank; Rapenne, Gwénaël

    2016-06-17

    In the last decade, many nanomachines with controlled molecular motions have been studied, mainly on metallic surfaces, which are easy to obtain very clean, and are stable over months. However, the studies of mechanical properties of nanomachines are mainly performed at very low temperatures, usually between 5 and 80 K, which prevents any kind of applications. In this Minireview, we will present our strategy to operate at higher temperatures, in particular through the use of semiconducting silicon surfaces. We also review our best achievements in the field through some examples of rotating molecular machines that have been designed, synthesized, and studied in our groups. On metallic surfaces, the nanovehicles are molecules with two or four triptycenes as wheels and the molecular motor is built around a ruthenium organometallic center with a piano-stool geometry and peripheric ferrocenyl groups. On semiconducting silicon surfaces, vehicles are also made from triptycene fragments and the rotor is a pentaphenylbenzene molecule.

  5. Design of multi-motor distributed control system for optical fibers positioning based on CAN bus

    NASA Astrophysics Data System (ADS)

    Li, Tiancheng; Gu, Yonggang; Guo, Liang; Zhai, Chao

    2016-07-01

    In fiber spectroscopic telescopes, we propose a method of wire communication to control the fiber positioning nodes which are driven by two stepping motors. Taking the integration CAN control chip as main controller, the hardware of CAN intelligent node and adapter is designed to be the bottom hardware platform for the multi-motor distributed control system. The results proved that the system has good real-time performance and stability, and is able to realize not only CAN bus communication but also PC supervisory control, fundamentally meet the requirements of real-time precise position measurement of the optical fibers.

  6. The Utilization of Sensori-motor Experiences for Introducing Young Pupils to Molecular Motion: A Report of a Pilot Study.

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis

    2002-01-01

    Does a sensori-motor experience help a physics student understand the movement of molecules in solids, liquids, and gases? Students aged 9-10 were given either traditional demonstrations of solids, liquids, and gases and the variation of molecular motion with temperature (iconic presentation), or they were involved in physical activities as they…

  7. Specific Transformation of Assembly with Actin Filaments and Molecular Motors in a Cell-Sized Self-Emerged Liposome

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kingo; Negishi, Makiko; Tanaka-Takiguchi, Yohko; Hayashi, Masahito; Yoshikawa, Kenichi

    2014-12-01

    Eukaryotes, by the same combination of cytoskeleton and molecular motor, for example actin filament and myosin, can generate a variety of movements. For this diversity, the organization of biological machineries caused by the confinement and/or crowding effects of internal living cells, may play very important roles.

  8. Design of small-size pouch motors for rat gait rehabilitation device.

    PubMed

    Shih-Yin Chang; Takashima, Kenta; Nishikawa, Satoshi; Niiyama, Ryuma; Someya, Takao; Onodera, Hiroshi; Kuniyoshi, Yasuo

    2015-08-01

    Recent studies have demonstrated that active gait training can recover voluntary locomotive ability of paralyzed rats. Rehabilitation devices used for studying spinal cord injury to date are usually fixed on a treadmill, but they have been used only slightly for active training. To process active rehabilitation, a wearable, lightweight device with adequate output is needed. Pouch motors, soft pneumatic actuators, are extremely light and have other benefits such as low cost, easy fabrication, and highly customizable design. They can be used to develop active gait rehabilitation devices. However, performance details of different motor designs have not been examined. As described herein, to build a wearable gait assistive device for rat study, we specifically examine how to design small pouch motors with a good contraction ratio and force output. Results show that pouch performance decreases dramatically with size, but better output is obtainable by separation into small 0.8 length-to-width ratio rooms. We used this knowledge to produce an assistive robot suit for gait rehabilitation and to test it with paralyzed rats. Results show that these small pouches can produce sufficient power to control hip joint movements during gait training. They can reveal the potential for new pouch motor applications for spinal cord injury studies.

  9. A novel ring type ultrasonic motor with multiple wavenumbers: design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Duan, W. H.; Quek, S. T.; Wang, Q.

    2009-12-01

    A novel ring type traveling wave ultrasonic motor (USM) with multiple wavenumbers has been designed, fabricated and characterized. This multiple wavenumber operation is realized by means of a new electrode configuration of the piezoelectric element. The experimental and numerical performance results for the multiple wavenumbers show that USM with multiple wavenumbers significantly outperform the single wavenumber motor as regards the range of speed and torque output. This novel implementation of the traveling wave motor also offers extra control for stable operation of USM. The performances of the control variables, the wavenumber and the amplitude, are compared to show their advantages and disadvantages. The speed control range for the wavenumber is larger than that for amplitude control; wavenumber control has better stability at low speed while amplitude control can work continuously with less wear. Hybrid control using both methods may result in better performance of USM.

  10. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  11. Analysis, design, and control of a novel optically commutated adjustable-speed motor

    NASA Astrophysics Data System (ADS)

    Newman, Wyatt S.; Risch, Ivan; Zhang, Yuandao; Garverick, Steven; Inerfield, Michael

    1998-12-01

    This paper describes the analysis, design and control of a novel, single-phase motor with a unique behavior resulting from the use of rotating power electronics mounted to the motor armature. Coils on the armature are selectively shorted by power MOSFET's which rotate with the armature, and torque is produced by interaction between currents induced in the shorted coils and the magnetic field produced by a stationary field coil. Control is limited to the timing of which armature coils are to be shorted as a function of armature speed and angle, it is possible to modulate torque production and obtain torque or speed control using only single-phase ac power and without the use of brushes or permanent magnets. An electro-mechanical model for this type of motor is presented and validated with respect to experimentation. The results show promise for achieving low- cost, adjustable-speed drives using this novel method of rotating electronics, optical communications, and computed commutation.

  12. Study on the Ring Type Stator Design Technique for a Traveling Wave Rotary Type Ultrasonic Motor

    NASA Astrophysics Data System (ADS)

    Oh, Jin-Heon; Yuk, Hyung-Sang; Lim, Kee-Joe

    2012-09-01

    In this paper, the technique of design for the stator of traveling wave rotary type ultrasonic motor was proposed. To establish the design technique, the distribution of internal stresses of the stator was analyzed by applying the cylindrical bodies contact model of Hertz theory and the concept of “horn effect” was used to consider the influence of the projection structure. To verify the proposed technique, the prototype motor was fabricated on the authority of the projection shape dimension and the design specification. And its performance was evaluated. According to the estimate production of the experiment results using the extrapolation, we confirmed that the values obtained through the verification experiment were similar to those deduced by the proposed method properly.

  13. Simplified Evaluation Method of Drive Characteristics for Computer-Aided Design of Switched Reluctance Motors

    NASA Astrophysics Data System (ADS)

    Kano, Yoshiaki; Fubuki, Shingo; Kosaka, Takashi; Matsui, Nobuyuki

    Since Switched Reluctance Motors (SRM) have simple and rugged construction, they are suitable for low-cost variable speed drives in many industrial applications. However, it is rather difficult to design the motor and to predict the drive performance because of high magnetic non-linearity of the motors. Although FEM is useful for the SRM design, one of disadvantages is a long computation time. This paper proposes a simplified and fast evaluation method of the drive characteristics of SRM whose dimensions are given. The proposed method is composed of an analytical expression of magnetizing curvebased modeling approach and a simple non-linear magnetic analysis. At first, the comparative studies using 12/8 SRM show that the calculated current waveform and stiffness characteristic of the proposed modeling approach are in good agreement with those of experiment. Secondly, it is shown that the proposed magnetic analysis provides accurate and extremely fast magnetizing curves computation for the given motor dimensions compared to 3D-FEM. From the standpoints of analytical accuracy and the required computation time, the effectiveness of the proposed method is verified through the comparisons with 3D-FEM using two SRMs with different specifications.

  14. DESIGN OF A MOLECULAR AMPLIFIER GROUP.

    DTIC Science & Technology

    would be capable of field operation. The Molecular Amplifier Group consists of a traveling -wave amplifier and sufficient support equipment to provide...Ferrite disks of yttrium iron garnet are incorporated in the traveling -wave maser structure to provide sufficient reverse loss for short-circuit

  15. Design and testing of piezo motors for non-magnetic and/or fine positioning applications

    NASA Astrophysics Data System (ADS)

    Six, M. F.; Le Letty, R.; Seiler, R.; Coste, P.

    2005-07-01

    Piezoelectric motors offer several outstanding characteristics that may be very interesting for new scientific instruments in space applications. Piezo motors use a combination of electro-mechanical and frictional forces for generating a progressive motion; they are well suited for positioning applications because they exhibit a large force at rest without any power supply, and they often do not require any reduction gear. They are increasingly used in optical applications. Using piezo motors in space applications may become more and more relevant because of the continuous trend towards adaptive optics in future scientific payloads. In general, piezoelectric actuators are more and more used in space. Piezoelectric motors exhibit a number of advantages compared to conventional electromagnetic (stepping) motors, e.g. superior force/mass ratio, improved direct drive capability, no power supply to maintain a position, feasibility of a fully non-magnetic motor design. In this context, two complementary concepts have been designed and evaluated in the frame of ESA funded research and development activities: a resonant concept, called Rotary Piezo Actuator (RPA), a quasi-static concept, called Rotary Piezo Motor for High Precision Pointing (RPMHPP). The developed Rotary Piezo Actuator (RPA) is based on a Ultrasonic Piezo Drive (UPD) unit that drives a friction ring on the rotor part supported by a ball bearing assembly. This new motorization principle offers excellent motion dynamics and positioning accuracy combined with a high un-powered torque at standstill, and it does not rely on any magnetic features. A rotary piezo motor compliant with the requirements of a reference space application has been designed and tested. The technology remains challenging to be mastered, since the interdisciplinary aspects of the concept include, among others, drive electronics and controller design, piezo-electricity, contact mechanics and tribology. The conceptual design has lead to a

  16. Optimal design of switched reluctance motor using two-dimensional finite element method

    NASA Astrophysics Data System (ADS)

    Kim, Youn-Hyun; Choi, Jae-Hak; Jung, Sung-In; Chun, Yon-Do; Kim, Sol; Lee, Ju; Chu, Min-Sik; Hong, Kyung-Jin; Choi, Dong-Hoon

    2002-05-01

    Switched reluctance motor (SRM) has some advantages such as low cost, high torque density, etc., but SRM has essentially high torque ripple due to its salient structure. To apply SRM to the industrial field, we have to minimize torque ripple, which is the weak point of SRM. This article introduces optimal design process of SRM using a numerical method such as two-dimensional (2D) finite element method. The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, we can obtain the optimal design, which minimizes the torque ripple. We also can obtain the optimal design, which maximizes the average torque. Finally, this article presents performance comparison of two optimal designs, the minimized torque ripple, and the maximized average torque.

  17. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Act Motor Vehicle Inspection and Maintenance (I/M) Programs. 52.2348 Section 52.2348 Protection of... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection..., 1999, the State of Utah submitted an evaluation of the Utah County inspection and maintenance...

  18. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Act Motor Vehicle Inspection and Maintenance (I/M) Programs. 52.2348 Section 52.2348 Protection of... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection..., 1999, the State of Utah submitted an evaluation of the Utah County inspection and maintenance...

  19. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Act Motor Vehicle Inspection and Maintenance (I/M) Programs. 52.2348 Section 52.2348 Protection of... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection..., 1999, the State of Utah submitted an evaluation of the Utah County inspection and maintenance...

  20. Molecular Thermodynamics for Chemical Process Design

    ERIC Educational Resources Information Center

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  1. Parallel computation with molecular-motor-propelled agents in nanofabricated networks

    PubMed Central

    Nicolau, Dan V.; Lard, Mercy; Korten, Till; van Delft, Falco C. M. J. M.; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V.

    2016-01-01

    The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology. PMID:26903637

  2. A theoretical model of a molecular-motor-powered microfluidics pump

    NASA Astrophysics Data System (ADS)

    Bull, Joseph L.

    2003-11-01

    Flow induced by translating and rotating beads within a circular channel is investigated as a model of a novel molecular-motor-powered microfluidics pump. Micro flows are often generated by external pumps, rather than by devices that are integral to the microfluidics chip. We are currently developing a micro-scale pump that could be part of a biosensor, "lab on a chip" device, drug delivery system, or other bio-microfluidics device. The pump consists of a kinesin-coated bead moving along a microtubule track in a circular channel. The model is developed from the Stokes equation subject to wall and bead boundary conditions, and is solved using the boundary element method. It is shown that the pump can generate flows in the atto- to pico-l/s range, and that there is an optimal loading for a given pump geometry that results in maximum pump efficiency. Increasing the diameter of the bead relative to the channel width increases the flow generated at the expense of requiring a higher force to move the bead. It is found that bead rotation can increase or reduce the power required, depending on the direction of rotation, and that positioning the bead slightly off center can reduce the required power input. This work is funded by DARPA.

  3. Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2005-12-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukaryotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Novel efforts have been made to utilize some uni-cellular organisms as “micro-transporters”. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In this review we critically examine the current status of our understanding, expose the limitations of the existing methods, mention open challenging questions and speculate on the possible future directions of research in this interdisciplinary area where physics meets not only chemistry and biology but also (nano-)technology.

  4. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    PubMed

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (Ea), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. Ea, k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  5. Prototype design of a wearable metal hydride actuator using a soft bellows for motor rehabilitation.

    PubMed

    Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Tanaka, Toshiaki; Izumi, Takashi

    2008-01-01

    A bedside and home rehabilitation system for people with motor disabilities due to stroke or the aging process requires a human-compatible actuator with softness, low noise and a high power-to-weight ratio. To achieve these types of joint motor rehabilitation systems, we designed a wearable metal hydride (MH) actuator using a soft bellows. The purpose of the current study is the development the soft and light bellows made of a polymer laminate film for the MH actuator. As a result of experimental tests, this soft bellows weighs 20 times less and stretches 30 times longer than the metal bellows used in a conventional MH actuator, and it has hydrogen impermeability, flex durability and adequate compliance for human joints. The MH actuator using the soft bellows can drive at a slow and safe enough speed for motor rehabilitation of patients' limbs. These preliminary findings support the efficacy of an MH actuator with a soft bellows for the purpose of developing a system for motor rehabilitation or human power assist.

  6. Silanization of quartz, silicon and mica surfaces with light-driven molecular motors: construction of surface-bound photo-active nanolayers.

    PubMed

    London, Gábor; Carroll, Gregory T; Feringa, Ben L

    2013-06-07

    The attachment of molecular rotary motors containing triethoxysilane functional groups to quartz, silicon and mica surfaces is described. Motors containing silane coupling agents in their structure form stable molecular layers on quartz and silicon surfaces. Motors attached to these surfaces were found to undergo photochemical and thermal isomerization steps similar to those observed in solution. Additionally, successful formation of molecular "carpets" on atomically flat mica extending micrometer-sized length scales is presented. These "carpets" were found to undergo morphological changes upon irradiation with UV-light.

