Science.gov

Sample records for molecular photoionization measured

  1. Photoionization of molecular clusters

    NASA Astrophysics Data System (ADS)

    Andres, R. P.; Calo, J. M.

    1981-12-01

    An experimental apparatus consisting of a novel multiple expansion cluster source coupled with a molecular beam system and photoionization mass spectrometer has been designed and constructed. This apparatus has been thoroughly tested and preliminary measurements of the growth kinetics of water clusters and the photoionization cross section of the water dimer have been carried out.

  2. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  3. Theory of attosecond delays in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-01

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N2O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H2O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  4. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  5. Electron localization following attosecond molecular photoionization.

    PubMed

    Sansone, G; Kelkensberg, F; Pérez-Torres, J F; Morales, F; Kling, M F; Siu, W; Ghafur, O; Johnsson, P; Swoboda, M; Benedetti, E; Ferrari, F; Lépine, F; Sanz-Vicario, J L; Zherebtsov, S; Znakovskaya, I; L'huillier, A; Ivanov, M Yu; Nisoli, M; Martín, F; Vrakking, M J J

    2010-06-10

    For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses. Such pulses have been used to investigate atomic photoexcitation and photoionization and electron dynamics in solids, and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H(2) and D(2) was monitored on femtosecond timescales and controlled using few-cycle near-infrared laser pulses. Here we report a molecular attosecond pump-probe experiment based on that work: H(2) and D(2) are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.

  6. Rotational distributions of molecular photoions following resonant excitation

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Chan, Jeffrey C. K.; White, M. G.

    1986-11-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N+2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N+2 (B 2Σ+u) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron-ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed.

  7. Franck—Condon breakdown as a probe of continuum coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung Cheun; Poliakoff, E. D.

    1992-03-01

    We have measured vibrational branching ratios for 4σ -1 photoionization of CO in order to characterize continuum channel coupling. The results indicate that the shape resonance in the 5σ→ɛσ channel influences vibrational branching ratios of the 4σ -1 channel via continuum coupling, and the data illustrate how continuum channel coupling affects molecular photoionization dynamics.

  8. Dissociation Dynamics and Molecular Imaging of Methane following Photoionization at the Carbon K-Edge

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Trevisan, C.; Schoeffler, M. S.; Jahnke, T.; Bocharova, I.; Sturm, F.; McCurdy, C. W.; Belkacem, A.; Doerner, R.; Weber, Th; Landers, A. L.

    2014-04-01

    We have used Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) to measure the momenta of the photoelectron and the molecular fragments arising from the dissociation of methane following core photoionization and subsequent Auger decay.

  9. Double Photoionization of Aligned Molecular Hydrogen

    SciTech Connect

    Vanroose, Wim; Horner, Daniel A.; Martin, Fernando; Rescigno,Thomas N.; McCurdy, C. William

    2006-07-21

    We present converged, completely ab initio calculations ofthe triple differential cross sections for double photoionization ofaligned H2 molecules for a photon energy of 75.0 eV. The method ofexterior complex scaling, implemented with both the discrete variablerepresentation and B-splines, is used to solve the Schroedinger equationfor a correlated continuum wave function corresponding to a single photonhaving been absorbed by a correlated initial state. Results for a fixedinternuclear distance are compared with recent experiments and show thatintegration over experimental angular and energy resolutions is necessaryto produce good qualitative agreement, but does not eliminate somediscrepancies. Limitations of current experimental resolution are shownto sometimes obscure interesting details of the crosssection.

  10. Molecular photoionization studies of nucleobases and correlated systems

    SciTech Connect

    Poliakoff, Erwin D.

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  11. Vibrationally mode-specific excitation in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin

    2003-05-01

    Recent measurements on the photoionization of polyatomic molecules demonstrate that excitations of nominally forbidden vibrations are surprisingly intense, and that their energy dependences elucidate why they are occurring. The unifying theme underscored by these results is that the continuum photoelectron exerts tremendous influence on which vibrations are excited and the degree of excitation. These data are generated via high resolution photoelectron spectroscopy coupled with high brightness synchrotron radiation. Results are presented on the linear triatomic systems CO_2, CS_2, and N_2O. For these molecules, all vibrational modes are excited. Moreover, the energy dependences for the alternative vibrational modes exhibit dramatic differences, which are attributed to the degree and type of localization experienced by the continuum photoelectron in the molecular framework. And while the electronic structures of these molecules are very similar, they behave very differently from each other, even over a very broad energy range. Theoretical results by Prof. R.R. Lucchese will be discussed, and the comparison with experiment helps to illustrate the state of our understanding of these phenomena. In addition to the linear triatomics, preliminary results will be reported on BF_3, as well as a van der Waals dimer, Ar_2.

  12. Turbulence in giant molecular clouds: the effect of photoionization feedback

    NASA Astrophysics Data System (ADS)

    Boneberg, D. M.; Dale, J. E.; Girichidis, P.; Ercolano, B.

    2015-02-01

    Giant molecular clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoionizing feedback from massive stars has an impact on the surrounding GMC and can for example create vast H II bubbles. We therefore address the question of whether turbulence is a consequence of this effect of feedback on the cloud. To investigate this, we analyse the velocity field of simulations of high-mass star-forming regions by studying velocity structure functions and power spectra. We find that clouds whose morphology is strongly affected by photoionizing feedback also show evidence of driving of turbulence by preserving or recovering a Kolmogorov-type velocity field. On the contrary, control run simulations without photoionizing feedback have a velocity distribution that bears the signature of gravitational collapse and of the dissipation of energy, where the initial Kolmogorov-type structure function is erased.

  13. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  14. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  15. Global Franck-Condon breakdown: nonresonant molecular photoionization processes

    NASA Astrophysics Data System (ADS)

    Das, Aloke; Hardy, David; Aguilar, Alejandro; Kilcoyne, A. L. D.; Bozek, John D.; Poliakoff, Erwin D.

    2007-06-01

    We report photoelectron spectroscopy results of nonresonant Franck-Condon breakdown in the photoionization of CO and ICN. Most importantly, the deviations occur over a surprisingly wide range of energies. For the case of CO^+(X^2σ^+), the v^ + = 1/v^ + = 0 vibrational branching ratio is found to vary significantly (>50%) over a 200 eV range. While it is well understood that resonances can lead to coupling between photoelectron and molecular vibration, there is little information on nonresonant sources of coupling. It appears that Cooper minima may be responsible for the observations. Moreover, for ICN, the vibrationally resolved deviations from Franck-Condon behavior are vibrationally mode-specific. Studies on alternative molecular targets are planned to see whether they exhibit photoelectron dynamics that are geometry-dependent.

  16. Precision measurements on the photoionization of neutral atomic species

    NASA Astrophysics Data System (ADS)

    Stolte, Wayne

    2016-05-01

    In contrast to studies on rare gas atoms, experimental studies of open-shell atoms offers very challenging problems, such as creation of the atom, low signal, purity and stability. Because of this, studies of inner-shell excitations for open shell atoms are limited. In this talk I will discuss precision experimental measurements for photoionization of atomic oxygen, nitrogen, and chlorine over the last two decades on various beamlines at Lawrence Berkeley National Laboratories, Advanced Light Source.

  17. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    SciTech Connect

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  18. Using vibrational branching ratios to probe shape resonances in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert; Das, Aloke; Poliakoff, Erwin; Bozek, John

    2009-05-01

    The measurement of vibrational branching ratios in molecular photoionization can be used as a probe of the nature of resonant states, since such states are often sensitive to the geometry of the molecule. Recent computed results for BF3 and C6F6 will be presented. In C6F6, we consider the excitation of the two symmetric stretching modes in the photoionization leading to the C ^3B2u state of the ion. Two prominent shape resonances at photon energies between 18 and 20 eV respond quite differently to the excitation of the symmetric ring-breathing mode and to the symmetric C-F stretching mode. In BF3, the excitation of both the symmetric stretching and the degenerate asymmetric stretching modes are considered in the photoionization leading to the E ^2A1' state of the ion. The symmetric stretching mode shows a relatively weak resonant enhancement in the branching ratio, whereas the asymmetric stretching mode has a much more prominent feature.

  19. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    SciTech Connect

    Zheng, Xianfeng Zhou, Xiaoyu; Cheng, Zaiqi; Jia, Dandan; Qu, Zehua; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2014-10-15

    We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF) mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV) were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  20. Ionic photofragmentation and photoionization of dimethyl ether in the VUV and soft X-ray regions (8.5 80 eV) absolute oscillator strengths for molecular and dissociative photoionization

    NASA Astrophysics Data System (ADS)

    Feng, Renfei; Cooper, Glyn; Brion, C. E.

    2001-08-01

    The branching ratios for molecular and dissociative photoionization of dimethyl ether (CH 3OCH 3, DME) have been measured in the VUV and soft X-ray regions using dipole (e,e+ion) coincidence spectroscopy (˜1 eV FWHM) at equivalent photon energies from the first ionization threshold up to 80 eV. The absolute partial oscillator strengths (cross-sections) for molecular and dissociative photoionization have been determined from recently published absolute photoabsorption oscillator strength data [R. Feng, G. Cooper, C.E. Brion, Chem. Phys. 260 (2000) 391] together with the photoionization branching ratios and the (multi-dissociative-corrected) photoionization efficiency obtained from time-of-flight mass spectra reported in the present work. No stable multiply charged molecular ion(s) from DME have been found in the present work. However, the fact that the photoionization efficiency has been measured as greater than unity above ˜30 eV indicates the existence of multi-dissociative products from Coulomb explosion of multiply charged ions. Appearance potentials of all ion products from DME are also reported. The presently reported results are compared with the previously published data where possible.

  1. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  2. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    SciTech Connect

    Wang, Xu; Le, Anh -Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, a simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  3. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  4. Excitation of the symmetry forbidden bending mode in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Miller, J. Scott; Poliakoff, E. D.; Miller, Thomas F.; Natalense, Alexandra P. P.; Lucchese, Robert R.

    2001-03-01

    We present results on the energy dependence of the vibrational branching ratio for the bending mode in CO2 3σu-1 photoionization. Specifically, we determine the v+=(0,1,0)/v+=(0,0,0) intensity ratio by detecting dispersed fluorescence from the electronically excited photoions. The results exhibit large deviations over a very wide energy range, 18photoionization spectroscopies. The magnitude of these deviations display the utility of vibrationally resolved studies, and the extent over which these changes occur underscores the necessity of broad range studies to elucidate slowly varying characteristics in photoionization continua.

  5. Rotationally resolved fluorescence as a probe of molecular photoionization dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-11-01

    We present rotationally resolved data for the v'=0 and v'=1 levels of N2+(B 2Σu+) produced via 2σu-1 photoionization of N2. The data are obtained over a broad photon energy range (19≤hνexc≤35 eV). This is made possible by using synchrotron radiation excitation in conjunction with dispersed fluorescence detection. The results exhibit both resonant and nonresonant effects.

  6. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  7. Molecular Frame Photoemission: Probe of the Photoionization Dynamics for Molecules in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Dowek, D.; Picard, Y. J.; Billaud, P.; Elkharrat, C.; Houver, J. C.

    2009-04-01

    Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the I(χ, θe, varphie) MFPADs, where χ is the orientation of the molecular axis with respect to the light quantization axis and (θe, varphie) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarized light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hν = 19 eV, where direct PI is the only channel opened, and hν = 32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.

  8. Interference in the molecular photoionization and Young's double-slit experiment

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Becker, U.; Manson, S. T.; Msezane, A. Z.

    2012-02-01

    The photoabsorption by an electron bound by a two-centre potential has been investigated within the framework of the zero-range potential model. Expressions for total photoabsorption cross sections and for the photoelectron angular distributions have been derived for fixed-in-space and randomly oriented targets. The analytical formulae for gerade and ungerade molecular states have been used to analyse separately the molecular effects due to the two-centre ground state of quasi-molecule and diffraction effects that are connected with the spherical waves in the molecular continuum. It is shown that the interference of these waves significantly influences the magnitude of the cross sections near threshold but does not significantly distort the shape of the photoelectron angular distribution and it depends rather weakly on the character of the forces acting between the electron and molecular residue: Coulomb forces for neutral molecular photoionization or the short-range forces in the case of photodetachment of molecular negative ions. It is shown that despite the fact that the photoionization of diatomic molecules is reminiscent of Young's double-slit experiment, the similarity between these processes has been grossly exaggerated. This is confirmed by comparing the results of the classical interference of an electron scattered by two spatially separated centres with molecular photoelectron angular distributions.

  9. Total molecular photoionization cross-sections by algebraic diagrammatic construction-Stieltjes-Lanczos method: Benchmark calculations

    NASA Astrophysics Data System (ADS)

    Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2013-10-01

    In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new {L}2ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.

  10. Total molecular photoionization cross-sections by algebraic diagrammatic construction-Stieltjes-Lanczos method: benchmark calculations.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2013-10-14

    In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new L(2) ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.

  11. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    SciTech Connect

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P.

    2014-07-15

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4 ns/0.8 J/10 Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region λ ≈ 10–12 nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  12. Absolute single photoionization cross-section measurements of Rb2+ ions: experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Bogolub, K.; Johnson, A.; Aguilar, A.; Kilcoyne, A. L. D.; Bilodeau, R. C.; Bautista, M.; Kerlin, A. B.; Sterling, N. C.

    2016-12-01

    Absolute single photoionization cross-section measurements of Rb2+ ions were performed using synchrotron radiation and the photo-ion, merged-beams technique at the Advanced Light Source at Lawrence Berkeley National Laboratory. Measurements were made at a photon energy resolution of 13.5 ± 2.5 meV from 37.31 to 44.08 eV spanning the 2P{}3/2o ground state and 2P{}1/2o metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.

  13. A hybridGaussian-discrete variable representation approach to molecular continuum processes II: application to photoionization of diatomic Li2+

    SciTech Connect

    Rescigno, Thomas N; Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2008-08-01

    We describe an approach for studying molecular photoionization with a hybrid basis that combines the functionality of analytic basis sets to represent electronic coordinates near the nuclei of a molecule with numerically-defined grid-based functions. We discuss the evaluation of the various classes of two-electron integrals that occur in a hybrid basis consisting of Gaussian type orbitals (GTOs) and discrete variable representation (DVR) functions. This combined basis is applied to calculate single photoionization cross sections for molecular Li_2+, which has a large equilibrium bond distance (R=5.86a_0). The highly non-spherical nature of Li_2+ molecules causes higher angular momentum components to contribute significantly to the cross section even at low photoelectron energies, resulting in angular distributions that appear to be f-wave dominated near the photoionization threshold. At higher energies, where the de Broglie wavelength of the photoelectron becomes comparable with the bond distance, interference effects appear in the photoionization cross section. These interference phenomena appear at much lower energies than would be expected for diatomic targets with shorter internuclear separations.

  14. High-Resolution Measurements of Photoionization of Ions Using Synchrotron Radiation

    SciTech Connect

    Aguilar, A.; Covington, A.M.; Emmons, E.D.; Gharaibeh, M.F.; Phaneuf, R.A.; Alvarez, I.; Cisneros, C.; Hinojosa, G.; Dominguez, I.; Ackerman, G.; Bozek, J.D.; Canton, S.; Rude, B.; Sant'Anna, M.M.; Schlachter, A. S.; Folkmann, F.

    2003-08-26

    Measurement of absolute cross sections for photoionization of ions has become feasible by merging a well-collimated ion beam with a monochromatic beam of synchrotron radiation. An electron cyclotron resonance (ECR) ion source permits such measurements to be extended to multiply charged ions, and makes possible systematic studies along isoelectronic sequences. The evolution of atomic spectra along such sequences is commonly studied theoretically, but the predictive ability of the theoretical methods remains largely untested. Absolute cross-section measurements are presented for the first three ionic members of the isoelectronic sequence of nitrogen (O+, F2+ and Ne3+)

  15. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina

    2009-03-01

    We present a new design of an in situ detector for the study of meteor smoke particles (MSPs) in the middle atmosphere. This detector combines a classical Faraday cup with a xenon-flashlamp for the active photoionization/photodetachment of MSPs and the subsequent detection of corresponding photoelectrons. This instrument was successfully launched in September 2006 from the Andøya Rocket Range in Northern Norway. A comparison of photocurrents measured during this rocket flight and measurements performed in the laboratory proves that observed signatures are truly due to photoelectrons. In addition, the observed altitude cut-off at 60 km (i.e., no signals were observed below this altitude) is fully understood in terms of the mean free path of the photoelectrons in the ambient atmosphere. This interpretation is also proven by a corresponding laboratory experiment. Consideration of all conceivable species which can be ionized by the photons of the xenon-flashlamp demonstrates that only MSPs can quantitatively explain the measured currents below an altitude of 90 km. Above this altitude, measured photocurrents are most likely due to photoionization of nitric oxide. In conclusion, our results demonstrate that the active photoionization and subsequent detection of photoelectrons provides a promising new tool for the study of MSPs in the middle atmosphere. Importantly, this new technique does not rely on the a priori charge of the particles, neither is the accessible particle size range severely limited by aerodynamical effects. Based on the analysis described in this study, the geophysical interpretation of our measurements is presented in the companion paper by Strelnikova, I., et al. [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. results. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.011].

  16. CaH Rydberg series, oscillator strengths and photoionization cross sections from Molecular Quantum Defect and Dyson Orbital theories

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Lavín, C.; Díaz-Tinoco, Manuel; Ortiz, J. V.

    2017-01-01

    In this work, electron-propagator methods are applied to the calculation of the ionization potential and vertical excitation energies for several Rydberg series of the CaH molecule. The present calculations cover more highly excited states than those previously reported. In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, as well as photoionization cross sections for Rydberg channels, also have been determined by using the Molecular Quantum Defect Orbital approach. Good agreement has been found with the scarce comparative data that are available for oscillator strengths. To our knowledge, predictions of photoionization cross sections from the outermost orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic orbital character in some of the Dyson orbitals are among the novel features of these present calculations.

  17. Spectroscopy of defects in HPHT and CVD diamond by ESR and pulsed photo-ionization measurements

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Meskauskaite, D.; Grigonis, R.; Sirutkaitis, V.

    2016-01-01

    Synthetic diamond is one of the most promising wide band-gap materials for fabrication of solar-blind photo-sensors and radiation tolerant particle detectors. However, defects introduced during crystal growth and processing, causing carrier trapping and recombination, limit the functional characteristics of devices made of this material. In order to reveal the predominant defects, pulsed photo-ionization (PPI), Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopic measurements have been performed on diamond samples grown by chemical vapor deposition (CVD) and high pressure-high temperature (HPHT) methods. Measured photo-activation energies have been assigned to point defects associated with nitrogen and nickel impurities as well as to their complexes involving vacancies.

  18. Quantitative energy extraction measurements in a photoionization-stabilized self-sustained XeF laser

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Hasson, V.; Rowley, P. D.; Exberger, R.

    1979-01-01

    Detailed time-correlated gain, fluorescence, and laser energy measurements were used to obtain quantitative data on energy extraction efficiencies for a photoionization-stabilized self-sustained XeF laser. A current pulse of 25 ns full width at half-maximum produced an 80-cu-cm XeF plasma in NF3:Xe:He gas mixtures with a maximum output energy of 80 mJ. The results show that the maximum small-signal gain and the maximum specific output energy is proportional to the NF3 content of the gas mixture. This suggests that there is an optimum fractional utilization of the NF3 molecules in the discharge. Under high-gain conditions, 30-40% of the energy stored in XeF(asterisk) can be extracted in a gain-switched pulse. The output energy represents less than 1% of the input energy.

  19. Molecular photoionization as a probe of vibrational-rotational-electronic correlations

    NASA Astrophysics Data System (ADS)

    Rao, R. M.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1996-06-01

    We determine the rotationally state-resolved 2σu-1 photoionization of N2 into alternative vibrational channels as a function of energy over a 200 eV range. Experiment and theory reveal that Cooper minima highlight the coupling between electronic, vibrational, and rotational degrees of freedom over this very wide range.

  20. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  1. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  2. Using vibrational branching ratios to probe initial and final state effects in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Bozek, John D.; Das, Aloke; Poliakoff, E. D.

    2009-11-01

    Recent computed and experimental results for ICN, BF3 and C6F6 will be presented. In ICN we consider the ionization leading to the X2 Π1/2,3/2 states of ICN+. We show how the geometry dependence of the initial state orbital can be studied using vibrational branching ratios. In C6F6, we consider the excitation of the effects of two prominent shape resonances on the symmetric stretching modes in the photoionization leading to the C 3B2u state of the ion. In BF3, the excitation of both the symmetric stretching and the degenerate asymmetric stretching modes are considered in the photoionization leading to the E2A1' state of the ion.

  3. Relative Photoionization Cross Sections of Super-Atom Molecular Orbitals (SAMOs) in C60.

    PubMed

    Bohl, Elvira; Sokół, Katarzyna P; Mignolet, Benoit; Thompson, James O F; Johansson, J Olof; Remacle, Francoise; Campbell, Eleanor E B

    2015-11-25

    The electronic structure and photoinduced dynamics of fullerenes, especially C60, is of great interest because these molecules are model systems for more complex molecules and nanomaterials. In this work we have used Rydberg Fingerprint Spectroscopy to determine the relative ionization intensities from excited SAMO (Rydberg-like) states in C60 as a function of laser wavelength. The relative ionization intensities are then compared to the ratio of the photoionization widths of the Rydberg-like states, computed in time-dependent density functional theory (TD-DFT). The agreement is remarkably good when the same photon order is required to energetically access the excited states. This illustrates the predictive potential of quantum chemistry for studying photoionization of large, complex molecules as well as confirming the assumption that is often made concerning the multiphoton excitation and rapid energy redistribution in the fullerenes.

  4. On the correlation between photoelectron energy and bending excitation in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Miller, J. Scott; Poliakoff, E. D.

    2000-07-01

    We report on excitation of the bending vibration following 3σu-1 photoionization of CO2. Dispersed fluorescence is used to determine the v+=(0,1,0)/v+=(0,0,0) ratio over the range 18⩽hνexc⩽190 eV. The results demonstrate that the bending excitation varies over this wide range, and is influenced by the photoelectron.

  5. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  6. Triply Differential Studies of Atomic and Molecular Photoionization Using Synchrotron Radiation.

    DTIC Science & Technology

    1981-07-06

    1980). 9. E. D. Poliakoff , P. M. Dehmer, J. L. Dehmer, and R. L. Stockbauer, "The Photoelectron Spectrum of Xe 3 by the Photoclectron-Photoion...4. E. D. Poliakoff , J. L. Dehmer, A. C. Parr, D. Dill, K. H. Jackson, an, R. N. Zare, "Polarized Fluorescence Excta:b,, Spectroscopy of N2 , " ibid...p. 11-25. 5. J. L. Dehmer, A. C. Parr, J. B. West, K. Codling, D. L. Ederer, B. E. Cole, E. D. Poliakoff , and R. Stockbauer, "Ef,, cts of Shape

  7. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  8. Molecular beam photoionization study of HgBr/sub 2/ and HgI/sub 2/

    SciTech Connect

    Linn, S.H.; Tzeng, W.; Brom, J.M. Jr.; Ng, C.Y.

    1983-01-01

    Photoionization efficiency (PIE) data for HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ and their fragment ions have been obtained in the region 600--1350 A using an oven-type supersonic beam source. The ionization energies (IE) for the X /sup 2/Pi/sub 3/2g/ states of HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ were determined to be 10.560 +- 0.003 and 9.5088 +- 0.0022 eV, respectively. The analyses of the Rydberg series converging to the /sup 2/Pi/sub 1/2g/ states of HgBr/sub 2//sup +/ and HgI/sub 2//sup +/ yield a value of 10.8846 +- 0.0012 eV for the IE of the /sup 2/Pi/sub 1/2g/ state of HgBr/sub 2//sup +/ and 10.1953 +- 0.0025 eV for that of HgI/sub 2//sup +/. The major fragment ions from HgBr/sub 2/ were identified to be HgBr/sup +/, Hg/sup +/, Br/sub 2//sup +/, and Br/sup +/ and those from HgI/sub 2/ were found to be HgI/sup +/, I/sub 2//sup +/, and I/sup +/. The measured appearance energies for HgBr/sup +/ and HgI/sup +/ allow the calculation of the bond dissociation energies for HgBr/sup +/ and HgI/sup +/ to be 55 +- 2 and 59 +- 1 kcal/mol, respectively. Similar to the observation in the PIE curves for HgCl/sub 2//sup +/ and its fragment ions, the PIE spectra for HgBr/sub 2//sup +/, HgI/sub 2//sup +/, and their fragment ions are dominated by autoionization structures exhibiting asymmetric Beutler--Fano line profiles. The comparison of the PIE curves of HgCl/sub 2//sup +/, HgBr/sub 2//sup +/, HgI/sub 2//sup +/, and Hg/sup +/ from Hg confirms the previous conclusion that these autoionizing Rydberg series can be assigned to transitions((5d)/sup 10/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/) ..-->.. ((5d)/sup 9/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/ /sup 2/D/sub plus-or-minus5/2/)np and ((5d)/sup 10/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/) ..-->.. ((5d)/sup 9/sigma/sub g//sup 2/sigma/sub u//sup 2/..pi../sub u//sup 4/..pi../sub g//sup 4/ /sup 2/D/sub plus

  9. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  10. State-resolved molecular photoionization dynamics of polyatomic systems: Effects of non-linear changes in molecular geometry

    NASA Astrophysics Data System (ADS)

    Miller, James Scott

    An important topic in the absorption of vacuum ultraviolet photons by molecules is the correlation between electronic and nuclear degrees of freedom during photoionization. However, no previous investigations have probed the correlation between bending excitation and photoejection dynamics over a wide spectral range. We present the first such studies by reporting the influence of bending excitation following CO2 3σu -1 and N2O 7σ-1 photoionization over the photon energy range (15 eV < hvexc < 200 eV). Using dispersed fluorescence spectroscopy in conjunction with synchrotron radiation, we determine the vibrational branching ratio v+ = (0,1,0)( 0,0,0) for the CO2+ (B 2Σu+) and N2O+ (A 2Σ+) electronic states. The relative rate of production of the υ2 = 1 upper vibrational state varies over a broad ionization energy range, and in ways that are largely unanticipated. These branching ratios exhibit a strong thermal dependence, and we are able to separate out effects due to hot-band excitation from those that are due to vibronic coupling. The data indicate that the continuum electron is responsible for the observed energy dependence in CO2 3σ u-1 photoionization. This is a previously unobserved result. Additional studies examine the influence of simultaneous excitation in the bending and symmetric stretching modes in N2O+ [A 2Σ+, v + = (1,1,0)] to determine the effect of changing the energy separation of vibronically coupled potential surfaces. Finally, the CF4 + [D 2A1, v+ = (1,0,0,0)/(0,0,0,0)] branching ratio is studied, which provides the first experimental observation of a predicted low-energy shape resonance in this photoionization pathway.

  11. Comparison of measured and theoretical inverse bremsstrahlung and photoionization absorption of infrared radiation in a H-He plasma.

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.; Rowley, P. D.; Presley, L. L.

    1972-01-01

    The absorption coefficients of 1.15- and 3.39-micrometer radiation for a homogeneous H-He plasma have been measured in a temperature and electron density range where the major absorption mechanisms are electron-ion inverse bremsstrahlung and neutral-atom photoionization. Measurements were made behind both the incident and reflected shock waves in a driven tube by recording the laser intensity transmitted along the tube diameter as a function of time. The measured values compare well with those obtained from theoretical calculations for a gas in thermodynamic equilibrium.

  12. Photoionization of FE3+ Ions

    SciTech Connect

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  13. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  14. Molecular similarity measures.

    PubMed

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  15. Molecular similarity measures.

    PubMed

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2004-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of a chemistry space. Although all three concepts molecular similarity, molecular representation, and chemistry space are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations, that is, representations of the same mathematical form, into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another.

  16. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  17. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  18. Photoionization Dynamics of Small Molecules

    SciTech Connect

    Dehmer, Joseph L.; Dill, Dan; Parr, Albert C.

    1985-01-01

    The last decade has witnessed remarkable progress in characterizing dynamical aspects of the molecular photoionization process. The general challenge is to gain physical insight into those processes occuring during photo excitation and eventual escape of the photoelectron through the anisotropic molecular field, in terms of various observables such as photoionization cross-sections and branching ratios, photoelectron angular distributions and even newer probes mentioned below. Much of the progress in this field has mirrored earlier work in atomic photoionization dynamics where many key ideas were developed (e.g., channel interaction, quantum defect analysis, potential barrier phenomena and experimental techniques). However, additional concepts and techniques were required to deal with the strictly molecular aspects of the problem, particularly the anisotropy of the multicenter molecular field and the interaction among rovibronic modes.

  19. An unambiguous signature in molecular frame photoelectron angular distributions of core hole localization in fluorine K-edge photoionization of CF4

    NASA Astrophysics Data System (ADS)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; Lucchese, R. R.

    2016-05-01

    Molecular Frame Photoelectron Angular Distributions (MFPADs) are calculated using the Complex Kohn variational method for core-hole ionization of the carbon and fluorines in CF4 at photoelectron energies below 15 eV. The angular distributions for localized versus delocalized core-hole creation on the four equivalent fluorines are radically different. A strong propensity for the dissociation to take place via the mechanism hν +CF4 -->CF 4 + +e- -->CF 3 + +F(1s-1) -->CF 3 + +F+ + 2e- in which a core excited neutral fluorine atom ionizes during or after dissociation creates the conditions for experimental observation of core hole localization. Comparison with recent unpublished experiments at the Advanced Light Source that measured the Recoil Frame Photoelectron Angular Distributions (averaged over CF3 rotations around the recoil axis) for fluorine K-edge ionization gives unambiguous evidence that these experiments directly observed the creation of an almost completely localized core hole on the dissociating fluorine atom when the molecule was initially photoionized. Work supported by USDOE, OBES Chemical Sciences, Geosciences, and Biosciences Division.

  20. Dissociative and double photoionization of CO2 from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1979-01-01

    The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.

  1. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    NASA Astrophysics Data System (ADS)

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Dowek, D.; Trcera, N.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.

    2013-10-01

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS2.

  2. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    SciTech Connect

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.; Dowek, D.; Trcera, N.

    2013-10-15

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS{sub 2}.

  3. Triply Differential Studies of Atomic and Molecular Photoionization Using Synchrotron Radiation.

    DTIC Science & Technology

    1985-10-17

    B. West, E. D. Poliakoff , and J. L. Dehmer, "Wavelength and Vibrational- State Dependence of Photoelectron Angular Distributions. Resonance Effects in...Dehmer, "Triply-Differential Photoelectron Studies of Molecular Autoionization Profiles," Phys. Rev. Letters 46, 22 (1981). 3. E. D. Poliakoff , J. L...Resonance in Xe," J. Phys. B 13, L693 (1980). 9. E. D. Poliakoff , P. M. Dehmer, J. L. Dehmer, and R. L. Stockbauer, "The Photoelectron Spectrum of Xe by the

  4. Measurement of the photoionization spectra and ionization thresholds of the H sub 2 CN and D sub 2 CN radicals

    SciTech Connect

    Nesbitt, F.L.; Marston, G.; Stief, L.J. ); Wickramaaratchi, M.A.; Tao, W.; Klemm, R.B. )

    1991-10-03

    The photoionization spectra of the H{sub 2}CN and D{sub 2}CN radicals were obtained by photoionization mass spectroscopy (PIMS) using synchrotron radiation. The radicals were generated by the reaction of N with CH{sub 3} and CD{sub 3}, respectively. For both H{sub 2}CN and D{sub 2}CN a prominent feature was observed near 118.6 nm (10.5 eV) and the ionization threshold was determined to be 9.4 {plus minus} 0.1 eV; both features provide additional signatures for identifying H{sub 2}CN in complex systems. By use of a corrected value for {Delta}H{sub f} (H{sub 2}CN) derived from a recent electron affinity measurement and other available measured or calculated thermochemical quantities for H{sub 2}CN and HCNH radicals and radical ions, a value of 10.8 {plus minus} 0.6 eV for the ionization energy of H{sub 2}CN was derived. The much lower value derived for the ionization energy of HCNH (6.8 and 7.0 eV for the cis and trans isomers, respectively) is consistent with the product of the N + CH{sub 3} reaction being the H{sub 2}CN isomer and not HCNH. The ionization threshold observed at 9.4 eV is attributed to autoionization arising from high Rydberg states of H{sub 2}CN which couple into vibrationally excited states of the linear HCNH{sup +} ground state of the ion. Also discussed are the roles of the H{sub 2}CN radical and HCNH{sup +} radical ion in the chemistry of the atmosphere of Titan and in interstellar clouds.

  5. Merging quantum-chemistry with B-splines to describe molecular photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Marante, C.; Klinker, M.; Corral, I.; Gonzalez, J.; Martin, F.

    2016-05-01

    Theoretical description of observables in attosecond pump-probe experiments requires a good representation of the system's ionization continuum. For polyelectronic atoms and molecules, however, this is still a challenge, due to the complicated short-range structure of correlated electronic wavefunctions. Whereas quantum chemistry packages (QCP) implementing sophisticated methods to compute bound electronic molecular states are well established, comparable tools for the continuum are not widely available yet. To tackle this problem, we have developed a new approach that, by means of a hybrid Gaussian-B-spline basis, interfaces existing QCPs with close-coupling scattering methods. To illustrate the viability of this approach, we report results for the multichannel ionization of the helium atom and of the hydrogen molecule that are in excellent agreement with existing accurate benchmarks. These findings, together with the flexibility of QCPs, make of this approach a good candidate for the theoretical study of the ionization of poly-electronic systems. FP7/ERC Grant XCHEM 290853.

  6. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  7. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  8. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  9. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    SciTech Connect

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc; Trcera, Nicolas

    2011-12-15

    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  10. Production of C2H4Cl+ by dissociative photoionization of weak molecular complexes in C2H4 + HCl mixtures

    NASA Astrophysics Data System (ADS)

    Walters, E. A.; Grover, J. R.; Arneberg, D. L.; Santandrea, C. J.; White, M. G.

    1990-12-01

    The photoionization efficiency (PIE) spectrum from 600 to 1200 Å for the production of the ion C2H4Cl+ by dissociative photoionization of the products of room-temperature jet expansions of a 1:4 mixture of C2H4 and HCl was measured at several nozzle pressures. The results were resolved into the PIE yield curve for the heterodimer process C2H4·HCl+ hv→C2H4Cl++H+ e. This reaction is necessarily characterized by a large change in geometry between neutral complex and ionic product. The observed spectrum exhibits an unusual and conspicuous peak at 15.2 eV that is characterized by a sharp cutoff to the high energy side. This feature points to the onset of strongly nonstatistical channels for the production of C2H4Cl+ at this energy such that product formation proceeds through very few states. The observed onset of C2H4Cl+ at 11.92±0.24 eV is 17±6 kcal mol-1 above the true threshold. An important conclusion is that at all energies above the onset the yield of dissociative ionization of the heterodimer to the cation C2H4Cl+ is determined by dynamical factors.

  11. Photoionization of the cerium isonuclear sequence and cerium endohedral fullerene

    NASA Astrophysics Data System (ADS)

    Habibi, Mustapha

    This dissertation presents an experimental photoionization study of the cerium isonuclear sequence ions in the energy range of the 4d inner-shell giant resonance. In addition, single and double photoionization and photofragmentation cross sections of the cerium endohedral ion Ce C+82 were also measured and studied in the 4d excitation-ionization energy range of cerium. Relative and absolute cross-section measurements were performed at undulator beamline 10.0.1 of the Advanced Light Source (ALS) for nine parent cerium ions: Ce+ - Ce9+. Double-to-single ionization cross-section ratios were measured for photoionization of the endohedral Ce C+82 and empty fullerene C C+82 molecular ions. The merged ion and photon beams technique was used to conduct the experiments. Multiconfiguration Hartree-Fock calculations were performed as an aid to interpret the experimental data. Four Rydberg series for 4d → nf (n ≥ 4) and 4d → np (n ≥ 6) autoionizing excitations were assigned using the quantum defect theory for the Ce3+ photoionization cross section. The experimental data show the collapse of the nf wavefunctions (n ≥ 4) with increasing ionization stage as outer-shell electrons are stripped from the parent ion. The nf orbital collapse occurs partially for Ce2+ and Ce3+ ion and completely for Ce4+, where these wavefunctions penetrate the core region of the ion. A strong contribution to the total oscillator strength was observed in the double and triple photoionization channels for low charge states (Ce +, Ce2+, and Ce3+), whereas most of the 4d excitations of the higher charge states decay by ejection of one electron.

  12. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yang, Bin; Cool, Terrill A.; Hansen, Nils; Kasper, Tina

    2008-02-01

    The use of photoionization mass spectrometry for the development of quantitative kinetic models for the complex combustion chemistry of both conventional hydrocarbon fuels and oxygenated biofuels requires near-threshold measurements of absolute photoionization cross-sections for numerous reaction intermediates. Near-threshold absolute cross-sections for molecular and dissociative photoionization for 20 stable reaction intermediates (methane, ethane, propane, n-butane, cyclopropane, methylcyclopentane, 1-butene, cis-2-butene, isobutene, 1-pentene, cyclohexene, 3,3-dimethyl-1-butene, 1,3-hexadiene, 1,3-cyclohexadiene, methyl acetate, ethyl acetate, tetrahydrofuran, propanal, 1-butyne, 2-butyne) are presented. Previously measured total photoionization cross-sections for 9 of these molecules are in good agreement with the present results. The measurements are performed with photoionization mass spectrometry (PIMS) using a monochromated VUV synchrotron light source with an energy resolution of 40 meV (fwhm) comparable to that used for flame-sampling molecular beam PIMS studies of flame chemistry and reaction kinetics.

