Sample records for molecular network underlying

  1. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  2. Experimental evolution of protein–protein interaction networks

    PubMed Central

    Kaçar, Betül; Gaucher, Eric A.

    2013-01-01

    The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056

  3. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  4. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network.

    PubMed

    Ramírez, Carlos; Mendoza, Luis

    2018-04-01

    Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.

  5. Topology of molecular interaction networks.

    PubMed

    Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick

    2013-09-16

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

  6. Topology of molecular interaction networks

    PubMed Central

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013

  7. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  8. Elastic and thermal expansion asymmetry in dense molecular materials.

    PubMed

    Burg, Joseph A; Dauskardt, Reinhold H

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  9. Molecular and Genetic Inflammation Networks in Major Human Diseases

    PubMed Central

    Zhao, Yongzhong; Forst, Christian V.; Sayegh, Camil E.; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-01-01

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured most critical inflammation involved molecules, genetic susceptibilities, epigenetic factors, and environmental exposures, our schemata on role of inflammation in complex disease, remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the inflammation molecular and genetic networks underlying major human diseases. In this Review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer Disease, Parkinson disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold a great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervening. PMID:27303926

  10. Network approach towards understanding the crazing in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  11. Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis

    PubMed Central

    Brichta, Lars; Shin, William; Jackson-Lewis, Vernice; Blesa, Javier; Yap, Ee-Lynn; Walker, Zachary; Zhang, Jack; Roussarie, Jean-Pierre; Alvarez, Mariano J.; Califano, Andrea; Przedborski, Serge; Greengard, Paul

    2016-01-01

    For degenerative disorders of the central nervous system, the major obstacle to therapeutic advancement has been the challenge of identifying the key molecular mechanisms underlying neuronal loss. We developed a combinatorial approach including translational profiling and brain regulatory network analysis to search for key determinants of neuronal survival or death. Following the generation of transgenic mice for cell type-specific profiling of midbrain dopaminergic neurons, we established and compared translatome libraries reflecting the molecular signature of these cells at baseline or under degenerative stress. Analysis of these libraries by interrogating a context-specific brain regulatory network led to the identification of a repertoire of intrinsic upstream regulators that drive the dopaminergic stress response. The altered activity of these regulators was not associated with changes in their expression levels. This strategy can be generalized for the elucidation of novel molecular determinants involved in the degeneration of other classes of neurons. PMID:26214373

  12. Informed walks: whispering hints to gene hunters inside networks' jungle.

    PubMed

    Bourdakou, Marilena M; Spyrou, George M

    2017-10-11

    Systemic approaches offer a different point of view on the analysis of several types of molecular associations as well as on the identification of specific gene communities in several cancer types. However, due to lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression networks are widely used instead. Many efforts have been made to exploit the information hidden in these networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types. In this study we present the development of the Informed Walks model based on random walks that incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to suppress the corresponding cancer type through a drug-repurposing pipeline. We have developed a method of gene subnetwork highlighting based on prior knowledge, capable to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing pipelines for a variety of cancer types.

  13. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development.

    PubMed

    Zhang, Chenwang; Gao, Liuze; Xu, Eugene Yujun

    2016-11-01

    Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Learning contextual gene set interaction networks of cancer with condition specificity

    PubMed Central

    2013-01-01

    Background Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to patients. Results In this study, we describe a novel method to discern molecular interactions specific to certain molecular contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions. When compared to an existing approach, the proposed method was much more sensitive in identifying condition-specific interactions even in heterogeneous data set. The results also revealed that network components specific to different types of cancer are related to different biological functions than cancer-generic network components. We found not only the results that are consistent with previous studies, but also new hypotheses on the biological mechanisms specific to certain cancer types that warrant further investigations. Conclusions The analysis on the contextual gene sets and characterization of networks of interaction composed of these sets discovered distinct functional differences underlying various types of cancer. The results show that our method successfully reveals many subtype-specific regions in the identified maps of biological contexts, which well represent biological functions that can be connected to specific subtypes. PMID:23418942

  15. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors

    PubMed Central

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-01-01

    Motivation Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. Results We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. Availability A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm. PMID:21234299

  16. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors.

    PubMed

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-12-12

    Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.

  17. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  18. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  19. Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways

    PubMed Central

    Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki

    2016-01-01

    Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465

  20. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

  1. Supra-molecular networks for CO2 capture

    NASA Astrophysics Data System (ADS)

    Sadowski, Jerzy; Kestell, John

    Utilizing capabilities of low-energy electron microscopy (LEEM) for non-destructive interrogation of the real-time molecular self-assembly, we have investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks can act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc). The electrostatic interactions of CO2 molecules with transition metal ions can be tuned by controlling the type of TM ion and the size of the pore in the host network. We further applied infrared reflection-absorption spectroscopy (IRRAS) to determine of the molecular orientation of the functional groups and the whole molecule in the 2D monolayers of carboxylic acid. The kinetics and mechanism of the CO2 adsorption/desorption on the 2D molecular network, with and without the TM ion doping, have been also investigated. This research used resources of the Center for Functional Nanomaterials, which is the U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  2. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    PubMed Central

    2011-01-01

    Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730

  3. Prioritization of Epilepsy Associated Candidate Genes by Convergent Analysis

    PubMed Central

    Jia, Peilin; Ewers, Jeffrey M.; Zhao, Zhongming

    2011-01-01

    Background Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. Methodology/Principal Findings In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. Conclusions/Significance The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases. PMID:21390307

  4. Prioritization of epilepsy associated candidate genes by convergent analysis.

    PubMed

    Jia, Peilin; Ewers, Jeffrey M; Zhao, Zhongming

    2011-02-24

    Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases.

  5. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    PubMed Central

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951

  6. Astrochemistry at the Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    Kreckel, Holger; Becker, Arno; Blaum, Klaus; Breitenfeldt, Christian; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth; Heber, Oded; Karthein, Jonas; Krantz, Claude; Meyer, Christian; Mishra, Preeti; Novotny, Oldrich; O'Connor, Aodh; Saurabh, Sunny; Schippers, Stefan; Spruck, Kaija; Kumar, S. Sunil; Urbain, Xavier; Vogel, Stephen; von Hahn, Robert; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2017-01-01

    Almost 200 different molecular species have been identified in space, and this number continues to grow steadily. This surprising molecular diversity bears witness to an active reaction network, in which molecular ions are the main drivers of chemistry in the gas phase. To study these reactions under controlled conditions in the laboratory is a major experimental challenge. The new Cryogenic Storage Ring (CSR) that has recently been commissioned at the Max Planck Institute for Nuclear Physics in Heidelberg will serve as an ideal testbed to study cold molecular ions in the gas phase. With residual gas densities of <140 cm-3 and temperatures below 10K, the CSR will allow for merged beams collision studies involving molecular ions, neutral atoms, free electrons and photons under true interstellar conditions.

  7. Mean field analysis of algorithms for scale-free networks in molecular biology

    PubMed Central

    2017-01-01

    The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k−γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks). PMID:29272285

  8. Mean field analysis of algorithms for scale-free networks in molecular biology.

    PubMed

    Konini, S; Janse van Rensburg, E J

    2017-01-01

    The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k-γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks).

  9. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.

    PubMed

    Gilman, Sarah R; Chang, Jonathan; Xu, Bin; Bawa, Tejdeep S; Gogos, Joseph A; Karayiorgou, Maria; Vitkup, Dennis

    2012-12-01

    Despite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling. The genes forming the networks are highly expressed in the brain, with higher brain expression during prenatal development. The identified networks are functionally related to genes previously implicated in schizophrenia, autism and intellectual disability. A comparative analysis of copy number variants associated with autism and schizophrenia suggests that although the molecular networks implicated in these distinct disorders may be related, the mutations associated with each disease are likely to lead, at least on average, to different functional consequences.

  10. Exploring Wound-Healing Genomic Machinery with a Network-Based Approach

    PubMed Central

    Vitali, Francesca; Marini, Simone; Balli, Martina; Grosemans, Hanne; Sampaolesi, Maurilio; Lussier, Yves A.; Cusella De Angelis, Maria Gabriella; Bellazzi, Riccardo

    2017-01-01

    The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets. PMID:28635674

  11. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    PubMed

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas ( e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang ). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses.

  12. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    PubMed Central

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas (e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses. PMID:29403392

  13. A Systems Approach Identifies Networks and Genes Linking Sleep and Stress: Implications for Neuropsychiatric Disorders

    PubMed Central

    Jiang, Peng; Scarpa, Joseph R.; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D.; Hao, Ke; Summa, Keith C.; Yang, He S.; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H.; Turek, Fred W.; Kasarskis, Andrew

    2016-01-01

    SUMMARY Sleep dysfunction and stress susceptibility are co-morbid complex traits, which often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multi-level organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J×A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests the interplay between sleep, stress, and neuropathology emerge from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework to interrogate the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. PMID:25921536

  14. A Systematic Analysis of Candidate Genes Associated with Nicotine Addiction

    PubMed Central

    Liu, Meng; Li, Xia; Fan, Rui; Liu, Xinhua; Wang, Ju

    2015-01-01

    Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms underlying nicotine addiction. PMID:26097843

  15. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  16. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five melanoma cell lines, who exhibit different motility/invasion behavior under the same perturbation experiment of gene Wnt5a. The results of the simulations validate both the steady state levels and the experimental data of the perturbation experiments of all five cell lines. The goal of this study is to answer important questions that link the response of the network to perturbations, as measured by the experiments, to its structure, i.e., connectivity. Answers to these questions shed novel insights on the structure of networks and how they react to perturbations.

  17. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  18. Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, O.; Bausch, A. R.

    2007-10-01

    The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.

  19. The graph neural network model.

    PubMed

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.

  20. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury.

    PubMed

    van Niekerk, Erna A; Tuszynski, Mark H; Lu, Paul; Dulin, Jennifer N

    2016-02-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Stacking the odds for Golgi cisternal maturation

    PubMed Central

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI: http://dx.doi.org/10.7554/eLife.16231.001 PMID:27542195

  2. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  3. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  4. Molecular Regulation of Lumen Morphogenesis Review

    PubMed Central

    Datta, Anirban; Bryant, David M.; Mostov, Keith E.

    2013-01-01

    The asymmetric polarization of cells allows specialized functions to be performed at discrete subcellular locales. Spatiotemporal coordination of polarization between groups of cells allowed the evolution of metazoa. For instance, coordinated apical-basal polarization of epithelial and endothelial cells allows transport of nutrients and metabolites across cell barriers and tissue microenvironments. The defining feature of such tissues is the presence of a central, interconnected luminal network. Although tubular networks are present in seemingly different organ systems, such as the kidney, lung, and blood vessels, common underlying principles govern their formation. Recent studies using in vivo and in vitro models of lumen formation have shed new light on the molecular networks regulating this fundamental process. We here discuss progress in understanding common design principles underpinning de novo lumen formation and expansion. PMID:21300279

  5. Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.

    PubMed

    Miannay, Bertrand; Minvielle, Stéphane; Magrangeas, Florence; Guziolowski, Carito

    2018-03-21

    The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles.

  6. Direct Imaging of Lipid-Ion Network Formation under Physiological Conditions by Frequency Modulation Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.

    2007-03-01

    Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.

  7. The Biomolecular Interaction Network Database and related tools 2005 update

    PubMed Central

    Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.

    2005-01-01

    The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229

  8. Primitive chain network simulations for entangled DNA solutions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Furuichi, Kenji; Horio, Kazushi; Uneyama, Takashi; Watanabe, Hiroshi; Ianniruberto, Giovanni; Greco, Francesco; Marrucci, Giuseppe

    2009-09-01

    Molecular theories for polymer rheology are based on conformational dynamics of the polymeric chain. Hence, measurements directly related to molecular conformations appear more appealing than indirect ones obtained from rheology. In this study, primitive chain network simulations are compared to experimental data of entangled DNA solutions [Teixeira et al., Macromolecules 40, 2461 (2007)]. In addition to rheological comparisons of both linear and nonlinear viscoelasticities, a molecular extension measure obtained by Teixeira et al. through fluorescent microscopy is compared to simulations, in terms of both averages and distributions. The influence of flow on conformational distributions has never been simulated for the case of entangled polymers, and how DNA molecular individualism extends to the entangled regime is not known. The linear viscoelastic response and the viscosity growth curve in the nonlinear regime are found in good agreement with data for various DNA concentrations. Conversely, the molecular extension measure shows significant departures, even under equilibrium conditions. The reason for such discrepancies remains unknown.

  9. Building muscle: molecular regulation of myogenesis.

    PubMed

    Bentzinger, C Florian; Wang, Yu Xin; Rudnicki, Michael A

    2012-02-01

    The genesis of skeletal muscle during embryonic development and postnatal life serves as a paradigm for stem and progenitor cell maintenance, lineage specification, and terminal differentiation. An elaborate interplay of extrinsic and intrinsic regulatory mechanisms controls myogenesis at all stages of development. Many aspects of adult myogenesis resemble or reiterate embryonic morphogenetic episodes, and related signaling mechanisms control the genetic networks that determine cell fate during these processes. An integrative view of all aspects of myogenesis is imperative for a comprehensive understanding of muscle formation. This article provides a holistic overview of the different stages and modes of myogenesis with an emphasis on the underlying signals, molecular switches, and genetic networks.

  10. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    PubMed

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. From molecular noise to behavioural variability in a single bacterium

    NASA Astrophysics Data System (ADS)

    Korobkova, Ekaterina; Emonet, Thierry; Vilar, Jose M. G.; Shimizu, Thomas S.; Cluzel, Philippe

    2004-04-01

    The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals. In studying intracellular networks, most experiments and mathematical models have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.

  12. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-07

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions, which leads to non-trivial adsorption behavior that is qualitatively different from what would be predicted from the state of the proteins in the bulk solution.

  13. Understanding the polypharmacological anticancer effects of Xiao Chai Hu Tang via a computational pharmacological model

    PubMed Central

    ZHENG, CHUN-SONG; WU, YIN-SHENG; BAO, HONG-JUAN; XU, XIAO-JIE; CHEN, XING-QIANG; YE, HONG-ZHI; WU, GUANG-WEN; XU, HUI-FENG; LI, XI-HAI; CHEN, JIA-SHOU; LIU, XIAN-XIANG

    2014-01-01

    Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients. PMID:24926384

  14. Biological Networks for Cancer Candidate Biomarkers Discovery

    PubMed Central

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  15. The PluriNetWork: An Electronic Representation of the Network Underlying Pluripotency in Mouse, and Its Applications

    PubMed Central

    Greber, Boris; Siatkowski, Marcin; Paudel, Yogesh; Warsow, Gregor; Cap, Clemens; Schöler, Hans; Fuellen, Georg

    2010-01-01

    Background Analysis of the mechanisms underlying pluripotency and reprogramming would benefit substantially from easy access to an electronic network of genes, proteins and mechanisms. Moreover, interpreting gene expression data needs to move beyond just the identification of the up-/downregulation of key genes and of overrepresented processes and pathways, towards clarifying the essential effects of the experiment in molecular terms. Methodology/Principal Findings We have assembled a network of 574 molecular interactions, stimulations and inhibitions, based on a collection of research data from 177 publications until June 2010, involving 274 mouse genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its plugins. The network includes the core circuit of Oct4 (Pou5f1), Sox2 and Nanog, its periphery (such as Stat3, Klf4, Esrrb, and c-Myc), connections to upstream signaling pathways (such as Activin, WNT, FGF, BMP, Insulin, Notch and LIF), and epigenetic regulators as well as some other relevant genes/proteins, such as proteins involved in nuclear import/export. We describe the general properties of the network, as well as a Gene Ontology analysis of the genes included. We use several expression data sets to condense the network to a set of network links that are affected in the course of an experiment, yielding hypotheses about the underlying mechanisms. Conclusions/Significance We have initiated an electronic data repository that will be useful to understand pluripotency and to facilitate the interpretation of high-throughput data. To keep up with the growth of knowledge on the fundamental processes of pluripotency and reprogramming, we suggest to combine Wiki and social networking software towards a community curation system that is easy to use and flexible, and tailored to provide a benefit for the scientist, and to improve communication and exchange of research results. A PluriNetWork tutorial is available at http://www.ibima.med.uni-rostock.de/IBIMA/PluriNetWork/. PMID:21179244

  16. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models

    PubMed Central

    Todd, Robert G.; van der Zee, Lucas

    2016-01-01

    Abstract The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914

  17. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.

    PubMed

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E

    2011-09-05

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.

  18. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    PubMed Central

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M.

    2011-01-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function. PMID:21893596

  19. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    PubMed Central

    2011-01-01

    Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393

  20. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    PubMed Central

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  2. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury*

    PubMed Central

    van Niekerk, Erna A.; Tuszynski, Mark H.; Lu, Paul; Dulin, Jennifer N.

    2016-01-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. PMID:26695766

  3. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints.

    PubMed

    Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D

    2015-02-01

    The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern ("receptor fingerprint"), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints

    PubMed Central

    Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D.

    2015-01-01

    The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern (“receptor fingerprint”), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. PMID:25243991

  5. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    PubMed

    Andrews, Tallulah; Meader, Stephen; Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A; Webber, Caleb

    2015-03-01

    Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  6. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  7. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  8. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    PubMed Central

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific transcriptional mechanisms that cells utilize to deal with various biotic and abiotic disturbances, and it will eventually lead to a better understanding of associated adaptation and regulatory networks. Results In this study, the Weighted Gene Co-expression Network Analysis (WGCNA) approach was used to establish transcriptional networks for four important cyanobacteria species under metal stress, including iron depletion and high copper conditions. Cross-species network comparison led to discovery of several core response modules and genes possibly essential to metal stress, as well as species-specific hub genes for metal stresses in different cyanobacteria species, shedding light on survival strategies of cyanobacteria responding to different environmental perturbations. Conclusions The WGCNA analysis demonstrated that the application of cross-species transcriptional network analysis will lead to novel insights to molecular response to environmental changes which will otherwise not be achieved by analyzing data from a single species. PMID:23421563

  9. Molecular model for the diffusion of associating telechelic polymer networks

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge; Dursch, Thomas; Olsen, Bradley

    Understanding the mechanisms of motion and stress relaxation of associating polymers at the molecular level is critical for advanced technological applications such as enhanced oil-recovery, self-healing materials or drug delivery. In associating polymers, the strength and rates of association/dissociation of the reversible physical crosslinks govern the dynamics of the network and therefore all the macroscopic properties, like self-diffusion and rheology. Recently, by means of forced Rayleigh scattering experiments, we have proved that associating polymers of different architectures show super-diffusive behavior when the free motion of single molecular species is slowed down by association/dissociation kinetics. Here we discuss a new molecular picture for unentangled associating telechelic polymers that considers concentration, molecular weight, number of arms of the molecules and equilibrium and rate constants of association/dissociation. The model predicts super-diffusive behavior under the right combination of values of the parameters. We discuss some of the predictions of the model using scaling arguments, show detailed results from Brownian dynamics simulations of the FRS experiments, and attempt to compare the predictions of the model to experimental data.