  7. Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer

    PubMed Central

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-01-01

    Background Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. Principal Findings A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. Conclusions The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor. PMID:20368809

  8. Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins. PMID:24633798

  9. Design and characteristic analysis of L1B4 ultrasonic motor considering contact mechanism.

    PubMed

    Rho, Jong-Seok; Kim, Byung-Jai; Lee, Chang-Hwan; Joo, Hyun-Woo; Jung, Hyun-Kyo

    2005-11-01

    Up to the present time, the analysis and design of ultrasonic motors (USMs) have been performed using rough analytic methods or commercial analysis tools without considering the complex contact mechanisms. As a result, it was impossible to achieve an exact analysis and design of a USM. In order to address the problem, we proposed the analysis and design methodology of an L1B4 USM using a three-dimensional finite element method combined with an analytic method that considers complex contact mechanisms in linear operation. This methodology is applicable to many other kinds of USMs which use resonance modes and contact mechanisms. Also, we designed and prototyped the mechanical system and driving circuit of the L1B4 USM, and finally validated the proposed analysis and design methodology by comparing their outcomes with experimental data.

  10. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  11. A curved ultrasonic actuator optimized for spherical motors: design and experiments.

    PubMed

    Leroy, Edouard; Lozada, José; Hafez, Moustapha

    2014-08-01

    Multi-degree-of-freedom angular actuators are commonly used in numerous mechatronic areas such as omnidirectional robots, robot articulations or inertially stabilized platforms. The conventional method to design these devices consists in placing multiple actuators in parallel or series using gimbals which are bulky and difficult to miniaturize. Motors using a spherical rotor are interesting for miniature multidegree-of-freedom actuators. In this paper, a new actuator is proposed. It is based on a curved piezoelectric element which has its inner contact surface adapted to the diameter of the rotor. This adaptation allows to build spherical motors with a fully constrained rotor and without a need for additional guiding system. The work presents a design methodology based on modal finite element analysis. A methodology for mode selection is proposed and a sensitivity analysis of the final geometry to uncertainties and added masses is discussed. Finally, experimental results that validate the actuator concept on a single degree-of-freedom ultrasonic motor set-up are presented.

  12. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    PubMed

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  13. Passivity-based current controller design for a permanent-magnet synchronous motor.

    PubMed

    Achour, A Y; Mendil, B; Bacha, S; Munteanu, I

    2009-07-01

    The control of a permanent-magnet synchronous motor is a nontrivial issue in AC drives, because of its nonlinear dynamics and time-varying parameters. Within this paper, a new passivity-based controller designed to force the motor to track time-varying speed and torque trajectories is presented. Its design avoids the use of the Euler-Lagrange model and destructuring since it uses a flux-based dq modelling, independent of the rotor angular position. This dq model is obtained through the three-phase abc model of the motor, using a Park transform. The proposed control law does not compensate the model's workless force terms which appear in the machine's dq model, as they have no effect on the system's energy balance and they do not influence the system's stability properties. Another feature is that the cancellation of the plant's primary dynamics and nonlinearities is not done by exact zeroing, but by imposing a desired damped transient. The effectiveness of the proposed control is illustrated by numerical simulation results.

  14. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Monitoring of effects of..., Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle Use § 212.57 Monitoring of effects of motor vehicle use...

  15. Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach

    PubMed Central

    Materassi, Donatello; Li, Mingang; Hays, Thomas; Salapaka, Murti

    2016-01-01

    Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins—proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington’s disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant’s stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package

  16. Web Based Learning Support for Experimental Design in Molecular Biology.

    ERIC Educational Resources Information Center

    Wilmsen, Tinri; Bisseling, Ton; Hartog, Rob

    An important learning goal of a molecular biology curriculum is a certain proficiency level in experimental design. Currently students are confronted with experimental approaches in textbooks, in lectures and in the laboratory. However, most students do not reach a satisfactory level of competence in the design of experimental approaches. This…

  17. MOLECULAR THERMODYNAMICS IN THE DESIGN OF SUBSTITUTE SOLVENTS

    EPA Science Inventory

    The use of physical properties and fluid behavior from molecular thermodynamics can lead to better decision making in the design of substitute solvents and can greatly reduce the expense and time required to find substitutes compared to designing solvents by experiment. this pape...

  18. Molecular dynamics simulations and cross-link analysis of the rotary molecular motor F(o) of ATP synthase

    NASA Astrophysics Data System (ADS)

    Kanchanawarin, Chalermpol

    The protein F1Fo ATP synthase is responsible for the generation of the molecule adenosine tri-phosphate (ATP). It consists of two coupled rotary motors, F1 and Fo. ATP is generated via a rotary mechanism that couples the synthesis of ATP in F1 to the proton translocation across Fo which is driven by the electrochemical proton gradient across the membrane. F1 consists of three different subunits in the stoichiometry a1b2c10. So far, only the structure of the c-subunit and a partial structure of the b-subunit have been solved at atomic level detail. However, enough biochemical and structural information is available to construct an atomic model of Fo. There are still many open questions about Fo operation ranging from the subunit arrangement to the proton pathway and proton conduction mechanism to the rotary mechanism that couples the proton conduction to the rotation of its rotor. In this thesis study, I investigated the following four aspects of Fo: the proton pathway in Fo; the motion of F o subunits during its rotation; the rotation of the C-terminal helix of the c-subunit induced by a pH change; the forced rotation of a c10 ring in a membrane. Using molecular dynamics (MD) simulations, I was able to identify a proton pathway formed as two half proton channels in F o, i.e., a proton entrance channel and a proton exit channel. This is in good agreement with experiment. Furthermore, based on the diagramatic cross-link analysis, I propose a new Fo rotary mechanism which shows the cooperative movement of helices in Fo during proton transport and can explain experimental results which could not be explained by previous models. The investigation of the C-terminal helix rotation by NM simulations showed no pH induced rotation of the helix of the c-subunit. Finally, using steered MD simulations, I found that the c10 ring is mechanically robust against forced rotation in vacuum but not in a membrane on the MD time scale. Overall, structural information combined with my

  19. The nonlinear chemo-mechanic coupled dynamics of the F 1 -ATPase molecular motor.

    PubMed

    Xu, Lizhong; Liu, Fang

    2012-03-01

    The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor's rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.

  20. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  1. Intrinsic Hardware Evolution for the Design and Reconfiguration of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.

  2. Kinetic modeling of molecular motors: pause model and parameter determination from single-molecule experiments

    NASA Astrophysics Data System (ADS)

    Morin, José A.; Ibarra, Borja; Cao, Francisco J.

    2016-05-01

    Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

  3. Selective cell-surface labeling of the molecular motor protein prestin

    SciTech Connect

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-06-24

    Highlights: {yields} Trafficking to the plasma membrane is required for prestin function. {yields} Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. {yields} BAP-prestin can be metabolically labeled with biotin in HEK293 cells. {yields} Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. {yields} The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  4. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes.

  5. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.

    PubMed

    Tuteja, Narendra; Tuteja, Renu

    2004-05-01

    DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA-dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3' to 5' or 5' to 3' direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA-unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.

  6. Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings

    NASA Astrophysics Data System (ADS)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    Interior Permanent Magnet Synchronous Motors (IPMSM) have been found in many applications because of their high-power density and high-efficiency. The existence of a complex magnetic circuit, however, makes the design of this machine quite complicated. Although FEM is commonly used in the IPMSM design, one of disadvantages is long CPU times. This paper presents a simple non-linear magnetic analysis for a multi-pole IPMSM as a preliminary design tool of FEM. The proposed analysis consists of the geometric-flux-tube-based equivalent-magnetic-circuit model. The model includes saturable permeances taking into account the local magnetic saturation in the core. As a result, the proposed analysis is capable of calculating the flux distribution and the torque characteristics in the presence of magnetic saturation. The effectiveness of the proposed analysis is verified by comparing with FEM in terms of the analytical accuracy and the computation time for two IPMSMs with different specifications. After verification, the proposed analysis-based optimum design is examined, by which the minimization of motor volume is realized while satisfying the necessary maximum torque for target applications.

  7. The Effect of Propellant Variables on Slag in Subscale Spin Motors. Part 1; Design and Qualification of a Slag Discrimination Motor

    NASA Technical Reports Server (NTRS)

    Perkins, F. M.; Beus, R. W.; May, D. H.

    1995-01-01

    The formation, collection, and expulsion of aluminum oxide slag is known to affect the performance of many solid rocket motor systems. Slag expulsion, in particular, is believed to be capable of causing pressure and thrust perturbations. Propellant combustion studies, performed and documented by many investigators, have shown that variations in propellant raw materials and processing affect the nature of alumina droplets at the burning propellant surface, and hence, may affect the quantity of slag retained in the motor chamber, available for expulsion. Thiokol has completed an experimental and analytical evaluation to determine the effects of several material and process variables on Space SHuttle propellant and its propensity to 'slag'. This paper describes the test article, a small scale spin motor with special nozzle, designed and qualified as a slag discriminating tool for use in the evaluation.

  8. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    SciTech Connect

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  9. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    NASA Astrophysics Data System (ADS)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  10. Molecular design of conducting polymer for electrochromic applications

    NASA Astrophysics Data System (ADS)

    Yang, Sze C.; Clark, R. L.; Liao, H.; Sun, L.

    1995-09-01

    The electrochromism of polyaniline in the near infrared spectral range is studied. Spectroelectrochemical data are used to construct optically monitored cyclic voltamograms (o- CV). Details of the electrochromic effects are clarified by comparing o-CV with the ordinary current monitored cyclic voltamograms (i-CV). Components of Faradaic currents to the cyclic voltamogram can be resolved by comparing o-CV with i-CV. We discuss molecular designs for modifying the properties of polyaniline. By a template-guided polymerization scheme, we synthesize the double strand polymeric complex of polyaniline. The first strand is a conducting polymer and the second strand is a polyelectrolyte. This molecular complex has the advantage of being more stable, more processable than the conventional polyaniline. The double strand molecular complex offers increased flexibility in molecular design of electrochromic and electroactive polymers.

  11. Design strategies for organic semiconductors beyond the molecular formula.

    PubMed

    Henson, Zachary B; Müllen, Klaus; Bazan, Guillermo C

    2012-09-01

    Organic semiconducting materials based on polymers and molecular systems containing an electronically delocalized structure are the basis of emerging optoelectronic technologies such as plastic solar cells and flexible transistors. For isolated molecules, guidelines exist that rely on the molecular formula to tailor the frontier (highest occupied or lowest unoccupied) molecular orbital energy levels and optical absorption profiles. Much less control can be achieved over relevant properties, however, as one makes the transition to the ensemble behaviour characteristic of the solid state. Polymeric materials are also challenging owing to the statistical description of the average number of repeat units. Here we draw attention to the limitations of molecular formulae as predictive tools for achieving properties relevant to device performances. Illustrative examples highlight the relevance of organization across multiple length scales, and how device performances--although relevant for practical applications--poorly reflect the success of molecular design.

  12. Traveling-wave piezoelectric linear motor Part I: the stator design.

    PubMed

    Ting, Yung; Chen, Liang-Chiang; Li, Chun-Chung; Huang, Jeng-Lin

    2007-04-01

    A new type of piezoelectric linear motor incorporating a traveling wave has been developed. The linear motor is comprised of a stator and a carriage. The stator design, which consists of a meander-line structure and gear teeth mounted on the meander-line structure, is the focus of this article. The meander-line structure is constructed with bimorph actuators arranged in a line. These actuators are driven by two phased sets of alternating current (ac) in order to generate a traveling wave. The traveling wave is transferred to the gear teeth, by which the carriage is driven. Modeling of the stator is derived by use of a strain energy method. The performance of various materials is evaluated by analytical and experimental methods. The analytical and the experimental results are quite approximate. Modal analysis is investigated using ANSYS. Appropriate modes associated with ultrasonic levels of resonant frequency are selected to obtain desired motion and to enhance the output performance. Surface speed for various applied input voltage are studied and indicate a nearly linear relationship. The stator in combination with the carriage makes up the linear motor.

  13. A simple statistical approach to the boyer model of the molecular motor adenosine triphosphatase

    SciTech Connect

    Loginov, E. B. Pikin, S. A.

    2006-03-15

    A physical description of the F{sub 0}F{sub 1} adenosine triphosphatase as a rotating motor is proposed. The catalytic center and the ion-conducting membrane are considered within the classical Boyer model for the rotor and the catalytic parts of the motor, thereby allowing application of a simple three-pole model, which decreases the number of parameters significantly. The stochastic character of the processes occurring in motors is described by the Fokker-Planck equations. Various dependences of the rotation speed on the degree of excitation, localization of excitations, and the amplitude of the potential are reported.

  14. Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies.

    PubMed

    Liu, Shixin; Chistol, Gheorghe; Bustamante, Carlos

    2014-05-06

    Ring NTPases represent a large and diverse group of proteins that couple their nucleotide hydrolysis activity to a mechanical task involving force generation and some type of transport process in the cell. Because of their shape, these enzymes often operate as gates that separate distinct cellular compartments to control and regulate the passage of chemical species across them. In this manner, ions and small molecules are moved across membranes, biopolymer substrates are segregated between cells or moved into confined spaces, double-stranded nucleic acids are separated into single strands to provide access to the genetic information, and polypeptides are unfolded and processed for recycling. Here we review the recent advances in the characterization of these motors using single-molecule manipulation and detection approaches. We describe the various mechanisms by which ring motors convert chemical energy to mechanical force or torque and coordinate the activities of individual subunits that constitute the ring. We also examine how single-molecule studies have contributed to a better understanding of the structural elements involved in motor-substrate interaction, mechanochemical coupling, and intersubunit coordination. Finally, we discuss how these molecular motors tailor their operation-often through regulation by other cofactors-to suit their unique biological functions.

  15. Mechanical Operation and Intersubunit Coordination of Ring-Shaped Molecular Motors: Insights from Single-Molecule Studies

    PubMed Central

    Liu, Shixin; Chistol, Gheorghe; Bustamante, Carlos

    2014-01-01

    Ring NTPases represent a large and diverse group of proteins that couple their nucleotide hydrolysis activity to a mechanical task involving force generation and some type of transport process in the cell. Because of their shape, these enzymes often operate as gates that separate distinct cellular compartments to control and regulate the passage of chemical species across them. In this manner, ions and small molecules are moved across membranes, biopolymer substrates are segregated between cells or moved into confined spaces, double-stranded nucleic acids are separated into single strands to provide access to the genetic information, and polypeptides are unfolded and processed for recycling. Here we review the recent advances in the characterization of these motors using single-molecule manipulation and detection approaches. We describe the various mechanisms by which ring motors convert chemical energy to mechanical force or torque and coordinate the activities of individual subunits that constitute the ring. We also examine how single-molecule studies have contributed to a better understanding of the structural elements involved in motor-substrate interaction, mechanochemical coupling, and intersubunit coordination. Finally, we discuss how these molecular motors tailor their operation—often through regulation by other cofactors—to suit their unique biological functions. PMID:24806916

  16. A neural network-based optimal spatial filter design method for motor imagery classification.

    PubMed

    Yuksel, Ayhan; Olmez, Tamer

    2015-01-01

    In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN) is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP) algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  17. Metamodels for New Designs of Outer-Rotor Brushless Synchronous Electric Motors

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.