  13. PHOTOIONIZATION IN THE SOLAR WIND

    SciTech Connect

    Landi, E.; Lepri, S. T.

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  14. Alignment of photoions far from threshold

    NASA Astrophysics Data System (ADS)

    Das, Romith; Wu, Chuanyong; Mihill, A. G.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1994-09-01

    We present results of measurements and calculations of the alignment for CO+(B 2Σ+) photoions over an extended energy range (0≤Ek≤210 eV). The polarization of CO+(B 2Σ+→X 2Σ+) fluorescence indicates that the photoions retain significant alignment even at high energies. Agreement between the measured and calculated polarization of the fluorescence is excellent.

  15. Molecular Isomer Identification of Titan's Tholins Organic Aerosols by Photoelectron/Photoion Coincidence Spectroscopy Coupled to VUV Synchrotron Radiation.

    PubMed

    Cunha de Miranda, Barbara; Garcia, Gustavo A; Gaie-Levrel, François; Mahjoub, Ahmed; Gautier, Thomas; Fleury, Benjamin; Nahon, Laurent; Pernot, Pascal; Carrasco, Nathalie

    2016-08-25

    The chemical composition of Titan organic haze is poorly known. To address this issue, laboratory analogues named tholins are synthesized and analyzed by methods often requiring an extraction process in a carrier solvent. These methods exclude the analysis of the insoluble tholins' fraction and assume a hypothetical chemical equivalence between soluble and insoluble fractions. In this work, we present a powerful complementary analysis method recently developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves soft pyrolysis of tholins at ∼230 °C and electron/ion coincidence analysis of the emitted volatile compounds photoionized by tunable synchrotron radiation. By comparison with reference photoelectron spectra (PES), the spectral information collected on the detected molecules yields their isomeric structure. The method is more readily applied to light species (m/z ≤ 69), while for heavier ones, the number of possibilities and the lack of PES reference spectra in the literature limit its analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent doubly bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in tholins.

  16. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-07

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices.

  17. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    SciTech Connect

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.

    2008-08-28

    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  18. Photoabsorption and photoionization cross sections for formaldehyde in the vacuum-ultraviolet energy range

    NASA Astrophysics Data System (ADS)

    Tanaka, H. K.; Prudente, F. V.; Medina, A.; Marinho, R. R. T.; Homem, M. G. P.; Machado, L. E.; Fujimoto, M. M.

    2017-03-01

    We report a theoretical-experimental investigation on the interaction of vacuum-ultraviolet radiation with formaldehyde (H2CO) in the gas phase. Experimentally, the absolute photoabsorption cross sections and the photoionization quantum yields were measured in the (11.0-21.5) eV range using the double-ion chamber technique. Also, the absolute photoionization and neutral-decay cross sections were derived from these data. In addition, in the same energy region, the dissociation pattern was obtained with a time-of-flight mass spectrometer using the photoelectron-photoion coincidence technique, and the absolute photoionization cross sections were derived for each ionic fragment observed. Moreover, theoretical photoionization cross sections were calculated for the ionization of the four outermost molecular valence orbitals (2b2, 1b1, 5a1, and 1b2) from the threshold to 35 eV. The calculations were performed using the iterative Schwinger variational method to solve the Lippmann-Schwinger equation in the exact static-exchange level of approximation. In general, there is a good agreement between our experimental and previous data reported in the literature. Our theoretical results show a fair qualitative agreement with the experimental data and with previous theoretical results. Above 20 eV, a better quantitative agreement with the experimental data is also observed.

  19. Photoionization of Ar VIII

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Jiang, Wen-xian; Zhou, Chao

    2017-01-01

    The photoionization cross section, energy levels and widths of 22 Rydberg series (in the autoionization region) for Na-like Ar VIII were investigated by using of R-matrix method. The relativistic distorted-wave method is used to calculate the radial functions, and QB method of Quigly-Berrington [Quigley et al. 1998] is employed to calculate the resonance levels and widths. We have identified the formant in the figure of the photoionization cross section.

  20. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    PubMed

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  1. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of {sigma}=18 ps and energy resolution {delta}E/E=3.5%

    SciTech Connect

    Vredenborg, Arno; Roeterdink, Wim G.; Janssen, Maurice H. M.

    2008-06-15

    We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 {mu}m) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to {sigma}=18 ps. We observed that our electron coincidence detector has a timing resolution better than {sigma}=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of {delta}E{sub FWHM}/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about {delta}m{sub FWHM}/m=1/4150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to {sigma}=115 {mu}m.

  2. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  3. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  4. Measurement Frontiers in Molecular Biology

    NASA Astrophysics Data System (ADS)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  5. Atomic photoionization experiment by harmonic-generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Sarantseva, T. S.; Manakov, N. L.; Fulfer, K. D.; Wilson, B. P.; Troß, J.; Ren, X.; Poliakoff, E. D.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.; Trallero-Herrero, C. A.

    2016-03-01

    Measurements of the high-order-harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter.

  6. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  7. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  8. Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study.

    PubMed

    Tachikawa, Hiroto

    2006-01-12

    Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.

  9. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane.

    PubMed

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; Sheps, Leonid; Scheer, Adam M; Savee, John D; Akbar Ali, Mohamad; Lee, Taek Soon; Simmons, Blake A; Osborn, David L; Violi, Angela; Taatjes, Craig A

    2014-11-06

    Product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). Interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.

  10. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    SciTech Connect

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; Sheps, Leonid; Scheer, Adam M.; Savee, John D.; Akbar Ali, Mohamad; Lee, Taek Soon; Simmons, Blake A.; Osborn, David L.; Violi, Angela; Taatjes, Craig A.

    2014-09-19

    The product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.

  11. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    DOE PAGES

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; ...

    2014-09-19

    The product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperaturemore » over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.« less

  12. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. II. Photoionization

    NASA Astrophysics Data System (ADS)

    Svoboda, Ondřej; Ončák, Milan; Slavíček, Petr

    2011-10-01

    We have applied ab initio based reflection principle to simulate photoelectron spectra of small water clusters, ranging from monomer to octamer. The role of quantum and thermal effects on the structure of the water photoelectron spectra is discussed within the ab initio path integral molecular dynamics (PIMD) framework. We have used the PIMD method with up to 40 beads to sample the ground state quantum distribution at temperature T = 180 K. We have thoroughly tested the performance of various density functionals (B3LYP, BHandHLYP, M06HF, BNL, LC-ωPBE, and CAM-B3LYP) for the ionization process description. The benchmarking based on a comparison of simulated photoelectron spectra to experimental data and high level equation-of-motion ionization potential coupled clusters with singles and doubles calculations has singled out the BHandHLYP and LC-ωPBE functionals as the most reliable ones for simulations of light induced processes in water. The good performance of the density functional theory functionals to model the water photoelectron spectra also reflects their ability to reliably describe open shell excited states. The width of the photoelectron spectrum converges quickly with the cluster size as it is controlled by specific interactions of local character. The peak position is, on the other hand, defined by long-range non-specific solvent effects; it therefore only slowly converges to the corresponding bulk value. We are able to reproduce the experimental valence photoelectron spectrum of liquid water within the combined model of the water octamer embedded in a polarizable dielectric continuum. We demonstrate that including the long-range polarization and the state-specific treatment of the solvent response are needed for a reliable liquid water ionization description.

  13. Photoionization-photoelectron research

    SciTech Connect

    Berkowitz, J.; Ruscic, B.

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  14. Determining the partial photoionization cross-sections of ethyl radicals.

    PubMed

    FitzPatrick, B L; Maienschein-Cline, M; Butler, L J; Lee, S-H; Lin, J J

    2007-12-13

    Using a crossed laser-molecular beam scattering apparatus, these experiments photodissociate ethyl chloride at 193 nm and detect the Cl and ethyl products, resolved by their center-of-mass recoil velocities, with vacuum ultraviolet photoionization. The data determine the relative partial cross-sections for the photoionization of ethyl radicals to form C2H5+, C2H4+, and C2H3+ at 12.1 and 13.8 eV. The data also determine the internal energy distribution of the ethyl radical prior to photoionization, so we can assess the internal energy dependence of the photoionization cross-sections. The results show that the C2H4++H and C2H3++H2 dissociative photoionization cross-sections strongly depend on the photoionization energy. Calibrating the ethyl radical partial photoionization cross-sections relative to the bandwidth-averaged photoionization cross-section of Cl atoms near 13.8 eV allows us to use these data in conjunction with literature estimates of the Cl atom photoionization cross-sections to put the present bandwidth-averaged cross-sections on an absolute scale. The resulting bandwidth-averaged cross-section for the photoionization of ethyl radicals to C2H5+ near 13.8 eV is 8+/-2 Mb. Comparison of our 12.1 eV data with high-resolution ethyl radical photoionization spectra allows us to roughly put the high-resolution spectrum on the same absolute scale. Thus, one obtains the photoionization cross-section of ethyl radicals to C2H5+ from threshold to 12.1 eV. The data show that the onset of the C2H4++H dissociative photoionization channel is above 12.1 eV; this result offers a simple way to determine whether the signal observed in photoionization experiments on complex mixtures is due to ethyl radicals. We discuss an application of the results for resolving the product branching in the O+allyl bimolecular reaction.

  15. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  16. Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals

    SciTech Connect

    Velasco, A. M.; Lavín, C.; Dolgounitcheva, O.; Ortiz, J. V.

    2014-08-21

    Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH{sub 3}{sup +} and SiH{sub 3}{sup +}. Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH{sub 3} and SiH{sub 3} radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10–11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.

  17. Modeling X-Ray Photoionized Plasmas: Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for L-Shell Iron

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Badnell, N. R.; Bartsch, T.; Brandau, C.; Chen, M. H.; Grieser, M.; Gwinner, G.; Hoffknecht, A.; Kahn, S. M.; Linkemann, J.

    2000-01-01

    Iron L-shell ions (Fe XVII to Fe XXIV) play an important role in determining the line emission and thermal and ionization structures of photoionized gases. Existing uncertainties in the theoretical low temperature dielectronic recombination (DR) rate coefficients for these ions significantly affects our ability to model and interpret observations of photoionized plasmas. To help address this issue, we have initiated a laboratory program to produce reliable low temperature DR rates. Here, we present some of our recent results and discuss some of their astrophysical implications.

  18. Nondipole effects in helium photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2010-12-01

    An accurate calculation of the nondipole anisotropy parameter γ in the photoionization of helium below the N = 2 threshold is presented. The calculated results are in fairly good agreement with the experimental results of Krässig et al (2002 Phys. Rev. Lett. 88 203002), but not as good as the accuracy of the calculation should have warranted. A careful examination of the possible causes for the observed discrepancies between theory and experiment seems to rule out any role either of the multipolar terms higher than the electric quadrupole, or of the singlet-triplet spin-orbit mixing. It is argued that such discrepancies might have an instrumental origin, due to the difficulty of measuring vanishingly small total cross sections σtot with the required accuracy. In such eventuality, it might be more appropriate to use a parameter other than γ, such as for instance the drag current, to measure the nondipole anisotropy of the photoelectron angular distribution.

  19. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the

  20. Photoionization studies of oxygen and hydrogen

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Arathi

    A toroidal spectrometer designed to perform (gamma, 2e) studies, was for the first time employed for Threshold Photoelectron Photoion Coincidence (TPEPICO) study. The angular distributions of O+(4S) ions produced from dissociative photoionization (DPI) of O2 + c4Sigma-u(nu =0,1) using the TPEPICO technique, i.e. by measuring the coincidence yield between threshold photoelectrons and photoions have been investigated. The results for lifetimes, taunu, corresponding to the vibrational levels nu = 0,1, along with the value obtained for inherent anisotropic photoion angular distribution betaO+, are presented. Recently, Fernandez and Martin (New J Phys 11 34 (2009)), have performed an extensive ab initio study of DPI in H2, in which large oscillatory behaviour in the electron angular distribution, as a function of electron energy, has been predicted. The result of their ab anitio calculations reveal that the electron angular, theta, distributions oscillate between a cos2theta pattern and isotropic with less than a 1 eV.change in electron energy. Due to the very low cross section and the requirement for high energy resolution in the electron detection system, these measurements require sensitive instrumentation that is now available at the Canadian Light Source. For this particular H 2 study, the electron angular distributions as a function of electron energy are the signature of quantum mechanical interference between, essentially, two specific doubly excited states (namely, 1Q11Sigma u+ and 1Q21piu) decaying at different internuclear distances. While interference between 'direct' photoionization and autoionization is well-known, the first unambiguous observation of interference between two autoionization processes, occurring on the femtosecond timescale is presented. A simple semi-classical model captures the essence of both our experimental observations and the results of full ab initio calculations. It does this through explicitly linking the electron angular

  1. Photoionization studies of (BH3)n (n=1,2)

    NASA Astrophysics Data System (ADS)

    Ruščić, B.; Mayhew, C. A.; Berkowitz, J.

    1988-05-01

    The results of photoionization mass spectrometric studies on B2H6, and BH3 (produced by pyrolysis of B2H6) are presented. The photoion yield curves of B2H+n (n=2-6) and BH+n (n=2-3) from B2H6, as well as BH+n (n=1-3) from BH3 have been obtained. It is shown that the combination of appearance potential measurements for BH+3 (B2H6) and BH+3 (BH3) yields a poor upper limit for -ΔHdimerization, 0 K (BH3) of 52.7 kcal/mol, while the combination of BH+2 (B2H6) and BH+2 (BH3) provides a better upper limit (46.6±0.6 kcal/mol) for this quantity. However, the threshold for BH+ (BH3), combined with auxiliary data, provides the best current experimental value, (34.3-39.1)±2 kcal/mol. This experimental value is in good agreement with a recent ab initio calculation, and is arrived at by using the best current estimate of ΔHf(B2H6), rather than a radically different value proposed in that paper. The ionization potential of BH3, ΔHf (BH+2), and the atomization energy of BH3 obtained experimentally are in excellent agreement with other ab initio calculations. The upper limits on heats of formation for the ionic species B2H+n (n=2-6) are obtained, and plausible structures are discussed for these species, based on the current energetics and various ab initio calculations. Finally, the fragmentation behavior of photoions from diborane is shown to have a more facile explanation by quasiequilibrium theory than by a molecular orbital picture, with the probable exception of BH+3 (B2H6).

  2. Photoionization of ClII

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana; Hernández, E.; Antillón, A.; Morales, A.; González, O.; Macaluso, D.; Hanstorp, D.; Aguilar, A.; Juárez, A.; Hinojosa, G.

    2014-05-01

    The cross section and spectrum for the process of single photoionization of the chlorine cation was measured in the energy range of 19.5 to 28.0 eV with a photon energy resolution of 20 meV. Over a non resonant cross section, resonant structures originated from initinal Cl+ 3P(J=0,1,2) manifold converging mainly to 2P(J=3/2) and 2D(J=5/2) are identified. A theoretical calculation based on the close coupling R-matrix is under progress. CONACYT CB-2011 167631. US National Science Fundation, DGAPA IN106813, The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE Cntrct. DE-AC02-05CH11231. Montana Space Grant Consortium, Swedish Research Council.

  3. Photoionization of Ar2 at high resolution

    SciTech Connect

    Dehmer, Patricia M.

    1982-01-01

    The relative photoionization cross section of Ar2 was determined at a resolution of 0.07 Â in the wavelength region from 800 to 850 Â using a new photoionization mass spectrometer that combines a high intensity helium continuum lamp with a free supersonic molecular beam source. In the region studied, the photoionization cross section is dominated by autoionization of molecular Rydberg states, and the structure is diffuse owing to the combined effects of autoionization and predissociation. The molecular photoionization spectrum is extremely complex and shows little resemblence either to the corresponding atomic spectrum (indicating that the spectrum of the dimer is not simply a perturbed atomic spectrum) or to the molecular absorption spectrum at longer wavelengths. The regular vibrational progressions seen at longer wavelengths are absent above the first ionization potential. Detailed spectroscopic analysis is possible for only a small fraction of the observed features; however, vibrational intervals of 50--100 cm⁻¹ suggest that some of the Rydberg states have B ²Π3/2g ionic cores. A comparison of the absorption and photoionization spectra shows that, at wavelengths shorter than -835 Â, many of the excited states decay via mechanisms other than autoionization

  4. An Atomic Photoionization Experiment by Harmonic Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trallero, Carlos; Frolov, Mikhail; Sarantseva, Tatiana S.; Manakov, Nikolay; Fulfer, Kristen D.; Wilson, Benjamin; Troß, Jan; Ren, Xiaoming; Poliakoff, Erwin; Silaev, Alexander A.; Vvedenskii, Nikolay; Starace, Anthony

    2016-05-01

    Measurements of the high-order harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter. NSF EPSCoR Track II Nebraska-Kansas Awards No. 1430519 and No. 1430493.

  5. 2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

    SciTech Connect

    Klaus Muller-Dethefs Nancy Ryan GRay

    2009-03-31

    This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.

  6. A novel aerosol mass spectrometric approach - Analysis of the organic molecular signature of PM by coupling of thermal EC/OC-carbon analysis to photo-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Grabowski, J.; Streibel, T.; Sklorz, M.; Chow, J.

    2012-12-01

    Carbonaceous material in airborne particulate matter (PM) is of increasing interest e.g. due to its adverse health effects and its potential influence on the climate. Its analytical assessment on a molecular level is still very challenging. Hence, analysis of carbonaceous fractions for many studies is often solely carried out by determining sum parameters such as the overall content of organic carbon (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC). The used thermal procedure, however, allows getting additional interesting information: By defining different thermal OC fractions (i.e. temperature steps) also information on the refractory properties of the carbonaceous material is obtained. In this context it is particularly interesting to investigate the release and formation behaviors of the molecular species responsible for the different OC and EC fractions. Thus after initial promising results of pre-studies [1,2] in the current work an EC/OC carbon analyzer (Model DRI 2000) and a homebuilt photo-ionization time-of-flight mass spectrometer (PI-TOFMS) were hyphenated and applied to investigate individual organic compounds especially from the different OC fractions. The carbon analyzer enables the stepwise heating of PM loaded filter samples and provides the sum values of the "carbon" release ("Improve protocol" [2]: OC1 - 120 °C, OC2 - 250°C, OC3 - 450°C OC4 - 550°C). With the on-line coupled PI-TOFMS evolved organic compounds, as released during the thermal program, are detectable in real time. This is possible by MS with soft photo ionization methods (SPI - single photon ionization and REMPI - resonance-enhanced multi photon ionization). Soft ionization suppresses fragmentation upon the ionization step and generates molecular signatures in the MS. The EC/OC-analyzer-PI-TOFMS instrument was applied to several types of PM samples, such as ambient aerosol, emission samples (gasoline/diesel car, wood combustion) or

  7. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  8. Photoionization-photoelectron research.

    SciTech Connect

    Ruscic, B.

    1998-03-06

    In the broad sense of a general definition, the fundamental goal of this research program is to explore, understand, and utilize the basic processes of interaction of vacuum UV light with atoms and molecules. In practical terms, this program uses photoionization mass spectrometry and other related techniques to study chemically relevant transient and metastable species that are intimately connected to energy-producing processes, such as combustion, or play-prominent roles in the associated environmental issues. Some recent examples of species that have been studied are: CH{sub 3}, CH{sub 2}, CH{sub 3}O, CH{sub 2}OH, CH{sub 3}S, CH{sub 2}SH, HCS, HNCO, NCO, HNCS, NCS, the isomers of C{sub 2}H{sub 5}O, HOBr, CF{sub 3} and CF{sub 3}OH. The ephemeral species of interest are produced in situ using various suitable techniques, such as sublimation, pyrolysis, microwave discharge, chemical abstraction reactions with H or F atoms, laser photodissociation, on-line synthesis, and others. The desired information is obtained by applying a variety of suitable photoionization methods, which use both conventional and coherent light sources in the vacuum W region. The spiritus movens of our studies is the need to provide the chemical community with essential information on the species of interest, such as accurate and reliable thermochemical, spectroscopic and structural data, and thus contribute to the global comprehension of the underlying chemical processes. The scientific motivation is also fueled by the necessity to unveil useful generalities, such as bonding patterns within a class of related compounds, or systematic behavior in the ubiquitous autoionization processes. In addition, the nature of the results obtained in this program is such that it generates a significant impetus for further theoretical work. The experimental work of this program is coordinated with other related experimental and theoretical efforts of the Chemical Dynamics Group to provide a broad perspective

  9. Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry.

    PubMed

    Pan, Yang; Zhang, Lidong; Zhang, Taichang; Guo, Huijun; Hong, Xin; Qi, Fei

    2008-12-01

    Photoionization and dissociative photoionization characters of six quinones, including 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthroquinone (PQ), 9,10-anthraquinone (AQ), benz[a]- anthracene-7,12-dione (BAD) and 1,2-acenaphthylenedione (AND) have been studied with an infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IR LD/VUV PIMS) technique. Mass spectra of these compounds are obtained at different VUV photon energies. Consecutive losses of two carbon monoxide (CO) groups are found to be the main fragmentation pathways for all the quinones. Detailed dissociation processes are discussed with the help of ab initio B3LYP calculations. Ionization energies (IEs) of these quinones and appearance energies (AEs) of major fragments are obtained by measuring the photoionization efficiency (PIE) spectra. The experimental results are in good agreement with the theoretical data.

  10. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  11. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  12. Photoionization of P+: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Nahar, S. N.; Hernández, E. M.; Hernández, L.; Antillón, A.; Morales-Mori, A.; González, O.; Covington, A. M.; Chartkunchand, K. C.; Hanstorp, D.; Juárez, A. M.; Hinojosa, G.

    2017-01-01

    An experimental and theoretical study of the single photoionization cross section of the P+ cation of phosphorus is presented. Photoionization (PI) cross sections are instrumental for the determination of abundances in the interstellar medium. The experiment was performed by merging an ion beam with a photon beam. The photon beam was nearly monochromatic and had an energy resolution of 24 meV. Calculations were carried out using the Breit-Pauli R-matrix method. The combined study was developed in the photon energy interval from 18 eV (68.9 nm) to 50 eV (24.8 nm). Comparison between the measured and the calculated cross section shows good agreement in general and identifies features of the process and existence of states in the experimental beam. The present results should provide for more accurate modeling of P+.

  13. Photoionization and photofragmentation of SF6 in helium nanodroplets.

    PubMed

    Peterka, Darcy S; Kim, Jeong Hyun; Wang, Chia C; Neumark, Daniel M

    2006-10-12

    The photoionization of He droplets doped with SF6 was investigated using tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source (ALS). The resulting ionization and photofragmentation dynamics were characterized using time-of-flight mass spectrometry combined with photofragment and photoelectron imaging. Results are compared to those of gas-phase SF6 molecules. We find dissociative photoionization to SF5+ to be the dominant channel, in agreement with previous results. Key new findings are that (a) the photoelectron spectrum of the SF6 in the droplet is similar but not identical to that of the gas-phase species, (b) the SF5+ photofragment velocity distribution is considerably slower upon droplet photoionization, and (c) fragmentation to SF4+ and SF3+ is much less than in the photoionization of bare SF6. From these measurements we obtain new insights into the mechanism of SF6 photoionization within the droplet and the cooling of the hot photofragment ions produced by dissociative photoionization.

  14. Physical mechanism of terahertz generation in two-color photoionization

    NASA Astrophysics Data System (ADS)

    You, Yong Sing

    Two-color photoionization has been widely used as a versatile tool for intense, broadband terahertz (THz) radiation generation. In this scheme, an ultrashort laser's fundamental and its second harmonic pulses are co-focused into a gas of atoms or molecules, transforming them into plasma by photoionization. This process produces an intense THz pulse emitted in the forward direction. The main focus of this dissertation is to provide a physical understanding of such THz generation and investigate its generation mechanism at both microscopic and macroscopic levels. First, we examine the generation process by measuring the relative phase between two-color (fundamental and second harmonic) laser fields and the resulting THz field simultaneously. We discover that a relative phase of pi/2 yields maximal THz outputs, consistent with a semi-classical plasma current model. We find that this optimal relative phase is independent of laser intensities, gas species, and two-color laser amplitude ratios. We also measure concurrent near-field photocurrents. All these measurements verify laser-produced plasma currents as a microscopic source for THz generation. We also investigate THz radiation from an ensemble of aligned air molecules in two-color laser fields. Our experiments show that THz radiation is strongly affected by molecular (nitrogen and oxygen) alignment. We explain this phenomenon in the context of the plasma current model combined with alignment-dependent ionization. Phase-matching is essential to achieve high-efficiency nonlinear frequency conversion. We discover THz generation by two-color photoionization in elongated air plasmas (filamentation) is naturally phase-matched in the off-axis direction, resulting in donut-shaped radiation profiles in the far field. Because of this off-axis phase-matching, THz yields increase almost linearly with the filament length, scalable for further THz energy enhancement. Lastly, we study the polarization of emitted THz radiation. In

  15. Vibrational branching ratios and shape resonant photoionization dynamics in N2O

    NASA Astrophysics Data System (ADS)

    Braunstein, M.; McKoy, V.

    1989-02-01

    Accurate photoelectron continuum orbitals are used to study vibrational branching ratios and photoelectron asymmetry parameters for alternative vibrational modes in the photoionization of N2O (7sigma exp -1). The strong non-Franck-Dondon vibrational ion distributions for the symmetric and antisymmetric stretching modes at low photoelectron energies observed in the dispersed ionic fluorescence measurements of Poliakoff et al. (1986) are confirmed. It is shown that these features arise from a sigma shape resonance which is associated with the molecular framework as a whole and not with either of its fragments, N-N or N-O.

  16. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  17. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  18. Photoionization of epichlorohydrin enantiomers and clusters studied with circularly polarized vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Powis, Ivan; Garcia, Gustavo A.; Soldi-Lose, Héloïse; Nahon, Laurent

    2011-02-01

    The photoionization of enantiomerically pure epichlorohydrin (C3H5OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental conformer populations and an anticipated breakdown in Koopmans' theorem leave some ambiguity. Measurements of the photoelectron circular dichroism (PECD) were obtained across a range of photon energies for each of these bands, using electron velocity map imaging to record the angular distributions, during which a record PECD chiral asymmetry factor of 32% was observed. A comparison with calculated PECD curves clarifies the assignment achieved using ionization energies alone and further suggests a likely relative population of the conformers. Threshold photoelectron-photoion coincidence methods were used to study the ionic fragmentation of epichlorohydrin. Fragment ion appearance energies show nonstatistical behavior with clear indications that the cationic epoxide ring is unstable and lower energy decay channels proceeding via ring breaking are generally open. Extensive neutral homochiral clusters of epichlorohydrin may be formed in supersonic molecular beam expansions seeded in Ar. Electron angular distribution measurements made in coincidence with dimer and trimer ions are used to effect an examination of the PECD associated with ionization of size-selected neutral cluster species, and these results differ clearly from PECD of the neutral monomer. The shifted ionization thresholds of the n-mers (n = 2, …, 7) are shown to follow a simple linear relationship, but under intense beam expansion conditions the monomer deviates from this relationship, and the monomer electron spectra tail to below the expected monomer adiabatic ionization potential (IP). PECD measurements made in coincidence with monomer ions obtained

  19. Photoionization of epichlorohydrin enantiomers and clusters studied with circularly polarized vacuum ultraviolet radiation.

    PubMed

    Daly, Steven; Powis, Ivan; Garcia, Gustavo A; Soldi-Lose, Héloïse; Nahon, Laurent

    2011-02-14

    The photoionization of enantiomerically pure epichlorohydrin (C(3)H(5)OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental conformer populations and an anticipated breakdown in Koopmans' theorem leave some ambiguity. Measurements of the photoelectron circular dichroism (PECD) were obtained across a range of photon energies for each of these bands, using electron velocity map imaging to record the angular distributions, during which a record PECD chiral asymmetry factor of 32% was observed. A comparison with calculated PECD curves clarifies the assignment achieved using ionization energies alone and further suggests a likely relative population of the conformers. Threshold photoelectron-photoion coincidence methods were used to study the ionic fragmentation of epichlorohydrin. Fragment ion appearance energies show nonstatistical behavior with clear indications that the cationic epoxide ring is unstable and lower energy decay channels proceeding via ring breaking are generally open. Extensive neutral homochiral clusters of epichlorohydrin may be formed in supersonic molecular beam expansions seeded in Ar. Electron angular distribution measurements made in coincidence with dimer and trimer ions are used to effect an examination of the PECD associated with ionization of size-selected neutral cluster species, and these results differ clearly from PECD of the neutral monomer. The shifted ionization thresholds of the n-mers (n = 2, ..., 7) are shown to follow a simple linear relationship, but under intense beam expansion conditions the monomer deviates from this relationship, and the monomer electron spectra tail to below the expected monomer adiabatic ionization potential (IP). PECD measurements made in coincidence with monomer ions obtained

  20. Spin effects in double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-01

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  1. Spin effects in double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-15

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  2. Gas-Phase Photoionization Of A Protein

    NASA Astrophysics Data System (ADS)

    Milosavljevic, A. R.; Giuliani, A.; Nicolas, C.; Gil, J.-F.; Lemaire, J.; Refregiers, M.; Nahon, L.

    2010-07-01

    We present preliminary results on gas phase photoionization of electrosprayproduced multiply protonated cytochrome c protein (104 amino acids; ˜12.4 kDa), which has been achieved with a newly developed experimental system for spectroscopy of electrosprayed ions in a linear quadrupole ion trap using a monochromatized vacuum ultraviolet (VUV) synchrotron radiation and tandem mass spectrometry method. The investigation of proteins in the gas phase, where they are free of the influence of counterions and solvent molecules, offer a possibility to understand their intrinsic molecular properties. However, due to limited both ion densities and available number of photons, the use of synchrotron radiation for the trapped ions spectroscopy is a rather challenging task. The feasibility of coupling a Fourier transform ion cyclotron resonance ion trap with soft x-ray synchrotron beamline and the first successful use of synchrotron radiation for spectroscopy of electrosprayed negative ions stored in a three-dimensional quadrupole ion trap have been demonstrated only recently (R. Thissen et al., 2008, Phys. Rev. Lett., 100, 223001; A. Giulliani et al., Proc. 57th ASMS Conf., Philadelphia, 2009). The present results are the first reported on photoionization of kDa species in the gas phase and are valuable regarding both a fundamental interest of accessing physical properties of large biological ions isolated in vacuo and potential development of a new technique for proteomics.

  3. Photodetachment and photoionization rainbows and glories

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kalaitzis, P.; Danakas, S.; Lépine, F.; Bordas, C.

    2017-03-01

    Quantum scattering has many similarities with the physics of the atmospheric rainbow. Diffraction effects, including rainbows and glories, have long been introduced in the physics of scattering, and particularly in nuclear, atomic and molecular physics. In this paper we describe the striking similarity between the optics of the primary rainbow and supernumerary bows and photodetachment microscopy, with the latter term referring to the photodetachment of a structureless anion in the presence of a static electric field. Further, we extend the aforementioned analogy to the more complex and fertile case of photoionization microscopy. Despite the fact that in the latter situation the analogy is only approximate, we demonstrate the emergence of additional features that are also found in classical optics, like higher-order bows and glories. Finally, based on the conclusions drawn from the above analyses, we discuss the significant contribution of glories in threshold photoelectron spectroscopy.

  4. Double photoionization of doubly-excited lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Pindzola, M. S.; Kheifets, A.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    We present triple differential cross sections and recoil ion momentum distributions for double photoionization of the 1s2s2p state of lithium. Double ionization of lithium may be treated as a two-active-electron process, where the ``active'' 2s and 2p electrons move in the field of the ``frozen-core'' Li^2+ 1s state.The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. This work is motivated by recent FLASH experiments, which have obtained recoil-ion momentum distributions at a photon energy of 59 eV, where the 1s2s2p state is first reached via a 1s-2p photoexcitation from the initial ground state, and may then be doubly-ionized after the absorption of a second photon. The TDCC calculations in this work treat the subsequent photoionization of this doubly-excited state. The results are compared to those obtained by the convergent close-coupling method and to measurement, and provide a first comparison between theory and experiment in this fundamental few-photon few-body problem.

  5. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  6. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    SciTech Connect

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan; Wehlitz, Ralf; Cheng, Lan; Stanton, John F.

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  7. Pulsed-field ionization photoelectron and IR-UV resonant photoionization spectroscopy of Al-thymine.

    PubMed

    Krasnokutski, Serge A; Lei, Yuxiu; Lee, Jung Sup; Yang, Dong-Sheng

    2008-09-28

    Al-thymine (Al-C(4)H(3)N(2)O(2)CH(3)) is produced by laser vaporization of a rod made of Al and thymine powders in a molecular beam and studied by single-photon pulsed-field ionization-zero electron kinetic energy (ZEKE) photoelectron and IR-UV resonant two-photon ionization spectroscopy and density functional theory calculations. The ZEKE experiment determines the adiabatic ionization energy of the neutral complex and 22 vibrational modes for the corresponding ion with frequencies below 2000 cm(-1). The IR-UV photoionization experiment measures two N-H and three C-H stretches for the neutral species. The theoretical calculations predict a number of low-energy isomers with Al binding to single oxygen or adjacent oxygen and nitrogen atoms of thymine. Among these isomers, the structure with Al binding to the O4 atom of the diketo tautomer is predicted to be the most stable one by the theory and is probed by both ZEKE and IR-UV measurements. This work presents the first application of the IR-UV resonant ionization to metal-organic molecule systems. Like ZEKE spectroscopy, the IR-UV photoionization technique is sensitive for identifying isomeric structures of metal association complexes.

  8. Grating pitch measurements with the molecular measuring machine

    NASA Astrophysics Data System (ADS)

    Kramar, John; Jun, Jau-Shi J.; Penzes, William B.; Scire, Fredric; Teague, E. Clayton; Villarrubia, John S.

    1999-11-01

    At the National Institute of Standards and Technology, we are building a metrology instrument called the Molecular Measuring Machine (M3) with the goal of performing nanometer- accuracy two-dimensional feature placement measurements over a 50 mm by 50 mm area. The instrument uses a scanning tunneling microscope to probe the surface and an interferometer system to measure the lateral probe movement, both having sub-nanometer resolution. The continuous vertical measurement range is 5 micrometer, and up to 2 mm can be covered by stitching overlapping ranges. The instrument includes temperature control with millikelvin stability, an ultra-high vacuum environment with a base pressure below 10-5 Pa, and seismic and acoustic vibration isolation. Pitch measurements were performed on gratings made by holographic exposure of photoresist and on gratings made by laser-focused atomic deposition of Cr. The line pitch for these gratings ranged from 200 nm to 400 nm with an estimated standard uncertainty of the average pitch of 25 X 10-6. This fractional uncertainty is derived from an analysis of the sources of uncertainty for a 1 mm point-to- point measurement, including the effects of alignment, Abbe offset, motion cross-coupling, and temperature variations. These grating pitch measurements are uniquely accomplished on M3 because of the combination of probe resolution and long-range interferometer-controlled stage. This instrument could uniquely address certain dimensional metrology needs in the data storage industry.

  9. Precision Measurements with a Molecular Clock

    NASA Astrophysics Data System (ADS)

    Grier, Andrew; McDonald, Mickey; McGuyer, Bart; Iwata, Geoffrey; Apfelbeck, Florian; Tarallo, Marco; Zelevinsky, Tanya

    2015-05-01

    We report on recent results obtained with photoassociated Sr2 molecules confined in a lattice. Sr2 has a range of electronically excited bound states which are readily accessible with optical wavelengths using the narrow 1S0->3P1 intercombination line. As in Nat. Phys. 11, 32, we measure the lifetimes of the narrow, deeply-bound subradiant states in the 1g (1S0+3P1 dissociative limit) potential, allowing for coherent control of molecules and a comparison with theoretical predictions of the lifetimes and transition strengths of these states. Next, we study ultracold photodissociation of Sr2 molecules through abortion of one and two photons near the atomic intercombination line. This allows us to observe the vector character of transition elements through the angular dissociation pattern and to directly measure barrier heights in the excited state potentials. Finally, as shown in PRL 114, 023001, we demonstrate that in a non-magic lattice, a narrow transition can be used to measure the trapped gas temperature through the linewidth of the spectral feature corresponding to the carrier transitions. We use this technique to measure the temperature of Sr2 molecules to 10x higher precision than with standard techniques. We discuss future prospects with this molecular lattice clock. Funding from NIST, ARO, and NSF IGERT.

  10. Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg

    NASA Astrophysics Data System (ADS)

    Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin

    2017-01-01

    The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.

  11. Global energy dependence of N2O+ >(A 2Σ+) photoion alignment

    NASA Astrophysics Data System (ADS)

    Das, Romith; Wu, Chuanyong; Poliakoff, E. D.

    1997-12-01

    We present experimental results for the alignment of N2O+(A 2Σ+) photoions over an extended energy range (16.4⩽hνexc⩽240 eV). The polarization of the N2O+(A 2Σ+→X 2Π) fluorescence is used to interpret the oscillator strength distributions for normally unresolved degenerate ionization channels. The results clearly show the influence of a near-threshold 7σ→kσ shape resonance, and help to clarify the results of previous fluorescence and photoelectron studies. At high photon energies, the photoelectrons are not favored to exit via a particular channel, in contrast to recent results on N2 and CO, where photoelectrons are ejected preferentially via the kσ channel and the photoions retain significant alignment even at the highest measurable energies. These results demonstrate that even well above threshold the spectral dependence of the alignment (i.e., polarization) is very sensitive to the molecular environment for photoejection.