  10. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  11. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  12. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow

    NASA Astrophysics Data System (ADS)

    Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard

    2015-12-01

    The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.

  13. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  14. Quantifying fluctuations in reversible enzymatic cycles and clocks

    NASA Astrophysics Data System (ADS)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  15. Cancer Theory from Systems Biology Point of View

    NASA Astrophysics Data System (ADS)

    Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping

    In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.

  16. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1

    PubMed Central

    Sheen, Jen

    2014-01-01

    The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567

  17. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Noé, Frank

    2018-06-01

    Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes—beyond the capabilities of linear dimension reduction techniques.

  18. Molecular mechanics of mineralized collagen fibrils in bone

    PubMed Central

    Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.

    2013-01-01

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. PMID:23591891

  19. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  20. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  1. Enzyme-free nucleic acid dynamical systems.

    PubMed

    Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David

    2017-12-15

    Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    PubMed

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  3. Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation.

    PubMed

    Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong

    2017-10-26

    Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.

  4. Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation

    PubMed Central

    Song, Kun; Zhang, Jian; Lu, Shaoyong

    2017-01-01

    Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras. PMID:29072601

  5. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

    PubMed

    Li, Yongsheng; Sahni, Nidhi; Yi, Song

    2016-11-29

    Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

  6. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  7. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).

    PubMed

    Yamasaki, Yuji; Gao, Feng; Jordan, Mark C; Ayele, Belay T

    2017-09-16

    Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.

  8. The Human Blood Metabolome-Transcriptome Interface

    PubMed Central

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  9. Safeguarding donors' personal rights and biobank autonomy in biobank networks: the CRIP privacy regime.

    PubMed

    Schröder, Christina; Heidtke, Karsten R; Zacherl, Nikolaus; Zatloukal, Kurt; Taupitz, Jochen

    2011-08-01

    Governance, underlying general ICT (Information and Communication Technology) architecture, and workflow of the Central Research Infrastructure for molecular Pathology (CRIP) are discussed as a model enabling biobank networks to form operational "meta biobanks" whilst respecting the donors' privacy, biobank autonomy and confidentiality, and the researchers' needs for appropriate biospecimens and information, as well as confidentiality. Tailored to these needs, CRIP efficiently accelerates and facilitates research with human biospecimens and data.

  10. Modelling and analysis of gene regulatory network using feedback control theory

    NASA Astrophysics Data System (ADS)

    El-Samad, H.; Khammash, M.

    2010-01-01

    Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.

  11. Petri net modelling of biological networks.

    PubMed

    Chaouiya, Claudine

    2007-07-01

    Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.

  12. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  13. Semi-Automated Curation Allows Causal Network Model Building for the Quantification of Age-Dependent Plaque Progression in ApoE-/- Mouse.

    PubMed

    Szostak, Justyna; Martin, Florian; Talikka, Marja; Peitsch, Manuel C; Hoeng, Julia

    2016-01-01

    The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE -/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.

  14. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    PubMed Central

    2011-01-01

    Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503

  15. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  16. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .

  17. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  18. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  19. Mining protein interactomes to improve their reliability and support the advancement of network medicine.

    PubMed

    Alanis-Lobato, Gregorio

    2015-01-01

    High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  20. The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer

    PubMed Central

    Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey

    2017-01-01

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852

  1. The cancer cell map initiative: defining the hallmark networks of cancer.

    PubMed

    Krogan, Nevan J; Lippman, Scott; Agard, David A; Ashworth, Alan; Ideker, Trey

    2015-05-21

    Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

    PubMed Central

    Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656

  3. NaviCom: a web application to create interactive molecular network portraits using multi-level omics data.

    PubMed

    Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna

    2017-01-01

    Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.

  4. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    PubMed

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  5. BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network.

    PubMed

    Ishiwata, Ryosuke R; Morioka, Masaki S; Ogishima, Soichi; Tanaka, Hiroshi

    2009-02-15

    BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides animation of time-course gene expression data on the genetic network layer. Transcriptional regulations are represented to bridge the physical network (transcription factors) and genetic network (regulated genes) layers, thus integrating promoter analysis into the pathway mapping. BioCichlid enhances the interpretation of microarray data and allows for revealing the underlying mechanisms causing differential gene expressions. BioCichlid is freely available and can be accessed at http://newton.tmd.ac.jp/. Source codes for both biocichlid server and client are also available.

  6. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    PubMed

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.

  7. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    PubMed Central

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  8. A hybrid network-based method for the detection of disease-related genes

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  9. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  10. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    PubMed

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  11. Mapping biological process relationships and disease perturbations within a pathway network.

    PubMed

    Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc

    2018-01-01

    Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.

  12. Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides).

    PubMed

    Martyniuk, Christopher J; Prucha, Melinda S; Doperalski, Nicholas J; Antczak, Philipp; Kroll, Kevin J; Falciani, Francesco; Barber, David S; Denslow, Nancy D

    2013-01-01

    Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.

  13. Adapting to stress - chaperome networks in cancer.

    PubMed

    Joshi, Suhasini; Wang, Tai; Araujo, Thaís L S; Sharma, Sahil; Brodsky, Jeffrey L; Chiosis, Gabriela

    2018-05-23

    In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.

  14. PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling.

    PubMed

    Bernabeu, Miguel O; Jones, Martin L; Nash, Rupert W; Pezzarossa, Anna; Coveney, Peter V; Gerhardt, Holger; Franco, Claudio A

    2018-05-08

    In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. A Module Analysis Approach to Investigate Molecular Mechanism of TCM Formula: A Trial on Shu-feng-jie-du Formula

    PubMed Central

    Zhang, Fangbo; Tang, Shihuan; Liu, Xi; Gao, Yibo; Wang, Yanping

    2013-01-01

    At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis. PMID:24376467

  16. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine.

    PubMed

    Bald, Ilko; Weigelt, Sigrid; Ma, Xiaojing; Xie, Pengyang; Subramani, Ramesh; Dong, Mingdong; Wang, Chen; Mamdouh, Wael; Wang, Jianguo; Besenbacher, Flemming

    2010-04-14

    We have investigated the stability of two-dimensional self-assembled molecular networks formed upon co-adsorption of the DNA base, adenine, with each of the amino acids, L-serine and L-tyrosine, on a highly oriented pyrolytic graphite (HOPG) surface by drop-casting from a water solution. L-serine and L-tyrosine were chosen as model systems due to their different interaction with the solvent molecules and the graphite substrate, which is reflected in a high and low solubility in water, respectively, compared with adenine. Combined scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations show that the self-assembly process is mainly driven by the formation of strong adenine-adenine hydrogen bonds. We find that pure adenine networks are energetically more stable than networks built up of either pure L-serine, pure L-tyrosine or combinations of adenine with L-serine or L-tyrosine, and that only pure adenine networks are stable enough to be observable by STM under ambient conditions.

  17. Photo-responsive surface topology in chiral nematic media

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  18. Molecular mechanisms governing differential robustness of development and environmental responses in plants

    PubMed Central

    Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel J.

    2016-01-01

    Background Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. Scope and Conclusions This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied. PMID:26473020

  19. Using Graph-Based Assessments within Socratic Tutorials to Reveal and Refine Students' Analytical Thinking about Molecular Networks

    ERIC Educational Resources Information Center

    Trujillo, Caleb; Cooper, Melanie M.; Klymkowsky, Michael W.

    2012-01-01

    Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios;…

  20. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  1. Network, cellular, and molecular mechanisms underlying long-term memory formation.

    PubMed

    Carasatorre, Mariana; Ramírez-Amaya, Víctor

    2013-01-01

    The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.

  2. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling

    PubMed Central

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-01-01

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P < 0.05) increased the gene alpha-diversity in terms of richness and Shannon – Simpson’s indexes for all three types of soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning. PMID:26396042

  3. Are we closer to the vision? A proposed framework for incorporating omics into environmental assessments.

    PubMed

    Martyniuk, Christopher J

    2018-04-01

    Environmental science has benefited a great deal from omics-based technologies. High-throughput toxicology has defined adverse outcome pathways (AOPs), prioritized chemicals of concern, and identified novel actions of environmental chemicals. While many of these approaches are conducted under rigorous laboratory conditions, a significant challenge has been the interpretation of omics data in "real-world" exposure scenarios. Clarity in the interpretation of these data limits their use in environmental monitoring programs. In recent years, one overarching objective of many has been to address fundamental questions concerning experimental design and the robustness of data collected under the broad umbrella of environmental genomics. These questions include: (1) the likelihood that molecular profiles return to a predefined baseline level following remediation efforts, (2) how reference site selection in an urban environment influences interpretation of omics data and (3) what is the most appropriate species to monitor in the environment from an omics point of view. In addition, inter-genomics studies have been conducted to assess transcriptome reproducibility in toxicology studies. One lesson learned from inter-genomics studies is that there are core molecular networks that can be identified by multiple laboratories using the same platform. This supports the idea that "omics-networks" defined a priori may be a viable approach moving forward for evaluating environmental impacts over time. Both spatial and temporal variability in ecosystem structure is expected to influence molecular responses to environmental stressors, and it is important to recognize how these variables, as well as individual factor (i.e. sex, age, maturation), may confound interpretation of network responses to chemicals. This mini-review synthesizes the progress made towards adopting these tools into environmental monitoring and identifies future challenges to be addressed, as we move into the next era of high throughput sequencing. A conceptual framework for validating and incorporating molecular networks into environmental monitoring programs is proposed. As AOPs become more defined and their potential in environmental monitoring assessments becomes more recognized, the AOP framework may prove to be the conduit between omics and penultimate ecological responses for environmental risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  5. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  6. Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell.

    PubMed

    De Las Rivas, Javier; Fontanillo, Celia

    2012-11-01

    Mapping and understanding of the protein interaction networks with their key modules and hubs can provide deeper insights into the molecular machinery underlying complex phenotypes. In this article, we present the basic characteristics and definitions of protein networks, starting with a distinction of the different types of associations between proteins. We focus the review on protein-protein interactions (PPIs), a subset of associations defined as physical contacts between proteins that occur by selective molecular docking in a particular biological context. We present such definition as opposed to other types of protein associations derived from regulatory, genetic, structural or functional relations. To determine PPIs, a variety of binary and co-complex methods exist; however, not all the technologies provide the same information and data quality. A way of increasing confidence in a given protein interaction is to integrate orthogonal experimental evidences. The use of several complementary methods testing each single interaction assesses the accuracy of PPI data and tries to minimize the occurrence of false interactions. Following this approach there have been important efforts to unify primary databases of experimentally proven PPIs into integrated databases. These meta-databases provide a measure of the confidence of interactions based on the number of experimental proofs that report them. As a conclusion, we can state that integrated information allows the building of more reliable interaction networks. Identification of communities, cliques, modules and hubs by analysing the topological parameters and graph properties of the protein networks allows the discovery of central/critical nodes, which are candidates to regulate cellular flux and dynamics.

  7. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    PubMed

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  8. Crop improvement using life cycle datasets acquired under field conditions.

    PubMed

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  9. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study.

    PubMed

    Städler, Nicolas; Dondelinger, Frank; Hill, Steven M; Akbani, Rehan; Lu, Yiling; Mills, Gordon B; Mukherjee, Sach

    2017-09-15

    Molecular pathways and networks play a key role in basic and disease biology. An emerging notion is that networks encoding patterns of molecular interplay may themselves differ between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing of differences in mean expression levels has been extensively studied, testing of network differences remains challenging. Furthermore, since network differences could provide important and biologically interpretable information to identify molecular subgroups, there is a need to consider the unsupervised task of learning subgroups and networks that define them. This is a nontrivial clustering problem, with neither subgroups nor subgroup-specific networks known at the outset. We leverage recent ideas from high-dimensional statistics for testing and clustering in the network biology setting. The methods we describe can be applied directly to most continuous molecular measurements and networks do not need to be specified beforehand. We illustrate the ideas and methods in a case study using protein data from The Cancer Genome Atlas (TCGA). This provides evidence that patterns of interplay between signalling proteins differ significantly between cancer types. Furthermore, we show how the proposed approaches can be used to learn subtypes and the molecular networks that define them. As the Bioconductor package nethet. staedler.n@gmail.com or sach.mukherjee@dzne.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Molecular Origin of the Vibrational Structure of Ice Ih.

    PubMed

    Moberg, Daniel R; Straight, Shelby C; Knight, Christopher; Paesani, Francesco

    2017-06-15

    An unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.

  11. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?

    PubMed

    Guillas, Isabelle; Puyaubert, Juliette; Baudouin, Emmanuel

    2013-09-12

    Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL-NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.

  12. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    PubMed Central

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  13. Covalently crosslinked diels-alder polymer networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less

  14. Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.

    PubMed

    van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis

    2012-01-01

    This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.

  15. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB.

    PubMed

    Saito, Taku; Tanaka, Sakae

    2017-05-15

    Osteoarthritis (OA) is a multi-factorial and highly prevalent joint disorder worldwide. Since the establishment of murine surgical knee OA models in 2005, many of the key molecules and signalling pathways responsible for OA development have been identified. Here we review the roles of two multi-functional signalling pathways in OA development: Notch and nuclear factor kappa-light-chain-enhancer of activated B cells. Previous studies have identified various aspects of articular chondrocyte regulation by these pathways. However, comprehensive understanding of the molecular networks regulating articular cartilage homeostasis and OA pathogenesis is needed.

  16. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  17. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  18. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study | Office of Cancer Genomics

    Cancer.gov

    Motivation: Molecular pathways and networks play a key role in basic and disease biology. An emerging notion is that networks encoding patterns of molecular interplay may themselves differ between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing of differences in mean expression levels has been extensively studied, testing of network differences remains challenging.

  1. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks.

    PubMed

    Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter

    2016-11-01

    Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.

  2. Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish

    PubMed Central

    Kratochwil, Claudius F.; Geissler, Laura; Irisarri, Iker; Meyer, Axel

    2015-01-01

    Abstract Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits—suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317

  3. Regeneration in the era of functional genomics and gene network analysis.

    PubMed

    Smith, Joel; Morgan, Jennifer R; Zottoli, Steven J; Smith, Peter J; Buxbaum, Joseph D; Bloom, Ona E

    2011-08-01

    What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.

  4. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  5. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  6. Designing heavy metal oxide glasses with threshold properties from network rigidity

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shibalik; Boolchand, P.; Malki, M.; Micoulaut, M.

    2014-01-01

    Here, we show that a new class of glasses composed of heavy metal oxides involving transition metals (V2O5-TeO2) can surprisingly be designed from very basic tools using topology and rigidity of their underlying molecular networks. When investigated as a function of composition, such glasses display abrupt changes in network packing and enthalpy of relaxation at Tg, underscoring presence of flexible to rigid elastic phase transitions. We find that these elastic phases are fully consistent with polaronic nature of electronic conductivity at high V2O5 content. Such observations have new implications for designing electronic glasses which differ from the traditional amorphous electrolytes having only mobile ions as charge carriers.

  7. Designing heavy metal oxide glasses with threshold properties from network rigidity.

    PubMed

    Chakraborty, Shibalik; Boolchand, P; Malki, M; Micoulaut, M

    2014-01-07

    Here, we show that a new class of glasses composed of heavy metal oxides involving transition metals (V2O5-TeO2) can surprisingly be designed from very basic tools using topology and rigidity of their underlying molecular networks. When investigated as a function of composition, such glasses display abrupt changes in network packing and enthalpy of relaxation at Tg, underscoring presence of flexible to rigid elastic phase transitions. We find that these elastic phases are fully consistent with polaronic nature of electronic conductivity at high V2O5 content. Such observations have new implications for designing electronic glasses which differ from the traditional amorphous electrolytes having only mobile ions as charge carriers.

  8. A Systems Biology-Based Approach to Uncovering Molecular Mechanisms Underlying Effects of Traditional Chinese Medicine Qingdai in Chronic Myelogenous Leukemia, Involving Integration of Network Pharmacology and Molecular Docking Technology.

    PubMed

    Zhou, Chao; Liu, LiJuan; Zhuang, Jing; Wei, JunYu; Zhang, TingTing; Gao, ChunDi; Liu, Cun; Li, HuaYao; Si, HongZong; Sun, ChangGang

    2018-06-23

    BACKGROUND The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. MATERIAL AND METHODS We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. RESULTS According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. CONCLUSIONS The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.

  9. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. © 2015 The Authors.

  10. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  11. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE PAGES

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; ...

    2017-01-17

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  12. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing.

    PubMed

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A

    2017-01-31

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  13. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer's disease: a multifactor network analysis.

    PubMed

    Caberlotto, Laura; Lauria, Mario; Nguyen, Thanh-Phuong; Scotti, Marco

    2013-01-01

    Alzheimer's disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer's disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer's disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer's disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy.

  14. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.

    PubMed

    Jewett, Kathryn A; Christian, Catherine A; Bacos, Jonathan T; Lee, Kwan Young; Zhu, Jiuhe; Tsai, Nien-Pei

    2016-03-22

    Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.

  15. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  16. Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease.