    2014-04-01

    The authors consider the possibilities to synthesise metamodels for the analysis and optimisation of brushless synchronous motors. The metamodels are presented for new designs of the outer-rotor permanent magnet synchronous motor and the outer-rotor reluctance motor. The metamodels are synthesised based on the results obtained by the numerical calculations of magnetic field taking into account magnetic saturation. Analysis of the results for the motor magnetic field and tests of the metamodels at the selected and intermediate points shows that these can be synthesised with acceptable accuracy using numerical calculations instead of expensive real experiments. Rakstā ir apskatītas metamodeļu iegūšanas iespējas to izmantošanai bezkontaktu sinhrono dzinēju analīzē un optimizācijā. Ir iegūti metamodeļi sinhronam dzinējam ar pastāvīgajiem magnētiem un reaktīvam dzinējam ar ārējo rotoru. Sintezēto metamodeļu iegūšanai izmantoti elektrisko dzinēju magnētiskā lauka skaitlisko aprēķinu rezultāti, ievērojot magnētiskās ķēdes piesātinājumu. Metamodeļu pārbaude aprēķinu un starppunktos parādīja, ka to iegūšanai dārgo reālo eksperimentu vietā var izmantot magnētiskā lauka aprēķinu rezultātus.

  18. Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor

    NASA Astrophysics Data System (ADS)

    Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng

    Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.

  19. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  20. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  1. Design and Evaluation of a Stand-Up Motorized Prone Cart

    PubMed Central

    Harrow, Jeffrey J; Malassigné, Pascal; Nelson, Audrey L; Jensen, Robert P; Amato, Margaret; Palacios, Polly L

    2007-01-01

    Background/Objective: Prone carts are used for mobility by individuals with spinal cord injury in whom seated mobility (wheelchair) is contraindicated due to ischial or sacral pressure ulcers. Currently available prone carts are uncomfortable, subjecting the user to neck and shoulder strain, and make social interaction and performing activities of daily living difficult. A better design of prone carts is needed. In addition, standing devices have shown some medical benefits. The objective was to design and evaluate an improved prone cart that facilitates standing. Design: Engineering development project with user feedback through questionnaire. Users selected by convenience sampling. Methods: A marketing survey was performed of nurse managers of spinal cord injury units. Then 2 prototype carts were designed and built. These carts are able to tilt up to 45° and have a joystick-controlled motor for propulsion and other design features, including a workspace storage shelf and rearview mirrors. The carts were evaluated by both patients and caregivers at 2 Veteran's Administration hospitals. Outcome Measures: Questionnaire of subjects, both patients and caregivers, who used the cart. Findings: Both patients and caregivers liked the carts and the ability to assume a nonhorizontal body angle. The major complaint about the cart was that it seemed too long when it came to making turns. Conclusion: This prone cart design is an improvement over the standard, flat variety. However, further design changes will be necessary. This study provided valuable information that will be useful in the next-generation prone cart design project. PMID:17385270

  2. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  3. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  4. A rotary molecular motor that can work at near 100% efficiency.

    PubMed Central

    Kinosita, K; Yasuda, R; Noji, H; Adachi, K

    2000-01-01

    A single molecule of F1-ATPase is by itself a rotary motor in which a central gamma-subunit rotates against a surrounding cylinder made of alpha3beta3-subunits. Driven by the three betas that sequentially hydrolyse ATP, the motor rotates in discrete 120 degree steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to the central gamma-subunit. Over a broad range of load (hydrodynamic friction against the rotating actin filament) and speed, the F1 motor produces a constant torque of ca. 40 pN nm. The work done in a 120 degree step, or the work per ATP molecule, is thus ca. 80 pN nm. In cells, the free energy of ATP hydrolysis is ca. 90 pN nm per ATP molecule, suggesting that the F1 motor can work at near 100% efficiency. We confirmed in vitro that F1 indeed does ca. 80 pN nm of work under the condition where the free energy per ATP is 90 pN nm. The high efficiency may be related to the fully reversible nature of the F1 motor: the ATP synthase, of which F1 is a part, is considered to synthesize ATP from ADP and phosphate by reverse rotation of the F1 motor. Possible mechanisms of F1 rotation are discussed. PMID:10836501

  5. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application.

  6. Distal hereditary motor neuropathy with vocal cord paresis: from difficulty in choral singing to a molecular genetic diagnosis.

    PubMed

    Ingram, Gillian; Barwick, Katy E S; Hartley, Louise; McEntagart, Meriel; Crosby, Andrew H; Llewelyn, Gareth; Morris, Huw R

    2016-06-01

    Patients presenting with distal weakness can be a diagnostic challenge; the eventual diagnosis often depends upon accurate clinical phenotyping. We present a mother and daughter with a rare form of distal hereditary motor neuropathy type 7 in whom the diagnosis became apparent by initial difficulty in singing, from early vocal cord dysfunction. This rare neuropathy has now been identified in two apparently unrelated families in Wales. This family's clinical presentation is typical of distal hereditary motor neuropathy type 7, and they have the common truncating mutation in the SLC5A7 gene. Advances in genetic analysis of these rare conditions broaden our understanding of their potential molecular mechanisms and may allow more directed therapy.

  7. Measurement of water by oven evaporation using a novel oven design. 2. Water in motor oils and motor oil additives.

    PubMed

    Margolis, Sam A; Vaishnav, Kevin; Sieber, John R

    2004-11-01

    The measurement of water in lubricating oils is important because water accelerates the corrosion of metal parts and bearings in motors. Some of the additives added to lubricating oils to improve their performance react with the Karl Fischer reagent (KFR) causing a positive bias in the water measurement. A new oven evaporation technique for measuring water in oils has been developed that is automated, requires less sample handling, is easily calibrated, and is capable of measuring relatively small mass fractions of water (> or =50 mg/kg sample). A series of motor oils was analyzed with the standard KFR, a reagent that detects interfering substances that reduce iodine, and the aldehyde-ketone reagent that does not detect substances that react with methanol and form water. The oil samples were heated to 107 degrees C and then reheated to 160 degrees C. At both temperatures, material was measured by both KFRs, but only zinc dithiophosphate released sulfur compounds that would react with the reagent that detects interfering substances. Mass fractions of between 20 and 70% of the volatile material released at either temperature were measured with the standard KFR but not with the aldehyde-ketone reagent. These results demonstrate that there are a number of sources of positive bias in the measurement of water in motor oils and that the standard KFR cannot be used to measure water in motor oils and motor oil additives. These results also indicate that some of the material reacts with methanol to form water. Finally, these results suggest that some of the material that is volatile at 160 degrees C and not at 107 degrees C may be water that is physically occluded or may be substances that react with diethyleneglycol monomethylether to produce water.

  8. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  9. Design Theory of a Variable Characteristic Motor Using Compound Magnetomotive Forces

    NASA Astrophysics Data System (ADS)

    Kato, Takashi; Akatsu, Kan; Shigeta, Tomoaki; Nakano, Masaki; Tsukamoto, Masahiro; Arimitsu, Minoru

    The permanent magnet synchronous motor offers the possibility of obtaining higher efficiency in a smaller motor size. However, it is difficult to vary the range of high motor efficiency because of its constant magnetomotive force (MMF) level. This paper proposes a variable characteristic motor that embodies a new concept of the compound magnetomotive forces (CMMF) motor. The motor uses a special magnet arrangement that has the MMF of components with different number of pole pairs. The application of compound current control to this motor makes it possible to vary the motor speed and torque (N-T) characteristics. This paper describes the derivation of the theoretical equations for this CMMF motor. It also presents the results of FEA and experiments conducted with the prototype motor to demonstrate the validity of the CMMF concept.

  10. Information storage at the molecular level - The design of a molecular shift register memory

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.

    1989-01-01

    The control of electron transfer rates is discussed and a molecular shift register memory at the molecular level is described. The memory elements are made up of molecules which can exist in either an oxidized or reduced state and the bits can be shifted between the cells with photoinduced electron transfer reactions. The device integrates designed molecules onto a VLSI substrate. A control structure to modify the flow of information along a shift register is indicated schematically.

  11. Design of voice coil motor dynamic focusing unit for a laser scanner

    SciTech Connect

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  12. Design of voice coil motor dynamic focusing unit for a laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  13. Design of voice coil motor dynamic focusing unit for a laser scanner.

    PubMed

    Lee, Moon G; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  14. Engineering and Design: Selecting Reaction-Type Hydraulic Turbines and Pump Turbines and Hydroelectric Generators and Generator-Motors

    DTIC Science & Technology

    2007-11-02

    turbines must k designed to suit the specific range of conditions under which they will operate, each generator and generator- motor is unique in that the... conditions . Continuous, heavy-duty amortisseur windings me required for generator-rotors which are to be started as induction motors . (2) ~rtisseur...cubic feet, and the available water horsepwer is: WHP = wQH 550 d. The amount of power that can be prducd under pradical working conditions is less

  15. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  16. The Journal of Computer- Aided Molecular Design: a bibliometric note

    NASA Astrophysics Data System (ADS)

    Willett, Peter

    2012-01-01

    Summarizes the articles in, and the citations to, volumes 2-24 of the Journal of Computer- Aided Molecular Design. The citations to the journal come from almost 2000 different sources that span a very wide range of academic subjects, with the most heavily cited articles being descriptions of software systems and of computational methods.

  17. Novel tubular switched reluctance motor with double excitation windings: Design, modeling, and experiments.

    PubMed

    Yan, Liang; Li, Wei; Jiao, Zongxia; Chen, I-Ming

    2015-12-01

    The space utilization of linear switched reluctance machine is relatively low, which unavoidably constrains the improvement of system output performance. The objective of this paper is to propose a novel tubular linear switched reluctance motor with double excitation windings. The employment of double excitation helps to increase the electromagnetic force of the system. Furthermore, the installation of windings on both stator and mover can make the structure more compact and increase the system force density. The design concept and operating principle are presented. Following that, the major structure parameters of the system are determined. Subsequently, electromagnetic force and reluctance are formulated analytically based on equivalent magnetic circuits, and the result is validated with numerical computation. Then, a research prototype is developed, and experiments are conducted on the system output performance. It shows that the proposed design of electric linear machine can achieve higher thrust force compared with conventional linear switched reluctance machines.

  18. A novel design of heartbeat monitoring system for the motor vehicle.

    PubMed

    Gücüyener, İsmet

    2016-12-01

    Many traffic accidents take place throughout the world every day claiming lives as well as commodities and people involved in the accidents have to stay long periods at the hospitals. Traffic accidents are caused by many reasons. One of the reasons is the driver's having a heart attack just before the accident took place. If the heartbeat of the driver can continuously be measured, then most probably one of the reasons of traffic accidents can be eliminated. The designed model aims to measure the driver's heartbeat using infrared imaging. Some car models already have a driver heartbeat monitoring system and it measures the heartbeats by using the back seat electrodes. But these systems are expensive and unique to their models and what is more; its adaptation to other car models can pose a difficulty. Implementing on the car's rear-view mirror this new design monitoring system is very cheap and also it can be mounted to all motor vehicles easily.

  19. Design modification in rotor blade of turbo molecular pump

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Wasy, Abdul; Batani, Dimitri; Rashid, Haris; Lodhi, M. A. K.

    2012-06-01

    Performance of a Turbo Molecular Pump (TMP) is strongly related to the frequency of the rotor. As rpm increases deflection in the rotor blades starts to occur. Therefore, quality of material and blade design has been modified in order to obtain stable performance at higher speed. To reduce the deformation, stiffer material and change in blade design have been calculated. Significant improvement has been achieved in modeling the blade design using CATIA software. The analysis has been performed by ANSYS workbench. It is shown that the modification in the blade design of TMP rotor has reduced the structural deformation up to 66 percent of the deformation produced in the original blade design under the same conditions. Modified design achieved additional 23 percent rpm which increased TMP's efficiency.

  20. On the possibility to accelerate the thermal isomerizations of overcrowded alkene-based rotary molecular motors with electron-donating or electron-withdrawing substituents.

    PubMed

    Oruganti, Baswanth; Durbeej, Bo

    2016-09-01

    We employ computational methods to investigate the possibility of using electron-donating or electron-withdrawing substituents to reduce the free-energy barriers of the thermal isomerizations that limit the rotational frequencies achievable by synthetic overcrowded alkene-based molecular motors. Choosing as reference systems one of the fastest motors known to date and two variants thereof, we consider six new motors obtained by introducing electron-donating methoxy and dimethylamino or electron-withdrawing nitro and cyano substituents in conjugation with the central olefinic bond connecting the two (stator and rotator) motor halves. Performing density functional theory calculations, we then show that electron-donating (but not electron-withdrawing) groups at the stator are able to reduce the already small barriers of the reference motors by up to 18 kJ mol(-1). This result outlines a possible strategy for improving the rotational frequencies of motors of this kind. Furthermore, exploring the origin of the catalytic effect, it is found that electron-donating groups exert a favorable steric influence on the thermal isomerizations, which is not manifested by electron-withdrawing groups. This finding suggests a new mechanism for controlling the critical steric interactions of these motors. Graphical Abstract The introduction of electron-donating groups in one of the fastest rotary molecular motors known to date is found to reduce the free-energy barriers of the thermal steps that limit the rotational frequencies by up to 18 kJ mol(-1).

  1. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  2. Identification of molecular motors in the Woods Hole squid, Loligo pealei: an expressed sequence tag approach.

    PubMed

    DeGiorgis, Joseph A; Cavaliere, Kimberly R; Burbach, J Peter H

    2011-10-01

    The squid giant axon and synapse are unique systems for studying neuronal function. While a few nucleotide and amino acid sequences have been obtained from squid, large scale genetic and proteomic information is lacking. We have been particularly interested in motors present in axons and their roles in transport processes. Here, to obtain genetic data and to identify motors expressed in squid, we initiated an expressed sequence tag project by single-pass sequencing mRNAs isolated from the stellate ganglia of the Woods Hole Squid, Loligo pealei. A total of 22,689 high quality expressed sequence tag (EST) sequences were obtained and subjected to basic local alignment search tool analysis. Seventy six percent of these sequences matched genes in the National Center for Bioinformatics databases. By CAP3 analysis this library contained 2459 contigs and 7568 singletons. Mining for motors successfully identified six kinesins, six myosins, a single dynein heavy chain, as well as components of the dynactin complex, and motor light chains and accessory proteins. This initiative demonstrates that EST projects represent an effective approach to obtain sequences of interest.