  12. Photoionization studies of intramolecular dynamics: A closer look

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong

    Using synchrotron radiation as an excitation source, dispersed fluorescence measurements of two different molecular systems are presented in this dissertation with the intention to study the two fundamental aspects of shape resonances-complexity and completeness. C6F6 is a relative large and complex molecule in the sense that nonradiative transitions can take place unimolecularly in the free species. The elucidation of the ionization dynamics of this molecule helps to bridge the gap from simple molecules to matter in condensed phases. In the 2a2u-1 photoionization study of C6F6, the non-Franck-Condon behavior of the vibrational distributions at around 20 eV indicates the existence of shape resonances in this energy range. This is the first time a shape resonance of such a complex molecule is characterized with vibrational resolution detail over such a broad energy range. While the study of C6F6 is to disentangle the complexity aspect of shape resonance, the investigation of CO is an attempt to carry the shape resonant study to its completeness. The original goal of the 4σ- 1 photoionization study of CO was to investigate the vibrational-rotational-electronic (V-R-E) coupling. To be specific, we intended to study the shape resonant effects on the rotational population distributions for alternative vibrational levels. While the 4/sigma/to k/sigma shape resonance influences do not seem to be very significant, the results brought to attention another issue-continuum-continuum channel coupling. The study shows that the R-dependent aspects of shape- resonance-induced continuum coupling affects rotational population distributions for alternative vibrational states differently. In modern scientific researches, the development of instruments plays a critical role. The trend today is for computers to serve as the engine for instrumentation- virtual instruments. By walking through the development processes of a real-time instrument control and data acquisition system, the

  13. Infrared laser desorption/vacuum ultraviolet photoionization mass spectrometry of petroleum saturates: a new experimental approach for the analysis of heavy oils.

    PubMed

    Guo, Wenyue; Bi, Yucheng; Guo, Huijun; Pan, Yang; Qi, Fei; Deng, Wenan; Shan, Honghong

    2008-12-01

    A novel method combining infrared (IR) laser desorption with tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (LD/VUV PIMS) is applied to characterize a number of petroleum saturates samples from Lungu atmospheric residue (LGAR) under different treatment procedures. The mass spectra of these saturates are well resolved with even masses as the dominant ions and are clearly sample-dependent. In order to assess the ability of IR LD/VUV PIMS to determine the average molecular weight of heavy oils, the dependence of the measured molecular weight distributions on the VUV ionization photon energies is also discussed.

  14. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  15. Differential cross-sections for the double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Bray, Igor; Colgan, J.; Pindzola, M. S.

    2012-11-01

    We apply the convergent close-coupling (CCC) and time-dependent close- coupling (TDCC) methods to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  16. Differential cross sections of double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-15

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  17. Double photoionization of halogenated benzene

    SciTech Connect

    AlKhaldi, Mashaal Q.; Wehlitz, Ralf

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  18. On the electron wavepacket dynamics of photoionizing states

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo

    2014-06-01

    To study electron wavepacket dynamics of photoionizing states in polyatomic molecules, we discuss two crucial issues to be overcome in the theory of molecular electronic wavepacket dynamics in an intense laser field (Takatsuka and Yonehara 2011 Phys. Chem. Chem. Phys. 13 4987). One is about the description of the ionization process from electronically excited states composed of many multiply excited configuration-state functions. The other is how to reconstruct the electronic states remaining in the molecular site while electrons are flowing out of the molecular bounds. These are both critical to extend the realm of the theories of electron dynamics based on the so-called expansion (algebraic) method in terms of basis functions. To calculate the photoionization amplitude and thereby to estimate the time-dependent amount of electron loss from a molecule, we extract the electron flux (probability current density) from the electron wavepackets without use of scattering theory. This is justified by the success of the recent works by Bandrauk’s group for attosecond photoionization dynamics from the hydrogen molecule ion, who performed numerical integration of the relevant Schrödinger equation (Yuan et al 2013 J. Chem. Phys. 138 134316). A key feature in the present study, on the other hand, is to calculate the electron flux in terms of complex-valued NOs, which arise from the complex electronic wavepackets. Through the change of these NOs, we reconstruct the involved electronic configurations during the flow of electrons out of molecular regions. These repopulated electronic wavefunctions are (non-adiabatically) evolved in time under laser fields.

  19. 2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006

    SciTech Connect

    Robert Continetti Nancy Ryan Gray

    2006-09-06

    The 4th Gordon Conference on Photoions, Photoionization and Photodetachment will be held January 29-February 3, 2006 at the Santa Ynez Valley Marriott in Buellton, California. This meeting will continue to cover fundamentals and applications of photoionization and photodetachment, including valence and core-level phenomena and applications to reaction dynamics, ultrashort laser pulses and the study of exotic molecules and anions. Further information will be available soon at the Gordon Conference Website, and will be announced.

  20. Vibrationally resolved shape resonant photoionization of SiF4

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Poliakoff, E. D.; Rosenberg, R. A.

    1992-01-01

    We have measured vibrationally resolved fluorescence from SiF+4(D˜ 2A1) photoions to determine the vibrational branching ratio σ[v=(1,0,0,0)]/σ[v=(0,0,0,0)] in the excitation energy range 22photoionization are discussed.

  1. Acetylene/Vinylidene Isomerization after Carbon K-shell Photo-Ionization

    NASA Astrophysics Data System (ADS)

    Osipov, Timut; Weber, T.; Jahnke, T.; Alnaser, A.; Landers, A.; Hertlein, M.; Jagutzki, O.; Schmidt, L.; Schöffler, M.; Prior, M.; Feinberg, B.; Cocke, C. L.; Dörner, R.; Belkacem, A.

    2006-05-01

    Comprehensive study of the acetylene/vinylidene isomerization dynamics after the carbon k-shell photoionization followed by the Auger decay was performed by means of the COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) technique. The Auger electrons, produced in this reaction, were detected in coincidence with the products of the Coulomb explosion of the dication C2H2^2+. Measurement of the 3d vector momenta for all detected particles inferred the Auger electron energies and directions in the body fixed molecular frame along with the KER (Kinetic Energy Release) for different break up channels. This highly differential reaction cross-section study provided very unique information about the fragmentation pathways of the doubly charged acetylene molecule.

  2. Band strength in photoelectron spectra and photoionization cross sections of pyrrole and of conformation isomers of 1,1-dimethylhydrazine

    SciTech Connect

    Kiro, Z. A.; Dykhanov, S. M.; Zverev, V. V.

    1988-09-01

    The dependence of partial photoionization cross sections of the 1,1-dimethylhydrazine molecule on the spatial characteristics (bond lengths, valence and dihedral angles) has been studied. The presence of a gauche-conformation isomer in the gaseous phase has been established, as confirmed by a comparison of the photoionization cross section ratios for the corresponding molecular orbitals with the relative band strengths in photoelectron spectra.

  3. Photoionization sensors for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  4. Relative partial cross sections for single, double, and triple photoionization of C60 and C70.

    PubMed

    Mitsuke, Koichiro; Katayanagi, Hideki; Kafle, Bhim P; Huang, Chaoqun; Yagi, Hajime; Prodhan, Md Serajul I; Kubozono, Yoshihiro

    2007-08-30

    Partial cross sections for the photoion formation from C(60) and C(70) were determined from the yields of singly, doubly, and triply charged ions which were measured by mass spectrometry combined with tunable synchrotron radiation at hnu = 25-120 eV. The dependence of the detection efficiencies on the mass-to-charge ratio was evaluated by using the formula proposed by Twerenbold et al. Corrections of the detection efficiency were found to be critical for obtaining accurate partial cross sections for photoionization of fullerenes. Revisions were made of the partial cross-section curves for single and double photoionization of C(60) and C(70). The curve for triple photoionization of C(70) was newly proposed. The ratios between the cross sections for double and single photoionization increase with hnu and reach saturated values of 0.78 at 85 eV for C(60) and approximately 1.3 at 100 eV for C(70). In contrast, the ratios at 120 eV between the cross sections for triple and single photoionization of C(60) and C(70) amount to 0.14 and approximately 0.38, respectively. The formation mechanism of multiply charged fullerene ions was discussed in terms of valence-electron excitation to antibonding unoccupied orbitals and/or spherical standing waves inside the cavity of a fullerene. This excitation could be followed by Spectator Auger processes and transmission of the excess electronic energy among numerous vibrational degrees of freedom.

  5. Mechanism of [m+h]+ formation in atmospheric pressure photoionization mass spectrometry: identification of propionitrile in acetonitrile with high mass accuracy measurement and tandem mass spectrometry and evidence for its involvement in the protonation phenomenon.

    PubMed

    Kamel, Amin; Jeanville, Patrick; Colizza, Kevin; J-Rivera, Lauren Elizabeth

    2008-11-01

    The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.

  6. A discharge flow-photoionization mass spectrometric study of hydroxymethyl radicals (H{sub 2}COH and H{sub 2}COD): Photoionization spectrum and ionization energy

    SciTech Connect

    Tao, W.; Klemm, R.B.; Nesbitt, F.L.; Stief, L.J.

    1992-01-09

    The photoionization spectrum of H{sub 2}COH was measured over the wavelength range 140-170 nm by using a discharge flow-photoionization mass spectrometer apparatus with synchrotron radiation. Hydroxymethyl radicals (H{sub 2}COH and H{sub 2}COD) were generated in a flow tube by the reaction of F atoms with CH{sub 3}OH(D). Ionization energies (IE) were determined directly from photoion thresholds. The IE values, 7.56 {plus_minus} 0.02 and 7.55 {plus_minus} 0.02 eV for H{sub 2}COH and H{sub 2}COD, respectively, are consistent with previous measurements. Also, the dissociative ionization process, presumed to be H{sub 3}CO* {yields} HCO{sup +} + H{sub 2}, was observed with a threshold at 8.61 {plus_minus} 0.06 eV. 44 refs., 5 figs.

  7. Experimental observation of guanine tautomers with VUV photoionization.

    PubMed

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S; Ahmed, Musahid

    2009-04-30

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single-photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to that with laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest-lying tautomers of guanine suggest that the experimental observations arise from different tautomers being populated in the two different experimental methods.

  8. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  9. A new method for direct total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-04-01

    The primary and most important oxidant in the troposphere is the hydroxyl radical (OH). Currently the atmospheric sinks of OH are poorly constrained. One way to characterize the overall sink term of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. The first direct measurements of total OH reactivity were performed using laser induced fluorescence (LIF) [1], [2]. Recently a new method for determining OH reactivity was developed called the comparative reactivity method (CRM) [3]. The measurement principle is based on a competitive reaction between a reactive molecule not normally present in air with OH, and atmospheric OH reactive molecules with OH. The reactive molecule (X), is passed through a Teflon coated glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced into the reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing OH reactive species. Comparing the amount of X exiting the reactor with and without the competing ambient air molecules directly provides the atmospheric total OH reactivity. In the first version of this set up, molecule X is pyrrole (C5H4N) and the detector used is a proton transfer reaction mass spectrometer (PTR-MS). In comparison to the original LIF based system, the PTR-MS has the advantage of being smaller, less expensive, and commercially available. However, using the PTR-MS for total OH reactivity measurements prevents it from probing the broad variety of volatile organic compounds in ambient air. Moreover, even smaller, less expensive and more portable detectors are available. This work examines the potential for a GC-PID in order to make the total OH reactivity measurement accessible to more practitioners. This study presents measurements of total OH reactivity with a custom built GC-PID (VOC-Analyzer from IUT-Berlin, now ENIT (Environics-IUT GmbH))[4]. The GC-PID is small (260

  10. Molecular approaches to measuring microbial marine pollution.

    PubMed

    Pommepuy, M; Le Guyader, F

    1998-06-01

    Developments in the rapid detection of pathogens (PCR and its variations) and molecular typing of strains isolated from the ecosystem illustrate the stimulation of research due to the recent foodborne and waterborne disease outbreaks.

  11. Double Photoionization of Atomic Beryllium

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-03-01

    One-photon double ionization (DPI) of beryllium represents the next step in the evolution of DPI investigations that began with helium in order to sensitively probe electron correlation. Beryllium is the simplest atomic species of the alkaline earth elements which, in general, possess two electrons outside of a fully occupied inner shell that spherically screens the nucleus. This provides a natural basis for comparison to 1s^2 helium DPI. However, the valence state of beryllium has n=2, thus making the valence excited target 2s2p more accessible relative to the 2s^2 ground state as compared to ground-state and metastable helium. Also, the symmetry of photoionizing from either the ^1S or ^1P initial state will have consequences for the angular distributions for double ionization. Triply differential cross sections (TDCS) are presented for DPI from both ground state 2s^2 and excited state 2s2p beryllium calculated using exterior complex scaling (ECS) for the valence electrons.

  12. 2001 Gordon Research Conference on Photoions, Photoionization and Photodetachment. Final progress report [agenda and attendees list

    SciTech Connect

    Johnson, Mark

    2001-07-13

    The Gordon Research Conference on Photoions, Photoionization and Photodetachment was held at Williams College, Williamstown, Massachusetts, July 8-13, 2001. The 72 conference attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and including US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Time for formal presentations was limited. Sessions included the following topics: Vibrational structure, Time resolved studies: nuclear wavepackets, Valence photoionization, Clusters and networks, Resonance structures and decay mechanisms, Ultrafast photoionization, Threshold photoionization, Molecule fixed properties, and Collisional phenomena.

  13. Photoionization from the 5p {sup 2}P{sub 3/2} state of rubidium

    SciTech Connect

    Nadeem, Ali; Haq, S. U.

    2011-06-15

    We report two-step photoionization studies from the 5p {sup 2}P{sub 3/2} excited state of rubidium using two dye lasers simultaneously pumped by a common Nd:YAG laser in conjunction with a thermionic diode ion detector. The photoionization cross section at the first ionization threshold is measured as 18.8 {+-} 3 Mb and at excess energies of 0.013, 0.106, 0.229, and 0.329 eV is measured as 15, 13.6, 12.6, and 12.5 Mb, respectively. The measured value of the photoionization cross section at the threshold is used to calibrate the oscillator strengths of the 5p {sup 2}P{sub 3/2}{yields}nd {sup 2}D{sub 5/2} (22 {<=}n{<=} 52) Rydberg transitions.

  14. The photoionization spectrum of neutral aluminium, Al I

    NASA Technical Reports Server (NTRS)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  15. Three-photon near-threshold photoionization dynamics of isooctane

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Underwood, David F.; Lipsky, Sanford; Blank, David A.

    2005-08-01

    The electron survival probability following three-photon (9.3eV total) near-threshold photoionization of neat isooctane is measured with sub-50fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5TW/cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  16. Three-photon near-threshold photoionization dynamics of isooctane.

    PubMed

    Healy, Andrew T; Underwood, David F; Lipsky, Sanford; Blank, David A

    2005-08-01

    The electron survival probability following three-photon (9.3 eV total) near-threshold photoionization of neat isooctane is measured with sub-50 fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5 TW cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  17. Multichannel interactions in the resonant photoionization of HCl

    NASA Astrophysics Data System (ADS)

    White, M. G.; Leroi, G. E.; Ho, M.-H.; Poliakoff, E. D.

    1987-12-01

    Vibrational state distributions of the A 2Σ+ excited state of HCl+ were measured by dispersed fluorescence following resonant photoionization. Autoionization of levels excited at the NeI resonance line strongly influence the vibrational branching ratios of the A 2Σ+ state although not in accord with the propensity rule expected for vibrational autoionization. Other measurements utilizing total fluorescence yields and synchrotron radiation confirm the presence of competing dissociation channels for autoionizing Rydberg states converging to the A 2Σ+ limit. These results are discussed in terms of the multichannel interactions responsible for determining the observed ion and fragment product distributions.

  18. An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization

    SciTech Connect

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Qi, Fei; Zhu, Aiguo; Cui, Zhifeng

    2007-10-15

    Two premixed laminar pyrrole/oxygen/argon flames at 3.33 kPa (25 Torr) with equivalence ratios of 0.55 (C/O/N = 1:5.19:0.25) and 1.84 (C/O/N = 1:1.56:0.25) have been investigated using tunable synchrotron photoionization and molecular-beam mass spectrometry techniques. All observed flame species, including some nitrogen-containing intermediates, have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of species including reactants, intermediates, and products have been determined by scanning burner position at some selected photon energies near ionization thresholds, and flame temperature has been measured by a Pt/Pt-13% Rh thermocouple. The results indicate that N{sub 2}, NO, and NO{sub 2} are the major nitrogenous products, while hydrogen cyanide, isocyanic acid, and 2-propenenitrile are the most important nitrogen-containing intermediates in pyrrole flames. Radicals such as methyl, propargyl, allyl, cyanomethyl, n-propyl, isobutyl, cyclopentadienyl, phenyl, cyclohexyl, phenoxy, and 4-methylbenzyl are observed as well. Moreover, ethenol and methylacrylonitrile are also detected. Reaction pathways involving the major species are proposed. The new results will be useful in developing a kinetic model of nitrogenous compound combustion. (author)

  19. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  20. Double photoionization of hydrocarbons and aromatic molecules

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.

    2016-11-01

    This article reviews the recent progress in the field of double photoionization of hydrocarbons and aromatic molecules using synchrotron radiation. First I will describe the importance of carbon-based molecules, which are all around us and are literally part of our life. They exhibit intriguing properties some of which can be probed via double photoionization, i.e., the simultaneous emission of two electrons. Furthermore, I will discuss the different mechanisms that can lead to a doubly charged organic molecule and will highlight those findings by comparing them with the results for atoms and other (simple) molecules. Finally, I will give an outlook on future directions on this subject.

  1. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2; N{sup +}= 0-9) + Ar

    SciTech Connect

    Chang, Yih Chung; Xu Yuntao; Lu Zhou; Xu Hong; Ng, C. Y.

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N{sub 2}{sup +}(v{sup +}, N{sup +}) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}, v{sup +}= 0-2, N{sup +}= 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N{sub 2}{sup +} PFI-PI beam can be formed with a laboratory kinetic energy resolution of {Delta}E{sub lab}={+-} 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E{sub cm}'s) down to thermal energies. Absolute total rovibrationally selected cross sections {sigma}(v{sup +}= 0-2, N{sup +}= 0-9) for the N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2, N{sup +}= 0-9) + Ar CT reaction have been measured in the E{sub cm} range of 0.04-10.0 eV, revealing strong vibrational enhancements and E{sub cm}-dependencies of {sigma}(v{sup +}= 0-2, N{sup +}= 0-9). The thermochemical threshold at E{sub cm}= 0.179 eV for the formation of Ar{sup +} from N{sub 2}{sup +}(X; v{sup +}= 0, N{sup +}) + Ar was observed by the measured {sigma}(v{sup +}= 0), confirming the narrow {Delta}E{sub cm} spread achieved in

  2. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented.

  3. Herschel Measurements of Molecular Oxygen in Orion

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Liseau, René; Bell, Tom A.; Black, John H.; Chen, Jo-Hsin; Hollenbach, David; Kaufman, Michael J.; Li, Di; Lis, Dariusz C.; Melnick, Gary; Neufeld, David; Pagani, Laurent; Snell, Ronald; Benz, Arnold O.; Bergin, Edwin; Bruderer, Simon; Caselli, Paola; Caux, Emmanuel; Encrenaz, Pierre; Falgarone, Edith; Gerin, Maryvonne; Goicoechea, Javier R.; Hjalmarson, Åke; Larsson, Bengt; Le Bourlot, Jacques; Le Petit, Franck; De Luca, Massimo; Nagy, Zsofia; Roueff, Evelyne; Sandqvist, Aage; van der Tak, Floris; van Dishoeck, Ewine F.; Vastel, Charlotte; Viti, Serena; Yıldız, Umut

    2011-08-01

    We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s-1 to 12 km s-1 and widths of 3 km s-1. The beam-averaged column density is N(O2) = 6.5 × 1016 cm-2, and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O2 relative to H2 is (0.3-7.3) × 10-6. The unusual velocity suggests an association with a ~5'' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~10 M sun and the dust temperature is >=150 K. Our preferred explanation of the enhanced O2 abundance is that dust grains in this region are sufficiently warm (T >= 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O2. For this small source, the line ratios require a temperature >=180 K. The inferred O2 column density sime5 × 1018 cm-2 can be produced in Peak A, having N(H2) ~= 4 × 1024 cm-2. An alternative mechanism is a low-velocity (10-15 km s-1) C-shock, which can produce N(O2) up to 1017 cm-2. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    SciTech Connect

    Itakura, R.; Fushitani, M.; Hishikawa, A.; Sako, T.

    2015-12-31

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar{sup +} associated with a superposition of the spin-orbit states {sup 2}PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth.

  5. Correspondence of electron spectra from photoionization and nuclear internal conversion

    SciTech Connect

    Wark, D.L.; Bartlett, R.; Bowles, T.J.; Robertson, R.G.H.; Sivia, D.S.; Trela, W.; Wilkerson, J.F. ); Brown, G.S. ); Crasemann, B.; Sorensen, S.L.; Schaphorst, S.J. ); Knapp, D.A.; Henderson, J. ); Tulkki, J.; Aberg, T. )

    1991-10-21

    Electron energy spectra have been measured that result from {ital K}-shell ionization of Kr by two different mechanisms: (1) photoionization and (2) internal conversion in the decay of the isomeric state of {sup 83}Kr. It is demonstrated experimentally that these spectra, including satellites on the low-energy side of the primary 1{ital s}-electron peak, are identical. A theoretical interpretation of the identity of the spectra is given. The spectra agree well with a relativistic many-electron calculation in which the satellites are attributed to excitation and ionization of {ital M} and {ital N} electrons during the {ital K}-ionization process.

  6. Differential cross sections of double photoionization of lithium

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-01

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A10.1103/PhysRevA.81.023418 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.103008 103, 103008 (2009)].

  7. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    NASA Astrophysics Data System (ADS)

    Comes, F. J.; Elzer, A.

    1982-08-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  8. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  9. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    SciTech Connect

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-09-15

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s {sup 2}S J{sub f}=1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere.

  10. VUV photodissociation of thiazole molecule investigated by TOF-MS and photoelectron photoion coincidence spectroscopy.

    PubMed

    Lago, A F; Januário, R D; Simon, M; Dávalos, J Z

    2014-11-01

    Photoelectron photoion coincidence measurements have been performed for the thiazole (C3H3NS) molecule in gas phase, using time-of-flight mass spectrometry in the electron-ion coincidence mode and vacuum ultraviolet synchrotron radiation. photoelectron photoion coincidence spectra have been recorded as a function of the photon energy covering the valence range from 10 to 21 eV. The resulting photoionization products as well as the dissociation pathways leading to the ionic species were proposed and discussed. We have also performed density functional theory and ab initio calculations for the neutral molecule, its cation and the ion fragments produced in order to determine their electronic and structural parameters.

  11. Experimental study of linear magnetic dichroism in photoionization satellite transitions of atomic rubidium

    SciTech Connect

    Jaenkaelae, K.; Alagia, M.; Feyer, V.; Richter, R.; Prince, K. C.

    2011-11-15

    Laser orientation in the initial state has been used to study the properties of satellite transitions in inner-shell photoionization of rubidium atoms. The linear magnetic dichroism in the angular distribution (LMDAD) has been utilized to probe the continuum waves of orbital angular momentum conserving monopole, and angular momentum changing conjugate satellites, accompanying the 4p ionization of atomic Rb. We show experimentally that LMDAD of both types of satellite transitions is nonzero and that LMDAD of monopole satellites, measured as a function of photon energy, mimics the LMDAD of direct photoionization, whereas the LMDAD of conjugate transitions deviates drastically from that trend. The results indicate that conjugate transitions cannot be described theoretically without explicit inclusion of electron-electron interaction. The present data can thus be used as a very precise test of current models for photoionization.

  12. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    SciTech Connect

    Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E; Liedahl, D A; Fournier, K B; Jonauskas, V; Kisielius, R; Ramsbottom, C; Springer, P T; Keenan, K P; Rose, S J; Goldstein, W H

    2005-04-29

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  13. Energy dependence of photoion rotational distributions of N2 and CO

    NASA Astrophysics Data System (ADS)

    Choi, Heung Cheun; Rao, R. M.; Mihill, A. G.; Kakar, Sandeep; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1994-01-01

    We present the first measurements of rotational distributions for photoionization over extended energy ranges [0<=Ek<=200 eV for N2 (2σ-1u) and of 3<=Ek<=125 eV for CO (4σ-1)]. The N2 and CO results show a strikingly unusual and different energy dependence. Although differences are expected due to the absence of a center of symmetry in CO, detailed calculations reveal that this behavior arises from the presence of Cooper minima in the photoelectron continuum (kσg) in the case of N2 and from an f-wave shape resonance for 4σ-1 photoionization in CO.

  14. Vacancy cascades in small molecules following x-ray inner shell photoionization

    NASA Astrophysics Data System (ADS)

    Ray, D.; Dunford, R. W.; Southworth, S. H.; Kanter, E. P.; Doumy, G.; Gao, Y.; Ho, P. J.; Picon, A.

    2014-05-01

    We are investigating molecular effects in vacancy cascades of small molecules containing heavy atoms - IBr, Br2 and CH2BrI - following K-shell ionization. In addition to fundamental interest in the physics of such decay processes, there are practical applications such as medical treatments that use energetic fragmentation of iodinated compounds with high energy x-rays to selectively treat tumorous cells. Other biological applications are also promising. We utilize the tunable monochromatic x-ray beam at the Advanced Photon Source to trigger K-shell photoionization of Br and I, and measure charge distributions and the kinetic energies released to the fragment ions. A newly designed detection device allows us to do multi-fold coincidence measurements involving momentum imaging of all the ion fragments with very high detection efficiency in coincidence with x-ray fluorescence detection. By comparing the molecular fragmentation probabilities and the kinetic energies released in Br2, IBr and CH2BrI we aim to gain understanding of the fragmentation mechanism as a function of the bond distance between I and Br. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  15. Molecular conductance measurements through printed Au nanodots

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Garfunkel, E.; Zhitenev, N.; Abusch-Magder, D.; Tennant, D.; Bao, Z.

    2006-09-01

    Gold pads with ˜100nm diameter are imprinted on self-assembled monolayers of alkane dithiols of different lengths using nanotransfer printing. The pads are contacted by conductive atomic force microscope tips, and electron transport was measured as a function of force. Atomic scale topography at the metal-molecule interface is essential to describe the conductance-stress relationship. A finite force (1-10nN) deforms devices resulting in two competing effects: (a) a larger contact area and (b) deformation of the interfacial bonds and/or tilting of the molecules. The estimated conductance of molecules is significantly smaller than results suggested in previous experiments and calculations.

  16. Space shuttle molecular and wake vacuum measurements

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Carignan, G. R.; Miller, E. R.

    1985-01-01

    The wake environment of the space shuttle is analyzed to determine whether it is feasible to perform ultrahigh vacuum experiments in or near the payload bay with the shuttle oriented such that the payload bay faces the antivelocity direction. Several mechanisms were considered by which molecules could approach the payload bay from this direction and their relative contributions to the wake environment are estimated. These mechanisms include ambient atmospheric molecules that have velocities in excess of the orbital velocity which can overtake the shuttle, ambient atmospheric molecules that are backscattered by collisions with the shuttle induced atmosphere, and self scattering from the induced atmosphere. These estimates are compared with the measurements made with the collimated mass spectrometer which was part of the Induced Environment Contamination Monitor flown on several of the early shuttle flights. Although the collimated mass spectrometer was not designed for this purpose and the instrument background for the species for which the collimator is effective is above the expected levels, upper limits can be established for these species in the wake environment which are consistent with the analysis. There was considerably more helium and argon observed in the wake direction than was predicted, however. Possible origins of these gases are discussed.

  17. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  18. Valence shell photoionization of SF6 and high harmonic generation

    NASA Astrophysics Data System (ADS)

    Jobin, Jobin; Fulfer, K.; Wilson, B.; Poliakoff, E.; Trallero, C.; Mondal, S.; Le, A.-T.; Lin, C.-D.; Lucchese, Robert

    2013-05-01

    When an atom or molecule is exposed to highly intense laser fields, the target can emit coherent radiation at photon energies which are multiples of incident laser energy. This process is known as High-order harmonic generation (HHG). There has been experimental and theoretical investigation of HHG for atoms and simple linear molecules. However, there have been few such studies for non-linear polyatomic molecules. In the current work, we investigate HHG for SF6 experimentally and theoretically. We employ quantitative rescattering theory (QRS) which makes use of the magnitude and phase of the dipole transition matrix elements for photoionization. For calculating dipole transition matrix elements we employ the ePolyscat static-exchange method. The features seen in the computed results will be compared to corresponding features in the measured HHG spectrum. The calculation is repeated for different polarization of incident laser and different intensities. The analysis allows us to reproduce then understand experimentally measured HHG spectra from SF6. Additionally, the valence shell photoionization parameters are also compared with several other theoretical and experimental results.

  19. Localization of a continuum shape resonance - Photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung-Cheun; Poliakoff, E. D.

    1992-10-01

    We report a vibrationally resolved investigation into the 5sigma(u) exp -1 shape-resonant ionization dynamics for CS2 in the range h nu 18-30 eV. The intensity of dispersed fluorescence from CS2(+)(B 2Sigma(u)(+) photoions is measured to obtain partial photoionization cross-section curves for the v = (0,0,0) and (1,0,0) levels of CS2(+)(B 2Sigma(u)(+), as well as the vibrational branching ratio. Our results indicate a shape resonance at hv equal to about 21 eV which is insensitive to changes in the symmetric stretching coordinate. These data are consistent with recent theoretical efforts that predict a shape resonance in the 5sigma(u) - epsilon pi(g) channel. All previous vibrationally resolved data on shape resonances have been obtained for systems whose shape resonances occur in the (epsilon sigma) continuum. The current results are in contrast to behavior observed for other shape resonances, highlighting both their diverse nature and possible extensions of the current measurements.

  20. Vibrationally resolved C 1s photoionization cross section of CF4

    NASA Astrophysics Data System (ADS)

    Patanen, M.; Kooser, K.; Argenti, L.; Ayuso, D.; Kimura, M.; Mondal, S.; Plésiat, E.; Palacios, A.; Sakai, K.; Travnikova, O.; Decleva, P.; Kukk, E.; Miron, C.; Ueda, K.; Martín, F.

    2014-06-01

    The differential photoionization cross section ratio (ν = 1)/(ν = 0) for the symmetric stretching mode in the C 1s photoionization of CF4 was studied both theoretically and experimentally. We observed this ratio to differ from the Franck-Condon ratio and to be strongly dependent on the photon energy, even far from the photoionization threshold. The density-functional theory computations show that the ratio is significantly modulated by the diffraction of the photoelectrons by the neighbouring atoms at high photon energies. At lower energies, the interpretation of the first very strong maximum observed about 60 eV above the photoionization threshold required detailed calculations of the absolute partial cross sections, which revealed that the absolute cross section has two maxima at lower energies, which turn into one maximum in the cross section ratio because the maxima appear at slightly different energies in ν = 1 and ν = 0 cross sections. These two strong, low-energy continuum resonances originate from the trapping of the continuum wavefunction in the molecular potential of the surrounding fluorine atoms and from the outgoing electron scattering by them.

  1. Photoionization of endohedral fullerenes using soft x-ray coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Xiong, Hui; Ablikim, Utuq; Augustin, Sven; Schnorr, Kirsten; Battistoni, Andrea; Wolf, Thomas; Carroll, Ann Marie; Bilodeau, Rene; Osipov, Timur; Rolles, Daniel; Berrah, Nora

    2016-05-01

    Endohedral fullerenes are a model system to understand the reorganization dynamics of highly charged molecular systems with delocalized electronic clouds in the multiphoton excitation regime. Previous experiments at the Linac Coherent Light Source (LCLS) using free-electron laser (FEL) and ultrafast IR laser pulses studied this feature in Ho3N@C80. The question remains whether these dynamics can be studied in the site-specific single photo-ionization regime. Ho3N@C80 is particularly interesting since the inner molecule, Ho3N, is unstable in its natural form. The presence of the encapsulating cage, with the charge exchange characteristics of Holmium, stabilizes the whole molecule. In this study, we will present the charge fragmentation dynamics of this species in the single photoionization process of inner shell electrons (4d) of Holmium using the Advanced Light Source (ALS) at LBNL. Photoion-photoion correlation data, alongside with qualitative electron data will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  2. Photoionization of Au+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Bogolub, Kyren; Macaluso, David; Mueller, Allison; Johnson, Andrea; Müller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Anders, Andre; Aguilar, Alex; Kilcoyne, A. L. David

    2014-05-01

    Single photoionization of Au+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The relative single photoionization yield was measured as a function of photon energy in the 45 eV to 120 eV energy range. These measurements were made in preparation for future photoionization studies of the endohedral metallofullerene Au@C60, the production of which was also investigated. In proof-of-principle measurements a mass-resolved beam of Au@C60+was produced with a primary ion beam current in the single picoamp range without optimization of the ion source or synthesis parameters. Plans are presented for improved metallofullere production yield to be used in photoionization measurements of the endohedral fullerene ions in conjunction with the continuing study of pure Au. We would like to acknowledge the generous sharing of equipment vital to this work by Andre Anders, the Plasma Applications group leader at the Advanced Light Source, LBNL.

  3. Absolute single-photoionization cross sections of Se2 +: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.; Red, E. C.; Bilodeau, R. C.; Phaneuf, R. A.; Sterling, N. C.; McLaughlin, B. M.

    2015-12-01

    Absolute single-photoionization cross-section measurements for Se2 + ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ±3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. To clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ±0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. These results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.

  4. Photoionization in a Numerical Simulation of a Spark Discharge in Air

    DTIC Science & Technology

    2016-09-01

    electric discharges can heat the air to very high temperatures and become an intense source of ultraviolet light that can photoionize the ambient air...did result in a decrease of the arc’s core temperature and an increase in its electrical conductivity. Since the measurement of the core temperature is...

  5. Sturmian approach to the study of photoionization of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Granados Castro, Carlos Mario; Ancarani, Lorenzo Ugo; Gasaneo, Gustavo; Mitnik, Dario M.

    2013-09-01

    In this presentation we study the photoionization of atoms and molecules using ultrashort laser pulses, solving the time-independent Schrödinger equation (TISE) in a first order perturbation theory. The interaction laser-matter is described with the dipolar operator in the velocity gauge. Generalized Sturmian functions are used to solve the driven equation for a scattering wave function which includes all the information about the ionization problem. For the atomic case, we study the photoionization of He atom using the Hermann-Skillman potential together with the one-active electron approximation. For molecular systems (CH4 in this work), we use first a spherically symmetric potential Ui(r), and then a more realistic potential that includes all the nuclei and other electrons interaction, as in. For each molecular orbital we use Moccia's wave functions, solve the TISE with an initial molecular orbital i of the ground state and extract the corresponding photoionization cross sections. For both atomic and molecular systems we compare our results with previous calculations and available experimental data.

  6. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  7. Time-dependent Cooling in Photoionized Plasma

    NASA Astrophysics Data System (ADS)

    Gnat, Orly

    2017-02-01

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts (z = 0 ‑ 3), for a range of temperatures (108–104 K), densities (10‑7–103 cm‑3), and metallicities (10‑3–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).

  8. Photoionization of atomic hydrogen in electric field

    SciTech Connect

    Gorlov, Timofey V; Danilov, Viatcheslav V

    2010-01-01

    Laser assisted ionization of high energy hydrogen beams in magnetic fields opens wide application possibilities in accelerator physics and other fields. The key theoretical problem of the method is the calculation of the ionization probability of a hydrogen atom affected by laser and static electric fields in the particle rest frame. A method of solving this problem with the temporal Schr dinger equation including a continuum spectrum is presented in this paper in accurate form for the first time. This method allows finding the temporal evolution of the wave function of the hydrogen atom as a function of laser and static electric fields. Solving the problem of photoionization reveals quantum effects that cannot be described by the cross sectional approach. The effects play a key role in the problems of photoionization of H0 beams with the large angular or energy spread.

  9. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  10. A molecular fraction method for measuring personnel radiation doses

    NASA Astrophysics Data System (ADS)

    Fadel, M. A.; Khalil, W. A.; Krodja, R. P.; Sheta, N.; Abd El-Baset, M. S.

    1987-02-01

    This work represents a development in fast and albedo neutron and gamma ray dosimetry, using cellulose nitrate, as a tissue equivalent material, in which radiation damage was registered. The changes in molecular fractions of the polymer were measured after irradiation with neutron fluences from a 252Cf source in the range 10 5-10 10 n/cm 2 and gamma doses in the range 10 -4-10 -1 Gy through the use of gel filtration chromatography. Effects of irradiation on phantom, phantom to dosimeter distance, phantom thickness and storage at extreme environmental conditions were studied on the detector response and readout. The results showed that main chain scission followed by formation of new molecular configurations is the predominant effect of radiation on the polymer. The method enables measurements of neutron fluences and gamma doses in mixed radiation fields. Empirical formulae for calculating the absorbed dose from the measured changes in molecular fraction intensities are given.