    PubMed

    Scarpa, Joseph R; Jiang, Peng; Losic, Bojan; Readhead, Ben; Gao, Vance D; Dudley, Joel T; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2016-07-01

    Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFβ-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.

  17. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila

    PubMed Central

    Garrity, Paul A.; Goodman, Miriam B.; Samuel, Aravinthan D.; Sengupta, Piali

    2010-01-01

    Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior. PMID:21041406

  18. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity.

    PubMed

    Norris, Vic; Root-Bernstein, Robert

    2009-06-04

    In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  19. A statistical method for measuring activation of gene regulatory networks.

    PubMed

    Esteves, Gustavo H; Reis, Luiz F L

    2018-06-13

    Gene expression data analysis is of great importance for modern molecular biology, given our ability to measure the expression profiles of thousands of genes and enabling studies rooted in systems biology. In this work, we propose a simple statistical model for the activation measuring of gene regulatory networks, instead of the traditional gene co-expression networks. We present the mathematical construction of a statistical procedure for testing hypothesis regarding gene regulatory network activation. The real probability distribution for the test statistic is evaluated by a permutation based study. To illustrate the functionality of the proposed methodology, we also present a simple example based on a small hypothetical network and the activation measuring of two KEGG networks, both based on gene expression data collected from gastric and esophageal samples. The two KEGG networks were also analyzed for a public database, available through NCBI-GEO, presented as Supplementary Material. This method was implemented in an R package that is available at the BioConductor project website under the name maigesPack.

  20. Mechanisms of leading edge protrusion in interstitial migration

    PubMed Central

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  1. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  2. Ultrastable cellulosome-adhesion complex tightens under load.

    PubMed

    Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A

    2014-12-08

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.

  3. Self-repairable polyurethane networks by atmospheric carbon dioxide and water.

    PubMed

    Yang, Ying; Urban, Marek W

    2014-11-03

    Sugar moieties were incorporated into cross-linked polyurethane (PUR) networks in an effort to achieve self-repairing in the presence of atmospheric carbon dioxide (CO2) and water (H2O). When methyl-α-D-glucopyranoside (MGP) molecules are reacted with hexamethylene diisocyanate trimer (HDI) and polyethylene glycol (PEG) to form cross-linked MGP-polyurethane (PUR) networks, these materials are capable of self-repairing in air. This process requires atmospheric amounts of CO2 and H2O, thus resembling plant behavior of carbon fixation during the photosynthesis cycle. Molecular processes responsible for this unique self-repair process involve physical diffusion of cleaved network segments as well as the formation of carbonate and urethane linkages. Unlike plants, MGP-PUR networks require no photo-initiated reactions, and they are thus capable of repair in darkness under atmospheric conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    PubMed

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  5. Applications of systems approaches in the study of rheumatic diseases.

    PubMed

    Kim, Ki-Jo; Lee, Saseong; Kim, Wan-Uk

    2015-03-01

    The complex interaction of molecules within a biological system constitutes a functional module. These modules are then acted upon by both internal and external factors, such as genetic and environmental stresses, which under certain conditions can manifest as complex disease phenotypes. Recent advances in high-throughput biological analyses, in combination with improved computational methods for data enrichment, functional annotation, and network visualization, have enabled a much deeper understanding of the mechanisms underlying important biological processes by identifying functional modules that are temporally and spatially perturbed in the context of disease development. Systems biology approaches such as these have produced compelling observations that would be impossible to replicate using classical methodologies, with greater insights expected as both the technology and methods improve in the coming years. Here, we examine the use of systems biology and network analysis in the study of a wide range of rheumatic diseases to better understand the underlying molecular and clinical features.

  6. Inferring protein domains associated with drug side effects based on drug-target interaction network.

    PubMed

    Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro

    2013-01-01

    Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.

  7. Controlled manipulation of elastomers with radiation: Insights from multiquantum nuclear-magnetic-resonance data and mechanical measurements

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.

    2011-03-01

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.

  8. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders

    PubMed Central

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-01-01

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology. PMID:25549968

  9. Coarse-Grained Molecular Dynamics Simulation of Ionic Polymer Networks

    DTIC Science & Technology

    2008-07-01

    AFRL-RX-WP-TP-2009-4198 COARSE-GRAINED MOLECULAR DYNAMICS SIMULATION OF IONIC POLYMER NETWORKS (Postprint) T.E. Dirama, V. Varshney, K.L...GRAINED MOLECULAR DYNAMICS SIMULATION OF IONIC POLYMER NETWORKS (Postprint) 5a. CONTRACT NUMBER FA8650-05-D-5807-0052 5b. GRANT NUMBER 5c...We studied two types of networks which differ only by one containing ionic pairs that amount to 7% of the total number of bonds present. The stress

  10. Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks

    NASA Astrophysics Data System (ADS)

    Rosenthal-Kim, Emily Quinn

    The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight distribution of around 1.15. However, the majority of the product consists of low molecular weight cyclic poly(disulfide) oligomers. In reactions maintained below 18°C, the organic components were miscible in the aqueous hydrogen peroxide and a milky emulsion was produced. The polymers were degraded using the disulfide-specific reducing agent, dithiothreitol. Poly(disulfide) polymer networks were also synthesized in a two-phase system. Due to the poor solubility of the crosslinker, trimethylolpropane tris(2-mercaptopropionate, organic solvents were required to obtain consistent networks. The networks were degraded using dithiothreitol in tetrahydrofuran. The networks were stable under aqueous reducing conditions. The disulfide-bearing biochemical, alpha-lipoic acid, was investigated as monomer for the new method of poly(disulfide) polymer synthesis. It was also polymerized thermally and by a new interfacial method that proceeds at the air-water interface. Polymer products were often too large to be characterized by SEC (Mn > 1,000,000 g/mol). A poly(alpha-LA) polymer sample showed mass loss in aqueous solutions of glutathione at pH = 5.2 which was used to model cytosolic conditions. Poly(alpha-LA) was decorated with PEG (2,000 g/mol) in an esterification reaction catalyzed by Candida antarctica lipase B (CALB). The decorated polymers were imaged using AFM which revealed branch-like structures. To make new alpha-lipoic acid based monomers and macromonomers, CALB-catalyzed esterification, was used to conjugate alpha-lipoic acid to a variety of glycols including: diethylene glycol monomethyl ether, tetraethylene glycol, hexaethylene glycol, and poly(ethylene glycol). The products were verified using NMR spectroscopy and mass spectrometry.

  11. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  12. Hidden Markov models and other machine learning approaches in computational molecular biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, P.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In thismore » tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.« less

  13. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  14. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  15. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  16. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?

    PubMed Central

    Guillas, Isabelle; Puyaubert, Juliette; Baudouin, Emmanuel

    2013-01-01

    Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL–NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ. PMID:24062754

  17. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  18. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  19. Time evolution of coherent structures in networks of Hindmarch Rose neurons

    NASA Astrophysics Data System (ADS)

    Mainieri, M. S.; Erichsen, R.; Brunnet, L. G.

    2005-08-01

    In the regime of partial synchronization, networks of diffusively coupled Hindmarch-Rose neurons show coherent structures developing in a region of the phase space which is wider than in the correspondent single neuron. Such structures are kept, without important changes, during several bursting periods. In this work, we study the time evolution of these structures and their dynamical stability under damage. This system may model the behavior of ensembles of neurons coupled through a bidirectional gap junction or, in a broader sense, it could also account for the molecular cascades present in the formation of flash and short time memory.

  20. Effect of pH on chitosan hydrogel polymer network structure.

    PubMed

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  1. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    PubMed

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  2. Bioinformatics Analysis Reveals Distinct Molecular Characteristics of Hepatitis B-Related Hepatocellular Carcinomas from Very Early to Advanced Barcelona Clinic Liver Cancer Stages.

    PubMed

    Kong, Fan-Yun; Wei, Xiao; Zhou, Kai; Hu, Wei; Kou, Yan-Bo; You, Hong-Juan; Liu, Xiao-Mei; Zheng, Kui-Yang; Tang, Ren-Xian

    2016-01-01

    Hepatocellular carcinoma (HCC)is the fifth most common malignancy associated with high mortality. One of the risk factors for HCC is chronic hepatitis B virus (HBV) infection. The treatment strategy for the disease is dependent on the stage of HCC, and the Barcelona clinic liver cancer (BCLC) staging system is used in most HCC cases. However, the molecular characteristics of HBV-related HCC in different BCLC stages are still unknown. Using GSE14520 microarray data from HBV-related HCC cases with BCLC stages from 0 (very early stage) to C (advanced stage) in the gene expression omnibus (GEO) database, differentially expressed genes (DEGs), including common DEGs and unique DEGs in different BCLC stages, were identified. These DEGs were located on different chromosomes. The molecular functions and biology pathways of DEGs were identified by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the interactome networks of DEGs were constructed using the NetVenn online tool. The results revealed that both common DEGs and stage-specific DEGs were associated with various molecular functions and were involved in special biological pathways. In addition, several hub genes were found in the interactome networks of DEGs. The identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of HBV-related HCC through the different BCLC stages, and might be used as staging biomarkers or molecular targets for the treatment of HCC with HBV infection.

  3. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks

    PubMed Central

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche

    2016-01-01

    Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  4. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  5. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    DOE PAGES

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-10

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  6. Gene Expression Networks Underlying Ovarian Development in Wild Largemouth Bass (Micropterus salmoides)

    PubMed Central

    Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.

    2013-01-01

    Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation. PMID:23527095

  7. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  8. Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

    PubMed Central

    Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano

    2016-01-01

    A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320

  9. Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.

    PubMed

    Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron

    2013-11-07

    Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.

  10. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii1[OPEN

    PubMed Central

    Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao

    2017-01-01

    Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258

  11. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  12. Molecular origin of the vibrational structure of ice I h

    DOE PAGES

    Moberg, Daniel R.; Straight, Shelby C.; Knight, Christopher; ...

    2017-05-25

    Here, an unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the latticemore » vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.« less

  13. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  14. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana.

    PubMed

    Tsuda, Kenichi; Mine, Akira; Bethke, Gerit; Igarashi, Daisuke; Botanga, Christopher J; Tsuda, Yayoi; Glazebrook, Jane; Sato, Masanao; Katagiri, Fumiaki

    2013-01-01

    Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.

  15. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    PubMed Central

    Craddock, Travis J. A.; Fletcher, Mary Ann; Klimas, Nancy G.

    2015-01-01

    There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE) models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI) integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE). Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA) and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm. PMID:25984725

  16. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  17. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone

    PubMed Central

    Stetz, Gabrielle; Tse, Amanda

    2017-01-01

    The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies. PMID:29095844

  18. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host–Pathogen Interaction Networks

    PubMed Central

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892

  19. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  20. Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice

    NASA Astrophysics Data System (ADS)

    Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun

    2017-01-01

    Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.

  1. Network analysis reveals stage-specific changes in zebrafish embryo development using time course whole transcriptome profiling and prior biological knowledge.

    PubMed

    Zhang, Yuji

    2015-01-01

    Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among biological processes enriched in co-expressed genes under different conditions. The enriched biological processes include translation elongation, nucleosome assembly, and retina development. These network dynamics provide new insights into the impact of 1α, 25-Dihydroxyvitamin D3 treatment in bone and cartilage development. We developed a network-based approach to analyzing the DEGs at different time points by integrating molecular interactions and gene ontology information. These results demonstrate that the proposed approach can provide insight on the molecular mechanisms taking place in vertebrate embryo development upon treatment with 1α, 25(OH)2D3. Our approach enables the monitoring of biological processes that can serve as a basis for generating new testable hypotheses. Such network-based integration approach can be easily extended to any temporal- or condition-dependent genomic data analyses.

  2. Mechanical stress and network structure drive protein dynamics during cytokinesis.

    PubMed

    Srivastava, Vasudha; Robinson, Douglas N

    2015-03-02

    Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  4. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.

    PubMed

    Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing

    2018-06-12

    Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.

    PubMed

    Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris

    2014-01-01

    Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.

  6. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  7. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase

    PubMed Central

    Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.

    2015-01-01

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932

  8. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    PubMed Central

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer. PMID:24341432

  9. Resonance Energy Transfer-Based Molecular Switch Designed Using a Systematic Design Process Based on Monte Carlo Methods and Markov Chains

    NASA Astrophysics Data System (ADS)

    Rallapalli, Arjun

    A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical. In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications. We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.

  10. Molecular communication and networking: opportunities and challenges.

    PubMed

    Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei

    2012-06-01

    The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.

  11. Adaptive enhanced sampling by force-biasing using neural networks

    NASA Astrophysics Data System (ADS)

    Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.

    2018-04-01

    A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.

  12. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  13. How the shape of an H-bonded network controls proton-coupled water activation in HONO formation.

    PubMed

    Relph, Rachael A; Guasco, Timothy L; Elliott, Ben M; Kamrath, Michael Z; McCoy, Anne B; Steele, Ryan P; Schofield, Daniel P; Jordan, Kenneth D; Viggiano, Albert A; Ferguson, Eldon E; Johnson, Mark A

    2010-01-15

    Many chemical reactions in atmospheric aerosols and bulk aqueous environments are influenced by the surrounding solvation shell, but the precise molecular interactions underlying such effects have rarely been elucidated. We exploited recent advances in isomer-specific cluster vibrational spectroscopy to explore the fundamental relation between the hydrogen (H)-bonding arrangement of a set of ion-solvating water molecules and the chemical activity of this ensemble. We find that the extent to which the nitrosonium ion (NO+)and water form nitrous acid (HONO) and a hydrated proton cluster in the critical trihydrate depends sensitively on the geometrical arrangement of the water molecules in the network. Theoretical analysis of these data details the role of the water network in promoting charge delocalization.

  14. Inferring protein domains associated with drug side effects based on drug-target interaction network

    PubMed Central

    2013-01-01

    Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527

  15. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  16. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method.

    PubMed

    Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J

    2017-07-10

    The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.

  17. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases.

    PubMed

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.

  18. Foundations of metabolic organization: coherence as a basis of computational properties in metabolic networks.

    PubMed

    Igamberdiev, A U

    1999-04-01

    Biological organization is based on the coherent energy transfer allowing for macromolecules to operate with high efficiency and realize computation. Computation is executed with virtually 100% efficiency via the coherent operation of molecular machines in which low-energy recognitions trigger energy-driven non-equilibrium dynamic processes. The recognition process is of quantum mechanical nature being a non-demolition measurement. It underlies the enzymatic conversion of a substrate into the product (an elementary metabolic phenomenon); the switching via separation of the direct and reverse routes in futile cycles provides the generation and complication of metabolic networks (coherence within cycles is maintained by the supramolecular organization of enzymes); the genetic level corresponding to the appearance of digital information is based on reflective arrows (catalysts realize their own self-reproduction) and operation of hypercycles. Every metabolic cycle via reciprocal regulation of both its halves can generate rhythms and spatial structures (resulting from the temporally organized depositions from the cycles). Via coherent events which percolate from the elementary submolecular level to organismic entities, self-assembly based on the molecular complementarity is realized and the dynamic informational field operating within the metabolic network is generated.

  19. Optimality principles in the regulation of metabolic networks.

    PubMed

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  20. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    PubMed

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weighill, Deborah; Jones, Piet; Shah, Manesh

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less

  2. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE PAGES

    Weighill, Deborah; Jones, Piet; Shah, Manesh; ...

    2018-05-11

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less

  3. Ultrastable cellulosome-adhesion complex tightens under load

    PubMed Central

    Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.

    2014-01-01

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395

  4. Pure F-actin networks are distorted and branched by steps in the critical-point drying method.

    PubMed

    Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor

    2002-03-01

    Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).

  5. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.

    PubMed

    Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J

    2009-03-01

    Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].

  6. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior alleles in breeding programs. In addition, this study presents novel candidates that might control enzymatic tissue discoloration and tuber bruising. Their validation and characterization will increase the knowledge about the underlying biological processes. PMID:21208436

  7. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  8. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer.

    PubMed

    Zhang, Shengzhe; Jing, Ying; Zhang, Meiying; Zhang, Zhenfeng; Ma, Pengfei; Peng, Huixin; Shi, Kaixuan; Gao, Wei-Qiang; Zhuang, Guanglei

    2015-11-04

    High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation of subtype regulatory networks, we identified the transcriptional modules containing master regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal master regulators were associated with poor prognosis, while Immunoreactive master regulators positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor microenvironment.

  9. Flower Development

    PubMed Central

    Alvarez-Buylla, Elena R.; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Álvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V.; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E.

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  10. Chemopreventive potential of natural compounds in head and neck cancer.

    PubMed

    Rahman, Mohammad Aminur; Amin, A R M Ruhul; Shin, Dong M

    2010-01-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most fatal cancers worldwide. Despite advances in the management of HNSCC, the overall survival for patients has not improved significantly due to advanced stages at diagnosis, high recurrence rate after surgical removal, and second primary tumor development, which underscore the importance of novel strategies for cancer prevention. Cancer chemoprevention, the use of natural or synthetic compounds to prevent, arrest, or reverse the process of carcinogenesis at its earliest stages, aims to reverse premalignancies and prevent second primary tumors. Genomics and proteomics information including initial mutation, cancer promotion, progression, and susceptibility has brought molecularly targeted therapies for drug development. The development of preventive approaches using specific natural or synthetic compounds, or both, requires a depth of understanding of the cross-talk between cancer signaling pathways and networks to retain or enhance chemopreventive activity while reducing known toxic effects. Many natural dietary compounds have been identified with multiple molecular targets, effective in the prevention and treatment of cancer. This review describes recent advances in the understanding of the complex signaling networks driving cancer progression and of molecularly targeted natural compounds under preclinical and clinical investigation.

  11. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  12. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  13. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.

    PubMed

    Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek

    2016-06-20

    A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  14. Transport in Physical Space: The Example of Pedestrians, Cars, and Molecular Motors

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, Cécile; Klein, Sarah; Ebbinghaus, Maximilian; Santen, Ludger

    Transport systems in physical space exhibit various phenomena which may have some counterparts in socio- or econo-systems. We review here several of them. In highway vehicular traffic, the introduction of a reaction time leads to metastability and hysteresis. Pattern formation occurs in pedestrian flows. At a microscopic scale, we can learn from molecular pedestrians that transporting an object by opposite teams can be more efficient in a crowded environment and allow for an easy control of the system. Besides, we will show that the interplay between transport and the dynamics of the underlying network can sometimes lead to positive effects in terms of efficiency of transport.