  3. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  4. Design And Construction Of A Miniaturized Motor Controller For Interplanetary Rover

    NASA Astrophysics Data System (ADS)

    Lofgren, Henrik; Lijemark, Tomas; Lamoureux, Enrique; Bruhn, Fredrik; Hagstrom, Maria; Hall, Karin; Ljunggren, Anders; Habinc, Sandi; Gruener, Gabriel; Rusconi, Andrea; Boyes, Ben; Wagenbach, Susanne; Poulakis, Pantelis; Kohler, Johan

    2011-10-01

    ÅAC Microtec AB is leading an international consortium developing a Motion Control Chip (MCC) for the European Space Agency (ESA) under a TRP contract. The team consists of the prime ÅAC (Sweden), Aeroflex Gaisler (Sweden), Centre Suisse d'Electroniqueet de Microtechnique (CSEM, Switzerland), Selex Galileo Italy), Astrium (UK) and DLR Institute of Space Systems (Germany). In order to improve performance of rovers and robotic arms, one solution is to place the controller physically as close as possible to the motors. This reduces the harness and hence saves weight, decreases thermal leakage from the main system body and simplifies the final assembly. Nevertheless, with this approach the constraints on the electronics become more stringent: the assembly has to survive a very wide temperature range as well as vibrations and possibly dust, and at the same time it should be as small and light as possible. To cope with these design constraints, the Motion Control Chip (MCC) is based on stacked ceramic substrate technology in a Multi Chip Module (MCM), on which active components are assembled as bare dies. This approach was chosen in favor of special large ASIC development to reduce cost and make the design more flexible. By choosing a MCM solution, the design will allow both FPGA and ASICs to be used. FPGAs are used initially to lower the prototyping cost and later be replaced with ASICs as the packaging technology is qualified for the extreme environments of ISS, Mars and Moon. The manufacturing of the first iteration of miniaturized MCC modules is ongoing and initial functional tests have been executed. The results are currently being evaluated and when this is finalized the full test campaign including environmental tests will planned in detail. The tests are assumed to be finalized during the spring of 2011. Aeroflex Gaisler is the official ESA maintainer of the RTEMS port for the LEON3 processor and has been providing support to several developments. CSEM is

  5. Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics and thermotics

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Wang, Tianyi; Yan, Liang

    2016-12-01

    A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.

  6. Sculpting Molecular Potentials to Design Optimized Materials: The Inverse Design of New Molecular Structures

    DTIC Science & Technology

    2010-05-10

    Miloradovic, A. Persoons, T . Verbiest, M. J . Therien, and K. Clays, "Molecular Symmetry and Solution Phase Structure Interrogated by Hyper-Raleigh...34 Nano Lett., 8, 2814-2818 (2008).  T . V. Duncan, K. Song, S.- T . Hung, I. Miloradovic, A. Persoons, T . Verbiest, M. J . Therien, and K. Clays...Beratan, Weitao Yang, Michael J . Therien, Koen Clays Duke University Office of Research Support Duke University Durham, NC 27705 - REPORT

  7. Torque, chemistry and efficiency in molecular motors: a study of the rotary-chemical coupling in F1-ATPase.

    PubMed

    Mukherjee, Shayantani; Bora, Ram Prasad; Warshel, Arieh

    2015-11-01

    Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical coupling from a non-phenomenological structure/energy description. Here we focused on using a coarse-grained model of F1-ATPase to generate a structure-based free-energy landscape of the rotary-chemical process of the whole system. In particular, we concentrated on exploring the possible impact of the position of the catalytic dwell on the efficiency and torque generation of the molecular machine. It was found that the experimentally observed torque can be reproduced with landscapes that have different positions for the catalytic dwell on the rotary-chemical surface. Thus, although the catalysis is undeniably required for torque generation, the experimentally observed position of the catalytic dwell at 80° might not have a clear advantage for the force generation by F1-ATPase. This further implies that the rotary-chemical couplings in these biological motors are quite robust and their efficiencies do not depend explicitly on the position of the catalytic dwells. Rather, the specific positioning of the dwells with respect to the rotational angle is a characteristic arising due to the structural construct of the molecular machine and might not bear any clear connection to the thermodynamic efficiency for the system.

  8. Testing a structural model for viral DNA packaging motor function by optical tweezers measurements, site directed mutagenesis, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas A.; Migliori, Amy D.; Arya, Gaurav; Rao, Venigalla B.; Smith, Douglas E.

    2013-09-01

    Many double-stranded DNA viruses employ a molecular motor to package DNA into preformed capsid shells. Based on structures of phage T4 motor proteins determined by X-ray crystallography and cryo-electron microscopy, Rao, Rossmann and coworkers recently proposed a structural model for motor function. They proposed that DNA is ratcheted by a large conformational change driven by electrostatic interactions between charged residues at an interface between two globular domains of the motor protein. We have conducted experiments to test this model by studying the effect on packaging under applied load of site-directed changes altering these residues. We observe significant impairment of packaging activity including reductions in packaging rate, percent time packaging, and time active under high load. We show that these measured impairments correlate well with alterations in free energies associated with the conformational change predicted by molecular dynamics simulations.

  9. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  10. Virtual Screening and Molecular Design Based on Hierarchical Qsar Technology

    NASA Astrophysics Data System (ADS)

    Kuz'min, Victor E.; Artemenko, A. G.; Muratov, Eugene N.; Polischuk, P. G.; Ognichenko, L. N.; Liahovsky, A. V.; Hromov, A. I.; Varlamova, E. V.

    This chapter is devoted to the hierarchical QSAR technology (HiT QSAR) based on simplex representation of molecular structure (SiRMS) and its application to different QSAR/QSPR tasks. The essence of this technology is a sequential solution (with the use of the information obtained on the previous steps) of the QSAR paradigm by a series of enhanced models based on molecular structure description (in a specific order from 1D to 4D). Actually, it's a system of permanently improved solutions. Different approaches for domain applicability estimation are implemented in HiT QSAR. In the SiRMS approach every molecule is represented as a system of different simplexes (tetratomic fragments with fixed composition, structure, chirality, and symmetry). The level of simplex descriptors detailed increases consecutively from the 1D to 4D representation of the molecular structure. The advantages of the approach presented are an ability to solve QSAR/QSPR tasks for mixtures of compounds, the absence of the "molecular alignment" problem, consideration of different physical-chemical properties of atoms (e.g., charge, lipophilicity), and the high adequacy and good interpretability of obtained models and clear ways for molecular design. The efficiency of HiT QSAR was demonstrated by its comparison with the most popular modern QSAR approaches on two representative examination sets. The examples of successful application of the HiT QSAR for various QSAR/QSPR investigations on the different levels (1D-4D) of the molecular structure description are also highlighted. The reliability of developed QSAR models as the predictive virtual screening tools and their ability to serve as the basis of directed drug design was validated by subsequent synthetic, biological, etc. experiments. The HiT QSAR is realized as the suite of computer programs termed the "HiT QSAR" software that so includes powerful statistical capabilities and a number of useful utilities.

  11. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  12. Design of a microprocessor based novel braking of three phase induction motor

    SciTech Connect

    Sinha, N.; Laskar, S.H.; Goyal, K.; Nair, P.B.; Sharma, M.K.

    1995-12-31

    This paper describes the development of an efficient braking system suitable for three phase induction motor drives specially driving loads of non-overhauling type. The method incorporates a combination of three braking methods in four states according to the speed range at which the respective methods are most effective, with the result of a smooth and efficient braking. First capacitor self-excitation is applied in stages followed by magnetic braking by double short circuiting and dc injection. Theoretical and experimental results for determining different parameters useful for designing the braking scheme are provided. Lastly microprocessor has been used for proper incorporation of different braking schemes. Dual switching scheme has improved the reliability of the scheme.

  13. Streptococcal M protein: molecular design and biological behavior.

    PubMed Central

    Fischetti, V A

    1989-01-01

    M protein is a major virulence determinant for the group A streptococcus by virtue of its ability to allow the organism to resist phagocytosis. Common in eucaryotes, the fibrillar coiled-coil design for the M molecule may prove to be a common motif for surface proteins in gram-positive organisms. This type of structure offers the organism several distinct advantages, ranging from antigenic variation to multiple functional domains. The close resemblance of this molecular design to that of certain mammalian proteins could help explain on a molecular level the formation of epitopes responsible for serological cross-reactions between microbial and mammalian proteins. Many of the approaches described in the elucidation of the M-protein structure may be applied for characterizing similar molecules in other microbial systems. Images PMID:2670192

  14. Quantum-chemical foundations of the topological substructural molecular design.

    PubMed

    Estrada, Ernesto

    2008-06-12

    The topological substructural molecular design (TOPS-MODE) approach is formulated as a tight-binding quantum-chemical method. The approach is based on certain postulates that permit to express any molecular property as a function of the spectral moments of certain types of molecular and environment-dependent energies. We use several empirical potentials to account for these intrinsic and external molecular energies. We prove that any molecular property expressed in terms of a quantitative structure-property and structure-activity relationships (QSPR/QSAR) model developed by using the TOPS-MODE method can be expressed as a bond additivity function. In addition, such a property can also be expressed as a substructural cluster expansion function. The conditions for such bond contributions being transferable are also analyzed here. Several new statistical-mechanical electronic functions are introduced as well as a bond-bond thermal Green's function or a propagator accounting for the electronic hopping between pairs of bonds. All these new concepts are applied to the development and application of a new QSAR model for describing the toxicity of polyhalogenated-dibenzo-1,4-dioxins. The QSAR model obtained displays a significant robustness and predictability. It permits an easy structural interpretation of the structure-activity relationship in terms of bond additivity functions, which display some resemblances with other theoretical parameters obtained from first principle quantum-chemical methods.

  15. Theoretical design of molecular nanomagnets for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Garlatti, E.; Carretta, S.; Schnack, J.; Amoretti, G.; Santini, P.

    2013-11-01

    Molecular nanomagnets are promising materials for very-low-temperature magnetic refrigeration due to their enhanced magnetocaloric effect. By explicitly considering Carnot refrigeration cycles, we theoretically show that the best molecules for magnetic refrigeration between T ≃10 K and the sub-Kelvin region are those made of strongly ferromagnetically coupled magnetic ions, contrarily to the established belief. This recipe will provide a strong stimulus for designing new magnetic molecules for cryogenic technologies.

  16. Designing Molecular Printboards: A Photolithographic Platform for Recodable Surfaces.

    PubMed

    Abt, Doris; Schmidt, Bernhard V K J; Pop-Georgievski, Ognen; Quick, Alexander S; Danilov, Denis; Kostina, Nina Yu; Bruns, Michael; Wenzel, Wolfgang; Wegener, Martin; Rodriguez-Emmenegger, Cesar; Barner-Kowollik, Christopher

    2015-09-14

    A light induced strategy for the design of β-cyclodextrin (CD) based supramolecular devices is introduced, presenting a novel tool to fabricate multifunctional biointerfaces. Precision photolithography of a modified β-CD was established on a light sensitive tetrazole surface immobilized on a bioinspired polydopamine (PDA) anchor layer via various shadow masks, as well as via direct laser writing (DLW), in order to craft any desired printboard design. Interfacial molecular recognition provided by light generated cavitate domains was demonstrated via spatially resolved encoding, erasing, and recoding of distinct supramolecular guest patterns. Thus, the light directed shaping of receptor monolayers introduces a powerful path to control supramolecular assemblies on various surfaces.

  17. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  18. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.

  19. Molecular library design using multi-objective optimization methods.

    PubMed

    Nicolaou, Christos A; Kannas, Christos C

    2011-01-01

    Advancements in combinatorial chemistry and high-throughput screening technology have enabled the synthesis and screening of large molecular libraries for the purposes of drug discovery. Contrary to initial expectations, the increase in screening library size, typically combined with an emphasis on compound structural diversity, did not result in a comparable increase in the number of promising hits found. In an effort to improve the likelihood of discovering hits with greater optimization potential, more recent approaches attempt to incorporate additional knowledge to the library design process to effectively guide the search. Multi-objective optimization methods capable of taking into account several chemical and biological criteria have been used to design collections of compounds satisfying simultaneously multiple pharmaceutically relevant objectives. In this chapter, we present our efforts to implement a multi-objective optimization method, MEGALib, custom-designed to the library design problem. The method exploits existing knowledge, e.g. from previous biological screening experiments, to identify and profile molecular fragments used subsequently to design compounds compromising the various objectives.

  20. Solution structure of two molecular motor domains: nonclaret disjunctional and kinesin.

    PubMed Central

    Eden, D; Luu, B Q; Zapata, D J; Sablin, E P; Kull, F J

    1995-01-01

    The effects of selected ligands on the structure of the truncated heavy-chain chemomechanical motor domains of Drosophila ncd and human kinesin were compared using the technique of transient electric birefringence. The 366-amino acid C-terminal motor domain of Drosophila nonclaret disjunctional, ncd(335-700), and the 349-amino acid N-terminal motor domain of human kinesin, kinesin(349), were studied at 4 degrees C in neutral buffers with ionic strength of 100 mM to form complexes with either MgADP or MgADP.Vi. The rotational diffusion time adjusted to 20 degrees C and water, tau 20,W, for ncd(335-700).MgADP is 32.8 ns, and for ncd(335-700).MgADP.Vi is 34.8 ns, suggesting prolate ellipsoids with dimensions 9.40 x 3.77 nm and 9.73 x 3.70 nm, respectively. The specific Kerr constant, Ksp, of ncd is -1.65 x 10(-12) cm2V-2 for the MgADP complex and -1.15 x 10(-12) cm2V-2 for the MgADP.Vi complex. The large negative Ksp for a prolate protein suggests an unusual charge distribution with two long surfaces with opposite charge. The tau 20,W for kinesin(349).MgADP is longer than the corresponding ncd motor and shows a decrease with increased electric field. The kinesin(349).MgADP.Vi complex has a longer tau 20,W. The Ksp for kinesin(349) is 0.36 x 10(-12) cm2V-2 for each complex. PMID:7787102

  1. The Molecular Basis of Cardiac Mechanics: Regulation of Motor Unit Recruitment

    DTIC Science & Technology

    2007-11-02

    bridges determines the affinity of the regulatory proteins for calcium. The force response to sarcomere length oscillations was measured at...strain gauge. Sarcomere oscillations were imposed with a fast servomotor. The force response lagged the sarcomere length oscillations at frequency...mm2) since each cubic millimeter of the cardiac or skeletal muscle contains 100•1012 motor units (The length of half sarcomere is around 1.0µm

  2. The design and control of linear bidirectional stepping motors - Application to machine tools

    NASA Astrophysics Data System (ADS)

    Petrizza, N.

    Theoretical modeling and the results of operation of a model linear stepping motor for producing rapid in-plane translation in machining operations are presented. The theory of linear induction motors and their current implementation in the stepping mode are reviewed. A finite element method is developed for optimizing the contact stud shape through calculation of the magnetic fields and forces the motor experiences in static condition. An investigation into the characteristics of the air cushion which inhibits the motor from contacting the base is reported. Direct control with a microprocessor is described, including programming with an acceleration period at the beginning and deceleration at the end of each motion using circular and linear interpolations to obtain linear and circular motor displacements in the plane. Comparisons between linear step motors with variable reluctance and hybrid motors are made.

  3. Optimum Design for Noncontact Ultrasonic Motor with Flexurally Vibrating Disk Using an Equivalent Circuit Considering Viscosity of Air

    NASA Astrophysics Data System (ADS)

    Yamayoshi, Yasuhiro; Tamura, Hideki; Hirose, Seiji

    2009-07-01

    The optimum design for a noncontact ultrasonic motor with a flexurally vibrating disk has been investigated by analyzing the sound pressure in the air gap using an equivalent circuit considering the viscosity of air. The calculated results indicate that the sound pressure is affected by the viscosity and mass effect in the air gap, which are changed by the gap distance. The experimental results of revolution speed measured at various gap distances agree qualitatively with the sound pressure calculated using the equivalent circuit. In the case of wider gaps, a design satisfying the resonant condition of the air gap is necessary for optimizing the motor because the air gap resonates by the mass effect. However, in motors with an air gap narrower than about 50 µm, a higher speed rotation can be obtained for a wide range of rotor diameters and for a wide frequency range without consideration of the air gap resonance because the air viscosity effect becomes dominant.