  11. Neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.

    2016-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 3 to 80 erg*cm/s. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated spectra is used to collect absorption spectra. A suite of IDL programs has been developed to process the experimental data to produce transmission spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by the DOE National Nuclear Security Administration Grant DE-FG52-09NA29551, DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  12. Photoionization sensor CES for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-10-01

    Method CES (collisional electron spectroscopy), patented in Russia, the USA, Japan, China, Germany and Britain, allows to analyze the gaseous mixtures using electron spectroscopy under high pressures up to atmospheric without using vacuum. The design of VUV photoionization detector was developed based on this method. Such detector is used as a portable gas analyzer for continuous personal bio-medical monitoring. This detector measures energy of electrons produced in ionization with resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). Nowadays, micro plasma source of such photons on resonant line of Kr with energy of 10,6 eV is developed. Only impurities are ionized and detected by the VUV-emission, meanwhile the main components of air stay neutral that reduces background signal and increases the sensibility along with accuracy. The experimental facilities with VUV photoionization sensors CES are constructed with the overall sizes about 10*10*1 mm. The watt consumption may comprise less than 1W. Increase of electrometer amplifier's sensibility and more high-aperture construction are used today to increase the sensibility of CES-detectors. The wide range of detectable molecules and high sensitivity allow the development of portable device, which can become the base of the future preventive medicine. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  13. Photoionization Cross Section of Xe{sup +} Ion in the Pure 5p{sup 5} {sup 2}P{sub 3/2} Ground Level

    SciTech Connect

    Thissen, R.; Bizau, J. M.; Blancard, C.; Coreno, M.; Franceschi, P.; Giuliani, A.; Nicolas, C.

    2008-06-06

    Coupling an ion trap with synchrotron radiation is shown here to be a powerful approach to measure photoionization cross sections on ionic species relaxed in their ground state. The photoionization efficiency curve of Xe{sup +} ions stored in a Fourier transform ion cyclotron resonance ion trap was recorded at ELETTRA in the 20-23 eV photon energy range. Absolute cross sections were derived by comparison of the photoionization yield of Xe{sup +} with measurements from the ASTRID merged-beam experiment. Multiconfiguration Dirac-Fock calculations were performed for the interpretation of these new data.

  14. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  15. Dissociative Photoionization of Polycyclic Aromatic Hydrocarbon Molecules Carrying an Ethynyl Group

    NASA Astrophysics Data System (ADS)

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.; Jäger, C.; Henning, Th.; Garcia, G. A.; Tang, X.-F.; Nahon, L.

    2015-09-01

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy of the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.

  16. DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP

    SciTech Connect

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.; Jäger, C.; Henning, Th.; Garcia, G. A.; Tang, X.-F.; Nahon, L.

    2015-09-10

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy of the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.

  17. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  18. Dissociative photoionization of 1,2-dichloroethane in intense near-infrared femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Yang, Yan; Li, Zhipeng; Zhang, Shian; Sun, Zhenrong

    2017-01-01

    We experimentally demonstrate the dissociative photoionization of 1,2-C2H4Cl2 molecules in femtosecond laser field by time-of-flight mass spectrum and dc-slice imaging technology. Our results show the low kinetic energy components are from the dissociative ionization process of singly charged molecular ions, and the positive charge assignment are greatly influenced by the appearance energy of the fragment ions. The high kinetic energy components result from Coulomb explosion of multi-charged molecular ions, and the different angular distribution of these fragments along Csbnd C and Csbnd Cl bond dissociation can be explained by the potential energy surfaces of the molecular ions.

  19. Photoion rotational distributions from near-threshold to deep in the continuum

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Choi, Heung Cheun; Rao, R. M.; Mihill, A. G.; Kakar, Sandeep; Wang, Kwanghsi; McKoy, V.

    1995-08-01

    We present the first measurements of ion rotational distributions for photoionization over an extended range [0≤EK≤200 eV for N2 (2σ-1u) and 3≤EK≤125 eV for CO (4σ-1)]. The N2 ion rotational distributions are seen to change dramatically over this energy range, indicating that characteristically molecular behavior of the photoelectron persists far from ionization threshold. In addition, the N2 and CO results show a strikingly different dependence on energy. Although differences are expected due to the absence of a center of symmetry in CO, detailed calculations reveal that this behavior arises from the presence of Cooper minima in the 2σu→kσg continuum in the case of N2 and from an f-wave shape resonance in the 4σ→kσ channel in CO. Agreement between measured and calculated ion rotational distributions is excellent. The N2 results are also compared with electron bombardment ionization data. This comparison demonstrates that previous interpretations of electron bombardment data are prone to errors.

  20. Precision assessment of biofluid viscosity measurements using molecular rotors.

    PubMed

    Akers, Walter J; Haidekker, Mark A

    2005-06-01

    Blood viscosity changes with many pathologic conditions, but its importance has not been fully investigated because the current methods of measurement are poorly suited for clinical applications. The use of viscosity-sensitive fluorescent molecular rotors to determine fluid viscosity in a nonmechanical manner has been investigated recently, but it is unknown how the precision of the fluorescence-based method compares to established mechanical viscometry. Human blood plasma viscosity was modulated with high-viscosity plasma expanders, dextran, pentastarch, and hetastarch. The samples were divided into a calibration and a test set. The relationship between fluorescence emission and viscosity was established using the calibration set. Viscosity of the test set was determined by fluorescence and by cone-and-plate viscometer, and the precision of both methods compared. Molecular rotor fluorescence intensity showed a power law relationship with solution viscosity. Mechanical measurements deviated from the theoretical viscosity value by less than 7.6%, while fluorescence-based measurements deviated by less than 6%. The average coefficient of variation was 6.9% (mechanical measurement) and 3.4% to 3.8% (fluorescence-based measurement, depending on the molecular rotor used). Fluorescence-based viscometry exhibits comparable precision to mechanical viscometry. Fluorescence viscometry does not apply shear and is therefore more practical for biofluids which have apparent non-Newtonian properties. In addition, fluorescence instrumentation makes very fast serial measurements possible, thus promising new areas of application in laboratory and clinical settings.

  1. Desorption and ionization mechanisms in desorption atmospheric pressure photoionization.

    PubMed

    Luosujärvi, Laura; Arvola, Ville; Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Kauppila, Tiina J

    2008-10-01

    The factors influencing desorption and ionization in newly developed desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) were studied. Redirecting the DAPPI spray was observed to further improve the versatility of the technique: for dilute samples, parallel spray with increased analyte signal was found to be the best suited, while for more concentrated samples, the orthogonal spray with less risk for contamination is recommended. The suitability of various spray solvents and sampling surface materials was tested for a variety of analytes with different polarities and molecular weights. As in atmospheric pressure photoionization, the analytes formed [M + H](+), [M - H](-), M(+*), M(-*), [M - H + O](-), or [M - 2H + 2O](-) ions depending on the analyte, spray solvent, and ionization mode. In positive ion mode, anisole and toluene as spray solvents promoted the formation of M(+*) ions and were therefore best suited for the analysis of nonpolar compounds (anthracene, benzo[a]pyrene, and tetracyclone). Acetone and hexane were optimal spray solvents for polar compounds (MDMA, testosterone, and verapamil) since they produced intensive [M + H](+) ion peaks of the analytes. In negative ion mode, the type of spray solvent affected the signal intensity, but not the ion composition. M(-*) ions were formed from 1,4-dinitrobenzene, and [M - H + O](-) and [M - 2H + 2O](-) ions from 1,4-naphthoquinone, whereas acidic compounds (naphthoic acid and paracetamol) formed [M - H](-) ions. The tested sampling surfaces included various materials with different thermal conductivities. The materials with low thermal conductivity, i.e., polymers like poly(methyl methacrylate) and poly(tetrafluoroethylene) (Teflon) were found to be the best, since they enable localized heating of the sampling surface, which was found to be essential for efficient analyte desorption. Nevertheless, the sampling surface material did not affect the ionization mechanisms.

  2. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  3. Long Duration Directional Drives for Star Formation and Photoionization

    SciTech Connect

    Kane, J. O.; Martinez, D. A.; Pound, M. W.; Heeter, R. F.; Villette, B.; Casner, A.; Mancini, R. C.

    2015-06-18

    This research will; confirm the possibility of studying the structure and evolution of star-forming regions of molecular clouds in the laboratory; test the cometary model for the formation of the pillar structures in molecular clouds; assess the effect of magnetic fields on the evolution of structures in molecular clouds; and develop and demonstrate a new, long-duration (60-100 ns), directional source of x-ray radiation that can be used for the study of deeply nonlinear hydrodynamics, hydrodynamic instabilities that occur in the presence of directional radiation, shock-driven and radiatively-driven collapse of dense cores, and photoionization. Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  4. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  5. K-shell photoionization cross-sections.

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D. P.

    1972-01-01

    Approximate values for the threshold energies, threshold cross sections, and energy dependence of the cross sections for K-shell photoionization are tabulated for H, He, C, N, O, Ne, Mg, Si, and S in all stages of ionization. The approximation of these data is based on the assumptions that the threshold energy is a simple function of the nuclear charge and the number of electrons present in the atom, and that the threshold values and energy dependence of the cross sections are determined only by the threshold energy.

  6. Complete characterization of double photoionization processes

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2011-06-01

    We analyze correlated photoelectron spectra of single-photon two-electron ionization [double photoionization (DPI)] of helium to reconstruct the phase of the spectral amplitude of this process. The phase can be reconstructed reliably in a wide range of photoelectron momenta, thus allowing one to retrieve information about the wave function of the DPI process and its temporal evolution. Our simulation indicates that the proposed phase reconstruction technique can be applied in experiment to trace dynamics of the DPI process with attosecond precision.

  7. Complete characterization of double photoionization processes

    SciTech Connect

    Ivanov, I. A.; Kheifets, A. S.

    2011-06-15

    We analyze correlated photoelectron spectra of single-photon two-electron ionization [double photoionization (DPI)] of helium to reconstruct the phase of the spectral amplitude of this process. The phase can be reconstructed reliably in a wide range of photoelectron momenta, thus allowing one to retrieve information about the wave function of the DPI process and its temporal evolution. Our simulation indicates that the proposed phase reconstruction technique can be applied in experiment to trace dynamics of the DPI process with attosecond precision.

  8. Double-photoionization of CO few eV above threshold

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Osipov, T.; Hertlein, M.; Prior, M.; Adaniya, H.; Feinberg, B.; Weber, Th.; Jahnke, T.; Dorner, R.; Schmidt, L.; Schoffler, M.; Jagutzki, O.; Cocke, C. L.; Landers, A.

    2006-05-01

    We measured double photoionization of CO molecules at 48 eV photon energy. The double ionization of CO produces mostly C^+ + O^+ fragments with non-measurable amounts of CO^2+. The formation of C^+ + O^+ can proceed through two possible channels: a) Direct ionization of two electron into the continuum -- similar to the H2 double ionization -- direct channel. b) Ionization of one electron into the continuum followed by autoionization of a second electron -- Indirect channel. The electron distribution measured with a COLTRIMS shows a very clear distinction of the direct and indirect channels. The kinetic energy release spectrum shows a series of peaks corresponding to the transient vibrational states of the various electronic states of (CO^2+)*. These states are similar to previous measurements at higher energies (K-shell photoionization). (CO^2+)* is found to predissociate through a ^3σ^- and ^1δ dissociative states leading to considerably faster dissociation times than natural lifetimes of the electronic bound states.

  9. Laser resonance photoionization spectroscopy of Rydberg levels in Fr

    SciTech Connect

    Andreev, S.V.; Letokhov, V.S.; Mishin, V.I.

    1987-09-21

    We investigated for the first time the high-lying Rydberg levels in the rare radioactive element francium (Fr). The investigations were conducted by the highly sensitive laser resonance atomic photoionization technique with Fr atoms produced at a rate of about 10/sup 3/ atoms/s in a hot cavity. We measured the wave numbers of the 7p/sup 2/P/sub 3/2/..-->..nd/sup 2/D (n = 22--33) and 7p/sup 2/P/sub 3/2/..-->..ns/sup 2/S (n = 23, 25--27,29--31) transitions and found the binding energy of the 7p/sup 2/P/sub 3/2/ state to be T = -18 924.8(3) cm/sup -1/, which made it possible to establish accurately the ionization potential of Fr.

  10. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

    SciTech Connect

    Crespo, J R; Simon, M; Beilmann, C; Rudolph, J; Steinbruegge, R; Eberle, S; Schwarz, M; Baumann, T; Schmitt, B; Brunner, F; Ginzel, R; Klawitter, R; Kubicek, K; Epp, S; Mokler, P; Maeckel, V; Ullrich, J; Brown, G V; Graf, A; Leutenegger, M; Beiersdorfer, P; Behar, E; Follath, R; Reichardt, G; Schwarzkopf, O

    2011-09-12

    Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

  11. Direct double photoionization of the valence shell of Be

    SciTech Connect

    Citrini, F.; Malegat, L.; Selles, P.; Kazansky, A.K.

    2003-04-01

    The hyperspherical R-matrix method with semiclassical outgoing waves is used to study the direct double photoionization (DPI) of the valence shell of the lightest alkaline earth-metal Be. The absolute fully integrated, singly, doubly, and triply differential cross sections obtained are compared with the single set of measurements available and with recent calculations based on the convergent close coupling and time-dependent close coupling methods. The level of agreement between all these data is very encouraging. A comparison is also made between the DPI of He and the direct DPI of the valence shell of Be. It confirms that the electron-electron correlations are stronger in the valence 2s shell of Be than in the 1s shell of He, thus contributing to a desirable clarification.

  12. Photodissociation and photoionization of organosulfur radicals

    SciTech Connect

    Hsu, Chia-Wei

    1994-05-27

    The dynamics of S(3P2,1,0, 1D2) production from the 193 nm photodissociation of CH3SCH3, H2S and CH3SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH3S and HS initially prepared in the photodissociation of CH3SCH3 and H2S are estimated to be 1 x 10-18 and 1.1 x 10-18 cm2, respectively. The dominant product from CH3S is S(1D), while that from SH is S(3P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH3S($\\tilde{X}$) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH3S formed in the ultraviolet photodissociation of H2S and CH3SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change ΔN < 0 with the ΔN value up to -3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X2Π3,2) and CH3S($\\tilde{X}$2E3/2) are determined to be 84,057.5 ± 3 cm-1 and 74,726 ± 8 cm-1 respectively. The spin-orbit splittings for SH(X2Π3/2, 1/2) and CH3S($\\tilde{X}$2E3/2, 1/2) are found to be 377 ± 2 and 257 ± 5 cm-1, respectively, in agreement with previous measurements. The C-S stretching frequency for CH3S+($\\tilde{X}$3A2) is 733 ± 5 cm-1. This study illustrates that the PFI-PE detection method can be a

  13. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  14. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  15. Vacuum ultraviolet photoionization mass spectra and cross-sections for volatile organic compounds at 10.5 eV.

    PubMed

    Kanno, Nozomu; Tonokura, Kenichi

    2007-08-01

    Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied to the detection of volatile organic compounds (VOCs), including aromatic, chlorinated, and oxygenated compounds. Photoionization mass spectra of 23 VOCs were measured using SPI-TOFMS at 10.5 eV (118 nm). The limits of detection of VOCs using SPI-TOFMS at 10.5 eV were estimated to be a few ppbv. The mass spectra of 20 VOCs exhibit only the parent ion and its isotopes' signals. The ionization processes of the VOCs were discussed on the basis of the reaction enthalpies predicted by the quantum chemical calculations. Absolute photoionization cross-sections for 23 VOCs, including 12 newly measured VOCs, at 10.5 eV were determined in comparison to the reported absolute photoionization cross-section of NO.

  16. Mode specific photoionization dynamics in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Rathbone, Gerald Jeffery

    2002-11-01

    The work presented in this dissertation presents new work on polyatomic photoionization. In these investigations, the broad range behavior of both allowed and forbidden vibrational modes in linear triatomic systems were studied to understand mode specific aspects of photoionization. The current study is made possible by the experimental strategy of exploiting high resolution photoelectron spectroscopy and the high brightness of third generation synchrotron radiation sources. The data is taken typically tens of eV's past the ionization potential. The strategy that I employ is to probe alternative vibrational modes which are frequently affected differently following resonant ionization. Such vibrationally resolved data can be used to understand how the correlation between vibration and electron energy reveals microscopic insights into the photoelectron scattering process. Moreover, the mode specific behavior contains a wealth of information not only regarding allowed transitions, but also contains information on how forbidden transitions gain surprising amounts of intensity. A previously overlooked mechanism for the appearance of forbidden nontotally symmetric vibrations was discovered---resonantly amplified vibronic symmetry breaking. The photoelectron the culprit for the symmetry breaking which induces the excitation of nominally forbidden vibrational excitations. In a more general sense, these results will demonstrate that some fundamental spectroscopic approximations are not always valid, and can lead to surprising consequences.

  17. On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I.

    PubMed

    Bodi, Andras; Shuman, Nicholas S; Baer, Tomas

    2009-12-14

    The dissociative photoionization onset energy of the CH(3)I --> CH(3)(+) + I reaction was studied at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source (SLS) using a new imaging photoelectron photoion coincidence (iPEPICO) apparatus operating with a photon resolution of 2 meV and a threshold electron kinetic energy resolution of about 1 meV. Three previous attempts at establishing this value accurately, namely a pulsed field ionization (PFI)-PEPICO measurement, ab initio calculations and a mass-analyzed threshold ionization (MATI) experiment, in which the onset energy was bracketed by state-selected excitation to vibrationally excited (2)A(1) A states of the parent ion, have yielded contradictory results. It is shown that dimers and adducts formed in the supersonic molecular beam affected the PFI-PEPICO onset energy. The room temperature iPEPICO experiment yields an accurate 0 K onset of 12.248 +/- 0.003 eV, from which we derive a Delta(f)H(o)(298 K)(CH(3)I) = 15.23 +/- 0.3 kJ mol(-1), and the C-I bond energy in CH(3)I is 232.4 +/- 0.4 kJ mol(-1). The room temperature breakdown diagram shows a fine structure that corresponds to the threshold photoelectron spectrum (TPES) of the A state. Low internal energy neutrals seem to be preferentially ionized in the A state when compared with the X state, and A state peaks in the TPES are Stark-shifted as a function of the DC field, whereas the dissociative photoionization of X state ions is not affected. This suggests that there are different competing mechanisms at play to produce ions in the A state vs. ions in the X state. The competition between field ionization and autoionization in CH(3)I is compared with that in Ar, N(2) and in the H-atom loss energy region in CH(4)(+). The binding energies of the neutral and ionic Ar-CH(3)I clusters were found to be 26 and 66 meV, respectively.

  18. Shape resonances in the photoionization of CF4

    SciTech Connect

    Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.

    1986-01-01

    Calculations of photoionization cross sections and photoelectron angular distributions have been performed for all occupied orbitals of CF4 using the multiple-scattering model. Results are compared with very recent experiments which employ synchrotron radiation to measure these quantities, namely the measurements of Truesdale e t a l. for the carbonK shell, and measurements of Carlson e t a l. and Novak e t a l. for the five outermost valence levels. The calculations predict intense shape resonances below 3 eV in continua of a1 and t2 final state symmetry. Qualitative agreement is attained on comparing much of the theory with experiment, notably the five outer valence levels, which serves to establish a one-electron picture of the photoionization dynamics of CF4.

  19. Molecular imprinting sensor based on quantum weak measurement.

    PubMed

    Li, Dongmei; He, Qinghua; He, Yonghong; Xin, Meiguo; Zhang, Yilong; Shen, Zhiyuan

    2017-03-10

    A new type of sensing protocol, based on a high precision metrology of quantum weak measurement, was first proposed for molecularly imprinted polymers (MIP) sensor. The feasibility, sensitivity and selectivity of weak measurement based MIP (WMMIP) sensor were experimentally demonstrated with bovine serum albumin (BSA). Weak measurement system exhibits high sensitivity to the optical phase shift corresponding to the refractive index change, which is induced by the specific capture of target protein molecules with its recognition sites. The recognition process can be finally characterized by the central wavelength shift of output spectra through weak value amplification. In our experiment, we prepared BSA@MIP with modified reversed-phase microemulsion method, and coated it on the internal surface of measuring channels assembled into the Mach-Zehnder (MZ) interferometer based optical weak measurement system. The design of this home-built optical system makes it possible to detect analyte in real time. The dynamic process of the specific adsorption and concentration response to BSA from 5×10(-4) to 5×10(-1)μg/L was achieved with a limit of detection (LOD) of 8.01×10(-12)g/L. This WMMIP shows superiority in accuracy, fast response and low cost. Furthermore, real-time monitoring system can creatively promote the performance of MIP in molecular analysis.

  20. A case for chiral contributions to nondipole effects in photoionization using linearly polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Bowen, Kyle Patrick

    Modelling angular distributions of photoelectrons requires making accurate approximations of both the incoming light and the behavior of bound electrons. The experimental determination of photoelectron angular distributions is crucial to the development of accurate theoretical models governing the light-matter interaction. To date, many models have relied upon the dipole approximation, which assumes a constant electric field as the source of ionization. Despite knowing that the dipole approximation would break down as photon energy increased, the precise limit was unclear. Over the past two decades, a strong case has been made that corrections to the dipole approximation are necessary for accurately describing photoionization using soft x-rays (100 - 1000 eV). This energy region is widely studied, as it has become more readily accessible thanks to third-generation synchrotron radiation facilities. This work provides experimental evidence for first-order corrections to the dipole approximation, known as nondipole effects, for atoms and molecules, focusing on Xe 3d photoionization, which showcases the role of interchannel coupling in nondipole angular distributions, N 1s photoionization from molecular nitrogen in an attempt to settle a dispute over molecular nondipole effects, and C 1s photoionization from the chiral molecule camphor, which provides the first-ever experimental determination of a theoretically predicted chiral-specific nondipole effect. All of the experiments were performed using electron time-of-flight spectroscopy at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL).

  1. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    SciTech Connect

    Evans, M.; Ng, C.Y.; Hsu, C.W.; Heimann, P.

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  2. a Novel Method to Measure Spectra of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Satrajit; Holz, Mathias; Campbell, Ewen; Banerjee, Agniva; Gerlich, Dieter; Maier, John P.

    2014-06-01

    A universal method has been developed in our group for measuring the spectra of molecular ions in a 22-pole radio frequency trap at low temperatures. It is based on laser induced inhibition of complex growth (LIICG)1. At low temperatures and high number densities of buffer gas, helium attaches to ions via ternary association. The formation of these weakly bound complexes, however, is inhibited following resonant absorption of the bare molecular ion. The first successful measurements have been demonstrated on the A 2Π_u ← X ^2Σ_g^+ electronic transition of N_2^+, with some thousand N_2^+ ions, helium densities of 1015 cm-3, and storage times of 1 s. The reduction in the number of N_2+-He complexes is the result of an interplay between excitation, radiative and collisional cooling, ternary association, and collision induced dissociation, and is explained using a kinetic model. The method is also applicable to larger molecular species. In this case internal conversion following electronic excitation produces internally "hot" ions, reducing the attachment of helium. The technique is universal because complex formation can be impeded over a wide wavelength range. [1] S. Chakrbarty, M. Holz, E. K. Campbell, A. Banerjee, D. Gerlich, and J. P. Maier, J. Phys. Chem. Lett. 2013, 4, 4051.

  3. A dissociative photoionization study of the c4Σu- state in O+2 using the TPEPICO technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, A.; MacDonald, M. A.; Ryan, C. H.; Zuin, L.; Reddish, T. J.

    2012-11-01

    In the dissociative photoionization (DPI) process, hν + O2 → O + O+ + e-, ionisation and dissociation both occur (either as a direct or indirect process) following photoabsorption. The Threshold Photoelectron Photoion Coincidence (TPEPICO) technique, i.e. measuring the coincidence yield between threshold photoelec-trons and photoions is a powerful way of studying the dynamics involved. The c4Σu- state in O+2 at ~ 24.56 eV has a shallow minimum in its potential that supports two distinct quasi-bound vibrational levels (v = 0, 1). We have investigated the angular distributions of 2 eV O+(4S) ions produced from DPI of O +2 c4Σu- (v = 0, 1) using the TPEPICO technique.

  4. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  5. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  6. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  7. Optical measurement of transverse molecular diffusion in a microchannel.

    PubMed Central

    Kamholz, A E; Schilling, E A; Yager, P

    2001-01-01

    Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules. PMID:11259309

  8. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  9. Nondipole Effects in Double Photoionization of He

    SciTech Connect

    Istomin, A. Y.; Starace, A. F.; Manakov, N. L.; Meremianin, A. V.

    2006-01-09

    Lowest-order nondipole effects are studied in double photoionization (DPI) of the He atom. Ab initio parametrizations of the quadrupole transition amplitude for DPI from the 1S0-state are presented in terms of the exact two-electron reduced matrix elements. Parametrizations for the dipole-quadrupole triply differential cross section (TDCS) and doubly differential cross section (DDCS) are presented in terms of polarization-independent amplitudes for the case of an elliptically polarized photon. Expressions for the DDCS in terms of the reduced two-electron matrix elements are also given. A general analysis of retardation-induced asymmetries of the TDCS including the circular dichroism effect at equal energy sharing is presented. Our numerical results exhibit a nondipole forward-backward asymmetry in the TDCS for DPI of He at an excess energy of 450 eV that is in qualitative agreement with existing experimental data.

  10. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    SciTech Connect

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  11. Recombination of polycyclic aromatic hydrocarbon photoions with electrons in a flowing afterglow plasma.

    PubMed

    Novotný, O; Sivaraman, B; Rebrion-Rowe, C; Travers, D; Biennier, L; Mitchell, J B A; Rowe, B R

    2005-09-08

    A new technique, flowing afterglow with photoions (FIAPI), has been developed to measure the rate coefficient for the recombination of complex ions, and, in particular, polycyclic aromatic hydrocarbon (PAH) cations with electrons. The method is based on the flowing afterglow Langmuir probe - mass spectrometer apparatus at the University of Rennes I. A helium plasma is generated by a microwave discharge in a He buffer gas and downstream, a small amount of argon gas is injected to destroy any helium metastables. A very small amount of neutral PAH molecules is added to the afterglow plasma by evaporation from a plate coated with the PAH to be studied. PAH ions are then produced by photoionization of the parent molecule using a pulsed UV laser (157 nm). The laser beam is oriented along the flow tube and so a constant spatial concentration of photoions is obtained. The electron concentration along the flow tube is measured by means of a movable Langmuir probe. Ion concentration decay in time is measured at a fixed position using a quadrupole mass spectrometer which is triggered by the laser pulse. The recombination of anthracene and pyrene cations has been studied using this technique and we have found a recombination rate of (2.4 +/- 0.8) x 10(-6) cm(3) s(-1) for anthracene and (4.1 +/- 1.2) x 10(-6) cm(3) s(-1) for pyrene.

  12. Recombination of polycyclic aromatic hydrocarbon photoions with electrons in a flowing afterglow plasma

    SciTech Connect

    Novotny, O.; Sivaraman, B.; Rebrion-Rowe, C.; Travers, D.; Biennier, L.; Mitchell, J.B.A.; Rowe, B.R.

    2005-09-08

    A new technique, flowing afterglow with photoions (FIAPI), has been developed to measure the rate coefficient for the recombination of complex ions, and, in particular, polycyclic aromatic hydrocarbon (PAH) cations with electrons. The method is based on the flowing afterglow Langmuir probe - mass spectrometer apparatus at the University of Rennes I. A helium plasma is generated by a microwave discharge in a He buffer gas and downstream, a small amount of argon gas is injected to destroy any helium metastables. A very small amount of neutral PAH molecules is added to the afterglow plasma by evaporation from a plate coated with the PAH to be studied. PAH ions are then produced by photoionization of the parent molecule using a pulsed UV laser (157 nm). The laser beam is oriented along the flow tube and so a constant spatial concentration of photoions is obtained. The electron concentration along the flow tube is measured by means of a movable Langmuir probe. Ion concentration decay in time is measured at a fixed position using a quadrupole mass spectrometer which is triggered by the laser pulse. The recombination of anthracene and pyrene cations has been studied using this technique and we have found a recombination rate of (2.4{+-}0.8)x10{sup -6} cm{sup 3} s{sup -1} for anthracene and (4.1{+-}1.2)x10{sup -6} cm{sup 3} s{sup -1} for pyrene.

  13. Recombination of polycyclic aromatic hydrocarbon photoions with electrons in a flowing afterglow plasma

    NASA Astrophysics Data System (ADS)

    Novotný, O.; Sivaraman, B.; Rebrion-Rowe, C.; Travers, D.; Biennier, L.; Mitchell, J. B. A.; Rowe, B. R.

    2005-09-01

    A new technique, flowing afterglow with photoions (FIAPI), has been developed to measure the rate coefficient for the recombination of complex ions, and, in particular, polycyclic aromatic hydrocarbon (PAH) cations with electrons. The method is based on the flowing afterglow Langmuir probe - mass spectrometer apparatus at the University of Rennes I. A helium plasma is generated by a microwave discharge in a He buffer gas and downstream, a small amount of argon gas is injected to destroy any helium metastables. A very small amount of neutral PAH molecules is added to the afterglow plasma by evaporation from a plate coated with the PAH to be studied. PAH ions are then produced by photoionization of the parent molecule using a pulsed UV laser (157 nm). The laser beam is oriented along the flow tube and so a constant spatial concentration of photoions is obtained. The electron concentration along the flow tube is measured by means of a movable Langmuir probe. Ion concentration decay in time is measured at a fixed position using a quadrupole mass spectrometer which is triggered by the laser pulse. The recombination of anthracene and pyrene cations has been studied using this technique and we have found a recombination rate of (2.4±0.8)×10-6cm3s-1 for anthracene and (4.1±1.2)×10-6cm3s-1 for pyrene.

  14. Dirac R-matrix calculations of photoionization cross-sections of Ca IV

    NASA Astrophysics Data System (ADS)

    Nazir, R. T.; Bari, M. A.; Sardar, S.; Bilal, M.; Salahuddin, M.; Nasim, M. H.

    2016-11-01

    In this paper total photoionization cross-sections in the ground (^2P^o_{3/2}) and two meta-stable states (^2P^o_{1/2},^2S_{1/2}) of Ca IV are reported using the relativistic Dirac Atomic R-matrix Codes (DARC) in the photon energy range 67-122 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP package. A total of lowest lying 48 fine-structure levels arising from the four main configuration (3s23p4, 3s3p5 3s23p33d, 3p6) are considered for the target wavefunctions expansion. Our calculated eigenvalues of the core ion Ca V show reasonable agreement with available experimental and theoretical results. It is found that present ionization threshold energies of first three levels of Ca IV are in excellent agreement with NIST energies and experimental measurements. The photoionization cross-sections of Ca IV are calculated with an appropriate energy step (0.1 × 10-3 eV) to describe the resonance structures in vivid details. A comparison for the statistically weighted mixture of states (^2P^o_{3/2},^2P^o_{1/2}) with other experimental measurements including term-resolved ground state theoretical calculations is presented. Our computed photoionization cross-sections agree better with the measured cross-sections than the other theoretical approaches and are potentially more accurate.

  15. Single-frequency 571nm VECSEL for photo-ionization of magnesium

    NASA Astrophysics Data System (ADS)

    Burd, S. C.; Leinonen, T.; Penttinen, J. P.; Allcock, D. T. C.; Slichter, D. H.; Srinivas, R.; Wilson, A. C.; Guina, M.; Leibfried, D.; Wineland, D. J.

    2016-06-01

    We report the development of an intracavity-frequency-doubled vertical external-cavity surface-emitting laser (VECSEL) emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second harmonic generation. The gain chip has a bottom-emitting design with ten GaInAs quantum wells of 7 nm thickness, which are strain compensated by GaAsP. The system is capable of producing up to 2.4 +/- 0.1 W (total power in two separate output beams) in the visible. The free-running relative intensity noise was measured to be below -55 dBc/Hz over all frequencies from 1 Hz to 1 MHz. With acoustic isolation and temperature regulation of the laser breadboard, the mode-hop free operation time is typically over 5 hrs. To improve the long-term frequency stability, the laser can be locked to a Doppler-free transition of molecular iodine. To estimate the short-term linewidth, the laser was tuned to the resonance of a reference cavity. From analysis of the on-resonance Hänsch-Couillaud error signal we infer a linewidth of 50 +/- 10 kHz. Light at 285 nm is generated with an external build-up cavity containing a β-barium borate (BBO) crystal. The UV light is used for loading 25Mg+ ions in a surface-electrode RF Paul trap. These results demonstrate the applicability and versatility of high-power, single-frequency VECSELs with intracavity harmonic generation for applications in atomic and molecular physics.

  16. Wind Measurements with a 355 nm Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    A Doppler lidar system based on the molecular double edge technique is described. The system is mounted in a modified van to allow deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45cm aperture telescope and a matching azimuth-over-elevation scanner to allow full sky access. Validated atmospheric wind profiles have been measured from 1.8 km to 35 km with a 178 m vertical resolution. The range dependent rms deviation of the horizontal wind speed is 0.4 - 6 m/s. The results of wind speed and direction are in good agreement with balloon sonde wind measurements made simultaneously at the same location.

  17. Comparison of measured and calculated thermospheric molecular oxygen densities

    NASA Technical Reports Server (NTRS)

    Potter, W. E.; Kayser, D. C.; Brinton, H. C.; Brace, L. H.; Oppenheimer, M.

    1977-01-01

    The open source neutral mass spectrometers on the AE-C, -D, and -E satellites were equipped with a 'fly-through' mode of operation which has provided direct measurements of molecular oxygen densities over a large portion of the globe. A complementary set of O2 densities is derived by using AE ion measurements and a scheme based on the daytime ion chemistry of O2(+) in the thermosphere. A comparison of the two data sets reveals general agreement over northern latitudes during periods of relatively low Ap and F10.7. The simplifying assumptions made in the photochemical scheme require that caution be used in calculating O2, especially at high latitudes and altitudes below 200 km

  18. Radiation-magnetohydrodynamic simulations of the photoionization of magnetized globules

    NASA Astrophysics Data System (ADS)

    Henney, William J.; Arthur, S. Jane; de Colle, Fabio; Mellema, Garrelt

    2009-09-01

    We present the first three-dimensional radiation-magnetohydrodynamic simulations of the photoionization of a dense, magnetized molecular globule by an external source of ultraviolet radiation. We find that, for the case of a strong ionizing field, significant deviations from the non-magnetic evolution are seen when the initial magnetic field threading the globule has an associated magnetic pressure that is greater than 100 times the gas pressure. In such a strong-field case, the photoevaporating globule will adopt a flattened or `curled up' shape, depending on the initial field orientation, and magnetic confinement of the ionized photoevaporation flow can lead to recombination and subsequent fragmentation during advanced stages of the globule evolution. We find suggestive evidence that such magnetic effects may be important in the formation of bright, bar-like emission features in HII regions. We include simple but realistic fits to heating and cooling rates in the neutral and molecular gas in the vicinity of a high-mass star cluster, and show that the frequently used isothermal approximation can lead to an overestimate of the importance of gravitational instability in the radiatively imploded globule. For globules within 2 pc of a high-mass star cluster, we find that heating by stellar X-rays prevents the molecular gas from cooling below 50 K. Based in part on numerical simulations carried out using the Kan Balam supercomputer, operated by the Departamento de Supercómputo, Dirección General de Servicios de Cómputo Académico, Universidad Nacional Autónoma de México. E-mail: w.henney@astrosmo.unam.mx

  19. Two-Particle Coulomb Green Function Method with Projected Potential: Application to He Double Photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Colle, Renato

    2009-08-01

    A new method to compute fully differential double photoionization cross sections of atoms has been devised and fully developed for two-electron systems. The method exploits the Green function for two noninteracting electrons in the field of a nuclear charge to infer the effects of the residual potential projected on a set of L2-basis functions. Test calculations on helium at 100 eV excess energy indicate that, as long as the relevant part of the interaction potential is accounted for, the fully differential cross sections calculated in acceleration and velocity gauges converge in absolute value and reproduce measured angular distributions with a tunable accuracy. Generalization of the method to treat double photoionization of many-electron atoms is sketched.

  20. Two-particle coulomb Green function method with projected potential: application to He double photoionization.

    PubMed

    Argenti, Luca; Colle, Renato

    2009-12-31

    A new method to compute fully differential double photoionization cross sections of atoms has been devised and fully developed for two-electron systems. The method exploits the Green function for two noninteracting electrons in the field of a nuclear charge to infer the effects of the residual potential projected on a set of L(2)-basis functions. Test calculations on helium at 100 eV excess energy indicate that, as long as the relevant part of the interaction potential is accounted for, the fully differential cross sections calculated in acceleration and velocity gauges converge in absolute value and reproduce measured angular distributions with a tunable accuracy. Generalization of the method to treat double photoionization of many-electron atoms is sketched.

  1. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    SciTech Connect

    Hoszowska, J.; Dousse, J.-Cl.; Berset, M.; Cao, W.; Fennane, K.; Kayser, Y.; Szlachetko, J.; Szlachetko, M.; Kheifets, A. K.; Bray, I.; Kavcic, M.

    2009-02-20

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  2. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. K.; Dousse, J.-Cl.; Berset, M.; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2009-02-01

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  3. Double K-shell photoionization of low-Z atoms and He-like ions

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. S.; Berset, M.; Bray, I.; Cao, W.; Dousse, J.-Cl.; Fennane, K.; Kavčič, M.; Kayser, Y.; Szlachetko, J.; Szlachetko, M.

    2009-03-01

    We report on the investigation of the photon energy dependence of double 1s photoionization of light atoms and compare the cross sections for hollow atom and He-like ion production. Measurements of the Kα hypersatellite x-ray spectra of Mg, Al, and Si were carried out using the Fribourg high-resolution x-ray spectrometer installed at the ID21 and ID26 beam lines at the ESRF. The double-to-single photoionization cross section ratios were derived as a function of the incident photon beam energy and compared to convergent close-coupling (CCC) calculations for He-like ions. The dynamical electron-electron scattering contribution to the DPI cross-sections was found to be more important for neutral atoms than for the He isoelectronic series.