  15. Triplex molecular layers with nonlinear nanomechanical response

    NASA Astrophysics Data System (ADS)

    Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.

    2002-06-01

    The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.

  16. Functional Network Disruption in the Degenerative Dementias

    PubMed Central

    Pievani, Michela; de Haan, Willem; Wu, Tao; Seeley, William W; Frisoni, Giovanni B

    2011-01-01

    Despite considerable advances toward understanding the molecular pathophysiology of the neurodegenerative dementias, the mechanisms linking molecular changes to neuropathology and the latter to clinical symptoms remain largely obscure. Connectivity is a distinctive feature of the brain and the integrity of functional network dynamics is critical for normal functioning. A better understanding of network disruption in the neurodegenerative dementias may help bridge the gap between molecular changes, pathology and symptoms. Recent findings on functional network disruption as assessed with “resting-state” or intrinsic connectivity fMRI and EEG/MEG have shown distinct patterns of network disruption across the major neurodegenerative diseases. These network abnormalities are relatively specific to the clinical syndromes, and in Alzheimer's disease and frontotemporal dementia network disruption tracks the pattern of pathological changes. These findings may have a practical impact on diagnostic accuracy, allowing earlier detection of neurodegenerative diseases even at the pre-symptomatic stage, and tracking of disease progression. PMID:21778116

  17. Inferring causal molecular networks: empirical assessment through a community-based effort.

    PubMed

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  18. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  19. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.

    PubMed

    Kong, Bo; Bruns, Philipp; Behler, Nora A; Chang, Ligong; Schlitter, Anna Melissa; Cao, Jing; Gewies, Andreas; Ruland, Jürgen; Fritzsche, Sina; Valkovskaya, Nataliya; Jian, Ziying; Regel, Ivonne; Raulefs, Susanne; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Mueller, Nikola S; Roth, Susanne; Hackert, Thilo; Esposito, Irene; Theis, Fabian J; Kleeff, Jörg; Michalski, Christoph W

    2018-01-01

    The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras G12D -driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. General Anesthetics to Treat Major Depressive Disorder: Clinical Relevance and Underlying Mechanisms.

    PubMed

    Vutskits, Laszlo

    2018-01-01

    Major depressive disorder is a frequent and devastating psychological condition with tremendous public health impact. The underlying pathophysiological mechanisms involve abnormal neurotransmission and a relatedly impaired synaptic plasticity. Since general anesthetics are potent modulators of neuronal activity and, thereby, can exert long-term context-dependent impact on neural networks, an intriguing hypothesis is that these drugs could enhance impaired neural plasticity associated with certain psychiatric diseases. Clinical observations over the past few decades appear to confirm this possibility. Indeed, equipotency of general anesthesia alone in comparison with electroconvulsive therapy under general anesthesia has been demonstrated in several clinical trials. Importantly, in the past 15 years, intravenous administration of subanesthetic doses of ketamine have also been demonstrated to have rapid antidepressant effects. The molecular, cellular, and network mechanisms underlying these therapeutic effects have been partially identified. Although several important questions remain to be addressed, the ensemble of these experimental and clinical observations opens new therapeutic possibilities in the treatment of depressive disorders. Importantly, they also suggest a new therapeutic role for anesthetics that goes beyond their principal use in the perioperative period to facilitate surgery.

  1. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    PubMed

    Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  2. Optimality Principles in the Regulation of Metabolic Networks

    PubMed Central

    Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646

  3. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  4. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus.

    PubMed

    Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen

    2018-01-01

    Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury

    PubMed Central

    Feala, Jacob D.; AbdulHameed, Mohamed Diwan M.; Yu, Chenggang; Dutta, Bhaskar; Yu, Xueping; Schmid, Kara; Dave, Jitendra; Tortella, Frank

    2013-01-01

    Abstract The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates. PMID:23510232

  6. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  7. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.

    PubMed

    Coi, A L; Bigey, F; Mallet, S; Marsit, S; Zara, G; Gladieux, P; Galeote, V; Budroni, M; Dequin, S; Legras, J L

    2017-04-01

    The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence. © 2017 John Wiley & Sons Ltd.

  8. Molecular clock on a neutral network.

    PubMed

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  9. Molecular Clock on a Neutral Network

    NASA Astrophysics Data System (ADS)

    Raval, Alpan

    2007-09-01

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  10. Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    NASA Astrophysics Data System (ADS)

    Tallury, Syamal S.; Mineart, Kenneth P.; Woloszczuk, Sebastian; Williams, David N.; Thompson, Russell B.; Pasquinelli, Melissa A.; Banaszak, Michal; Spontak, Richard J.

    2014-09-01

    Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.

  11. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    PubMed

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  13. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    PubMed Central

    Ferguson, Katie A.; Huh, Carey Y. L.; Amilhon, Bénédicte; Manseau, Frédéric; Williams, Sylvain; Skinner, Frances K.

    2015-01-01

    Hippocampal theta is a 4–12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens–lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+) basket and axo-axonic cells (BC/AACs), PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored how the number of OLM-BiC connections and connection strength affected local theta power. We found that our models operate in regimes that could be distinguished by whether OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the resulting power of network theta oscillations. Overall, our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta power. PMID:26300744

  14. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.

    PubMed

    Shao, Yaping; Ye, Guozhu; Ren, Shancheng; Piao, Hai-Long; Zhao, Xinjie; Lu, Xin; Wang, Fubo; Ma, Wang; Li, Jia; Yin, Peiyuan; Xia, Tian; Xu, Chuanliang; Yu, Jane J; Sun, Yinghao; Xu, Guowang

    2018-07-15

    Genetic alterations drive metabolic reprograming to meet increased biosynthetic precursor and energy demands for cancer cell proliferation and survival in unfavorable environments. A systematic study of gene-metabolite regulatory networks and metabolic dysregulation should reveal the molecular mechanisms underlying prostate cancer (PCa) pathogenesis. Herein, we performed gas chromatography-mass spectrometry (GC-MS)-based metabolomics and RNA-seq analyses in prostate tumors and matched adjacent normal tissues (ANTs) to elucidate the molecular alterations and potential underlying regulatory mechanisms in PCa. Significant accumulation of metabolic intermediates and enrichment of genes in the tricarboxylic acid (TCA) cycle were observed in tumor tissues, indicating TCA cycle hyperactivation in PCa tissues. In addition, the levels of fumarate and malate were highly correlated with the Gleason score, tumor stage and expression of genes encoding related enzymes and were significantly related to the expression of genes involved in branched chain amino acid degradation. Using an integrated omics approach, we further revealed the potential anaplerotic routes from pyruvate, glutamine catabolism and branched chain amino acid (BCAA) degradation contributing to replenishing metabolites for TCA cycle. Integrated omics techniques enable the performance of network-based analyses to gain a comprehensive and in-depth understanding of PCa pathophysiology and may facilitate the development of new and effective therapeutic strategies. © 2018 UICC.

  15. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  16. Co-option of the polarity gene network shapes filament morphology in angiosperms

    PubMed Central

    de Almeida, Ana Maria Rocha; Yockteng, Roxana; Schnable, James; Alvarez-Buylla, Elena R.; Freeling, Michael; Specht, Chelsea D.

    2014-01-01

    The molecular genetic mechanisms underlying abaxial-adaxial polarity in plants have been studied as a property of lateral and flattened organs, such as leaves. In leaves, laminar expansion occurs as a result of balanced abaxial-adaxial gene expression. Over- or under- expression of either abaxializing or adaxializing genes inhibits laminar growth, resulting in a mutant radialized phenotype. Here, we show that co-option of the abaxial-adaxial polarity gene network plays a role in the evolution of stamen filament morphology in angiosperms. RNA-Seq data from species bearing laminar (flattened) or radial (cylindrical) filaments demonstrates that species with laminar filaments exhibit balanced expression of abaxial-adaxial (ab-ad) genes, while overexpression of a YABBY gene is found in species with radial filaments. This result suggests that unbalanced expression of ab-ad genes results in inhibition of laminar outgrowth, leading to a radially symmetric structure as found in many angiosperm filaments. We anticipate that co-option of the polarity gene network is a fundamental mechanism shaping many aspects of plant morphology during angiosperm evolution. PMID:25168962

  17. Co-option of the polarity gene network shapes filament morphology in angiosperms.

    PubMed

    de Almeida, Ana Maria Rocha; Yockteng, Roxana; Schnable, James; Alvarez-Buylla, Elena R; Freeling, Michael; Specht, Chelsea D

    2014-08-29

    The molecular genetic mechanisms underlying abaxial-adaxial polarity in plants have been studied as a property of lateral and flattened organs, such as leaves. In leaves, laminar expansion occurs as a result of balanced abaxial-adaxial gene expression. Over- or under- expression of either abaxializing or adaxializing genes inhibits laminar growth, resulting in a mutant radialized phenotype. Here, we show that co-option of the abaxial-adaxial polarity gene network plays a role in the evolution of stamen filament morphology in angiosperms. RNA-Seq data from species bearing laminar (flattened) or radial (cylindrical) filaments demonstrates that species with laminar filaments exhibit balanced expression of abaxial-adaxial (ab-ad) genes, while overexpression of a YABBY gene is found in species with radial filaments. This result suggests that unbalanced expression of ab-ad genes results in inhibition of laminar outgrowth, leading to a radially symmetric structure as found in many angiosperm filaments. We anticipate that co-option of the polarity gene network is a fundamental mechanism shaping many aspects of plant morphology during angiosperm evolution.

  18. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord?

    PubMed

    Sun, Qian-Quan

    2007-01-01

    We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?

  19. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.

    PubMed

    Loor, Juan J; Everts, Robin E; Bionaz, Massimo; Dann, Heather M; Morin, Dawn E; Oliveira, Rosane; Rodriguez-Zas, Sandra L; Drackley, James K; Lewin, Harris A

    2007-12-19

    Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.

  20. Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease

    PubMed Central

    Mehler, Mark F.

    2009-01-01

    Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity. PMID:18940229

  1. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    PubMed

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.

  2. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition

    PubMed Central

    Zhou, E. H.; Trepat, X.; Park, C. Y.; Lenormand, G.; Oliver, M. N.; Mijailovich, S. M.; Hardin, C.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J.

    2009-01-01

    Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type. PMID:19520830

  3. Systems Pharmacology Dissection of Traditional Chinese Medicine Wen-Dan Decoction for Treatment of Cardiovascular Diseases.

    PubMed

    Lan, Tao-Hua; Zhang, Lu-Lu; Wang, Yong-Hua; Wu, Huan-Lin; Xu, Dan-Ping

    2018-01-01

    Cardiovascular diseases (CVDs) have been recognized as first killer of human health. The underlying mechanisms of CVDs are extremely complicated and not fully revealed, leading to a challenge for CVDs treatment in modern medicine. Traditional Chinese medicine (TCM) characterized by multiple compounds and targets has shown its marked effects on CVDs therapy. However, system-level understanding of the molecular mechanisms is still ambiguous. In this study, a system pharmacology approach was developed to reveal the underlying molecular mechanisms of a clinically effective herb formula (Wen-Dan Decoction) in treating CVDs. 127 potential active compounds and their corresponding 283 direct targets were identified in Wen-Dan Decoction. The networks among active compounds, targets, and diseases were built to reveal the pharmacological mechanisms of Wen-Dan Decoction. A "CVDs pathway" consisted of several regulatory modules participating in therapeutic effects of Wen-Dan Decoction in CVDs. All the data demonstrates that Wen-Dan Decoction has multiscale beneficial activity in CVDs treatment, which provides a new way for uncovering the molecular mechanisms and new evidence for clinical application of Wen-Dan Decoction in cardiovascular disease.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moberg, Daniel R.; Straight, Shelby C.; Knight, Christopher

    Here, an unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the latticemore » vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.« less

  5. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation

    PubMed Central

    Namjoshi, Sanjeev V.; Raab-Graham, Kimberly F.

    2017-01-01

    In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches. PMID:28286470

  6. Surveillance at the molecular level: Developing an integrated network for detecting variation in avian influenza viruses in Indonesia.

    PubMed

    Hartaningsih, Nining; Wibawa, Hendra; Pudjiatmoko; Rasa, Fadjar Sumping Tjatur; Irianingsih, Sri Handayani; Dharmawan, Rama; Azhar, Muhammad; Siregar, Elly Sawitri; McGrane, James; Wong, Frank; Selleck, Paul; Allen, John; Broz, Ivano; Torchetti, Mia Kim; Dauphin, Gwenaelle; Claes, Filip; Sastraningrat, Wiryadi; Durr, Peter A

    2015-06-01

    Since 2006, Indonesia has used vaccination as the principal means of control of H5N1-HPAI. During this time, the virus has undergone gradual antigenic drift, which has necessitated changes in seed strains for vaccine production and associated modifications to diagnostic antigens. In order to improve the system of monitoring such viral evolution, the Government of Indonesia, with the assistance of FAO/OFFLU, has developed an innovative network whereby H5N1 isolates are antigenically and genetically characterised. This molecular surveillance network ("Influenza Virus Monitoring" or "IVM") is based on the regional network of veterinary diagnostic laboratories, and is supported by a web-based data management system ("IVM Online"). The example of the Indonesian IVM network has relevance for other countries seeking to establish laboratory networks for the molecular surveillance of avian influenza and other pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    ERIC Educational Resources Information Center

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  8. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  9. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease.

    PubMed

    Dulla, Chris G; Coulter, Douglas A; Ziburkus, Jokubas

    2016-06-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. © The Author(s) 2015.

  10. Bayesian networks in neuroscience: a survey.

    PubMed

    Bielza, Concha; Larrañaga, Pedro

    2014-01-01

    Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.

  11. Bayesian networks in neuroscience: a survey

    PubMed Central

    Bielza, Concha; Larrañaga, Pedro

    2014-01-01

    Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind–morphological, electrophysiological, -omics and neuroimaging–, thereby broadening the scope–molecular, cellular, structural, functional, cognitive and medical– of the brain aspects to be studied. PMID:25360109

  12. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    PubMed

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  13. Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple populations of diverse ethnicities in the United States

    PubMed Central

    Zhang, Guanglin; Codoni, Veronica; Yang, Jun; Wilson, James G.; Levy, Daniel; Lusis, Aldons J.; Liu, Simin; Yang, Xia

    2017-01-01

    Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex diseases likely sharing overlapping pathogenesis driven by aberrant activities in gene networks. However, the molecular circuitries underlying the pathogenic commonalities remain poorly understood. We sought to identify the shared gene networks and their key intervening drivers for both CVD and T2D by conducting a comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from CVD and T2D relevant tissues. We identified pathways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those governing oxidation, extracellular matrix, immune response, and neuronal system as shared pathogenic processes for both diseases. Further, we uncovered 15 key drivers including HMGCR, CAV1, IGF1 and PCOLCE, whose network neighbors collectively account for approximately 35% of known GWAS hits for CVD and 22% for T2D. Finally, we cross-validated the regulatory role of the top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide strong support that common sets of tissue-specific molecular networks drive the pathogenesis of both CVD and T2D across ethnicities and help prioritize new therapeutic avenues for both CVD and T2D. PMID:28957322

  14. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  15. Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Feltus, F. Alex

    2011-01-01

    One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species. PMID:21606319

  16. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.

    PubMed

    Ficklin, Stephen P; Feltus, F Alex

    2011-07-01

    One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.

  17. Disentangling the multigenic and pleiotropic nature of molecular function

    PubMed Central

    2015-01-01

    Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917

  18. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    PubMed Central

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process. PMID:22912585

  19. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.)

    PubMed Central

    Sun, Xiaochuan; Wang, Yan; Xu, Liang; Li, Chao; Zhang, Wei; Luo, Xiaobo; Jiang, Haiyan; Liu, Liwang

    2017-01-01

    To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops. PMID:28769938

  20. Deciphering the underlying mechanisms of Diesun Miaofang in traumatic injury from a systems pharmacology perspective

    PubMed Central

    ZHENG, CHUN-SONG; FU, CHANG-LONG; PAN, CAI-BIN; BAO, HONG-JUAN; CHEN, XING-QIANG; YE, HONG-ZHI; YE, JIN-XIA; WU, GUANG-WEN; LI, XI-HAI; XU, HUI-FENG; XU, XIAO-JIE; LIU, XIAN-XIANG

    2015-01-01

    Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmcological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine. PMID:25891262

  1. Network Medicine: A Network-based Approach to Human Disease

    PubMed Central

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  2. Translational biomarkers: from discovery and development to clinical practice.