  4. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs. 52.2348 Section 52.2348 Protection of... and Maintenance (I/M) Programs. (a) On March 15, 1996 the Governor of Utah submitted a revised...

  5. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs. 52.2348 Section 52.2348 Protection of... and Maintenance (I/M) Programs. (a) On March 15, 1996 the Governor of Utah submitted a revised...

  6. Intensification of the Learning Process: Gross Motor Performance Scale. A Series of Reports Designed for Classroom Use.

    ERIC Educational Resources Information Center

    Bucks County Public Schools, Doylestown, PA.

    The Gross Motor Performance Screening Test was designed to aid the classroom teacher in obtaining specific information about the child's physical abilities. The test includes items which have been found to measure the various factors of physical fitness. It also includes items to measure skills important to the child and adult. Included also are…

  7. Molecular design and screening of energetic nitramine derivatives.

    PubMed

    Devi, Alka; Deswal, Sonal; Dharavath, Srinivas; Ghule, Vikas D

    2015-11-01

    Six nitramines (N1-6) were designed with all possible arrangements of N-NO2 groups on a cyclic skeleton and structural optimization was performed using the density functional theory (DFT). We observed that all nitramines have high positive heats of formation proportionate to the number of N-NO2 groups in their molecular structure. Among the designed nitramines, N5 and N6 have crystal densities of 1.77 and 1.81 g cm(-3), respectively, which lead to reasonable respective detonation velocities (D = 8.70 and 9.07 km s(-1)) and detonation pressures (P = 33.23 and 36.57 GPa) comparable to those of RDX. To understand the relationship between sensitivity and molecular structure, bond dissociation energies, impact sensitivities (h 50), free space in crystal lattice, imbalance between the positive and negative surface potentials and heats of detonation (Q) were investigated. The comparable performance of N5 and N6 with RDX highlights the potential application of these nitramine derivatives as high energy materials and also supports the advantage of N-N bonds in the backbone and substitution of N-NO2 groups. Graphical Abstract Electrostatic potential on the 0.001 electron/bohr(3) molecular surface of N6.

  8. Local cytoskeletal and organelle interactions impact molecular motor-driven early endosomal trafficking

    PubMed Central

    Zajac, Allison L.; Goldman, Yale E.; Holzbaur, Erika L.F.; Ostap, E. Michael

    2013-01-01

    SUMMARY Background In the intracellular environment, motor-driven cargo must navigate a dense cytoskeletal network among abundant organelles. Results We investigated the effects of the crowded intracellular environment on early endosomal trafficking. Live-cell imaging of an endosomal cargo (endocytosed epidermal growth factor-conjugated quantum dots) combined with high-resolution tracking was used to analyze the heterogeneous motion of individual endosomes. The motile population of endosomes moved towards the perinuclear region in directed bursts of microtubule-based, dynein-dependent transport interrupted by longer periods of diffusive motion. Actin network density did not affect motile endosomes during directed runs or diffusive interruptions. Simultaneous two-color imaging was used to correlate changes in endosomal movement with potential obstacles to directed runs. Termination of directed runs spatially correlated with microtubule-dense regions, encounters with other endosomes, and interactions with the endoplasmic reticulum. During a subset of run terminations, we also observed merging and splitting of endosomes, deformation of the endoplasmic reticulum, and directional reversals at speeds up to ten-fold greater than characteristic in vitro motor velocities. These observations suggest endosomal membrane tension is high during directed run termination. Conclusions Our results indicate that the crowded cellular environment significantly impacts the motor-driven motility of organelles. Rather than simply acting as impediments to movement, interactions of trafficking cargos with intracellular obstacles may facilitate communication between membrane-bound compartments or contribute to the generation of membrane tension necessary for fusion and fission of endosomal membranes or remodeling of the endoplasmic reticulum. PMID:23770188

  9. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect

    Pragasen Pillay

    2008-12-31

    non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  10. Accelerated test methods for predicting the life of motor materials exposed to refrigerant/lubricant mixtures. Phase 1, Conceptual design: Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.

    1993-08-18

    The federally mandated phase-out of chlorofluorocarbon refrigerants requires screening tests for motor materials compatibility with alternative refrigerant/lubricant mixtures. In the current phase of the program, ARTI is supporting tests of promising candidate refrigeration/lubricant systems in key refrigeration component systems such as bearings and hermetic motor insulation systems to screen for more subtle detrimental effects and allow estimates of motor-compressor life. This report covers: mechanisms of failure of hermetic motor insulation, current methods for estimation of life of hermetic motors, and conceptual design of improved stator simulator device for testing of alternative refrigerant/lubricant mixtures.

  11. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N.

  12. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  13. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.

    PubMed

    Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond

    2013-06-01

    With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.

  14. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  15. Engineering of a novel Ca²⁺-regulated kinesin molecular motor using a calmodulin dimer linker.

    PubMed

    Shishido, Hideki; Maruta, Shinsaku

    2012-06-29

    The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have "on-off" control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca(2+)-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca(2+)-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  16. Molecular design of photoactive acenes for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Rocca, Dario; Baroni, Stefano; Gubbins, Keith E.; Nardelli, Marco Buongiorno

    2009-05-01

    Absorption spectra of n-acenes (n from 2 to 6, for naphthalene, anthracene, tetracene, pentacene, and hexacene, respectively) have been calculated using a newly developed code based on time-dependent density-functional theory. Our calculations show that absorption spectra and charge carrier mobility of acenes not only depend on the molecular identity but also on the molecular packing. By designing the interaction between metal substrates and the first layer of acene molecules, they can be packed in a face-to-face fashion instead of the conventional herringbone (face-to-edge) arrangement. Acenes in the cofacial packing would increase the π-orbital overlap and thus enhance the charge mobility by maximizing electronic coupling between adjacent molecules. Absorption spectra of cofacially packed acenes have a better overlap with the solar spectrum, which allows harvesting more of the solar energy from red photons.

  17. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach. PMID:27721332

  18. Time-of-Flight Secondary Ion Mass Spectrometry based Molecular Histology of Human Spinal Cord Tissue and Motor Neurons

    PubMed Central

    Hanrieder, Jörg; Malmberg, Per; Lindberg, Olle R.; Fletcher, John S.; Ewing, Andrew G.

    2013-01-01

    Secondary ion mass spectrometry is a powerful method for imaging biological samples with high spatial resolution. Whole section ToF SIMS scans and multivariate data analysis have been performed on human spinal cord in order to delineate anatomical regions of interest based on their chemical distribution pattern. ToF SIMS analysis of thoracic spinal cord sections was performed at 5µm resolution within 2 hours. Multivariate image analysis by means of principal component analysis and maximum auto correlation factor analysis resulted in detection of more than 400 m/z peaks that were found to be significantly changed. Here, the results show characteristic biochemical distributions that are well in line with major histological regions, including grey and white matter. As an approach for iterative segmentation, we further evaluated previously outlined regions of interest as identified by multivariate image analysis. Here, further discrimination of the grey matter into ventral, lateral and dorsal neuroanatomical regions was observed. TOF SIMS imaging has been carried out at submicron resolution obtaining localization and characterization of spinal motor neurons based on their chemical fingerprint, including neurotransmitter precursors that serve as molecular indicators for motor neuron integrity. Thus, TOF SIMS can be used as an approach for chemical histology and pathology. SIMS holds immense potential for investigating the subcellular mechanisms underlying spinal cord related diseases including chronic pain and amyotrophic lateral sclerosis. PMID:23947367

  19. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells

    PubMed Central

    1994-01-01

    Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane. PMID:8045931

  20. Design of a novel phase-decoupling permanent magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Chau, K. T.; Jiang, J. Z.; Fan, Ying

    2005-05-01

    This paper presents a phase-decoupling permanent magnet brushless ac motor which can offer better controllability, faster response, and smoother torque than its counterparts. The key is due to its different motor configuration and simple scalar control. The motor configuration is so unique that it inherently offers the features of phase decoupling, flux focusing, and flux shaping, hence achieving independent phase control, fast response, and smooth torque. The scalar control is fundamentally different from the complicated vector control. It can achieve direct torque control through independent control of the phase currents. The proposed motor is prototyped and experimentally verified.

  1. A Description of a Design Method of a Claw Teeth Motor on the Basis of Three-Dimensional Reluctance Network Analysis

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Takahiro; Nakamura, Kenji; Koyama, Takayuki; Ichinokura, Osamu

    Soft magnetic composites (SMCs) have the following advantages: three-dimensional magnetic isotropy, high resistivity, and recyclability. By using SMC, therefore, a new concept motor with a three-dimensional structure can be developed. Its power-to-space ratio and efficiency can be improved since the space factor of winding and the space utilization factor of the motor is increased. This paper describes a design method of a claw teeth motor made of SMC by reluctance network analysis (RNA)-based experimental design. First, a three-dimensional RNA model of the claw teeth motor is presented. Next, the RNA-based experimental design of the claw teeth motor is presented. As a result, the average torque is improved by approximately 50%. In addition, the calculation time required for the design is significantly reduced by the proposed design method.

  2. Michaelis-Menten at 100 and allosterism at 50: driving molecular motors in a hailstorm with noisy ATPase engines and allosteric transmission.

    PubMed

    Chowdhury, Debashish

    2014-01-01

    Cytoskeletal motor proteins move on filamentous tracks by converting input chemical energy that they derive by catalyzing the hydrolysis of ATP. The ATPase site is the analogue of an engine and hydrolysis of ATP is the analogue of burning of chemical fuel. Moreover, the functional role of a segment of the motor is analogous to that of the transmission system of an automobile, which consists of a shaft, gear, clutch, etc. The operation of the engine is intrinsically 'noisy' and the motor faces a molecular 'hailstorm' in the aqueous medium. In this commemorative review, we celebrate the centenary of Michaelis and Menten's landmark paper of 1913 and the golden jubilee of Monod and colleagues classic paper of 1963 by highlighting their relevance with respect to explaining the operational mechanisms of the engine and the transmission system, respectively, of cytoskeletal motors.

  3. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    PubMed

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  4. An introduction to the design and fabrication progress of a megawatt class 2G HTS motor for the ship propulsion application

    NASA Astrophysics Data System (ADS)

    Moon, Heejong; Kim, Yeong-Chun; Park, Heui-Joo; Yu, In-Keun; Park, Minwon

    2016-03-01

    This paper introduces the design and fabrication progress of a megawatt class 2G high temperature superconductor (HTS) motor for the ship propulsion application at Doosan Heavy Industries and Construction. The purpose of this 2G HTS propulsion motor is to launch the business area for marine applications such as surface ship, submarine, merchant ship etc. The principles and interpretation of the magnetic field for 2G HTS motor and permanent magnet type motors are similar on the basis of 3D design and production. The most important component of an HTS motor is the rotor, which is composed of HTS coil, non-ferrous metal, torque disk, damper, and hollow shaft. A HTS rotor using hastelloy-based 2G HTS coils was designed and built. Open-circuit and short-circuit characteristics of the superconducting motor were investigated and compared with the analysis results at reduced excitation to verify the design. Preliminary testing of a 2G HTS motor has been conducted at a few hundred kilowatts as per the design. Through these results, we anticipate that most of the design criteria can be satisfied. However, we have faced several issues during the testing of the motor and these issues need to be resolved in order to take the design further.

  5. Filter design for molecular factor computing using wavelet functions.

    PubMed

    Li, Xiaoyong; Xu, Zhihong; Cai, Wensheng; Shao, Xueguang

    2015-06-23

    Molecular factor computing (MFC) is a new strategy that employs chemometric methods in an optical instrument to obtain analytical results directly using an appropriate filter without data processing. In the present contribution, a method for designing an MFC filter using wavelet functions was proposed for spectroscopic analysis. In this method, the MFC filter is designed as a linear combination of a set of wavelet functions. A multiple linear regression model relating the concentration to the wavelet coefficients is constructed, so that the wavelet coefficients are obtained by projecting the spectra onto the selected wavelet functions. These wavelet functions are selected by optimizing the model using a genetic algorithm (GA). Once the MFC filter is obtained, the concentration of a sample can be calculated directly by projecting the spectrum onto the filter. With three NIR datasets of corn, wheat and blood, it was shown that the performance of the designed filter is better than that of the optimized partial least squares models, and commonly used signal processing methods, such as background correction and variable selection, were not needed. More importantly, the designed filter can be used as an MFC filter in designing MFC-based instruments.

  6. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  7. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  8. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  9. Molecular design for growth of supramolecular membranes with hierarchical structure.

    PubMed

    Zha, R Helen; Velichko, Yuri S; Bitton, Ronit; Stupp, Samuel I

    2016-02-07

    Membranes with hierarchical structure exist in biological systems, and bio-inspired building blocks have been used to grow synthetic analogues in the laboratory through self-assembly. The formation of these synthetic membranes is initiated at the interface of two aqueous solutions, one containing cationic peptide amphiphiles (PA) and the other containing the anionic biopolymer hyaluronic acid (HA). The membrane growth process starts within milliseconds of interface formation and continues over much longer timescales to generate robust membranes with supramolecular PA-HA nanofibers oriented orthogonal to the interface. Computer simulation indicates that formation of these hierarchically structured membranes requires strong interactions between molecular components at early time points in order to generate a diffusion barrier between both solutions. Experimental studies using structurally designed PAs confirm simulation results by showing that only PAs with high ζ potential are able to yield hierarchically structured membranes. Furthermore, the chemical structure of such PAs must incorporate residues that form β-sheets, which facilitates self-assembly of long nanofibers. In contrast, PAs that form low aspect ratio nanostructures interact weakly with HA and yield membranes that exhibit non-fibrous fingering protrusions. Furthermore, experimental results show that increasing HA molecular weight decreases the growth rate of orthogonal nanofibers. This result is supported by simulation results suggesting that the thickness of the interfacial contact layer generated immediately after initiation of self-assembly increases with polymer molecular weight.

  10. EDITORIAL: Design and function of molecular and bioelectronics devices

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  11. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  12. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect

    Genson, Kirsten Larson

    2005-01-01

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  13. A computational molecular design framework for crosslinked polymer networks

    PubMed Central

    Eslick, J.C.; Ye, Q.; Park, J.; Topp, E.M.; Spencer, P.; Camarda, K.V.

    2013-01-01

    Crosslinked polymers are important in a very wide range of applications including dental restorative materials. However, currently used polymeric materials experience limited durability in the clinical oral environment. Researchers in the dental polymer field have generally used a time-consuming experimental trial-and-error approach to the design of new materials. The application of computational molecular design (CMD) to crosslinked polymer networks has the potential to facilitate development of improved polymethacrylate dental materials. CMD uses quantitative structure property relations (QSPRs) and optimization techniques to design molecules possessing desired properties. This paper describes a mathematical framework which provides tools necessary for the application of CMD to crosslinked polymer systems. The novel parts of the system include the data structures used, which allow for simple calculation of structural descriptors, and the formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to determine candidate monomers. Use of a heuristic optimization algorithm makes the system more independent of the types of QSPRs used, and more efficient when applied to combinatorial problems. A software package has been created which provides polymer researchers access to the design framework. A complete example of the methodology is provided for polymethacrylate dental materials. PMID:23904665

  14. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Monte—Carlo Simulation of Multiple-Molecular-Motor Transport

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Qing; Wang, Guo-Dong; Shen, Wei-Bo

    2010-10-01

    Multimotor transport is studied by Monte-Carlo simulation with consideration of motor detachment from the filament. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor numbers depending on the single motor force-velocity curve. The stall force and run-length reduced greatly compared to other models. Especially in the case of low ATP concentrations, the stall force of multi motor transport even smaller than the single motor's stall force.