  4. Photoionization of psoralen derivatives in micelles: Imperatorin and alloimperatorin

    NASA Astrophysics Data System (ADS)

    El-Gogary, Sameh R.

    2010-11-01

    The fluorescence properties of psoralen derivatives, 8-methoxypsoralen (8-MOP), imperatorin (IMP) and alloimperatorin (ALLOI), were investigated in various solvent and micellar solutions. The variation in intensity and maxima of the fluorescence in micellar solutions suggest that psoralens are located in the micelle-water interface region. Radical cations and hydrated electrons were generated by photoionization in micellar solution upon excitation at 266 nm. A nonlinear relationship between transient yield and photon fluency was obtained for each compound, indicating that a two-photon mechanism is predominant in the photoionization of the sensitizers. The photoionization efficiencies are significantly higher in anionic sodium dodecyl sulfate (SDS) than in cationic cetyltrimethylammonium bromide (CTAB) micelles, reflecting the influence of micelle charge on the efficiency of the separation of the photoproduced charge carriers. The photoionization efficiencies of IMP and ALLOI are similar.

  5. Photoionization of noble-gas atoms by ultrashort electromagnetic pulses

    SciTech Connect

    Astapenko, V. A. Svita, S. Yu.

    2014-11-15

    The photoionization of atoms of noble gases (Ar, Kr, and Xe) by ultrashort electromagnetic pulses of a corrected Gaussian shape is studied theoretically. Computations are performed in the context of perturbation theory using a simple expression for the total probability of photoionization of an atom by electromagnetic pulses. The features of this process are revealed and analyzed for various ranges of the parameters of the problem.

  6. Autoionization of molecular hydrogen: where do the Fano lineshapes go?

    PubMed

    Palacios, Alicia; Feist, Johannes; González-Castrillo, Alberto; Sanz-Vicario, José Luis; Martín, Fernando

    2013-05-10

    Atomic autoionization following photoabsorption is a typical example of quantum interferences governed by electron-electron correlation. Coherence between direct photoionization and autoionization paths results in "Fano profiles", widely explored in atoms in the last 60 years. The advent of femto- and attosecond laser technology made time-resolved images of the delayed electron ejection in autoionization accessible, leading to the reemergence of such studies in atomic systems. The counterpart molecular phenomena show the richness, as well as the complexity, added by nuclear motion, which may proceed on similar time scales. However, Fano profiles are usually absent in measured molecular photoionization cross sections and an unequivocal parametrization of molecular autoionization signatures, similar to that introduced by Fano in atoms [U. Fano, Phys. Rev. 1961, 124, 1866] has not yet been achieved. In this work we introduce a simple semiclassical model that accounts for all the features observed in H2 photoionization and demonstrate that the interference structures observed in dissociative ionization spectra are almost exclusively due to the phase accumulated in the nuclear motion. Furthermore, we show that the temporal build-up of these structures in the energy-differential cross sections is also determined by nuclear motion. We validate our models by comparing with full-dimensional ab initio calculations solving the time-dependent Schrödinger equation.

  7. Evaluation of a hydrogen laser vacuum ultraviolet source for photoionization mass spectrometry of pharmaceuticals.

    PubMed

    Finch, Jeffrey W; Toerne, Kevin A; Schram, Karl H; Denton, M Bonner

    2005-01-01

    A photoionization hydrogen laser time-of-flight mass spectrometer system (H2-TOFMS) has been evaluated for the rapid analysis of drugs of abuse and pharmaceutical agents extracted from prescription tablets and spiked urine samples. The spectra obtained using the H2-TOFMS showed primarily intact molecular ions (M+*) after introduction by a heated probe and irradiation with vacuum ultraviolet (VUV) photons from the laser. Samples analyzed by this technique required only a simple solid-phase extraction step; no chromatographic separation or derivatization was necessary to identify the drugs of abuse or pharmaceutical agents.

  8. Double photoionization of He and H{sub 2} at unequal energy sharing

    SciTech Connect

    Kheifets, A.S.; Bray, Igor

    2005-08-15

    A recently developed single-center model of double photoionization (DPI) of the H{sub 2} molecule [Kheifets, Phys. Rev. A 71, 022704 (2005)] has been extended to represent the DPI process at unequal energy sharing. The model is applied to describe the shape of the fully-differential cross-section (FDCS) of a randomly oriented hydrogen molecule in the isotopic form of D{sub 2} at the kinematics of recent experiments. Comparison with analogous FDCS for the He atom helps to elucidate the molecular effects.

  9. The ionisation energy of cyclopentadienone: a photoelectron-photoion coincidence study

    NASA Astrophysics Data System (ADS)

    Ormond, Thomas K.; Hemberger, Patrick; Troy, Tyler P.; Ahmed, Musahid; Stanton, John F.; Ellison, G. Barney

    2015-08-01

    Imaging photoelectron photoion coincidence (iPEPICO) spectra of cyclopentadienone (C5H4=O and C5D4=O) have been measured at the Swiss Light Source Synchrotron (Paul Scherrer Institute, Villigen, Switzerland) at the Vacuum Ultraviolet (VUV) Beamline. Complementary to the photoelectron spectra, photoionisation efficiency curves were measured with tunable VUV radiation at the Chemical Dynamics Beamline at the Advanced Light Source Synchrotron (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). For both experiments, molecular beams diluted in argon and helium were generated from the vacuum flash pyrolysis of o-phenylene sulphite in a resistively heated microtubular SiC flow reactor. The Franck-Condon profiles and ionisation energies were calculated at the CCSD(T) level of theory, and are in excellent agreement with the observed iPEPICO spectra. The ionisation energies of both cyclopentadienone-d0, IE(C5H4=O), and cyclopentadienone-d4, IE(C5D4=O), were observed to be the same: 9.41 ± 0.01 eV. The mass-selected threshold photoelectron spectrum (ms-TPES) of cyclopentadienone reveals that the C=C stretch in the ground state of the cation is excited upon ionisation, supporting computational evidence that the ground state of the cation is ? 2A2, and is in agreement with previous studies. However, the previously reported ionisation potential has been improved considerably in this work. In addition, since o-benzoquinone (o-O=C6H4=O and o-O=C6D4=O) is also produced in this process, its ms-TPES has been recorded. From the iPEPICO and photoionisation efficiency spectra, we infer an adiabatic ionisation energy of IE(o-O=C6H4=O) = 9.3 ± 0.1 eV, but the rather structureless spectrum indicates a strong change in geometry upon ionisation making this value less reliable.

  10. Contact potential difference measurements of doped organic molecular thin films

    NASA Astrophysics Data System (ADS)

    Chan, Calvin; Gao, Weiying; Kahn, Antoine

    2004-07-01

    The possibility of nonequilibrium conditions in doped organic molecular thin films is investigated using a combination of ultraviolet photoemission spectroscopy (UPS) and contact potential difference measurements. Surface or interface photovoltage is of particular concern in materials with large band gap and appreciable band (or energy level) bending at interfaces. We investigate here zinc phthalocyanine (ZnPc) and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'biphenyl-4,4'' diamine (α-NPD) p-doped with the acceptor molecule, tetrafluorotetracyanoquinodimethane (F4-TCNQ). In both cases, we observe an upward movement of the vacuum level away from the metal interface with respect to the Fermi level, consistent with the formation of a depletion region. We show that photovoltage is not a significant factor in these doped films, under ultraviolet illumination during UPS. We suggest that the carrier recombination rate in organic films is sufficiently fast to exclude any photovoltage effects at room temperature. .

  11. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron

  12. Theoretical treatment of double photoionization of helium using a B-spline implementation of exterior complex scaling

    SciTech Connect

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.; Martin, Fernando

    2004-02-19

    Calculations of absolute triple differential and single differential cross sections for helium double photoionization are performed using an implementation of exterior complex scaling in B-splines. Results for cross sections, well-converged in partial waves, are presented and compared with both experiment and earlier theoretical calculations. These calculations establish the practicality and effectiveness of the complex B-spline approach to calculations of double ionization of atomic and molecular systems.

  13. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  14. State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-06-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  15. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods.

    PubMed

    Ng, Cheuk-Yiu

    2014-01-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  16. Conformation-specific dissociative photoionization of oxalyl chloride in the gas phase

    NASA Astrophysics Data System (ADS)

    Chu, Genbai; Chen, Jun; Liu, Fuyi; Shan, Xiaobin; Han, Juguang; Sheng, Liusi

    2013-04-01

    The photoionization and photodissociation of oxalyl chloride have been studied by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. The ionization energy of C2Cl2O2 (10.91 ± 0.05 eV) and appearance energies (AEs) for fragment ions CCl2O+, CClO2+, CClO+, CO2+, CO2+, and Cl+ from C2Cl2O2 have been measured from the photoionization efficiency (PIE) spectra. In addition, three conformers of CClO2+ ion, namely trans-, gauche- and cis-conformer are investigated by using CBS-QB3 and W1u methods, which suggest that the existence of the cis-conformation parent ion CClO2+ is consistent with the second onset at 11.6 eV in the experimental PIE curve and the associated calculations. The formation channels of fragment ions near the ionization thresholds are discussed by means of CBS-QB3 and W1u calculated results and thermochemistry results. The dominant fragment ion CClO+ is mainly originated from direct cleavage of the elongated C-C bond in the trans-conformer parent ion after ionization. The calculated results are in good agreement with the experimental data.

  17. Experimental absolute cross section for photoionization of Xe^7+

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Müller, A.; Esteves, D.; Habibi, M.; Aguilar, A.; Kilcoyne, A. L. D.

    2010-03-01

    Collision processes with highly charged xenon ions are of interest for UV-radiation generation in plasma discharges, for fusion research and for space craft propulsion. Here we report results for the photoionization of Xe^7+ ionsootnotetextS. Schippers et al., J. Phys.: Conf. Ser. (in print) which were measured at the photon-ion end station of ALS beamline 10.0.1. As compared with the only previous experimental studyootnotetextJ. M. Bizau et al., Phys. Rev. Lett. 84, 435 (2000) of this reaction, the present cross sections were obtained at higher energy resolution (50--80 meV vs. 200--500 meV) and on an absolute cross section scale. In the experimental photon energy range of 95--145 eV the cross section is dominated by resonances associated with 4d->5f excitation and subsequent autoionization. The most prominent feature in the measured spectrum is the 4d^9,s,f, resonance at 121.14±0.02 eV which reaches a peak cross section of 1.2 Gb at 50 meV photon energy spread. The experimental resonance strength of 160 Mb eV (corresponding to an absorption oscillator strength of 1.46) is in fair agreement with the theoretical result^2.

  18. Cooling and Heating Functions of Photoionized Gas

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Hollon, Nicholas

    2012-10-01

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  19. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  20. Intergalactic magnetogenesis at Cosmic Dawn by photoionization

    NASA Astrophysics Data System (ADS)

    Durrive, J.-B.; Langer, M.

    2015-10-01

    We present a detailed analysis of an astrophysical mechanism that generates cosmological magnetic fields during the Epoch of Reionization. It is based on the photoionization of the intergalactic medium by the first sources formed in the Universe. First the induction equation is derived, then the characteristic length and time-scales of the mechanism are identified, and finally numerical applications are carried out for first stars, primordial galaxies and distant powerful quasars. In these simple examples, the strength of the generated magnetic fields varies between the order of 10-23 G on hundreds of kiloparsecs and 10-19 G on hundreds of parsecs in the neutral intergalactic medium between the Strömgren spheres of the sources. Thus, this mechanism contributes to the premagnetization of the whole Universe before large-scale structures are in place. It operates with any ionizing source, at any time during the Epoch of Reionization. Finally, the generated fields possess a characteristic spatial configuration which may help discriminate these seeds from those produced by different mechanisms.

  1. E × B probe measurements in molecular and electronegative plasmas.

    PubMed

    Renaud, D; Gerst, D; Mazouffre, S; Aanesland, A

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F(-) and SF6(-) negative ions in compliance with computer simulations.

  2. E × B probe measurements in molecular and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Renaud, D.; Gerst, D.; Mazouffre, S.; Aanesland, A.

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F- and SF 6- negative ions in compliance with computer simulations.

  3. Chasing charge localization and chemical reactivity following photoionization in liquid water.

    PubMed

    Marsalek, Ondrej; Elles, Christopher G; Pieniazek, Piotr A; Pluhařová, Eva; VandeVondele, Joost; Bradforth, Stephen E; Jungwirth, Pavel

    2011-12-14

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within ~30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H(2)O(+) + H(2)O → OH + H(3)O(+). The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM∕MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with ~40 fs time resolution and broadband spectral probing

  4. Chasing charge localization and chemical reactivity following photoionization in liquid water

    SciTech Connect

    Marsalek, Ondrej; Pluharova, Eva; Jungwirth, Pavel; Elles, Christopher G.; Pieniazek, Piotr A.; Bradforth, Stephen E.; VandeVondele, Joost

    2011-12-14

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within {approx}30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H{sub 2}O{sup +}+ H{sub 2}O {yields} OH + H{sub 3}O{sup +}. The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM/MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with {approx}40 fs time

  5. Chasing charge localization and chemical reactivity following photoionization in liquid water

    NASA Astrophysics Data System (ADS)

    Marsalek, Ondrej; Elles, Christopher G.; Pieniazek, Piotr A.; Pluhařová, Eva; VandeVondele, Joost; Bradforth, Stephen E.; Jungwirth, Pavel

    2011-12-01

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within ˜30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H2O+ + H2O → OH + H3O+. The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM/MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with ˜40 fs time resolution and broadband spectral probing across

  6. Photoionization of chlorine-like potassium and calcium ions

    NASA Astrophysics Data System (ADS)

    Alna'Washi, Ghassan A.

    Absolute photoionization cross-section measurements were performed for a mixture of 2Po 3/2 ground state and 2Po 1/2 metastable state Cl-like K2+ and Ca3+ ions over the photon energy range 44.240-69.741 eV for K2+ and 65.7-104.6 eV for Ca3+. The measurements were performed by merging an ion beam with a beam of synchrotron radiation from an undulator magnet using the ion-photon merged-beams endstation on beamline 10.0.1 of the Advanced Light Source (ALS) at Lawrence Berkley National Laboratory. High resolution measurements were performed near the 2P o 3/2 ground-state ionization threshold for both ions. The ground-state ionization thresholds of K2+ and Ca 3+ was measured to be 45.740 +/- 0.015 eV and 67.070 +/- 0.018 eV, respectively. These energies are respectively 0.066 eV and 0.200 eV lower than the tabulated values in the NIST database. These data are compared to previous measurements for Cl-like Ar+. Most of the observed resonance features belong to multiple Rydberg series of transitions to autoionizing states. These features were assigned spectroscopically using the quantum defect form of the Rydberg formula, guided by calculations of the energies and oscillator strengths of transitions to autoionizing states performed using the pseudo-relativistic Cowan Hartree-Fock atomic structure code. The measurements for Ca3+ compare favorably with recent unpublished R-matrix calculations performed by McLaughlin in a close-coupling expansion within the semi-relativistic Breit-Pauli approximation. This includes the energy positions of the calculated resonances and the magnitudes of the resonant and nonresonant components of the cross section.

  7. A High-resolution Vacuum Ultraviolet Laser Photoionization and Photoelectron Study of the Co Atom

    NASA Astrophysics Data System (ADS)

    Huang, Huang; Wang, Hailing; Luo, Zhihong; Shi, Xiaoyu; Chang, Yih-Chung; Ng, C. Y.

    2016-12-01

    We have measured the vacuum ultraviolet-photoionization efficiency (VUV-PIE) spectrum of Co in the energy range of 63,500-67,000 cm-1, which covers the photoionization transitions of Co(3d74s2 4F9/2) \\to Co+(3d8 3F4), Co(3d74s2 4F7/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F2), and Co(3d74s2 4F9/2) \\to Co+(3d74s1 5F5). We have also recorded the pulsed field ionization photoelectron spectrum of Co in the same energy range, allowing accurate determinations of ionization energies (IEs) for the photoionization transitions from the Co(3d74s2 4F9/2) ground neutral state to the Co+(3F J ) (J = 4 and 3) and Co+(5F5) ionic states, as well as from the Co(3d74s2 4F7/2) excited neural state to the Co+(3d8 3F3) ionic state. The high-resolution nature of the VUV laser used has allowed the observation of many well-resolved autoionizing resonances in the VUV-PIE spectrum, among which an autoionizing Rydberg series, 3d74s1(5F5)np (n = 19-38), converging to the Co+(3d74s1 5F5) ionic state from the Co(3d74s2 4F9/2) ground neutral state is identified. The fact that no discernible step-like structures are present at these ionization thresholds in the VUV-PIE spectrum indicates that direct photoionization of Co is minor compared to autoionization in this energy range. The IE values, the autoionizing Rydberg series, and the photoionization cross sections obtained in this experiment are valuable for understanding the VUV opacity and abundance measurement of the Co atom in stars and solar atmospheres, as well as for benchmarking the theoretical results calculated in the Opacity Project and the IRON Project, and thus are of relevance to astrophysics.

  8. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  9. Global nonresonant vibrational-photoelectron coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin; Das, Aloke; Hardy, David; Bozek, John; Aguilar, Alex; Lucchese, Robert

    2009-05-01

    Using photoelectron spectroscopy and Schwinger variational scattering theory, we have investigated the coupling between vibrational motion and the exiting photoelectron over extended ranges of photoelectron kinetic energy. Photoelectron spectroscopy is performed with vibrational resolution over uncommonly large ranges of energy (ca. 200 eV). We find clear and significant changes in vibrational branching ratios as a function of photon energy, in direct contradiction to predictions of the Franck-Condon principle. While it is well known that resonances lead to coupling between electronic and vibrational degrees of freedom, nonresonant mechanisms that result in such coupling are not expected or well-documented. Photoelectron spectra are presented for several electronic states of N2^+, CO^+, and NO^+, and we find that valence isoelectronic channels behave very differently, which is also surprising. Theoretical results indicate that Cooper minima are the underlying cause of these effects, and we are currently working to understand the reasons for the sensitivity of the Cooper minima on bond length.

  10. IPOPv2: Photoionization of Ni XIV - a test case

    NASA Astrophysics Data System (ADS)

    Delahaye, F.; Palmeri, P.; Quinet, P.; Zeippen, C. J.

    2013-12-01

    Several years ago, M. Asplund and coauthors (2004) proposed a revision of the Solar composition. The use of this new prescription for Solar abundances in standard stellar models generated a strong disagreement between the predictions and the observations of Solar observables. Many claimed that the Standard Solar Model (SSM) was faulty, and more specifically the opacities used in such models. As a result, activities around the stellar opacities were boosted. New experiments (J. Bailey at Sandia on Z-Pinch, The OPAC consortium at LULI200) to measure directly absorbtion coefficients have been realized or are underway. Several theoretical groups (CEA-OPAS, Los Alamos Nat. Lab., CEA-SCORCG, The Opacity Project - The Iron Project (IPOPv2)) have started new sets of calculations using different approaches and codes. While the new results seem to confirm the good quality of the opacities used in SSM, it remains important to improve and complement the data currently available. We present recent results in the case of the photoionization cross sections for Ni XIV (Ni13+) from IPOPv2 and possible implications on stellar modelling.

  11. Microfabricated planar glass gas chromatography with photoionization detection.

    PubMed

    Lewis, Alastair C; Hamilton, Jacqueline F; Rhodes, Christopher N; Halliday, Jaydene; Bartle, Keith D; Homewood, Philip; Grenfell, Robin J P; Goody, Brian; Harling, Alice M; Brewer, Paul; Vargha, Gergely; Milton, Martin J T

    2010-01-29

    We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95x95mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4m long, 320microm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10-200 degrees C was achieved with peak power demand of approximately 25W. The 7.5m capillary column was static coated with a 2microm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics.

  12. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  13. Absolute Total Photoionization Cross Section of C60 in the Range of 25-120 eV: Revisited

    NASA Astrophysics Data System (ADS)

    Kafle, Bhim P.; Katayanagi, Hideki; Prodhan, Md. Serajul I.; Yagi, Hajime; Huang, Chaoqun; Mitsuke, Koichiro

    2008-01-01

    The absolute total photoionization cross section σabs,I of gaseous C60 is measured in the photon energy hν range from 25 to 120 eV by photoionization mass spectrometry with synchrotron radiation. The absolute detection efficiencies of photoions in different charge states are evaluated. The present σabs,I curve is combined with the photoabsorption cross section curves of C60 at hν=3.5--26 eV in the literature, after appropriate alterations of the vapor pressure are taken into account. The oscillator strengths are computed from the composite curve to be 178.5 and 230.5 for the hν ranges from 3.5 to 40.8 eV and from 3.5 to 119 eV, respectively. These oscillator strengths agree well with those expected from the Thomas-Kuhn-Reiche sum rule and 60 times the photoabsorption cross section of a carbon atom. Moreover, the present σabs,I curve behaves similarly to the relative photoionization cross section curve reported by Reinköster et al.

  14. Galaxy formation with local photoionization feedback - I. Methods

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Stinson, G. S.; Macciò, A. V.; Hennawi, J. F.; Woods, R.; Wadsley, J.; Shen, S.; Robitaille, T.; Cantalupo, S.; Quinn, T. R.; Christensen, C.

    2014-01-01

    We present a first study of the effect of local photoionizing radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionizing radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm as used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionization feedback through the whole history of a galaxy's formation. The simulation of a Milky Way-like galaxy using the local photoionization model forms ˜40 per cent less stars than a simulation that only includes a standard uniform background UV field. The local photoionization model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionizing sources is significant and should not be ignored in models of galaxy formation.

  15. Measuring the Kinetics of Molecular Association by Isothermal Titration Calorimetry.

    PubMed

    Vander Meulen, Kirk A; Horowitz, Scott; Trievel, Raymond C; Butcher, Samuel E

    2016-01-01

    The real-time power response inherent in an isothermal titration calorimetry (ITC) experiment provides an opportunity to directly analyze association kinetics, which, together with the conventional measurement of thermodynamic quantities, can provide an incredibly rich description of molecular binding in a single experiment. Here, we detail our application of this method, in which interactions occurring with relaxation times ranging from slightly below the instrument response time constant (12.5 s in this case) to as large as 600 s can be fully detailed in terms of both the thermodynamics and kinetics. In a binding titration scenario, in the most general case an injection can reveal an association rate constant (kon). Under more restrictive conditions, the instrument time constant-corrected power decay following each injection is simply an exponential decay described by a composite rate constant (kobs), from which both kon and the dissociation rate constant (koff) can be extracted. The data also support the viability of this exponential approach, for kon only, for a slightly larger set of conditions. Using a bimolecular RNA folding model and a protein-ligand interaction, we demonstrate and have internally validated this approach to experiment design, data processing, and error analysis. An updated guide to thermodynamic and kinetic regimes accessible by ITC is provided.

  16. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  17. Dynamics of photoionization of hydrogenlike ions in Debye plasmas

    SciTech Connect

    Qi, Y. Y.; Wang, J. G.; Janev, R. K.

    2009-12-15

    Photoionization processes for the ground state and n<=3 excited states of hydrogenlike ions embedded in a weakly coupled plasma are investigated in the entire energy range of a nonrelativistic regime. The plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hueckel model. The energy levels and wave functions for both the bound and continuum states are calculated by solving the Schroedinger equation numerically by the symplectic integrator. The screening of Coulomb interactions reduces the number of bound electron states, decreases their binding energies, broadens the radial distribution of electron wave functions of these states, and changes significantly the phases and the amplitudes of continuum wave functions. These changes strongly affect the dipole matrix elements between the bound and continuum states and, hence, the photoionization cross sections. The most significant effects of the screened Coulomb interactions on the energy behavior of photoionization cross sections are manifested in its low-energy behavior (Wigner threshold law), the appearance of multiple shape and virtual-state resonances when the energy levels of upper bound states enter the continuum after certain critical strength of the screening, and in the (slight) reduction of the cross section at high photon energies. All these features of the photoionization cross section are related to the short-range character of the Debye-Hueckel potential. The effects of the potential screening on the Combet-Farnoux and Cooper minima in the photoionization cross section are also investigated. Comparison of calculated photoionization cross sections with the results of other authors, when available, is made.

  18. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    NASA Technical Reports Server (NTRS)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  19. Absolute Photoionization Cross Sections of Two Cyclic Ketones: Cyclopentanone & Cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-02-23

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing VUV synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values and the identification of possible dissociative fragments is discussed for both systems.

  20. Relativistic theory of the double photoionization of heliumlike atoms

    SciTech Connect

    Yerokhin, Vladimir A.; Surzhykov, Andrey

    2011-09-15

    A fully relativistic calculation of the double photoionization of heliumlike atoms is presented. The approach is based on the partial-wave representation of the Dirac continuum states and accounts for the retardation in the electron-electron interaction as well as the higher-order multipoles of the absorbed photon. The electron-electron interaction is taken into account to the leading order of the perturbation theory. The relativistic effects are shown to become prominent already for the medium-Z ions, changing the shape and the asymptotic behavior of the photon energy dependence of the ratio of the double-to-single photoionization cross section.

  1. Double K-shell photoionization and universal scaling laws

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. K.; Dousse, J.-Cl; Berset, M.; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2009-11-01

    The photon energy dependence of the double K-shell ionization cross sections for light atoms and He-like ions is reported. The K-shell double photoionization DPI cross-sections for hollow atom production are compared to those of the corresponding He-like counterparts. The relative contribution of the initial-state correlations and final-state electron-electron interactions to the K-shell DPI is addressed. A semiempirical universal scaling of the double photoionization cross sections with the effective nuclear charge for neutral atoms in the range 2 <= Z <= 47 is established.

  2. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    NASA Astrophysics Data System (ADS)

    Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2014-05-01

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  3. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  4. Resonant and Near-Threshold Photoionization Cross Sections of Fe{sup 14+}

    SciTech Connect

    Simon, M. C.; Crespo Lopez-Urrutia, J. R.; Beilmann, C.; Schwarz, M.; Epp, S. W.; Schmitt, B. L.; Baumann, T. M.; Bernitt, S.; Ginzel, R.; Keitel, C. H.; Klawitter, R.; Kubicek, K.; Maeckel, V.; Mokler, P. H.; Ullrich, J.; Harman, Z.; Behar, E.; Follath, R.; Reichardt, G.; Schwarzkopf, O.

    2010-10-29

    Photoionization (PI) of Fe{sup 14+} in the range from 450 to 1100 eV was measured at the BESSY II storage ring using an electron beam ion trap achieving high target-ion area densities of 10{sup 10} cm{sup -2}. Photoabsorption by this ion is observed in astrophysical spectra and plasmas, but until now cross sections and resonance energies could only be provided by calculations. We reach a resolving power E/{Delta}E of at least 6500, outstanding in the present energy range, which enables benchmarking and improving the most advanced theories for PI of ions in high charge states.

  5. Confinement Resonances in Photoionization of Xe-C{sub 60}{sup +}

    SciTech Connect

    Kilcoyne, A. L. D.; Aguilar, A.; Mueller, A.; Schippers, S.; Cisneros, C.; Alna'Washi, G.; Aryal, N. B.; Baral, K. K.; Esteves, D. A.; Thomas, C. M.; Phaneuf, R. A.

    2010-11-19

    Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C{sub 60} cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe-C{sub 60}{sup +} ion beam. The phenomenon was observed in the Xe-C{sub 583}{sup +} product ion channel.

  6. Ultrafast Dynamics in Postcollision Interaction after Multiple Auger Decays in Argon 1s Photoionization

    NASA Astrophysics Data System (ADS)

    Guillemin, R.; Sheinerman, S.; Bomme, C.; Journel, L.; Marin, T.; Marchenko, T.; Kushawaha, R. K.; Trcera, N.; Piancastelli, M. N.; Simon, M.

    2012-07-01

    Argon 1s photoionization followed by multiple Auger decays is investigated both experimentally, by means of photoelectron-ion coincidences, and theoretically. A strong influence of the different Auger decays on the photoelectron spectra is observed through postcollision interaction which shifts the maximum of the energy distribution and distorts the spectral shape. A good agreement between the calculated and measured spectra for selected Arn+ ions (n=1-5) allows one to estimate the widths (lifetimes) of the intermediate states for each specific decay pathway.

  7. Vibrationally resolved 2a 2u-1 photoionization of C 6F 6

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong; Poliakoff, E. D.

    1998-07-01

    We report vibrationally resolved results on 2a 2u-1 photoionization of C 6F 6. Vibrational branching ratios are determined for the ring breathing mode by measuring dispersed fluorescence spectra of the C 6F 6+ ( B˜ 2A2 u→ X˜ 2E1 g) transition. Data are presented in the excitation energy range from 20 to 35 eV, and the vibrational branching ratios show a striking departure from Franck-Condon behavior from 20 to 25 eV. This deviation is attributed to a shape resonance.

  8. Precise Access to the Molecular-Frame Complex Recombination Dipole through High-Harmonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schoun, S. B.; Camper, A.; Salières, P.; Lucchese, R. R.; Agostini, P.; DiMauro, L. F.

    2017-01-01

    We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N2 in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μ m driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.

  9. Electron scattering from and photoionization of open- shell atoms

    NASA Astrophysics Data System (ADS)

    Lin, Dong

    1999-09-01

    The multiconfiguration Hartree-Fock (MCHF) approach, developed by Dr. H. P. Saha et al, has been proved to be extremely successful in the past few years in reproducing experimental results at a very high level of accuracy. The research projects we are interested consist of two areas. In the first area we performed ab initio calculations on elastic scattering of electrons from open-shell sulfur atoms. In the second area, in order to understand the electronic dynamics in photoionization of atoms, we carried out accurate calculations on valence and K-shell photoionization of three-electron systems from lithium through neon for photon energies from threshold to very high energies; to further identify the autoionization resonances which were observed near threshold and to understand the dynamics, we modifies the MCHF method to include relativistic effects and performed calculation on partial photoionization cross section, resonance structure and effect of spin-orbit interaction in photoionization of atomic bromine. The calculated results obtained in each of these investigations are compared with available experimental and theoretical data and are found to be in very good agreement. The research contribution made for the fulfillment of the degree, we understand, will be a valuable addition towards a better understanding of the open-shell systems.

  10. Correlation Effects in the Photoionization of Confined Calcium and Zinc

    NASA Astrophysics Data System (ADS)

    Varma, R. Hari; Manson, S. T.

    2005-05-01

    Studies of atoms confined in an endohedral environment have aroused significant recent interest [1]. In this work, the photoionization @Ca and @Zn have been studied using the Relativistic-Random-Phase Approximation, modified to include the confinement potential. Photoionization of the 4s and 3p subshells of free and confined atomic calcium, along with the 4s, 3d, 3p and 3s subshells of free and confined atomic zinc, have been studied. The photoionization parameters of confined atoms differ significantly from those of their ``free'' counterparts. The dipole cross sections and angular distribution asymmetry parameters exhibit oscillations with energy arising from the back scattering of the escaping electron by the confining potential, i.e., ``confinement resonances'' [2]. These oscillations persist when nondipole matrix elements are also included as is reflected in the nondipole cross section and angular distribution asymmetry parameters [3]; the relative strengths of the oscillations due to back-scattering in the E1 and E2 photoionization parameters have qualitatively different profiles as a function of photon energy. [1] V. K. Dolmatov, A. S. Baltenkov, J.-P. Connerade and S. T. Manson, Radiation Phys. Chem. 70, 417 (2004). [2] M. Ya. Amusia, A. S. Baltenkov, V. K. Dolmatov, S. T. Manson and A. Z. Msezane, Phys. Rev. A 70, 023201 (2004). [3] P.C. Deshmukh, Tanima Banerjee, K. P. Sunanda and R. Hari Varma, Radiation Phys. and Chem (submitted).

  11. Dissociative photoionization of ethyl acrylate: Theoretical and experimental insights

    NASA Astrophysics Data System (ADS)

    Song, Yanlin; Chen, Jun; Ding, Mengmeng; Wei, Bin; Cao, Maoqi; Shan, Xiaobin; Zhao, Yujie; Huang, Chaoqun; Sheng, Liusi; Liu, Fuyi

    2015-08-01

    The photoionization and dissociation of ethyl acrylate have been investigated by time-of-flight mass spectrometer with tunable vacuum ultraviolet (VUV) source in the range of 9.0-20.0 eV. The photoionization mass spectrum (PIMS) for ethyl acrylate and photoionization efficiency (PIE) curves for its major fragment ions: C5H7O2+, C4H5O2+, C3H5O2+, C3H4O+, C3H3O+, C2H5O+, C2H3O+, C2H5+ and C2H4+ have been obtained. The formation channels of main fragments are predicted by Gaussian 09 program at G3B3 level and examined via their dissociation energies from experimental results. Based on our analysis, nine main dissociative photoionization channels are proposed: C5H7O2+ + H, C4H5O2+ + CH3, C3H5O2+ + C2H3, C3H4O+ + C2H4O, C3H3O+ + C2H5O, C2H5O+ + C3H3O, C2H3O+ + C3H5O, C2H5+ + C3H3O2, C2H4+ + C3H4O2, respectively. The results of this work lead to a better understanding of photochemistry in the environment.

  12. Tunable Wavelength Soft Photoionization of Ionic Liquid Vapors (Preprint)

    DTIC Science & Technology

    2009-11-18

    Physical Review Letters; 71, 1994 (1993). 29. L. Belau et al., Vacuum ultraviolet ( VUV ) photoionization of small water clusters. Journal of...Physical Chemistry A; 111, 10075 (2007). 30. L. Nugent-Glandorf et al., A laser -based instrument for the study of ultrafast chemical dynamics by soft x

  13. Helium 23S photoionization up to the N = 5 threshold

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2008-02-01

    We present the results of an accurate B-spline K-matrix calculation of total and partial cross sections and asymmetry parameters for the photoionization of the metastable 23Se state of helium up to the N = 5 threshold. The effect of the [040]+5 intruder state below N = 4 is shown.

  14. Photoionization of Ca XV with high energy features

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-02-01

    Photoionization cross sections of (Ca XV + hν → Ca XVI + e), with high energy resonant photo-absorption phenomena, of a large number of bound states, 701 in total with n ≤ 10 and l ≤ 9, are reported. They are obtained using the R-matrix method with a close coupling (CC) wavefunction expansion of 29 states of n = 2,3 complexes of the core ion Ca XVI. Characteristic features found in photoionization of the ion are illustrated with examples. The cross section (σPI) of the ground 2s22p2(3P) state is found to be unaffected by the size of the wavefunction expansion except for weak sparse resonances in high energy region. However, effects on excited states are considerable as the core excitations to n = 3 states are manifested in huge resonant absorption in high energy photoionization. They show existence of prominent high peak resonant features and enhancement in the background that were not studied before for Ca XV. In addition photoionization of the excited states with a single valence electron is dominated by Seaton resonant structures formed by the photo-excitation-of-core in the high energy region. These features will impact other quantities, such as the opacity, electron-ion recombination in high temperature plasmas where the ion exists, and hence will play important role in determination of elemental abundances in the astronomical objects.

  15. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  16. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    PubMed Central

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-01-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500–1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization. PMID:27905552

  17. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    PubMed

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  18. Dissociative photoionization of β-pinene: an experimental and theoretical study.

    PubMed

    Sheng, Liusi; Cao, Maoqi; Chen, Jun; Fang, Wenzhen; Li, Yuquan; Ge, Shaolin; Shan, Xiaobin; Liu, Fuyi; Zhao, Yujie; Zhenya Wang, Zhenya Wang

    2014-01-01

    We investigated the photoionization and dissociation photoionization of the β-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV. The experimental ionization energy (IE) value is 8.60eV using electron impact as the ionization source which is not in good agreement with theoretical value (8.41 eV) with a G3MP2 method. We obtained the accurate IE of β-pinene (8.45 ± 0.03eV) derived from the efficiency spectrum which is in good agreement with the theoretical value (8.38eV) of the CBS-QB3 method. We elucidated the dissociation pathways of primary fragment ions from the β-pinene cation on the basis of experimental observations in combination with theoretical calculations. Most of the dissociation pathways occur via a rearrangement reaction prior to dissociation. We also determined the structures of the transition states and intermediates for those isomerization processes.

  19. Spin–orbit interaction mediated molecular dissociation

    SciTech Connect

    Kokkonen, E. Jänkälä, K.; Kettunen, J. A.; Heinäsmäki, S.; Karpenko, A.; Huttula, M.; Löytynoja, T.

    2014-05-14

    The effect of the spin–orbit interaction to photofragmentation is investigated in the mercury(II) bromide (HgBr{sub 2}) molecule. Changes in the fragmentation between the two spin–orbit components of Hg 5d photoionization, as well as within the molecular-field-splitted levels of these components are observed. Dissociation subsequent to photoionization is studied with synchrotron radiation and photoelectron-photoion coincidence spectroscopy. The experimental results are accompanied by relativistic ab initio analysis of the photoelectron spectrum.