    PubMed

    Subramanyam, Meena; Goyal, Jaya

    The refinement of disease taxonomy utilizing molecular phenotypes has led to significant improvements in the precision of disease diagnosis and customization of treatment options. This has also spurred efforts to identify novel biomarkers to understand the impact of therapeutically altering the underlying molecular network on disease course, and to support decision-making in drug discovery and development. However, gaps in knowledge regarding disease heterogeneity, combined with the inadequacies of surrogate disease model systems, make it challenging to demonstrate the unequivocal association of molecular and physiological biomarkers to disease pathology. This article will discuss the current landscape in biomarker research and highlight strategies being adopted to increase the likelihood of transitioning biomarkers from discovery to medical practice to enable more objective decision making, and to improve health outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  4. Non-coding RNA networks underlying cognitive disorders across the lifespan

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. Here, we discuss the emergence of many novel, diverse, and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses, and aging and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases as well as those that manifest throughout the lifespan. PMID:21411369

  5. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    PubMed

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  6. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability

    PubMed Central

    2014-01-01

    Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703

  7. Predictive Biomarkers for Linking Disease Pathology and Drug Effect.

    PubMed

    Mayer, Bernd; Heinzel, Andreas; Lukas, Arno; Perco, Paul

    2017-01-01

    Productivity in drug R&D continues seeing significant attrition in clinical stage testing. Approval of new molecular entities proceeds with slow pace specifically when it comes to chronic, age-related diseases, calling for new conceptual approaches, methodological implementation and organizational adoption in drug development. Detailed phenotyping of disease presentation together with comprehensive representation of drug mechanism of action is considered as a path forward, and a big data spectrum has become available covering behavioral, clinical and molecular characteristics, the latter combining reductionist and explorative strategies. On this basis integrative analytics in the realm of Systems Biology has emerged, essentially aiming at traversing associations into causal relationships for bridging molecular disease specifics and clinical phenotype surrogates and finally explaining drug response and outcome. From a conceptual perspective bottom-up modeling approaches are available, with dynamical hierarchies as formalism capable of describing clinical findings as emergent properties of an underlying molecular process network comprehensively resembling disease pathology. In such representation biomarker candidates serve as proxy of a molecular process set, at the interface of a corresponding representation of drug mechanism of action allowing patient stratification and prediction of drug response. In practical implementation network analytics on a protein coding gene level has provided a number of example cases for matching disease presentation and drug molecular effect, and workflows combining computational hypothesis generation and experimental evaluation have become available for systematically optimizing biomarker candidate selection. With biomarker-based enrichment strategies in adaptive clinical trials, implementation routes for tackling development attrition are provided. Predictive biomarkers add precision in drug development and as companion diagnostics in clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Building New Bridges between In Vitro and In Vivo in Early Drug Discovery: Where Molecular Modeling Meets Systems Biology.

    PubMed

    Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José

    2017-01-01

    Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    PubMed

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  10. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  11. Propagating annotations of molecular networks using in silico fragmentation

    PubMed Central

    da Silva, Ricardo R.; Wang, Mingxun; Fox, Evan; Balunas, Marcy J.; Klassen, Jonathan L.; Dorrestein, Pieter C.

    2018-01-01

    The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp. PMID:29668671

  12. Propagating annotations of molecular networks using in silico fragmentation.

    PubMed

    da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C

    2018-04-01

    The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.

  13. Male sex determination: insights into molecular mechanisms

    PubMed Central

    McClelland, Kathryn; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516

  14. Cellular Homeostasis and Aging.

    PubMed

    Hartl, F Ulrich

    2016-06-02

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.

  15. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  16. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs.

    PubMed

    Roth, Wera; Hecker, David; Fava, Eugenio

    2016-01-01

    MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.

  17. Quantitative implementation of the endogenous molecular-cellular network hypothesis in hepatocellular carcinoma.

    PubMed

    Wang, Gaowei; Zhu, Xiaomei; Gu, Jianren; Ao, Ping

    2014-06-06

    A quantitative hypothesis for cancer genesis and progression-the endogenous molecular-cellular network hypothesis, intended to include both genetic and epigenetic causes of cancer-has been proposed recently. Using this hypothesis, here we address the molecular basis for maintaining normal liver and hepatocellular carcinoma (HCC), and the potential strategy to cure or relieve HCC. First, we elaborate the basic assumptions of the hypothesis and establish a core working network of HCC according to the hypothesis. Second, we quantify the working network by a nonlinear dynamical system. We show that the working network reproduces the main known features of normal liver and HCC at both the modular and molecular levels. Lastly, the validated working network reveals that (i) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (ii) inhibiting proliferation and inflammation-related positive feedback loops and simultaneously inducing a liver-specific positive feedback loop is predicated as a potential strategy to cure or relieve HCC; and (iii) the genesis and regression of HCC are asymmetric. In light of the characteristic properties of the nonlinear dynamical system, we demonstrate that positive feedback loops must exist as a simple and general molecular basis for the maintenance of heritable phenotypes, such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  18. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  19. The HUPO PSI's molecular interaction format--a community standard for the representation of protein interaction data.

    PubMed

    Hermjakob, Henning; Montecchi-Palazzi, Luisa; Bader, Gary; Wojcik, Jérôme; Salwinski, Lukasz; Ceol, Arnaud; Moore, Susan; Orchard, Sandra; Sarkans, Ugis; von Mering, Christian; Roechert, Bernd; Poux, Sylvain; Jung, Eva; Mersch, Henning; Kersey, Paul; Lappe, Michael; Li, Yixue; Zeng, Rong; Rana, Debashis; Nikolski, Macha; Husi, Holger; Brun, Christine; Shanker, K; Grant, Seth G N; Sander, Chris; Bork, Peer; Zhu, Weimin; Pandey, Akhilesh; Brazma, Alvis; Jacq, Bernard; Vidal, Marc; Sherman, David; Legrain, Pierre; Cesareni, Gianni; Xenarios, Ioannis; Eisenberg, David; Steipe, Boris; Hogue, Chris; Apweiler, Rolf

    2004-02-01

    A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).

  20. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  1. The Effects of Hallucinogens on Gene Expression.

    PubMed

    Martin, David A; Nichols, Charles D

    2018-01-01

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  2. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    PubMed Central

    Tomasetti, Carmine; Iasevoli, Felice; Buonaguro, Elisabetta Filomena; De Berardis, Domenico; Fornaro, Michele; Fiengo, Annastasia Lucia Carmela; Martinotti, Giovanni; Orsolini, Laura; Valchera, Alessandro; Di Giannantonio, Massimo; de Bartolomeis, Andrea

    2017-01-01

    Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies. PMID:28085108

  3. A systems-pharmacology analysis of herbal medicines used in health improvement treatment: predicting potential new drugs and targets.

    PubMed

    Liu, Jianling; Pei, Mengjie; Zheng, Chunli; Li, Yan; Wang, Yonghua; Lu, Aiping; Yang, Ling

    2013-01-01

    For thousands of years, tonic herbs have been successfully used all around the world to improve health, energy, and vitality. However, their underlying mechanisms of action in molecular/systems levels are still a mystery. In this work, two sets of tonic herbs, so called Qi-enriching herbs (QEH) and Blood-tonifying herbs (BTH) in TCM, were selected to elucidate why they can restore proper balance and harmony inside body, organ and energy system. Firstly, a pattern recognition model based on artificial neural network and discriminant analysis for assessing the molecular difference between QEH and BTH was developed. It is indicated that QEH compounds have high lipophilicity while BTH compounds possess high chemical reactivity. Secondly, a systematic investigation integrating ADME (absorption, distribution, metabolism, and excretion) prediction, target fishing and network analysis was performed and validated on these herbs to obtain the compound-target associations for reconstructing the biologically-meaningful networks. The results suggest QEH enhance physical strength, immune system and normal well-being, acting as adjuvant therapy for chronic disorders while BTH stimulate hematopoiesis function in body. As an emerging approach, the systems pharmacology model might facilitate to understand the mechanisms of action of the tonic herbs, which brings about new development for complementary and alternative medicine.

  4. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases

    PubMed Central

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A.

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789

  5. A Computational Drug-Target Network for Yuanhu Zhitong Prescription

    PubMed Central

    Lu, Peng; Zhang, Fangbo; Yuan, Yuan; Wang, Songsong

    2013-01-01

    Yuanhu Zhitong prescription (YZP) is a typical and relatively simple traditional Chinese medicine (TCM), widely used in the clinical treatment of headache, gastralgia, and dysmenorrhea. However, the underlying molecular mechanism of action of YZP is not clear. In this study, based on the previous chemical and metabolite analysis, a complex approach including the prediction of the structure of metabolite, high-throughput in silico screening, and network reconstruction and analysis was developed to obtain a computational drug-target network for YZP. This was followed by a functional and pathway analysis by ClueGO to determine some of the pharmacologic activities. Further, two new pharmacologic actions, antidepressant and antianxiety, of YZP were validated by animal experiments using zebrafish and mice models. The forced swimming test and the tail suspension test demonstrated that YZP at the doses of 4 mg/kg and 8 mg/kg had better antidepressive activity when compared with the control group. The anxiolytic activity experiment showed that YZP at the doses of 100 mg/L, 150 mg/L, and 200 mg/L had significant decrease in diving compared to controls. These results not only shed light on the better understanding of the molecular mechanisms of YZP for curing diseases, but also provide some evidence for exploring the classic TCM formulas for new clinical application. PMID:23762151

  6. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  7. Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains.

    PubMed

    Rampino, Patrizia; De Pascali, Mariarosaria; De Caroli, Monica; Luvisi, Andrea; De Bellis, Luigi; Piro, Gabriella; Perrotta, Carla

    2017-11-01

    Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Morphing dynamics in light-triggered LC polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Broer, Dirk J.

    2017-02-01

    Polymers that can change shape or surface topography in response to a trigger have a wide application potential varying from micro-robotics to avionics. Preferably this morphing proceeds fast and reversibly. We developed new morphing principles based on in-situ photopolymerized liquid crystal networks and on hybrid low molecular weight liquid crystals and liquid crystal networks. Commonly the triggers are temperature, light, pH or the presence of chemicals or other moisture. In the lecture we will focus on UV actuation and demonstrate that by accurate positioning of molecules over all three dimensions of a thin film or coating, the deformation figures can be pre-engineered. They can vary from simple gratings to very complex such as fingerprints that can be switched between off (flat surface) and on (corrugated surface) by light. The underlying principles are based on photo-induced changes in the degree of order of liquid crystal polymer networks and the accompanying changes in density by the formation of free volume. The surfaces can be switched with frequencies of the order of 0.1 Hz. In the lecture we will discuss several methods to fabricate the responsive layers as well as some of the most eye-catching properties. Also the mechanism of free volume generation will be addressed in terms of molecular dynamics and resonance.

  9. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    PubMed Central

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-01-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320

  10. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    NASA Astrophysics Data System (ADS)

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-05-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.

  11. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  12. Chemopreventive potential of natural compounds in head and neck cancer

    PubMed Central

    Rahman, Mohammad Aminur; Amin, A.R.M. Ruhul; Shin, Dong M.

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most fatal cancers world-wide. Despite advances in the management of HNSCC, the overall survival for patients has not improved significantly due to advanced stages at diagnosis, high recurrence rate after surgical removal, and second primary tumor development, which together underscore the importance of novel strategies for cancer prevention. Cancer chemoprevention, the use of natural or synthetic compounds to prevent, arrest, or reverse the process of carcinogenesis at its earliest stages, aims to reverse premalignancies and prevent second primary tumors. Genomics and proteomics information including initial mutation, cancer promotion, progression and susceptibility has brought molecularly targeted therapies for drug development. The development of preventive approaches using specific natural or synthetic compounds, or both, requires a depth of understanding of the cross-talk between cancer signaling pathways and networks to retain or enhance chemopreventive activity while reducing known toxic effects. Many natural dietary compounds have been identified as multiple molecular targets, effective in the prevention and treatment of cancer. This review describes recent advances in the understanding of the complex signaling networks driving cancer progression using head and neck cancer as a prototype, and of molecularly targeted natural compounds under preclinical and clinical investigation. PMID:20924973

  13. MOLSIM: A modular molecular simulation software

    PubMed Central

    Jurij, Reščič

    2015-01-01

    The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597

  14. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure.

    PubMed

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-17

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  15. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  16. A network of discrete events for the representation and analysis of diffusion dynamics.

    PubMed

    Pintus, Alberto M; Pazzona, Federico G; Demontis, Pierfranco; Suffritti, Giuseppe B

    2015-11-14

    We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.

  17. Genes and (Common) Pathways Underlying Drug Addiction

    PubMed Central

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  18. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  19. Model-based design of RNA hybridization networks implemented in living cells

    PubMed Central

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter

    2017-01-01

    Abstract Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. PMID:28934501

  20. Network Medicine: From Cellular Networks to the Human Diseasome

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo

    2014-03-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.

  1. Exploring molecular networks using MONET ontology.

    PubMed

    Silva, João Paulo Müller da; Lemke, Ney; Mombach, José Carlos; Souza, José Guilherme Camargo de; Sinigaglia, Marialva; Vieira, Renata

    2006-03-31

    The description of the complex molecular network responsible for cell behavior requires new tools to integrate large quantities of experimental data in the design of biological information systems. These tools could be used in the characterization of these networks and in the formulation of relevant biological hypotheses. The building of an ontology is a crucial step because it integrates in a coherent framework the concepts necessary to accomplish such a task. We present MONET (molecular network), an extensible ontology and an architecture designed to facilitate the integration of data originating from different public databases in a single- and well-documented relational database, that is compatible with MONET formal definition. We also present an example of an application that can easily be implemented using these tools.

  2. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    NASA Astrophysics Data System (ADS)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  3. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  4. Computational analysis of multimorbidity between asthma, eczema and rhinitis

    PubMed Central

    Aguilar, Daniel; Pinart, Mariona; Koppelman, Gerard H.; Saeys, Yvan; Nawijn, Martijn C.; Postma, Dirkje S.; Akdis, Mübeccel; Auffray, Charles; Ballereau, Stéphane; Benet, Marta; García-Aymerich, Judith; González, Juan Ramón; Guerra, Stefano; Keil, Thomas; Kogevinas, Manolis; Lambrecht, Bart; Lemonnier, Nathanael; Melen, Erik; Sunyer, Jordi; Valenta, Rudolf; Valverde, Sergi; Wickman, Magnus; Bousquet, Jean; Oliva, Baldo; Antó, Josep M.

    2017-01-01

    Background The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multimorbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity between three main allergic diseases at a molecular level by identifying the proteins and cellular processes that are common to them. Methods An in silico study based on computational analysis of the topology of the protein interaction network was performed in order to characterize the molecular mechanisms of multimorbidity of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were identified using data mining approaches, and their overlap was calculated. Secondly, a functional interaction network was built, allowing to identify cellular pathways involved in allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly predicted multimorbidity-associated proteins. Results Asthma, eczema and rhinitis shared a larger number of associated proteins than expected by chance, and their associated proteins exhibited a significant degree of interconnectedness in the interaction network. There were 15 pathways involved in the multimorbidity of asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A number of proteins potentially associated to these multimorbidity processes were also obtained. Conclusions These results strongly support the existence of an allergic multimorbidity cluster between asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candidates contributing to multimorbidity that may assist in identifying new targets for multimorbid allergic diseases. PMID:28598986

  5. Computational analysis of multimorbidity between asthma, eczema and rhinitis.

    PubMed

    Aguilar, Daniel; Pinart, Mariona; Koppelman, Gerard H; Saeys, Yvan; Nawijn, Martijn C; Postma, Dirkje S; Akdis, Mübeccel; Auffray, Charles; Ballereau, Stéphane; Benet, Marta; García-Aymerich, Judith; González, Juan Ramón; Guerra, Stefano; Keil, Thomas; Kogevinas, Manolis; Lambrecht, Bart; Lemonnier, Nathanael; Melen, Erik; Sunyer, Jordi; Valenta, Rudolf; Valverde, Sergi; Wickman, Magnus; Bousquet, Jean; Oliva, Baldo; Antó, Josep M

    2017-01-01

    The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multimorbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity between three main allergic diseases at a molecular level by identifying the proteins and cellular processes that are common to them. An in silico study based on computational analysis of the topology of the protein interaction network was performed in order to characterize the molecular mechanisms of multimorbidity of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were identified using data mining approaches, and their overlap was calculated. Secondly, a functional interaction network was built, allowing to identify cellular pathways involved in allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly predicted multimorbidity-associated proteins. Asthma, eczema and rhinitis shared a larger number of associated proteins than expected by chance, and their associated proteins exhibited a significant degree of interconnectedness in the interaction network. There were 15 pathways involved in the multimorbidity of asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A number of proteins potentially associated to these multimorbidity processes were also obtained. These results strongly support the existence of an allergic multimorbidity cluster between asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candidates contributing to multimorbidity that may assist in identifying new targets for multimorbid allergic diseases.

  6. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  7. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    NASA Astrophysics Data System (ADS)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double network" that behaves as a real thermal "actuator". This approach places sub-chains under different degrees of configurational bias within the network to utilize the material's propensity to undergo stress-induced crystallization. Reconfiguration of model shape-memory networks containing photo-sensitive linkages can also be employed to program two-way actuator. Chain reshuffling of a partially reconfigurable network is initiated upon exposure to light under specific strains. Interesting photo-induced creep and stress relaxation behaviors were demonstrated and understood based on a novel transient network model we derived. In summary, delicate manipulation of shape-memory network architectures addressed critical issues constraining the application of this type of functional polymer material. Strategies developed in this thesis may provide new opportunity to the field of shape-memory polymers.

  8. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.

  9. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  10. Molecular inspired models for prediction and control of directional FSO/RF wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.

    2010-08-01

    Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.

  11. The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks1[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex

    2010-01-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062

  12. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks.

    PubMed

    Ficklin, Stephen P; Luo, Feng; Feltus, F Alex

    2010-09-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.

  13. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels

    PubMed Central

    Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.

    2015-01-01

    Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864

  14. The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes

    PubMed Central

    Wang, Zhu; Stoltzfus, Jonathan; You, Young-jai; Ranjit, Najju; Tang, Hao; Xie, Yang; Lok, James B.; Mangelsdorf, David J.; Kliewer, Steven A.

    2015-01-01

    Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases. PMID:25774872

  15. Molecular interaction networks in the analyses of sequence variation and proteomics data.

    PubMed

    Stelzl, Ulrich

    2013-12-01

    Protein-protein interaction networks are typically generated in standard cell lines or model organisms as it is prohibitively difficult to record large interaction datasets from specific tissues or disease models at a reasonable pace. Although the interaction data are of high confidence, they thus do not reflect in vivo relationships as such. A wealth of physiologically relevant protein information, obtained under different conditions and from different systems, is available including information on genetic variation, protein levels, and PTMs. However, these data are difficult to assess comprehensively because the relationships between the entities remain elusive from the measurements. Here, we exemplarily highlight recent studies that gained deeper insight from genetic variation, protein, and PTM measurements using interaction information pointing toward the importance and potential of interaction networks for the interpretation of sequencing and proteomics data. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    PubMed

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales

    PubMed Central

    Murfee, Walter L.; Sweat, Richard S.; Tsubota, Ken-ichi; Gabhann, Feilim Mac; Khismatullin, Damir; Peirce, Shayn M.