  15. Advances in molecular design and synthesis of regioregular polythiophenes.

    PubMed

    Osaka, Itaru; McCullough, Richard D

    2008-09-01

    Regioregular poly(3-alkylthiophene)s (rrP3ATs) are an important class of pi-conjugated polymers that can be used in plastic electronic devices such as solar cells and field-effect transistors. rrP3ATs can be ordered in three dimensions: conformational ordering along the backbone, pi-stacking of flat polymer chains, and lamellar stacking between chains. All of these features lead to the excellent electrical properties of these materials. Creative molecular design and advanced synthesis are critical in controlling the properties of the materials as well as their device performance. This Account reports the advances in molecular design of new functional polythiophenes as well as the associated polymerization methods. Many functionalized regioregular polythiophenes have been designed and synthesized and show fascinating properties such as high conductivity, mobility, chemosensitivity, liquid crystallinity, or chirality. The methods for the synthesis of rrP3ATs are also applicable to other functional side chains. Di- and triblock copolymers consisting of rrP3AT and polyacrylate or polystyrene have also been successfully synthesized, which can facilitate the assembly of the polythiophene segments. The synthesis of rrP3ATs has evolved into a simple and economical system in which the synthesis can be carried out quickly at room temperature and is thus suitable for large-scale manufacturing. Intensive study has revealed that the regioregular polymerization of 3-alkylthiophenes proceeds by a chain-growth mechanism and can be made into a living system. This feature enables precise control of the molecular weight and facile end-group functionalization of the polymer chains, leading to tailor-made regioregular polythiophenes for specific applications. In addition, researchers have recently designed and synthesized regiosymmetric polythiophenesthese are regioregular but not coupled in a head-to-tail fashionby various methods. These reports indicate that these regiosymmetric

  16. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  17. Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor

    PubMed Central

    2016-01-01

    Controlling the excited-state properties of light driven molecular machines is crucial to achieving high efficiency and directed functionality. A key challenge in achieving control lies in unravelling the complex photodynamics and especially in identifying the role played by dark states. Here we use the structure sensitivity and high time resolution of UV-pump/IR-probe spectroscopy to build a detailed and comprehensive model of the structural evolution of light driven molecular rotors. The photodynamics of these chiral overcrowded alkene derivatives are determined by two close-lying excited electronic states. The potential energy landscape of these “bright” and “dark” states gives rise to a broad excited-state electronic absorption band over the entire mid-IR range that is probed for the first time and modeled by quantum mechanical calculations. The transient IR vibrational fingerprints observed in our studies allow for an unambiguous identification of the identity of the “dark” electronic excited state from which the photon’s energy is converted into motion, and thereby pave the way for tuning the quantum yield of future molecular rotors based on this structural motif. PMID:27684513

  18. Controlling the ratchet effect through the symmetries of the systems: application to molecular motors.

    PubMed

    Chacón, Ricardo; Quintero, Niurka R

    2007-04-01

    We discuss a novel generic mechanism for controlling the ratchet effect through the breaking of relevant symmetries. We review previous works on ratchets where directed transport is induced by the breaking of standard temporal symmetries f(t)=-f(t+T/2) and f(t)=f(-t) (or f(t)=-f(-t)). We find that in seemingly unrelated systems the average velocity (or the current) of particles (or solitons) exhibits common features. We show that, as a consequence of Curie's symmetry principle, the average velocity (or the current) is related to the breaking of the symmetries of the system. This relationship allows us to control the transport in a systematic way. The qualitative agreement between the present analytical predictions and previous experimental, numerical, and theoretical results leads us to suggest that for the given breaking of the temporal symmetries there is an optimal wave form for a given time-periodic force. Also, we comment on how this mechanism can be applied to the case where a ratchet effect is induced by breaking of spatial symmetries. Finally, we conjecture that the ratchet potential underlying biological motor proteins might be optimized according to the breaking of the relevant symmetries.

  19. Three decades of structure- and property-based molecular design.

    PubMed

    Müller, Klaus

    2014-01-01

    Roche has pioneered structure- and property-based molecular design to drug discovery. While this is an ongoing development, the past three decades feature key events that have revolutionized the way drug discovery is conducted in Big Pharma industry. It has been a great privilege to have been involved in this transformation process, to have been able to collaborate with, direct, guide, or simply encourage outstanding experts in various disciplines to build and further develop what has become a major pillar of modern small-molecule drug discovery. This article is an account of major events that took place since the early decision of Roche to implement computer-assisted molecular modeling 32 years ago and is devoted to the key players involved. It highlights the internal build-up of structural biology, with protein X-ray structure determination at its core, and the early setup of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries. These developments were accompanied by the rise of miniaturized parallel compound property analytics which resulted in a major paradigm shift in medicinal chemistry from linear to multi-dimensional lead optimization. The rapid growth of huge collections of property data stimulated the development of various novel data mining concepts with 'matched molecular pair' analysis and novel variants thereof playing crucial roles. As compound properties got more prominent in molecular design, exploration of specific structural motifs for property modulation became a research activity complementary to target-oriented medicinal chemistry. The exploration of oxetane is given as an example. For the sake of brevity, this account cannot detail all further developments that have taken place in each individual area of

  20. Minimization of cogging torque in permanent magnet motors by teeth pairing and magnet arc design using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Eom, Jae-Boo; Hwang, Sang-Moon; Kim, Tae-Jong; Jeong, Weui-Bong; Kang, Beom-Soo

    2001-05-01

    Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method with Fourier series expansion. It shows that cogging torque is effectively minimized by controlling airgap permeance function with teeth pairing design, and by controlling flux density function with magnet arc design. For an optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively.

  1. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    SciTech Connect

    Shishido, Hideki; Maruta, Shinsaku

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  2. Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin

    PubMed Central

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D.

    2008-01-01

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  3. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    PubMed

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  4. Analysis of a new PM motor design for a rotary dynamic blood Pump.

    PubMed

    Xu, L; Wang, F; Fu, M; Medvedev, A; Smith, W A; Golding, L A

    1997-01-01

    The permanent magnet (PM) motor for a rotary dynamic blood pump requires high power density to coordinate the motor size with the limited pump space and high efficiency to reduce the size and weight of the associated batteries. The motor also serves as a passive axial magnetic thrust bearing, a reacting hydraulic force, and provides a stabilizing force for the radial journal bearing. This article presents analysis of a new PM motor for the blood pump application. High power density is achieved by using the Halbach magnetic array, and high efficiency is accomplished by optimizing the rotor magnet assembly and the stator slots/windings. While both radial and axial forces are greatly enhanced, pulsating components of the torque and force are also significantly reduced.

  5. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  6. Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing.

    PubMed

    Seifert, Ludovic; Boulanger, Jérémie; Orth, Dominic; Davids, Keith

    2015-01-01

    This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded

  7. Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing

    PubMed Central

    Seifert, Ludovic; Boulanger, Jérémie; Orth, Dominic; Davids, Keith

    2015-01-01

    This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded

  8. Molecular design for moisture insensitivity of compositionally graded hybrid films.

    PubMed

    Giachino, Marta; Dubois, Geraud; Dauskardt, Reinhold H

    2015-04-01

    Effective bonding of organic/inorganic interfaces especially in high humidity environments is paramount to the structural reliability of modern multilayer device technologies, such as flexible electronics, photovoltaics, microelectronic devices, and fiber-metal laminates used in aerospace applications. We demonstrate the ability to design compositionally graded hybrid organic/inorganic films with an inorganic zirconium network capable of forming a moisture-insensitive bond at the interface between an oxide and organic material. By controlling the chemistry of the deposited films and utilizing time-dependent debonding studies, we were able to correlate the behavior of the hybrid films at high humidity to their underlying molecular structure. As a result, an outstanding threefold improvement in adhesion of silicon/epoxy interfaces can be obtained with the introduction of these films even in high humidity environments.

  9. M(o)TOR of aging: MTOR as a universal molecular hypothalamus.

    PubMed

    Blagosklonny, Mikhail V

    2013-07-01

    A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.

  10. Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR

    PubMed Central

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Schiemann, Olav; Naismith, James H.; White, Malcolm F.

    2016-01-01

    The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function. PMID:26657627

  11. From molecular chaperones to membrane motors: through the lens of a mass spectrometrist

    PubMed Central

    2017-01-01

    Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions. PMID:28202679

  12. Quantitative Analysis of the Feedback of the Robust Signaling Pathway Network of Myosin V Molecular Motors on GluR1 of AMPA in Neurons: A Networking Approach for Controlling Nanobiomachines

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qin; Nakano, Tadashi

    Acting as nanobiomachines within the cell, myosin V molecular motors contribute greatly to the LTP (Long Term Potentiation) in neural signaling, which transport the recycling endosomes from the dendrite to the spine of neurons and the GluR1 in AMPA receptors lead to the activities of memorization in brains. However it is unknown that how the restriction of GluR1 at the spine of neuron is caused by the signaling cascade of myosin V and Rab11/Rab11-FIP2 during the myosin V centered signaling process in neurons. Here we report that the feedback of the biochemical reaction for binding Myosin V and Rab11/Rab11-FIP2 plays a pivotal role to restrict the accumulation of GluR1 at the spine. We have investigated the feedback of myosin V and Rab11/Rab11-FIP2 on the convergence of GluR1 by using the computational model of intracellular signaling pathway networks we designed and the simulation software Cell Illustrator Professional Version 3.0 ®. The obtained results show that controllability of molecular motor based nanobiomachines is inevitable for exploring the molecular mechanism of neuroscience at the nanoscale.

  13. Bayesian molecular design with a chemical language model.

    PubMed

    Ikebata, Hisaki; Hongo, Kenta; Isomura, Tetsu; Maezono, Ryo; Yoshida, Ryo

    2017-03-09

    The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.

  14. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  15. Bayesian molecular design with a chemical language model

    NASA Astrophysics Data System (ADS)

    Ikebata, Hisaki; Hongo, Kenta; Isomura, Tetsu; Maezono, Ryo; Yoshida, Ryo

    2017-03-01

    The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.

  16. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  17. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    PubMed

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.

  18. Design of ferroelectric organic molecular crystals with ultrahigh polarization.

    PubMed

    Chen, Shuang; Zeng, Xiao Cheng

    2014-04-30

    Inspired by recent successful synthesis of room-temperature ferroelectric supramolecular charge-transfer complexes, i.e., tetrathiafulvalene (TTF)- and pyromellitic diimide (PMDI)-based crystals (Tayi et al. Nature 2012, 488, 485-489), three new ferroelectric two-component organic molecular crystals are designed based on the TTF and PMDI motifs and an extensive polymorph search. To achieve energetically favorable packing structures for the crystals, a newly developed computational approach that combines polymorph predictor with density functional theory (DFT) geometry optimization is employed. Tens of thousands of packing structures for the TTF- and PMDI-based crystals are first generated based on the limited number of asymmetric units in a unit cell as well as limited common symmetry groups for organocarbon crystals. Subsequent filtering of these packing structures by comparing with the reference structures yields dozens of promising crystal structures. Further DFT optimizations allow us to identify several highly stable packing structures that possess the space group of P2₁ as well as high to ultrahigh spontaneous polarizations (23-127 μC/cm(2)) along the crystallographic b axis. These values are either comparable to or much higher than the computed value (25 μC/cm(2)) or measured value (55 μC/cm(2)) for the state-of-the-art organic supramolecular systems. The high polarization arises from the ionic displacement. We further construct surface models to derive the electric-field-switched low-symmetry structures of new TTF- and PMDI-based crystals. By comparing the high-symmetry and low-symmetry crystal structures, we find that the ferroelectric polarization of the crystals is very sensitive to atomic positions, and a small molecular displacement may result in relatively high polarizations along the a and c axes, polarity reversal, and/or electronic contribution to polarization. If these newly designed TTF- and PMDI-based crystals with high polarizations are

  19. Multiscale modeling for materials design: Molecular square catalysts

    NASA Astrophysics Data System (ADS)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  20. Molecular Genetic Analysis of Survival Motor Neuron Gene in 460 Turkish Cases with Suspicious Spinal Muscular Atrophy Disease

    PubMed Central

    RASHNONEJAD, Afrooz; ONAY, Huseyin; ATIK, Tahir; ATAN SAHIN, Ozlem; GOKBEN, Sarenur; TEKGUL, Hasan; OZKINAY, Ferda

    2016-01-01

    Objective To describe 12 yr experience of molecular genetic diagnosis of Spinal Muscular Atrophy (SMA) in 460 cases of Turkish patients. Materials & Methods A retrospective analysis was performed on data from 460 cases, referred to Medical Genetics Laboratory, Ege University’s Hospital, Izmir, Turkey, prediagnosed as SMA or with family history of SMA between 2003 and 2014. The PCR-restriction fragment length polymorphism (RFLP) and the Multiplex ligation–dependent probe amplification (MLPA) analysis were performed to detect the survival motor neuron (SMN)1 deletions and to estimate SMN1 and SMN2 gene copy numbers. Results Using PCR-RFLP test, 159 of 324 postnatal and 18 of 77 prenatal cases were detected to have SMN1 deletions. From positive samples, 88.13% had a homozygous deletion in both exon 7 and exon 8 of SMN1. Using MLPA, 54.5% of families revealed heterozygous deletions of SMN1, and 2 or 3 copies of SMN2, suggesting a healthy SMA carrier. Among patients referred for SMA testing, the annual percentage of patients diagnosed as SMA has decreased gradually from 90.62% (2003) down to 20.83% (2014). Conclusion Although PCR-RFLP method is a reliable test for SMA screening, MLPA is a necessary additional test and provide relevant data for genetic counseling of families having previously affected child. The gradual decrease in the percentage of patients molecularly diagnosed as SMA shows that clinicians have begun to use genetic tests in the differential diagnosis of muscular atrophies. Cost and availability of these genetic tests has greatly attributed to their use. PMID:27843464

  1. Synthesis of molecular motors incorporating para-phenylene-conjugated or bicyclo[2.2.2]octane-insulated electroactive groups.

    PubMed

    Vives, Guillaume; Gonzalez, Alexandre; Jaud, Joël; Launay, Jean-Pierre; Rapenne, Gwénaël

    2007-01-01

    The insulating role of the bicyclo[2.2.2]octane fragment has been theoretically evaluated by comparing the electronic coupling parameter (V(ab)) in 1,4-bis(ferrocenyl)benzene (1) and 1,4-bis(ferrocenyl)bicyclo[2.2.2]octane (2). The geometries were optimized by DFT and an extended Hückel calculation was performed to evaluate V(ab) by the dimer splitting method. The calculations showed a 12-fold decrease of the electronic coupling from 60 meV for 1 to 5 meV for 2. The second part describes the synthesis of two potential molecular motors with one incorporating the insulating bicyclo[2.2.2]octane fragment. These molecules are based on a ruthenium complex bearing a tripodal stator functionalized to be anchored onto surfaces. The ferrocenyl electroactive groups and the cyclopentadienyl (Cp) rotor are connected through a p-phenylene spacer (5) or through a spacer incorporating an insulating bicyclo[2.2.2]octane moiety (6).