  20. Rotamers and Migration: Investigating the Dissociative Photoionization of Ethylenediamine.

    PubMed

    Muller, Giel; Voronova, Krisztina; Sztáray, Bálint; Meloni, Giovanni

    2016-06-09

    The unimolecular dissociation of energy-selected ethylenediamine cations was studied by threshold photoelectron photoion coincidence spectroscopy (TPEPICO) in the photon energy range of 8.60-12.50 eV. Modeling the breakdown diagram and time-of-flight distributions with rigid activated complex RRKM theory yielded 0 K appearance energies for eight dissociation channels, leading to NH2CHCH2(+)(•) at 9.120 ± 0.010 eV, CH3C(NH2)2(+) at 9.200 ± 0.012 eV, NH2CHCH3(+) at 9.34 ± 0.08 eV, CH2NH2(+) at 9.449 ± 0.025 eV, CH2NH3(+) at 9.8 ± 0.1 eV, c-C2H4NH2(+) at 10.1 ± 0.1 eV, CH3NHCHCH2(+) at 10.2 ± 0.1 eV, and the reappearance of CH2NH2(+) at 10.2 ± 0.1 eV. The CBS-QB3-calculated pathways highlighted the influence of intramolecular hydrogen attractions on the dissociation processes, presenting novel isomers and low-energy van der Waals intermediates that led to fragments in good agreement with experimental results. While most of the dissociation channels take place through reverse barriers, the 0 K heat of formation of (•)CH2NH2 was determined to be 147.6 ± 3.7 kJ mol(-1), in excellent agreement with literature, and the 0 K heat of formation of CH2NH3(+) at 844 ± 10 kJ mol(-1) is the first experimentally measured value available and is in good agreement with theory.

  1. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  2. Quantitation of Interacting Molecular Species and Measurement of Molecular Avidity by Single Radial (Immuno) Diffusion

    DTIC Science & Technology

    1989-09-01

    FIGURE LEGEND 1lL ;Ta ,j - ’V y ilii INTRODUCTION Mancini et al. (1965) developed a single radial immunodiffusion (SRID) method for the quantitation of...quantitation of antigens by single radial immunodiffusion . Immunochem, 2, 5. Mancini , G., Nash, D. R. and Heremans, J. F. (1970) Further studies on...FIELD GROUP SUB-GROUP Single radial immunodiffusion , Single radial diffusion, Molecular interaction, Molecular avidity, endotoxin ’-." 19 A63TRACT

  3. Photoionization thresholds of rare-earth impurity ions. EuS :CaF2, CeT :YAG, and SmS :CaF2

    SciTech Connect

    Pedrini, C.; Rogemond, F.; McClure, D.S.

    1986-02-15

    The spectral dependence of the photoionization energy of EuS :CaF2, CeT :YAG, and SmS :CaF2 systems have been measured and thresholds experimentally determined and compared with theoretical values calculated from electrostatic models. It is shown that the excited state absorption transitions or the persistent hole burning observed by other authors occur above the threshold energy of photoionization of the impurities and that the states of the crystal which form the bottom of the conduction band may play an important role in the strong probability of these processes. A review of thresholds now known is also given.

  4. PHOTOIONIZATION OF HIGH-ALTITUDE GAS IN A SUPERNOVA-DRIVEN TURBULENT INTERSTELLAR MEDIUM

    SciTech Connect

    Wood, Kenneth; Hill, Alex S.; Haffner, L. Matthew; Reynolds, R. J.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Madsen, G. J.

    2010-10-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in H{alpha}. In previous studies of such clouds, the photoionization scenario had been rejected and the H{alpha} had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from H{alpha} observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  5. Low temperature plasmas created by photoionization of gases with intense radiation pulses from laser-produced plasma sources

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Pisarczyk, T.; Wachulak, P.; Chodukowski, T.; Fok, T.; Wegrzyński, Ł.; Kalinowska, Z.; Fiedorowicz, H.

    2016-12-01

    A comparative study of photoionized plasmas created by soft X-ray (SXR) and extreme ultraviolet (EUV) laser plasma sources was performed. The sources, employing high or low energy laser systems, utilized double-stream Xe/He gas-puff targets irradiated with laser pulses of different parameters. The SXR/EUV beams were used for irradiation of a gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Photoionized plasmas produced this way in Ne gas emitted radiation in the SXR/EUV range. The corresponding spectra were dominated by emission lines originating from singly charged ions. Significant differences between spectra obtained in different experimental conditions concern specific transitions in Ne II ions. Creation of photoionized plasmas by SXR or EUV irradiation resulted in K-shell or L-shell emissions respectively. In case of the low energy system absorption spectra were measured additionally. In case of the high energy system, the electron density measurements were performed by laser interferometry, employing a femtosecond laser system. A maximum electron density reached the value of 2·1018cm-3. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  6. Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde. II. The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Henkel, C.; Chen, C.-H. R.; Menten, K. M.; Indebetouw, R.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yuan, Y.; Li, D. L.; He, Y. X.

    2017-03-01

    Context. The kinetic temperature of molecular clouds is a fundamental physical parameter affecting star formation and the initial mass function. The Large Magellanic Cloud (LMC) is the closest star-forming galaxy with a low metallicity and provides an ideal laboratory for studying star formation in such an environment. Aims: The classical dense molecular gas thermometer NH3 is seldom available in a low-metallicity environment because of photoionization and a lack of nitrogen atoms. Our goal is to directly measure the gas kinetic temperature with formaldehyde toward six star-forming regions in the LMC. Methods: Three rotational transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO near 218 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope toward six star-forming regions in the LMC. These data are complemented by C18O 2-1 spectra. Results: Using non-local thermal equilibrium modeling with RADEX, we derive the gas kinetic temperature and spatial density, using as constraints the measured para-H2CO 321-220/303-202 and para-H2CO 303-202/C18O 2-1 ratios. Excluding the quiescent cloud N159S, where only one para-H2CO line could be detected, the gas kinetic temperatures derived from the preferred para-H2CO 321-220/303-202 line ratios range from 35 to 63 K with an average of 47 ± 5 K (errors are unweighted standard deviations of the mean). Spatial densities of the gas derived from the para-H2CO 303-202/C18O 2-1 line ratios yield 0.4-2.9 × 105 cm-3 with an average of 1.5 ± 0.4 × 105 cm-3. Temperatures derived from the para-H2CO line ratio are similar to those obtained with the same method from Galactic star-forming regions and agree with results derived from CO in the dense regions (n(H2) > 103 cm-3) of the LMC. A comparison of kinetic temperatures derived from para-H2CO with those from the dust also shows good agreement. This suggests that the dust and para-H2CO are well mixed in the studied star-forming regions. A comparison of

  7. Measuring Incorporation Of Arsenic In Molecular-Beam Expitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, Blair F.; Fernandez, Rouel F.; Madhukar, Anupam; Grunthaner, Frank J.

    1988-01-01

    Changes in surface layers cause oscillations in RHEED measurements. Specular RHEED Beam intensity measured before, during, and after deposition of seven to eight monomolecular layers of gallium during 1.5 seconds. Arsenic pressure was 1.7x10 to the negative seventh power torr (2.3x10 to the negative fifth power Pa) throughout measurements.

  8. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  9. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: theory and experiment.

    PubMed

    Bellili, A; Schwell, M; Bénilan, Y; Fray, N; Gazeau, M-C; Mogren Al-Mogren, M; Guillemin, J-C; Poisson, L; Hochlaf, M

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  10. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    SciTech Connect

    Bellili, A.; Hochlaf, M. E-mail: martin.schwell@lisa.u-pec.fr; Schwell, M. E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  11. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  12. Theoretical Studies of Starburst Infrared Emission: Luminosity Indicators in Dusty Photoionized Environments

    NASA Technical Reports Server (NTRS)

    Bottorff, Mark; LaMothe, Joseph; Momjian, Emmanuel; Verner, Ekaterina; Vinkovic, Dejan; Ferland, Gary J.

    1998-01-01

    The luminosity of the central source in ionizing radiation is an essential parameter in a photoionized environment and is one of the most fundamental physical quantities one can measure. We outline a method of determining the luminosity for any emission-line region using only infrared data. In dusty environments, grains compete with hydrogen in absorbing continuum radiation. Grains produce infrared emission, and hydrogen produces recombination lines. We have computed a very large variety of photoionization models, using ranges of abundances, grain mixtures, ionizing continua, densities, and ionization parameters. The conditions were appropriate for such diverse objects as H(II) regions, planetary nebulae, starburst galaxies, and the narrow- and broad-line regions of active nuclei. The ratio of the total thermal grain emission relative to H-Beta (IR/H-Beta) is the primary indicator of whether the cloud behaves as a classical Stroemgren sphere (a hydrogen-bounded nebula) or whether grains absorb most of the incident continuum (a dust-bounded nebula). We find two global limits: when IR/H-Beta < 100, infrared recombination lines determine the source luminosity in ionizing photons; when IR/H-Beta >> 100, the grains act as a bolometer to measure the luminosity.

  13. Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method.

    PubMed

    Ge, Lun; Hua, Weihong; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2013-01-15

    We use the optogalvanic method to calculate the concentration of rubidium ions produced by photoionization in a Rb diode-pumped alkali laser gain medium. With bias voltage added across the electrodes of a rubidium hollow cathode lamp, the measured optogalvanic current is 2.3×10(-7) A. Further study shows that the rubidium ion concentration is proportional to the pump intensity, and the drift velocity of rubidium ions is proportional to the bias voltage. When the photoionization process reaches dynamic equilibrium, the rubidium ion concentration will not increase with growing rubidium atom density. The calculated rubidium ion concentration is 1.5×10(5)-10(6) according to the experiment, and the ionization degree is less than 2.4×10(-7).

  14. Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules

    PubMed Central

    Canton, Sophie E.; Plésiat, Etienne; Bozek, John D.; Rude, Bruce S.; Decleva, Piero; Martín, Fernando

    2011-01-01

    Vibrationally resolved valence-shell photoionization spectra of H2, N2 and CO have been measured in the photon energy range 20–300 eV using third-generation synchrotron radiation. Young’s double-slit interferences lead to oscillations in the corresponding vibrational ratios, showing that the molecules behave as two-center electron-wave emitters and that the associated interferences leave their trace in the angle-integrated photoionization cross section. In contrast to previous work, the oscillations are directly observable in the experiment, thereby removing any possible ambiguity related to the introduction of external parameters or fitting functions. A straightforward extension of an original idea proposed by Cohen and Fano [Cohen HD, Fano U (1966) Phys Rev 150:30] confirms this interpretation and shows that it is also valid for diatomic heteronuclear molecules. Results of accurate theoretical calculations are in excellent agreement with the experimental findings.

  15. X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas: Collisional, photoionization and charge-exchange plasmas

    SciTech Connect

    Liang, G. Y.; Li, F.; Wang, F. L.; Zhong, J. Y.; Zhao, G.; Wu, Y.

    2014-03-10

    Several laboratory facilities were used to benchmark theoretical spectral models that are extensively used by astronomical communities. However, there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory plasmas to make a bridge between them, and we investigate the effects from non-thermal electrons and the contributions from a metastable level population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e., electron beam ion trap plasma) and astrophysical observation (i.e., Comet, Cygnus X-3) are presented. A time evolution of the charge stage and level population are also explored for collisional and photoionized plasmas.

  16. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  17. High-gain inner-shell photoionization laser in Cd vapor pumped by soft-x-ray radiation from a laser-produced plasma source.

    PubMed

    Silfvast, W T; Macklin, J J; Ii, O R

    1983-11-01

    A soft-x-ray-pumped inner-shell photoionization laser has been produced in Cd vapor at 4416 and 3250 A. A gain of 5.6 cm(-1) has been measured at 4416 A, and a reasonably high-energy storage of 0.2 mJ/cm(3) in the upper laser states has been obtained.

  18. Molecular Emission and Temperature Measurements from Single-Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Hangxun; Suslick, Kenneth S.

    2010-06-01

    Single-bubble sonoluminescence (SBSL) spectra in H2O show featureless continuum emission. From an acoustically driven, moving bubble in phosphoric acid (H3PO4), we observe very strong molecular emission from excited OH radicals (˜310nm), which can be used as a spectroscopic thermometer by fitting the experimental SBSL spectra to the OH AΣ+2-XΠ2 rovibronic transitions. The observed emission temperature (Tem) ranges from 6200 to 9500 K as the acoustic pressure (Pa) varies from 1.9 to 3.1 bar and from 6000 to >10000K as the dissolved monatomic gas varies over the series from He to Xe.

  19. Picosecond time resolved conductance measurements of redox molecular junctions

    NASA Astrophysics Data System (ADS)

    Arielly, Rani; Nachman, Nirit; Zelinskyy, Yaroslav; May, Volkhard; Selzer, Yoram

    2017-03-01

    Due to bandwidth limitations of state of the art electronics, the transient transport properties of molecular junctions are experimentally a terra incognita, which can only be explored if novel picosecond current-probing techniques are developed. Here we demonstrate one such approach: the laser pulse-pair sequence scheme. The method is used to monitor in picosecond resolution the oxidation state of a redox molecule, 6-ferrocenyl-1-hexanethiol, within a junction and to quantify its redox rate constant, which is found to be (80 ps)-1.

  20. Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Nolt, Ira G.; Radostitz, J. V.; Park, K.

    1990-01-01

    The purpose of this research is to make precise, fully line-resolved measurements of molecular parameters that are necessary for the analysis of spectra obtained in far infrared field measurement programs. These measurements make it possible to accurately analyze the data from field measurements to obtain atmospheric concentration profiles of key trace gases involved in the ozone chemistry. The research objectives include: measurements of pressure broadening of molecular lines of OH, O2, O3, HCl, and H2O, their temperature dependence, and, when possible, the pressure-induced frequency shifts of the lines; measurements of line positions of radical species, such as HO2.

  1. Multiconfigurational Hartree-Fock close-coupling ansatz: Application to the argon photoionization cross section and delays

    NASA Astrophysics Data System (ADS)

    Carette, T.; Dahlström, J. M.; Argenti, L.; Lindroth, E.

    2013-02-01

    We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multiconfigurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In this implementation, the general many-electron problem can be tackled thanks to the use of the atsp2k libraries [C. Froese Fischer , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2007.01.006 176, 559 (2007)]. In the present contribution, we combine this method with exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the whole dynamics of the photoionization process. The method is validated on the 3s3p6np series of resonances converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay between 3p and 3s photoemission, and agreement is found with the measurements of Guénot [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.053424 85, 053424 (2012)]. The effect of the presence of resonances in the one-photon spectrum on photoionization delay measurements is studied.

  2. Covariation Is a Poor Measure of Molecular Coevolution.

    PubMed

    Talavera, David; Lovell, Simon C; Whelan, Simon

    2015-09-01

    Recent developments in the analysis of amino acid covariation are leading to breakthroughs in protein structure prediction, protein design, and prediction of the interactome. It is assumed that observed patterns of covariation are caused by molecular coevolution, where substitutions at one site affect the evolutionary forces acting at neighboring sites. Our theoretical and empirical results cast doubt on this assumption. We demonstrate that the strongest coevolutionary signal is a decrease in evolutionary rate and that unfeasibly long times are required to produce coordinated substitutions. We find that covarying substitutions are mostly found on different branches of the phylogenetic tree, indicating that they are independent events that may or may not be attributable to coevolution. These observations undermine the hypothesis that molecular coevolution is the primary cause of the covariation signal. In contrast, we find that the pairs of residues with the strongest covariation signal tend to have low evolutionary rates, and that it is this low rate that gives rise to the covariation signal. Slowly evolving residue pairs are disproportionately located in the protein's core, which explains covariation methods' ability to detect pairs of residues that are close in three dimensions. These observations lead us to propose the "coevolution paradox": The strength of coevolution required to cause coordinated changes means the evolutionary rate is so low that such changes are highly unlikely to occur. As modern covariation methods may lead to breakthroughs in structural genomics, it is critical to recognize their biases and limitations.

  3. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  4. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  5. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    PubMed

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  6. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    SciTech Connect

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-04-21

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  7. Single-center model for double photoionization of the H{sub 2} molecule

    SciTech Connect

    Kheifets, A.S.

    2005-02-01

    We present a single-center model of double photoionization (DPI) of the H{sub 2} molecule which combines a multiconfiguration expansion of the molecular ground state with the convergent close-coupling description of the two-electron continuum. Because the single-center final-state wave function is only correct in the asymptotic region of large distances, the model cannot predict the magnitude of the DPI cross sections. However, we expect the model to account for the angular correlation in the two-electron continuum and to reproduce correctly the shape of the fully differential DPI cross sections. We test this assumption in kinematics of recent DPI experiments on the randomly oriented and fixed in space hydrogen molecule in the isotopic form of D{sub 2}.

  8. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    NASA Astrophysics Data System (ADS)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-04-01

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  9. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    SciTech Connect

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim; Månsson, Erik P.; Sankari, Anna; Sorensen, Stacey L.

    2015-09-21

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.

  10. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Himadri S.; McCune, Matthew A.; Madjet, Mohamed E.; Hopper, Dale E.; Manson, Steven T.

    2009-12-01

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C60.

  11. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  12. Time-Dependent Photoionization of Gas Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Elhoussieny, Ehab E.; Bautista, M.; Garcia, J.; Kallman, T. R.

    2013-01-01

    Gas outflows are fundamental components of Active Galactic Nuclei (AGN) activity. Time-variability of ionizing radiation, which is characteristic of AGN in various different time scales, may produce non-equilibrium photoionization conditions over a significant fraction of the flow and yields supersonically moving cooling/heating fronts. These fast fronts create pressure imbalances that can only be resolved by fragmentation of the flow and acceleration of such fragments. This mechanism can explain the kinematic structure of low ionization BAL systems (FeLoBAL). This mechanism may also have significant effects on other types of outflows given the wide range of variability time scales in AGN. We will study these effects in detail by constructing time-dependent photoionization models of the outflows and incorporating these models into radiative-hydrodynamic simulations.

  13. K -shell double photoionization of Be, Mg, and Ca

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Bray, Igor; Hoszowska, J.

    2009-04-01

    We perform convergent close-coupling calculations of double photoionization (DPI) of the K -shell of alkaline-earth metal atoms (Be, Mg, and Ca) from the threshold to the nonrelativistic limit of infinite photon energy. Theoretical double-to-single photoionization cross-section ratios for Mg and Ca are compared with experimental values derived from high-resolution x-ray spectra following the radiative decay of the K -shell double vacancy. We investigate the role of many-electron correlations in the ground and doubly-ionized final states played in the DPI process. Universal scaling of DPI cross section with an effective nuclear charge is examined in neutral atoms in comparison with corresponding heliumlike ions.

  14. Double Photoionization into Double Core-Hole States in Xe

    SciTech Connect

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Eland, J. H. D.; Aoto, T.; Ito, K.

    2007-05-04

    Double photoionization (DPI) leading to double core-hole states of Xe{sup 2+} 4d{sup -2} has been studied using a magnetic bottle time-of-flight spectrometer. The assignments of the Xe{sup 2+} 4d{sup -2} states are confirmed by the Auger lines extracted from fourfold coincidences including two photoelectrons and two Auger electrons. It is estimated that the core-core DPI into Xe{sup 2+} 4d{sup -2} at a photon energy of 301.6 eV has a favored cross section of about 0.3 MB. The intense core-core DPI is due to mixing of the 4d{sup -2} continuum with the 4p single photoionization, which is manifested in the relative intensities of the Xe{sup 2+} 4d{sup -2} components.

  15. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  16. Spatially resolved photoionization of ultracold atoms on an atom chip

    SciTech Connect

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-06-15

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 {mu}K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 {mu}m, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip.

  17. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    SciTech Connect

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-12-03

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C{sub 60}.

  18. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.

    PubMed

    Li, Yuyang; Qi, Fei

    2010-01-19

    Combustion is one of the earliest developed human technologies and remains our primary source of energy, yet it embodies a complex suite of physical and chemical processes that are inadequately understood. Combustion chemistry involves both chemical thermodynamics and chemical kinetics, and experimental advances mostly depend on the development of combustion diagnostics, which effectively serve as the foundation of theoretical progress. The major objective of combustion diagnostics is to provide comprehensive product identification and concentration information of a flame species, which can be used to develop kinetic models for the simulation of practical combustion. However, conventional combustion diagnostic methods face difficult challenges in distinguishing isomeric species, detecting reactive radicals, obtaining real-time measurements, and so forth. Therefore, for deeper insight into combustion chemistry, a diagnostic method with high detection sensitivity, isomeric selectivity, and radical detectability is required. In this Account, we report recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) in various areas of combustion chemistry research. The wide tunability of synchrotron photon energy can facilitate the selective identification of isomeric intermediates and the near-threshold detection of radicals (thus avoiding fragmentation interference). Moreover, the convenient combination of SVUV-PIMS with various laboratory-based combustion approaches demonstrates its universality in combustion studies. Recent experimental achievements have demonstrated the successful applications of this technique in premixed flames, pyrolysis in flow reactors, coflow diffusion flames, catalytic oxidation, plasma diagnostics, and analysis of polycyclic aromatic hydrocarbons (PAHs) and soot. More applications of SVUV-PIMS are expected in the near future, not only in combustion studies, but also in other research topics of chemistry

  19. Molecular emission and temperature measurements from single-bubble sonoluminescence.

    PubMed

    Xu, Hangxun; Suslick, Kenneth S

    2010-06-18

    Single-bubble sonoluminescence (SBSL) spectra in H2O show featureless continuum emission. From an acoustically driven, moving bubble in phosphoric acid (H3PO4), we observe very strong molecular emission from excited OH radicals (∼310  nm), which can be used as a spectroscopic thermometer by fitting the experimental SBSL spectra to the OH A 2Σ+ - X 2Π rovibronic transitions. The observed emission temperature (T(em)) ranges from 6200 to 9500 K as the acoustic pressure (P(a)) varies from 1.9 to 3.1 bar and from 6000 to >10,000  K as the dissolved monatomic gas varies over the series from He to Xe.

  20. The measurement of molecular diversity: A three-dimensional approach

    NASA Astrophysics Data System (ADS)

    Chapman, David

    1996-12-01

    This paper describes a method for selecting a small, highly diverse subset from a large pool of molecules. The method has been employed in the design of combinatorial synthetic libraries for use in high-throughput screening for pharmaceutical lead generation. It computes diversity in terms of the main factors relevant to ligand-protein binding, namely the three-dimensional arrangement of steric bulk and of polar functionalities and molecular entropy. The method was used to select a set of 20 carboxylates suitable for use as side-chain precursors in a polyamine-based library. The method depends on estimates of various physical-chemical parameters involved in ligand-protein binding; experiments examined the sensitivity of the method to these parameters. This paper compares the diversity of randomly and rationally selected side-chain sets; the results suggest that careful design of synthetic combinatorial libraries may increase their effectiveness several-fold.

  1. Can dynamic contact angle be measured using molecular modeling?

    PubMed

    Malani, Ateeque; Raghavanpillai, Anilkumar; Wysong, Ernest B; Rutledge, Gregory C

    2012-11-02

    A method is presented for determining the dynamic contact angle at the three-phase contact between a solid, a liquid, and a vapor under an applied force, using molecular simulation. The method is demonstrated using a Lennard-Jones fluid in contact with a cylindrical shell of the fcc Lennard-Jones solid. Advancing and receding contact angles and the contact angle hysteresis are reported for the first time by this approach. The increase in force required to wet fully an array of solid cylinders (robustness) with decreasing separation distance between cylinders is evaluated. The dynamic contact angle is characterized by partial slipping of the three phase contact line when a force is applied.

  2. Photoionization of hydroxymethyl (CD[sub 2]OH and CD[sub 2]OD) and methoxy (CD[sub 3]O) radicals. Photoion efficiency spectra, ionization energies, and thermochemistry

    SciTech Connect

    Kuo, S.C.; Zhang, Z.; Klemm, R.B. ); Liebman, J.F. ); Stief, L.J. ); Nesbitt, F.L. Coppin State College, Baltimore, MD )

    1994-04-14

    Photoion efficiency (PIE) spectra were obtained for CD[sub 2]OH, CD[sub 2]OD, and CD[sub 3]O radicals using the discharge flow-photoionization mass spectrometry technique. The radicals were generated in a flow tube via reaction of F atoms with the appropriate methanol isotopomers (CD[sub 3]OH [yields] CD[sub 2]OH, CD[sub 3]OD [yields] CD[sub 2]OD, and CD[sub 3]OH [yields] CD[sub 3]O), which were in large excess. Deuterated methoxy radicals, CD[sub 3]O, were also generated via the reaction of CD[sub 3] with NO[sub 2]. Photoionization of the radicals was achieved using high intensity, dispersed synchrotron radiation, and ionization energies (IE) of these radicals were derived from the thresholds of the PIE spectra: IE(CD[sub 2]OH) = 7.54 [+-] 0.02 eV, IE(CD[sub 2]OD) = 7.53 [+-] 0.02 eV, and IE(CD[sub 3]O) = 10.74 [+-] 0.02 eV. The PIE spectra for CD[sub 2]OH and CD[sub 3]O are compared to those of a previous photoionization study, and differences are discussed. Integration of previously published photoelectron spectroscopy data for CD[sub 2]OH yields a curve quite similar to our PIE spectrum. Empirical estimates of IE(CH[sub 2]OH) and IE(CH[sub 3]O) are given to corroborate our assignments. The measured ionization energies and the derived thermodynamic quantities are compared with previously reported results. 67 refs., 7 figs., 2 tabs.

  3. Relativistic Photoionization Computations with the Time Dependent Dirac Equation

    DTIC Science & Technology

    2016-10-12

    fields often occurs in the relativistic regime. A complete description of this phenomenon requires both relativistic and quantum mechanical treatment...photoionization, or other relativis- tic quantum electronics problems. While the Klein-Gordon equation captures much of the relevant physics, especially... quantum number. The orbital angular momentum is a bad quantum number because the stationary states have `0 6= `3 and `1 6= `2, so that they are not

  4. Nonperturbative theory of double photoionization of the hydrogen molecule

    SciTech Connect

    Vanroose, W.; Martin, F.; Rescigno, T.N.; McCurdy, C.W.

    2004-10-01

    We present completely ab initio nonperturbative calculations of the integral and single differential cross sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior complex scaling, implemented with B-splines, is used to solve the Schrodinger equation for a correlated continuum wave function corresponding to a single photon having been absorbed by a correlated initial state. The results are in good agreement with experimental integral cross sections.

  5. Vibrationally specific photoionization cross sections of acrolein leading to the X̃²A' ionic state.

    PubMed

    López-Domínguez, Jesús A; Lucchese, Robert R; Fulfer, K D; Hardy, David; Poliakoff, E D; Aguilar, A A

    2014-09-07

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the X̃²A' ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  6. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  7. SOLAR PHOTOIONIZATION RATES FOR INTERSTELLAR NEUTRALS IN THE INNER HELIOSPHERE: H, He, O, AND Ne

    SciTech Connect

    Bochsler, P.; Kucharek, H.; Möbius, E.; Bzowski, Maciej; Sokół, Justyna M.; Didkovsky, Leonid; Wieman, Seth

    2014-01-01

    Extreme UV (EUV) spectra from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Solar EUV Experiment are used to infer photoionization rates in the inner heliosphere. Relating these rates to various proxies describing the solar EUV radiation, we construct a multi-linear model which allows us to extrapolate ionization rates back to periods when no routine measurements of the solar EUV spectral distribution have been available. Such information is important, e.g., for comparing conditions of the interstellar neutral particles in the inner heliosphere at the time of Ulysses/GAS observations with conditions during the more recent observations of the Interstellar Boundary Explorer. From a period of 11 yr when detailed spectra from both TIMED and three proxies—Solar and Heliospheric Observatory/CELIAS/SEM-rates, F10.7 radio flux, and Mg II core-to-wing indices—have been available, we conclude that the simple model is able to reproduce the photoionization rates with an uncertainty of typically 5%.

  8. Vibrationally Resolved B 1s Photoionization Cross Section of BF3.

    PubMed

    Ayuso, D; Kimura, M; Kooser, K; Patanen, M; Plésiat, E; Argenti, L; Mondal, S; Travnikova, O; Sakai, K; Palacios, A; Kukk, E; Decleva, P; Ueda, K; Martín, F; Miron, C

    2015-06-11

    Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s(-1) core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.

  9. Parametrizations and dynamical analysis of angle-integrated cross sections for double photoionization including nondipole effects

    SciTech Connect

    Istomin, Andrei Y.; Starace, Anthony F.; Manakov, N. L.; Meremianin, A. V.; Kheifets, A. S.; Bray, Igor

    2005-11-15

    Similarly to differential cross sections for one-electron photoionization, the doubly differential cross section for double photoionization (DPI) may be conveniently described by four parameters: the singly differential (with respect to energy sharing) cross section ({sigma}{sub 0}), the dipole asymmetry parameter ({beta}), and two nondipole asymmetry parameters ({gamma} and {delta}). Here we derive two model-independent representations for these parameters for DPI from a {sup 1}S{sub 0} atomic bound state: (i) in terms of one-dimensional integrals of the polarization-invariant DPI amplitudes and (ii) in terms of the exact two-electron reduced matrix elements. For DPI of He at excess energies, E{sub exc}, of 100 eV, 450 eV, and 1 keV, we present numerical results for the asymmetry parameters within the framework of the convergent close-coupling theory and compare them with results of lowest-order (in the interelectron interaction) perturbation theory (LOPT). The results for E{sub exc}=1 keV exhibit a nondipole asymmetry that is large enough to be easily measured experimentally. We find excellent agreement between our LOPT results and other theoretical predictions and experimental data for total cross sections and ratios of double to single ionization cross sections for K-shell DPI from several multielectron atoms.

  10. Photoionization of phenothiazine: EPR detection of reactions of the polarized solvated electron

    SciTech Connect

    Turro, N.J.; Khudyakov, I.V.; Willigen, H. van

    1995-12-13

    Photoionization of phenothiazine (PTH) and reactions of the solvated electron with some electron acceptors were studied with steady state and time-resolved EPR and transient optical absorption techniques. Time-resolved EPR spectra from the phenothiazine cation radical (PTH{sup .+}) and hydrated electron (e{sub aq}{sup -}) formed in sodium 1-dodecylsulfate (SDS) micellar solution were observed in emission. By contrast, PTH{sup .+} formed by photoionization of PTH in alcohols gives absorptive EPR signals. The spin polarization carried by the hydrated electron in SDS solutions can be transferred effectively to a stable nitroxyl free radical 3-carboxy-2,2,5, 5-tetramethyl-1-pyrrolidinyloxyl (N{sup .-}) present in the bulk aqueous phase. EPR and flash photolysis measurements show that this electron spin polarization transfer process proceeds with a rate which is approximately five times faster than the chemical reaction between e{sub aq}{sup -} and N{sup .-}. The marked difference in rates is attributed to differences in spin-statistical factors and difference in reaction radii for spin exchange compared to reaction. In alcohol solutions of PTH and a nitroxyl stable radical (2,2,6, 6-tetramethylpyperidin-1-oxyl, TEMPO), excitation of PTH also results in emissive polarization of the EPR spectrum of the stable radical. 46 refs., 12 figs.

  11. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  12. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  13. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  14. Femtosecond pump-probe photoionization-photofragmentation spectroscopy: Photoionization-induced twisting and coherent vibrational motion of azobenzene cation

    NASA Astrophysics Data System (ADS)

    Ho-Wei, Jr.; Chen, Wei-Kan; Cheng, Po-Yuan

    2009-10-01

    We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale.

  15. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Rauwerdink, Adam M.; Weaver, John B.

    2010-01-01

    Molecular binding is important in many venues including antibody binding for diagnostic and therapeutic agents and pharmaceutical function. We demonstrate that a method of measuring nanoparticle Brownian motion, termed magnetic spectroscopy of nanoparticle Brownian motion (MSB), can be used to monitor molecular binding and the bound fraction. It is plausible that MSB can be used to measure binding in vivo because the same signal has been used to image nanoparticles in nanogram quantities in vivo.

  16. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  17. Landau-Zener in a continuously measured molecular spin

    NASA Astrophysics Data System (ADS)

    Troiani, Filippo; Affronte, Marco; Thiele, Stephan; Godfrin, Clement; Balestro, Franck; Wernsdorfer, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario

    The dynamics of a quantum system driven through an avoided level crossing represernts a relevant problem in many physical contexts. Here we present a joint theoretical and experimental investigation of a single-molecule magnet (namely, a terbium double-decker complex) in a three-terminal geometry. The Tb spin is driven through an avoided level crossing by a time-dependent magnetic field, and its dynamics is monitored through a continuous measurement of the conductance. The dependence of the spin-reversal probability on the field sweeping rate presents clear deviations from the Landau-Zener formula, which applies to the case of closed systems. The comparison between direct and inverse Landau-Zener transitions points at the dominance of dephasing, with respect to inelastic incoherent processes. The spin dynamics is simulated within a master equation approach. The observed behaviors are reproduced by assuming that dephasing takes place in the basis of the time-dependent Hamiltonian eigenstates. The spin dephasing is traced back to the continuous measurement of the electron spin, and a fundamental role is played by the finite time resolution of the conductance measurement.

  18. Percent-level accuracy in measuring photoionisation yields and peak intensities for intense few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Kielpinski, David; Wallace, W. C.; Ghafur, O.; Calvert, J. E.; Khurmi, C.; Laban, D. E.; Litvinyuk, I. V.; Sang, R. T.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.

    2014-05-01

    The correct interpretation of experimental results in strong-field physics depends critically on both the measurement precision and on accurate knowledge of the laser peak intensity. We have accurately measured the photoionization yields of atomic hydrogen (H) and molecular hydrogen (H2) in intense, few-cycle laser pulses, and compared them against various theoretical models. From our comparison with highly precise numerical solutions of the three-dimensional (3D) time-dependent Schrödinger equation (TDSE), we have derived an intensity calibration standard accurate to better than 3%. This standard is easily usable in any strong-field physics experiment capable of measuring photoionization yields. Supported by AFOSR and the Australian Research Council.

  19. Molecular frame Auger electron energy spectrum from N2

    NASA Astrophysics Data System (ADS)

    Cryan, J. P.; Glownia, J. M.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C. I.; Bostedt, C.; Bozek, J.; Cherepkov, N. A.; DiMauro, L. F.; Fang, L.; Gessner, O.; Gühr, M.; Hajdu, J.; Hertlein, M. P.; Hoener, M.; Kornilov, O.; Marangos, J. P.; March, A. M.; McFarland, B. K.; Merdji, H.; Messerschmidt, M.; Petrović, V. S.; Raman, C.; Ray, D.; Reis, D. A.; Semenov, S. K.; Trigo, M.; White, J. L.; White, W.; Young, L.; Bucksbaum, P. H.; Coffee, R. N.

    2012-03-01

    Here we present the first angle-resolved, non-resonant (normal) Auger spectra for impulsively aligned nitrogen molecules. We have measured the angular pattern of Auger electron emission following K-shell photoionization by 1.1 keV photons from the Linac Coherent Light Source (LCLS). Using strong-field-induced molecular alignment to make molecular frame measurements is equally effective for both repulsive and quasi-bound final states. The capability to resolve Auger emission angular distributions in the molecular frame of reference provides a new tool for spectral assignments in congested Auger electron spectra that takes advantage of the symmetries of the final diction states. Based on our experimental results and theoretical predictions, we propose the assignment of the spectral features in the Auger electron spectrum.

  20. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  1. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  2. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  3. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  4. Feedback in Clouds II: UV photoionization and the first supernova in a massive cloud

    NASA Astrophysics Data System (ADS)

    Geen, Sam; Hennebelle, Patrick; Tremblin, Pascal; Rosdahl, Joakim

    2016-12-01

    Molecular cloud structure is regulated by stellar feedback in various forms. Two of the most important feedback processes are UV photoionization and supernovae from massive stars. However, the precise response of the cloud to these processes, and the interaction between them, remains an open question. In particular, we wish to know under which conditions the cloud can be dispersed by feedback, which, in turn, can give us hints as to how feedback regulates the star formation inside the cloud. We perform a suite of radiative magnetohydrodynamic simulations of a 105 solar mass cloud with embedded sources of ionizing radiation and supernovae, including multiple supernovae and a hypernova model. A UV source corresponding to 10 per cent of the mass of the cloud is required to disperse the cloud, suggesting that the star formation efficiency should be of the order of 10 per cent. A single supernova is unable to significantly affect the evolution of the cloud. However, energetic hypernovae and multiple supernovae are able to add significant quantities of momentum to the cloud, approximately 1043 g cm s-1 of momentum per 1051 erg of supernova energy. We argue that supernovae alone are unable to regulate star formation in molecular clouds. We stress the importance of ram pressure from turbulence in regulating feedback in molecular clouds.

  5. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  6. Molecular origins of conduction channels observed in shot-noise measurements.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-01

    Measurements of shot noise from single molecules have indicated the presence of various conduction channels. We present three descriptions of these channels in molecular terms showing that the number of conduction channels is limited by bottlenecks in the molecule and that the channels can be linked to transmission through different junction states. We introduce molecular-conductance orbitals, which allow the transmission to be separated into contributions from individual orbitals and contributions from interference between pairs of orbitals.

  7. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  8. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ∼10{sup 8 }cm{sup −3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  9. Inner-shell photoionized x-ray lasers

    SciTech Connect

    Moon, Stephen J.

    1998-09-01

    The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 Å requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of ~ 15 μm. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-α transition in the initially neutral lasant. The photo energy required to pump this scheme is only slightly greater than the photon energy of the lasing transition yielding a lasing scheme with high quantum efficiency. However, the overall efficiency is reduced due to low x-ray conversion efficiency and the large probability of Auger decay yielding an overall efficiency of ~ 10-7 resulting in an output energy of μJ's. They calculate that a driving laser with a pulse duration of 40 fs, a 10μm x 1 cm line focus, and an energy of 1 J gives an effective gain length product (gl) of 10 in C at 45 Å. At saturation (gl ~ 18) they expect an output of ~ 0.1 μJ per pulse. The short duration of x-ray lasing (< 100 fs) combined with a 10-Hz

  10. Double K-shell photoionization of atomic beryllium

    SciTech Connect

    Yip, F. L.; Martin, F.; McCurdy, C. W.; Rescigno, T. N.