    2015-01-01

    Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales. PMID:25844149

  19. MicroRNAs in Palatogenesis and Cleft Palate

    PubMed Central

    Schoen, Christian; Aschrafi, Armaz; Thonissen, Michelle; Poelmans, Geert; Von den Hoff, Johannes W.; Carels, Carine E. L.

    2017-01-01

    Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate. PMID:28420997

  20. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks.

    PubMed

    Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk

    2014-10-01

    The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.

  1. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  2. Vitamins for enhancing plant resistance.

    PubMed

    Boubakri, Hatem; Gargouri, Mahmoud; Mliki, Ahmed; Brini, Faiçal; Chong, Julie; Jbara, Moez

    2016-09-01

    This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

  3. A network model of genomic hormone interactions underlying dementia and its translational validation through serendipitous off-target effect

    PubMed Central

    2013-01-01

    Background While the majority of studies have focused on the association between sex hormones and dementia, emerging evidence supports the role of other hormone signals in increasing dementia risk. However, due to the lack of an integrated view on mechanistic interactions of hormone signaling pathways associated with dementia, molecular mechanisms through which hormones contribute to the increased risk of dementia has remained unclear and capacity of translating hormone signals to potential therapeutic and diagnostic applications in relation to dementia has been undervalued. Methods Using an integrative knowledge- and data-driven approach, a global hormone interaction network in the context of dementia was constructed, which was further filtered down to a model of convergent hormone signaling pathways. This model was evaluated for its biological and clinical relevance through pathway recovery test, evidence-based analysis, and biomarker-guided analysis. Translational validation of the model was performed using the proposed novel mechanism discovery approach based on ‘serendipitous off-target effects’. Results Our results reveal the existence of a well-connected hormone interaction network underlying dementia. Seven hormone signaling pathways converge at the core of the hormone interaction network, which are shown to be mechanistically linked to the risk of dementia. Amongst these pathways, estrogen signaling pathway takes the major part in the model and insulin signaling pathway is analyzed for its association to learning and memory functions. Validation of the model through serendipitous off-target effects suggests that hormone signaling pathways substantially contribute to the pathogenesis of dementia. Conclusions The integrated network model of hormone interactions underlying dementia may serve as an initial translational platform for identifying potential therapeutic targets and candidate biomarkers for dementia-spectrum disorders such as Alzheimer’s disease. PMID:23885764

  4. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  5. Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.

    PubMed

    Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L

    2013-04-16

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  7. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    PubMed

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  8. The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms.

    PubMed

    Yao, Zepeng; Bennett, Amelia J; Clem, Jenna L; Shafer, Orie T

    2016-12-13

    In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Physical Organic Chemistry of Supramolecular Polymers

    PubMed Central

    Serpe, Michael J.; Craig, Stephen L.

    2008-01-01

    Unlike the case of traditional covalent polymers, the entanglements that determine properties of supramolecular polymers are defined by very specific, intermolecular interactions. Recent work using modular molecular platforms to probe the mechanisms underlying mechanical response of supramolecular polymers is reviewed. The contributions of supramolecular kinetics, thermodynamics, and conformational flexibility to supramolecular polymer properties in solutions of discrete polymers, in networks, and at interfaces, are described. Molecule-to-material relationships are established through methods reminiscent of classic physical organic chemistry. PMID:17279638

  10. Composition and formation of heterochromatin in Arabidopsis thaliana.

    PubMed

    Fransz, P; ten Hoopen, R; Tessadori, F

    2006-01-01

    The term heterochromatin has been applied to both large-scale, microscopically visible chromocentres and small-scale, silent genes located outside chromocentres. This may cause confusion in the interpretation of epigenetic marks for both features. The model plant Arabidopsis thaliana provides an excellent system to investigate composition and function of chromatin states at different levels of organization. In this review we will discuss recent developments in molecular networks underlying gene silencing and the relationship with visible heterochromatin in Arabidopsis.

  11. Genes Responsive to Low-Intensity Pulsed Ultrasound in MC3T3-E1 Preosteoblast Cells

    PubMed Central

    Tabuchi, Yoshiaki; Sugahara, Yuuki; Ikegame, Mika; Suzuki, Nobuo; Kitamura, Kei-ichiro; Kondo, Takashi

    2013-01-01

    Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm2) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells. PMID:24252911

  12. Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach

    PubMed Central

    You, Sungyong; Yoo, Seung-Ah; Choi, Susanna; Kim, Ji-Young; Park, Su-Jung; Ji, Jong Dae; Kim, Tae-Hwan; Kim, Ki-Jo; Cho, Chul-Soo; Hwang, Daehee; Kim, Wan-Uk

    2014-01-01

    Rheumatoid synoviocytes, which consist of fibroblast-like synoviocytes (FLSs) and synovial macrophages (SMs), are crucial for the progression of rheumatoid arthritis (RA). Particularly, FLSs of RA patients (RA-FLSs) exhibit invasive characteristics reminiscent of cancer cells, destroying cartilage and bone. RA-FLSs and SMs originate differently from mesenchymal and myeloid cells, respectively, but share many pathologic functions. However, the molecular signatures and biological networks representing the distinct and shared features of the two cell types are unknown. We performed global transcriptome profiling of FLSs and SMs obtained from RA and osteoarthritis patients. By comparing the transcriptomes, we identified distinct molecular signatures and cellular processes defining invasiveness of RA-FLSs and proinflammatory properties of RA-SMs, respectively. Interestingly, under the interleukin-1β (IL-1β)–stimulated condition, the RA-FLSs newly acquired proinflammatory signature dominant in RA-SMs without losing invasive properties. We next reconstructed a network model that delineates the shared, RA-FLS–dominant (invasive), and RA-SM–dominant (inflammatory) processes. From the network model, we selected 13 genes, including periostin, osteoblast-specific factor (POSTN) and twist basic helix–loop–helix transcription factor 1 (TWIST1), as key regulator candidates responsible for FLS invasiveness. Of note, POSTN and TWIST1 expressions were elevated in independent RA-FLSs and further instigated by IL-1β. Functional assays demonstrated the requirement of POSTN and TWIST1 for migration and invasion of RA-FLSs stimulated with IL-1β. Together, our systems approach to rheumatoid synovitis provides a basis for identifying key regulators responsible for pathological features of RA-FLSs and -SMs, demonstrating how a certain type of cells acquires functional redundancy under chronic inflammatory conditions. PMID:24374632

  13. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  14. Charge transport network dynamics in molecular aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less

  15. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat

    PubMed Central

    Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam

    2016-01-01

    Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758

  16. Metal adatoms generated by the co-play of melamine assembly and subsequent CO adsorption.

    PubMed

    Wang, Li; Chen, Qiwei; Shi, Hong; Liu, Huihui; Ren, Xinguo; Wang, Bing; Wu, Kai; Shao, Xiang

    2016-01-28

    Molecular self-assembly films are expected to tailor the surface process by the periodic nanostructures and add-on functional groups. In this work, a molecular network of melamine with featured pores of subnanometer size is prepared on the Au(111) surface, and is found to be able to trap the gold adatoms and concomitant single vacancies generated under the impingement of CO molecules at room temperature. DFT calculations suggest that the strong CO-Au adatom interaction as well as the high adhesion of the Au adatom inside the melamine pore could well be the driving force behind such process. This study not only sheds light onto the interactions between gasses and the metal surface that is covered by molecular self-assembly films, but also provides a novel route to manipulate the monoatomic surface species which is of catalytic interest.

  17. Genetic engineering of woody plants: current and future targets in a stressful environment.

    PubMed

    Osakabe, Yuriko; Kajita, Shinya; Osakabe, Keishi

    2011-06-01

    Abiotic stress is a major factor in limiting plant growth and productivity. Environmental degradation, such as drought and salinity stresses, will become more severe and widespread in the world. To overcome severe environmental stress, plant biotechnologies, such as genetic engineering in woody plants, need to be implemented. The adaptation of plants to environmental stress is controlled by cascades of molecular networks including cross-talk with other stress signaling mechanisms. The present review focuses on recent studies concerning genetic engineering in woody plants for the improvement of the abiotic stress responses. Furthermore, it highlights the recent advances in the understanding of molecular responses to stress. The review also summarizes the basis of a molecular mechanism for cell wall biosynthesis and the plant hormone responses to regulate tree growth and biomass in woody plants. This would facilitate better understanding of the control programs of biomass production under stressful conditions. Copyright © Physiologia Plantarum 2011.

  18. The Drosophila Circadian Pacemaker Circuit: Pas de Deux or Tarantella?

    PubMed Central

    Sheeba, Vasu; Kaneko, Maki; Sharma, Vijay Kumar; Holmes, Todd C.

    2008-01-01

    Molecular genetic analysis of the fruit fly Drosophila melanogaster has revolutionized our understanding of the transcription/translation loop mechanisms underlying the circadian molecular oscillator. More recently, Drosophila has been used to understand how different neuronal groups within the circadian pacemaker circuit interact to regulate the overall behavior of the fly in response to daily cyclic environmental cues as well as seasonal changes. Our present understanding of circadian timekeeping at the molecular and circuit level is discussed with a critical evaluation of the strengths and weaknesses of present models. Two models for circadian neural circuits are compared: one that posits that two anatomically distinct oscillators control the synchronization to the two major daily morning and evening transitions, versus a distributed network model that posits that many cell-autonomous oscillators are coordinated in a complex fashion and respond via plastic mechanisms to changes in environmental cues. PMID:18307108

  19. A new paradigm for the molecular basis of rubber elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, David E.; Barber, John L.

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There aremore » serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief review of previous elasticity theories and their deficiencies, and present a new paradigm with an emphasis on experimental comparisons.« less

  20. A new paradigm for the molecular basis of rubber elasticity

    DOE PAGES

    Hanson, David E.; Barber, John L.

    2015-02-19

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There aremore » serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief review of previous elasticity theories and their deficiencies, and present a new paradigm with an emphasis on experimental comparisons.« less

  1. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl/TDSS and commercial PDMS-based Sylgard 184 composite, but only keep improving with additional crosslinker in the silanol/TEOS systems due to in situ TEOS aggregation. We relate molecular network topology to mechanical properties using outputs from the Miller-Macosko model in the vinyl/TDSS system. The elastic fraction and storage modulus correlate well, as do the pendant fraction and the loss tangent, demonstrating the importance of each fraction in bulk mechanical properties. By studying the dynamic behavior of water droplets wetting PDMS substrates, we observe non-linear wetting behaviors that are markedly different from linear behaviors seen on glassy polymer substrates. The non-linear behavior is only observed prior to extraction, while after extraction, both systems demonstrate behavior similar to glassy polymers. This reveals the dramatic role small amounts of uncrosslinked materials present in the sol fraction play in the surface wetting dynamics of PDMS materials. We further demonstrate the role of uncrosslinked material by adding silicone oils into otherwise fully crosslinked PDMS networks and study their wetting properties. Through careful formulation and preparation of PDMS materials, compared to simply mixing two formulations present in Sylgard 184, one can apply polymer network models to glean useful information about network topology. The benefits of doing so outweigh the costs. We stress the importance of performing Soxhlet extraction to remove unreacted components from PDMS materials, even when using optimal stoichiometry. These mobile molecules that remain after crosslinking can alter significantly wetting behavior and readily leach into liquid environments. However, it is equally important to stress that Soxhlet extraction will not remove all unreacted material. Some will always remain in PDMS, which is often the practice in preparing microfluidic devices. While Sylgard 184 is very well suited for some applications, the results presented in this dissertation demonstrate to researchers that the material does have its limitations and that other options are available. These findings will aid in the design and implementation of reliable microfluidic devices and other PDMS-based materials that encounter liquid interfaces.

  2. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum

    PubMed Central

    Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomas C.; Canales, Javier; Gutiérrez, Rodrigo A.; Rubilar, Joselyn

    2015-01-01

    Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. PMID:26583019

  4. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    PubMed

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  5. Identification of common coexpression modules based on quantitative network comparison.

    PubMed

    Jo, Yousang; Kim, Sanghyeon; Lee, Doheon

    2018-06-13

    Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

  6. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease.

    PubMed

    Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E

    2017-06-01

    Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.

  7. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease

    PubMed Central

    Modena, Brian D.; Bleecker, Eugene R.; Busse, William W.; Erzurum, Serpil C.; Gaston, Benjamin M.; Jarjour, Nizar N.; Meyers, Deborah A.; Milosevic, Jadranka; Tedrow, John R.; Wu, Wei; Kaminski, Naftali

    2017-01-01

    Rationale: Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Objectives: Identify networks of genes reflective of underlying biological processes that define SA. Methods: Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Measurements and Main Results: Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12–21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. Conclusions: In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes. PMID:27984699

  8. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives.

    PubMed

    Tham, S Y; Agatonovic-Kustrin, S

    2002-05-15

    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.

  9. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. The shortest path is not the one you know: application of biological network resources in precision oncology research.

    PubMed

    Kuperstein, Inna; Grieco, Luca; Cohen, David P A; Thieffry, Denis; Zinovyev, Andrei; Barillot, Emmanuel

    2015-03-01

    Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.

    PubMed

    Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique

    2016-09-30

    The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.

  12. Phosphatase of Regenerating Liver 3 (PRL3) Provokes a Tyrosine Phosphoproteome to Drive Prometastatic Signal Transduction*

    PubMed Central

    Walls, Chad D.; Iliuk, Anton; Bai, Yunpeng; Wang, Mu; Tao, W. Andy; Zhang, Zhong-Yin

    2013-01-01

    Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the “PRL3-mediated signaling network.” Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for “hijacking” this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation. PMID:24030100

  13. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci

    PubMed Central

    Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia

    2017-01-01

    Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275

  14. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473

  15. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.

  16. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111).

    PubMed

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Li, Zheshen; Studener, Florian; Stöhr, Meike

    2016-04-18

    The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metabolic immune restraints: implications for anticancer vaccines.

    PubMed

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  18. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

    PubMed

    Roll, Patrice; Vernes, Sonja C; Bruneau, Nadine; Cillario, Jennifer; Ponsole-Lenfant, Magali; Massacrier, Annick; Rudolf, Gabrielle; Khalife, Manal; Hirsch, Edouard; Fisher, Simon E; Szepetowski, Pierre

    2010-12-15

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

  19. A network approach to predict pathogenic genes for Fusarium graminearum.

    PubMed

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.

  20. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    PubMed

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow (1 mL min(-1)) of 0.2 mM sodium cholate solution. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  2. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    PubMed

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  3. Multiple determinants of transfer of evaluative function after conditioning with free-operant schedules of reinforcement.

    PubMed

    Dack, Charlotte; Reed, Phil; McHugh, Louise

    2010-11-01

    The aim of the four present experiments was to explore how different schedules of reinforcement influence schedule-induced behavior, their impact on evaluative ratings given to conditioned stimuli associated with each schedule through evaluative conditioning, and the transfer of these evaluations through derived stimulus networks. Experiment 1 compared two contrasting response reinforcement rules (variable ratio [VR], variable interval [VI]). Experiment 2 varied the response to reinforcement rule between two schedules but equated the outcome to response rate (differential reinforcement of high rate [DRH] vs. VR). Experiment 3 compared molar and molecular aspects of contingencies of reinforcement (tandem VIVR vs. tandem VRVI). Finally, Experiment 4 employed schedules that induced low rates of responding to determine whether, under these circumstances, responses were more sensitive to the molecular aspects of a schedule (differential reinforcement of low rate [DRL] vs. VI). The findings suggest that the transfer of evaluative functions is determined mainly by differences in response rate between the schedules and the molar aspects of the schedules. However, when neither schedule was based on a strong response reinforcement rule, the transfer of evaluative judgments came under the control of the molecular aspects of the schedule.

  4. System Design for Nano-Network Communications

    NASA Astrophysics Data System (ADS)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  5. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  6. Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior

    PubMed Central

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-01-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(−) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(−) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per01 mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per01 flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  7. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies.

    PubMed

    Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja

    2013-02-14

    Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.

  8. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  9. Ion transferring in polyelectrolyte networks in electric fields

    NASA Astrophysics Data System (ADS)

    Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica

    Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.

  10. Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development.

    PubMed

    Schmidt, Michael A; Goodwin, Thomas J; Pelligra, Ralph

    The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting off-target, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered.

  11. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  12. Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders

    PubMed Central

    Ozcan, Lale; Tabas, Ira

    2012-01-01

    Perturbations in the normal functions of the endoplasmic reticulum (ER) trigger a signaling network that coordinates adaptive and apoptotic responses. There is accumulating evidence implicating prolonged ER stress in the development and progression of many diseases, including neurodegeneration, atherosclerosis, type 2 diabetes, liver disease, and cancer. With the improved understanding of the underlying molecular mechanisms, therapeutic interventions that target the ER stress response would be potential strategies to treat various diseases driven by prolonged ER stress. PMID:22248326

  13. Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system.

    PubMed

    Gomes, Clarissa P C; de Gonzalo-Calvo, David; Toro, Rocio; Fernandes, Tiago; Theisen, Daniel; Wang, Da-Zhi; Devaux, Yvan

    2018-05-23

    There is overwhelming evidence that regular exercise training is protective against cardiovascular disease (CVD), the main cause of death worldwide. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Non-coding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Revealing the molecular components and mechanisms of the link between exercise and health outcomes will catalyse discoveries of new biomarkers and therapeutic targets. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for CVD. Finally, considerations and perspectives for future studies will be proposed. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.

    PubMed

    Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2015-03-02

    A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Of truth and pathways: chasing bits of information through myriads of articles.

    PubMed

    Krauthammer, Michael; Kra, Pauline; Iossifov, Ivan; Gomez, Shawn M; Hripcsak, George; Hatzivassiloglou, Vasileios; Friedman, Carol; Rzhetsky, Andrey

    2002-01-01

    Knowledge on interactions between molecules in living cells is indispensable for theoretical analysis and practical applications in modern genomics and molecular biology. Building such networks relies on the assumption that the correct molecular interactions are known or can be identified by reading a few research articles. However, this assumption does not necessarily hold, as truth is rather an emerging property based on many potentially conflicting facts. This paper explores the processes of knowledge generation and publishing in the molecular biology literature using modelling and analysis of real molecular interaction data. The data analysed in this article were automatically extracted from 50000 research articles in molecular biology using a computer system called GeneWays containing a natural language processing module. The paper indicates that truthfulness of statements is associated in the minds of scientists with the relative importance (connectedness) of substances under study, revealing a potential selection bias in the reporting of research results. Aiming at understanding the statistical properties of the life cycle of biological facts reported in research articles, we formulate a stochastic model describing generation and propagation of knowledge about molecular interactions through scientific publications. We hope that in the future such a model can be useful for automatically producing consensus views of molecular interaction data.