  2. Elasticity of a semiflexible filament with a discontinuous tension due to a cross-link or a molecular motor

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2016-05-01

    We analyze the stretching elasticity of a wormlike chain with a tension discontinuity resulting from a Hookean spring connecting its backbone to a fixed point. The elasticity of isolated semiflexible filaments has been the subject in a significant body of literature, primarily because of its relevance to the mechanics of biological matter. In real systems, however, these filaments are usually part of supramolecular structures involving cross-linkers or molecular motors, which cause tension discontinuities. Our model is intended as a minimal structural element incorporating such a discontinuity. We obtain analytical results in the weakly bending limit of the filament, concerning its force-extension relation and the response of the two parts in which the filament is divided by the spring. For a small tension discontinuity, the linear response of the filament extension to this discontinuity strongly depends on the external tension. For large external tension f , the spring force contributes a subdominant correction ˜1 /f3 /2 to the well-known ˜1 /√{f } -dependence of the end-to-end extension.

  3. Design of direct drive robot using indigenously developed d.c. torque motors

    NASA Astrophysics Data System (ADS)

    Athani, Vithal V.

    The range of high-performance torque motors, which were indigenously developed for use in multistage satellite launch vehicles, is described. The main features that set dc torque motors apart from dc servomotors are: high peak torque, power, and current over short periods of operation, low speed of operation, obviating the need for gearing, high torque/inertia and torque/weight ratios, and high figure of merit = torque/sq rt watt ratio. The dc torque motors are eminently suited to high-performance applications requiring high torque at low speed of operation, such as aircraft and missile control surface actuation, control of multistage satellite launch vehicles, certain computer peripherals like magnetic tape transports and hard disk drives, and robotics, CNC systems, and machine tool control.

  4. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning

    PubMed Central

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects’ performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android’s hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training. PMID:27598310

  5. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  6. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  7. Design and Assembly of an Ultra-light Motorized Microdrive for Chronic Neural Recordings in Small Animals

    PubMed Central

    Otchy, Timothy M.; Ӧlveczky, Bence P.

    2012-01-01

    The ability to chronically record from populations of neurons in freely behaving animals has proven an invaluable tool for dissecting the function of neural circuits underlying a variety of natural behaviors, including navigation1 , decision making 2,3, and the generation of complex motor sequences4,5,6. Advances in precision machining has allowed for the fabrication of light-weight devices suitable for chronic recordings in small animals, such as mice and songbirds. The ability to adjust the electrode position with small remotely controlled motors has further increased the recording yield in various behavioral contexts by reducing animal handling.6,7 Here we describe a protocol to build an ultra-light motorized microdrive for long-term chronic recordings in small animals. Our design evolved from an earlier published version7, and has been adapted for ease-of use and cost-effectiveness to be more practical and accessible to a wide array of researchers. This proven design 8,9,10,11 allows for fine, remote positioning of electrodes over a range of ~ 5 mm and weighs less than 750 mg when fully assembled. We present the complete protocol for how to build and assemble these drives, including 3D CAD drawings for all custom microdrive components. PMID:23169237

  8. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  9. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  10. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    PubMed

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  11. Molecular Modeling in Drug Design for the Development of Organophosphorus Antidotes/Prophylactics.

    DTIC Science & Technology

    1986-06-01

    R176 274 MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT 1/1OF ORGANOPI4OSPHORUS (U) AMERICA CYANAMID CO PEARL RIVER NY LEDERLE LAOS DIV R...MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELO ’"ENT OF ORGANOPHOSPHORUS ANTIDOTES/PROPHYLACTICS Final Report R. Venkataraghavan, Ph.D. June 1, 1986 I...Security Classification) (U) .Molecular Modeling in Drug Design for the Development of Organophosphorus Antidotes/Prophylactics 12 PERSONAL AUTHOR(S) R

  12. Molecular Modeling in Drug Design for the Development of Organophosphorous Antidotes/Prophylactics

    DTIC Science & Technology

    1986-05-01

    5012 61102A 1102BS11 EB 025 11. TITLE (Include Security Classification) Molecular Modeling in Drug Design for the Development of Organophosphorous...t ....................................., ’ i.° AD MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT OF ORGANOPHOSPHOROUS ANTIDOTES...Reed, W.J. Murray, E.B. Roche and L.N. Donelsmith, Gen. Pharmac., 12, 177-185 (1981). 5. L.B.Kier, "Molecular Orbital Theory in Drug Design ", Academic

  13. Motor Activity Programs Designed for Teaching Supportive Personnel in Physical Therapy. Final Report.

    ERIC Educational Resources Information Center

    McDaniel, Lucy V.; And Others

    A study developed a format for the programed instruction of various physical therapy skills to paramedical personnel. Principles of motor learning and programed instruction served as a guide. An effective first practice and several formats for a second practice evolved. Mandatory second practice with a branching format that allowed students to…

  14. Design and experiments of a linear piezoelectric motor driven by a single mode

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei

    2016-11-01

    In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.

  15. Design and experiments of a linear piezoelectric motor driven by a single mode.

    PubMed

    Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei

    2016-11-01

    In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.

  16. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  17. Sample solution constraints on motor-driven diagnostic nanodevices.

    PubMed

    Korten, Slobodanka; Albet-Torres, Nuria; Paderi, Francesca; ten Siethoff, Lasse; Diez, Stefan; Korten, Till; te Kronnie, Geertruy; Månsson, Alf

    2013-03-07

    The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic work-up, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications.

  18. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality.

    PubMed

    Kitagawa, Daichi; Kobatake, Seiya

    2016-08-01

    Thermal reactivities of photochromic diarylethene closed-ring isomers can be controlled by the introduction of substituents at the reactive positions. Diarylethenes having bulky alkyl groups undergo thermal cycloreversion reactions. When bulky alkoxy groups are introduced, the diarylethenes have both thermal cycloreversion reactivities and low photocycloreversion quantum yields. Such photochromic compounds can be applied to thermally reusable photoresponsive-image recordings. The thermal cycloreversion reactivity of the closed-ring isomers can be evaluated using specific steric substituent constants and be correlated with the parameters. By introduction of trimethylsilyl or methoxymethyl groups at the reactive positions, the diarylethene closed-ring isomers undergo thermal irreversible reactions to produce by-products at high temperatures. These diarylethenes may be useful for secret-image recordings. Furthermore, thiophene-S,S-dioxidized diarylethenes having secondary alkyl groups at the reactive positions undergo thermal by-product formation reactions, in addition to the photostability of the colored closed-ring isomers. Such materials may be used for light-starting thermosensors. The thermal by-product formation reactivity can be evaluated by the specific substituent constants and theoretical calculations of quantum chemistry. These results supply the strategy for the molecular design of the photochromic diarylethenes having thermal functionality.

  19. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  20. Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

    NASA Astrophysics Data System (ADS)

    Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.

    2015-12-01

    One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.

  1. Application of Two-Phase CFD to the Design and Analysis of a Subscale Motor Experiment to Evaluate Propellant Slag Production

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.

    1996-01-01

    The redesigned solid rocket motor (RSRM) Pressure Perturbation Investigation Team concluded that the cause of recent pressure spikes during both static and flight motor burns was the expulsion of molten aluminum oxide slag from a pool which collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes which may relate to subtle differences in propellant ingredient characteristics such as particle size distribution, contaminants, or processing variations. In order to determine the effect of suspect propellant ingredient characteristics on the propensity for slag production in a real motor environment, a subscale motor experiment was designed. An existing 5 inch ballistic test motor was selected as the basic test vehicle due to low cost and quick turn around times. The standard converging/diverging nozzle was replaced with a submerged nozzle nose design to provide a positive trap for the slag which would increase both the quantity and repeatability of measured slag weights. Computational fluid dynamics (CFD) was used to assess a variety of submerged nose configurations to identify the design which possessed the best capability to reliably collect slag. CFD also was used to assure that the final selected nozzle design would result in flow field characteristics such as dividing streamline location, nose attach point, and separated flow structure which would have similtude with the RSRM submerged nozzle nose flow field. It also was decided to spin the 5 inch motor about its longitudinal axis to further enhance slag collection quantities. Again, CFD was used to select an appropriate spin rate along with other considerations, including the avoidance of burn rate enhancement from radial acceleration effects.

  2. Plasma motor/generator reference system designs for power and propulsion

    NASA Technical Reports Server (NTRS)

    Mccoy, James E.

    1987-01-01

    Four Plasma Motor/Generator (PMG) Reference Systems, hollow cathode-based versions of the electrodynamic tether concept which are to be used in study and analysis of future propulsion and power applications, are discussed. These systems are equally applicable for use as electric generators to provide power to a spacecraft or as electric motors using power from the spacecraft. Operating at relatively high current and low voltage, the PMGs avoid requirements for technological advances to handle very high voltages. Permanent deployment with passive I x B control of tether dynamics eliminates the complexity and weight of a TSS style tether reel. A 20 kW PMG uses 10 km of number two aluminum wire, weighs 1200 kg, and has an electrical efficiency of 93 percent. A larger 200 kW system uses 20 km of number 00 aluminum wire, weighs 4200 kg, and operates at 87 percent efficiency.

  3. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors.

    PubMed

    Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D

    2016-12-02

    The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.

  4. Optimal Design of Rotary-Type Voice Coil Motor Using Multisegmented Magnet Array for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Gweon, Dae-Gab

    2007-05-01

    For a small form factor optical disk drive (SFFODD), a high-performance actuator satisfying the requirements for small size, high speed, and low-power consumption simultaneously is required. In this paper, we propose a rotary-type voice coil motor (VCM) using a multisegmented magnet array (MSMA) for the SFFODD. The VCM is designed to move the entire system including miniaturized optical components, which are necessary in reading and writing data. To increase the actuating force of the VCM, the MSMA, a novel magnetic circuit, is adopted because it can provide a higher flux density than a conventional magnet array in the rotary-type VCM. To obtain the best performance from the VCM in the limit of actuator size, design optimization is performed. The manufactured actuator with optimally designed parameters is described and the potential performance of track seeking is evaluated and presented.

  5. Combining docking and molecular dynamic simulations in drug design.

    PubMed

    Alonso, Hernán; Bliznyuk, Andrey A; Gready, Jill E

    2006-09-01

    A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.

  6. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  7. Molecular Motor MYO1C, Acetyltransferase KAT6B and Osteogenetic Transcription Factor RUNX2 Expression in Human Masseter Muscle Contributes to Development of Malocclusion

    PubMed Central

    Desh, Heather; Gray, S Lauren; Horton, Michael J; Raoul, Gwenael; Rowlerson, Anthea M; Ferri, Joel; Vieira, Alexandre R; Sciote, James J

    2014-01-01

    Objective Type I myosins are molecular motors necessary for glucose transport in the cytoplasm and initiation of transcription in the nucleus. Two of these, MYO1H and MYO1C, are paralogs which may be important in the development of malocclusion. The objective of this study was to investigate their gene expression in the masseter muscle of malocclusion subjects. Two functionally related proteins known to contribute to malocclusion were also investigated: KAT6B (a chromatin remodeling epigenetic enzyme which is activated by MYO1C) and RUNX2 (a transcription factor regulating osteogenesis which is activated by KAT6B). Design Masseter muscle samples and malocclusion classifications were obtained from orthognathic surgery subjects. Muscle was sectioned and immunostained to determine fiber type properties. RNA was isolated from the remaining sample to determine expression levels for the four genes by TaqMan® RT-PCR. Fiber type properties, gene expression quantities and malocclusion classification were compared. Results There were very significant associations (P<0.0000001) between MYO1C and KAT6B expressions. There were also significant associations (P<0.005) between RUNX2 expression and masseter muscle type II fiber properties. Very few significant associations were identified between MYO1C and masseter muscle fiber type properties. Conclusions The relationship between MYO1C and KAT6B suggests that the two are interacting in chromatin remodeling for gene expression. This is the nuclear myosin1 (NM1) function of MYO1C. A surprising finding is the relationship between RUNX2 and type II masseter muscle fibers, since RUNX2 expression in mature muscle was previously unknown. Further investigations are necessary to elucidate the role of RUNX2 in adult masseter muscle. PMID:24698832

  8. Molecular-level Design of Heterogeneous Chiral Catalysts

    SciTech Connect

    Gellman, Andrew John; Sholl, David S.; Tysoe, Wilfred T.; Zaera, Francisco

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  9. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  10. Theoretical principles for designing long stator/linear motors with iron

    NASA Astrophysics Data System (ADS)

    Hellinger, Rolf

    Elements for dimensioning synchronous linear motors for rail transportation are presented. A calculation analytic method was developed, which is based on the introduction of the specific magnetic conductance function, which takes into account the influence of stator and excitation windings. Electromotive and inertia forces were estimated with the stator current function and the magnetic air gap flux density and the results were verified using the finite element method for solving Maxwell equations. The short circuit currents in the stator winding were evaluated by means of calculated inductivities. Some perturbations, such as sliding and oscillation forces were calculated. Some results were validated on the TRANSRAPID test vehicle.

  11. The Design of Molecular Hosts, Guests, and Their Complexes.

    ERIC Educational Resources Information Center

    Cram, Donald J.

    1988-01-01

    Describes the origins, definitions, tools, and principles of host-guest chemistry. Gives examples of chiral recognition in complexation, of partial transacylase mimics, of caviplexes, and of a synthetic molecular cell. (Author/RT)

  12. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  13. Piezoelectric ultrasonic motors

    SciTech Connect

    Wallaschek, J.

    1994-12-31

    Piezoelectric ultrasonic motors are a new type of actuator. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. They also provide a high holding torque even if no power is applied. Compared to electromagnetic actuators the torque per volume ratio of piezoelectric ultrasonic motors can be higher by an order of magnitude. Recently various types of piezoelectric ultrasonic motors have been developed for industrial applications. This paper describes several types of piezoelectric ultrasonic motors.

  14. The Molecular Design of High-Performance Carbon Materials

    DTIC Science & Technology

    2008-06-30

    with respect to molecular weight, with the dominant species present being methylated derivatives of the polycyclic aromatic hydrocarbons ( PAH ...carbon products. 3. Synthesize pure alkylated polycyclic aromatic hydrocarbons ( PAHs ) with molecular weights (mol wts) in the range of 300-2000. These...response of matrix-assisted, laser desorption ionization time-of- flight mass spectrometry (MALDI-TOF-MS) to alkylated PAH compounds. 4. With MALDI

  15. Molecular-Level Design of Heterogeneous Chiral Catalysis

    SciTech Connect

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  16. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  17. Novel designed enediynes: molecular design, chemical synthesis, mode of cycloaromatization and guanine-specific DNA cleavage.