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  11. Ab initio calculations of the photoionization of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lefebvre-Brion, Helene; Raşeev, Georges

    2003-01-01

    A review is presented of the calculation of photoionization spectra, particularly in the spectral range where electron autoionization of diatomic molecules takes place. In addition to some interesting results obtained over years that compare favourably with experiment, the emphasis here is put on the relation between the methods developed for the calculation of observables associated with the continuum energy spectrum of the electrons and the Alchemy system of programs. This system of programs serves as a basis for initial and intermediate calculations. The examples presented show that diatomic molecules not only in gas phase but also oriented in space or physisorbed at surfaces may be studied readily.

  12. Vibrational branching ratios in photoionization of CO and N2

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Rao, R. M.; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    2004-01-01

    We report results of experimental and theoretical studies of the vibrational branching ratios for CO 4σ-1 photoionization from 20 to 185 eV. Comparison with results for the 2σu-1 channel of the isoelectronic N2 molecule shows the branching ratios for these two systems to be qualitatively different due to the underlying scattering dynamics: CO has a shape resonance at low energy but lacks a Cooper minimum at higher energies whereas the situation is reversed for N2.

  13. Vibrationally resolved shape resonant photoionization of N2O

    NASA Astrophysics Data System (ADS)

    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.

    1989-02-01

    A vibrationally resolved dispersed fluorescence study of 7sigma exp -1 shape resonant photoionization in N2O is presented. It is shown that the lower energy shape resonance results in non-Franck-Condon vibrational branching ratios over a wide range. It is found that the cross section curves for alternative vibrational modes behave differently and that the resonance behavior is influenced more by symmetric stretch than by the asymmetric stretching vibration. Spectroscopic data on the ionic potential surfaces and ratios of Franck-Condon factors for N2O(+) (A to X) transitions are obtained.

  14. The role of intramolecular scattering in K-shell photoionization

    NASA Astrophysics Data System (ADS)

    Ayuso, D.; Ueda, K.; Miron, C.; Plésiat, E.; Argenti, L.; Patanen, M.; Kooser, K.; Mondal, S.; Kimura, M.; Sakai, K.; Travnikova, O.; Palacios, A.; Decleva, P.; Kukk, E.; Martín, F.

    2014-04-01

    We report evidence of intramolecular scattering occurring in inner shell photoionization of small molecules. Pronounced oscillations of the ratios between vibrationally resolved cross sections (v-ratios) as a function of photon energy have been observed theoretically and experimentally. Qualitative agreement with a 1st Born model confirms that they are due to intramolecular scattering: when an electron is ejected from a very localized region in the center of a polyatomic molecule, such as the C(1s) orbital in a CF4 molecule, it is diffracted by the surrounding atomic centers, encoding the geometry of the molecule [1, 2].

  15. Interference effects in L-shell atomic double photoionization

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2011-01-01

    Angular correlation pattern in two-electron continuum is very similar in double photoionization (DPI) of a neutral atom γ + A → A2 + + 2e- and electron-impact ionization of the corresponding singly charged ion e- + A+ → A2 + + 2e-. This allows us to identify and interpret interference effects in DPI of various L-shell atomic targets such as the metastable He* 1s 2s 1S and the ground state Li 1s22s and Be 1s22s2.

  16. A simple photoionization scheme for characterizing electron and ion spectrometers

    NASA Astrophysics Data System (ADS)

    Wituschek, A.; von Vangerow, J.; Grzesiak, J.; Stienkemeier, F.; Mudrich, M.

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ˜1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  17. Research on fluorescence from photoionization, photodissociation, and vacuum, along with bending quantrum study

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1975-01-01

    Reports of research concerning the fluorescence of CS2 are presented. Fluorescence from fragments of CS2 vapor produced by vacuum ultraviolet radiation, and fluorescence from photoionization of CS2 vapor are discussed along with fluorescence produced by photodissociation of CS2, and fluorescence from photoionization of OCS.

  18. Charge state distributions after K-shell photoionization of K and Ar atoms

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus; Belkacem, Ali; Cole, Kyra; Feinberg, Benedict; Maddi, Jason; Prior, Michael; Schriel, Ralf

    2003-05-01

    We have investigated K-shell photoionization of Ar and K at the Advanced Light Source to unravel the effect of the 4s electron of K on the relaxation of the K-shell hole. We measured the charge state distribution as a function of photon energy as it is varied across the respective K-edges of both atoms. Both Ar and K exhibit a very similar mean charge state after the interaction with the photons, with 4+ being the most probable charge state. However our first analysis shows a markedly different envelope of the charge state distribution. We will present the ratio of probabilities Ar(q+)/K(q+) for each charge state q as a function of the x-ray energy normalized to the K-edge energy of each atom.

  19. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-09-15

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l{sub dom} for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T){sub n}{sup A}. The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists.

  20. Time-dependent photoionization of azulene: Optically induced anistropy on the femtosecond scale

    NASA Astrophysics Data System (ADS)

    Raffael, Kevin; Blanchet, Valérie; Chatel, Béatrice; Turri, Giorgio; Girard, Bertrand; Garcia, Ivan Anton; Wilkinson, Iain; Whitaker, Benjamin J.

    2008-07-01

    We measure the photoionization cross-section of vibrationally excited levels in the S 2 state of azulene by femtosecond pump-probe spectroscopy. At the wavelengths studied (349-265 nm in the pump) the transient signals exhibit two distinct and well-defined behaviours: (i) short-term (on the order of a picosecond) polarization dependent transients and (ii) longer (10 ps-1 ns) timescale decays. This Letter focuses on the short-time transient. In contrast to an earlier study by Diau et al. [E.G. Diau, S. De Feyter, A.H. Zewail, J. Chem. Phys. 110 (1999) 9785.] we unambiguously assign the fast initial decay signal to rotational dephasing of the initial alignment created by the pump transition.

  1. Data for First Responder Use of Photoionization Detectors for Vapor Chemical Constituents

    SciTech Connect

    Keith A. Daum; Matthew G. Watrous; M. Dean Neptune; Daniel I. Michael; Kevin J. Hull; Joseph D. Evans

    2006-11-01

    First responders need appropriate measurement technologies for evaluating incident scenes. This report provides information about photoionization detectors (PIDs), obtained from manufacturers and independent laboratory tests, and the use of PIDs by first responders, obtained from incident commanders in the United States and Canada. PIDs are valued for their relatively low cost, light weight, rapid detection response, and ease of use. However, it is clear that further efforts are needed to provide suitable instruments and decision tools to incident commanders and first responders for assessing potential hazardous chemical releases. Information provided in this report indicates that PIDs should always be part of a decision-making context in which other qualitative and more definitive tests and instruments are used to confirm a finding. Possible amelioratory actions ranging from quick and relatively easy fixes to those requiring significant additional effort are outlined in the report.

  2. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity.

    PubMed

    Nahar, Sultana N; Pradhan, Anil K

    2016-06-10

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R-matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe^{16+}), with a wave function expansion of 99 Fe xviii (Fe^{17+}) LS core states from n≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z-pinch fusion device at solar interior conditions.

  3. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Pradhan, Anil K.

    2016-06-01

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R -matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe16 + ), with a wave function expansion of 99 Fe xviii (Fe17 + ) LS core states from n ≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z -pinch fusion device at solar interior conditions.

  4. Subsurface detection of fossil fuel pollutants by photoionization and gas chromatography/mass spectrometry.

    PubMed

    Robbat, Albert; Considine, Thomas; Antle, Patrick M

    2010-09-01

    This paper describes analysis of environmental pollutants at depth without bringing sample to the surface. It is based on an improved 3-stage Peltier freeze trap, which efficiently pre-concentrates volatile coal tar and petroleum hydrocarbons, and an integrated system for detecting pollutants on-line, in real-time by photoionization detection and quantitation by gas chromatography/mass spectrometry (GC/MS) as the probe is advanced into the subsurface. Findings indicate measurement precision and accuracy for volatiles meet EPA criteria for hazardous waste site investigations. When a Teflon membrane inlet is used to detect contaminants in groundwater, its 140 degrees C temperature limit restricts analyte collection in soil to C(2)-phenanthrenes. Two case studies demonstrate the probe is well-suited to tracking petroleum and coal tar plumes from source to groundwater.

  5. Photoionization cross sections for O-like S IX: a Breit-Pauli R-matrix calculation

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Hibbert, A.; Ferland, G.

    2015-08-01

    In this paper we present photoionization cross sections for the lowest five states of O-like S IX (1s22s22p4 3P0,1,2, 1D2, 1S0). The relativistic Breit-Pauli R-matrix codes were utilized including all terms of the 2s22p3, 2s2p4, 2p5, 2s22p23s, 3p, 3d and 2s2p33s, 3p, 3d configurations in the expansion of the collision wavefunction for S X. It was also found that to achieve convergence of the low-lying energy separations of the target levels, an additional 21 configuration functions needed to be included in the configuration interaction expansion, incorporating two-electron excitations from the 2s and 2p shells to the 3s, 3p and 3d shells. The present work thus constitutes the most sophisticated photoionization evaluation for ground and metastable levels of the S IX ion. Direct comparisons have been made with the only available data found on the OPEN-ADAS database between level resolved contributions of the spectrum. This comparison for the background cross section exhibits excellent agreement at all photon energies for each partial photoionization cross section contribution investigated. Finally, the autoionizing bound states arising from numerous open channels have also been investigated and identified using the QB approach, a procedure for analyzing resonances in atomic and molecular collision theory which exploits the analytic properties of R-matrix theory. Major Rydberg resonance series are also presented and tabulated for the dominant linewidths considered.

  6. Flame temperature measurements by radar resonance-enhanced multiphoton ionization of molecular oxygen.

    PubMed

    Wu, Yue; Sawyer, Jordan; Zhang, Zhili; Adams, Steven F

    2012-10-01

    Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition have been used to determine the hyperfine rotational state distribution of the ground X(3)Σ(v'=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ~±60 K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented.

  7. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    NASA Astrophysics Data System (ADS)

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-01

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  8. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    SciTech Connect

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-31

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  9. Vacuum Ultraviolet Laser Photoion and Pulsed Field Ionization-Photoion Study of Rydberg Series of Chlorine Atoms Prepared in the 2PJ (J = 3/2 and 1/2) Fine-structure States

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gao, Hong; Zhou, Jingang; Ng, C. Y.

    2015-09-01

    We have measured the high-resolution vacuum ultraviolet (VUV) photoion (VUV-PI) and VUV pulsed-field ionization-photoion (VUV-PFI-PI) spectra of chlorine atoms (Cl) in the VUV energy range 103,580-105,600 cm-1 (12.842-13.093 eV) using a tunable VUV laser as the photoexcitation and photoionization source. Here, Cl atoms are prepared in the Cl(2P3/2) and Cl(2P1/2) fine-structure states by 193.3 nm laser photodissociation of chlorobenzene. The employment of VUV-PFI-PI detection has allowed the identification of Rydberg transitions that are not observed in VUV-PI measurements. More than 180 new Rydberg transition lines with principal quantum number up to n = 61 have been identified and assigned to members of nine Rydberg series originating from the neutral Cl(2P3/2) and Cl(2P1/2) fine-structure states. Two of these Rydberg series are found to converge to the Cl+(3P2), four to the Cl+(3P1), and three to the Cl+(3P0) ionization limits. Based on the convergence limits determined by least-squares fits of the observed Rydberg transitions to the modified Ritz formula, we have obtained a more precise ionization energy (IE) for the formation of the ionic Cl+(3P2) from the ground Cl(2P3/2) state to be 104,591.01 ± 0.13 cm-1. This is consistent with previous IE measurements, but has a smaller uncertainty. The analysis of the quantum defects obtained for the Rydberg transitions reveals that many high-n Rydberg transitions are perturbed.

  10. Core-Hole Molecular Frame X-Ray Photoelectron Angular Distributions as Molecular Geometry Probes

    NASA Astrophysics Data System (ADS)

    Trevisan, Cynthia; Williams, Joshua; Menssen, Adrian; Weber, Thorsten; Rescigno, Thomas; McCurdy, Clyde; Landers, Allen

    2014-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) and tetrafluoromethane (CF4) in an effort to understand the origin of the imaging effect by which the molecular frame photoelectron angular distributions (MFPADs) for removing an electron from a 1s orbital effectively image the geometry of a class of molecules. At low energies, our calculations predict the same imaging effect in X2H6 previously found in CH4, H2O and NH3. By contrast, in experiment and calculations CF4 displays an anti-imaging effect, whereby the electron ejected by core photoionization has the tendency to avoid molecular bonds, if averaged over directions of polarization of the incident X-ray beam. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  11. A combined VUV synchrotron pulsed field ionization-photoelectron and IR-VUV laser photoion depletion study of ammonia.

    PubMed

    Bahng, Mi-Kyung; Xing, Xi; Baek, Sun Jong; Qian, Ximei; Ng, C Y

    2006-07-13

    The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample. In addition to extending the VUV-PFI-PE measurement to include the v(2)(+) = 0, 10, 11, 12, and 13 and the v(1)(+) + nv(2)(+) (n = 4-9) vibrational bands, the present study also reveals photoionization transition line strengths for higher rotational levels of NH(3), which were not examined in previous PFI-PE studies. Here, v(1)(+) and v(2)(+) represent the N-H symmetric stretching and inversion vibrational modes of the ammonia cation (NH(3)(+)), respectively. The relative PFI-PE band intensities for NH(3)(+)(v(2)(+)=0-13) are found to be in general agreement with the calculated Franck-Condon factors. However, rotational simulation indicates that rotational photoionization transitions of the P-branches, particularly those for the lower v(2)(+) PFI-PE bands, are strongly enhanced by forced rotational autoionization. For the synchrotron based VUV-PFI-PE spectrum of the origin band of NH(3)(+), rotational transition intensities of the P-branch are overwhelming compared to those of other rotational branches. Similar to that observed for the nv(2)(+) (n = 0-13) levels, the v(1)(+) + nv(2)(+) (n = 4-9) levels are found to have a positive anharmonicity constant; i.e., the vibrational spacing increases as n is increased. The VUV laser PFI-PE measurement of the origin band has also been made using a supersonically cooled NH(3) sample. The analysis of this band has allowed the direct determination of the ionization energy of NH(3) as 82158.2 +/- 1.0 cm(-1), which is in good accord with the previous PFI-PE and photoionization efficiency measurements. Using the known nd(v(2)(+)=1,1(0)<--0(0)) Rydberg series of NH(3) as an example, we have demonstrated a valuable method based on two-color infrared-VUV-photoion depletion measurements for determining the rotational

  12. Double Photoionization of Helium Atom using effective Charges

    NASA Astrophysics Data System (ADS)

    Saha, Hari P.

    2012-06-01

    We will report the results of our investigation on double photoionization of helium atom using the recently extended MCHF method [1] for double photoionization of atoms. Calculation will be performed using wave functions for the initial and the final states with and without the electron correlation. The initial state wave function will be calculated using both the HF and MCHF methods The final state wave functions will be obtained using the asymptotic effective charge [2,3] to represent the electron correlation between the two final state continuum electrons. Using these wave functions, the triple differential cross sections will be calculated for 30 eV excess photon energy. The single and total integral cross sections will be obtained for photon energies from threshold to 300 eV. The results will be compared with the available experimental and the theoretical data. [4pt] [1] Hari P. Saha, J.Phys. B (submitted) [0pt] [2] M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968) [0pt] [3] C.Pan and A.F Starace, Phys. Rev. Lett. 67, 185 (1991); Phys. Rev. A45, 4588 (1992)

  13. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  14. Generalizations and applications of Bethe's treatment of photoionization

    NASA Astrophysics Data System (ADS)

    Langhoff, P. W.; Arce, J. C.; Winstead, C. L.

    2006-05-01

    Extensions and elaborations are reported of the late Hans Bethe's non-stationary or initial-value treatment of photoionization based on Dirac variation-of-constants solution of the time-dependent Schr"odinger equation [Ann. Physik, 5, 433 (1930)] . His method is applied to complex anisotropic targets, including molecules both randomly oriented and fixed in space, and to more general dynamical aspects of the time evolution of photo-excitation and ionization processes. Explicit expressions are derived for photoionization cross sections differential in ejected electron direction for polyatomic molecules in terms of a minimal set of body-frame angular distribution functions for incident dipole radiation of arbitrary polarization. A generalization of the familiar Bethe-Cooper-Zare expression for atomic anisotropy factors applicable to randomly-oriented molecules and other aggregates is obtained which provides useful connections with experiments performed on fixed-in-space molecules. Some representative applications are provided as illustrations of the formalism, including study of the kinematics of elementary excitation and ionization processes and of the natures of the associated transient Ehrenfest's forces operative in these cases. The conceptual and computational advantages of the approach that Bethe developed in such connections are indicated.

  15. A new procedure to measure effective molecular diffusion coefficients of salts solutions in building materials

    NASA Astrophysics Data System (ADS)

    Delgado, J. M. P. Q.

    2013-06-01

    The aim of this work is to present a mathematical and experimental formulation of a new simple procedure for the measurement of effective molecular diffusion coefficients of a salt solution in a water-saturated building material. This innovate experimental procedure and mathematical formulation is presented in detail and experimental values of "effective" molecular diffusion coefficient of sodium chloride in a concrete sample ( w/ c = 0.45), at five different temperatures (between 10 and 30 °C) and four different initial NaCl concentrations (between 0.1 and 0.5 M), are reported. The experimental results obtained are in good agreement with the theoretical and experimental values of molecular diffusion coefficient presented in literature. An empirical correlation is presented for the prediction of "effective" molecular diffusion coefficient over the entire range of temperatures and initial salt concentrations studied.

  16. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy.

    PubMed

    Staaf, Elina; Bagawath-Singh, Sunitha; Johansson, Sofia

    2017-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.

  17. Molecular and pedigree measures of relatedness provide similar estimates of inbreeding depression in a bottlenecked population.

    PubMed

    Townsend, S M; Jamieson, I G

    2013-04-01

    Individual-based estimates of the degree of inbreeding or parental relatedness from pedigrees provide a critical starting point for studies of inbreeding depression, but in practice wild pedigrees are difficult to obtain. Because inbreeding increases the proportion of genomewide loci that are identical by descent, inbreeding variation within populations has the potential to generate observable correlations between heterozygosity measured using molecular markers and a variety of fitness related traits. Termed heterozygosity-fitness correlations (HFCs), these correlations have been observed in a wide variety of taxa. The difficulty of obtaining wild pedigree data, however, means that empirical investigations of how pedigree inbreeding influences HFCs are rare. Here, we assess evidence for inbreeding depression in three life-history traits (hatching and fledging success and juvenile survival) in an isolated population of Stewart Island robins using both pedigree- and molecular-derived measures of relatedness. We found results from the two measures were highly correlated and supported evidence for significant but weak inbreeding depression. However, standardized effect sizes for inbreeding depression based on the pedigree-based kin coefficients (k) were greater and had smaller standard errors than those based on molecular genetic measures of relatedness (RI), particularly for hatching and fledging success. Nevertheless, the results presented here support the use of molecular-based measures of relatedness in bottlenecked populations when information regarding inbreeding depression is desired but pedigree data on relatedness are unavailable.

  18. Studies of bimolecular reaction dynamics using pulsed high-intensity vacuum-ultraviolet lasers for photoionization detection.

    PubMed

    Albert, Daniel R; Davis, H Floyd

    2013-09-21

    This article describes recent progress on the development and application of pulsed high-intensity (~0.1 mJ per pulse) vacuum-ultraviolet (VUV) radiation produced by commercial tabletop lasers for studies of gas phase chemical reaction dynamics involving polyatomic free radicals. Our approach employs near-triply resonant four-wave mixing of unfocussed nanosecond dye lasers in an atomic gas as an alternative to the use of synchrotron light sources for sensitive universal soft photoionization detection of reaction products using a rotatable source crossed molecular beams apparatus with fixed detector. We illustrate this approach in studies of the reactions of phenyl radicals with molecular oxygen and with propene. Future prospects for the use of tabletop laser-based VUV sources for studies of chemical reaction dynamics are discussed.

  19. Threshold Photoelectron Photoion Coincidence (TPEPICO) Studies. The Road to ± 0.1 kJ/mol Thermochemistry

    SciTech Connect

    Baer, Tomas

    2013-10-14

    The threshold photoelectron photoion coincidence (TPEPICO) technique is utilized to investigate the dissociation dynamics and thermochemistry of energy selected medium to large organic molecular ions. The reactions include parallel and consecutive steps that are modeled with the statistical theory in order to extract dissociation onsets for multiple dissociation paths. These studies are carried out with the aid of molecular orbital calculations of both ions and the transition states connecting the ion structure to their products. The results of these investigations yield accurate heats of formation of ions, free radicals, and stable molecules. In addition, they provide information about the potential energy surface that governs the dissociation process. Isomerization reactions prior to dissociation are readily inferred from the TPEPICO data.

  20. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    SciTech Connect

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-05-08

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering.

  1. Attosecond time delay in valence photoionization and photorecombination of argon: A time-dependent local-density-approximation study

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed El-Amine; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S.

    2015-06-01

    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3 p and 3 s electrons of argon using the Kohn-Sham local-density-functional approach. The time-dependent local-density approximation is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show very good agreement with the recent experiment on argon that measured the delay in 3 p photorecombination [S. B. Schoun et al., Phys. Rev. Lett. 112, 153002 (2014), 10.1103/PhysRevLett.112.153002].

  2. Photoionization of atoms and small molecules using synchrotron radiation. [SF/sub 6/, SiF/sub 4/

    SciTech Connect

    Ferrett, T.A.

    1986-11-01

    The combination of synchrotron radiation and time-of-flight electron spectroscopy has been used to study the photoionization dynamics of atoms (Li) and small molecules (SF/sub 6/, SiF/sub 4/, and SO/sub 2/). Partial cross sections and angular distribution asymmetry parameters have been measured for Auger electrons and photoelectrons as functions of photon energy. Emphasis is on the basic understanding of electron correlation and resonant effects as manifested in the photoemission spectra for these systems. 254 refs., 46 figs., 10 tabs.

  3. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  4. Measurements of Molecular Mixing in a High Schmidt Number Rayleigh-Taylor Mixing Layer

    SciTech Connect

    Mueschke, N J; Schilling, O; Youngs, D L; Andrews, M

    2007-12-03

    Molecular mixing measurements are performed for a high Schmidt number (Sc {approx} 10{sup 3}), small Atwood number (A {approx} 7.5 x 10{sup -4}) buoyancy-driven turbulent Rayleigh-Taylor mixing layer in a water channel facility. Salt was added to the top stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the colored chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It is also shown that experiments performed at different equivalence ratios (acid/alkali concentration) can be combined to obtain a mathematical relationship between the colored product formed and the density variance. This relationship was used to obtain high-fidelity, quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of such mixing parameters on the Schmidt and Reynolds numbers is examined by comparing the current Sc {approx} 10{sup 3} measurements with Sc = 0.7 gas-phase and Pr = 7 liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the bulk quantity of mixed fluid at small Reynolds numbers Re{sub h} < 10{sup 3}. At late times, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for

  5. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  6. The Molecular Bacterial Load Assay Replaces Solid Culture for Measuring Early Bactericidal Response to Antituberculosis Treatment

    PubMed Central

    Mtafya, Bariki; Phillips, Patrick P. J.; Hoelscher, Michael; Ntinginya, Elias N.; Kohlenberg, Anke; Rachow, Andrea; Rojas-Ponce, Gabriel; McHugh, Timothy D.; Heinrich, Norbert

    2014-01-01

    We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form. PMID:24871215

  7. Probing molecular frame photoelectron angular distributions via high-order harmonic generation from aligned molecules

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Jin, Cheng; Le, Anh-Thu; Lucchese, R. R.

    2012-10-01

    We analyse the theory of single photoionization (PI) and high-order harmonic generation (HHG) by intense lasers from aligned molecules. We show that molecular-frame photoelectron angular distributions can be extracted from these measurements. We also show that, under favourable conditions, the phase of PI transition dipole matrix elements can be extracted from the HHG spectra. Furthermore, by varying the polarization axis of the HHG generating laser with respect to the polarization axis of the aligning laser, it is possible to extract angle-dependent tunnelling ionization rates for different subshells of the molecules.

  8. Isomer-specific product detection of CN radical reactions with ethene and propene by tunable VUV photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Trevitt, Adam J.; Goulay, Fabien; Meloni, Giovanni; Osborn, David L.; Taatjes, Craig A.; Leone, Stephen R.

    2009-02-01

    Product detection studies of CN reactions with ethene and propene are conducted at room temperature (4 Torr, 533.3 Pa) using multiplexed time-resolved mass spectrometry with tunable synchrotron photoionization. Photoionization efficiency curves, i.e., the ion signal as a function of photon energy, are used to determine the products and distinguish isomers. Both reactions proceed predominantly via CN addition to the [pi] orbital of the olefin. For CN + ethene, cyanoethene (C2H3CN) is detected as the sole product in agreement with recent studies on this reaction. Multiple products are identified for the CN + propene reaction with 75(±15)% of the detected products in the form of cyanoethene from a CH3 elimination channel and 25(±15)% forming different isomers of C4H5N via H elimination. The C4H5N comprises 57(±15)% 1-cyanopropene, 43(±15)% 2-cyanopropene and <15% 3-cyanopropene. No evidence of direct H abstraction or indirect HCN formation is detected for either reaction. The results have relevance to the molecular weight growth chemistry on Saturn's largest moon Titan, where the formation of small unsaturated nitriles are proposed to be key steps in the early chemical stages of haze formation.

  9. Effects of exchange-correlation potentials on the density-functional description of C60 versus C240 photoionization

    NASA Astrophysics Data System (ADS)

    Choi, Jinwoo; Chang, EonHo; Anstine, Dylan M.; Madjet, Mohamed El-Amine; Chakraborty, Himadri S.

    2017-02-01

    We study the photoionization properties of the C60 versus C240 molecule in a spherical jellium frame of the density-functional method. Two prototypical approximations of the exchange-correlation (xc) functional are used: (i) the Gunnarsson-Lundqvist parametrization [Gunnarsson and Lundqvist, Phys. Rev. B 13, 4274 (1976), 10.1103/PhysRevB.13.4274] with a correction for the electron self-interaction (SIC) introduced artificially from the outset and (ii) a gradient-dependent augmentation of approximation (i) using the van Leeuwen and Baerends model potential [van Leeuwen and Baerends, Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421], in lieu of SIC, that restores electrons' asymptotic properties intrinsically within the formalism. Ground-state results from the two schemes for both molecules show differences in the shapes of mean-field potentials and bound-level properties. The choice of an xc scheme also significantly alters the dipole single-photoionization cross sections obtained by an ab initio method that incorporates linear-response dynamical correlations. Differences in the structures and ionization responses between C60 and C240 uncover the effect of molecular size on the underlying physics. Analysis indicates that the collective plasmon resonances with the gradient-based xc option produce results noticeably closer to the experimental data available for C60.

  10. Photoionization and Recombination of ne IV and Excitation of NeV in Nebular Plasmas

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Palay, Ethan; Pradhan, Anil K.

    2013-06-01

    %TEXT OF YOUR ABSTRACT The inverse processes of photoionization and electron-ion recombination are dominant in photoionized astrophysical plasmas. They determine the ionization fractions in photoionization equilibrium, physical conditions, and chemical abundances. We employ the unified theory of electron-ion recombination to study photoionization of Ne IV in photoionized nebulae. That leads to the production of Ne V and spectral emission of forbidden optical and mid-infrared [Ne V] lines via collisional excitation. These lines are prominent in the observations made by infrared space observatories SPITZER, SOFIA, and HERSCHEL. The unified method for electronic recombination provides self-consistent data for photoionization and recombination that is necessary to eliminate uncertainties in the determination of ionization fractions. To wit: Precise abundance of neon in the Sun is unknown owing to lack of accurate atomic data. A 20-level wave function expansion is used for the calculations of photoionization, recombination, and collisional excitation employing the relativistic Breit-Pauli R-matrix method in the close coupling approximation. We find and delineate extensive resonance structures at low energies that considerably enhance the effective cross sections and rates in astrophysical sources. Acknowledgement: Partially supported by DOE and NSF. Computational work was carried out at the Ohio Supercomputer Center

  11. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  12. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    SciTech Connect

    Feng, Wei; Xu, Luting; Li, Xin-Qi; Fang, Weihai; Yan, YiJing

    2014-07-15

    Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  13. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  14. Double-Edge Molecular Measurement of Lidar Wind Profiles at 355 nm

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence; Hirt, Christian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.

  15. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  16. Photoionization and photoabsorption cross sections for the aluminum iso-nuclear sequence

    SciTech Connect

    Witthoeft, M.C.; García, J.; Kallman, T.R.; Palmeri, P.; Quinet, P.

    2013-01-15

    K-shell photoionization and photoabsorption cross sections are presented for Li-like to Na-like Al. The calculations are performed using the Breit–Pauli R-matrix method where the effects of radiation and Auger dampings are included. We provide electronic data files for the raw cross sections as well as those convolved with a Gaussian of width ΔE/E=10{sup −4}. In addition to total cross sections for photoabsorption and photoionization, partial cross sections are available for photoionization.

  17. Investigation of fragmentation processes following core photoionization of organometallic molecules in the vapor phase

    NASA Astrophysics Data System (ADS)

    Nagaoka, Shin-ichi; Suzuki, Shinzo; Koyano, Inosuke

    1988-04-01

    Ionic fragmentation processes following ( n - 1)d core level photoionization of organometallic molecules have been studied in the vapor phase using synchrotron radiation. Results on tetramethyllead, tetramethyltin and tetramethylgermanium are reported. The threshold electron spectra and the photoionization efficiency curves of these molecules are presented and discussed. It is concluded that the ( n - 1)d 9 core-hole state of M(CH 3) 4 (M  Pb, Sn or Ge) is split into five sublevels owing to both the spin-orbi and the electrostatic perturbations by the methyl groups, and that the M + ions are predominantly produced following ( n - 1)d photoionization.

  18. Laser-induced rotational dynamics as a route to molecular frame measurements

    NASA Astrophysics Data System (ADS)

    Makhija, Varun

    In general, molecules in the gas phase are free to rotate, and measurements made on such samples are averaged over a randomly oriented distribution of molecules. Any orientation dependent information is lost in such measurements. The goal of the work presented here is to a) mitigate or completely do away with orientational averaging, and b) make fully resolved orientation dependent measurements. In pursuance of similar goals, over the past 50 years chemists and physicists have developed techniques to align molecules, or to measure their orientation and tag other quantities of interest with the orientation. We focus on laser induced alignment of asymmetric top molecules. The first major contribution of our work is the development of an effective method to align all molecular axes under field-free conditions. The method employs a sequence of nonresonant, impulsive laser pulses with varied ellipticities. The efficacy of the method is first demonstrated by solution of the time dependent Schrodinger equation for iodobenzene, and then experimentally implemented to three dimensionally align 3,5 difluoroiodobenzene. Measurement from molecules aligned in this manner greatly reduces orientational averaging. The technique was developed via a thorough understanding and extensive computations of the dynamics of rotationally excited asymmetric top molecules. The second, and perhaps more important, contribution of our work is the development of a new measurement technique to extract the complete orientation dependence of a variety of molecular processes initiated by ultrashort laser pulses. The technique involves pump-probe measurements of the process of interest from a rotational wavepacket generated by impulsive excitation of asymmetric top molecules. We apply it to make the first measurement of the single ionization probability of an asymmetric top molecule in a strong field as a function of all relevant alignment angles. The measurement and associated calculations help

  19. Intermanifold similarities in partial photoionization cross sections of helium

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias; Liu, Chien-Nan; Rost, Jan-Michael

    2002-04-01

    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and coworkers [Phys. Rev. A 54, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive breakdown of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.

  20. OXAF: Ionizing spectra of Seyfert galaxies for photoionization modeling

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Groves, Brent A.; Sutherland, Ralph S.; Dopita, Michael A.; Jin, Chichuan; Kewley, Lisa J.

    2016-11-01

    OXAF provides a simplified model of Seyfert Active Galactic Nucleus (AGN) continuum emission designed for photoionization modeling. It removes degeneracies in the effects of AGN parameters on model spectral shapes and reproduces the diversity of spectral shapes that arise in physically-based models. OXAF accepts three parameters which directly describe the shape of the output ionizing spectrum: the energy of the peak of the accretion disk emission Epeak, the photon power-law index of the non-thermal X-ray emission Γ, and the proportion of the total flux which is emitted in the non-thermal component pNT. OXAF accounts for opacity effects where the accretion disk is ionized because it inherits the ‘color correction’ of OPTXAGNF, the physical model upon which OXAF is based.

  1. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  2. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    PubMed Central

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  3. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    SciTech Connect

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O’Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  4. X-ray spectroscopy of photoionized plasmas in astrophysics.

    NASA Astrophysics Data System (ADS)

    Kunieda, H.

    Among astrophysical objects, active galactic nuclei (AGN) are good examples of photoionized plasmas illuminated by central bright sources. X-rays emerging from such plasmas are observed by ASCA. In soft X-rays, emission lines are observed from He-like Ca, Ar, S, Si, and Mg, whose ionization temperature are much higher than the electron temperature. From some Sy I's, an absorption feature due to O VII/O VIII was found, which suggests it ionized (warm) absorber. Such a warm absorber has been identified by emission lines seen by EUVE. A common spectral feature of Sy I's is the iron K emission line. ASCA discovered broad line feature due to gravitational and Doppler effects of reprocessor on the accretion disk around a massive black hole.

  5. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGES

    Mazza, T.; Karamatskou, A.; Ilchen, M.; ...

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  6. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    NASA Astrophysics Data System (ADS)

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-04-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  7. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation.

    PubMed

    Mazza, T; Karamatskou, A; Ilchen, M; Bakhtiarzadeh, S; Rafipoor, A J; O'Keeffe, P; Kelly, T J; Walsh, N; Costello, J T; Meyer, M; Santra, R

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

  8. Optimization of complex slater-type functions with analytic derivative methods for describing photoionization differential cross sections.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-05-05

    The complex basis function (CBF) method applied to various atomic and molecular photoionization problems can be interpreted as an L2 method to solve the driven-type (inhomogeneous) Schrödinger equation, whose driven term being dipole operator times the initial state wave function. However, efficient basis functions for representing the solution have not fully been studied. Moreover, the relation between their solution and that of the ordinary Schrödinger equation has been unclear. For these reasons, most previous applications have been limited to total cross sections. To examine the applicability of the CBF method to differential cross sections and asymmetry parameters, we show that the complex valued solution to the driven-type Schrödinger equation can be variationally obtained by optimizing the complex trial functions for the frequency dependent polarizability. In the test calculations made for the hydrogen photoionization problem with five or six complex Slater-type orbitals (cSTOs), their complex valued expansion coefficients and the orbital exponents have been optimized with the analytic derivative method. Both the real and imaginary parts of the solution have been obtained accurately in a wide region covering typical molecular regions. Their phase shifts and asymmetry parameters are successfully obtained by extrapolating the CBF solution from the inner matching region to the asymptotic region using WKB method. The distribution of the optimized orbital exponents in the complex plane is explained based on the close connection between the CBF method and the driven-type equation method. The obtained information is essential to constructing the appropriate basis sets in future molecular applications. © 2017 Wiley Periodicals, Inc.

  9. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements.

    PubMed

    McKenzie-Coe, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-08-21

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex. The flexibility of TIMS to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments/low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with high confidence levels.

  10. Depletion of high molecular weight dextran from the red cell surface measured by particle electrophoresis.

    PubMed

    Rad, Samar; Gao, Jie; Meiselman, Herbert J; Baskurt, Oguz K; Neu, Björn

    2009-02-01

    The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biological and biophysical interest, yet the mechanistic details governing the process are still being explored. A depletion model has been proposed for aggregation by the neutral polyglucose dextran and its applicability at high molecular weights has been recently documented. In the present study the depletion of high molecular weight dextrans on the red cell surface was measured as a function of polymer molecular mass (40 kDa-28 MDa), ionic strength (5 and 15 mM NaCl) and polymer concentration (< or =0.9 g/dL). The experimental data clearly indicate an increasing depletion effect with increasing molecular weight: the effects of medium viscosity on RBC mobility were markedly overestimated by the Helmholtz-Smoluchowski relation, with the difference increasing with dextran molecular mass. These results agree with the concept of polymer depletion near the RBC surface and lend strong support to a "depletion model" mechanism for dextran-mediated RBC aggregation. Our findings provide important new insight into polymer-RBC interactions and suggest the usefulness of this model for fundamental studies of cell-cell affinity and for the development of new agents to stabilize or destabilize specific bio-fluids.

  11. Comparison of molecular contours for measuring writhe in atomistic supercoiled DNA.

    PubMed

    Sutthibutpong, Thana; Harris, Sarah A; Noy, Agnes

    2015-06-09

    DNA molecular center-lines designed from atomistic-resolution structures are compared for the evaluation of the writhe in supercoiled DNA using molecular dynamics simulations of two sets of minicircles with 260 and 336 base pairs. We present a new method called WrLINE that systematically filters out local (i.e., subhelical turn) irregularities using a sliding-window averaged over a single DNA turn and that provides a measure of DNA writhe that is suitable for comparing atomistic resolution data with those obtained from measurements of the global molecular shape. In contrast, the contour traced by the base-pair origins defined by the 3DNA program largely overestimates writhe due to the helical periodicity of DNA. Nonetheless, this local modulation of the molecular axis emerges as an internal mechanism for the DNA to confront superhelical stress, where the adjustment between low and high twist is coupled to a high and low local periodicity, respectively, mimicking the different base-stacking conformational space of A and B canonical DNA forms.