  16. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  17. Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiol-Acrylate Photopolymer Networks

    PubMed Central

    Rydholm, Amber E.; Held, Nicole L.; Bowman, Christopher N.; Anseth, Kristi S.

    2008-01-01

    Crosslinked, degradable networks formed from the photopolymerization of thiol and acrylate monomers are explored as potential biomaterials. The degradation behavior and material properties of these networks are influenced by the molecular weight of the nondegradable thiol-polyacrylate backbone chains that form during photopolymerization. Here, gel permeation chromatography was used to characterize the thiol-polyacrylate backbone chain lengths in degraded thiol-acrylate networks. Increasing thiol functionality from 1 to 4 increased the backbone molecular weight (M̄w = 2.3 ± 0.07 × 104 Da for monothiol and 3.6 ± 0.1 × 104 Da for tetrathiol networks). Decreasing thiol functional group concentration from 30 to 10 mol% also increased the backbone lengths (M̄w = 7.3 ± 1.1 × 104 Da for the networks containing 10 mol% thiol groups as compared to 3.6 ± 0.1 × 104 Da for 30 mol% thiol). Finally, the backbone chain lengths were probed at various stages of degradation and an increase in backbone molecular weight was observed as mass loss progressed from 10 to 70%. PMID:19079733

  18. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  19. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  20. Model-based design of RNA hybridization networks implemented in living cells.

    PubMed

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2017-09-19

    Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Back to the biology in systems biology: what can we learn from biomolecular networks?

    PubMed

    Huang, Sui

    2004-02-01

    Genome-scale molecular networks, including protein interaction and gene regulatory networks, have taken centre stage in the investigation of the burgeoning disciplines of systems biology and biocomplexity. What do networks tell us? Some see in networks simply the comprehensive, detailed description of all cellular pathways, others seek in networks simple, higher-order qualities that emerge from the collective action of the individual pathways. This paper discusses networks from an encompassing category of thinking that will hopefully help readers to bridge the gap between these polarised viewpoints. Systems biology so far has emphasised the characterisation of large pathway maps. Now one has to ask: where is the actual biology in 'systems biology'? As structures midway between genome and phenome, and by serving as an 'extended genotype' or an 'elementary phenotype', molecular networks open a new window to the study of evolution and gene function in complex living systems. For the study of evolution, features in network topology offer a novel starting point for addressing the old debate on the relative contributions of natural selection versus intrinsic constraints to a particular trait. To study the function of genes, it is necessary not only to see them in the context of gene networks, but also to reach beyond describing network topology and to embrace the global dynamics of networks that will reveal higher-order, collective behaviour of the interacting genes. This will pave the way to understanding how the complexity of genome-wide molecular networks collapses to produce a robust whole-cell behaviour that manifests as tightly-regulated switching between distinct cell fates - the basis for multicellular life.

  2. Effects of Nerve Injury and Segmental Regeneration on the Cellular Correlates of Neural Morphallaxis

    PubMed Central

    Martinez, Veronica G.; Manson, Josiah M.B.; Zoran, Mark J.

    2009-01-01

    Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior–posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry. PMID:18561185

  3. System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks

    PubMed Central

    Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou

    2014-01-01

    Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143

  4. Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology

    PubMed Central

    Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki

    2013-01-01

    Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846

  5. Glomerular pathology in Alport syndrome: a molecular perspective

    PubMed Central

    Cosgrove, Dominic

    2012-01-01

    We have known for some time that mutations in the genes encoding 3 of the 6 type IV collagen chains are the underlying defect responsible for both X-linked (where the COL4A5 gene is involved) and autosomal (where either COL4A3 or COL4A4 genes are involved) Alport syndrome. The result of these mutations is the absence of the sub-epithelial network of all three chains in the glomerular basement membrane (GBM) resulting, at maturity, in a type IV collagen GBM network comprised of only α1(IV) and α2(IV) chains. The altered GBM functions adequately in early life. Eventually there is onset of proteinuria associated with the classic and progressive irregular thickening, thinning, and splitting of the GBM, which culminates in end stage renal failure. We have learned much about the molecular events associated with disease onset and progression through the study of animal models for Alport syndrome, and have identified some potential therapeutic approaches that may serve to delay the onset or slow the progression of the disease. This review focuses on where we are in our understanding of the disease, where we need to go to understand the molecular triggers that set the process in motion, and what emergent therapeutic approaches show promise for ameliorating disease progression in the clinic. PMID:21455721

  6. MoCha: Molecular Characterization of Unknown Pathways.

    PubMed

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  7. Gene regulatory networks in lactation: identification of global principles using bioinformatics.

    PubMed

    Lemay, Danielle G; Neville, Margaret C; Rudolph, Michael C; Pollard, Katherine S; German, J Bruce

    2007-11-27

    The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood. Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution. Several key principles were derived: (1) nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2) genes encoding the secretory machinery are transcribed prior to lactation; (3) the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4) while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5) the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6) the involution switch is primarily transcriptionally mediated; and (7) during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested - milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.

  8. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  9. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  10. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Atomistic Simulation of Interstitial Dislocation Loop Evolution under Applied Stresses in BCC Iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Xue Hao; Wang, Dong; Setyawan, Wahyu

    Evolution of an interstitial 1/2⟨111⟩ dislocation loop under tensile, shear, and torsion stresses is studied with molecular statics method. Under a tensile stress, the dependence of ultimate tensile strength on size of loop is calculated. The formation of small shear loops around the initial prismatic loop is confirmed as an intermediate state to form the final dislocation network. Under a shear stress, the rotation of a loop is observed not only by a change of the habit plane but also through a transformation between a shear and a prismatic loop. Under torsion, a perfect BCC crystal may undergo a BCCmore » to FCC or BCC to HCP transformation. The present work indicates that a 1/2⟨111⟩ loop can delay these transformations, resulting in the formation of micro-crack on the surface.« less

  12. Reticular synthesis of porous molecular 1D nanotubes and 3D networks.

    PubMed

    Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  13. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  14. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms.

    PubMed

    Wang, Jia-Hong; Zhao, Ling-Feng; Lin, Pei; Su, Xiao-Rong; Chen, Shi-Jun; Huang, Li-Qiang; Wang, Hua-Feng; Zhang, Hai; Hu, Zhen-Fu; Yao, Kai-Tai; Huang, Zhong-Xi

    2014-09-01

    Identifying biological functions and molecular networks in a gene list and how the genes may relate to various topics is of considerable value to biomedical researchers. Here, we present a web-based text-mining server, GenCLiP 2.0, which can analyze human genes with enriched keywords and molecular interactions. Compared with other similar tools, GenCLiP 2.0 offers two unique features: (i) analysis of gene functions with free terms (i.e. any terms in the literature) generated by literature mining or provided by the user and (ii) accurate identification and integration of comprehensive molecular interactions from Medline abstracts, to construct molecular networks and subnetworks related to the free terms. http://ci.smu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Network Approach to Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Sharma, Amitabh; Bashan, Amir; Barabasi, Alber-Laszlo

    2014-03-01

    Human diseases could be viewed as perturbations of the underlying biological system. A thorough understanding of the topological and dynamical properties of the biological system is crucial to explain the mechanisms of many complex diseases. Recently network-based approaches have provided a framework for integrating multi-dimensional biological data that results in a better understanding of the pathophysiological state of complex diseases. Here we provide a network-based framework to improve the diagnosis of complex diseases. This framework is based on the integration of transcriptomics and the interactome. We analyze the overlap between the differentially expressed (DE) genes and disease genes (DGs) based on their locations in the molecular interaction network (''interactome''). Disease genes and their protein products tend to be much more highly connected than random, hence defining a disease sub-graph (called disease module) in the interactome. DE genes, even though different from the known set of DGs, may be significantly associated with the disease when considering their closeness to the disease module in the interactome. This new network approach holds the promise to improve the diagnosis of patients who cannot be diagnosed using conventional tools. Support was provided by HL066289 and HL105339 grants from the U.S. National Institutes of Health.

  16. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan

    2018-04-01

    We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

  17. C. elegans network biology: a beginning.

    PubMed Central

    Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc

    2006-01-01

    The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437

  18. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes.

    PubMed

    Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku; Zhang, Wei; Kreisberg, Jason F; Tamayo, Pablo; Ideker, Trey

    2018-04-25

    Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall. A general tendency is that performance scales with network size, suggesting that new interaction discovery currently outweighs the detrimental effects of false positives. Correcting for size, we find that the DIP network provides the highest efficiency (value per interaction). Based on these results, we create a parsimonious composite network with both high efficiency and performance. This work provides a benchmark for selection of molecular networks in human disease research. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells

    PubMed Central

    He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi

    2012-01-01

    Human FOXP3+CD25+CD4+ regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4+ T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function. PMID:23169000

  20. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine

    PubMed Central

    Lee, Ji-Hyun; Park, Kyoung Mii; Han, Dong-Jin; Bang, Nam Young; Kim, Do-Hee; Na, Hyeongjin; Lim, Semi; Kim, Tae Bum; Kim, Dae Gyu; Kim, Hyun-Jung; Chung, Yeonseok; Sung, Sang Hyun; Surh, Young-Joon; Kim, Sunghoon; Han, Byung Woo

    2015-01-01

    Despite the growing attention given to Traditional Medicine (TM) worldwide, there is no well-known, publicly available, integrated bio-pharmacological Traditional Korean Medicine (TKM) database for researchers in drug discovery. In this study, we have constructed PharmDB-K, which offers comprehensive information relating to TKM-associated drugs (compound), disease indication, and protein relationships. To explore the underlying molecular interaction of TKM, we integrated fourteen different databases, six Pharmacopoeias, and literature, and established a massive bio-pharmacological network for TKM and experimentally validated some cases predicted from the PharmDB-K analyses. Currently, PharmDB-K contains information about 262 TKMs, 7,815 drugs, 3,721 diseases, 32,373 proteins, and 1,887 side effects. One of the unique sets of information in PharmDB-K includes 400 indicator compounds used for standardization of herbal medicine. Furthermore, we are operating PharmDB-K via phExplorer (a network visualization software) and BioMart (a data federation framework) for convenient search and analysis of the TKM network. Database URL: http://pharmdb-k.org, http://biomart.i-pharm.org. PMID:26555441

  1. Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli.

    PubMed

    Cho, Younhee; Zhang, Xin; Pobre, Kristine Faye R; Liu, Yu; Powers, David L; Kelly, Jeffery W; Gierasch, Lila M; Powers, Evan T

    2015-04-14

    The folding fate of a protein in vivo is determined by the interplay between a protein's folding energy landscape and the actions of the proteostasis network, including molecular chaperones and degradation enzymes. The mechanisms of individual components of the E. coli proteostasis network have been studied extensively, but much less is known about how they function as a system. We used an integrated experimental and computational approach to quantitatively analyze the folding outcomes (native folding versus aggregation versus degradation) of three test proteins biosynthesized in E. coli under a variety of conditions. Overexpression of the entire proteostasis network benefited all three test proteins, but the effect of upregulating individual chaperones or the major degradation enzyme, Lon, varied for proteins with different biophysical properties. In sum, the impact of the E. coli proteostasis network is a consequence of concerted action by the Hsp70 system (DnaK/DnaJ/GrpE), the Hsp60 system (GroEL/GroES), and Lon. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  3. Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens

    PubMed Central

    Gallie, Jenna; Libby, Eric; Bertels, Frederic; Remigi, Philippe; Jendresen, Christian B.; Ferguson, Gayle C.; Desprat, Nicolas; Buffing, Marieke F.; Sauer, Uwe; Beaumont, Hubertus J. E.; Martinussen, Jan; Kilstrup, Mogens; Rainey, Paul B.

    2015-01-01

    Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution. PMID:25763575

  4. Penalized differential pathway analysis of integrative oncogenomics studies.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.

  5. Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.

    PubMed

    Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun

    2017-12-21

    Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.

  6. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network

    PubMed Central

    Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli

    2015-01-01

    Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649

  7. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  8. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer.

    PubMed

    Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V

    2017-04-27

    Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and therapeutic targets.

  9. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms

    PubMed Central

    Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146

  10. Modeling the emergence of circadian rhythms in a clock neuron network.

    PubMed

    Diambra, Luis; Malta, Coraci P

    2012-01-01

    Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

  11. New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network.

    PubMed

    Wisotzkey, Robert G; Quijano, Janine C; Stinchfield, Michael J; Newfeld, Stuart J

    2014-09-01

    Uncovering how a new gene acquires its function and understanding how the function of a new gene influences existing genetic networks are important topics in evolutionary biology. Here, we demonstrate nonconservation for the embryonic functions of Drosophila Bonus and its newest vertebrate relative TIF1-γ/TRIM33. We showed previously that TIF1-γ/TRIM33 functions as an ubiquitin ligase for the Smad4 signal transducer and antagonizes the Bone Morphogenetic Protein (BMP) signaling network underlying vertebrate dorsal-ventral axis formation. Here, we show that Bonus functions as an agonist of the Decapentaplegic (Dpp) signaling network underlying dorsal-ventral axis formation in flies. The absence of conservation for the roles of Bonus and TIF1-γ/TRIM33 reveals a shift in the dorsal-ventral patterning networks of flies and mice, systems that were previously considered wholly conserved. The shift occurred when the new gene TIF1-γ/TRIM33 replaced the function of the ubiquitin ligase Nedd4L in the lineage leading to vertebrates. Evidence of this replacement is our demonstration that Nedd4 performs the function of TIF1-γ/TRIM33 in flies during dorsal-ventral axis formation. The replacement allowed vertebrate Nedd4L to acquire novel functions as a ubiquitin ligase of vertebrate-specific Smad proteins. Overall our data reveal that the architecture of the Dpp/BMP dorsal-ventral patterning network continued to evolve in the vertebrate lineage, after separation from flies, via the incorporation of new genes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    PubMed

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Complementary molecular information changes our perception of food web structure

    PubMed Central

    Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas

    2014-01-01

    How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902

  14. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  15. Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems

    PubMed Central

    Kohn, Kurt W.

    1999-01-01

    Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network. PMID:10436023

  16. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  17. Computational Study of the Bulk Properties of a Novel Molecule: alpha-Tocopherol-Ascorbic Acid Surfactant

    NASA Astrophysics Data System (ADS)

    Stirling, Shannon; Kim, Hye-Young

    Alpha-tocopherol-ascorbic acid surfactant (EC) is a novel amphiphilic molecule of antioxidant properties, which has a hydrophobic vitamin E and a hydrophilic vitamin C chemically linked. We have developed atomistic force fields (g54a7) for a protonated (neutral) EC molecule. Our goal is to carry out molecular dynamics (MD) simulations of protonated EC molecules using the newly developed force fields and study the molecular properties. First we ran energy minimization (EM) with one molecule in a vacuum to obtain the low energy molecular configuration with emtol =10. We then used Packmol to insert 125 EC molecules in a 3nm cube. We then performed MD simulations of the bulk system composed of 125 EC molecules, from which we measured the bulk density and the evaporation energy of the molecular system. Gromacs2016 is used for the EM and MD simulation studies. We will present the results of the ongoing research. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103424 (Kim). Computational resources were provided by the Louisiana Optical Network Initiative.

  18. Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance

    PubMed Central

    Karayiannis, Nikos Ch.; Kröger, Martin

    2009-01-01

    We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature. PMID:20087477

  19. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2018-06-13

    Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri.

    PubMed

    Fu, X; Sun, Y; Wang, J; Xing, Q; Zou, J; Li, R; Wang, Z; Wang, S; Hu, X; Zhang, L; Bao, Z

    2014-01-01

    Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture. © 2013 John Wiley & Sons Ltd.

  1. Genomic analysis of regulatory network dynamics reveals large topological changes

    NASA Astrophysics Data System (ADS)

    Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark

    2004-09-01

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  2. Detecting phenotype-driven transitions in regulatory network structure.

    PubMed

    Padi, Megha; Quackenbush, John

    2018-01-01

    Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.

  3. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F

    2009-01-01

    Background Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. Results We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. Conclusions These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote. PMID:19754933

  4. Metabolomic Analysis in Brain Research: Opportunities and Challenges

    PubMed Central

    Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.

    2016-01-01

    Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656

  5. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  6. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens

    PubMed Central

    Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061

  7. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  8. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of APP in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.

  9. Genome-nuclear lamina interactions and gene regulation.

    PubMed

    Kind, Jop; van Steensel, Bas

    2010-06-01

    The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    PubMed

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2]. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Neisseria gonorrhoeae molecular typing for understanding sexual networks and antimicrobial resistance transmission: A systematic review.

    PubMed

    Town, Katy; Bolt, Hikaru; Croxford, Sara; Cole, Michelle; Harris, Simon; Field, Nigel; Hughes, Gwenda

    2018-06-01

    Neisseria gonorrhoeae (NG) is a significant global public health concern due to rising diagnoses rates and antimicrobial resistance. Molecular combined with epidemiological data have been used to understand the distribution and spread of NG, as well as relationships between cases in sexual networks, but the public health value gained from these studies is unclear. We conducted a systematic review to examine how molecular epidemiological studies have informed understanding of sexual networks and NG transmission, and subsequent public health interventions. Five research databases were systematically searched up to 31st March 2017 for studies that used sequence-based DNA typing methods, including whole genome sequencing, and linked molecular data to patient-level epidemiological data. Data were extracted and summarised to identify common themes. Of the 49 studies included, 82% used NG Multi-antigen Sequence Typing. Gender and sexual orientation were commonly used to characterise sexual networks that were inferred using molecular clusters; clusters predominantly of one patient group often contained a small number of isolates from other patient groups. Suggested public health applications included using these data to target interventions at specific populations, confirm outbreaks, and inform partner management, but these were mainly untested. Combining molecular and epidemiological data has provided insight into sexual mixing patterns, and dissemination of NG, but few studies have applied these findings to design or evaluate public health interventions. Future studies should focus on the application of molecular epidemiology in public health practice to provide evidence for how to prevent and control NG. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Optimal Signal Processing in Small Stochastic Biochemical Networks

    PubMed Central

    Ziv, Etay; Nemenman, Ilya; Wiggins, Chris H.