    PubMed

    Toshima, K; Ohta, K; Kano, T; Nakamura, T; Nakata, M; Kinoshita, M; Matsumura, S

    1996-01-01

    The molecular design and chemical synthesis of novel enediyne molecules related to the neocarzinostatin chromophore (1), and their chemical and DNA cleaving properties are described. The 10-membered enediyne triols 16-18 were effectively synthesized from xylitol (10) in a short step, and found to be quite stable when handled at room temperature. The representative and acylated enediyne 16 was cycloaromatized by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in cyclohexa-1,4-diene-benzene to give the benzenoid product 21 through a radical pathway. On the other hand, the enediyne 16 was cycloaromatized by diethylamine in dimethyl sulfoxide-Tris-HCl, pH 8.5 buffer to afford another benzenoid product 22 as a diethylamine adduct through a polar pathway. Furthermore, the enediynes 16-18 were found to exhibit guanine-specific DNA cleavage under weakly basic conditions with no additive.

  18. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  19. A Novel Data System for Verification of Internal Parameters of Motor Design

    NASA Technical Reports Server (NTRS)

    Smith, Doug; Saint Jean, Paul; Everton, Randy; Uresk, Bonnie

    2003-01-01

    Three major obstacles have limited the amount of information that can be obtained from inside an operating solid rocket motor. The first is a safety issue due to the presence of live propellant interacting with classical, electrical instrumentation. The second is a pressure vessel feed through risk arising from bringing a large number of wires through the rocket motor wall safely. The third is an attachment/protection issue associated with connecting gages to live propellant. Thiokol has developed a highly miniaturized, networked, electrically isolated data system that has safely delivered information from classical, electrical instrumentation (even on the burning propellant surface) to the outside world. This system requires only four wires to deliver 80 channels of data at 2300 samples/second/channel. The feed through leak path risk is massively reduced from the current situation where each gage requires at least three pressure vessel wire penetrations. The external electrical isolation of the system is better than that of the propellant itself. This paper describes the new system.

  20. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  1. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  2. Molecular Modeling in Drug Design for the Development of Organophosphorus Antidotes/Prophylactics.

    DTIC Science & Technology

    1985-04-30

    o-A179 W1? MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT 1/1 OF ORGANOPHOSPHORUS RNTIDOTES/PROPHYLACTICS(U) ARIZONA UNIV TUCSON DEPT OF...IESI CHART -- K . Kw" % - -,"--. AD__ Molecular Modeling in Drug Design for the 0Development of Organophosphorus Antidotes/Prophylactics Annual Report...in Drug Design for the Development of Organophosphorus Antidotes/ Prohvlactics 12. PERSONAL AUTHOR(S) Wah Chiu, Ph.D. 13a. TYPE OF REPORT 13b. TIME

  3. Molecular design of electron transport with orbital rule: toward conductance-decay free molecular junctions.

    PubMed

    Tada, Tomofumi; Yoshizawa, Kazunari

    2015-12-28

    In this study, we report our viewpoint of single molecular conductance in terms of frontier orbitals. The orbital rule derived from orbital phase and amplitude is a powerful guideline for the qualitative understanding of molecular conductance in both theoretical and experimental studies. The essence of the orbital rule is the phase-related quantum interference, and on the basis of this rule a constructive or destructive pathway for electron transport is easily predicted. We have worked on the construction of the orbital rule for more than ten years and recently found from its application that π-stacked molecular junctions fabricated experimentally are in line with the concept for conductance-decay free junctions. We explain the orbital rule using benzene molecular junctions with the para-, meta- and ortho-connections and discuss linear π-conjugated chains and π-stacked molecular junctions with respect to their small decay factors in this manuscript.

  4. Piezoceramic Ultrasonic Motor Technology

    SciTech Connect

    Burden, J.S.

    1999-02-24

    The objective of this project was to team Aerotech and AlliedSignal FM and T (AS) to develop a cost-efficient process for small-batch, high performance PZT motor production. Aerotech would acquire the basic process expertise in motor fabrication, assembly, and testing from AS. Together, Aerotech and AS were to identify appropriate process improvements, focusing on raw material quality, manufacturing processes, and durability assessment. Aerotech would then design and build a motor in consultation with AS. Aerotech engineering observed motor manufacturing in the AS piezo lab and worked side by side with AS personnel to build and test a prototype motor to facilitate learning the technology. Using information from AS and hands-on experience with the AS motor drive system enabled Aerotech to design and build its own laboratory drive system to operate motors. The team compiled information to establish a potential piezo motor users' list, and an intellectual property search was conducted to understand current patent and IP (intellectual property) status of motor design. Work was initiated to identify and develop an American source for piezo motor elements; however, due to manpower restraints created by the resignation of the AS Ph.D. ceramist responsible for these tasks, the project schedule slipped. The project was subsequently terminated before significant activities were accomplished. AS did, however, provide Aerotech with contacts in Japanese industry that are willing and capable of supplying them with special design motor elements.

  5. Optimum design criteria for a synchronous reluctance motor with concentrated winding using response surface methodology

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ho; Park, Seong-June; Jeon, Su-Jin

    2006-04-01

    This paper presents an optimization procedure using response surface methodology (RSM) to determine design parameters for reducing torque ripple. The RSM has been achieved to use the experimental design method in combination with finite element method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables.

  6. High-Density EMI Filter Design for DC-Fed Motor Drives

    SciTech Connect

    Lai, Rixin; Maillet, Yoann; Wang, Shuo; Wang, Fei; Burgos, Rolando; Boroyevich, Dushan

    2010-01-01

    This paper presents strategies to reduce both differential-mode (DM) and common-mode (CM) noise using a passive filter in a dc-fed motor drive. The paper concentrates on the type of grounding and the components to optimize filter size and performance. Grounding schemes, material comparison between ferrite and nanocrystalline cores, and a new integrated filter structure are presented. The integrated structure maximizes the core window area and increases the leakage inductance by integrating both CM and DM inductances onto one core. Small-signal and large-signal experiments validate the structure, showing it to have reduced filter size and good filtering performance when compared with standard filters at both low and high frequencies.

  7. Design and implementation of an acquisition system for the photo-motor response of the iris.

    PubMed

    Lopez, C; Chumbimuni, R; Bosnjak, A; Villanueva, C; Eblen-Zajjur, A

    2007-01-01

    This paper presents a new development of an automated system for: stimulation, acquisition and the pupilar image processing (it includes segmentation and visualization in real time), issued from the fhoto-motor and consensual response of the iris. The physician can observe in the system interface: a graphic representation of the variation and change of speed of diameter and pupilar area as a function of time, from both pupils. In addition the magnitudes of clinical parameters, such as: the largest and smaller pupilar diameter, the maximum and minimum pupilar area, the eccentricity of each pupil, jointly with the inter pupilar distance. These data have a great interest for diagnosis and evaluation of lesions or illnesses of the central nervous system [1], which constitute the third cause of death in Venezuela during the last five years [2]. However, in Venezuela, specialists do not have a system for quantifying the clinical parameters, neither carry out the graphic representations of these important parameters.

  8. Pulsatile operation of the BiVACOR TAH - Motor design, control and hemodynamics.

    PubMed

    Kleinheyer, Matthias; Timms, Daniel L; Greatrex, Nicholas A; Masuzawa, Toru; Frazier, O Howard; Cohn, William E

    2014-01-01

    Although there is limited consensus about the strict requirement to deliver pulsatile perfusion to the human circulatory system, speed modulation of rotary blood pumps is an approach that may capture the benefits of both positive displacement and continuous flow blood pumps. In the current stage of development of the BiVACOR Total Artificial Heart emphasis is placed on providing pulsatile outflow from the pump. Multiple pulsatile speed profiles have been applied in preliminary in-vivo operation in order to assess the capability of the TAH to recreate a physiologic pulse. This paper provides an overview about recent research towards pulsatile BiVACOR operation with special emphasis on motor and control requirements and developments.

  9. Algebraic dual-energy magnetic analysis with application to variable reluctance motor design

    SciTech Connect

    Tolikas, M.; Lang, J.H.; Kirtley, J.L. Jr.

    1995-12-31

    The dual-energy method has been successfully employed in the calculation of static resistances, capacitances and inductances, yielding fast and accurate solutions. Two different directions can be followed in applying the method, one is the more widely known method of tubes and slices, the other is the algebraic approach and is explored further in this paper. The present literature on the algebraic dual-energy method involves trivial examples with boundaries, boundary conditions and source distributions that are easily handled. However, the geometry of the variable reluctance motor at the unaligned position, the dominating curvatures characterizing its electromagnetic field distribution and the presence of a large number of boundary conditions arising at the steel boundaries, provide a challenging exercise in the application, behavior and effectiveness of the dual-energy method in a realistic framework.

  10. Design and Evaluation of an Actuated Exoskeleton for Examining Motor Control in Stroke Thumb

    PubMed Central

    Wang, Furui; Jones, Christopher L.; Shastri, Milind; Qian, Kai; Kamper, Derek G.; Sarkar, Nilanjan

    2016-01-01

    Chronic hand impairment is common following stroke. This paper presents an actuated thumb exoskeleton (ATX) to facilitate research in examining motor control and hand rehabilitation. The ATX presented in this work aims to provide independent bi-directional actuation in each of the 5 degrees-of-freedom (DOF) of the thumb using a novel flexible shaft based mechanism that has 5 active DOF and 3 passive DOF. A prototype has been built and experiments have been conducted to measure the allowable workspace at the thumb and evaluate the kinematic and kinetic performance of the ATX. The experimental results show that the ATX is able to provide individual actuation at all 5 thumb joints with high joint velocity and torque capacities. Further improvement and future work are discussed. PMID:27672232

  11. Molecular Modeling in Drug Design for the Development of Organophosphorus Antidotes/Prophylactics.

    DTIC Science & Technology

    1985-08-01

    M -ftft 712 MOLECULAR MODELING IN DRUG DESIGN FOR THE DEELO PAW 1’ JEREYINSTOF TECH NEHUM T BliND RAo maou~ou NTPTvPIWLCCSU ME5 wCLASSIFIED 0fVI17...04-C 4113 FIG 6/15 ML 1.0. IL .- Q, % @I,W W , lVILE GOD2 MOLECULAR MODELING IN DRUG DESIGN FOR THE - ~~DEVELOPMENT OF ORGANOPHOSPHORUS ANTIDOTES...Molecular Modeling in Drug Design for the Development of Organophosphorous% Antidotes/Prophylact ics + 2 PESONL AUTHOR(S) amr Gn Ph.D. 13a. TYPE OF

  12. Design of Linear DC Motor Two-degree-of-freedom Positioning System using Model Reference type Sliding Mode Controller

    NASA Astrophysics Data System (ADS)

    Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki

    One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.

  13. A reconsideration of the link between the energetics of water and of ATP hydrolysis energy in the power strokes of molecular motors in protein structures.

    PubMed

    Widdas, Wilfred F

    2008-09-01

    Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick's work, energetics were revised by Joule's experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration.

  14. A Reconsideration of the Link between the Energetics of Water and of ATP Hydrolysis Energy in the Power Strokes of Molecular Motors in Protein Structures

    PubMed Central

    Widdas, Wilfred F.

    2008-01-01

    Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick’s work, energetics were revised by Joule’s experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration. PMID:19325829

  15. PRO_LIGAND: An approach to de novo molecular design. 1. Application to the design of organic molecules

    NASA Astrophysics Data System (ADS)

    Clark, David E.; Frenkel, David; Levy, Stephen A.; Li, Jin; Murray, Christopher W.; Robson, Barry; Waszkowycz, Bohdan; Westhead, David R.

    1995-02-01

    An approach to de novo molecular design, PRO_LIGAND, has been developed that, in the environment of a large, integrated molecular design and simulation system, provides a unified framework for the generation of novel molecules which are either similar or complementary to a specified target. The approach is based on a methodology that has proved to be effective in other studies-placing molecular fragments upon target interaction sites-but incorporates many novel features such as the use of a rapid graph-theoretical algorithm for fragment placing, a generalised driver for structure generation which offers a large variety of fragment assembly strategies to the user and the pre-screening of library fragments. After a detailed description of the relevant modules of the package, PRO_LIGAND's efficacy in aiding rational drug design is demonstrated by its ability to design mimics of methotrexate and potential inhibitors for dihydrofolate reductase and HIV-1 protease.

  16. Web-based cheminformatics and molecular property prediction tools supporting drug design and development at Novartis.

    PubMed

    Ertl, P; Mühlbacher, J; Rohde, B; Selzer, P

    2003-01-01

    Web-based tools offer many advantages for processing chemical information, most notably ease of use and high interactivity. Therefore more and more pharmaceutical companies are using web technology to deliver sophisticated molecular processing tools directly to the desks of their chemists, to assist them in the process of designing and developing new drugs. In this paper, the web-based cheminformatics system developed at Novartis and currently used by more than thousand users is described. The system allows various molecular modeling and molecular processing tasks, including the calculation of molecular and substituent properties, property-based virtual screening, visualization of molecules, bioisosteric design, diversity analysis, and support of combinatorial chemistry. The methodology to calculate various molecular properties relevant to drug design is described, including the prediction of intestinal absorption, blood-brain barrier penetration, efflux, and water solubility. Information about the web technology used is also provided.

  17. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems.

    PubMed

    Ripoll-Rozada, Jorge; Zunzunegui, Sandra; de la Cruz, Fernando; Arechaga, Ignacio; Cabezón, Elena

    2013-09-01

    Pilus biogenesis and substrate transport by type IV secretion systems require energy, which is provided by three molecular motors localized at the base of the secretion channel. One of these motors, VirB11, belongs to the superfamily of traffic ATPases, which includes members of the type II secretion system and the type IV pilus and archaeal flagellar assembly apparatus. Here, we report the functional interactions between TrwD, the VirB11 homolog of the conjugative plasmid R388, and TrwK and TrwB, the motors involved in pilus biogenesis and DNA transport, respectively. Although these interactions remained standing upon replacement of the traffic ATPase by a homolog from a phylogenetically related conjugative system, namely, TraG of plasmid pKM101, this homolog could not replace the TrwD function for DNA transfer. This result suggests that VirB11 works as a switch between pilus biogenesis and DNA transport and reinforces a mechanistic model in which VirB11 proteins act as traffic ATPases by regulating both events in type IV secretion systems.

  18. Recent advances in the molecular design of synthetic vaccines

    NASA Astrophysics Data System (ADS)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  19. A prospective overview of the essential requirements in molecular modeling for nanomedicine design.

    PubMed

    Kumar, Pradeep; Khan, Riaz A; Choonara, Yahya E; Pillay, Viness

    2013-05-01

    Nanotechnology has presented many new challenges and opportunities in the area of nanomedicine design. The issues related to nanoconjugation, nanosystem-mediated targeted drug delivery, transitional stability of nanovehicles, the integrity of drug transport, drug-delivery mechanisms and chemical structural design require a pre-estimated and determined course of assumptive actions with property and characteristic estimations for optimal nanomedicine design. Molecular modeling in nanomedicine encompasses these pre-estimations and predictions of pertinent design data via interactive computographic software. Recently, an increasing amount of research has been reported where specialized software is being developed and employed in an attempt to bridge the gap between drug discovery, materials science and biology. This review provides an assimilative and concise incursion into the current and future strategies of molecular-modeling applications in nanomedicine design and aims to describe the utilization of molecular models and theoretical-chemistry computographic techniques for expansive nanomedicine design and development.

  20. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.