  12. Photoionization of Ne Atoms and Ne+ Ions Near the K Edge: Precision Spectroscopy and Absolute Cross-sections

    NASA Astrophysics Data System (ADS)

    Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander, Jr.; Buhr, Ticia; Hellhund, Jonas; Holste, Kristof; Kilcoyne, A. L. David; Klumpp, Stephan; Martins, Michael; Ricz, Sandor; Seltmann, Jörn; Viefhaus, Jens; Schippers, Stefan

    2017-02-01

    Single, double, and triple photoionization of Ne+ ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon–ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV, facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne+(1s2{s}22{p}6{}2{{{S}}}1/2) level, for example, requires cooperative interaction of at least four electrons.

  13. Comparative study of deep levels in HVPE and MOCVD GaN by combining O-DLTS and pulsed photo-ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Pavlov, J.; Čeponis, T.; Gaubas, E.; Meskauskaite, D.; Reklaitis, I.; Vaitkus, J.; Grigonis, R.; Sirutkaitis, V.

    2015-12-01

    Operational characteristics of sensors made of GaN significantly depend on technologically introduced defects acting as rapid traps of excess carriers which reduce charge collection efficiency of detectors. In order to reveal the prevailing defects in HVPE and MOCVD grown GaN, the carrier lifetime and photo-ionization spectra have been simultaneously measured by using microwave probed photo-conductivity transient technique. Several traps ascribed to impurities as well as vacancy and anti-site type defects have been identified in HVPE GaN material samples by combining photo-ionization and electron spin resonance spectroscopy. The optical deep level transient spectroscopy technique has been applied for spectroscopy of the parameters of thermal emission from the traps ascribed to technological defects in the Schottky barrier terrace structures fabricated on MOCVD GaN.

  14. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect

    Oßwald, P.; Köhler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  15. Physical Conditions of Eta Car Complex Environment Revealed From Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Verner, E. M.; Bruhweiler, F.; Nielsen, K. E.; Gull, T.; Kober, G. Vieira; Corcoran, M.

    2006-01-01

    The very massive star, Eta Carinae, is enshrouded in an unusual complex environment of nebulosities and structures. The circumstellar gas gives rise to distinct absorption and emission components at different velocities and distances from the central source(s). Through photoionization modeling, we find that the radiation field from the more massive B-star companion supports the low ionization structure throughout the 5.54 year period. The radiation field of an evolved O-star is required to produce the higher ionization . emission seen across the broad maximum. Our studies utilize the HST/STIS data and model calculations of various regimes from doubly ionized species (T= 10,000K) to the low temperature (T = 760 K) conditions conductive to molecule formation (CH and OH). Overall analysis suggests the high depletion in C and O and the enrichment in He and N. The sharp molecular and ionic absorptions in this extensively CNO - processed material offers a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.

  16. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    SciTech Connect

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  17. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  18. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  19. Measuring the optical chirality of molecular aggregates at liquid-liquid interfaces.

    PubMed

    Watarai, Hitoshi; Adachi, Kenta

    2009-10-01

    Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid-liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid-liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

  20. Photoionization of Synchrotron-Radiation-Excited Atoms: Separating Partial Cross Sections by Full Polarization Control

    SciTech Connect

    Aloiese, S.; Meyer, M.; Cubaynes, D.; Grum-Grzhimailo, A. N.

    2005-06-10

    Resonant atomic excitation by synchrotron radiation and subsequent ionization by a tunable dye laser is used to study the photoionization of short-lived Rydberg states in Xe. By combining circular and linear polarization of the synchrotron as well as of the laser photons the partial photoionization cross sections were separated in the region of overlapping autoionizing resonances of different symmetry and the parameters of the resonances were extracted.

  1. Total photoionization cross sections of atomic oxygen from threshold to 44.3A

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, James A. R.

    1987-01-01

    The relative cross section of atomic oxygen for the production of singly charged ions has been remeasured in more detail and extended to cover the wavelength range 44.3 to 910.5 A by the use of synchrotron radiation. In addition, the contribution of multiple ionization to the cross sections has been measured allowing total photoionization cross sections to be obtained below 250 A. The results have been made absolute by normalization to previously measured data. The use of synchrotron radiation has enabled measurements of the continuum cross section to be made between the numerous autoionizing resonances that occur near the ionization thresholds. This in turn has allowed a more critical comparison of the various theoretical estimates of the cross section to be made. The series of autoionizing resonances leading to the 4-P state of the oxygen ion have been observed for the first time in an ionization type experiment and their positions compared with both theory and previous photographic recordings.

  2. Probabilistic rotational state preparation of a single molecular ion though consecutive partial projection measurements

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    2016-05-01

    Fully quantum state prepared molecular ions are of interest for a wide range of research fields, including ultra-cold chemistry, ultra-high resolution spectroscopy for test of fundamental physics, and quantum information science. Cooling of the translational degrees of freedom of trapped molecular ions into the millikelvin range has become routine through Coulomb interactions with simultaneously trapped and Doppler laser-cooled atomic ions, and recently it has even become possible to prepare a single molecular ion in its absolute ground state with respect to its quantized motion in the external trapping potential. With respect to the internal rovibrational degrees of freedom, significant progress towards single quantum state preparation has as well recently been realized by a series of complementary methods. In the talk, a novel method for probabilistic rotational state preparation of polar molecular ions based on consecutive partial projection measurements will be discussed. Results of state preparation of vibrational cold single MgH+ ions in the rotational ground or first excited state with maximum likelihood estimated populations of 0.98 and 0.95, respectively, will be presented.

  3. Assessment of molecular effects on neutrino mass measurements from tritium β decay

    NASA Astrophysics Data System (ADS)

    Bodine, L. I.; Parno, D. Â. S.; Robertson, R. Â. G. Â. H.

    2015-03-01

    The β decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino mass experiments agree with spectroscopic data. Moreover, when neutrino mass experiments performed in the 1980s with gaseous tritium are reevaluated using these modern calculations, the extracted neutrino mass squared values are consistent with zero instead of being significantly negative. However, the calculated molecular final-state branching ratios are in conflict with dissociation experiments performed in the 1950s. We reexamine the theory of the final-state spectrum of molecular-tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

  4. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  5. Vibrationally specific photoionization cross sections of acrolein leading to the tilde{X} {}^2 A^' } ionic state

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.; Fulfer, K. D.; Hardy, David; Poliakoff, E. D.; Aguilar, A. A.

    2014-09-01

    The vibrational branching ratios in the photoionization of acrolein for ionization leading to the tilde{X} {}^2 A^' } ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.

  6. Concentration measurements in molecular gas mixtures with a two-pump pulse femtosecond polarization spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Hertz, E.; Chaux, R.; Faucher, O.; Lavorel, B.

    2001-08-01

    Recently, we have demonstrated the ability of the Raman-induced polarization spectroscopy (RIPS) technique to accurately determine concentration or polarizability anisotropy ratio in low-pressure binary molecular mixtures [E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000)]. It has been also pointed out that macroscopic interference, occurring when two revivals associated to different molecules time overlap, can be used to achieve measurements with picosecond time resolution. The applicability of the technique is intrinsically limited to a concentration range where the signals of both molecules are of the same magnitude. In this paper, a two-pump pulse sequence with different intensities is used to overcome this limitation. The relative molecular responses are weighted by the relative laser pump intensities to give comparable signals. Furthermore, by tuning the time delay between the two-pump pulses, macroscopic interference can be produced regardless of the accidental coincidences between the two molecular temporal responses. The study is performed in a CO2-N2O gas mixture and the concentration is measured with and without macroscopic interference. Applications of the method in the field of noninvasive diagnostics of combustion media are envisaged.

  7. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light.

    PubMed

    Bázár, György; Kovacs, Zoltan; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Sugiyama, Hiroshi; Tsenkova, Roumiana

    2015-10-08

    Near infrared spectroscopy is an overtone spectroscopy regarded as a quick and non-destructive method that provides analytical solutions for components that represent approximately 1% or more of the total mass of the investigated composite samples. Aquaphotomics offers the possibility for disentanglement of information remaining hidden in the spectra when conventional data evaluation methods are used, since this concept utilizes changes of the water structure induced by the measured solute as specific molecular vibrations at water bands. Here, near infrared technique and aquaphotomics are applied for non-destructive identification and quantification of mono- and di-saccharide solutes at 100-0.02 mM concentration that is accepted as unachievable with near infrared spectroscopy. The results presented in this study support the aquaphotomics' water molecular mirror concept that explores spectral changes related to water molecular rearrangements caused by minute changes of the solutes in the aqueous systems. The method provides quick and accurate alternative for classical analytical measurements of saccharides even at millimolar concentration levels.

  8. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  9. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study.

    PubMed

    Guo, Lin; Har, Jia Yi; Sankaran, Jagadish; Hong, Yimian; Kannan, Balakrishnan; Wohland, Thorsten

    2008-04-04

    Molecular diffusion in biological membranes is a determining factor in cell signaling and cell function. In the past few decades, three main fluorescence spectroscopy techniques have emerged that are capable of measuring molecular diffusion in artificial and biological membranes at very different concentration ranges and spatial resolutions. The widely used methods of fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) can determine absolute diffusion coefficients at high (>100 microm(-2)) and very low surface concentrations (single-molecule level), respectively. Fluorescence correlation spectroscopy (FCS), on the other hand, is well-suited for the intermediate concentration range of about 0.1-100 microm(-2). However, FCS in general requires calibration with a standard dye of known diffusion coefficient, and yields only relative measurements with respect to the calibration. A variant of FCS, z-scan FCS, is calibration-free for membrane measurements, but requires several experiments at different well-controlled focusing positions. A recently established FCS method, electron-multiplying charge-coupled-device-based total internal reflection FCS (TIR-FCS), referred to here as imaging TIR-FCS (ITIR-FCS), is also independent of calibration standards, but to our knowledge no direct comparison between these different methods has been made. Herein, we seek to establish a comparison between FRAP, SPT, FCS, and ITIR-FCS by measuring the lateral diffusion coefficients in two model systems, namely, supported lipid bilayers and giant unilamellar vesicles.

  10. Photoionization of chlorophyll a in rapidly frozen phospholipid vesicle solutions: Effects of phospholipid headgroup variation and addition of synthetic charged surfactants

    SciTech Connect

    Hiff, T.; Kevan, L. )

    1989-03-09

    Electron spin resonance (ESR) has been applied to measure the photoionization yield of chlorophyll a (Chla) after red-light irradiation with or without electron scavengers in frozen phospholipid vesicles differing in the nature of their headgroups. Along with the Chla monomeric cation, oligomeric cations have been detected. For anionic headgroups the photoionization yield is found to be half or less than that observed with the zwitterionic choline headgroup. A decrease of the yield is also observed when increasing amounts of anionic sodium dihexadecyl phosphate (DHP) are added to vary the surface charge of mixed vesicles. Electron spin echo (ESE) experiments in samples prepared with tetrabromo-P-benzoquinone (TBBQ) showed that the average location of the TBBQ radical anion is not sensitive to DHP addition. At low Chla concentration, the photoionization yield is increased more than 2-fold in dioctadecyldimethylammonium chloride (DODAC) cationic vesicles, prepared in pure water without electron scavengers, compared to the yield in similar dipalmitoylphosphatidylcholine (DPPC), vesicles. An increase in yield is also seen in mixed DPPC/DODAC vesicles at low Chla concentration. The results are discussed in terms of electrostatic barriers influencing electron transfer.

  11. Photoionization of ions of the nitrogen isoelectronic sequence:experiment and theory for F2+ and Ne3+

    SciTech Connect

    Aguilar, A.; Emmons, E.D.; Gharaibeh, M.F.; Covington, A.M.; Bozek, J.D.; Ackerman, G.; Canton, S.; Rude, B.; Schlachter, A.S.; Hinojosa, G.; Alvarez, I.; Cisneros, C.; McLaughlin, B.M.; Phaneuf, R.A.

    2005-06-21

    Absolute photoionization measurements are reported for admixtures of the ground and metastable states of F2+ from 56.3 eV to 75.6 eV, and of Ne3+ from 89.3 eV to 113.8 eV. The 4So ground-state and the 2Do and 2Po metastable-state fractions present in the primary ion beams were estimated from photo ion yield measurements near the irrespective threshold energies. Most of the observed resonance structure has been spectroscopically assigned. The measurements are compared with new R-matrix theoretical calculations and with those in the TOP base astrophysical database. The systematic behaviour of the quantum-defect parameter is analyzed as a function of the nuclear charge for four Rydberg series observed in both species, and compared to published data for O+ and N.

  12. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  13. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  14. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    NASA Astrophysics Data System (ADS)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  15. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  16. A general algorithm for fitting efficiently triple differential cross sections of atomic double photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Colle, Renato

    2008-12-01

    We propose an effective procedure to fit triple differential cross sections of atomic double photoionization processes, which is based on a general expression of the transition amplitude between arbitrary states of the target atom and the parent ion, with the transition operator expressed at any order of its multipolar expansion. The major advantage of our expression, which in the dipole approximation is equivalent to those of Manakov (1996 J. Phys. B: At. Mol. Opt. Phys. 29 2711) and Malegat (1997 J. Phys. B: At. Mol. Opt. Phys. 30 251), is that it is expressed only in terms of elementary angular functions (Clebsch-Gordan coefficients, spherical harmonics and 6 - j factors). Therefore our expression can be easily implemented in a general code for any kinematic condition and any order of the multipolar expansion of the transition operator. Our fitting procedure takes into account also the finite instrumental resolution in measuring energies and angles. Test calculations on helium and argon show that this further capability is often essential to remove important discrepancies between simulated and measured angular distributions.

  17. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins.

    PubMed

    Carroll, Joe; Fearnley, Ian M; Walker, John E

    2006-10-31

    The covalent structure of a protein is incompletely defined by its gene sequence, and mass spectrometric analysis of the intact protein is needed to detect the presence of any posttranslational modifications. Because most membrane proteins are purified in detergents that are incompatible with mass spectrometric ionization techniques, this essential measurement has not been made on many hydrophobic proteins, and so proteomic data are incomplete. We have extracted membrane proteins from bovine mitochondria and detergent-purified NADH:ubiquinone oxidoreductase (complex I) with organic solvents, fractionated the mixtures by hydrophilic interaction chromatography, and measured the molecular masses of the intact membrane proteins, including those of six subunits of complex I that are encoded in mitochondrial DNA. These measurements resolve long-standing uncertainties about the interpretation of the mitochondrial genome, and they contribute significantly to the definition of the covalent composition of complex I.

  18. Transient-gain photoionization x-ray laser

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Rohringer, Nina

    2014-12-01

    We present a generalized theory based on one-dimensional Maxwell-Bloch equations to study the amplification process of an inner-shell photoionization-pumped atomic x-ray laser. Focusing an x-ray free-electron laser beam in an elongated neon-gas target results in a strong exponential amplification of K α fluorescence, as recently demonstrated [N. Rohringer et al., Nature (London) 481, 488 (2012), 10.1038/nature10721; C. Weninger et al., Phys. Rev. Lett. 111, 233902 (2013), 10.1103/PhysRevLett.111.233902]. Here, we present an in-depth theoretical study of the amplification process that goes beyond the previous theory based on a rate-equation approach. We study the evolution of the pulse characteristics during the amplification process for transform-limited Gaussian and broadband self-amplified spontaneous-emission pump pulses. We discuss the impact of the gain-dependent group velocity on the emitted x-ray radiation and the resulting gain-guiding effects. A thorough analysis of the spectral and temporal properties of the emitted radiation is presented, including higher-order field-correlation functions, to characterize the ensemble of emitted x-ray pulses.

  19. Synchrotron-based valence shell photoionization of CH radical

    NASA Astrophysics Data System (ADS)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  20. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  1. Synchrotron-based valence shell photoionization of CH radical.

    PubMed

    Gans, B; Holzmeier, F; Krüger, J; Falvo, C; Röder, A; Lopes, A; Garcia, G A; Fittschen, C; Loison, J-C; Alcaraz, C

    2016-05-28

    We report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  2. Correlation-induced Time Delay in Atomic Photoionization

    NASA Astrophysics Data System (ADS)

    Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.; Kheifets, Anatoli S.

    2016-05-01

    Interchannel coupling has been seen to result in structures in the photoionization cross sections of outer shell electrons in the vicinity of inner-shell thresholds, a result which leads us to ask if the same would be true for the time delay of outer shell electrons near inner-shell thresholds. Using the relativistic-random-phase approximation (RRPA) methodology, a theoretical study of neon, argon, krypton, and xenon were performed to search for these correlation-induced effects. Calculations were performed both with coupling and without coupling to verify that the structures found in the time delay were in fact due to interchannel coupling. Using this method to study the effects of interchannel coupling reveals how much of an impact the coupling has on the time delay, in some cases over a broad energy range. In cases where the spin-orbit doublets' respective thresholds are far enough apart, effects can be found in the j = l + 1/2channels due to interchannel coupling with the j = l-1/2 channels. These structures are purely a relativistic effect and are related to spin-obit activated interchannel coupling effects. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.

  3. Vibrationally resolved cross sections for the photoionization of CS2

    NASA Astrophysics Data System (ADS)

    Stratmann, R. E.; Lucchese, Robert R.

    1994-12-01

    We have performed vibrationally resolved calculations of the excitation of the symmetric stretch in the photoionization of CS2 leading to the X 2Πg, A 2Πu, B 2Σ+u, and C 2Σ+g states of CS+2. Previous theoretical work has determined that the kπg shape resonance in the (5σu)-1 channel consists mainly of a linear combination of low lying virtual d orbitals on sulfur and is thus essentially atomic in nature. This conclusion was primarily based on the shape of the resonant wave function and the insensitivity of the energy of the resonance to bond stretching. Here, we have determined that the energies of the kπ shape resonances located well above threshold and the σ bound states just below threshold are insensitive to bond length. We have also found nearly constant vibrational branching ratios in all channels and polarization components. This is in qualitative agreement with experimental vibrationally resolved cross sections [S. Kakar, H. C. Choi, and E. D. Poliakoff, J. Chem. Phys. 97, 4690 (1992)] which show nearly constant vibrational branching ratios. Our present results indicate that caution must be exercised when using bond length sensitivity as an exclusive means to determine the existence of shape resonances.

  4. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  5. Photodissociation of Trapped Rb2+: Implications for Simultaneous Trapping of Atoms and Molecular Ions

    NASA Astrophysics Data System (ADS)

    Jyothi, S.; Ray, Tridib; Dutta, Sourav; Allouche, A. R.; Vexiau, Romain; Dulieu, Olivier; Rangwala, S. A.

    2016-11-01

    The direct photodissociation of trapped 85Rb2+ (rubidium) molecular ions by the cooling light for the 85Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb2+ ions are created by photoionization of Rb2 molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb2+ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  6. Photodissociation of Trapped Rb_{2}^{+}: Implications for Simultaneous Trapping of Atoms and Molecular Ions.

    PubMed

    Jyothi, S; Ray, Tridib; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-11-18

    The direct photodissociation of trapped ^{85}Rb_{2}^{+} (rubidium) molecular ions by the cooling light for the ^{85}Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb_{2}^{+} ions are created by photoionization of Rb_{2} molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb_{2}^{+} ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  7. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  8. Development of Pressure Sensitive Molecular Film as a Measurement Technique for Micro-Flows

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Mori, H.; Sakazaki, Y.; Uchida, T.; Suzuki, S.; Yamaguchi, H.; Niimi, T.

    2008-12-01

    The pressure-sensitive paint (PSP) has potential as a diagnostic tool for pressure measurement in the high Knudsen number regime because it works as a so-called "molecular sensor." However, there are few reports concerning application of the PSP to micro devices, because the conventional PSP is too thick owing to the use of polymer binder. In our previous work, we have adopted Langmuir-Blodgett (LB) technique to fabricate pressure sensitive molecular films (PSMFs) using Pd(II) Mesoporphyrin IX (PdMP). The PSMF based on PdMP has pressure sensitivity only at low pressure range (below 3 kPa). In this study, we have constructed PSMF composed of Pt(II) Mesoporphyrin IX (PtMP) to be applied to pressure measurement near atmospheric pressure. The pressure sensitivity of PSMF based on PtMP has been tested, and it is clarified that the PSMF of PtMP has equivalent pressure sensitivity of polymer PSP. Moreover, we have applied PSMF to measurement of pressure distribution of micro-channel gas flow, showing its usefulness.

  9. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  10. In situ real-time spectroscopic ellipsometry measurement for the investigation of molecular orientation in organic amorphous multilayer structures

    NASA Astrophysics Data System (ADS)

    Yokoyama, Daisuke; Adachi, Chihaya

    2010-06-01

    To investigate molecular orientation in organic amorphous films, in situ real-time spectroscopic ellipsometry measurements were performed during vacuum deposition. Three materials with different molecular shapes were adopted to confirm the generality of the molecular orientation. In all three cases, more than 200 000 values for the ellipsometric parameters measured during deposition were well simulated simultaneously over the entire spectral range and measurement period using a simple model where the films possessed homogeneous optical anisotropy. This demonstrated the homogeneity of the molecular orientation in the direction of film thickness. The molecular orientation can be controlled by the substrate temperature even in multilayer structures. It is also demonstrated that a "multilayer structure" can be fabricated using only one material, where each layer has different optical and electrical properties.

  11. Molecular diffusivity measurement through an alumina membrane using time-resolved fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Mason, Michael D.

    2010-11-01

    We present a simple fluorescence imaging method for measuring the time-resolved concentration of a fluorescent molecule diffusing through an anodic alumina membrane with a pore diameter of 20 nm. From the concentration breakthrough curve, the molecular diffusivity of the fluorophore was extracted. The experimentally determined diffusivity was three orders of magnitude lower than reported bulk values. Due to the relative simplicity and ease of use, this method can be applied to provide fundamental information for biomolecular separations applications. One feature of this method is the high sensitivity at intercellular volumes broadening its application to drug delivery and controlled cell growth.

  12. A truer measure of the market: the molecular ecology of fisheries and wildlife trade.

    PubMed

    Baker, C Scott

    2008-09-01

    Wildlife and fisheries markets are end-points in the supply chain of both legitimate and illegitimate or unregulated trade in species and natural products. Molecular ecology provides powerful tools for surveillance and estimation of this trade. Here, I review the application of these tools to market surveys and species in trade, including species identification and molecular taxonomy, population assignment and 'mixed-stock' analysis, genetic tracking and capture-recapture by individual identification. I consider the analogy of markets to natural populations and also the unique features that require novel analytical approaches and sampling design. In the most developed of these applications, the molecular ecology of market surveys and confiscated trade shipments has provided independent estimates of illegal, unregulated or unreported exploitation for sharks, elephants and whales. Although each study has taken advantage of information from trade records or official government reports concerning the ostensible levels of exploitation, it is telling that the truer measure of exploitation seems to arise from the market end-point of the supply chain.

  13. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    SciTech Connect

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas E-mail: najita@noao.edu E-mail: pascucci@stsci.edu E-mail: henning@mpia.de

    2011-06-10

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  14. K-shell photoionization of CO: I. Angular distributions of photoelectrons from fixed-in-space molecules

    NASA Astrophysics Data System (ADS)

    Motoki, S.; Adachi, J.; Hikosaka, Y.; Ito, K.; Sano, M.; Soejima, K.; Yagishita, A.; Raseev, G.; Cherepkov, N. A.

    2000-10-01

    Angular distributions of photoelectrons from both C and O K-shells of the fixed-in-space CO molecule have been measured using the angle-resolved photoelectron-photoion coincidence technique. The measurements have been performed at several photon energies from the ionization thresholds up to about 30 eV above them, where the σ* shape resonances occur. Experimental results are compared with the multiple-scattering calculations of Dill et al (1976 J. Chem. Phys. 65 3158) and with our new calculations in the relaxed-core Hartree-Fock approximation. Our calculations are in a better agreement with the experimental data though numerical discrepancies remain. The experimental angular distributions are fitted by the expansion in Legendre polynomials containing up to ten terms and the extracted parameters are compared with the corresponding theoretical values.

  15. The Photoionized Disk Wind in MWC 349AOrigin of the photo-ionized wind in MWC349A

    NASA Astrophysics Data System (ADS)

    Báez-Rubio, A.; Martín-Pintado, J.

    2017-02-01

    Establishing how dense photo-ionized winds around stars are formed is key to understanding which physical mechanisms have an important role in the evolution of their circumstellar disks. In the case of the massive star MWC 349A, the extensive research carried out since the discovery of its hydrogen recombination lines has lead to a profound knowledge of the characteristics of the system formed by its ionized wind and disk. We present a summary of the current knowledge of their kinematics, which suggests that its dense wind is formed by photoevaporation of the circumstellar disk at a distance of ˜ 24 AU from the central star. We briefly discuss the reasons why disk-wind models are favored because of the radius where its launching occurs. Finally, we compare our results with the recent discovery of maser recombination lines toward another B[e] star, MWC 922, by Sanchez Contreras et al. (in prep.). This finding opens new prospects for studying the origin of winds around stars showing the B[e] phenomenon.

  16. Hypersonic Boundary Layer Measurements with Variable Blowing Rates Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Jones, Stephen B.; Goyne, Christopher P.

    2012-01-01

    Measurements of mean and instantaneous streamwise velocity profiles in a hypersonic boundary layer with variable rates of mass injection (blowing) of nitrogen dioxide (NO2) were obtained over a 10-degree half-angle wedge model. The NO2 was seeded into the flow from a slot located 29.4 mm downstream of the sharp leading edge. The top surface of the wedge was oriented at a 20 degree angle in the Mach 10 flow, yielding an edge Mach number of approximately 4.2. The streamwise velocity profiles and streamwise fluctuating velocity component profiles were obtained using a three-laser NO2->NO photolysis molecular tagging velocimetry method. Observed trends in the mean streamwise velocity profiles and profiles of the fluctuating component of streamwise velocity as functions of the blowing rate are described. An effort is made to distinguish between the effect of blowing rate and wall temperature on the measured profiles. An analysis of the mean velocity profiles for a constant blowing rate is presented to determine the uncertainty in the measurement for different probe laser delay settings. Measurements of streamwise velocity were made to within approximately 120 gm of the model surface. The streamwise spatial resolution in this experiment ranged from 0.6 mm to 2.6 mm. An improvement in the spatial precision of the measurement technique has been made, with spatial uncertainties reduced by about a factor of 2 compared to previous measurements. For the quiescent flow calibration measurements presented, uncertainties as low as 2 m/s are obtained at 95% confidence for long delay times (25 gs). For the velocity measurements obtained with the wind tunnel operating, average single-shot uncertainties of less than 44 m/s are obtained at 95% confidence with a probe laser delay setting of 1 gs. The measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  17. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  18. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  19. K-shell photoionization of O4 + and O5 + ions: experiment and theory

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.

    2017-03-01

    Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.

  20. The solar elemental abundances problem: Large enhancements in photoionization and bound-free opacity

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Nahar, S.

    2016-05-01

    Aimed at solving the outstanding problem of solar opacity and radiation transport, we report substantial photoabsorption in the high-energy regime due to atomic core photo-excitations not heretofore considered. In an extensive R-Matrix calculations of unprecedented complexity for an important iron ion Fe XVII, with a wave function expansion of 99 Fe XVIII core states from n <= 4 complexes (equivalent to 218 fine structure levels), we find: i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. These findings may explain the ``higher-than-predicted'' monochromatic iron opacity measured recently at the Sandia Z-pinch fusion device at solar interior conditions. The findings will also impact the total atomic photoabsorption and radiation transport in laboratory and astrophysical plasmas, such as UV emission from host stars of extra-solar planets. Support: NSF, DOE, Ohio Supercomputer Center, Columbus, OH.

  1. Nondipole effects in the triply differential cross section for double photoionization of He

    SciTech Connect

    Istomin, Andrei Y.; Starace, Anthony F.; Manakov, N.L.; Meremianin, A.V.

    2005-05-15

    Lowest-order nondipole effects are studied systematically in double photoionization (DPI) of the He atom. Ab initio parametrizations of the quadrupole transition amplitude for DPI from the {sup 1}S{sub 0} state are presented in terms of the exact two-electron radial matrix elements. Analytic expressions for these matrix elements within lowest-order perturbation theory (LOPT) in the interelectron interaction are also given. The corresponding parametrizations for the dipole-quadrupole triply differential cross section (TDCS) are presented for the case of an elliptically polarized photon. A general analysis of retardation-induced asymmetries of the TDCS including the circular dichroism effect at equal energy sharing is presented. Numerical LOPT estimates of nondipole asymmetries in photoelectron angular distributions for the cases of linear and circular polarization and of the circular dichroism effect at equal energy sharing are presented. We find that experimental observation of nondipole effects at excess energies of the order of tens to hundreds of eV should be feasible in TDCS measurements. Our numerical results exhibit a nondipole forward-backward asymmetry in the TDCS for DPI of He at an excess energy of 450 eV that is in qualitative agreement with existing experimental data.

  2. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  3. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  4. Velocity map imaging with non-uniform detection: Quantitative molecular axis alignment measurements via Coulomb explosion imaging.

    PubMed

    Underwood, Jonathan G; Procino, I; Christiansen, L; Maurer, J; Stapelfeldt, H

    2015-07-01

    We present a method for inverting charged particle velocity map images which incorporates a non-uniform detection function. This method is applied to the specific case of extracting molecular axis alignment from Coulomb explosion imaging probes in which the probe itself has a dependence on molecular orientation which often removes cylindrical symmetry from the experiment and prevents the use of standard inversion techniques for the recovery of the molecular axis distribution. By incorporating the known detection function, it is possible to remove the angular bias of the Coulomb explosion probe process and invert the image to allow quantitative measurement of the degree of molecular axis alignment.

  5. Measuring molecular motions inside single cells with improved analysis of single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Rowland, David J.; Biteen, Julie S.

    2017-04-01

    Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.

  6. Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field

    NASA Astrophysics Data System (ADS)

    Shao-Hao, Cheng; De-Hua, Wang; Zhao-Hang, Chen; Qiang, Chen

    2016-06-01

    In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. Project supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LJ04).

  7. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  8. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from

  9. Polarization Sensitive Measurements of Molecular Reorientation in a Glass Capacitor Cell

    NASA Astrophysics Data System (ADS)

    Cooper, Nathan; Lawhead, Carlos; Anderson, Josiah; Shiver, Tegan; Prayaga, Chandra; Ujj, Laszlo

    2014-03-01

    It is well known that molecules having a permanent dipole moment tend to orient in the direction of the electric field at room temperature. The reorientation can be probed with the help of linear spectroscopy methods such as fluorescence anisotropy measurements. We have used nonlinear polarization sensitive Raman scattering spectroscopy to quantify the orientation effect of the dipoles. Vibrational spectra of the molecules has been recorded as a function of the external electric field. The polarization changes observed during the measurement are directly linked to the molecular reorientation rearrangement. Spectra has been recorded with a laser spectrometer comprised of a Nd:YAG laser and an optical parametric oscillator and an imaging spectrometer with a CCD detector. In order to make this measurement we have constructed a glass capacitor cell coated in TiO and applied a significant electric field (0-3 kV/mm) to the sample. Our measurements showed that the orientation effect is most significant for liquid crystals as observed previously with non-polarization sensitive CARS spectroscopy.

  10. Hydrostatic pressure effect on photoionization cross section of a trion in quantum dots

    NASA Astrophysics Data System (ADS)

    Xie, Wenfang

    2013-11-01

    It is known experimentally that stable charged excitons can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to solve, even numerically. Here, we use the matrix diagonalization method and compact-density approach to investigate the charged excitons in a two-dimensional parabolic quantum dot. With typical semiconducting GaAs based materials, the photoionization cross section has been examined based on the computed energies and wave functions. We find that the photoionization cross section of charged excitons is strongly affected by the confinement frequency, hydrostatic pressure and temperature of QDs. Our results also show that the photoionization cross section of a negatively charged exciton is larger than that of a positively charged exciton.

  11. K-Shell Photoionization of Nickel Ions Using R-Matrix

    NASA Technical Reports Server (NTRS)

    Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  12. Photo-ionization and photo-excitation of curcumin investigated by laser flash photolysis.

    PubMed

    Qian, Tingting; Kun, Li; Gao, Bo; Zhu, Rongrong; Wu, Xianzheng; Wang, Shilong

    2013-12-01

    Curcumin (Cur) has putative antitumor properties. In the current study, we examined photophysical and photochemical properties of Cur using laser flash photolysis. The results demonstrated that Cur could be photo-ionized at 355 nm laser pulse to produce radical cation (Cur(+)) and solvated electron e(sol)(-) in 7:3 ethanol-water mixtures. The quantum yield of Cur photo-ionization and the ratio of photo-ionization to photo-excitation were also determined. Cur(+) could be transferred into neutral radical of Cur (Cur) via deprotonation with the pKa 4.13. The excited singlet of Cur ((1)Cur* could be transferred into excited triplet ((3)Cur*, which could be quenched by oxygen to produce singlet oxygen (1)O2*. Reaction of (3)Cur* with tryptophan was confirmed. The results encourage developing curcumin as a photosensitive antitumor agent.

  13. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    SciTech Connect

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.

  14. K-SHELL PHOTOIONIZATION OF NICKEL IONS USING R-MATRIX

    SciTech Connect

    Witthoeft, M. C.; Bautista, M. A.; GarcIa, J.; Kallman, T. R.; Palmeri, P.; Quinet, P.

    2011-09-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ion stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  15. Dirac R-matrix calculations of photoionization cross-sections of Ni XIII

    NASA Astrophysics Data System (ADS)

    Sardar, S.; Bilal, M.; Bari, M. A.; Nazir, R. T.; Hannan, A.; Salahuddin, M.; Nasim, M. H.

    2016-05-01

    In this paper, we report total photoionization cross-sections of Ni XIII in the ground state (3P2) and four excited states (3P1,0, 1D2, 1S0) for the first time over the photon energy range 380-480 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP code. Our calculated energy levels and oscillator strengths of core ion Ni XIV agree well with available experimental and theoretical results. The ionization threshold value of ground state of Ni XIII is found to be more closer to the experimental ionization energy and improved over the previous calculations. The photoionization cross-sections are calculated using the fully relativistic DARC code with an appropriate energy step of 0.01 eV to delineate the resonance structures. The calculated ionization cross-sections are important for the modelling of features of photoionized plasmas and for stellar opacities.

  16. Space and Time Resolved Continuum Correlation in the Post-Collision Interaction of Core-Photoionized Neon

    NASA Astrophysics Data System (ADS)

    Bhandary, A.; Landers, A. L.; Robicheaux, F.; Osipov, T.; Hertlein, M.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.; Jahnke, T.; Schoffler, M.; Titze, J.; Dorner, R.

    2007-06-01

    We have used the COLTRIMS^* technique to measure the momentum distribution of the photoelectron and the recoil ion produced by the core-photoionization of neon. Conservation of momentum allows us to determine the subsequent auger electron's momentum that is emitted when the Ne^+ relaxes to the Ne^2+ state. Momentum space plots of the electrons and the recoil ion are then used to resolve the three-body correlated post-collision interactions in space and time. Finally, classical calculations have been performed which corroborate our interpretation of the experimental results. ^*R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ull- rich, R. Moshammer, and H. Schmidt-B"aocking. Physics Reports, 330:96-192, 2000.

  17. Cross-section and asymmetry-parameter calculations for the outer- and inner-valence photoionization of ethane

    SciTech Connect

    Toffoli, Daniele; Simpson, Mary J.; Lucchese, Robert R.

    2004-06-01

    We have computed cross sections and asymmetry parameters for the outer- and inner-valence photoionization of ethane using the Schwinger variational method with Pade corrections. The calculated total cross section is found to be in rather good agreement with the available electron-impact and photoabsorption measurements. One-electron resonant processes in the (1e{sub g}){sup -1} (3a{sub 1g}){sup -1}, and (2a{sub 1g}){sup -1} ionization channels were examined comparing resonant states predicted from the virtual orbitals of a minimum basis set self-consistent-field (MBS-SCF) calculations with scattering resonances found using a local model potential for the electron-molecule interaction. The analysis of the interaction potential in terms of adiabatic radial components provides a description of the mechanism of the resonant trapping.

  18. [Rapid detection of residual cyclohexanone in disposable medical devices by ultraviolet photoionization ion mobility spectrometry (UV-IMS)].

    PubMed

    Li, Hu; Han, Hai-yan; Niu, Wen-qi; Wang, Hong-mei; Huang, Chao-qun; Jiang, Hai-he; Chu, Yan-nan

    2012-01-01

    In the manufacture of disposable PVC medical devices, cyclohexanone is frequently used as an adhesive reagent, which can be released into the tube airspace or stored solution and thus may cause some adverse effects on patients in therapy. In this paper, an ultraviolet photoionization ion mobility spectrometry (UV-IMS) technique has been developed to detect cyclohexanone through monitoring the gas composition within a package of infusion sets. The concentrations of cyclohexanone were prepared by means of exponential dilution method, and the experiments show that the UV-IMS has a limit of detection at 15 ppb and its measurable linear dynamics range is over three orders of magnitude. The concentrations of cyclohexanone in three brands of infusion sets packages were determined to be 16.78, 17.59 and 46.69 ppm respectively. The UV-IMS is proposed as a tool for the quality control of medical devices to monitor illegal uses of chemical solvents like cyclohexanone.

  19. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  20. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.