    2007-01-01

    We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the “cross-talk” phenomenon as well as the previously unexplained observation that transcription factors that undergo proteolysis are more likely to be auto-repressive. PMID:17957259

  14. Identification of interactive gene networks: a novel approach in gene array profiling of myometrial events during guinea pig pregnancy.

    PubMed

    Mason, Clifford W; Swaan, Peter W; Weiner, Carl P

    2006-06-01

    The transition from myometrial quiescence to activation is poorly understood, and the analysis of array data is limited by the available data mining tools. We applied functional analysis and logical operations along regulatory gene networks to identify molecular processes and pathways underlying quiescence and activation. We analyzed some 18,400 transcripts and variants in guinea pig myometrium at stages corresponding to quiescence and activation, and compared them to the nonpregnant (control) counterpart using a functional mapping tool, MetaCore (GeneGo, St Joseph, MI) to identify novel gene networks composed of biological pathways during mid (MP) and late (LP) pregnancy. Genes altered during quiescence and or activation were identified following gene specific comparisons with myometrium from nonpregnant animals, and then linked to curated pathways and formulated networks. The MP and LP networks were subtracted from each other to identify unique genomic events during those periods. For example, changes 2-fold or greater in genes mediating protein biosynthesis, programmed cell death, microtubule polymerization, and microtubule based movement were noted during the transition to LP. We describe a novel approach combining microarrays and genetic data to identify networks associated with normal myometrial events. The resulting insights help identify potential biomarkers and permit future targeted investigations of these pathways or networks to confirm or refute their importance.

  15. Molecular classification of gastric cancer.

    PubMed

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  17. Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Chan, Heang-Ping; Cha, Kenny H.; Srinivasan, Ashok; Wei, Jun; Zhou, Chuan; Prince, Mark; Papagerakis, Silvana

    2017-03-01

    Accurate tumor progression prediction for oropharyngeal cancers is crucial for identifying patients who would best be treated with optimized treatment and therefore minimize the risk of under- or over-treatment. An objective decision support system that can merge the available radiomics, histopathologic and molecular biomarkers in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate assessment of oropharyngeal tumor progression. In this study, we evaluated the feasibility of developing individual and combined predictive models based on quantitative image analysis from radiomics, histopathology and molecular biomarkers for oropharyngeal tumor progression prediction. With IRB approval, 31, 84, and 127 patients with head and neck CT (CT-HN), tumor tissue microarrays (TMAs) and molecular biomarker expressions, respectively, were collected. For 8 of the patients all 3 types of biomarkers were available and they were sequestered in a test set. The CT-HN lesions were automatically segmented using our level sets based method. Morphological, texture and molecular based features were extracted from CT-HN and TMA images, and selected features were merged by a neural network. The classification accuracy was quantified using the area under the ROC curve (AUC). Test AUCs of 0.87, 0.74, and 0.71 were obtained with the individual predictive models based on radiomics, histopathologic, and molecular features, respectively. Combining the radiomics and molecular models increased the test AUC to 0.90. Combining all 3 models increased the test AUC further to 0.94. This preliminary study demonstrates that the individual domains of biomarkers are useful and the integrated multi-domain approach is most promising for tumor progression prediction.

  18. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432

  19. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    PubMed

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  20. Cross‐talk between circadian clocks, sleep‐wake cycles, and metabolic networks: Dispelling the darkness

    PubMed Central

    Ray, Sandipan

    2016-01-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. PMID:26866932

  1. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingchun; Yang, Feng; Fu, Yi

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signalingmore » pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.« less

  2. Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)

    PubMed Central

    Gomes, Larissa Luz; Moreira, Fabiano Cordeiro; Hamoy, Igor Guerreiro; Santos, Sidney; Assumpção, Paulo; Santana, Ádamo L.; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development. PMID:24966529

  3. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    PubMed

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  4. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus

    PubMed Central

    Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico

    2015-01-01

    Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886

  5. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    PubMed

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. © 2016 The Authors. Bioessays published by WILEY Periodicals, Inc.

  6. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.

    PubMed

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-05-30

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.

  7. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    PubMed Central

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  8. Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear

    PubMed Central

    Pape, Hans-Christian; Pare, Denis

    2009-01-01

    The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190

  9. Evolution of eumetazoan nervous systems: insights from cnidarians.

    PubMed

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-12-19

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.

  10. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    PubMed

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  11. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  12. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.

    PubMed

    Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto

    2014-01-27

    The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W(k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).

  13. Rhizoma Dioscoreae extract protects against alveolar bone loss by regulating the cell cycle: A predictive study based on the protein‑protein interaction network.

    PubMed

    Zhang, Zhi-Guo; Song, Chang-Heng; Zhang, Fang-Zhen; Chen, Yan-Jing; Xiang, Li-Hua; Xiao, Gary Guishan; Ju, Da-Hong

    2016-06-01

    Rhizoma Dioscoreae extract (RDE) exhibits a protective effect on alveolar bone loss in ovariectomized (OVX) rats. The aim of this study was to predict the pathways or targets that are regulated by RDE, by re‑assessing our previously reported data and conducting a protein‑protein interaction (PPI) network analysis. In total, 383 differentially expressed genes (≥3‑fold) between alveolar bone samples from the RDE and OVX group rats were identified, and a PPI network was constructed based on these genes. Furthermore, four molecular clusters (A‑D) in the PPI network with the smallest P‑values were detected by molecular complex detection (MCODE) algorithm. Using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) tools, two molecular clusters (A and B) were enriched for biological process in Gene Ontology (GO). Only cluster A was associated with biological pathways in the IPA database. GO and pathway analysis results showed that cluster A, associated with cell cycle regulation, was the most important molecular cluster in the PPI network. In addition, cyclin‑dependent kinase 1 (CDK1) may be a key molecule achieving the cell‑cycle‑regulatory function of cluster A. From the PPI network analysis, it was predicted that delayed cell cycle progression in excessive alveolar bone remodeling via downregulation of CDK1 may be another mechanism underling the anti‑osteopenic effect of RDE on alveolar bone.

  14. Walking peptide on Au(110) surface: Origin and nature of interfacial process

    NASA Astrophysics Data System (ADS)

    Humblot, V.; Tejeda, A.; Landoulsi, J.; Vallée, A.; Naitabdi, A.; Taleb, A.; Pradier, C.-M.

    2014-10-01

    IGF tri-peptide adsorption on Au(110)-(1 × 2) under Ultra High Vacuum (UHV) conditions has been investigated using surface science techniques such as synchrotron based Angle Resolved X-ray Photoemission Spectroscopy (AR-PES or AR-XPS), Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM). The behaviour of IGF molecules has been revealed to be coverage dependent; at low coverage, there is formation of islands presenting a chiral self-organised molecular network with a (4 2, - 3 2) symmetry as shown by Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM) on the unaltered Au(110)-(1 × 2) reconstruction, suggesting significant intermolecular interactions. When the coverage is increased, the islands grow bigger, and one can observe the disappearance of the self-organised network, along with a remarkable destruction of the (1 × 2) substrate reconstruction, as shown by STM. The effect of IGF on the surface gold atoms has been further confirmed by angle-resolved photoemission measurements which suggest a modification of the electronic states with the (1 × 2) symmetry. The resulting molecular organisation, and overall the gold surface disorganisation, prove a strong surface-molecule interaction, which may be probably be explained by a covalent bonding.

  15. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    PubMed

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  16. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Zacharias, Martin

    2014-12-01

    Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.

  17. Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth

    PubMed Central

    Wilson, H. T.; Xu, K.; Taylor, A. G.

    2015-01-01

    The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth. PMID:26558288

  18. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network

    PubMed Central

    Escalante, Ananias A.; Ferreira, Marcelo U.; Vinetz, Joseph M.; Volkman, Sarah K.; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J.; Barry, Alyssa E.; Carlton, Jane M.; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Andreina Pacheco, M.; Vallejo, Andres F.; Herrera, Socrates; Felger, Ingrid

    2015-01-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. PMID:26259945

  19. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  20. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  1. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  2. Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene

    PubMed Central

    Stratmann, Johannes

    2017-01-01

    The extensive genetic regulatory flows underlying specification of different neuronal subtypes are not well understood at the molecular level. The Nplp1 neuropeptide neurons in the developing Drosophila nerve cord belong to two sub-classes; Tv1 and dAp neurons, generated by two distinct progenitors. Nplp1 neurons are specified by spatial cues; the Hox homeotic network and GATA factor grn, and temporal cues; the hb -> Kr -> Pdm -> cas -> grh temporal cascade. These spatio-temporal cues combine into two distinct codes; one for Tv1 and one for dAp neurons that activate a common terminal selector feedforward cascade of col -> ap/eya -> dimm -> Nplp1. Here, we molecularly decode the specification of Nplp1 neurons, and find that the cis-regulatory organization of col functions as an integratory node for the different spatio-temporal combinatorial codes. These findings may provide a logical framework for addressing spatio-temporal control of neuronal sub-type specification in other systems. PMID:28414802

  3. Molecular polarizability of water from local dielectric response theory

    DOE PAGES

    Ge, Xiaochuan; Lu, Deyu

    2017-08-08

    Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less

  4. Molecular genetics of dyslexia: an overview.

    PubMed

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd.

  5. The effect of poly(vinyl alcohol) type and radiation treatment on the properties of starch-poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Cieśla, Krystyna; Abramowska, Anna; Boguski, Jacek; Drewnik, Joanna

    2017-12-01

    Our present study concerns the effect of application of various PVA substrates and the influence of ionising radiation on the properties of films based on starch and PVA. Four PVAs revealing various molecular masses (in the range of 11-145 kDa) were selected for this purpose. The films characterized by starch: PVA ratios of 40:60 were prepared by solution casting and irradiated with 60Co gamma rays (under nitrogen) and with fast electrons (under air) applying the absorbed dose of 25 kGy. Mechanical properties of the films (tensile strength, elongation at break and Young Modulus) were examined, as well as the contact angle to water and swelling in water, in regard for evaluation of the hydrophilic/hydrophobic properties. Gel content in the samples was also determined. Physicochemical properties of the films and their sensitivity to irradiation strongly depend on the applied PVA substrate. This can be related to differences in the capability of particular PVAs for forming the crosslinked starch-PVA network during the films' synthesis and future treatment. In particular, the usage of the PVA characterized by the high molecular mass has appeared more rewarding as compared to those based on the low molecular mass PVAs. Additionally, properties of these films were not affected or improved after irradiation.

  6. minepath.org: a free interactive pathway analysis web server.

    PubMed

    Koumakis, Lefteris; Roussos, Panos; Potamias, George

    2017-07-03

    ( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Developing a molecular picture for polymer glasses under large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Wang, Panpan

    2014-03-01

    Polymer glasses differ from most other types of glassy materials because they can be ductile under tensile extension. Remarkably, a ductile polymer can turn brittle and vice versa. For example, upon cooling, the glass changes from ductile to brittle at a temperature known as the brittle-ductile transition temperature (BDT). Aging causes the ductile glass to be brittle. Mechanical ``rejuvenation'' or pressurization brings a brittle glass into a ductile state. Finally, one glass can be ductile 100 degrees below Tg while another polymer is already brittle even just 10 degree below Tg. Polystyrene and bisphenol A polycarbonate are at the two extremes in the family of polymer glasses. How to rationale such a wide range of behavior in terms of a molecular picture has been a challenging task. What is the role of ``chain entanglement''? Since many of the procedures including the temperature change do not alter the ``chain entanglement'', it is clearly insufficient to explain the nature of the BDT in terms of the entanglement density. Our work attempts to answer the question of what then is the role of chain networking. We have formulated a molecular picture that presents a unifying and coherent explanation for all the known phenomenology concerning the BDT and condition for crazing. This work is supported, in part, by NSF (CMMI-0926522 and DMR-1105135).

  8. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.

  9. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280

  10. Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective

    PubMed Central

    Srivastava, Ashutosh; Sinha, Somdatta

    2014-01-01

    Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499

  11. Modeling of cell signaling pathways in macrophages by semantic networks

    PubMed Central

    Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem

    2004-01-01

    Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071

  12. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05720a Click here for additional data file.

    PubMed Central

    Smith, J. S.

    2017-01-01

    Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set. PMID:28507695

  13. X-ray and neutron scattering studies of liquid formic acid DCOOD at various temperatures and under pressure

    NASA Astrophysics Data System (ADS)

    Nasr, Salah; Bellissent-Funel, Marie-Claire; Cortès, Robert

    1999-06-01

    A structural investigation of fully deuterated liquid formic acid was performed by neutron scattering at pressure up to 3 kbar. The molecular pair correlation function was also deduced from x-ray study of DCOOD at ambient pressure and at 294 K. The results could be explained in terms of an open-chain structure with only two H bonds per molecule. The mean O⋯O distance is about 2.72 Å. The effect of both temperature and pressure on the hydrogen bond network is examined.

  14. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  15. The neuroscience of mindfulness meditation.

    PubMed

    Tang, Yi-Yuan; Hölzel, Britta K; Posner, Michael I

    2015-04-01

    Research over the past two decades broadly supports the claim that mindfulness meditation - practiced widely for the reduction of stress and promotion of health - exerts beneficial effects on physical and mental health, and cognitive performance. Recent neuroimaging studies have begun to uncover the brain areas and networks that mediate these positive effects. However, the underlying neural mechanisms remain unclear, and it is apparent that more methodologically rigorous studies are required if we are to gain a full understanding of the neuronal and molecular bases of the changes in the brain that accompany mindfulness meditation.

  16. Self-healing multiphase polymers via dynamic metal-ligand interactions.

    PubMed

    Mozhdehi, Davoud; Ayala, Sergio; Cromwell, Olivia R; Guan, Zhibin

    2014-11-19

    A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention.

  17. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.

    PubMed

    Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John

    2018-02-28

    Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.

  18. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  19. The Geropathology Research Network: An Interdisciplinary Approach for Integrating Pathology Into Research on Aging

    PubMed Central

    Ikeno, Yuji; Niedernhofer, Laura; McIndoe, Richard A.; Ciol, Marcia A.; Ritchey, Jerry; Liggitt, Denny

    2016-01-01

    Geropathology is the study of aging and age-related lesions and diseases in the form of whole necropsies/autopsies, surgical biopsies, histology, and molecular biomarkers. It encompasses multiple subspecialties of geriatrics, anatomic pathology, molecular pathology, clinical pathology, and gerontology. In order to increase the consistency and scope of communication in the histologic and molecular pathology assessment of tissues from preclinical and clinical aging studies, a Geropathology Research Network has been established consisting of pathologists and scientists with expertise in the comparative pathology of aging, the design of aging research studies, biostatistical methods for analysis of aging data, and bioinformatics for compiling and annotating large sets of data generated from aging studies. The network provides an environment to promote learning and exchange of scientific information and ideas for the aging research community through a series of symposia, the development of uniform ways of integrating pathology into aging studies, and the statistical analysis of pathology data. The efforts of the network are ultimately expected to lead to a refined set of sentinel biomarkers of molecular and anatomic pathology that could be incorporated into preclinical and clinical aging intervention studies to increase the relevance and productivity of these types of investigations. PMID:26243216

  20. Cascading network failure across the Alzheimer’s disease spectrum

    PubMed Central

    Knopman, David S.; Gunter, Jeffrey L.; Graff-Radford, Jonathan; Vemuri, Prashanthi; Boeve, Bradley F.; Petersen, Ronald C.; Weiner, Michael W.; Jack, Clifford R.

    2016-01-01

    Abstract Complex biological systems are organized across various spatiotemporal scales with particular scientific disciplines dedicated to the study of each scale (e.g. genetics, molecular biology and cognitive neuroscience). When considering disease pathophysiology, one must contemplate the scale at which the disease process is being observed and how these processes impact other levels of organization. Historically Alzheimer’s disease has been viewed as a disease of abnormally aggregated proteins by pathologists and molecular biologists and a disease of clinical symptoms by neurologists and psychologists. Bridging the divide between these scales has been elusive, but the study of brain networks appears to be a pivotal inroad to accomplish this task. In this study, we were guided by an emerging systems-based conceptualization of Alzheimer’s disease and investigated changes in brain networks across the disease spectrum. The default mode network has distinct subsystems with unique functional-anatomic connectivity, cognitive associations, and responses to Alzheimer’s pathophysiology. These distinctions provide a window into the systems-level pathophysiology of Alzheimer’s disease. Using clinical phenotyping, metadata, and multimodal neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative, we characterized the pattern of default mode network subsystem connectivity changes across the entire disease spectrum (n = 128). The two main findings of this paper are (i) the posterior default mode network fails before measurable amyloid plaques and appears to initiate a connectivity cascade that continues throughout the disease spectrum; and (ii) high connectivity between the posterior default mode network and hubs of high connectivity (many located in the frontal lobe) is associated with amyloid accumulation. These findings support a system model best characterized by a cascading network failure—analogous to cascading failures seen in power grids triggered by local overloads proliferating to downstream nodes eventually leading to widespread power outages, or systems failures. The failure begins in the posterior default mode network, which then shifts processing burden to other systems containing prominent connectivity hubs. This model predicts a connectivity ‘overload’ that precedes structural and functional declines and recasts the interpretation of high connectivity from that of a positive compensatory phenomenon to that of a load-shifting process transiently serving a compensatory role. It is unknown whether this systems-level pathophysiology is the inciting event driving downstream molecular events related to synaptic activity embedded in these systems. Possible interpretations include that the molecular-level events drive the network failure, a pathological interaction between the network-level and the molecular-level, or other upstream factors are driving both. PMID:26586695

Top